0
33
0
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
namespace lemon {
|
| 20 | 20 |
|
| 21 | 21 |
/** |
| 22 | 22 |
@defgroup datas Data Structures |
| 23 |
This group |
|
| 23 |
This group contains the several data structures implemented in LEMON. |
|
| 24 | 24 |
*/ |
| 25 | 25 |
|
| 26 | 26 |
/** |
| 27 | 27 |
@defgroup graphs Graph Structures |
| 28 | 28 |
@ingroup datas |
| 29 | 29 |
\brief Graph structures implemented in LEMON. |
| 30 | 30 |
|
| 31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
| 32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
| 33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
| 34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
| 35 | 35 |
|
| 36 | 36 |
The most efficient implementation of diverse applications require the |
| 37 | 37 |
usage of different physical graph implementations. These differences |
| 38 | 38 |
appear in the size of graph we require to handle, memory or time usage |
| 39 | 39 |
limitations or in the set of operations through which the graph can be |
| 40 | 40 |
accessed. LEMON provides several physical graph structures to meet |
| 41 | 41 |
the diverging requirements of the possible users. In order to save on |
| 42 | 42 |
running time or on memory usage, some structures may fail to provide |
| 43 | 43 |
some graph features like arc/edge or node deletion. |
| 44 | 44 |
|
| 45 | 45 |
Alteration of standard containers need a very limited number of |
| 46 | 46 |
operations, these together satisfy the everyday requirements. |
| 47 | 47 |
In the case of graph structures, different operations are needed which do |
| 48 | 48 |
not alter the physical graph, but gives another view. If some nodes or |
| 49 | 49 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
| 50 | 50 |
this is the case. It also may happen that in a flow implementation |
| 51 | 51 |
the residual graph can be accessed by another algorithm, or a node-set |
| 52 | 52 |
is to be shrunk for another algorithm. |
| 53 | 53 |
LEMON also provides a variety of graphs for these requirements called |
| 54 | 54 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
| 55 | 55 |
in conjunction with other graph representations. |
| 56 | 56 |
|
| 57 | 57 |
You are free to use the graph structure that fit your requirements |
| 58 | 58 |
the best, most graph algorithms and auxiliary data structures can be used |
| 59 | 59 |
with any graph structure. |
| 60 | 60 |
|
| 61 | 61 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
| 62 | 62 |
*/ |
| 63 | 63 |
|
| 64 | 64 |
/** |
| 65 | 65 |
@defgroup graph_adaptors Adaptor Classes for Graphs |
| 66 | 66 |
@ingroup graphs |
| 67 | 67 |
\brief Adaptor classes for digraphs and graphs |
| 68 | 68 |
|
| 69 | 69 |
This group contains several useful adaptor classes for digraphs and graphs. |
| 70 | 70 |
|
| 71 | 71 |
The main parts of LEMON are the different graph structures, generic |
| 72 | 72 |
graph algorithms, graph concepts, which couple them, and graph |
| 73 | 73 |
adaptors. While the previous notions are more or less clear, the |
| 74 | 74 |
latter one needs further explanation. Graph adaptors are graph classes |
| 75 | 75 |
which serve for considering graph structures in different ways. |
| 76 | 76 |
|
| 77 | 77 |
A short example makes this much clearer. Suppose that we have an |
| 78 | 78 |
instance \c g of a directed graph type, say ListDigraph and an algorithm |
| 79 | 79 |
\code |
| 80 | 80 |
template <typename Digraph> |
| 81 | 81 |
int algorithm(const Digraph&); |
| 82 | 82 |
\endcode |
| 83 | 83 |
is needed to run on the reverse oriented graph. It may be expensive |
| 84 | 84 |
(in time or in memory usage) to copy \c g with the reversed |
| 85 | 85 |
arcs. In this case, an adaptor class is used, which (according |
| 86 | 86 |
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph. |
| 87 | 87 |
The adaptor uses the original digraph structure and digraph operations when |
| 88 | 88 |
methods of the reversed oriented graph are called. This means that the adaptor |
| 89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
| 90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
| 91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
| 92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
| 93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
| 94 | 94 |
To come back to the reverse oriented graph, in this situation |
| 95 | 95 |
\code |
| 96 | 96 |
template<typename Digraph> class ReverseDigraph; |
| 97 | 97 |
\endcode |
| 98 | 98 |
template class can be used. The code looks as follows |
| 99 | 99 |
\code |
| 100 | 100 |
ListDigraph g; |
| 101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
| 102 | 102 |
int result = algorithm(rg); |
| 103 | 103 |
\endcode |
| 104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
| 105 | 105 |
This techniques give rise to an elegant code, and based on stable |
| 106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
| 107 | 107 |
|
| 108 | 108 |
In flow, circulation and matching problems, the residual |
| 109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
| 110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
| 111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
| 112 | 112 |
obtained. For other examples, the interested user is referred to the |
| 113 | 113 |
detailed documentation of particular adaptors. |
| 114 | 114 |
|
| 115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
| 116 | 116 |
capabilities of the original graph while in other cases this would be |
| 117 | 117 |
meaningless. This means that the concepts that they meet depend |
| 118 | 118 |
on the graph adaptor, and the wrapped graph. |
| 119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
| 120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
| 121 | 121 |
adaptor modifies the original digraph. |
| 122 | 122 |
However in case of a residual digraph, this operation has no sense. |
| 123 | 123 |
|
| 124 | 124 |
Let us stand one more example here to simplify your work. |
| 125 | 125 |
ReverseDigraph has constructor |
| 126 | 126 |
\code |
| 127 | 127 |
ReverseDigraph(Digraph& digraph); |
| 128 | 128 |
\endcode |
| 129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
| 130 | 130 |
reference to a graph is given, then it have to be instantiated with |
| 131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
| 132 | 132 |
\code |
| 133 | 133 |
int algorithm1(const ListDigraph& g) {
|
| 134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
| 135 | 135 |
return algorithm2(rg); |
| 136 | 136 |
} |
| 137 | 137 |
\endcode |
| 138 | 138 |
*/ |
| 139 | 139 |
|
| 140 | 140 |
/** |
| 141 | 141 |
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs |
| 142 | 142 |
@ingroup graphs |
| 143 | 143 |
\brief Graph types between real graphs and graph adaptors. |
| 144 | 144 |
|
| 145 |
This group |
|
| 145 |
This group contains some graph types between real graphs and graph adaptors. |
|
| 146 | 146 |
These classes wrap graphs to give new functionality as the adaptors do it. |
| 147 | 147 |
On the other hand they are not light-weight structures as the adaptors. |
| 148 | 148 |
*/ |
| 149 | 149 |
|
| 150 | 150 |
/** |
| 151 | 151 |
@defgroup maps Maps |
| 152 | 152 |
@ingroup datas |
| 153 | 153 |
\brief Map structures implemented in LEMON. |
| 154 | 154 |
|
| 155 |
This group |
|
| 155 |
This group contains the map structures implemented in LEMON. |
|
| 156 | 156 |
|
| 157 | 157 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
| 158 | 158 |
new maps from existing ones. |
| 159 | 159 |
|
| 160 | 160 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
| 161 | 161 |
*/ |
| 162 | 162 |
|
| 163 | 163 |
/** |
| 164 | 164 |
@defgroup graph_maps Graph Maps |
| 165 | 165 |
@ingroup maps |
| 166 | 166 |
\brief Special graph-related maps. |
| 167 | 167 |
|
| 168 |
This group |
|
| 168 |
This group contains maps that are specifically designed to assign |
|
| 169 | 169 |
values to the nodes and arcs/edges of graphs. |
| 170 | 170 |
|
| 171 | 171 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
| 172 | 172 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
| 173 | 173 |
*/ |
| 174 | 174 |
|
| 175 | 175 |
/** |
| 176 | 176 |
\defgroup map_adaptors Map Adaptors |
| 177 | 177 |
\ingroup maps |
| 178 | 178 |
\brief Tools to create new maps from existing ones |
| 179 | 179 |
|
| 180 |
This group |
|
| 180 |
This group contains map adaptors that are used to create "implicit" |
|
| 181 | 181 |
maps from other maps. |
| 182 | 182 |
|
| 183 | 183 |
Most of them are \ref concepts::ReadMap "read-only maps". |
| 184 | 184 |
They can make arithmetic and logical operations between one or two maps |
| 185 | 185 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
| 186 | 186 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
| 187 | 187 |
|
| 188 | 188 |
The typical usage of this classes is passing implicit maps to |
| 189 | 189 |
algorithms. If a function type algorithm is called then the function |
| 190 | 190 |
type map adaptors can be used comfortable. For example let's see the |
| 191 | 191 |
usage of map adaptors with the \c graphToEps() function. |
| 192 | 192 |
\code |
| 193 | 193 |
Color nodeColor(int deg) {
|
| 194 | 194 |
if (deg >= 2) {
|
| 195 | 195 |
return Color(0.5, 0.0, 0.5); |
| 196 | 196 |
} else if (deg == 1) {
|
| 197 | 197 |
return Color(1.0, 0.5, 1.0); |
| 198 | 198 |
} else {
|
| 199 | 199 |
return Color(0.0, 0.0, 0.0); |
| 200 | 200 |
} |
| 201 | 201 |
} |
| 202 | 202 |
|
| 203 | 203 |
Digraph::NodeMap<int> degree_map(graph); |
| 204 | 204 |
|
| 205 | 205 |
graphToEps(graph, "graph.eps") |
| 206 | 206 |
.coords(coords).scaleToA4().undirected() |
| 207 | 207 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
| 208 | 208 |
.run(); |
| 209 | 209 |
\endcode |
| 210 | 210 |
The \c functorToMap() function makes an \c int to \c Color map from the |
| 211 | 211 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
| 212 | 212 |
and the previously created map. The composed map is a proper function to |
| 213 | 213 |
get the color of each node. |
| 214 | 214 |
|
| 215 | 215 |
The usage with class type algorithms is little bit harder. In this |
| 216 | 216 |
case the function type map adaptors can not be used, because the |
| 217 | 217 |
function map adaptors give back temporary objects. |
| 218 | 218 |
\code |
| 219 | 219 |
Digraph graph; |
| 220 | 220 |
|
| 221 | 221 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
| 222 | 222 |
DoubleArcMap length(graph); |
| 223 | 223 |
DoubleArcMap speed(graph); |
| 224 | 224 |
|
| 225 | 225 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
| 226 | 226 |
TimeMap time(length, speed); |
| 227 | 227 |
|
| 228 | 228 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
| 229 | 229 |
dijkstra.run(source, target); |
| 230 | 230 |
\endcode |
| 231 | 231 |
We have a length map and a maximum speed map on the arcs of a digraph. |
| 232 | 232 |
The minimum time to pass the arc can be calculated as the division of |
| 233 | 233 |
the two maps which can be done implicitly with the \c DivMap template |
| 234 | 234 |
class. We use the implicit minimum time map as the length map of the |
| 235 | 235 |
\c Dijkstra algorithm. |
| 236 | 236 |
*/ |
| 237 | 237 |
|
| 238 | 238 |
/** |
| 239 | 239 |
@defgroup matrices Matrices |
| 240 | 240 |
@ingroup datas |
| 241 | 241 |
\brief Two dimensional data storages implemented in LEMON. |
| 242 | 242 |
|
| 243 |
This group |
|
| 243 |
This group contains two dimensional data storages implemented in LEMON. |
|
| 244 | 244 |
*/ |
| 245 | 245 |
|
| 246 | 246 |
/** |
| 247 | 247 |
@defgroup paths Path Structures |
| 248 | 248 |
@ingroup datas |
| 249 | 249 |
\brief %Path structures implemented in LEMON. |
| 250 | 250 |
|
| 251 |
This group |
|
| 251 |
This group contains the path structures implemented in LEMON. |
|
| 252 | 252 |
|
| 253 | 253 |
LEMON provides flexible data structures to work with paths. |
| 254 | 254 |
All of them have similar interfaces and they can be copied easily with |
| 255 | 255 |
assignment operators and copy constructors. This makes it easy and |
| 256 | 256 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
| 257 | 257 |
any kind of path structure. |
| 258 | 258 |
|
| 259 | 259 |
\sa lemon::concepts::Path |
| 260 | 260 |
*/ |
| 261 | 261 |
|
| 262 | 262 |
/** |
| 263 | 263 |
@defgroup auxdat Auxiliary Data Structures |
| 264 | 264 |
@ingroup datas |
| 265 | 265 |
\brief Auxiliary data structures implemented in LEMON. |
| 266 | 266 |
|
| 267 |
This group |
|
| 267 |
This group contains some data structures implemented in LEMON in |
|
| 268 | 268 |
order to make it easier to implement combinatorial algorithms. |
| 269 | 269 |
*/ |
| 270 | 270 |
|
| 271 | 271 |
/** |
| 272 | 272 |
@defgroup algs Algorithms |
| 273 |
\brief This group |
|
| 273 |
\brief This group contains the several algorithms |
|
| 274 | 274 |
implemented in LEMON. |
| 275 | 275 |
|
| 276 |
This group |
|
| 276 |
This group contains the several algorithms |
|
| 277 | 277 |
implemented in LEMON. |
| 278 | 278 |
*/ |
| 279 | 279 |
|
| 280 | 280 |
/** |
| 281 | 281 |
@defgroup search Graph Search |
| 282 | 282 |
@ingroup algs |
| 283 | 283 |
\brief Common graph search algorithms. |
| 284 | 284 |
|
| 285 |
This group |
|
| 285 |
This group contains the common graph search algorithms, namely |
|
| 286 | 286 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
| 287 | 287 |
*/ |
| 288 | 288 |
|
| 289 | 289 |
/** |
| 290 | 290 |
@defgroup shortest_path Shortest Path Algorithms |
| 291 | 291 |
@ingroup algs |
| 292 | 292 |
\brief Algorithms for finding shortest paths. |
| 293 | 293 |
|
| 294 |
This group |
|
| 294 |
This group contains the algorithms for finding shortest paths in digraphs. |
|
| 295 | 295 |
|
| 296 | 296 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
| 297 | 297 |
when all arc lengths are non-negative. |
| 298 | 298 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
| 299 | 299 |
from a source node when arc lenghts can be either positive or negative, |
| 300 | 300 |
but the digraph should not contain directed cycles with negative total |
| 301 | 301 |
length. |
| 302 | 302 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
| 303 | 303 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
| 304 | 304 |
lenghts can be either positive or negative, but the digraph should |
| 305 | 305 |
not contain directed cycles with negative total length. |
| 306 | 306 |
- \ref Suurballe A successive shortest path algorithm for finding |
| 307 | 307 |
arc-disjoint paths between two nodes having minimum total length. |
| 308 | 308 |
*/ |
| 309 | 309 |
|
| 310 | 310 |
/** |
| 311 | 311 |
@defgroup max_flow Maximum Flow Algorithms |
| 312 | 312 |
@ingroup algs |
| 313 | 313 |
\brief Algorithms for finding maximum flows. |
| 314 | 314 |
|
| 315 |
This group |
|
| 315 |
This group contains the algorithms for finding maximum flows and |
|
| 316 | 316 |
feasible circulations. |
| 317 | 317 |
|
| 318 | 318 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
| 319 | 319 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
| 320 | 320 |
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and
|
| 321 | 321 |
\f$s, t \in V\f$ source and target nodes. |
| 322 | 322 |
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the
|
| 323 | 323 |
following optimization problem. |
| 324 | 324 |
|
| 325 | 325 |
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f]
|
| 326 | 326 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a)
|
| 327 | 327 |
\qquad \forall v\in V\setminus\{s,t\} \f]
|
| 328 | 328 |
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f] |
| 329 | 329 |
|
| 330 | 330 |
LEMON contains several algorithms for solving maximum flow problems: |
| 331 | 331 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
| 332 | 332 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
| 333 | 333 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
| 334 | 334 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
| 335 | 335 |
|
| 336 | 336 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
| 337 | 337 |
fastest method for computing a maximum flow. All implementations |
| 338 | 338 |
provides functions to also query the minimum cut, which is the dual |
| 339 | 339 |
problem of the maximum flow. |
| 340 | 340 |
*/ |
| 341 | 341 |
|
| 342 | 342 |
/** |
| 343 | 343 |
@defgroup min_cost_flow Minimum Cost Flow Algorithms |
| 344 | 344 |
@ingroup algs |
| 345 | 345 |
|
| 346 | 346 |
\brief Algorithms for finding minimum cost flows and circulations. |
| 347 | 347 |
|
| 348 |
This group |
|
| 348 |
This group contains the algorithms for finding minimum cost flows and |
|
| 349 | 349 |
circulations. |
| 350 | 350 |
|
| 351 | 351 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
| 352 | 352 |
minimum total cost from a set of supply nodes to a set of demand nodes |
| 353 | 353 |
in a network with capacity constraints and arc costs. |
| 354 | 354 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
| 355 | 355 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and
|
| 356 | 356 |
upper bounds for the flow values on the arcs, |
| 357 | 357 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow
|
| 358 | 358 |
on the arcs, and |
| 359 | 359 |
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values
|
| 360 | 360 |
of the nodes. |
| 361 | 361 |
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of
|
| 362 | 362 |
the following optimization problem. |
| 363 | 363 |
|
| 364 | 364 |
\f[ \min\sum_{a\in A} f(a) cost(a) \f]
|
| 365 | 365 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) =
|
| 366 | 366 |
supply(v) \qquad \forall v\in V \f] |
| 367 | 367 |
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f] |
| 368 | 368 |
|
| 369 | 369 |
LEMON contains several algorithms for solving minimum cost flow problems: |
| 370 | 370 |
- \ref CycleCanceling Cycle-canceling algorithms. |
| 371 | 371 |
- \ref CapacityScaling Successive shortest path algorithm with optional |
| 372 | 372 |
capacity scaling. |
| 373 | 373 |
- \ref CostScaling Push-relabel and augment-relabel algorithms based on |
| 374 | 374 |
cost scaling. |
| 375 | 375 |
- \ref NetworkSimplex Primal network simplex algorithm with various |
| 376 | 376 |
pivot strategies. |
| 377 | 377 |
*/ |
| 378 | 378 |
|
| 379 | 379 |
/** |
| 380 | 380 |
@defgroup min_cut Minimum Cut Algorithms |
| 381 | 381 |
@ingroup algs |
| 382 | 382 |
|
| 383 | 383 |
\brief Algorithms for finding minimum cut in graphs. |
| 384 | 384 |
|
| 385 |
This group |
|
| 385 |
This group contains the algorithms for finding minimum cut in graphs. |
|
| 386 | 386 |
|
| 387 | 387 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
| 388 | 388 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
| 389 | 389 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
| 390 | 390 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
|
| 391 | 391 |
cut is the \f$X\f$ solution of the next optimization problem: |
| 392 | 392 |
|
| 393 | 393 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
|
| 394 | 394 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
|
| 395 | 395 |
|
| 396 | 396 |
LEMON contains several algorithms related to minimum cut problems: |
| 397 | 397 |
|
| 398 | 398 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
| 399 | 399 |
in directed graphs. |
| 400 | 400 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
| 401 | 401 |
calculating minimum cut in undirected graphs. |
| 402 |
- \ref |
|
| 402 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
|
| 403 | 403 |
all-pairs minimum cut in undirected graphs. |
| 404 | 404 |
|
| 405 | 405 |
If you want to find minimum cut just between two distinict nodes, |
| 406 | 406 |
see the \ref max_flow "maximum flow problem". |
| 407 | 407 |
*/ |
| 408 | 408 |
|
| 409 | 409 |
/** |
| 410 | 410 |
@defgroup graph_prop Connectivity and Other Graph Properties |
| 411 | 411 |
@ingroup algs |
| 412 | 412 |
\brief Algorithms for discovering the graph properties |
| 413 | 413 |
|
| 414 |
This group |
|
| 414 |
This group contains the algorithms for discovering the graph properties |
|
| 415 | 415 |
like connectivity, bipartiteness, euler property, simplicity etc. |
| 416 | 416 |
|
| 417 | 417 |
\image html edge_biconnected_components.png |
| 418 | 418 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
| 419 | 419 |
*/ |
| 420 | 420 |
|
| 421 | 421 |
/** |
| 422 | 422 |
@defgroup planar Planarity Embedding and Drawing |
| 423 | 423 |
@ingroup algs |
| 424 | 424 |
\brief Algorithms for planarity checking, embedding and drawing |
| 425 | 425 |
|
| 426 |
This group |
|
| 426 |
This group contains the algorithms for planarity checking, |
|
| 427 | 427 |
embedding and drawing. |
| 428 | 428 |
|
| 429 | 429 |
\image html planar.png |
| 430 | 430 |
\image latex planar.eps "Plane graph" width=\textwidth |
| 431 | 431 |
*/ |
| 432 | 432 |
|
| 433 | 433 |
/** |
| 434 | 434 |
@defgroup matching Matching Algorithms |
| 435 | 435 |
@ingroup algs |
| 436 | 436 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
| 437 | 437 |
|
| 438 | 438 |
This group contains algorithm objects and functions to calculate |
| 439 | 439 |
matchings in graphs and bipartite graphs. The general matching problem is |
| 440 | 440 |
finding a subset of the arcs which does not shares common endpoints. |
| 441 | 441 |
|
| 442 | 442 |
There are several different algorithms for calculate matchings in |
| 443 | 443 |
graphs. The matching problems in bipartite graphs are generally |
| 444 | 444 |
easier than in general graphs. The goal of the matching optimization |
| 445 | 445 |
can be finding maximum cardinality, maximum weight or minimum cost |
| 446 | 446 |
matching. The search can be constrained to find perfect or |
| 447 | 447 |
maximum cardinality matching. |
| 448 | 448 |
|
| 449 | 449 |
The matching algorithms implemented in LEMON: |
| 450 | 450 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
| 451 | 451 |
for calculating maximum cardinality matching in bipartite graphs. |
| 452 | 452 |
- \ref PrBipartiteMatching Push-relabel algorithm |
| 453 | 453 |
for calculating maximum cardinality matching in bipartite graphs. |
| 454 | 454 |
- \ref MaxWeightedBipartiteMatching |
| 455 | 455 |
Successive shortest path algorithm for calculating maximum weighted |
| 456 | 456 |
matching and maximum weighted bipartite matching in bipartite graphs. |
| 457 | 457 |
- \ref MinCostMaxBipartiteMatching |
| 458 | 458 |
Successive shortest path algorithm for calculating minimum cost maximum |
| 459 | 459 |
matching in bipartite graphs. |
| 460 | 460 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
| 461 | 461 |
maximum cardinality matching in general graphs. |
| 462 | 462 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
| 463 | 463 |
maximum weighted matching in general graphs. |
| 464 | 464 |
- \ref MaxWeightedPerfectMatching |
| 465 | 465 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
| 466 | 466 |
perfect matching in general graphs. |
| 467 | 467 |
|
| 468 | 468 |
\image html bipartite_matching.png |
| 469 | 469 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
| 470 | 470 |
*/ |
| 471 | 471 |
|
| 472 | 472 |
/** |
| 473 | 473 |
@defgroup spantree Minimum Spanning Tree Algorithms |
| 474 | 474 |
@ingroup algs |
| 475 | 475 |
\brief Algorithms for finding a minimum cost spanning tree in a graph. |
| 476 | 476 |
|
| 477 |
This group |
|
| 477 |
This group contains the algorithms for finding a minimum cost spanning |
|
| 478 | 478 |
tree in a graph. |
| 479 | 479 |
*/ |
| 480 | 480 |
|
| 481 | 481 |
/** |
| 482 | 482 |
@defgroup auxalg Auxiliary Algorithms |
| 483 | 483 |
@ingroup algs |
| 484 | 484 |
\brief Auxiliary algorithms implemented in LEMON. |
| 485 | 485 |
|
| 486 |
This group |
|
| 486 |
This group contains some algorithms implemented in LEMON |
|
| 487 | 487 |
in order to make it easier to implement complex algorithms. |
| 488 | 488 |
*/ |
| 489 | 489 |
|
| 490 | 490 |
/** |
| 491 | 491 |
@defgroup approx Approximation Algorithms |
| 492 | 492 |
@ingroup algs |
| 493 | 493 |
\brief Approximation algorithms. |
| 494 | 494 |
|
| 495 |
This group |
|
| 495 |
This group contains the approximation and heuristic algorithms |
|
| 496 | 496 |
implemented in LEMON. |
| 497 | 497 |
*/ |
| 498 | 498 |
|
| 499 | 499 |
/** |
| 500 | 500 |
@defgroup gen_opt_group General Optimization Tools |
| 501 |
\brief This group |
|
| 501 |
\brief This group contains some general optimization frameworks |
|
| 502 | 502 |
implemented in LEMON. |
| 503 | 503 |
|
| 504 |
This group |
|
| 504 |
This group contains some general optimization frameworks |
|
| 505 | 505 |
implemented in LEMON. |
| 506 | 506 |
*/ |
| 507 | 507 |
|
| 508 | 508 |
/** |
| 509 | 509 |
@defgroup lp_group Lp and Mip Solvers |
| 510 | 510 |
@ingroup gen_opt_group |
| 511 | 511 |
\brief Lp and Mip solver interfaces for LEMON. |
| 512 | 512 |
|
| 513 |
This group |
|
| 513 |
This group contains Lp and Mip solver interfaces for LEMON. The |
|
| 514 | 514 |
various LP solvers could be used in the same manner with this |
| 515 | 515 |
interface. |
| 516 | 516 |
*/ |
| 517 | 517 |
|
| 518 | 518 |
/** |
| 519 | 519 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
| 520 | 520 |
@ingroup lp_group |
| 521 | 521 |
\brief Helper tools to the Lp and Mip solvers. |
| 522 | 522 |
|
| 523 | 523 |
This group adds some helper tools to general optimization framework |
| 524 | 524 |
implemented in LEMON. |
| 525 | 525 |
*/ |
| 526 | 526 |
|
| 527 | 527 |
/** |
| 528 | 528 |
@defgroup metah Metaheuristics |
| 529 | 529 |
@ingroup gen_opt_group |
| 530 | 530 |
\brief Metaheuristics for LEMON library. |
| 531 | 531 |
|
| 532 |
This group |
|
| 532 |
This group contains some metaheuristic optimization tools. |
|
| 533 | 533 |
*/ |
| 534 | 534 |
|
| 535 | 535 |
/** |
| 536 | 536 |
@defgroup utils Tools and Utilities |
| 537 | 537 |
\brief Tools and utilities for programming in LEMON |
| 538 | 538 |
|
| 539 | 539 |
Tools and utilities for programming in LEMON. |
| 540 | 540 |
*/ |
| 541 | 541 |
|
| 542 | 542 |
/** |
| 543 | 543 |
@defgroup gutils Basic Graph Utilities |
| 544 | 544 |
@ingroup utils |
| 545 | 545 |
\brief Simple basic graph utilities. |
| 546 | 546 |
|
| 547 |
This group |
|
| 547 |
This group contains some simple basic graph utilities. |
|
| 548 | 548 |
*/ |
| 549 | 549 |
|
| 550 | 550 |
/** |
| 551 | 551 |
@defgroup misc Miscellaneous Tools |
| 552 | 552 |
@ingroup utils |
| 553 | 553 |
\brief Tools for development, debugging and testing. |
| 554 | 554 |
|
| 555 |
This group |
|
| 555 |
This group contains several useful tools for development, |
|
| 556 | 556 |
debugging and testing. |
| 557 | 557 |
*/ |
| 558 | 558 |
|
| 559 | 559 |
/** |
| 560 | 560 |
@defgroup timecount Time Measuring and Counting |
| 561 | 561 |
@ingroup misc |
| 562 | 562 |
\brief Simple tools for measuring the performance of algorithms. |
| 563 | 563 |
|
| 564 |
This group |
|
| 564 |
This group contains simple tools for measuring the performance |
|
| 565 | 565 |
of algorithms. |
| 566 | 566 |
*/ |
| 567 | 567 |
|
| 568 | 568 |
/** |
| 569 | 569 |
@defgroup exceptions Exceptions |
| 570 | 570 |
@ingroup utils |
| 571 | 571 |
\brief Exceptions defined in LEMON. |
| 572 | 572 |
|
| 573 |
This group |
|
| 573 |
This group contains the exceptions defined in LEMON. |
|
| 574 | 574 |
*/ |
| 575 | 575 |
|
| 576 | 576 |
/** |
| 577 | 577 |
@defgroup io_group Input-Output |
| 578 | 578 |
\brief Graph Input-Output methods |
| 579 | 579 |
|
| 580 |
This group |
|
| 580 |
This group contains the tools for importing and exporting graphs |
|
| 581 | 581 |
and graph related data. Now it supports the \ref lgf-format |
| 582 | 582 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
| 583 | 583 |
postscript (EPS) format. |
| 584 | 584 |
*/ |
| 585 | 585 |
|
| 586 | 586 |
/** |
| 587 | 587 |
@defgroup lemon_io LEMON Graph Format |
| 588 | 588 |
@ingroup io_group |
| 589 | 589 |
\brief Reading and writing LEMON Graph Format. |
| 590 | 590 |
|
| 591 |
This group |
|
| 591 |
This group contains methods for reading and writing |
|
| 592 | 592 |
\ref lgf-format "LEMON Graph Format". |
| 593 | 593 |
*/ |
| 594 | 594 |
|
| 595 | 595 |
/** |
| 596 | 596 |
@defgroup eps_io Postscript Exporting |
| 597 | 597 |
@ingroup io_group |
| 598 | 598 |
\brief General \c EPS drawer and graph exporter |
| 599 | 599 |
|
| 600 |
This group |
|
| 600 |
This group contains general \c EPS drawing methods and special |
|
| 601 | 601 |
graph exporting tools. |
| 602 | 602 |
*/ |
| 603 | 603 |
|
| 604 | 604 |
/** |
| 605 | 605 |
@defgroup dimacs_group DIMACS format |
| 606 | 606 |
@ingroup io_group |
| 607 | 607 |
\brief Read and write files in DIMACS format |
| 608 | 608 |
|
| 609 | 609 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
| 610 | 610 |
*/ |
| 611 | 611 |
|
| 612 | 612 |
/** |
| 613 | 613 |
@defgroup nauty_group NAUTY Format |
| 614 | 614 |
@ingroup io_group |
| 615 | 615 |
\brief Read \e Nauty format |
| 616 | 616 |
|
| 617 | 617 |
Tool to read graphs from \e Nauty format data. |
| 618 | 618 |
*/ |
| 619 | 619 |
|
| 620 | 620 |
/** |
| 621 | 621 |
@defgroup concept Concepts |
| 622 | 622 |
\brief Skeleton classes and concept checking classes |
| 623 | 623 |
|
| 624 |
This group |
|
| 624 |
This group contains the data/algorithm skeletons and concept checking |
|
| 625 | 625 |
classes implemented in LEMON. |
| 626 | 626 |
|
| 627 | 627 |
The purpose of the classes in this group is fourfold. |
| 628 | 628 |
|
| 629 | 629 |
- These classes contain the documentations of the %concepts. In order |
| 630 | 630 |
to avoid document multiplications, an implementation of a concept |
| 631 | 631 |
simply refers to the corresponding concept class. |
| 632 | 632 |
|
| 633 | 633 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
| 634 | 634 |
implementation of the %concepts should provide, however completely |
| 635 | 635 |
without implementations and real data structures behind the |
| 636 | 636 |
interface. On the other hand they should provide nothing else. All |
| 637 | 637 |
the algorithms working on a data structure meeting a certain concept |
| 638 | 638 |
should compile with these classes. (Though it will not run properly, |
| 639 | 639 |
of course.) In this way it is easily to check if an algorithm |
| 640 | 640 |
doesn't use any extra feature of a certain implementation. |
| 641 | 641 |
|
| 642 | 642 |
- The concept descriptor classes also provide a <em>checker class</em> |
| 643 | 643 |
that makes it possible to check whether a certain implementation of a |
| 644 | 644 |
concept indeed provides all the required features. |
| 645 | 645 |
|
| 646 | 646 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
| 647 | 647 |
*/ |
| 648 | 648 |
|
| 649 | 649 |
/** |
| 650 | 650 |
@defgroup graph_concepts Graph Structure Concepts |
| 651 | 651 |
@ingroup concept |
| 652 | 652 |
\brief Skeleton and concept checking classes for graph structures |
| 653 | 653 |
|
| 654 |
This group |
|
| 654 |
This group contains the skeletons and concept checking classes of LEMON's |
|
| 655 | 655 |
graph structures and helper classes used to implement these. |
| 656 | 656 |
*/ |
| 657 | 657 |
|
| 658 | 658 |
/** |
| 659 | 659 |
@defgroup map_concepts Map Concepts |
| 660 | 660 |
@ingroup concept |
| 661 | 661 |
\brief Skeleton and concept checking classes for maps |
| 662 | 662 |
|
| 663 |
This group |
|
| 663 |
This group contains the skeletons and concept checking classes of maps. |
|
| 664 | 664 |
*/ |
| 665 | 665 |
|
| 666 | 666 |
/** |
| 667 | 667 |
\anchor demoprograms |
| 668 | 668 |
|
| 669 | 669 |
@defgroup demos Demo Programs |
| 670 | 670 |
|
| 671 | 671 |
Some demo programs are listed here. Their full source codes can be found in |
| 672 | 672 |
the \c demo subdirectory of the source tree. |
| 673 | 673 |
|
| 674 | 674 |
It order to compile them, use <tt>--enable-demo</tt> configure option when |
| 675 | 675 |
build the library. |
| 676 | 676 |
*/ |
| 677 | 677 |
|
| 678 | 678 |
/** |
| 679 | 679 |
@defgroup tools Standalone Utility Applications |
| 680 | 680 |
|
| 681 | 681 |
Some utility applications are listed here. |
| 682 | 682 |
|
| 683 | 683 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
| 684 | 684 |
them, as well. |
| 685 | 685 |
*/ |
| 686 | 686 |
|
| 687 | 687 |
} |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
/** |
| 20 | 20 |
\mainpage LEMON Documentation |
| 21 | 21 |
|
| 22 | 22 |
\section intro Introduction |
| 23 | 23 |
|
| 24 | 24 |
\subsection whatis What is LEMON |
| 25 | 25 |
|
| 26 | 26 |
LEMON stands for |
| 27 | 27 |
<b>L</b>ibrary of <b>E</b>fficient <b>M</b>odels |
| 28 | 28 |
and <b>O</b>ptimization in <b>N</b>etworks. |
| 29 | 29 |
It is a C++ template |
| 30 | 30 |
library aimed at combinatorial optimization tasks which |
| 31 | 31 |
often involve in working |
| 32 | 32 |
with graphs. |
| 33 | 33 |
|
| 34 | 34 |
<b> |
| 35 | 35 |
LEMON is an <a class="el" href="http://opensource.org/">open source</a> |
| 36 | 36 |
project. |
| 37 | 37 |
You are free to use it in your commercial or |
| 38 | 38 |
non-commercial applications under very permissive |
| 39 | 39 |
\ref license "license terms". |
| 40 | 40 |
</b> |
| 41 | 41 |
|
| 42 | 42 |
\subsection howtoread How to read the documentation |
| 43 | 43 |
|
| 44 | 44 |
If you want to get a quick start and see the most important features then |
| 45 | 45 |
take a look at our \ref quicktour |
| 46 | 46 |
"Quick Tour to LEMON" which will guide you along. |
| 47 | 47 |
|
| 48 |
If you already feel like using our library, see the page that tells you |
|
| 49 |
\ref getstart "How to start using LEMON". |
|
| 50 |
|
|
| 51 |
If you |
|
| 52 |
want to see how LEMON works, see |
|
| 53 |
some \ref demoprograms "demo programs". |
|
| 48 |
If you already feel like using our library, see the |
|
| 49 |
<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>. |
|
| 54 | 50 |
|
| 55 | 51 |
If you know what you are looking for then try to find it under the |
| 56 |
<a class="el" href="modules.html">Modules</a> |
|
| 57 |
section. |
|
| 52 |
<a class="el" href="modules.html">Modules</a> section. |
|
| 58 | 53 |
|
| 59 | 54 |
If you are a user of the old (0.x) series of LEMON, please check out the |
| 60 | 55 |
\ref migration "Migration Guide" for the backward incompatibilities. |
| 61 | 56 |
*/ |
| ... | ... |
@@ -2065,468 +2065,466 @@ |
| 2065 | 2065 |
|
| 2066 | 2066 |
typedef V Value; |
| 2067 | 2067 |
typedef Arc Key; |
| 2068 | 2068 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue; |
| 2069 | 2069 |
typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue; |
| 2070 | 2070 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference; |
| 2071 | 2071 |
typedef typename MapTraits<MapImpl>::ReturnValue Reference; |
| 2072 | 2072 |
|
| 2073 | 2073 |
ArcMapBase(const UndirectorBase<DGR>& adaptor) : |
| 2074 | 2074 |
_forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
|
| 2075 | 2075 |
|
| 2076 | 2076 |
ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value) |
| 2077 | 2077 |
: _forward(*adaptor._digraph, value), |
| 2078 | 2078 |
_backward(*adaptor._digraph, value) {}
|
| 2079 | 2079 |
|
| 2080 | 2080 |
void set(const Arc& a, const V& value) {
|
| 2081 | 2081 |
if (direction(a)) {
|
| 2082 | 2082 |
_forward.set(a, value); |
| 2083 | 2083 |
} else {
|
| 2084 | 2084 |
_backward.set(a, value); |
| 2085 | 2085 |
} |
| 2086 | 2086 |
} |
| 2087 | 2087 |
|
| 2088 | 2088 |
ConstReturnValue operator[](const Arc& a) const {
|
| 2089 | 2089 |
if (direction(a)) {
|
| 2090 | 2090 |
return _forward[a]; |
| 2091 | 2091 |
} else {
|
| 2092 | 2092 |
return _backward[a]; |
| 2093 | 2093 |
} |
| 2094 | 2094 |
} |
| 2095 | 2095 |
|
| 2096 | 2096 |
ReturnValue operator[](const Arc& a) {
|
| 2097 | 2097 |
if (direction(a)) {
|
| 2098 | 2098 |
return _forward[a]; |
| 2099 | 2099 |
} else {
|
| 2100 | 2100 |
return _backward[a]; |
| 2101 | 2101 |
} |
| 2102 | 2102 |
} |
| 2103 | 2103 |
|
| 2104 | 2104 |
protected: |
| 2105 | 2105 |
|
| 2106 | 2106 |
MapImpl _forward, _backward; |
| 2107 | 2107 |
|
| 2108 | 2108 |
}; |
| 2109 | 2109 |
|
| 2110 | 2110 |
public: |
| 2111 | 2111 |
|
| 2112 | 2112 |
template <typename V> |
| 2113 | 2113 |
class NodeMap : public DGR::template NodeMap<V> {
|
| 2114 | 2114 |
public: |
| 2115 | 2115 |
|
| 2116 | 2116 |
typedef V Value; |
| 2117 | 2117 |
typedef typename DGR::template NodeMap<Value> Parent; |
| 2118 | 2118 |
|
| 2119 | 2119 |
explicit NodeMap(const UndirectorBase<DGR>& adaptor) |
| 2120 | 2120 |
: Parent(*adaptor._digraph) {}
|
| 2121 | 2121 |
|
| 2122 | 2122 |
NodeMap(const UndirectorBase<DGR>& adaptor, const V& value) |
| 2123 | 2123 |
: Parent(*adaptor._digraph, value) { }
|
| 2124 | 2124 |
|
| 2125 | 2125 |
private: |
| 2126 | 2126 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 2127 | 2127 |
return operator=<NodeMap>(cmap); |
| 2128 | 2128 |
} |
| 2129 | 2129 |
|
| 2130 | 2130 |
template <typename CMap> |
| 2131 | 2131 |
NodeMap& operator=(const CMap& cmap) {
|
| 2132 | 2132 |
Parent::operator=(cmap); |
| 2133 | 2133 |
return *this; |
| 2134 | 2134 |
} |
| 2135 | 2135 |
|
| 2136 | 2136 |
}; |
| 2137 | 2137 |
|
| 2138 | 2138 |
template <typename V> |
| 2139 | 2139 |
class ArcMap |
| 2140 | 2140 |
: public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > |
| 2141 | 2141 |
{
|
| 2142 | 2142 |
public: |
| 2143 | 2143 |
typedef V Value; |
| 2144 | 2144 |
typedef SubMapExtender<Adaptor, ArcMapBase<V> > Parent; |
| 2145 | 2145 |
|
| 2146 | 2146 |
explicit ArcMap(const UndirectorBase<DGR>& adaptor) |
| 2147 | 2147 |
: Parent(adaptor) {}
|
| 2148 | 2148 |
|
| 2149 | 2149 |
ArcMap(const UndirectorBase<DGR>& adaptor, const V& value) |
| 2150 | 2150 |
: Parent(adaptor, value) {}
|
| 2151 | 2151 |
|
| 2152 | 2152 |
private: |
| 2153 | 2153 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 2154 | 2154 |
return operator=<ArcMap>(cmap); |
| 2155 | 2155 |
} |
| 2156 | 2156 |
|
| 2157 | 2157 |
template <typename CMap> |
| 2158 | 2158 |
ArcMap& operator=(const CMap& cmap) {
|
| 2159 | 2159 |
Parent::operator=(cmap); |
| 2160 | 2160 |
return *this; |
| 2161 | 2161 |
} |
| 2162 | 2162 |
}; |
| 2163 | 2163 |
|
| 2164 | 2164 |
template <typename V> |
| 2165 | 2165 |
class EdgeMap : public Digraph::template ArcMap<V> {
|
| 2166 | 2166 |
public: |
| 2167 | 2167 |
|
| 2168 | 2168 |
typedef V Value; |
| 2169 | 2169 |
typedef typename Digraph::template ArcMap<V> Parent; |
| 2170 | 2170 |
|
| 2171 | 2171 |
explicit EdgeMap(const UndirectorBase<DGR>& adaptor) |
| 2172 | 2172 |
: Parent(*adaptor._digraph) {}
|
| 2173 | 2173 |
|
| 2174 | 2174 |
EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value) |
| 2175 | 2175 |
: Parent(*adaptor._digraph, value) {}
|
| 2176 | 2176 |
|
| 2177 | 2177 |
private: |
| 2178 | 2178 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 2179 | 2179 |
return operator=<EdgeMap>(cmap); |
| 2180 | 2180 |
} |
| 2181 | 2181 |
|
| 2182 | 2182 |
template <typename CMap> |
| 2183 | 2183 |
EdgeMap& operator=(const CMap& cmap) {
|
| 2184 | 2184 |
Parent::operator=(cmap); |
| 2185 | 2185 |
return *this; |
| 2186 | 2186 |
} |
| 2187 | 2187 |
|
| 2188 | 2188 |
}; |
| 2189 | 2189 |
|
| 2190 | 2190 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
| 2191 | 2191 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
|
| 2192 | 2192 |
|
| 2193 | 2193 |
typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier; |
| 2194 | 2194 |
EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
|
| 2195 | 2195 |
|
| 2196 | 2196 |
protected: |
| 2197 | 2197 |
|
| 2198 | 2198 |
UndirectorBase() : _digraph(0) {}
|
| 2199 | 2199 |
|
| 2200 | 2200 |
DGR* _digraph; |
| 2201 | 2201 |
|
| 2202 | 2202 |
void initialize(DGR& digraph) {
|
| 2203 | 2203 |
_digraph = &digraph; |
| 2204 | 2204 |
} |
| 2205 | 2205 |
|
| 2206 | 2206 |
}; |
| 2207 | 2207 |
|
| 2208 | 2208 |
/// \ingroup graph_adaptors |
| 2209 | 2209 |
/// |
| 2210 | 2210 |
/// \brief Adaptor class for viewing a digraph as an undirected graph. |
| 2211 | 2211 |
/// |
| 2212 | 2212 |
/// Undirector adaptor can be used for viewing a digraph as an undirected |
| 2213 | 2213 |
/// graph. All arcs of the underlying digraph are showed in the |
| 2214 | 2214 |
/// adaptor as an edge (and also as a pair of arcs, of course). |
| 2215 | 2215 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
| 2216 | 2216 |
/// |
| 2217 | 2217 |
/// The adapted digraph can also be modified through this adaptor |
| 2218 | 2218 |
/// by adding or removing nodes or edges, unless the \c GR template |
| 2219 | 2219 |
/// parameter is set to be \c const. |
| 2220 | 2220 |
/// |
| 2221 | 2221 |
/// \tparam DGR The type of the adapted digraph. |
| 2222 | 2222 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 2223 | 2223 |
/// It can also be specified to be \c const. |
| 2224 | 2224 |
/// |
| 2225 | 2225 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
| 2226 | 2226 |
/// convertible to each other, moreover the \c Edge type of the adaptor |
| 2227 | 2227 |
/// and the \c Arc type of the adapted digraph are also convertible to |
| 2228 | 2228 |
/// each other. |
| 2229 | 2229 |
/// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type |
| 2230 | 2230 |
/// of the adapted digraph.) |
| 2231 | 2231 |
template<typename DGR> |
| 2232 | 2232 |
#ifdef DOXYGEN |
| 2233 | 2233 |
class Undirector {
|
| 2234 | 2234 |
#else |
| 2235 | 2235 |
class Undirector : |
| 2236 | 2236 |
public GraphAdaptorExtender<UndirectorBase<DGR> > {
|
| 2237 | 2237 |
#endif |
| 2238 | 2238 |
public: |
| 2239 | 2239 |
/// The type of the adapted digraph. |
| 2240 | 2240 |
typedef DGR Digraph; |
| 2241 | 2241 |
typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent; |
| 2242 | 2242 |
protected: |
| 2243 | 2243 |
Undirector() { }
|
| 2244 | 2244 |
public: |
| 2245 | 2245 |
|
| 2246 | 2246 |
/// \brief Constructor |
| 2247 | 2247 |
/// |
| 2248 | 2248 |
/// Creates an undirected graph from the given digraph. |
| 2249 | 2249 |
Undirector(DGR& digraph) {
|
| 2250 | 2250 |
initialize(digraph); |
| 2251 | 2251 |
} |
| 2252 | 2252 |
|
| 2253 | 2253 |
/// \brief Arc map combined from two original arc maps |
| 2254 | 2254 |
/// |
| 2255 | 2255 |
/// This map adaptor class adapts two arc maps of the underlying |
| 2256 | 2256 |
/// digraph to get an arc map of the undirected graph. |
| 2257 |
/// Its value type is inherited from the first arc map type |
|
| 2258 |
/// (\c %ForwardMap). |
|
| 2259 |
|
|
| 2257 |
/// Its value type is inherited from the first arc map type (\c FW). |
|
| 2258 |
/// \tparam FW The type of the "foward" arc map. |
|
| 2259 |
/// \tparam BK The type of the "backward" arc map. |
|
| 2260 |
template <typename FW, typename BK> |
|
| 2260 | 2261 |
class CombinedArcMap {
|
| 2261 | 2262 |
public: |
| 2262 | 2263 |
|
| 2263 | 2264 |
/// The key type of the map |
| 2264 | 2265 |
typedef typename Parent::Arc Key; |
| 2265 | 2266 |
/// The value type of the map |
| 2266 |
typedef typename ForwardMap::Value Value; |
|
| 2267 |
|
|
| 2268 |
typedef typename MapTraits<ForwardMap>::ReferenceMapTag ReferenceMapTag; |
|
| 2269 |
|
|
| 2270 |
typedef typename MapTraits<ForwardMap>::ReturnValue ReturnValue; |
|
| 2271 |
typedef typename MapTraits<ForwardMap>::ConstReturnValue ConstReturnValue; |
|
| 2272 |
typedef typename MapTraits<ForwardMap>::ReturnValue Reference; |
|
| 2273 |
typedef typename MapTraits<ForwardMap>::ConstReturnValue ConstReference; |
|
| 2267 |
typedef typename FW::Value Value; |
|
| 2268 |
|
|
| 2269 |
typedef typename MapTraits<FW>::ReferenceMapTag ReferenceMapTag; |
|
| 2270 |
|
|
| 2271 |
typedef typename MapTraits<FW>::ReturnValue ReturnValue; |
|
| 2272 |
typedef typename MapTraits<FW>::ConstReturnValue ConstReturnValue; |
|
| 2273 |
typedef typename MapTraits<FW>::ReturnValue Reference; |
|
| 2274 |
typedef typename MapTraits<FW>::ConstReturnValue ConstReference; |
|
| 2274 | 2275 |
|
| 2275 | 2276 |
/// Constructor |
| 2276 |
CombinedArcMap( |
|
| 2277 |
CombinedArcMap(FW& forward, BK& backward) |
|
| 2277 | 2278 |
: _forward(&forward), _backward(&backward) {}
|
| 2278 | 2279 |
|
| 2279 | 2280 |
/// Sets the value associated with the given key. |
| 2280 | 2281 |
void set(const Key& e, const Value& a) {
|
| 2281 | 2282 |
if (Parent::direction(e)) {
|
| 2282 | 2283 |
_forward->set(e, a); |
| 2283 | 2284 |
} else {
|
| 2284 | 2285 |
_backward->set(e, a); |
| 2285 | 2286 |
} |
| 2286 | 2287 |
} |
| 2287 | 2288 |
|
| 2288 | 2289 |
/// Returns the value associated with the given key. |
| 2289 | 2290 |
ConstReturnValue operator[](const Key& e) const {
|
| 2290 | 2291 |
if (Parent::direction(e)) {
|
| 2291 | 2292 |
return (*_forward)[e]; |
| 2292 | 2293 |
} else {
|
| 2293 | 2294 |
return (*_backward)[e]; |
| 2294 | 2295 |
} |
| 2295 | 2296 |
} |
| 2296 | 2297 |
|
| 2297 | 2298 |
/// Returns a reference to the value associated with the given key. |
| 2298 | 2299 |
ReturnValue operator[](const Key& e) {
|
| 2299 | 2300 |
if (Parent::direction(e)) {
|
| 2300 | 2301 |
return (*_forward)[e]; |
| 2301 | 2302 |
} else {
|
| 2302 | 2303 |
return (*_backward)[e]; |
| 2303 | 2304 |
} |
| 2304 | 2305 |
} |
| 2305 | 2306 |
|
| 2306 | 2307 |
protected: |
| 2307 | 2308 |
|
| 2308 |
ForwardMap* _forward; |
|
| 2309 |
BackwardMap* _backward; |
|
| 2309 |
FW* _forward; |
|
| 2310 |
BK* _backward; |
|
| 2310 | 2311 |
|
| 2311 | 2312 |
}; |
| 2312 | 2313 |
|
| 2313 | 2314 |
/// \brief Returns a combined arc map |
| 2314 | 2315 |
/// |
| 2315 | 2316 |
/// This function just returns a combined arc map. |
| 2316 |
template <typename ForwardMap, typename BackwardMap> |
|
| 2317 |
static CombinedArcMap<ForwardMap, BackwardMap> |
|
| 2318 |
combinedArcMap(ForwardMap& forward, BackwardMap& backward) {
|
|
| 2319 |
return CombinedArcMap<ForwardMap, BackwardMap>(forward, backward); |
|
| 2317 |
template <typename FW, typename BK> |
|
| 2318 |
static CombinedArcMap<FW, BK> |
|
| 2319 |
combinedArcMap(FW& forward, BK& backward) {
|
|
| 2320 |
return CombinedArcMap<FW, BK>(forward, backward); |
|
| 2320 | 2321 |
} |
| 2321 | 2322 |
|
| 2322 |
template <typename ForwardMap, typename BackwardMap> |
|
| 2323 |
static CombinedArcMap<const ForwardMap, BackwardMap> |
|
| 2324 |
combinedArcMap(const ForwardMap& forward, BackwardMap& backward) {
|
|
| 2325 |
return CombinedArcMap<const ForwardMap, |
|
| 2326 |
|
|
| 2323 |
template <typename FW, typename BK> |
|
| 2324 |
static CombinedArcMap<const FW, BK> |
|
| 2325 |
combinedArcMap(const FW& forward, BK& backward) {
|
|
| 2326 |
return CombinedArcMap<const FW, BK>(forward, backward); |
|
| 2327 | 2327 |
} |
| 2328 | 2328 |
|
| 2329 |
template <typename ForwardMap, typename BackwardMap> |
|
| 2330 |
static CombinedArcMap<ForwardMap, const BackwardMap> |
|
| 2331 |
combinedArcMap(ForwardMap& forward, const BackwardMap& backward) {
|
|
| 2332 |
return CombinedArcMap<ForwardMap, |
|
| 2333 |
|
|
| 2329 |
template <typename FW, typename BK> |
|
| 2330 |
static CombinedArcMap<FW, const BK> |
|
| 2331 |
combinedArcMap(FW& forward, const BK& backward) {
|
|
| 2332 |
return CombinedArcMap<FW, const BK>(forward, backward); |
|
| 2334 | 2333 |
} |
| 2335 | 2334 |
|
| 2336 |
template <typename ForwardMap, typename BackwardMap> |
|
| 2337 |
static CombinedArcMap<const ForwardMap, const BackwardMap> |
|
| 2338 |
combinedArcMap(const ForwardMap& forward, const BackwardMap& backward) {
|
|
| 2339 |
return CombinedArcMap<const ForwardMap, |
|
| 2340 |
|
|
| 2335 |
template <typename FW, typename BK> |
|
| 2336 |
static CombinedArcMap<const FW, const BK> |
|
| 2337 |
combinedArcMap(const FW& forward, const BK& backward) {
|
|
| 2338 |
return CombinedArcMap<const FW, const BK>(forward, backward); |
|
| 2341 | 2339 |
} |
| 2342 | 2340 |
|
| 2343 | 2341 |
}; |
| 2344 | 2342 |
|
| 2345 | 2343 |
/// \brief Returns a read-only Undirector adaptor |
| 2346 | 2344 |
/// |
| 2347 | 2345 |
/// This function just returns a read-only \ref Undirector adaptor. |
| 2348 | 2346 |
/// \ingroup graph_adaptors |
| 2349 | 2347 |
/// \relates Undirector |
| 2350 | 2348 |
template<typename DGR> |
| 2351 | 2349 |
Undirector<const DGR> undirector(const DGR& digraph) {
|
| 2352 | 2350 |
return Undirector<const DGR>(digraph); |
| 2353 | 2351 |
} |
| 2354 | 2352 |
|
| 2355 | 2353 |
|
| 2356 | 2354 |
template <typename GR, typename DM> |
| 2357 | 2355 |
class OrienterBase {
|
| 2358 | 2356 |
public: |
| 2359 | 2357 |
|
| 2360 | 2358 |
typedef GR Graph; |
| 2361 | 2359 |
typedef DM DirectionMap; |
| 2362 | 2360 |
|
| 2363 | 2361 |
typedef typename GR::Node Node; |
| 2364 | 2362 |
typedef typename GR::Edge Arc; |
| 2365 | 2363 |
|
| 2366 | 2364 |
void reverseArc(const Arc& arc) {
|
| 2367 | 2365 |
_direction->set(arc, !(*_direction)[arc]); |
| 2368 | 2366 |
} |
| 2369 | 2367 |
|
| 2370 | 2368 |
void first(Node& i) const { _graph->first(i); }
|
| 2371 | 2369 |
void first(Arc& i) const { _graph->first(i); }
|
| 2372 | 2370 |
void firstIn(Arc& i, const Node& n) const {
|
| 2373 | 2371 |
bool d = true; |
| 2374 | 2372 |
_graph->firstInc(i, d, n); |
| 2375 | 2373 |
while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); |
| 2376 | 2374 |
} |
| 2377 | 2375 |
void firstOut(Arc& i, const Node& n ) const {
|
| 2378 | 2376 |
bool d = true; |
| 2379 | 2377 |
_graph->firstInc(i, d, n); |
| 2380 | 2378 |
while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); |
| 2381 | 2379 |
} |
| 2382 | 2380 |
|
| 2383 | 2381 |
void next(Node& i) const { _graph->next(i); }
|
| 2384 | 2382 |
void next(Arc& i) const { _graph->next(i); }
|
| 2385 | 2383 |
void nextIn(Arc& i) const {
|
| 2386 | 2384 |
bool d = !(*_direction)[i]; |
| 2387 | 2385 |
_graph->nextInc(i, d); |
| 2388 | 2386 |
while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); |
| 2389 | 2387 |
} |
| 2390 | 2388 |
void nextOut(Arc& i) const {
|
| 2391 | 2389 |
bool d = (*_direction)[i]; |
| 2392 | 2390 |
_graph->nextInc(i, d); |
| 2393 | 2391 |
while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); |
| 2394 | 2392 |
} |
| 2395 | 2393 |
|
| 2396 | 2394 |
Node source(const Arc& e) const {
|
| 2397 | 2395 |
return (*_direction)[e] ? _graph->u(e) : _graph->v(e); |
| 2398 | 2396 |
} |
| 2399 | 2397 |
Node target(const Arc& e) const {
|
| 2400 | 2398 |
return (*_direction)[e] ? _graph->v(e) : _graph->u(e); |
| 2401 | 2399 |
} |
| 2402 | 2400 |
|
| 2403 | 2401 |
typedef NodeNumTagIndicator<Graph> NodeNumTag; |
| 2404 | 2402 |
int nodeNum() const { return _graph->nodeNum(); }
|
| 2405 | 2403 |
|
| 2406 | 2404 |
typedef EdgeNumTagIndicator<Graph> ArcNumTag; |
| 2407 | 2405 |
int arcNum() const { return _graph->edgeNum(); }
|
| 2408 | 2406 |
|
| 2409 | 2407 |
typedef FindEdgeTagIndicator<Graph> FindArcTag; |
| 2410 | 2408 |
Arc findArc(const Node& u, const Node& v, |
| 2411 | 2409 |
const Arc& prev = INVALID) const {
|
| 2412 | 2410 |
Arc arc = _graph->findEdge(u, v, prev); |
| 2413 | 2411 |
while (arc != INVALID && source(arc) != u) {
|
| 2414 | 2412 |
arc = _graph->findEdge(u, v, arc); |
| 2415 | 2413 |
} |
| 2416 | 2414 |
return arc; |
| 2417 | 2415 |
} |
| 2418 | 2416 |
|
| 2419 | 2417 |
Node addNode() {
|
| 2420 | 2418 |
return Node(_graph->addNode()); |
| 2421 | 2419 |
} |
| 2422 | 2420 |
|
| 2423 | 2421 |
Arc addArc(const Node& u, const Node& v) {
|
| 2424 | 2422 |
Arc arc = _graph->addEdge(u, v); |
| 2425 | 2423 |
_direction->set(arc, _graph->u(arc) == u); |
| 2426 | 2424 |
return arc; |
| 2427 | 2425 |
} |
| 2428 | 2426 |
|
| 2429 | 2427 |
void erase(const Node& i) { _graph->erase(i); }
|
| 2430 | 2428 |
void erase(const Arc& i) { _graph->erase(i); }
|
| 2431 | 2429 |
|
| 2432 | 2430 |
void clear() { _graph->clear(); }
|
| 2433 | 2431 |
|
| 2434 | 2432 |
int id(const Node& v) const { return _graph->id(v); }
|
| 2435 | 2433 |
int id(const Arc& e) const { return _graph->id(e); }
|
| 2436 | 2434 |
|
| 2437 | 2435 |
Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
|
| 2438 | 2436 |
Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
|
| 2439 | 2437 |
|
| 2440 | 2438 |
int maxNodeId() const { return _graph->maxNodeId(); }
|
| 2441 | 2439 |
int maxArcId() const { return _graph->maxEdgeId(); }
|
| 2442 | 2440 |
|
| 2443 | 2441 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
| 2444 | 2442 |
NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
|
| 2445 | 2443 |
|
| 2446 | 2444 |
typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier; |
| 2447 | 2445 |
ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
|
| 2448 | 2446 |
|
| 2449 | 2447 |
template <typename V> |
| 2450 | 2448 |
class NodeMap : public GR::template NodeMap<V> {
|
| 2451 | 2449 |
public: |
| 2452 | 2450 |
|
| 2453 | 2451 |
typedef typename GR::template NodeMap<V> Parent; |
| 2454 | 2452 |
|
| 2455 | 2453 |
explicit NodeMap(const OrienterBase<GR, DM>& adapter) |
| 2456 | 2454 |
: Parent(*adapter._graph) {}
|
| 2457 | 2455 |
|
| 2458 | 2456 |
NodeMap(const OrienterBase<GR, DM>& adapter, const V& value) |
| 2459 | 2457 |
: Parent(*adapter._graph, value) {}
|
| 2460 | 2458 |
|
| 2461 | 2459 |
private: |
| 2462 | 2460 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 2463 | 2461 |
return operator=<NodeMap>(cmap); |
| 2464 | 2462 |
} |
| 2465 | 2463 |
|
| 2466 | 2464 |
template <typename CMap> |
| 2467 | 2465 |
NodeMap& operator=(const CMap& cmap) {
|
| 2468 | 2466 |
Parent::operator=(cmap); |
| 2469 | 2467 |
return *this; |
| 2470 | 2468 |
} |
| 2471 | 2469 |
|
| 2472 | 2470 |
}; |
| 2473 | 2471 |
|
| 2474 | 2472 |
template <typename V> |
| 2475 | 2473 |
class ArcMap : public GR::template EdgeMap<V> {
|
| 2476 | 2474 |
public: |
| 2477 | 2475 |
|
| 2478 | 2476 |
typedef typename Graph::template EdgeMap<V> Parent; |
| 2479 | 2477 |
|
| 2480 | 2478 |
explicit ArcMap(const OrienterBase<GR, DM>& adapter) |
| 2481 | 2479 |
: Parent(*adapter._graph) { }
|
| 2482 | 2480 |
|
| 2483 | 2481 |
ArcMap(const OrienterBase<GR, DM>& adapter, const V& value) |
| 2484 | 2482 |
: Parent(*adapter._graph, value) { }
|
| 2485 | 2483 |
|
| 2486 | 2484 |
private: |
| 2487 | 2485 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 2488 | 2486 |
return operator=<ArcMap>(cmap); |
| 2489 | 2487 |
} |
| 2490 | 2488 |
|
| 2491 | 2489 |
template <typename CMap> |
| 2492 | 2490 |
ArcMap& operator=(const CMap& cmap) {
|
| 2493 | 2491 |
Parent::operator=(cmap); |
| 2494 | 2492 |
return *this; |
| 2495 | 2493 |
} |
| 2496 | 2494 |
}; |
| 2497 | 2495 |
|
| 2498 | 2496 |
|
| 2499 | 2497 |
|
| 2500 | 2498 |
protected: |
| 2501 | 2499 |
Graph* _graph; |
| 2502 | 2500 |
DM* _direction; |
| 2503 | 2501 |
|
| 2504 | 2502 |
void initialize(GR& graph, DM& direction) {
|
| 2505 | 2503 |
_graph = &graph; |
| 2506 | 2504 |
_direction = &direction; |
| 2507 | 2505 |
} |
| 2508 | 2506 |
|
| 2509 | 2507 |
}; |
| 2510 | 2508 |
|
| 2511 | 2509 |
/// \ingroup graph_adaptors |
| 2512 | 2510 |
/// |
| 2513 | 2511 |
/// \brief Adaptor class for orienting the edges of a graph to get a digraph |
| 2514 | 2512 |
/// |
| 2515 | 2513 |
/// Orienter adaptor can be used for orienting the edges of a graph to |
| 2516 | 2514 |
/// get a digraph. A \c bool edge map of the underlying graph must be |
| 2517 | 2515 |
/// specified, which define the direction of the arcs in the adaptor. |
| 2518 | 2516 |
/// The arcs can be easily reversed by the \c reverseArc() member function |
| 2519 | 2517 |
/// of the adaptor. |
| 2520 | 2518 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
| 2521 | 2519 |
/// |
| 2522 | 2520 |
/// The adapted graph can also be modified through this adaptor |
| 2523 | 2521 |
/// by adding or removing nodes or arcs, unless the \c GR template |
| 2524 | 2522 |
/// parameter is set to be \c const. |
| 2525 | 2523 |
/// |
| 2526 | 2524 |
/// \tparam GR The type of the adapted graph. |
| 2527 | 2525 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
| 2528 | 2526 |
/// It can also be specified to be \c const. |
| 2529 | 2527 |
/// \tparam DM The type of the direction map. |
| 2530 | 2528 |
/// It must be a \c bool (or convertible) edge map of the |
| 2531 | 2529 |
/// adapted graph. The default type is |
| 2532 | 2530 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>". |
| ... | ... |
@@ -3217,379 +3215,382 @@ |
| 3217 | 3215 |
return _node_map[static_cast<const DigraphNode&>(key)]; |
| 3218 | 3216 |
} |
| 3219 | 3217 |
} |
| 3220 | 3218 |
|
| 3221 | 3219 |
private: |
| 3222 | 3220 |
ArcImpl _arc_map; |
| 3223 | 3221 |
NodeImpl _node_map; |
| 3224 | 3222 |
}; |
| 3225 | 3223 |
|
| 3226 | 3224 |
public: |
| 3227 | 3225 |
|
| 3228 | 3226 |
template <typename V> |
| 3229 | 3227 |
class NodeMap |
| 3230 | 3228 |
: public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > |
| 3231 | 3229 |
{
|
| 3232 | 3230 |
public: |
| 3233 | 3231 |
typedef V Value; |
| 3234 | 3232 |
typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<Value> > Parent; |
| 3235 | 3233 |
|
| 3236 | 3234 |
NodeMap(const SplitNodesBase<DGR>& adaptor) |
| 3237 | 3235 |
: Parent(adaptor) {}
|
| 3238 | 3236 |
|
| 3239 | 3237 |
NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value) |
| 3240 | 3238 |
: Parent(adaptor, value) {}
|
| 3241 | 3239 |
|
| 3242 | 3240 |
private: |
| 3243 | 3241 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 3244 | 3242 |
return operator=<NodeMap>(cmap); |
| 3245 | 3243 |
} |
| 3246 | 3244 |
|
| 3247 | 3245 |
template <typename CMap> |
| 3248 | 3246 |
NodeMap& operator=(const CMap& cmap) {
|
| 3249 | 3247 |
Parent::operator=(cmap); |
| 3250 | 3248 |
return *this; |
| 3251 | 3249 |
} |
| 3252 | 3250 |
}; |
| 3253 | 3251 |
|
| 3254 | 3252 |
template <typename V> |
| 3255 | 3253 |
class ArcMap |
| 3256 | 3254 |
: public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > |
| 3257 | 3255 |
{
|
| 3258 | 3256 |
public: |
| 3259 | 3257 |
typedef V Value; |
| 3260 | 3258 |
typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<Value> > Parent; |
| 3261 | 3259 |
|
| 3262 | 3260 |
ArcMap(const SplitNodesBase<DGR>& adaptor) |
| 3263 | 3261 |
: Parent(adaptor) {}
|
| 3264 | 3262 |
|
| 3265 | 3263 |
ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value) |
| 3266 | 3264 |
: Parent(adaptor, value) {}
|
| 3267 | 3265 |
|
| 3268 | 3266 |
private: |
| 3269 | 3267 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 3270 | 3268 |
return operator=<ArcMap>(cmap); |
| 3271 | 3269 |
} |
| 3272 | 3270 |
|
| 3273 | 3271 |
template <typename CMap> |
| 3274 | 3272 |
ArcMap& operator=(const CMap& cmap) {
|
| 3275 | 3273 |
Parent::operator=(cmap); |
| 3276 | 3274 |
return *this; |
| 3277 | 3275 |
} |
| 3278 | 3276 |
}; |
| 3279 | 3277 |
|
| 3280 | 3278 |
protected: |
| 3281 | 3279 |
|
| 3282 | 3280 |
SplitNodesBase() : _digraph(0) {}
|
| 3283 | 3281 |
|
| 3284 | 3282 |
DGR* _digraph; |
| 3285 | 3283 |
|
| 3286 | 3284 |
void initialize(Digraph& digraph) {
|
| 3287 | 3285 |
_digraph = &digraph; |
| 3288 | 3286 |
} |
| 3289 | 3287 |
|
| 3290 | 3288 |
}; |
| 3291 | 3289 |
|
| 3292 | 3290 |
/// \ingroup graph_adaptors |
| 3293 | 3291 |
/// |
| 3294 | 3292 |
/// \brief Adaptor class for splitting the nodes of a digraph. |
| 3295 | 3293 |
/// |
| 3296 | 3294 |
/// SplitNodes adaptor can be used for splitting each node into an |
| 3297 | 3295 |
/// \e in-node and an \e out-node in a digraph. Formaly, the adaptor |
| 3298 | 3296 |
/// replaces each node \f$ u \f$ in the digraph with two nodes, |
| 3299 | 3297 |
/// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$.
|
| 3300 | 3298 |
/// If there is a \f$ (v, u) \f$ arc in the original digraph, then the |
| 3301 | 3299 |
/// new target of the arc will be \f$ u_{in} \f$ and similarly the
|
| 3302 | 3300 |
/// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$.
|
| 3303 | 3301 |
/// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$
|
| 3304 | 3302 |
/// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph.
|
| 3305 | 3303 |
/// |
| 3306 | 3304 |
/// The aim of this class is running an algorithm with respect to node |
| 3307 | 3305 |
/// costs or capacities if the algorithm considers only arc costs or |
| 3308 | 3306 |
/// capacities directly. |
| 3309 | 3307 |
/// In this case you can use \c SplitNodes adaptor, and set the node |
| 3310 | 3308 |
/// costs/capacities of the original digraph to the \e bind \e arcs |
| 3311 | 3309 |
/// in the adaptor. |
| 3312 | 3310 |
/// |
| 3313 | 3311 |
/// \tparam DGR The type of the adapted digraph. |
| 3314 | 3312 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 3315 | 3313 |
/// It is implicitly \c const. |
| 3316 | 3314 |
/// |
| 3317 | 3315 |
/// \note The \c Node type of this adaptor is converible to the \c Node |
| 3318 | 3316 |
/// type of the adapted digraph. |
| 3319 | 3317 |
template <typename DGR> |
| 3320 | 3318 |
#ifdef DOXYGEN |
| 3321 | 3319 |
class SplitNodes {
|
| 3322 | 3320 |
#else |
| 3323 | 3321 |
class SplitNodes |
| 3324 | 3322 |
: public DigraphAdaptorExtender<SplitNodesBase<const DGR> > {
|
| 3325 | 3323 |
#endif |
| 3326 | 3324 |
public: |
| 3327 | 3325 |
typedef DGR Digraph; |
| 3328 | 3326 |
typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent; |
| 3329 | 3327 |
|
| 3330 | 3328 |
typedef typename DGR::Node DigraphNode; |
| 3331 | 3329 |
typedef typename DGR::Arc DigraphArc; |
| 3332 | 3330 |
|
| 3333 | 3331 |
typedef typename Parent::Node Node; |
| 3334 | 3332 |
typedef typename Parent::Arc Arc; |
| 3335 | 3333 |
|
| 3336 | 3334 |
/// \brief Constructor |
| 3337 | 3335 |
/// |
| 3338 | 3336 |
/// Constructor of the adaptor. |
| 3339 | 3337 |
SplitNodes(const DGR& g) {
|
| 3340 | 3338 |
Parent::initialize(g); |
| 3341 | 3339 |
} |
| 3342 | 3340 |
|
| 3343 | 3341 |
/// \brief Returns \c true if the given node is an in-node. |
| 3344 | 3342 |
/// |
| 3345 | 3343 |
/// Returns \c true if the given node is an in-node. |
| 3346 | 3344 |
static bool inNode(const Node& n) {
|
| 3347 | 3345 |
return Parent::inNode(n); |
| 3348 | 3346 |
} |
| 3349 | 3347 |
|
| 3350 | 3348 |
/// \brief Returns \c true if the given node is an out-node. |
| 3351 | 3349 |
/// |
| 3352 | 3350 |
/// Returns \c true if the given node is an out-node. |
| 3353 | 3351 |
static bool outNode(const Node& n) {
|
| 3354 | 3352 |
return Parent::outNode(n); |
| 3355 | 3353 |
} |
| 3356 | 3354 |
|
| 3357 | 3355 |
/// \brief Returns \c true if the given arc is an original arc. |
| 3358 | 3356 |
/// |
| 3359 | 3357 |
/// Returns \c true if the given arc is one of the arcs in the |
| 3360 | 3358 |
/// original digraph. |
| 3361 | 3359 |
static bool origArc(const Arc& a) {
|
| 3362 | 3360 |
return Parent::origArc(a); |
| 3363 | 3361 |
} |
| 3364 | 3362 |
|
| 3365 | 3363 |
/// \brief Returns \c true if the given arc is a bind arc. |
| 3366 | 3364 |
/// |
| 3367 | 3365 |
/// Returns \c true if the given arc is a bind arc, i.e. it connects |
| 3368 | 3366 |
/// an in-node and an out-node. |
| 3369 | 3367 |
static bool bindArc(const Arc& a) {
|
| 3370 | 3368 |
return Parent::bindArc(a); |
| 3371 | 3369 |
} |
| 3372 | 3370 |
|
| 3373 | 3371 |
/// \brief Returns the in-node created from the given original node. |
| 3374 | 3372 |
/// |
| 3375 | 3373 |
/// Returns the in-node created from the given original node. |
| 3376 | 3374 |
static Node inNode(const DigraphNode& n) {
|
| 3377 | 3375 |
return Parent::inNode(n); |
| 3378 | 3376 |
} |
| 3379 | 3377 |
|
| 3380 | 3378 |
/// \brief Returns the out-node created from the given original node. |
| 3381 | 3379 |
/// |
| 3382 | 3380 |
/// Returns the out-node created from the given original node. |
| 3383 | 3381 |
static Node outNode(const DigraphNode& n) {
|
| 3384 | 3382 |
return Parent::outNode(n); |
| 3385 | 3383 |
} |
| 3386 | 3384 |
|
| 3387 | 3385 |
/// \brief Returns the bind arc that corresponds to the given |
| 3388 | 3386 |
/// original node. |
| 3389 | 3387 |
/// |
| 3390 | 3388 |
/// Returns the bind arc in the adaptor that corresponds to the given |
| 3391 | 3389 |
/// original node, i.e. the arc connecting the in-node and out-node |
| 3392 | 3390 |
/// of \c n. |
| 3393 | 3391 |
static Arc arc(const DigraphNode& n) {
|
| 3394 | 3392 |
return Parent::arc(n); |
| 3395 | 3393 |
} |
| 3396 | 3394 |
|
| 3397 | 3395 |
/// \brief Returns the arc that corresponds to the given original arc. |
| 3398 | 3396 |
/// |
| 3399 | 3397 |
/// Returns the arc in the adaptor that corresponds to the given |
| 3400 | 3398 |
/// original arc. |
| 3401 | 3399 |
static Arc arc(const DigraphArc& a) {
|
| 3402 | 3400 |
return Parent::arc(a); |
| 3403 | 3401 |
} |
| 3404 | 3402 |
|
| 3405 | 3403 |
/// \brief Node map combined from two original node maps |
| 3406 | 3404 |
/// |
| 3407 | 3405 |
/// This map adaptor class adapts two node maps of the original digraph |
| 3408 | 3406 |
/// to get a node map of the split digraph. |
| 3409 |
/// Its value type is inherited from the first node map type |
|
| 3410 |
/// (\c InNodeMap). |
|
| 3411 |
|
|
| 3407 |
/// Its value type is inherited from the first node map type (\c IN). |
|
| 3408 |
/// \tparam IN The type of the node map for the in-nodes. |
|
| 3409 |
/// \tparam OUT The type of the node map for the out-nodes. |
|
| 3410 |
template <typename IN, typename OUT> |
|
| 3412 | 3411 |
class CombinedNodeMap {
|
| 3413 | 3412 |
public: |
| 3414 | 3413 |
|
| 3415 | 3414 |
/// The key type of the map |
| 3416 | 3415 |
typedef Node Key; |
| 3417 | 3416 |
/// The value type of the map |
| 3418 |
typedef typename InNodeMap::Value Value; |
|
| 3419 |
|
|
| 3420 |
typedef typename MapTraits<InNodeMap>::ReferenceMapTag ReferenceMapTag; |
|
| 3421 |
typedef typename MapTraits<InNodeMap>::ReturnValue ReturnValue; |
|
| 3422 |
typedef typename MapTraits<InNodeMap>::ConstReturnValue ConstReturnValue; |
|
| 3423 |
typedef typename MapTraits<InNodeMap>::ReturnValue Reference; |
|
| 3424 |
typedef typename |
|
| 3417 |
typedef typename IN::Value Value; |
|
| 3418 |
|
|
| 3419 |
typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag; |
|
| 3420 |
typedef typename MapTraits<IN>::ReturnValue ReturnValue; |
|
| 3421 |
typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue; |
|
| 3422 |
typedef typename MapTraits<IN>::ReturnValue Reference; |
|
| 3423 |
typedef typename MapTraits<IN>::ConstReturnValue ConstReference; |
|
| 3425 | 3424 |
|
| 3426 | 3425 |
/// Constructor |
| 3427 |
CombinedNodeMap( |
|
| 3426 |
CombinedNodeMap(IN& in_map, OUT& out_map) |
|
| 3428 | 3427 |
: _in_map(in_map), _out_map(out_map) {}
|
| 3429 | 3428 |
|
| 3430 | 3429 |
/// Returns the value associated with the given key. |
| 3431 | 3430 |
Value operator[](const Key& key) const {
|
| 3432 | 3431 |
if (SplitNodesBase<const DGR>::inNode(key)) {
|
| 3433 | 3432 |
return _in_map[key]; |
| 3434 | 3433 |
} else {
|
| 3435 | 3434 |
return _out_map[key]; |
| 3436 | 3435 |
} |
| 3437 | 3436 |
} |
| 3438 | 3437 |
|
| 3439 | 3438 |
/// Returns a reference to the value associated with the given key. |
| 3440 | 3439 |
Value& operator[](const Key& key) {
|
| 3441 | 3440 |
if (SplitNodesBase<const DGR>::inNode(key)) {
|
| 3442 | 3441 |
return _in_map[key]; |
| 3443 | 3442 |
} else {
|
| 3444 | 3443 |
return _out_map[key]; |
| 3445 | 3444 |
} |
| 3446 | 3445 |
} |
| 3447 | 3446 |
|
| 3448 | 3447 |
/// Sets the value associated with the given key. |
| 3449 | 3448 |
void set(const Key& key, const Value& value) {
|
| 3450 | 3449 |
if (SplitNodesBase<const DGR>::inNode(key)) {
|
| 3451 | 3450 |
_in_map.set(key, value); |
| 3452 | 3451 |
} else {
|
| 3453 | 3452 |
_out_map.set(key, value); |
| 3454 | 3453 |
} |
| 3455 | 3454 |
} |
| 3456 | 3455 |
|
| 3457 | 3456 |
private: |
| 3458 | 3457 |
|
| 3459 |
InNodeMap& _in_map; |
|
| 3460 |
OutNodeMap& _out_map; |
|
| 3458 |
IN& _in_map; |
|
| 3459 |
OUT& _out_map; |
|
| 3461 | 3460 |
|
| 3462 | 3461 |
}; |
| 3463 | 3462 |
|
| 3464 | 3463 |
|
| 3465 | 3464 |
/// \brief Returns a combined node map |
| 3466 | 3465 |
/// |
| 3467 | 3466 |
/// This function just returns a combined node map. |
| 3468 |
template <typename InNodeMap, typename OutNodeMap> |
|
| 3469 |
static CombinedNodeMap<InNodeMap, OutNodeMap> |
|
| 3470 |
combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) {
|
|
| 3471 |
return CombinedNodeMap<InNodeMap, OutNodeMap>(in_map, out_map); |
|
| 3467 |
template <typename IN, typename OUT> |
|
| 3468 |
static CombinedNodeMap<IN, OUT> |
|
| 3469 |
combinedNodeMap(IN& in_map, OUT& out_map) {
|
|
| 3470 |
return CombinedNodeMap<IN, OUT>(in_map, out_map); |
|
| 3472 | 3471 |
} |
| 3473 | 3472 |
|
| 3474 |
template <typename InNodeMap, typename OutNodeMap> |
|
| 3475 |
static CombinedNodeMap<const InNodeMap, OutNodeMap> |
|
| 3476 |
combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) {
|
|
| 3477 |
return CombinedNodeMap<const InNodeMap, OutNodeMap>(in_map, out_map); |
|
| 3473 |
template <typename IN, typename OUT> |
|
| 3474 |
static CombinedNodeMap<const IN, OUT> |
|
| 3475 |
combinedNodeMap(const IN& in_map, OUT& out_map) {
|
|
| 3476 |
return CombinedNodeMap<const IN, OUT>(in_map, out_map); |
|
| 3478 | 3477 |
} |
| 3479 | 3478 |
|
| 3480 |
template <typename InNodeMap, typename OutNodeMap> |
|
| 3481 |
static CombinedNodeMap<InNodeMap, const OutNodeMap> |
|
| 3482 |
combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) {
|
|
| 3483 |
return CombinedNodeMap<InNodeMap, const OutNodeMap>(in_map, out_map); |
|
| 3479 |
template <typename IN, typename OUT> |
|
| 3480 |
static CombinedNodeMap<IN, const OUT> |
|
| 3481 |
combinedNodeMap(IN& in_map, const OUT& out_map) {
|
|
| 3482 |
return CombinedNodeMap<IN, const OUT>(in_map, out_map); |
|
| 3484 | 3483 |
} |
| 3485 | 3484 |
|
| 3486 |
template <typename InNodeMap, typename OutNodeMap> |
|
| 3487 |
static CombinedNodeMap<const InNodeMap, const OutNodeMap> |
|
| 3488 |
combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) {
|
|
| 3489 |
return CombinedNodeMap<const InNodeMap, |
|
| 3490 |
|
|
| 3485 |
template <typename IN, typename OUT> |
|
| 3486 |
static CombinedNodeMap<const IN, const OUT> |
|
| 3487 |
combinedNodeMap(const IN& in_map, const OUT& out_map) {
|
|
| 3488 |
return CombinedNodeMap<const IN, const OUT>(in_map, out_map); |
|
| 3491 | 3489 |
} |
| 3492 | 3490 |
|
| 3493 | 3491 |
/// \brief Arc map combined from an arc map and a node map of the |
| 3494 | 3492 |
/// original digraph. |
| 3495 | 3493 |
/// |
| 3496 | 3494 |
/// This map adaptor class adapts an arc map and a node map of the |
| 3497 | 3495 |
/// original digraph to get an arc map of the split digraph. |
| 3498 |
/// Its value type is inherited from the original arc map type |
|
| 3499 |
/// (\c ArcMap). |
|
| 3500 |
|
|
| 3496 |
/// Its value type is inherited from the original arc map type (\c AM). |
|
| 3497 |
/// \tparam AM The type of the arc map. |
|
| 3498 |
/// \tparam NM the type of the node map. |
|
| 3499 |
template <typename AM, typename NM> |
|
| 3501 | 3500 |
class CombinedArcMap {
|
| 3502 | 3501 |
public: |
| 3503 | 3502 |
|
| 3504 | 3503 |
/// The key type of the map |
| 3505 | 3504 |
typedef Arc Key; |
| 3506 | 3505 |
/// The value type of the map |
| 3507 |
typedef typename ArcMap::Value Value; |
|
| 3508 |
|
|
| 3509 |
typedef typename MapTraits<ArcMap>::ReferenceMapTag ReferenceMapTag; |
|
| 3510 |
typedef typename MapTraits<ArcMap>::ReturnValue ReturnValue; |
|
| 3511 |
typedef typename MapTraits<ArcMap>::ConstReturnValue ConstReturnValue; |
|
| 3512 |
typedef typename MapTraits<ArcMap>::ReturnValue Reference; |
|
| 3513 |
typedef typename |
|
| 3506 |
typedef typename AM::Value Value; |
|
| 3507 |
|
|
| 3508 |
typedef typename MapTraits<AM>::ReferenceMapTag ReferenceMapTag; |
|
| 3509 |
typedef typename MapTraits<AM>::ReturnValue ReturnValue; |
|
| 3510 |
typedef typename MapTraits<AM>::ConstReturnValue ConstReturnValue; |
|
| 3511 |
typedef typename MapTraits<AM>::ReturnValue Reference; |
|
| 3512 |
typedef typename MapTraits<AM>::ConstReturnValue ConstReference; |
|
| 3514 | 3513 |
|
| 3515 | 3514 |
/// Constructor |
| 3516 |
CombinedArcMap( |
|
| 3515 |
CombinedArcMap(AM& arc_map, NM& node_map) |
|
| 3517 | 3516 |
: _arc_map(arc_map), _node_map(node_map) {}
|
| 3518 | 3517 |
|
| 3519 | 3518 |
/// Returns the value associated with the given key. |
| 3520 | 3519 |
Value operator[](const Key& arc) const {
|
| 3521 | 3520 |
if (SplitNodesBase<const DGR>::origArc(arc)) {
|
| 3522 | 3521 |
return _arc_map[arc]; |
| 3523 | 3522 |
} else {
|
| 3524 | 3523 |
return _node_map[arc]; |
| 3525 | 3524 |
} |
| 3526 | 3525 |
} |
| 3527 | 3526 |
|
| 3528 | 3527 |
/// Returns a reference to the value associated with the given key. |
| 3529 | 3528 |
Value& operator[](const Key& arc) {
|
| 3530 | 3529 |
if (SplitNodesBase<const DGR>::origArc(arc)) {
|
| 3531 | 3530 |
return _arc_map[arc]; |
| 3532 | 3531 |
} else {
|
| 3533 | 3532 |
return _node_map[arc]; |
| 3534 | 3533 |
} |
| 3535 | 3534 |
} |
| 3536 | 3535 |
|
| 3537 | 3536 |
/// Sets the value associated with the given key. |
| 3538 | 3537 |
void set(const Arc& arc, const Value& val) {
|
| 3539 | 3538 |
if (SplitNodesBase<const DGR>::origArc(arc)) {
|
| 3540 | 3539 |
_arc_map.set(arc, val); |
| 3541 | 3540 |
} else {
|
| 3542 | 3541 |
_node_map.set(arc, val); |
| 3543 | 3542 |
} |
| 3544 | 3543 |
} |
| 3545 | 3544 |
|
| 3546 | 3545 |
private: |
| 3547 |
ArcMap& _arc_map; |
|
| 3548 |
NodeMap& _node_map; |
|
| 3546 |
|
|
| 3547 |
AM& _arc_map; |
|
| 3548 |
NM& _node_map; |
|
| 3549 |
|
|
| 3549 | 3550 |
}; |
| 3550 | 3551 |
|
| 3551 | 3552 |
/// \brief Returns a combined arc map |
| 3552 | 3553 |
/// |
| 3553 | 3554 |
/// This function just returns a combined arc map. |
| 3554 | 3555 |
template <typename ArcMap, typename NodeMap> |
| 3555 | 3556 |
static CombinedArcMap<ArcMap, NodeMap> |
| 3556 | 3557 |
combinedArcMap(ArcMap& arc_map, NodeMap& node_map) {
|
| 3557 | 3558 |
return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map); |
| 3558 | 3559 |
} |
| 3559 | 3560 |
|
| 3560 | 3561 |
template <typename ArcMap, typename NodeMap> |
| 3561 | 3562 |
static CombinedArcMap<const ArcMap, NodeMap> |
| 3562 | 3563 |
combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) {
|
| 3563 | 3564 |
return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map); |
| 3564 | 3565 |
} |
| 3565 | 3566 |
|
| 3566 | 3567 |
template <typename ArcMap, typename NodeMap> |
| 3567 | 3568 |
static CombinedArcMap<ArcMap, const NodeMap> |
| 3568 | 3569 |
combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) {
|
| 3569 | 3570 |
return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map); |
| 3570 | 3571 |
} |
| 3571 | 3572 |
|
| 3572 | 3573 |
template <typename ArcMap, typename NodeMap> |
| 3573 | 3574 |
static CombinedArcMap<const ArcMap, const NodeMap> |
| 3574 | 3575 |
combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) {
|
| 3575 | 3576 |
return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map); |
| 3576 | 3577 |
} |
| 3577 | 3578 |
|
| 3578 | 3579 |
}; |
| 3579 | 3580 |
|
| 3580 | 3581 |
/// \brief Returns a (read-only) SplitNodes adaptor |
| 3581 | 3582 |
/// |
| 3582 | 3583 |
/// This function just returns a (read-only) \ref SplitNodes adaptor. |
| 3583 | 3584 |
/// \ingroup graph_adaptors |
| 3584 | 3585 |
/// \relates SplitNodes |
| 3585 | 3586 |
template<typename DGR> |
| 3586 | 3587 |
SplitNodes<DGR> |
| 3587 | 3588 |
splitNodes(const DGR& digraph) {
|
| 3588 | 3589 |
return SplitNodes<DGR>(digraph); |
| 3589 | 3590 |
} |
| 3590 | 3591 |
|
| 3591 | 3592 |
#undef LEMON_SCOPE_FIX |
| 3592 | 3593 |
|
| 3593 | 3594 |
} //namespace lemon |
| 3594 | 3595 |
|
| 3595 | 3596 |
#endif //LEMON_ADAPTORS_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
| 20 | 20 |
#define LEMON_BIN_HEAP_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup auxdat |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Binary Heap implementation. |
| 25 | 25 |
|
| 26 | 26 |
#include <vector> |
| 27 | 27 |
#include <utility> |
| 28 | 28 |
#include <functional> |
| 29 | 29 |
|
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
///\ingroup auxdat |
| 33 | 33 |
/// |
| 34 | 34 |
///\brief A Binary Heap implementation. |
| 35 | 35 |
/// |
| 36 |
///This class implements the \e binary \e heap data structure. A \e heap |
|
| 37 |
///is a data structure for storing items with specified values called \e |
|
| 38 |
///priorities in such a way that finding the item with minimum priority is |
|
| 39 |
///efficient. \c Compare specifies the ordering of the priorities. In a heap |
|
| 40 |
/// |
|
| 36 |
///This class implements the \e binary \e heap data structure. |
|
| 37 |
/// |
|
| 38 |
///A \e heap is a data structure for storing items with specified values |
|
| 39 |
///called \e priorities in such a way that finding the item with minimum |
|
| 40 |
///priority is efficient. \c Comp specifies the ordering of the priorities. |
|
| 41 |
///In a heap one can change the priority of an item, add or erase an |
|
| 42 |
///item, etc. |
|
| 41 | 43 |
/// |
| 42 |
///\tparam _Prio Type of the priority of the items. |
|
| 43 |
///\tparam _ItemIntMap A read and writable Item int map, used internally |
|
| 44 |
///\tparam PR Type of the priority of the items. |
|
| 45 |
///\tparam IM A read and writable item map with int values, used internally |
|
| 44 | 46 |
///to handle the cross references. |
| 45 |
///\tparam _Compare A class for the ordering of the priorities. The |
|
| 46 |
///default is \c std::less<_Prio>. |
|
| 47 |
///\tparam Comp A functor class for the ordering of the priorities. |
|
| 48 |
///The default is \c std::less<PR>. |
|
| 47 | 49 |
/// |
| 48 | 50 |
///\sa FibHeap |
| 49 | 51 |
///\sa Dijkstra |
| 50 |
template <typename _Prio, typename _ItemIntMap, |
|
| 51 |
typename _Compare = std::less<_Prio> > |
|
| 52 |
template <typename PR, typename IM, typename Comp = std::less<PR> > |
|
| 52 | 53 |
class BinHeap {
|
| 53 | 54 |
|
| 54 | 55 |
public: |
| 55 | 56 |
///\e |
| 56 |
typedef |
|
| 57 |
typedef IM ItemIntMap; |
|
| 57 | 58 |
///\e |
| 58 |
typedef |
|
| 59 |
typedef PR Prio; |
|
| 59 | 60 |
///\e |
| 60 | 61 |
typedef typename ItemIntMap::Key Item; |
| 61 | 62 |
///\e |
| 62 | 63 |
typedef std::pair<Item,Prio> Pair; |
| 63 | 64 |
///\e |
| 64 |
typedef |
|
| 65 |
typedef Comp Compare; |
|
| 65 | 66 |
|
| 66 | 67 |
/// \brief Type to represent the items states. |
| 67 | 68 |
/// |
| 68 | 69 |
/// Each Item element have a state associated to it. It may be "in heap", |
| 69 | 70 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
| 70 | 71 |
/// heap's point of view, but may be useful to the user. |
| 71 | 72 |
/// |
| 72 |
/// The ItemIntMap \e should be initialized in such way that it maps |
|
| 73 |
/// PRE_HEAP (-1) to any element to be put in the heap... |
|
| 73 |
/// The item-int map must be initialized in such way that it assigns |
|
| 74 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 74 | 75 |
enum State {
|
| 75 |
IN_HEAP = 0, |
|
| 76 |
PRE_HEAP = -1, |
|
| 77 |
|
|
| 76 |
IN_HEAP = 0, ///< \e |
|
| 77 |
PRE_HEAP = -1, ///< \e |
|
| 78 |
POST_HEAP = -2 ///< \e |
|
| 78 | 79 |
}; |
| 79 | 80 |
|
| 80 | 81 |
private: |
| 81 |
std::vector<Pair> data; |
|
| 82 |
Compare comp; |
|
| 83 |
|
|
| 82 |
std::vector<Pair> _data; |
|
| 83 |
Compare _comp; |
|
| 84 |
ItemIntMap &_iim; |
|
| 84 | 85 |
|
| 85 | 86 |
public: |
| 86 | 87 |
/// \brief The constructor. |
| 87 | 88 |
/// |
| 88 | 89 |
/// The constructor. |
| 89 |
/// \param |
|
| 90 |
/// \param map should be given to the constructor, since it is used |
|
| 90 | 91 |
/// internally to handle the cross references. The value of the map |
| 91 |
/// should be PRE_HEAP (-1) for each element. |
|
| 92 |
explicit BinHeap(ItemIntMap &_iim) : iim(_iim) {}
|
|
| 92 |
/// must be \c PRE_HEAP (<tt>-1</tt>) for every item. |
|
| 93 |
explicit BinHeap(ItemIntMap &map) : _iim(map) {}
|
|
| 93 | 94 |
|
| 94 | 95 |
/// \brief The constructor. |
| 95 | 96 |
/// |
| 96 | 97 |
/// The constructor. |
| 97 |
/// \param |
|
| 98 |
/// \param map should be given to the constructor, since it is used |
|
| 98 | 99 |
/// internally to handle the cross references. The value of the map |
| 99 | 100 |
/// should be PRE_HEAP (-1) for each element. |
| 100 | 101 |
/// |
| 101 |
/// \param _comp The comparator function object. |
|
| 102 |
BinHeap(ItemIntMap &_iim, const Compare &_comp) |
|
| 103 |
|
|
| 102 |
/// \param comp The comparator function object. |
|
| 103 |
BinHeap(ItemIntMap &map, const Compare &comp) |
|
| 104 |
: _iim(map), _comp(comp) {}
|
|
| 104 | 105 |
|
| 105 | 106 |
|
| 106 | 107 |
/// The number of items stored in the heap. |
| 107 | 108 |
/// |
| 108 | 109 |
/// \brief Returns the number of items stored in the heap. |
| 109 |
int size() const { return
|
|
| 110 |
int size() const { return _data.size(); }
|
|
| 110 | 111 |
|
| 111 | 112 |
/// \brief Checks if the heap stores no items. |
| 112 | 113 |
/// |
| 113 | 114 |
/// Returns \c true if and only if the heap stores no items. |
| 114 |
bool empty() const { return
|
|
| 115 |
bool empty() const { return _data.empty(); }
|
|
| 115 | 116 |
|
| 116 | 117 |
/// \brief Make empty this heap. |
| 117 | 118 |
/// |
| 118 | 119 |
/// Make empty this heap. It does not change the cross reference map. |
| 119 | 120 |
/// If you want to reuse what is not surely empty you should first clear |
| 120 | 121 |
/// the heap and after that you should set the cross reference map for |
| 121 | 122 |
/// each item to \c PRE_HEAP. |
| 122 | 123 |
void clear() {
|
| 123 |
|
|
| 124 |
_data.clear(); |
|
| 124 | 125 |
} |
| 125 | 126 |
|
| 126 | 127 |
private: |
| 127 | 128 |
static int parent(int i) { return (i-1)/2; }
|
| 128 | 129 |
|
| 129 | 130 |
static int second_child(int i) { return 2*i+2; }
|
| 130 | 131 |
bool less(const Pair &p1, const Pair &p2) const {
|
| 131 |
return |
|
| 132 |
return _comp(p1.second, p2.second); |
|
| 132 | 133 |
} |
| 133 | 134 |
|
| 134 | 135 |
int bubble_up(int hole, Pair p) {
|
| 135 | 136 |
int par = parent(hole); |
| 136 |
while( hole>0 && less(p,data[par]) ) {
|
|
| 137 |
move(data[par],hole); |
|
| 137 |
while( hole>0 && less(p,_data[par]) ) {
|
|
| 138 |
move(_data[par],hole); |
|
| 138 | 139 |
hole = par; |
| 139 | 140 |
par = parent(hole); |
| 140 | 141 |
} |
| 141 | 142 |
move(p, hole); |
| 142 | 143 |
return hole; |
| 143 | 144 |
} |
| 144 | 145 |
|
| 145 | 146 |
int bubble_down(int hole, Pair p, int length) {
|
| 146 | 147 |
int child = second_child(hole); |
| 147 | 148 |
while(child < length) {
|
| 148 |
if( less( |
|
| 149 |
if( less(_data[child-1], _data[child]) ) {
|
|
| 149 | 150 |
--child; |
| 150 | 151 |
} |
| 151 |
if( !less( |
|
| 152 |
if( !less(_data[child], p) ) |
|
| 152 | 153 |
goto ok; |
| 153 |
move( |
|
| 154 |
move(_data[child], hole); |
|
| 154 | 155 |
hole = child; |
| 155 | 156 |
child = second_child(hole); |
| 156 | 157 |
} |
| 157 | 158 |
child--; |
| 158 |
if( child<length && less(data[child], p) ) {
|
|
| 159 |
move(data[child], hole); |
|
| 159 |
if( child<length && less(_data[child], p) ) {
|
|
| 160 |
move(_data[child], hole); |
|
| 160 | 161 |
hole=child; |
| 161 | 162 |
} |
| 162 | 163 |
ok: |
| 163 | 164 |
move(p, hole); |
| 164 | 165 |
return hole; |
| 165 | 166 |
} |
| 166 | 167 |
|
| 167 | 168 |
void move(const Pair &p, int i) {
|
| 168 |
data[i] = p; |
|
| 169 |
iim.set(p.first, i); |
|
| 169 |
_data[i] = p; |
|
| 170 |
_iim.set(p.first, i); |
|
| 170 | 171 |
} |
| 171 | 172 |
|
| 172 | 173 |
public: |
| 173 | 174 |
/// \brief Insert a pair of item and priority into the heap. |
| 174 | 175 |
/// |
| 175 | 176 |
/// Adds \c p.first to the heap with priority \c p.second. |
| 176 | 177 |
/// \param p The pair to insert. |
| 177 | 178 |
void push(const Pair &p) {
|
| 178 |
int n = data.size(); |
|
| 179 |
data.resize(n+1); |
|
| 179 |
int n = _data.size(); |
|
| 180 |
_data.resize(n+1); |
|
| 180 | 181 |
bubble_up(n, p); |
| 181 | 182 |
} |
| 182 | 183 |
|
| 183 | 184 |
/// \brief Insert an item into the heap with the given heap. |
| 184 | 185 |
/// |
| 185 | 186 |
/// Adds \c i to the heap with priority \c p. |
| 186 | 187 |
/// \param i The item to insert. |
| 187 | 188 |
/// \param p The priority of the item. |
| 188 | 189 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
|
| 189 | 190 |
|
| 190 | 191 |
/// \brief Returns the item with minimum priority relative to \c Compare. |
| 191 | 192 |
/// |
| 192 | 193 |
/// This method returns the item with minimum priority relative to \c |
| 193 | 194 |
/// Compare. |
| 194 | 195 |
/// \pre The heap must be nonempty. |
| 195 | 196 |
Item top() const {
|
| 196 |
return |
|
| 197 |
return _data[0].first; |
|
| 197 | 198 |
} |
| 198 | 199 |
|
| 199 | 200 |
/// \brief Returns the minimum priority relative to \c Compare. |
| 200 | 201 |
/// |
| 201 | 202 |
/// It returns the minimum priority relative to \c Compare. |
| 202 | 203 |
/// \pre The heap must be nonempty. |
| 203 | 204 |
Prio prio() const {
|
| 204 |
return |
|
| 205 |
return _data[0].second; |
|
| 205 | 206 |
} |
| 206 | 207 |
|
| 207 | 208 |
/// \brief Deletes the item with minimum priority relative to \c Compare. |
| 208 | 209 |
/// |
| 209 | 210 |
/// This method deletes the item with minimum priority relative to \c |
| 210 | 211 |
/// Compare from the heap. |
| 211 | 212 |
/// \pre The heap must be non-empty. |
| 212 | 213 |
void pop() {
|
| 213 |
int n = data.size()-1; |
|
| 214 |
iim.set(data[0].first, POST_HEAP); |
|
| 214 |
int n = _data.size()-1; |
|
| 215 |
_iim.set(_data[0].first, POST_HEAP); |
|
| 215 | 216 |
if (n > 0) {
|
| 216 |
bubble_down(0, |
|
| 217 |
bubble_down(0, _data[n], n); |
|
| 217 | 218 |
} |
| 218 |
|
|
| 219 |
_data.pop_back(); |
|
| 219 | 220 |
} |
| 220 | 221 |
|
| 221 | 222 |
/// \brief Deletes \c i from the heap. |
| 222 | 223 |
/// |
| 223 | 224 |
/// This method deletes item \c i from the heap. |
| 224 | 225 |
/// \param i The item to erase. |
| 225 | 226 |
/// \pre The item should be in the heap. |
| 226 | 227 |
void erase(const Item &i) {
|
| 227 |
int h = iim[i]; |
|
| 228 |
int n = data.size()-1; |
|
| 229 |
|
|
| 228 |
int h = _iim[i]; |
|
| 229 |
int n = _data.size()-1; |
|
| 230 |
_iim.set(_data[h].first, POST_HEAP); |
|
| 230 | 231 |
if( h < n ) {
|
| 231 |
if ( bubble_up(h, data[n]) == h) {
|
|
| 232 |
bubble_down(h, data[n], n); |
|
| 232 |
if ( bubble_up(h, _data[n]) == h) {
|
|
| 233 |
bubble_down(h, _data[n], n); |
|
| 233 | 234 |
} |
| 234 | 235 |
} |
| 235 |
|
|
| 236 |
_data.pop_back(); |
|
| 236 | 237 |
} |
| 237 | 238 |
|
| 238 | 239 |
|
| 239 | 240 |
/// \brief Returns the priority of \c i. |
| 240 | 241 |
/// |
| 241 | 242 |
/// This function returns the priority of item \c i. |
| 243 |
/// \param i The item. |
|
| 242 | 244 |
/// \pre \c i must be in the heap. |
| 243 |
/// \param i The item. |
|
| 244 | 245 |
Prio operator[](const Item &i) const {
|
| 245 |
int idx = iim[i]; |
|
| 246 |
return data[idx].second; |
|
| 246 |
int idx = _iim[i]; |
|
| 247 |
return _data[idx].second; |
|
| 247 | 248 |
} |
| 248 | 249 |
|
| 249 | 250 |
/// \brief \c i gets to the heap with priority \c p independently |
| 250 | 251 |
/// if \c i was already there. |
| 251 | 252 |
/// |
| 252 | 253 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
| 253 | 254 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
| 254 | 255 |
/// \param i The item. |
| 255 | 256 |
/// \param p The priority. |
| 256 | 257 |
void set(const Item &i, const Prio &p) {
|
| 257 |
int idx = |
|
| 258 |
int idx = _iim[i]; |
|
| 258 | 259 |
if( idx < 0 ) {
|
| 259 | 260 |
push(i,p); |
| 260 | 261 |
} |
| 261 |
else if( |
|
| 262 |
else if( _comp(p, _data[idx].second) ) {
|
|
| 262 | 263 |
bubble_up(idx, Pair(i,p)); |
| 263 | 264 |
} |
| 264 | 265 |
else {
|
| 265 |
bubble_down(idx, Pair(i,p), |
|
| 266 |
bubble_down(idx, Pair(i,p), _data.size()); |
|
| 266 | 267 |
} |
| 267 | 268 |
} |
| 268 | 269 |
|
| 269 | 270 |
/// \brief Decreases the priority of \c i to \c p. |
| 270 | 271 |
/// |
| 271 | 272 |
/// This method decreases the priority of item \c i to \c p. |
| 273 |
/// \param i The item. |
|
| 274 |
/// \param p The priority. |
|
| 272 | 275 |
/// \pre \c i must be stored in the heap with priority at least \c |
| 273 | 276 |
/// p relative to \c Compare. |
| 274 |
/// \param i The item. |
|
| 275 |
/// \param p The priority. |
|
| 276 | 277 |
void decrease(const Item &i, const Prio &p) {
|
| 277 |
int idx = |
|
| 278 |
int idx = _iim[i]; |
|
| 278 | 279 |
bubble_up(idx, Pair(i,p)); |
| 279 | 280 |
} |
| 280 | 281 |
|
| 281 | 282 |
/// \brief Increases the priority of \c i to \c p. |
| 282 | 283 |
/// |
| 283 | 284 |
/// This method sets the priority of item \c i to \c p. |
| 285 |
/// \param i The item. |
|
| 286 |
/// \param p The priority. |
|
| 284 | 287 |
/// \pre \c i must be stored in the heap with priority at most \c |
| 285 | 288 |
/// p relative to \c Compare. |
| 286 |
/// \param i The item. |
|
| 287 |
/// \param p The priority. |
|
| 288 | 289 |
void increase(const Item &i, const Prio &p) {
|
| 289 |
int idx = iim[i]; |
|
| 290 |
bubble_down(idx, Pair(i,p), data.size()); |
|
| 290 |
int idx = _iim[i]; |
|
| 291 |
bubble_down(idx, Pair(i,p), _data.size()); |
|
| 291 | 292 |
} |
| 292 | 293 |
|
| 293 | 294 |
/// \brief Returns if \c item is in, has already been in, or has |
| 294 | 295 |
/// never been in the heap. |
| 295 | 296 |
/// |
| 296 | 297 |
/// This method returns PRE_HEAP if \c item has never been in the |
| 297 | 298 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
| 298 | 299 |
/// otherwise. In the latter case it is possible that \c item will |
| 299 | 300 |
/// get back to the heap again. |
| 300 | 301 |
/// \param i The item. |
| 301 | 302 |
State state(const Item &i) const {
|
| 302 |
int s = |
|
| 303 |
int s = _iim[i]; |
|
| 303 | 304 |
if( s>=0 ) |
| 304 | 305 |
s=0; |
| 305 | 306 |
return State(s); |
| 306 | 307 |
} |
| 307 | 308 |
|
| 308 | 309 |
/// \brief Sets the state of the \c item in the heap. |
| 309 | 310 |
/// |
| 310 | 311 |
/// Sets the state of the \c item in the heap. It can be used to |
| 311 | 312 |
/// manually clear the heap when it is important to achive the |
| 312 | 313 |
/// better time complexity. |
| 313 | 314 |
/// \param i The item. |
| 314 | 315 |
/// \param st The state. It should not be \c IN_HEAP. |
| 315 | 316 |
void state(const Item& i, State st) {
|
| 316 | 317 |
switch (st) {
|
| 317 | 318 |
case POST_HEAP: |
| 318 | 319 |
case PRE_HEAP: |
| 319 | 320 |
if (state(i) == IN_HEAP) {
|
| 320 | 321 |
erase(i); |
| 321 | 322 |
} |
| 322 |
|
|
| 323 |
_iim[i] = st; |
|
| 323 | 324 |
break; |
| 324 | 325 |
case IN_HEAP: |
| 325 | 326 |
break; |
| 326 | 327 |
} |
| 327 | 328 |
} |
| 328 | 329 |
|
| 329 | 330 |
/// \brief Replaces an item in the heap. |
| 330 | 331 |
/// |
| 331 | 332 |
/// The \c i item is replaced with \c j item. The \c i item should |
| 332 | 333 |
/// be in the heap, while the \c j should be out of the heap. The |
| 333 | 334 |
/// \c i item will out of the heap and \c j will be in the heap |
| 334 | 335 |
/// with the same prioriority as prevoiusly the \c i item. |
| 335 | 336 |
void replace(const Item& i, const Item& j) {
|
| 336 |
int idx = iim[i]; |
|
| 337 |
iim.set(i, iim[j]); |
|
| 338 |
iim.set(j, idx); |
|
| 339 |
data[idx].first = j; |
|
| 337 |
int idx = _iim[i]; |
|
| 338 |
_iim.set(i, _iim[j]); |
|
| 339 |
_iim.set(j, idx); |
|
| 340 |
_data[idx].first = j; |
|
| 340 | 341 |
} |
| 341 | 342 |
|
| 342 | 343 |
}; // class BinHeap |
| 343 | 344 |
|
| 344 | 345 |
} // namespace lemon |
| 345 | 346 |
|
| 346 | 347 |
#endif // LEMON_BIN_HEAP_H |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_EDGE_SET_EXTENDER_H |
| 20 | 20 |
#define LEMON_BITS_EDGE_SET_EXTENDER_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/error.h> |
| 24 | 24 |
#include <lemon/bits/default_map.h> |
| 25 | 25 |
#include <lemon/bits/map_extender.h> |
| 26 | 26 |
|
| 27 |
///\ingroup digraphbits |
|
| 28 |
///\file |
|
| 29 |
|
|
| 27 |
//\ingroup digraphbits |
|
| 28 |
//\file |
|
| 29 |
//\brief Extenders for the arc set types |
|
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 |
/// \ingroup digraphbits |
|
| 33 |
/// |
|
| 34 |
// |
|
| 32 |
// \ingroup digraphbits |
|
| 33 |
// |
|
| 34 |
// \brief Extender for the ArcSets |
|
| 35 | 35 |
template <typename Base> |
| 36 | 36 |
class ArcSetExtender : public Base {
|
| 37 | 37 |
public: |
| 38 | 38 |
|
| 39 | 39 |
typedef Base Parent; |
| 40 | 40 |
typedef ArcSetExtender Digraph; |
| 41 | 41 |
|
| 42 | 42 |
// Base extensions |
| 43 | 43 |
|
| 44 | 44 |
typedef typename Parent::Node Node; |
| 45 | 45 |
typedef typename Parent::Arc Arc; |
| 46 | 46 |
|
| 47 | 47 |
int maxId(Node) const {
|
| 48 | 48 |
return Parent::maxNodeId(); |
| 49 | 49 |
} |
| 50 | 50 |
|
| 51 | 51 |
int maxId(Arc) const {
|
| 52 | 52 |
return Parent::maxArcId(); |
| 53 | 53 |
} |
| 54 | 54 |
|
| 55 | 55 |
Node fromId(int id, Node) const {
|
| 56 | 56 |
return Parent::nodeFromId(id); |
| 57 | 57 |
} |
| 58 | 58 |
|
| 59 | 59 |
Arc fromId(int id, Arc) const {
|
| 60 | 60 |
return Parent::arcFromId(id); |
| 61 | 61 |
} |
| 62 | 62 |
|
| 63 | 63 |
Node oppositeNode(const Node &n, const Arc &e) const {
|
| 64 | 64 |
if (n == Parent::source(e)) |
| 65 | 65 |
return Parent::target(e); |
| 66 | 66 |
else if(n==Parent::target(e)) |
| 67 | 67 |
return Parent::source(e); |
| 68 | 68 |
else |
| 69 | 69 |
return INVALID; |
| 70 | 70 |
} |
| 71 | 71 |
|
| 72 | 72 |
|
| 73 | 73 |
// Alteration notifier extensions |
| 74 | 74 |
|
| 75 |
|
|
| 75 |
// The arc observer registry. |
|
| 76 | 76 |
typedef AlterationNotifier<ArcSetExtender, Arc> ArcNotifier; |
| 77 | 77 |
|
| 78 | 78 |
protected: |
| 79 | 79 |
|
| 80 | 80 |
mutable ArcNotifier arc_notifier; |
| 81 | 81 |
|
| 82 | 82 |
public: |
| 83 | 83 |
|
| 84 | 84 |
using Parent::notifier; |
| 85 | 85 |
|
| 86 |
/// \brief Gives back the arc alteration notifier. |
|
| 87 |
/// |
|
| 88 |
|
|
| 86 |
// Gives back the arc alteration notifier. |
|
| 89 | 87 |
ArcNotifier& notifier(Arc) const {
|
| 90 | 88 |
return arc_notifier; |
| 91 | 89 |
} |
| 92 | 90 |
|
| 93 | 91 |
// Iterable extensions |
| 94 | 92 |
|
| 95 | 93 |
class NodeIt : public Node {
|
| 96 | 94 |
const Digraph* digraph; |
| 97 | 95 |
public: |
| 98 | 96 |
|
| 99 | 97 |
NodeIt() {}
|
| 100 | 98 |
|
| 101 | 99 |
NodeIt(Invalid i) : Node(i) { }
|
| 102 | 100 |
|
| 103 | 101 |
explicit NodeIt(const Digraph& _graph) : digraph(&_graph) {
|
| 104 | 102 |
_graph.first(static_cast<Node&>(*this)); |
| 105 | 103 |
} |
| 106 | 104 |
|
| 107 | 105 |
NodeIt(const Digraph& _graph, const Node& node) |
| 108 | 106 |
: Node(node), digraph(&_graph) {}
|
| 109 | 107 |
|
| 110 | 108 |
NodeIt& operator++() {
|
| 111 | 109 |
digraph->next(*this); |
| 112 | 110 |
return *this; |
| 113 | 111 |
} |
| 114 | 112 |
|
| 115 | 113 |
}; |
| 116 | 114 |
|
| 117 | 115 |
|
| 118 | 116 |
class ArcIt : public Arc {
|
| 119 | 117 |
const Digraph* digraph; |
| 120 | 118 |
public: |
| 121 | 119 |
|
| 122 | 120 |
ArcIt() { }
|
| 123 | 121 |
|
| 124 | 122 |
ArcIt(Invalid i) : Arc(i) { }
|
| 125 | 123 |
|
| 126 | 124 |
explicit ArcIt(const Digraph& _graph) : digraph(&_graph) {
|
| 127 | 125 |
_graph.first(static_cast<Arc&>(*this)); |
| 128 | 126 |
} |
| 129 | 127 |
|
| 130 | 128 |
ArcIt(const Digraph& _graph, const Arc& e) : |
| 131 | 129 |
Arc(e), digraph(&_graph) { }
|
| 132 | 130 |
|
| 133 | 131 |
ArcIt& operator++() {
|
| 134 | 132 |
digraph->next(*this); |
| 135 | 133 |
return *this; |
| 136 | 134 |
} |
| 137 | 135 |
|
| 138 | 136 |
}; |
| 139 | 137 |
|
| 140 | 138 |
|
| 141 | 139 |
class OutArcIt : public Arc {
|
| 142 | 140 |
const Digraph* digraph; |
| 143 | 141 |
public: |
| 144 | 142 |
|
| 145 | 143 |
OutArcIt() { }
|
| 146 | 144 |
|
| 147 | 145 |
OutArcIt(Invalid i) : Arc(i) { }
|
| 148 | 146 |
|
| 149 | 147 |
OutArcIt(const Digraph& _graph, const Node& node) |
| 150 | 148 |
: digraph(&_graph) {
|
| 151 | 149 |
_graph.firstOut(*this, node); |
| 152 | 150 |
} |
| 153 | 151 |
|
| 154 | 152 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
| 155 | 153 |
: Arc(arc), digraph(&_graph) {}
|
| 156 | 154 |
|
| 157 | 155 |
OutArcIt& operator++() {
|
| 158 | 156 |
digraph->nextOut(*this); |
| 159 | 157 |
return *this; |
| 160 | 158 |
} |
| 161 | 159 |
|
| 162 | 160 |
}; |
| 163 | 161 |
|
| 164 | 162 |
|
| 165 | 163 |
class InArcIt : public Arc {
|
| 166 | 164 |
const Digraph* digraph; |
| 167 | 165 |
public: |
| 168 | 166 |
|
| 169 | 167 |
InArcIt() { }
|
| 170 | 168 |
|
| 171 | 169 |
InArcIt(Invalid i) : Arc(i) { }
|
| 172 | 170 |
|
| 173 | 171 |
InArcIt(const Digraph& _graph, const Node& node) |
| 174 | 172 |
: digraph(&_graph) {
|
| 175 | 173 |
_graph.firstIn(*this, node); |
| 176 | 174 |
} |
| 177 | 175 |
|
| 178 | 176 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
| 179 | 177 |
Arc(arc), digraph(&_graph) {}
|
| 180 | 178 |
|
| 181 | 179 |
InArcIt& operator++() {
|
| 182 | 180 |
digraph->nextIn(*this); |
| 183 | 181 |
return *this; |
| 184 | 182 |
} |
| 185 | 183 |
|
| 186 | 184 |
}; |
| 187 | 185 |
|
| 188 |
/// \brief Base node of the iterator |
|
| 189 |
/// |
|
| 190 |
// |
|
| 186 |
// \brief Base node of the iterator |
|
| 187 |
// |
|
| 188 |
// Returns the base node (ie. the source in this case) of the iterator |
|
| 191 | 189 |
Node baseNode(const OutArcIt &e) const {
|
| 192 | 190 |
return Parent::source(static_cast<const Arc&>(e)); |
| 193 | 191 |
} |
| 194 |
/// \brief Running node of the iterator |
|
| 195 |
/// |
|
| 196 |
/// Returns the running node (ie. the target in this case) of the |
|
| 197 |
/// iterator |
|
| 192 |
// \brief Running node of the iterator |
|
| 193 |
// |
|
| 194 |
// Returns the running node (ie. the target in this case) of the |
|
| 195 |
// iterator |
|
| 198 | 196 |
Node runningNode(const OutArcIt &e) const {
|
| 199 | 197 |
return Parent::target(static_cast<const Arc&>(e)); |
| 200 | 198 |
} |
| 201 | 199 |
|
| 202 |
/// \brief Base node of the iterator |
|
| 203 |
/// |
|
| 204 |
// |
|
| 200 |
// \brief Base node of the iterator |
|
| 201 |
// |
|
| 202 |
// Returns the base node (ie. the target in this case) of the iterator |
|
| 205 | 203 |
Node baseNode(const InArcIt &e) const {
|
| 206 | 204 |
return Parent::target(static_cast<const Arc&>(e)); |
| 207 | 205 |
} |
| 208 |
/// \brief Running node of the iterator |
|
| 209 |
/// |
|
| 210 |
/// Returns the running node (ie. the source in this case) of the |
|
| 211 |
/// iterator |
|
| 206 |
// \brief Running node of the iterator |
|
| 207 |
// |
|
| 208 |
// Returns the running node (ie. the source in this case) of the |
|
| 209 |
// iterator |
|
| 212 | 210 |
Node runningNode(const InArcIt &e) const {
|
| 213 | 211 |
return Parent::source(static_cast<const Arc&>(e)); |
| 214 | 212 |
} |
| 215 | 213 |
|
| 216 | 214 |
using Parent::first; |
| 217 | 215 |
|
| 218 | 216 |
// Mappable extension |
| 219 | 217 |
|
| 220 | 218 |
template <typename _Value> |
| 221 | 219 |
class ArcMap |
| 222 | 220 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > {
|
| 223 | 221 |
public: |
| 224 | 222 |
typedef ArcSetExtender Digraph; |
| 225 | 223 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
| 226 | 224 |
|
| 227 | 225 |
explicit ArcMap(const Digraph& _g) |
| 228 | 226 |
: Parent(_g) {}
|
| 229 | 227 |
ArcMap(const Digraph& _g, const _Value& _v) |
| 230 | 228 |
: Parent(_g, _v) {}
|
| 231 | 229 |
|
| 232 | 230 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 233 | 231 |
return operator=<ArcMap>(cmap); |
| 234 | 232 |
} |
| 235 | 233 |
|
| 236 | 234 |
template <typename CMap> |
| 237 | 235 |
ArcMap& operator=(const CMap& cmap) {
|
| 238 | 236 |
Parent::operator=(cmap); |
| 239 | 237 |
return *this; |
| 240 | 238 |
} |
| 241 | 239 |
|
| 242 | 240 |
}; |
| 243 | 241 |
|
| 244 | 242 |
|
| 245 | 243 |
// Alteration extension |
| 246 | 244 |
|
| 247 | 245 |
Arc addArc(const Node& from, const Node& to) {
|
| 248 | 246 |
Arc arc = Parent::addArc(from, to); |
| 249 | 247 |
notifier(Arc()).add(arc); |
| 250 | 248 |
return arc; |
| 251 | 249 |
} |
| 252 | 250 |
|
| 253 | 251 |
void clear() {
|
| 254 | 252 |
notifier(Arc()).clear(); |
| 255 | 253 |
Parent::clear(); |
| 256 | 254 |
} |
| 257 | 255 |
|
| 258 | 256 |
void erase(const Arc& arc) {
|
| 259 | 257 |
notifier(Arc()).erase(arc); |
| 260 | 258 |
Parent::erase(arc); |
| 261 | 259 |
} |
| 262 | 260 |
|
| 263 | 261 |
ArcSetExtender() {
|
| 264 | 262 |
arc_notifier.setContainer(*this); |
| 265 | 263 |
} |
| 266 | 264 |
|
| 267 | 265 |
~ArcSetExtender() {
|
| 268 | 266 |
arc_notifier.clear(); |
| 269 | 267 |
} |
| 270 | 268 |
|
| 271 | 269 |
}; |
| 272 | 270 |
|
| 273 | 271 |
|
| 274 |
/// \ingroup digraphbits |
|
| 275 |
/// |
|
| 276 |
// |
|
| 272 |
// \ingroup digraphbits |
|
| 273 |
// |
|
| 274 |
// \brief Extender for the EdgeSets |
|
| 277 | 275 |
template <typename Base> |
| 278 | 276 |
class EdgeSetExtender : public Base {
|
| 279 | 277 |
|
| 280 | 278 |
public: |
| 281 | 279 |
|
| 282 | 280 |
typedef Base Parent; |
| 283 | 281 |
typedef EdgeSetExtender Digraph; |
| 284 | 282 |
|
| 285 | 283 |
typedef typename Parent::Node Node; |
| 286 | 284 |
typedef typename Parent::Arc Arc; |
| 287 | 285 |
typedef typename Parent::Edge Edge; |
| 288 | 286 |
|
| 289 | 287 |
|
| 290 | 288 |
int maxId(Node) const {
|
| 291 | 289 |
return Parent::maxNodeId(); |
| 292 | 290 |
} |
| 293 | 291 |
|
| 294 | 292 |
int maxId(Arc) const {
|
| 295 | 293 |
return Parent::maxArcId(); |
| 296 | 294 |
} |
| 297 | 295 |
|
| 298 | 296 |
int maxId(Edge) const {
|
| 299 | 297 |
return Parent::maxEdgeId(); |
| 300 | 298 |
} |
| 301 | 299 |
|
| 302 | 300 |
Node fromId(int id, Node) const {
|
| 303 | 301 |
return Parent::nodeFromId(id); |
| 304 | 302 |
} |
| 305 | 303 |
|
| 306 | 304 |
Arc fromId(int id, Arc) const {
|
| 307 | 305 |
return Parent::arcFromId(id); |
| 308 | 306 |
} |
| 309 | 307 |
|
| 310 | 308 |
Edge fromId(int id, Edge) const {
|
| 311 | 309 |
return Parent::edgeFromId(id); |
| 312 | 310 |
} |
| 313 | 311 |
|
| 314 | 312 |
Node oppositeNode(const Node &n, const Edge &e) const {
|
| 315 | 313 |
if( n == Parent::u(e)) |
| 316 | 314 |
return Parent::v(e); |
| 317 | 315 |
else if( n == Parent::v(e)) |
| 318 | 316 |
return Parent::u(e); |
| 319 | 317 |
else |
| 320 | 318 |
return INVALID; |
| 321 | 319 |
} |
| 322 | 320 |
|
| 323 | 321 |
Arc oppositeArc(const Arc &e) const {
|
| 324 | 322 |
return Parent::direct(e, !Parent::direction(e)); |
| 325 | 323 |
} |
| 326 | 324 |
|
| 327 | 325 |
using Parent::direct; |
| 328 | 326 |
Arc direct(const Edge &e, const Node &s) const {
|
| 329 | 327 |
return Parent::direct(e, Parent::u(e) == s); |
| 330 | 328 |
} |
| 331 | 329 |
|
| 332 | 330 |
typedef AlterationNotifier<EdgeSetExtender, Arc> ArcNotifier; |
| 333 | 331 |
typedef AlterationNotifier<EdgeSetExtender, Edge> EdgeNotifier; |
| 334 | 332 |
|
| 335 | 333 |
|
| 336 | 334 |
protected: |
| 337 | 335 |
|
| 338 | 336 |
mutable ArcNotifier arc_notifier; |
| 339 | 337 |
mutable EdgeNotifier edge_notifier; |
| 340 | 338 |
|
| 341 | 339 |
public: |
| 342 | 340 |
|
| 343 | 341 |
using Parent::notifier; |
| 344 | 342 |
|
| 345 | 343 |
ArcNotifier& notifier(Arc) const {
|
| 346 | 344 |
return arc_notifier; |
| 347 | 345 |
} |
| 348 | 346 |
|
| 349 | 347 |
EdgeNotifier& notifier(Edge) const {
|
| 350 | 348 |
return edge_notifier; |
| 351 | 349 |
} |
| 352 | 350 |
|
| 353 | 351 |
|
| 354 | 352 |
class NodeIt : public Node {
|
| 355 | 353 |
const Digraph* digraph; |
| 356 | 354 |
public: |
| 357 | 355 |
|
| 358 | 356 |
NodeIt() {}
|
| 359 | 357 |
|
| 360 | 358 |
NodeIt(Invalid i) : Node(i) { }
|
| 361 | 359 |
|
| 362 | 360 |
explicit NodeIt(const Digraph& _graph) : digraph(&_graph) {
|
| 363 | 361 |
_graph.first(static_cast<Node&>(*this)); |
| 364 | 362 |
} |
| 365 | 363 |
|
| 366 | 364 |
NodeIt(const Digraph& _graph, const Node& node) |
| 367 | 365 |
: Node(node), digraph(&_graph) {}
|
| 368 | 366 |
|
| 369 | 367 |
NodeIt& operator++() {
|
| 370 | 368 |
digraph->next(*this); |
| 371 | 369 |
return *this; |
| 372 | 370 |
} |
| 373 | 371 |
|
| 374 | 372 |
}; |
| 375 | 373 |
|
| 376 | 374 |
|
| 377 | 375 |
class ArcIt : public Arc {
|
| 378 | 376 |
const Digraph* digraph; |
| 379 | 377 |
public: |
| 380 | 378 |
|
| 381 | 379 |
ArcIt() { }
|
| 382 | 380 |
|
| 383 | 381 |
ArcIt(Invalid i) : Arc(i) { }
|
| 384 | 382 |
|
| 385 | 383 |
explicit ArcIt(const Digraph& _graph) : digraph(&_graph) {
|
| 386 | 384 |
_graph.first(static_cast<Arc&>(*this)); |
| 387 | 385 |
} |
| 388 | 386 |
|
| 389 | 387 |
ArcIt(const Digraph& _graph, const Arc& e) : |
| 390 | 388 |
Arc(e), digraph(&_graph) { }
|
| 391 | 389 |
|
| 392 | 390 |
ArcIt& operator++() {
|
| 393 | 391 |
digraph->next(*this); |
| 394 | 392 |
return *this; |
| 395 | 393 |
} |
| 396 | 394 |
|
| 397 | 395 |
}; |
| 398 | 396 |
|
| 399 | 397 |
|
| 400 | 398 |
class OutArcIt : public Arc {
|
| 401 | 399 |
const Digraph* digraph; |
| 402 | 400 |
public: |
| 403 | 401 |
|
| 404 | 402 |
OutArcIt() { }
|
| 405 | 403 |
|
| 406 | 404 |
OutArcIt(Invalid i) : Arc(i) { }
|
| 407 | 405 |
|
| 408 | 406 |
OutArcIt(const Digraph& _graph, const Node& node) |
| 409 | 407 |
: digraph(&_graph) {
|
| 410 | 408 |
_graph.firstOut(*this, node); |
| 411 | 409 |
} |
| 412 | 410 |
|
| 413 | 411 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
| 414 | 412 |
: Arc(arc), digraph(&_graph) {}
|
| 415 | 413 |
|
| 416 | 414 |
OutArcIt& operator++() {
|
| 417 | 415 |
digraph->nextOut(*this); |
| 418 | 416 |
return *this; |
| 419 | 417 |
} |
| 420 | 418 |
|
| 421 | 419 |
}; |
| 422 | 420 |
|
| 423 | 421 |
|
| 424 | 422 |
class InArcIt : public Arc {
|
| 425 | 423 |
const Digraph* digraph; |
| 426 | 424 |
public: |
| 427 | 425 |
|
| 428 | 426 |
InArcIt() { }
|
| 429 | 427 |
|
| 430 | 428 |
InArcIt(Invalid i) : Arc(i) { }
|
| 431 | 429 |
|
| 432 | 430 |
InArcIt(const Digraph& _graph, const Node& node) |
| 433 | 431 |
: digraph(&_graph) {
|
| 434 | 432 |
_graph.firstIn(*this, node); |
| 435 | 433 |
} |
| 436 | 434 |
|
| 437 | 435 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
| 438 | 436 |
Arc(arc), digraph(&_graph) {}
|
| 439 | 437 |
|
| 440 | 438 |
InArcIt& operator++() {
|
| 441 | 439 |
digraph->nextIn(*this); |
| 442 | 440 |
return *this; |
| 443 | 441 |
} |
| 444 | 442 |
|
| 445 | 443 |
}; |
| 446 | 444 |
|
| 447 | 445 |
|
| 448 | 446 |
class EdgeIt : public Parent::Edge {
|
| 449 | 447 |
const Digraph* digraph; |
| 450 | 448 |
public: |
| 451 | 449 |
|
| 452 | 450 |
EdgeIt() { }
|
| 453 | 451 |
|
| 454 | 452 |
EdgeIt(Invalid i) : Edge(i) { }
|
| 455 | 453 |
|
| 456 | 454 |
explicit EdgeIt(const Digraph& _graph) : digraph(&_graph) {
|
| 457 | 455 |
_graph.first(static_cast<Edge&>(*this)); |
| 458 | 456 |
} |
| 459 | 457 |
|
| 460 | 458 |
EdgeIt(const Digraph& _graph, const Edge& e) : |
| 461 | 459 |
Edge(e), digraph(&_graph) { }
|
| 462 | 460 |
|
| 463 | 461 |
EdgeIt& operator++() {
|
| 464 | 462 |
digraph->next(*this); |
| 465 | 463 |
return *this; |
| 466 | 464 |
} |
| 467 | 465 |
|
| 468 | 466 |
}; |
| 469 | 467 |
|
| 470 | 468 |
class IncEdgeIt : public Parent::Edge {
|
| 471 | 469 |
friend class EdgeSetExtender; |
| 472 | 470 |
const Digraph* digraph; |
| 473 | 471 |
bool direction; |
| 474 | 472 |
public: |
| 475 | 473 |
|
| 476 | 474 |
IncEdgeIt() { }
|
| 477 | 475 |
|
| 478 | 476 |
IncEdgeIt(Invalid i) : Edge(i), direction(false) { }
|
| 479 | 477 |
|
| 480 | 478 |
IncEdgeIt(const Digraph& _graph, const Node &n) : digraph(&_graph) {
|
| 481 | 479 |
_graph.firstInc(*this, direction, n); |
| 482 | 480 |
} |
| 483 | 481 |
|
| 484 | 482 |
IncEdgeIt(const Digraph& _graph, const Edge &ue, const Node &n) |
| 485 | 483 |
: digraph(&_graph), Edge(ue) {
|
| 486 | 484 |
direction = (_graph.source(ue) == n); |
| 487 | 485 |
} |
| 488 | 486 |
|
| 489 | 487 |
IncEdgeIt& operator++() {
|
| 490 | 488 |
digraph->nextInc(*this, direction); |
| 491 | 489 |
return *this; |
| 492 | 490 |
} |
| 493 | 491 |
}; |
| 494 | 492 |
|
| 495 |
/// \brief Base node of the iterator |
|
| 496 |
/// |
|
| 497 |
// |
|
| 493 |
// \brief Base node of the iterator |
|
| 494 |
// |
|
| 495 |
// Returns the base node (ie. the source in this case) of the iterator |
|
| 498 | 496 |
Node baseNode(const OutArcIt &e) const {
|
| 499 | 497 |
return Parent::source(static_cast<const Arc&>(e)); |
| 500 | 498 |
} |
| 501 |
/// \brief Running node of the iterator |
|
| 502 |
/// |
|
| 503 |
/// Returns the running node (ie. the target in this case) of the |
|
| 504 |
/// iterator |
|
| 499 |
// \brief Running node of the iterator |
|
| 500 |
// |
|
| 501 |
// Returns the running node (ie. the target in this case) of the |
|
| 502 |
// iterator |
|
| 505 | 503 |
Node runningNode(const OutArcIt &e) const {
|
| 506 | 504 |
return Parent::target(static_cast<const Arc&>(e)); |
| 507 | 505 |
} |
| 508 | 506 |
|
| 509 |
/// \brief Base node of the iterator |
|
| 510 |
/// |
|
| 511 |
// |
|
| 507 |
// \brief Base node of the iterator |
|
| 508 |
// |
|
| 509 |
// Returns the base node (ie. the target in this case) of the iterator |
|
| 512 | 510 |
Node baseNode(const InArcIt &e) const {
|
| 513 | 511 |
return Parent::target(static_cast<const Arc&>(e)); |
| 514 | 512 |
} |
| 515 |
/// \brief Running node of the iterator |
|
| 516 |
/// |
|
| 517 |
/// Returns the running node (ie. the source in this case) of the |
|
| 518 |
/// iterator |
|
| 513 |
// \brief Running node of the iterator |
|
| 514 |
// |
|
| 515 |
// Returns the running node (ie. the source in this case) of the |
|
| 516 |
// iterator |
|
| 519 | 517 |
Node runningNode(const InArcIt &e) const {
|
| 520 | 518 |
return Parent::source(static_cast<const Arc&>(e)); |
| 521 | 519 |
} |
| 522 | 520 |
|
| 523 |
/// Base node of the iterator |
|
| 524 |
/// |
|
| 525 |
// |
|
| 521 |
// Base node of the iterator |
|
| 522 |
// |
|
| 523 |
// Returns the base node of the iterator |
|
| 526 | 524 |
Node baseNode(const IncEdgeIt &e) const {
|
| 527 | 525 |
return e.direction ? u(e) : v(e); |
| 528 | 526 |
} |
| 529 |
/// Running node of the iterator |
|
| 530 |
/// |
|
| 531 |
// |
|
| 527 |
// Running node of the iterator |
|
| 528 |
// |
|
| 529 |
// Returns the running node of the iterator |
|
| 532 | 530 |
Node runningNode(const IncEdgeIt &e) const {
|
| 533 | 531 |
return e.direction ? v(e) : u(e); |
| 534 | 532 |
} |
| 535 | 533 |
|
| 536 | 534 |
|
| 537 | 535 |
template <typename _Value> |
| 538 | 536 |
class ArcMap |
| 539 | 537 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > {
|
| 540 | 538 |
public: |
| 541 | 539 |
typedef EdgeSetExtender Digraph; |
| 542 | 540 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
| 543 | 541 |
|
| 544 | 542 |
ArcMap(const Digraph& _g) |
| 545 | 543 |
: Parent(_g) {}
|
| 546 | 544 |
ArcMap(const Digraph& _g, const _Value& _v) |
| 547 | 545 |
: Parent(_g, _v) {}
|
| 548 | 546 |
|
| 549 | 547 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 550 | 548 |
return operator=<ArcMap>(cmap); |
| 551 | 549 |
} |
| 552 | 550 |
|
| 553 | 551 |
template <typename CMap> |
| 554 | 552 |
ArcMap& operator=(const CMap& cmap) {
|
| 555 | 553 |
Parent::operator=(cmap); |
| 556 | 554 |
return *this; |
| 557 | 555 |
} |
| 558 | 556 |
|
| 559 | 557 |
}; |
| 560 | 558 |
|
| 561 | 559 |
|
| 562 | 560 |
template <typename _Value> |
| 563 | 561 |
class EdgeMap |
| 564 | 562 |
: public MapExtender<DefaultMap<Digraph, Edge, _Value> > {
|
| 565 | 563 |
public: |
| 566 | 564 |
typedef EdgeSetExtender Digraph; |
| 567 | 565 |
typedef MapExtender<DefaultMap<Digraph, Edge, _Value> > Parent; |
| 568 | 566 |
|
| 569 | 567 |
EdgeMap(const Digraph& _g) |
| 570 | 568 |
: Parent(_g) {}
|
| 571 | 569 |
|
| 572 | 570 |
EdgeMap(const Digraph& _g, const _Value& _v) |
| 573 | 571 |
: Parent(_g, _v) {}
|
| 574 | 572 |
|
| 575 | 573 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 576 | 574 |
return operator=<EdgeMap>(cmap); |
| 577 | 575 |
} |
| 578 | 576 |
|
| 579 | 577 |
template <typename CMap> |
| 580 | 578 |
EdgeMap& operator=(const CMap& cmap) {
|
| 581 | 579 |
Parent::operator=(cmap); |
| 582 | 580 |
return *this; |
| 583 | 581 |
} |
| 584 | 582 |
|
| 585 | 583 |
}; |
| 586 | 584 |
|
| 587 | 585 |
|
| 588 | 586 |
// Alteration extension |
| 589 | 587 |
|
| 590 | 588 |
Edge addEdge(const Node& from, const Node& to) {
|
| 591 | 589 |
Edge edge = Parent::addEdge(from, to); |
| 592 | 590 |
notifier(Edge()).add(edge); |
| 593 | 591 |
std::vector<Arc> arcs; |
| 594 | 592 |
arcs.push_back(Parent::direct(edge, true)); |
| 595 | 593 |
arcs.push_back(Parent::direct(edge, false)); |
| 596 | 594 |
notifier(Arc()).add(arcs); |
| 597 | 595 |
return edge; |
| 598 | 596 |
} |
| 599 | 597 |
|
| 600 | 598 |
void clear() {
|
| 601 | 599 |
notifier(Arc()).clear(); |
| 602 | 600 |
notifier(Edge()).clear(); |
| 603 | 601 |
Parent::clear(); |
| 604 | 602 |
} |
| 605 | 603 |
|
| 606 | 604 |
void erase(const Edge& edge) {
|
| 607 | 605 |
std::vector<Arc> arcs; |
| 608 | 606 |
arcs.push_back(Parent::direct(edge, true)); |
| 609 | 607 |
arcs.push_back(Parent::direct(edge, false)); |
| 610 | 608 |
notifier(Arc()).erase(arcs); |
| 611 | 609 |
notifier(Edge()).erase(edge); |
| 612 | 610 |
Parent::erase(edge); |
| 613 | 611 |
} |
| 614 | 612 |
|
| 615 | 613 |
|
| 616 | 614 |
EdgeSetExtender() {
|
| 617 | 615 |
arc_notifier.setContainer(*this); |
| 618 | 616 |
edge_notifier.setContainer(*this); |
| 619 | 617 |
} |
| 620 | 618 |
|
| 621 | 619 |
~EdgeSetExtender() {
|
| 622 | 620 |
edge_notifier.clear(); |
| 623 | 621 |
arc_notifier.clear(); |
| 624 | 622 |
} |
| 625 | 623 |
|
| 626 | 624 |
}; |
| 627 | 625 |
|
| 628 | 626 |
} |
| 629 | 627 |
|
| 630 | 628 |
#endif |
| ... | ... |
@@ -26,458 +26,458 @@ |
| 26 | 26 |
///\file |
| 27 | 27 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
| 28 | 28 |
/// |
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
/// \brief Default traits class of Circulation class. |
| 32 | 32 |
/// |
| 33 | 33 |
/// Default traits class of Circulation class. |
| 34 | 34 |
/// \tparam GR Digraph type. |
| 35 | 35 |
/// \tparam LM Lower bound capacity map type. |
| 36 | 36 |
/// \tparam UM Upper bound capacity map type. |
| 37 | 37 |
/// \tparam DM Delta map type. |
| 38 | 38 |
template <typename GR, typename LM, |
| 39 | 39 |
typename UM, typename DM> |
| 40 | 40 |
struct CirculationDefaultTraits {
|
| 41 | 41 |
|
| 42 | 42 |
/// \brief The type of the digraph the algorithm runs on. |
| 43 | 43 |
typedef GR Digraph; |
| 44 | 44 |
|
| 45 | 45 |
/// \brief The type of the map that stores the circulation lower |
| 46 | 46 |
/// bound. |
| 47 | 47 |
/// |
| 48 | 48 |
/// The type of the map that stores the circulation lower bound. |
| 49 | 49 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 50 | 50 |
typedef LM LCapMap; |
| 51 | 51 |
|
| 52 | 52 |
/// \brief The type of the map that stores the circulation upper |
| 53 | 53 |
/// bound. |
| 54 | 54 |
/// |
| 55 | 55 |
/// The type of the map that stores the circulation upper bound. |
| 56 | 56 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 57 | 57 |
typedef UM UCapMap; |
| 58 | 58 |
|
| 59 | 59 |
/// \brief The type of the map that stores the lower bound for |
| 60 | 60 |
/// the supply of the nodes. |
| 61 | 61 |
/// |
| 62 | 62 |
/// The type of the map that stores the lower bound for the supply |
| 63 | 63 |
/// of the nodes. It must meet the \ref concepts::ReadMap "ReadMap" |
| 64 | 64 |
/// concept. |
| 65 | 65 |
typedef DM DeltaMap; |
| 66 | 66 |
|
| 67 | 67 |
/// \brief The type of the flow values. |
| 68 | 68 |
typedef typename DeltaMap::Value Value; |
| 69 | 69 |
|
| 70 | 70 |
/// \brief The type of the map that stores the flow values. |
| 71 | 71 |
/// |
| 72 | 72 |
/// The type of the map that stores the flow values. |
| 73 | 73 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 74 | 74 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 75 | 75 |
|
| 76 | 76 |
/// \brief Instantiates a FlowMap. |
| 77 | 77 |
/// |
| 78 | 78 |
/// This function instantiates a \ref FlowMap. |
| 79 | 79 |
/// \param digraph The digraph, to which we would like to define |
| 80 | 80 |
/// the flow map. |
| 81 | 81 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 82 | 82 |
return new FlowMap(digraph); |
| 83 | 83 |
} |
| 84 | 84 |
|
| 85 | 85 |
/// \brief The elevator type used by the algorithm. |
| 86 | 86 |
/// |
| 87 | 87 |
/// The elevator type used by the algorithm. |
| 88 | 88 |
/// |
| 89 | 89 |
/// \sa Elevator |
| 90 | 90 |
/// \sa LinkedElevator |
| 91 | 91 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
| 92 | 92 |
|
| 93 | 93 |
/// \brief Instantiates an Elevator. |
| 94 | 94 |
/// |
| 95 | 95 |
/// This function instantiates an \ref Elevator. |
| 96 | 96 |
/// \param digraph The digraph, to which we would like to define |
| 97 | 97 |
/// the elevator. |
| 98 | 98 |
/// \param max_level The maximum level of the elevator. |
| 99 | 99 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
| 100 | 100 |
return new Elevator(digraph, max_level); |
| 101 | 101 |
} |
| 102 | 102 |
|
| 103 | 103 |
/// \brief The tolerance used by the algorithm |
| 104 | 104 |
/// |
| 105 | 105 |
/// The tolerance used by the algorithm to handle inexact computation. |
| 106 | 106 |
typedef lemon::Tolerance<Value> Tolerance; |
| 107 | 107 |
|
| 108 | 108 |
}; |
| 109 | 109 |
|
| 110 | 110 |
/** |
| 111 | 111 |
\brief Push-relabel algorithm for the network circulation problem. |
| 112 | 112 |
|
| 113 | 113 |
\ingroup max_flow |
| 114 | 114 |
This class implements a push-relabel algorithm for the network |
| 115 | 115 |
circulation problem. |
| 116 | 116 |
It is to find a feasible circulation when lower and upper bounds |
| 117 | 117 |
are given for the flow values on the arcs and lower bounds |
| 118 | 118 |
are given for the supply values of the nodes. |
| 119 | 119 |
|
| 120 | 120 |
The exact formulation of this problem is the following. |
| 121 | 121 |
Let \f$G=(V,A)\f$ be a digraph, |
| 122 | 122 |
\f$lower, upper: A\rightarrow\mathbf{R}^+_0\f$,
|
| 123 | 123 |
\f$delta: V\rightarrow\mathbf{R}\f$. Find a feasible circulation
|
| 124 | 124 |
\f$f: A\rightarrow\mathbf{R}^+_0\f$ so that
|
| 125 | 125 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a)
|
| 126 | 126 |
\geq delta(v) \quad \forall v\in V, \f] |
| 127 | 127 |
\f[ lower(a)\leq f(a) \leq upper(a) \quad \forall a\in A. \f] |
| 128 | 128 |
\note \f$delta(v)\f$ specifies a lower bound for the supply of node |
| 129 | 129 |
\f$v\f$. It can be either positive or negative, however note that |
| 130 | 130 |
\f$\sum_{v\in V}delta(v)\f$ should be zero or negative in order to
|
| 131 | 131 |
have a feasible solution. |
| 132 | 132 |
|
| 133 | 133 |
\note A special case of this problem is when |
| 134 | 134 |
\f$\sum_{v\in V}delta(v) = 0\f$. Then the supply of each node \f$v\f$
|
| 135 | 135 |
will be \e equal \e to \f$delta(v)\f$, if a circulation can be found. |
| 136 | 136 |
Thus a feasible solution for the |
| 137 | 137 |
\ref min_cost_flow "minimum cost flow" problem can be calculated |
| 138 | 138 |
in this way. |
| 139 | 139 |
|
| 140 | 140 |
\tparam GR The type of the digraph the algorithm runs on. |
| 141 | 141 |
\tparam LM The type of the lower bound capacity map. The default |
| 142 | 142 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 143 | 143 |
\tparam UM The type of the upper bound capacity map. The default |
| 144 | 144 |
map type is \c LM. |
| 145 | 145 |
\tparam DM The type of the map that stores the lower bound |
| 146 | 146 |
for the supply of the nodes. The default map type is |
| 147 | 147 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
| 148 | 148 |
*/ |
| 149 | 149 |
#ifdef DOXYGEN |
| 150 | 150 |
template< typename GR, |
| 151 | 151 |
typename LM, |
| 152 | 152 |
typename UM, |
| 153 | 153 |
typename DM, |
| 154 | 154 |
typename TR > |
| 155 | 155 |
#else |
| 156 | 156 |
template< typename GR, |
| 157 | 157 |
typename LM = typename GR::template ArcMap<int>, |
| 158 | 158 |
typename UM = LM, |
| 159 | 159 |
typename DM = typename GR::template NodeMap<typename UM::Value>, |
| 160 | 160 |
typename TR = CirculationDefaultTraits<GR, LM, UM, DM> > |
| 161 | 161 |
#endif |
| 162 | 162 |
class Circulation {
|
| 163 | 163 |
public: |
| 164 | 164 |
|
| 165 | 165 |
///The \ref CirculationDefaultTraits "traits class" of the algorithm. |
| 166 | 166 |
typedef TR Traits; |
| 167 | 167 |
///The type of the digraph the algorithm runs on. |
| 168 | 168 |
typedef typename Traits::Digraph Digraph; |
| 169 | 169 |
///The type of the flow values. |
| 170 | 170 |
typedef typename Traits::Value Value; |
| 171 | 171 |
|
| 172 | 172 |
/// The type of the lower bound capacity map. |
| 173 | 173 |
typedef typename Traits::LCapMap LCapMap; |
| 174 | 174 |
/// The type of the upper bound capacity map. |
| 175 | 175 |
typedef typename Traits::UCapMap UCapMap; |
| 176 | 176 |
/// \brief The type of the map that stores the lower bound for |
| 177 | 177 |
/// the supply of the nodes. |
| 178 | 178 |
typedef typename Traits::DeltaMap DeltaMap; |
| 179 | 179 |
///The type of the flow map. |
| 180 | 180 |
typedef typename Traits::FlowMap FlowMap; |
| 181 | 181 |
|
| 182 | 182 |
///The type of the elevator. |
| 183 | 183 |
typedef typename Traits::Elevator Elevator; |
| 184 | 184 |
///The type of the tolerance. |
| 185 | 185 |
typedef typename Traits::Tolerance Tolerance; |
| 186 | 186 |
|
| 187 | 187 |
private: |
| 188 | 188 |
|
| 189 | 189 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 190 | 190 |
|
| 191 | 191 |
const Digraph &_g; |
| 192 | 192 |
int _node_num; |
| 193 | 193 |
|
| 194 | 194 |
const LCapMap *_lo; |
| 195 | 195 |
const UCapMap *_up; |
| 196 | 196 |
const DeltaMap *_delta; |
| 197 | 197 |
|
| 198 | 198 |
FlowMap *_flow; |
| 199 | 199 |
bool _local_flow; |
| 200 | 200 |
|
| 201 | 201 |
Elevator* _level; |
| 202 | 202 |
bool _local_level; |
| 203 | 203 |
|
| 204 | 204 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
| 205 | 205 |
ExcessMap* _excess; |
| 206 | 206 |
|
| 207 | 207 |
Tolerance _tol; |
| 208 | 208 |
int _el; |
| 209 | 209 |
|
| 210 | 210 |
public: |
| 211 | 211 |
|
| 212 | 212 |
typedef Circulation Create; |
| 213 | 213 |
|
| 214 | 214 |
///\name Named Template Parameters |
| 215 | 215 |
|
| 216 | 216 |
///@{
|
| 217 | 217 |
|
| 218 |
template <typename |
|
| 218 |
template <typename T> |
|
| 219 | 219 |
struct SetFlowMapTraits : public Traits {
|
| 220 |
typedef |
|
| 220 |
typedef T FlowMap; |
|
| 221 | 221 |
static FlowMap *createFlowMap(const Digraph&) {
|
| 222 | 222 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
| 223 | 223 |
return 0; // ignore warnings |
| 224 | 224 |
} |
| 225 | 225 |
}; |
| 226 | 226 |
|
| 227 | 227 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 228 | 228 |
/// FlowMap type |
| 229 | 229 |
/// |
| 230 | 230 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
| 231 | 231 |
/// type. |
| 232 |
template <typename |
|
| 232 |
template <typename T> |
|
| 233 | 233 |
struct SetFlowMap |
| 234 | 234 |
: public Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
| 235 |
SetFlowMapTraits< |
|
| 235 |
SetFlowMapTraits<T> > {
|
|
| 236 | 236 |
typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
| 237 |
SetFlowMapTraits< |
|
| 237 |
SetFlowMapTraits<T> > Create; |
|
| 238 | 238 |
}; |
| 239 | 239 |
|
| 240 |
template <typename |
|
| 240 |
template <typename T> |
|
| 241 | 241 |
struct SetElevatorTraits : public Traits {
|
| 242 |
typedef |
|
| 242 |
typedef T Elevator; |
|
| 243 | 243 |
static Elevator *createElevator(const Digraph&, int) {
|
| 244 | 244 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
| 245 | 245 |
return 0; // ignore warnings |
| 246 | 246 |
} |
| 247 | 247 |
}; |
| 248 | 248 |
|
| 249 | 249 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 250 | 250 |
/// Elevator type |
| 251 | 251 |
/// |
| 252 | 252 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 253 | 253 |
/// type. If this named parameter is used, then an external |
| 254 | 254 |
/// elevator object must be passed to the algorithm using the |
| 255 | 255 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
| 256 | 256 |
/// \ref run() or \ref init(). |
| 257 | 257 |
/// \sa SetStandardElevator |
| 258 |
template <typename |
|
| 258 |
template <typename T> |
|
| 259 | 259 |
struct SetElevator |
| 260 | 260 |
: public Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
| 261 |
SetElevatorTraits< |
|
| 261 |
SetElevatorTraits<T> > {
|
|
| 262 | 262 |
typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
| 263 |
SetElevatorTraits< |
|
| 263 |
SetElevatorTraits<T> > Create; |
|
| 264 | 264 |
}; |
| 265 | 265 |
|
| 266 |
template <typename |
|
| 266 |
template <typename T> |
|
| 267 | 267 |
struct SetStandardElevatorTraits : public Traits {
|
| 268 |
typedef |
|
| 268 |
typedef T Elevator; |
|
| 269 | 269 |
static Elevator *createElevator(const Digraph& digraph, int max_level) {
|
| 270 | 270 |
return new Elevator(digraph, max_level); |
| 271 | 271 |
} |
| 272 | 272 |
}; |
| 273 | 273 |
|
| 274 | 274 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 275 | 275 |
/// Elevator type with automatic allocation |
| 276 | 276 |
/// |
| 277 | 277 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 278 | 278 |
/// type with automatic allocation. |
| 279 | 279 |
/// The Elevator should have standard constructor interface to be |
| 280 | 280 |
/// able to automatically created by the algorithm (i.e. the |
| 281 | 281 |
/// digraph and the maximum level should be passed to it). |
| 282 | 282 |
/// However an external elevator object could also be passed to the |
| 283 | 283 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
| 284 | 284 |
/// before calling \ref run() or \ref init(). |
| 285 | 285 |
/// \sa SetElevator |
| 286 |
template <typename |
|
| 286 |
template <typename T> |
|
| 287 | 287 |
struct SetStandardElevator |
| 288 | 288 |
: public Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
| 289 |
SetStandardElevatorTraits< |
|
| 289 |
SetStandardElevatorTraits<T> > {
|
|
| 290 | 290 |
typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap, |
| 291 |
SetStandardElevatorTraits< |
|
| 291 |
SetStandardElevatorTraits<T> > Create; |
|
| 292 | 292 |
}; |
| 293 | 293 |
|
| 294 | 294 |
/// @} |
| 295 | 295 |
|
| 296 | 296 |
protected: |
| 297 | 297 |
|
| 298 | 298 |
Circulation() {}
|
| 299 | 299 |
|
| 300 | 300 |
public: |
| 301 | 301 |
|
| 302 | 302 |
/// The constructor of the class. |
| 303 | 303 |
|
| 304 | 304 |
/// The constructor of the class. |
| 305 | 305 |
/// \param g The digraph the algorithm runs on. |
| 306 | 306 |
/// \param lo The lower bound capacity of the arcs. |
| 307 | 307 |
/// \param up The upper bound capacity of the arcs. |
| 308 | 308 |
/// \param delta The lower bound for the supply of the nodes. |
| 309 | 309 |
Circulation(const Digraph &g,const LCapMap &lo, |
| 310 | 310 |
const UCapMap &up,const DeltaMap &delta) |
| 311 | 311 |
: _g(g), _node_num(), |
| 312 | 312 |
_lo(&lo),_up(&up),_delta(&delta),_flow(0),_local_flow(false), |
| 313 | 313 |
_level(0), _local_level(false), _excess(0), _el() {}
|
| 314 | 314 |
|
| 315 | 315 |
/// Destructor. |
| 316 | 316 |
~Circulation() {
|
| 317 | 317 |
destroyStructures(); |
| 318 | 318 |
} |
| 319 | 319 |
|
| 320 | 320 |
|
| 321 | 321 |
private: |
| 322 | 322 |
|
| 323 | 323 |
void createStructures() {
|
| 324 | 324 |
_node_num = _el = countNodes(_g); |
| 325 | 325 |
|
| 326 | 326 |
if (!_flow) {
|
| 327 | 327 |
_flow = Traits::createFlowMap(_g); |
| 328 | 328 |
_local_flow = true; |
| 329 | 329 |
} |
| 330 | 330 |
if (!_level) {
|
| 331 | 331 |
_level = Traits::createElevator(_g, _node_num); |
| 332 | 332 |
_local_level = true; |
| 333 | 333 |
} |
| 334 | 334 |
if (!_excess) {
|
| 335 | 335 |
_excess = new ExcessMap(_g); |
| 336 | 336 |
} |
| 337 | 337 |
} |
| 338 | 338 |
|
| 339 | 339 |
void destroyStructures() {
|
| 340 | 340 |
if (_local_flow) {
|
| 341 | 341 |
delete _flow; |
| 342 | 342 |
} |
| 343 | 343 |
if (_local_level) {
|
| 344 | 344 |
delete _level; |
| 345 | 345 |
} |
| 346 | 346 |
if (_excess) {
|
| 347 | 347 |
delete _excess; |
| 348 | 348 |
} |
| 349 | 349 |
} |
| 350 | 350 |
|
| 351 | 351 |
public: |
| 352 | 352 |
|
| 353 | 353 |
/// Sets the lower bound capacity map. |
| 354 | 354 |
|
| 355 | 355 |
/// Sets the lower bound capacity map. |
| 356 | 356 |
/// \return <tt>(*this)</tt> |
| 357 | 357 |
Circulation& lowerCapMap(const LCapMap& map) {
|
| 358 | 358 |
_lo = ↦ |
| 359 | 359 |
return *this; |
| 360 | 360 |
} |
| 361 | 361 |
|
| 362 | 362 |
/// Sets the upper bound capacity map. |
| 363 | 363 |
|
| 364 | 364 |
/// Sets the upper bound capacity map. |
| 365 | 365 |
/// \return <tt>(*this)</tt> |
| 366 | 366 |
Circulation& upperCapMap(const LCapMap& map) {
|
| 367 | 367 |
_up = ↦ |
| 368 | 368 |
return *this; |
| 369 | 369 |
} |
| 370 | 370 |
|
| 371 | 371 |
/// Sets the lower bound map for the supply of the nodes. |
| 372 | 372 |
|
| 373 | 373 |
/// Sets the lower bound map for the supply of the nodes. |
| 374 | 374 |
/// \return <tt>(*this)</tt> |
| 375 | 375 |
Circulation& deltaMap(const DeltaMap& map) {
|
| 376 | 376 |
_delta = ↦ |
| 377 | 377 |
return *this; |
| 378 | 378 |
} |
| 379 | 379 |
|
| 380 | 380 |
/// \brief Sets the flow map. |
| 381 | 381 |
/// |
| 382 | 382 |
/// Sets the flow map. |
| 383 | 383 |
/// If you don't use this function before calling \ref run() or |
| 384 | 384 |
/// \ref init(), an instance will be allocated automatically. |
| 385 | 385 |
/// The destructor deallocates this automatically allocated map, |
| 386 | 386 |
/// of course. |
| 387 | 387 |
/// \return <tt>(*this)</tt> |
| 388 | 388 |
Circulation& flowMap(FlowMap& map) {
|
| 389 | 389 |
if (_local_flow) {
|
| 390 | 390 |
delete _flow; |
| 391 | 391 |
_local_flow = false; |
| 392 | 392 |
} |
| 393 | 393 |
_flow = ↦ |
| 394 | 394 |
return *this; |
| 395 | 395 |
} |
| 396 | 396 |
|
| 397 | 397 |
/// \brief Sets the elevator used by algorithm. |
| 398 | 398 |
/// |
| 399 | 399 |
/// Sets the elevator used by algorithm. |
| 400 | 400 |
/// If you don't use this function before calling \ref run() or |
| 401 | 401 |
/// \ref init(), an instance will be allocated automatically. |
| 402 | 402 |
/// The destructor deallocates this automatically allocated elevator, |
| 403 | 403 |
/// of course. |
| 404 | 404 |
/// \return <tt>(*this)</tt> |
| 405 | 405 |
Circulation& elevator(Elevator& elevator) {
|
| 406 | 406 |
if (_local_level) {
|
| 407 | 407 |
delete _level; |
| 408 | 408 |
_local_level = false; |
| 409 | 409 |
} |
| 410 | 410 |
_level = &elevator; |
| 411 | 411 |
return *this; |
| 412 | 412 |
} |
| 413 | 413 |
|
| 414 | 414 |
/// \brief Returns a const reference to the elevator. |
| 415 | 415 |
/// |
| 416 | 416 |
/// Returns a const reference to the elevator. |
| 417 | 417 |
/// |
| 418 | 418 |
/// \pre Either \ref run() or \ref init() must be called before |
| 419 | 419 |
/// using this function. |
| 420 | 420 |
const Elevator& elevator() const {
|
| 421 | 421 |
return *_level; |
| 422 | 422 |
} |
| 423 | 423 |
|
| 424 | 424 |
/// \brief Sets the tolerance used by algorithm. |
| 425 | 425 |
/// |
| 426 | 426 |
/// Sets the tolerance used by algorithm. |
| 427 | 427 |
Circulation& tolerance(const Tolerance& tolerance) const {
|
| 428 | 428 |
_tol = tolerance; |
| 429 | 429 |
return *this; |
| 430 | 430 |
} |
| 431 | 431 |
|
| 432 | 432 |
/// \brief Returns a const reference to the tolerance. |
| 433 | 433 |
/// |
| 434 | 434 |
/// Returns a const reference to the tolerance. |
| 435 | 435 |
const Tolerance& tolerance() const {
|
| 436 | 436 |
return tolerance; |
| 437 | 437 |
} |
| 438 | 438 |
|
| 439 | 439 |
/// \name Execution Control |
| 440 | 440 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
| 441 | 441 |
/// If you need more control on the initial solution or the execution, |
| 442 | 442 |
/// first you have to call one of the \ref init() functions, then |
| 443 | 443 |
/// the \ref start() function. |
| 444 | 444 |
|
| 445 | 445 |
///@{
|
| 446 | 446 |
|
| 447 | 447 |
/// Initializes the internal data structures. |
| 448 | 448 |
|
| 449 | 449 |
/// Initializes the internal data structures and sets all flow values |
| 450 | 450 |
/// to the lower bound. |
| 451 | 451 |
void init() |
| 452 | 452 |
{
|
| 453 | 453 |
createStructures(); |
| 454 | 454 |
|
| 455 | 455 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| 456 | 456 |
_excess->set(n, (*_delta)[n]); |
| 457 | 457 |
} |
| 458 | 458 |
|
| 459 | 459 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 460 | 460 |
_flow->set(e, (*_lo)[e]); |
| 461 | 461 |
_excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_flow)[e]); |
| 462 | 462 |
_excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_flow)[e]); |
| 463 | 463 |
} |
| 464 | 464 |
|
| 465 | 465 |
// global relabeling tested, but in general case it provides |
| 466 | 466 |
// worse performance for random digraphs |
| 467 | 467 |
_level->initStart(); |
| 468 | 468 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 469 | 469 |
_level->initAddItem(n); |
| 470 | 470 |
_level->initFinish(); |
| 471 | 471 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 472 | 472 |
if(_tol.positive((*_excess)[n])) |
| 473 | 473 |
_level->activate(n); |
| 474 | 474 |
} |
| 475 | 475 |
|
| 476 | 476 |
/// Initializes the internal data structures using a greedy approach. |
| 477 | 477 |
|
| 478 | 478 |
/// Initializes the internal data structures using a greedy approach |
| 479 | 479 |
/// to construct the initial solution. |
| 480 | 480 |
void greedyInit() |
| 481 | 481 |
{
|
| 482 | 482 |
createStructures(); |
| 483 | 483 |
|
| ... | ... |
@@ -493,261 +493,261 @@ |
| 493 | 493 |
} else if (_tol.positive((*_excess)[_g.target(e)] + (*_lo)[e])) {
|
| 494 | 494 |
_flow->set(e, (*_lo)[e]); |
| 495 | 495 |
_excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_lo)[e]); |
| 496 | 496 |
_excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_lo)[e]); |
| 497 | 497 |
} else {
|
| 498 | 498 |
Value fc = -(*_excess)[_g.target(e)]; |
| 499 | 499 |
_flow->set(e, fc); |
| 500 | 500 |
_excess->set(_g.target(e), 0); |
| 501 | 501 |
_excess->set(_g.source(e), (*_excess)[_g.source(e)] - fc); |
| 502 | 502 |
} |
| 503 | 503 |
} |
| 504 | 504 |
|
| 505 | 505 |
_level->initStart(); |
| 506 | 506 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 507 | 507 |
_level->initAddItem(n); |
| 508 | 508 |
_level->initFinish(); |
| 509 | 509 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 510 | 510 |
if(_tol.positive((*_excess)[n])) |
| 511 | 511 |
_level->activate(n); |
| 512 | 512 |
} |
| 513 | 513 |
|
| 514 | 514 |
///Executes the algorithm |
| 515 | 515 |
|
| 516 | 516 |
///This function executes the algorithm. |
| 517 | 517 |
/// |
| 518 | 518 |
///\return \c true if a feasible circulation is found. |
| 519 | 519 |
/// |
| 520 | 520 |
///\sa barrier() |
| 521 | 521 |
///\sa barrierMap() |
| 522 | 522 |
bool start() |
| 523 | 523 |
{
|
| 524 | 524 |
|
| 525 | 525 |
Node act; |
| 526 | 526 |
Node bact=INVALID; |
| 527 | 527 |
Node last_activated=INVALID; |
| 528 | 528 |
while((act=_level->highestActive())!=INVALID) {
|
| 529 | 529 |
int actlevel=(*_level)[act]; |
| 530 | 530 |
int mlevel=_node_num; |
| 531 | 531 |
Value exc=(*_excess)[act]; |
| 532 | 532 |
|
| 533 | 533 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) {
|
| 534 | 534 |
Node v = _g.target(e); |
| 535 | 535 |
Value fc=(*_up)[e]-(*_flow)[e]; |
| 536 | 536 |
if(!_tol.positive(fc)) continue; |
| 537 | 537 |
if((*_level)[v]<actlevel) {
|
| 538 | 538 |
if(!_tol.less(fc, exc)) {
|
| 539 | 539 |
_flow->set(e, (*_flow)[e] + exc); |
| 540 | 540 |
_excess->set(v, (*_excess)[v] + exc); |
| 541 | 541 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 542 | 542 |
_level->activate(v); |
| 543 | 543 |
_excess->set(act,0); |
| 544 | 544 |
_level->deactivate(act); |
| 545 | 545 |
goto next_l; |
| 546 | 546 |
} |
| 547 | 547 |
else {
|
| 548 | 548 |
_flow->set(e, (*_up)[e]); |
| 549 | 549 |
_excess->set(v, (*_excess)[v] + fc); |
| 550 | 550 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 551 | 551 |
_level->activate(v); |
| 552 | 552 |
exc-=fc; |
| 553 | 553 |
} |
| 554 | 554 |
} |
| 555 | 555 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
| 556 | 556 |
} |
| 557 | 557 |
for(InArcIt e(_g,act);e!=INVALID; ++e) {
|
| 558 | 558 |
Node v = _g.source(e); |
| 559 | 559 |
Value fc=(*_flow)[e]-(*_lo)[e]; |
| 560 | 560 |
if(!_tol.positive(fc)) continue; |
| 561 | 561 |
if((*_level)[v]<actlevel) {
|
| 562 | 562 |
if(!_tol.less(fc, exc)) {
|
| 563 | 563 |
_flow->set(e, (*_flow)[e] - exc); |
| 564 | 564 |
_excess->set(v, (*_excess)[v] + exc); |
| 565 | 565 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 566 | 566 |
_level->activate(v); |
| 567 | 567 |
_excess->set(act,0); |
| 568 | 568 |
_level->deactivate(act); |
| 569 | 569 |
goto next_l; |
| 570 | 570 |
} |
| 571 | 571 |
else {
|
| 572 | 572 |
_flow->set(e, (*_lo)[e]); |
| 573 | 573 |
_excess->set(v, (*_excess)[v] + fc); |
| 574 | 574 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 575 | 575 |
_level->activate(v); |
| 576 | 576 |
exc-=fc; |
| 577 | 577 |
} |
| 578 | 578 |
} |
| 579 | 579 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
| 580 | 580 |
} |
| 581 | 581 |
|
| 582 | 582 |
_excess->set(act, exc); |
| 583 | 583 |
if(!_tol.positive(exc)) _level->deactivate(act); |
| 584 | 584 |
else if(mlevel==_node_num) {
|
| 585 | 585 |
_level->liftHighestActiveToTop(); |
| 586 | 586 |
_el = _node_num; |
| 587 | 587 |
return false; |
| 588 | 588 |
} |
| 589 | 589 |
else {
|
| 590 | 590 |
_level->liftHighestActive(mlevel+1); |
| 591 | 591 |
if(_level->onLevel(actlevel)==0) {
|
| 592 | 592 |
_el = actlevel; |
| 593 | 593 |
return false; |
| 594 | 594 |
} |
| 595 | 595 |
} |
| 596 | 596 |
next_l: |
| 597 | 597 |
; |
| 598 | 598 |
} |
| 599 | 599 |
return true; |
| 600 | 600 |
} |
| 601 | 601 |
|
| 602 | 602 |
/// Runs the algorithm. |
| 603 | 603 |
|
| 604 | 604 |
/// This function runs the algorithm. |
| 605 | 605 |
/// |
| 606 | 606 |
/// \return \c true if a feasible circulation is found. |
| 607 | 607 |
/// |
| 608 | 608 |
/// \note Apart from the return value, c.run() is just a shortcut of |
| 609 | 609 |
/// the following code. |
| 610 | 610 |
/// \code |
| 611 | 611 |
/// c.greedyInit(); |
| 612 | 612 |
/// c.start(); |
| 613 | 613 |
/// \endcode |
| 614 | 614 |
bool run() {
|
| 615 | 615 |
greedyInit(); |
| 616 | 616 |
return start(); |
| 617 | 617 |
} |
| 618 | 618 |
|
| 619 | 619 |
/// @} |
| 620 | 620 |
|
| 621 | 621 |
/// \name Query Functions |
| 622 | 622 |
/// The results of the circulation algorithm can be obtained using |
| 623 | 623 |
/// these functions.\n |
| 624 | 624 |
/// Either \ref run() or \ref start() should be called before |
| 625 | 625 |
/// using them. |
| 626 | 626 |
|
| 627 | 627 |
///@{
|
| 628 | 628 |
|
| 629 | 629 |
/// \brief Returns the flow on the given arc. |
| 630 | 630 |
/// |
| 631 | 631 |
/// Returns the flow on the given arc. |
| 632 | 632 |
/// |
| 633 | 633 |
/// \pre Either \ref run() or \ref init() must be called before |
| 634 | 634 |
/// using this function. |
| 635 | 635 |
Value flow(const Arc& arc) const {
|
| 636 | 636 |
return (*_flow)[arc]; |
| 637 | 637 |
} |
| 638 | 638 |
|
| 639 | 639 |
/// \brief Returns a const reference to the flow map. |
| 640 | 640 |
/// |
| 641 | 641 |
/// Returns a const reference to the arc map storing the found flow. |
| 642 | 642 |
/// |
| 643 | 643 |
/// \pre Either \ref run() or \ref init() must be called before |
| 644 | 644 |
/// using this function. |
| 645 | 645 |
const FlowMap& flowMap() const {
|
| 646 | 646 |
return *_flow; |
| 647 | 647 |
} |
| 648 | 648 |
|
| 649 | 649 |
/** |
| 650 | 650 |
\brief Returns \c true if the given node is in a barrier. |
| 651 | 651 |
|
| 652 | 652 |
Barrier is a set \e B of nodes for which |
| 653 | 653 |
|
| 654 | 654 |
\f[ \sum_{a\in\delta_{out}(B)} upper(a) -
|
| 655 | 655 |
\sum_{a\in\delta_{in}(B)} lower(a) < \sum_{v\in B}delta(v) \f]
|
| 656 | 656 |
|
| 657 | 657 |
holds. The existence of a set with this property prooves that a |
| 658 | 658 |
feasible circualtion cannot exist. |
| 659 | 659 |
|
| 660 | 660 |
This function returns \c true if the given node is in the found |
| 661 | 661 |
barrier. If a feasible circulation is found, the function |
| 662 | 662 |
gives back \c false for every node. |
| 663 | 663 |
|
| 664 | 664 |
\pre Either \ref run() or \ref init() must be called before |
| 665 | 665 |
using this function. |
| 666 | 666 |
|
| 667 | 667 |
\sa barrierMap() |
| 668 | 668 |
\sa checkBarrier() |
| 669 | 669 |
*/ |
| 670 | 670 |
bool barrier(const Node& node) const |
| 671 | 671 |
{
|
| 672 | 672 |
return (*_level)[node] >= _el; |
| 673 | 673 |
} |
| 674 | 674 |
|
| 675 | 675 |
/// \brief Gives back a barrier. |
| 676 | 676 |
/// |
| 677 | 677 |
/// This function sets \c bar to the characteristic vector of the |
| 678 | 678 |
/// found barrier. \c bar should be a \ref concepts::WriteMap "writable" |
| 679 | 679 |
/// node map with \c bool (or convertible) value type. |
| 680 | 680 |
/// |
| 681 | 681 |
/// If a feasible circulation is found, the function gives back an |
| 682 | 682 |
/// empty set, so \c bar[v] will be \c false for all nodes \c v. |
| 683 | 683 |
/// |
| 684 | 684 |
/// \note This function calls \ref barrier() for each node, |
| 685 |
/// so it runs in |
|
| 685 |
/// so it runs in O(n) time. |
|
| 686 | 686 |
/// |
| 687 | 687 |
/// \pre Either \ref run() or \ref init() must be called before |
| 688 | 688 |
/// using this function. |
| 689 | 689 |
/// |
| 690 | 690 |
/// \sa barrier() |
| 691 | 691 |
/// \sa checkBarrier() |
| 692 | 692 |
template<class BarrierMap> |
| 693 | 693 |
void barrierMap(BarrierMap &bar) const |
| 694 | 694 |
{
|
| 695 | 695 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 696 | 696 |
bar.set(n, (*_level)[n] >= _el); |
| 697 | 697 |
} |
| 698 | 698 |
|
| 699 | 699 |
/// @} |
| 700 | 700 |
|
| 701 | 701 |
/// \name Checker Functions |
| 702 | 702 |
/// The feasibility of the results can be checked using |
| 703 | 703 |
/// these functions.\n |
| 704 | 704 |
/// Either \ref run() or \ref start() should be called before |
| 705 | 705 |
/// using them. |
| 706 | 706 |
|
| 707 | 707 |
///@{
|
| 708 | 708 |
|
| 709 | 709 |
///Check if the found flow is a feasible circulation |
| 710 | 710 |
|
| 711 | 711 |
///Check if the found flow is a feasible circulation, |
| 712 | 712 |
/// |
| 713 | 713 |
bool checkFlow() const {
|
| 714 | 714 |
for(ArcIt e(_g);e!=INVALID;++e) |
| 715 | 715 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
| 716 | 716 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 717 | 717 |
{
|
| 718 | 718 |
Value dif=-(*_delta)[n]; |
| 719 | 719 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
| 720 | 720 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
| 721 | 721 |
if(_tol.negative(dif)) return false; |
| 722 | 722 |
} |
| 723 | 723 |
return true; |
| 724 | 724 |
} |
| 725 | 725 |
|
| 726 | 726 |
///Check whether or not the last execution provides a barrier |
| 727 | 727 |
|
| 728 | 728 |
///Check whether or not the last execution provides a barrier. |
| 729 | 729 |
///\sa barrier() |
| 730 | 730 |
///\sa barrierMap() |
| 731 | 731 |
bool checkBarrier() const |
| 732 | 732 |
{
|
| 733 | 733 |
Value delta=0; |
| 734 | 734 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 735 | 735 |
if(barrier(n)) |
| 736 | 736 |
delta-=(*_delta)[n]; |
| 737 | 737 |
for(ArcIt e(_g);e!=INVALID;++e) |
| 738 | 738 |
{
|
| 739 | 739 |
Node s=_g.source(e); |
| 740 | 740 |
Node t=_g.target(e); |
| 741 | 741 |
if(barrier(s)&&!barrier(t)) delta+=(*_up)[e]; |
| 742 | 742 |
else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e]; |
| 743 | 743 |
} |
| 744 | 744 |
return _tol.negative(delta); |
| 745 | 745 |
} |
| 746 | 746 |
|
| 747 | 747 |
/// @} |
| 748 | 748 |
|
| 749 | 749 |
}; |
| 750 | 750 |
|
| 751 | 751 |
} |
| 752 | 752 |
|
| 753 | 753 |
#endif |
| ... | ... |
@@ -412,340 +412,352 @@ |
| 412 | 412 |
/// @warning The default constructor sets the iterator |
| 413 | 413 |
/// to an undefined value. |
| 414 | 414 |
OutArcIt() { }
|
| 415 | 415 |
/// Copy constructor. |
| 416 | 416 |
|
| 417 | 417 |
/// Copy constructor. |
| 418 | 418 |
/// |
| 419 | 419 |
OutArcIt(const OutArcIt& e) : Arc(e) { }
|
| 420 | 420 |
/// Initialize the iterator to be invalid. |
| 421 | 421 |
|
| 422 | 422 |
/// Initialize the iterator to be invalid. |
| 423 | 423 |
/// |
| 424 | 424 |
OutArcIt(Invalid) { }
|
| 425 | 425 |
/// This constructor sets the iterator to the first outgoing arc. |
| 426 | 426 |
|
| 427 | 427 |
/// This constructor sets the iterator to the first outgoing arc of |
| 428 | 428 |
/// the node. |
| 429 | 429 |
///@param n the node |
| 430 | 430 |
///@param g the graph |
| 431 | 431 |
OutArcIt(const Graph& n, const Node& g) {
|
| 432 | 432 |
ignore_unused_variable_warning(n); |
| 433 | 433 |
ignore_unused_variable_warning(g); |
| 434 | 434 |
} |
| 435 | 435 |
/// Arc -> OutArcIt conversion |
| 436 | 436 |
|
| 437 | 437 |
/// Sets the iterator to the value of the trivial iterator. |
| 438 | 438 |
/// This feature necessitates that each time we |
| 439 | 439 |
/// iterate the arc-set, the iteration order is the same. |
| 440 | 440 |
OutArcIt(const Graph&, const Arc&) { }
|
| 441 | 441 |
///Next outgoing arc |
| 442 | 442 |
|
| 443 | 443 |
/// Assign the iterator to the next |
| 444 | 444 |
/// outgoing arc of the corresponding node. |
| 445 | 445 |
OutArcIt& operator++() { return *this; }
|
| 446 | 446 |
}; |
| 447 | 447 |
|
| 448 | 448 |
/// This iterator goes trough the incoming directed arcs of a node. |
| 449 | 449 |
|
| 450 | 450 |
/// This iterator goes trough the \e incoming arcs of a certain node |
| 451 | 451 |
/// of a graph. |
| 452 | 452 |
/// Its usage is quite simple, for example you can count the number |
| 453 | 453 |
/// of outgoing arcs of a node \c n |
| 454 | 454 |
/// in graph \c g of type \c Graph as follows. |
| 455 | 455 |
///\code |
| 456 | 456 |
/// int count=0; |
| 457 | 457 |
/// for(Graph::InArcIt e(g, n); e!=INVALID; ++e) ++count; |
| 458 | 458 |
///\endcode |
| 459 | 459 |
|
| 460 | 460 |
class InArcIt : public Arc {
|
| 461 | 461 |
public: |
| 462 | 462 |
/// Default constructor |
| 463 | 463 |
|
| 464 | 464 |
/// @warning The default constructor sets the iterator |
| 465 | 465 |
/// to an undefined value. |
| 466 | 466 |
InArcIt() { }
|
| 467 | 467 |
/// Copy constructor. |
| 468 | 468 |
|
| 469 | 469 |
/// Copy constructor. |
| 470 | 470 |
/// |
| 471 | 471 |
InArcIt(const InArcIt& e) : Arc(e) { }
|
| 472 | 472 |
/// Initialize the iterator to be invalid. |
| 473 | 473 |
|
| 474 | 474 |
/// Initialize the iterator to be invalid. |
| 475 | 475 |
/// |
| 476 | 476 |
InArcIt(Invalid) { }
|
| 477 | 477 |
/// This constructor sets the iterator to first incoming arc. |
| 478 | 478 |
|
| 479 | 479 |
/// This constructor set the iterator to the first incoming arc of |
| 480 | 480 |
/// the node. |
| 481 | 481 |
///@param n the node |
| 482 | 482 |
///@param g the graph |
| 483 | 483 |
InArcIt(const Graph& g, const Node& n) {
|
| 484 | 484 |
ignore_unused_variable_warning(n); |
| 485 | 485 |
ignore_unused_variable_warning(g); |
| 486 | 486 |
} |
| 487 | 487 |
/// Arc -> InArcIt conversion |
| 488 | 488 |
|
| 489 | 489 |
/// Sets the iterator to the value of the trivial iterator \c e. |
| 490 | 490 |
/// This feature necessitates that each time we |
| 491 | 491 |
/// iterate the arc-set, the iteration order is the same. |
| 492 | 492 |
InArcIt(const Graph&, const Arc&) { }
|
| 493 | 493 |
/// Next incoming arc |
| 494 | 494 |
|
| 495 | 495 |
/// Assign the iterator to the next inarc of the corresponding node. |
| 496 | 496 |
/// |
| 497 | 497 |
InArcIt& operator++() { return *this; }
|
| 498 | 498 |
}; |
| 499 | 499 |
|
| 500 | 500 |
/// \brief Read write map of the nodes to type \c T. |
| 501 | 501 |
/// |
| 502 | 502 |
/// ReadWrite map of the nodes to type \c T. |
| 503 | 503 |
/// \sa Reference |
| 504 | 504 |
template<class T> |
| 505 | 505 |
class NodeMap : public ReadWriteMap< Node, T > |
| 506 | 506 |
{
|
| 507 | 507 |
public: |
| 508 | 508 |
|
| 509 | 509 |
///\e |
| 510 | 510 |
NodeMap(const Graph&) { }
|
| 511 | 511 |
///\e |
| 512 | 512 |
NodeMap(const Graph&, T) { }
|
| 513 | 513 |
|
| 514 | 514 |
private: |
| 515 | 515 |
///Copy constructor |
| 516 | 516 |
NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
|
| 517 | 517 |
///Assignment operator |
| 518 | 518 |
template <typename CMap> |
| 519 | 519 |
NodeMap& operator=(const CMap&) {
|
| 520 | 520 |
checkConcept<ReadMap<Node, T>, CMap>(); |
| 521 | 521 |
return *this; |
| 522 | 522 |
} |
| 523 | 523 |
}; |
| 524 | 524 |
|
| 525 | 525 |
/// \brief Read write map of the directed arcs to type \c T. |
| 526 | 526 |
/// |
| 527 | 527 |
/// Reference map of the directed arcs to type \c T. |
| 528 | 528 |
/// \sa Reference |
| 529 | 529 |
template<class T> |
| 530 | 530 |
class ArcMap : public ReadWriteMap<Arc,T> |
| 531 | 531 |
{
|
| 532 | 532 |
public: |
| 533 | 533 |
|
| 534 | 534 |
///\e |
| 535 | 535 |
ArcMap(const Graph&) { }
|
| 536 | 536 |
///\e |
| 537 | 537 |
ArcMap(const Graph&, T) { }
|
| 538 | 538 |
private: |
| 539 | 539 |
///Copy constructor |
| 540 | 540 |
ArcMap(const ArcMap& em) : ReadWriteMap<Arc,T>(em) { }
|
| 541 | 541 |
///Assignment operator |
| 542 | 542 |
template <typename CMap> |
| 543 | 543 |
ArcMap& operator=(const CMap&) {
|
| 544 | 544 |
checkConcept<ReadMap<Arc, T>, CMap>(); |
| 545 | 545 |
return *this; |
| 546 | 546 |
} |
| 547 | 547 |
}; |
| 548 | 548 |
|
| 549 | 549 |
/// Read write map of the edges to type \c T. |
| 550 | 550 |
|
| 551 | 551 |
/// Reference map of the arcs to type \c T. |
| 552 | 552 |
/// \sa Reference |
| 553 | 553 |
template<class T> |
| 554 | 554 |
class EdgeMap : public ReadWriteMap<Edge,T> |
| 555 | 555 |
{
|
| 556 | 556 |
public: |
| 557 | 557 |
|
| 558 | 558 |
///\e |
| 559 | 559 |
EdgeMap(const Graph&) { }
|
| 560 | 560 |
///\e |
| 561 | 561 |
EdgeMap(const Graph&, T) { }
|
| 562 | 562 |
private: |
| 563 | 563 |
///Copy constructor |
| 564 | 564 |
EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) {}
|
| 565 | 565 |
///Assignment operator |
| 566 | 566 |
template <typename CMap> |
| 567 | 567 |
EdgeMap& operator=(const CMap&) {
|
| 568 | 568 |
checkConcept<ReadMap<Edge, T>, CMap>(); |
| 569 | 569 |
return *this; |
| 570 | 570 |
} |
| 571 | 571 |
}; |
| 572 | 572 |
|
| 573 | 573 |
/// \brief Direct the given edge. |
| 574 | 574 |
/// |
| 575 | 575 |
/// Direct the given edge. The returned arc source |
| 576 | 576 |
/// will be the given node. |
| 577 | 577 |
Arc direct(const Edge&, const Node&) const {
|
| 578 | 578 |
return INVALID; |
| 579 | 579 |
} |
| 580 | 580 |
|
| 581 | 581 |
/// \brief Direct the given edge. |
| 582 | 582 |
/// |
| 583 | 583 |
/// Direct the given edge. The returned arc |
| 584 | 584 |
/// represents the given edge and the direction comes |
| 585 | 585 |
/// from the bool parameter. The source of the edge and |
| 586 | 586 |
/// the directed arc is the same when the given bool is true. |
| 587 | 587 |
Arc direct(const Edge&, bool) const {
|
| 588 | 588 |
return INVALID; |
| 589 | 589 |
} |
| 590 | 590 |
|
| 591 | 591 |
/// \brief Returns true if the arc has default orientation. |
| 592 | 592 |
/// |
| 593 | 593 |
/// Returns whether the given directed arc is same orientation as |
| 594 | 594 |
/// the corresponding edge's default orientation. |
| 595 | 595 |
bool direction(Arc) const { return true; }
|
| 596 | 596 |
|
| 597 | 597 |
/// \brief Returns the opposite directed arc. |
| 598 | 598 |
/// |
| 599 | 599 |
/// Returns the opposite directed arc. |
| 600 | 600 |
Arc oppositeArc(Arc) const { return INVALID; }
|
| 601 | 601 |
|
| 602 | 602 |
/// \brief Opposite node on an arc |
| 603 | 603 |
/// |
| 604 |
/// \return |
|
| 604 |
/// \return The opposite of the given node on the given edge. |
|
| 605 | 605 |
Node oppositeNode(Node, Edge) const { return INVALID; }
|
| 606 | 606 |
|
| 607 | 607 |
/// \brief First node of the edge. |
| 608 | 608 |
/// |
| 609 |
/// \return |
|
| 609 |
/// \return The first node of the given edge. |
|
| 610 | 610 |
/// |
| 611 | 611 |
/// Naturally edges don't have direction and thus |
| 612 |
/// don't have source and target node. But we use these two methods |
|
| 613 |
/// to query the two nodes of the arc. The direction of the arc |
|
| 614 |
/// |
|
| 612 |
/// don't have source and target node. However we use \c u() and \c v() |
|
| 613 |
/// methods to query the two nodes of the arc. The direction of the |
|
| 614 |
/// arc which arises this way is called the inherent direction of the |
|
| 615 | 615 |
/// edge, and is used to define the "default" direction |
| 616 | 616 |
/// of the directed versions of the arcs. |
| 617 |
/// \sa |
|
| 617 |
/// \sa v() |
|
| 618 |
/// \sa direction() |
|
| 618 | 619 |
Node u(Edge) const { return INVALID; }
|
| 619 | 620 |
|
| 620 | 621 |
/// \brief Second node of the edge. |
| 622 |
/// |
|
| 623 |
/// \return The second node of the given edge. |
|
| 624 |
/// |
|
| 625 |
/// Naturally edges don't have direction and thus |
|
| 626 |
/// don't have source and target node. However we use \c u() and \c v() |
|
| 627 |
/// methods to query the two nodes of the arc. The direction of the |
|
| 628 |
/// arc which arises this way is called the inherent direction of the |
|
| 629 |
/// edge, and is used to define the "default" direction |
|
| 630 |
/// of the directed versions of the arcs. |
|
| 631 |
/// \sa u() |
|
| 632 |
/// \sa direction() |
|
| 621 | 633 |
Node v(Edge) const { return INVALID; }
|
| 622 | 634 |
|
| 623 | 635 |
/// \brief Source node of the directed arc. |
| 624 | 636 |
Node source(Arc) const { return INVALID; }
|
| 625 | 637 |
|
| 626 | 638 |
/// \brief Target node of the directed arc. |
| 627 | 639 |
Node target(Arc) const { return INVALID; }
|
| 628 | 640 |
|
| 629 | 641 |
/// \brief Returns the id of the node. |
| 630 | 642 |
int id(Node) const { return -1; }
|
| 631 | 643 |
|
| 632 | 644 |
/// \brief Returns the id of the edge. |
| 633 | 645 |
int id(Edge) const { return -1; }
|
| 634 | 646 |
|
| 635 | 647 |
/// \brief Returns the id of the arc. |
| 636 | 648 |
int id(Arc) const { return -1; }
|
| 637 | 649 |
|
| 638 | 650 |
/// \brief Returns the node with the given id. |
| 639 | 651 |
/// |
| 640 | 652 |
/// \pre The argument should be a valid node id in the graph. |
| 641 | 653 |
Node nodeFromId(int) const { return INVALID; }
|
| 642 | 654 |
|
| 643 | 655 |
/// \brief Returns the edge with the given id. |
| 644 | 656 |
/// |
| 645 | 657 |
/// \pre The argument should be a valid edge id in the graph. |
| 646 | 658 |
Edge edgeFromId(int) const { return INVALID; }
|
| 647 | 659 |
|
| 648 | 660 |
/// \brief Returns the arc with the given id. |
| 649 | 661 |
/// |
| 650 | 662 |
/// \pre The argument should be a valid arc id in the graph. |
| 651 | 663 |
Arc arcFromId(int) const { return INVALID; }
|
| 652 | 664 |
|
| 653 | 665 |
/// \brief Returns an upper bound on the node IDs. |
| 654 | 666 |
int maxNodeId() const { return -1; }
|
| 655 | 667 |
|
| 656 | 668 |
/// \brief Returns an upper bound on the edge IDs. |
| 657 | 669 |
int maxEdgeId() const { return -1; }
|
| 658 | 670 |
|
| 659 | 671 |
/// \brief Returns an upper bound on the arc IDs. |
| 660 | 672 |
int maxArcId() const { return -1; }
|
| 661 | 673 |
|
| 662 | 674 |
void first(Node&) const {}
|
| 663 | 675 |
void next(Node&) const {}
|
| 664 | 676 |
|
| 665 | 677 |
void first(Edge&) const {}
|
| 666 | 678 |
void next(Edge&) const {}
|
| 667 | 679 |
|
| 668 | 680 |
void first(Arc&) const {}
|
| 669 | 681 |
void next(Arc&) const {}
|
| 670 | 682 |
|
| 671 | 683 |
void firstOut(Arc&, Node) const {}
|
| 672 | 684 |
void nextOut(Arc&) const {}
|
| 673 | 685 |
|
| 674 | 686 |
void firstIn(Arc&, Node) const {}
|
| 675 | 687 |
void nextIn(Arc&) const {}
|
| 676 | 688 |
|
| 677 | 689 |
void firstInc(Edge &, bool &, const Node &) const {}
|
| 678 | 690 |
void nextInc(Edge &, bool &) const {}
|
| 679 | 691 |
|
| 680 | 692 |
// The second parameter is dummy. |
| 681 | 693 |
Node fromId(int, Node) const { return INVALID; }
|
| 682 | 694 |
// The second parameter is dummy. |
| 683 | 695 |
Edge fromId(int, Edge) const { return INVALID; }
|
| 684 | 696 |
// The second parameter is dummy. |
| 685 | 697 |
Arc fromId(int, Arc) const { return INVALID; }
|
| 686 | 698 |
|
| 687 | 699 |
// Dummy parameter. |
| 688 | 700 |
int maxId(Node) const { return -1; }
|
| 689 | 701 |
// Dummy parameter. |
| 690 | 702 |
int maxId(Edge) const { return -1; }
|
| 691 | 703 |
// Dummy parameter. |
| 692 | 704 |
int maxId(Arc) const { return -1; }
|
| 693 | 705 |
|
| 694 | 706 |
/// \brief Base node of the iterator |
| 695 | 707 |
/// |
| 696 | 708 |
/// Returns the base node (the source in this case) of the iterator |
| 697 | 709 |
Node baseNode(OutArcIt e) const {
|
| 698 | 710 |
return source(e); |
| 699 | 711 |
} |
| 700 | 712 |
/// \brief Running node of the iterator |
| 701 | 713 |
/// |
| 702 | 714 |
/// Returns the running node (the target in this case) of the |
| 703 | 715 |
/// iterator |
| 704 | 716 |
Node runningNode(OutArcIt e) const {
|
| 705 | 717 |
return target(e); |
| 706 | 718 |
} |
| 707 | 719 |
|
| 708 | 720 |
/// \brief Base node of the iterator |
| 709 | 721 |
/// |
| 710 | 722 |
/// Returns the base node (the target in this case) of the iterator |
| 711 | 723 |
Node baseNode(InArcIt e) const {
|
| 712 | 724 |
return target(e); |
| 713 | 725 |
} |
| 714 | 726 |
/// \brief Running node of the iterator |
| 715 | 727 |
/// |
| 716 | 728 |
/// Returns the running node (the source in this case) of the |
| 717 | 729 |
/// iterator |
| 718 | 730 |
Node runningNode(InArcIt e) const {
|
| 719 | 731 |
return source(e); |
| 720 | 732 |
} |
| 721 | 733 |
|
| 722 | 734 |
/// \brief Base node of the iterator |
| 723 | 735 |
/// |
| 724 | 736 |
/// Returns the base node of the iterator |
| 725 | 737 |
Node baseNode(IncEdgeIt) const {
|
| 726 | 738 |
return INVALID; |
| 727 | 739 |
} |
| 728 | 740 |
|
| 729 | 741 |
/// \brief Running node of the iterator |
| 730 | 742 |
/// |
| 731 | 743 |
/// Returns the running node of the iterator |
| 732 | 744 |
Node runningNode(IncEdgeIt) const {
|
| 733 | 745 |
return INVALID; |
| 734 | 746 |
} |
| 735 | 747 |
|
| 736 | 748 |
template <typename _Graph> |
| 737 | 749 |
struct Constraints {
|
| 738 | 750 |
void constraints() {
|
| 739 | 751 |
checkConcept<IterableGraphComponent<>, _Graph>(); |
| 740 | 752 |
checkConcept<IDableGraphComponent<>, _Graph>(); |
| 741 | 753 |
checkConcept<MappableGraphComponent<>, _Graph>(); |
| 742 | 754 |
} |
| 743 | 755 |
}; |
| 744 | 756 |
|
| 745 | 757 |
}; |
| 746 | 758 |
|
| 747 | 759 |
} |
| 748 | 760 |
|
| 749 | 761 |
} |
| 750 | 762 |
|
| 751 | 763 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup graph_concepts |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief The concept of graph components. |
| 22 | 22 |
|
| 23 |
|
|
| 24 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
| 25 | 24 |
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
| 26 | 25 |
|
| 27 | 26 |
#include <lemon/core.h> |
| 28 | 27 |
#include <lemon/concepts/maps.h> |
| 29 | 28 |
|
| 30 | 29 |
#include <lemon/bits/alteration_notifier.h> |
| 31 | 30 |
|
| 32 | 31 |
namespace lemon {
|
| 33 | 32 |
namespace concepts {
|
| 34 | 33 |
|
| 35 | 34 |
/// \brief Skeleton class for graph Node and Arc types |
| 36 | 35 |
/// |
| 37 | 36 |
/// This class describes the interface of Node and Arc (and Edge |
| 38 | 37 |
/// in undirected graphs) subtypes of graph types. |
| 39 | 38 |
/// |
| 40 | 39 |
/// \note This class is a template class so that we can use it to |
| 41 | 40 |
/// create graph skeleton classes. The reason for this is than Node |
| 42 | 41 |
/// and Arc types should \em not derive from the same base class. |
| 43 | 42 |
/// For Node you should instantiate it with character 'n' and for Arc |
| 44 | 43 |
/// with 'a'. |
| 45 | 44 |
|
| 46 | 45 |
#ifndef DOXYGEN |
| 47 |
template <char |
|
| 46 |
template <char sel = '0'> |
|
| 48 | 47 |
#endif |
| 49 | 48 |
class GraphItem {
|
| 50 | 49 |
public: |
| 51 | 50 |
/// \brief Default constructor. |
| 52 | 51 |
/// |
| 53 | 52 |
/// \warning The default constructor is not required to set |
| 54 | 53 |
/// the item to some well-defined value. So you should consider it |
| 55 | 54 |
/// as uninitialized. |
| 56 | 55 |
GraphItem() {}
|
| 57 | 56 |
/// \brief Copy constructor. |
| 58 | 57 |
/// |
| 59 | 58 |
/// Copy constructor. |
| 60 | 59 |
/// |
| 61 | 60 |
GraphItem(const GraphItem &) {}
|
| 62 | 61 |
/// \brief Invalid constructor \& conversion. |
| 63 | 62 |
/// |
| 64 | 63 |
/// This constructor initializes the item to be invalid. |
| 65 | 64 |
/// \sa Invalid for more details. |
| 66 | 65 |
GraphItem(Invalid) {}
|
| 67 | 66 |
/// \brief Assign operator for nodes. |
| 68 | 67 |
/// |
| 69 | 68 |
/// The nodes are assignable. |
| 70 | 69 |
/// |
| 71 | 70 |
GraphItem& operator=(GraphItem const&) { return *this; }
|
| 72 | 71 |
/// \brief Equality operator. |
| 73 | 72 |
/// |
| 74 | 73 |
/// Two iterators are equal if and only if they represents the |
| 75 | 74 |
/// same node in the graph or both are invalid. |
| 76 | 75 |
bool operator==(GraphItem) const { return false; }
|
| 77 | 76 |
/// \brief Inequality operator. |
| 78 | 77 |
/// |
| 79 | 78 |
/// \sa operator==(const Node& n) |
| 80 | 79 |
/// |
| 81 | 80 |
bool operator!=(GraphItem) const { return false; }
|
| 82 | 81 |
|
| 83 | 82 |
/// \brief Artificial ordering operator. |
| 84 | 83 |
/// |
| 85 | 84 |
/// To allow the use of graph descriptors as key type in std::map or |
| 86 | 85 |
/// similar associative container we require this. |
| 87 | 86 |
/// |
| 88 | 87 |
/// \note This operator only have to define some strict ordering of |
| 89 | 88 |
/// the items; this order has nothing to do with the iteration |
| 90 | 89 |
/// ordering of the items. |
| 91 | 90 |
bool operator<(GraphItem) const { return false; }
|
| 92 | 91 |
|
| 93 | 92 |
template<typename _GraphItem> |
| 94 | 93 |
struct Constraints {
|
| 95 | 94 |
void constraints() {
|
| 96 | 95 |
_GraphItem i1; |
| 97 | 96 |
_GraphItem i2 = i1; |
| 98 | 97 |
_GraphItem i3 = INVALID; |
| 99 | 98 |
|
| 100 | 99 |
i1 = i2 = i3; |
| 101 | 100 |
|
| 102 | 101 |
bool b; |
| 103 | 102 |
// b = (ia == ib) && (ia != ib) && (ia < ib); |
| 104 | 103 |
b = (ia == ib) && (ia != ib); |
| 105 | 104 |
b = (ia == INVALID) && (ib != INVALID); |
| 106 | 105 |
b = (ia < ib); |
| 107 | 106 |
} |
| 108 | 107 |
|
| 109 | 108 |
const _GraphItem &ia; |
| 110 | 109 |
const _GraphItem &ib; |
| 111 | 110 |
}; |
| 112 | 111 |
}; |
| 113 | 112 |
|
| 114 | 113 |
/// \brief An empty base directed graph class. |
| 115 | 114 |
/// |
| 116 | 115 |
/// This class provides the minimal set of features needed for a |
| 117 | 116 |
/// directed graph structure. All digraph concepts have to |
| 118 | 117 |
/// conform to this base directed graph. It just provides types |
| 119 | 118 |
/// for nodes and arcs and functions to get the source and the |
| 120 | 119 |
/// target of the arcs. |
| 121 | 120 |
class BaseDigraphComponent {
|
| 122 | 121 |
public: |
| 123 | 122 |
|
| 124 | 123 |
typedef BaseDigraphComponent Digraph; |
| 125 | 124 |
|
| 126 | 125 |
/// \brief Node class of the digraph. |
| 127 | 126 |
/// |
| 128 | 127 |
/// This class represents the Nodes of the digraph. |
| 129 | 128 |
/// |
| 130 | 129 |
typedef GraphItem<'n'> Node; |
| 131 | 130 |
|
| 132 | 131 |
/// \brief Arc class of the digraph. |
| 133 | 132 |
/// |
| 134 | 133 |
/// This class represents the Arcs of the digraph. |
| 135 | 134 |
/// |
| 136 | 135 |
typedef GraphItem<'e'> Arc; |
| 137 | 136 |
|
| 138 | 137 |
/// \brief Gives back the target node of an arc. |
| 139 | 138 |
/// |
| 140 | 139 |
/// Gives back the target node of an arc. |
| 141 | 140 |
/// |
| 142 | 141 |
Node target(const Arc&) const { return INVALID;}
|
| 143 | 142 |
|
| 144 | 143 |
/// \brief Gives back the source node of an arc. |
| 145 | 144 |
/// |
| 146 | 145 |
/// Gives back the source node of an arc. |
| 147 | 146 |
/// |
| 148 | 147 |
Node source(const Arc&) const { return INVALID;}
|
| 149 | 148 |
|
| 150 | 149 |
/// \brief Gives back the opposite node on the given arc. |
| 151 | 150 |
/// |
| 152 | 151 |
/// Gives back the opposite node on the given arc. |
| 153 | 152 |
Node oppositeNode(const Node&, const Arc&) const {
|
| 154 | 153 |
return INVALID; |
| 155 | 154 |
} |
| 156 | 155 |
|
| 157 | 156 |
template <typename _Digraph> |
| 158 | 157 |
struct Constraints {
|
| 159 | 158 |
typedef typename _Digraph::Node Node; |
| 160 | 159 |
typedef typename _Digraph::Arc Arc; |
| 161 | 160 |
|
| 162 | 161 |
void constraints() {
|
| 163 | 162 |
checkConcept<GraphItem<'n'>, Node>(); |
| 164 | 163 |
checkConcept<GraphItem<'a'>, Arc>(); |
| 165 | 164 |
{
|
| 166 | 165 |
Node n; |
| 167 | 166 |
Arc e(INVALID); |
| 168 | 167 |
n = digraph.source(e); |
| 169 | 168 |
n = digraph.target(e); |
| 170 | 169 |
n = digraph.oppositeNode(n, e); |
| 171 | 170 |
} |
| 172 | 171 |
} |
| 173 | 172 |
|
| 174 | 173 |
const _Digraph& digraph; |
| 175 | 174 |
}; |
| 176 | 175 |
}; |
| 177 | 176 |
|
| 178 | 177 |
/// \brief An empty base undirected graph class. |
| 179 | 178 |
/// |
| 180 | 179 |
/// This class provides the minimal set of features needed for an |
| 181 | 180 |
/// undirected graph structure. All undirected graph concepts have |
| 182 | 181 |
/// to conform to this base graph. It just provides types for |
| 183 | 182 |
/// nodes, arcs and edges and functions to get the |
| 184 | 183 |
/// source and the target of the arcs and edges, |
| 185 | 184 |
/// conversion from arcs to edges and function to get |
| 186 | 185 |
/// both direction of the edges. |
| 187 | 186 |
class BaseGraphComponent : public BaseDigraphComponent {
|
| 188 | 187 |
public: |
| 189 | 188 |
typedef BaseDigraphComponent::Node Node; |
| 190 | 189 |
typedef BaseDigraphComponent::Arc Arc; |
| 191 | 190 |
/// \brief Undirected arc class of the graph. |
| 192 | 191 |
/// |
| 193 | 192 |
/// This class represents the edges of the graph. |
| 194 | 193 |
/// The undirected graphs can be used as a directed graph which |
| 195 | 194 |
/// for each arc contains the opposite arc too so the graph is |
| 196 | 195 |
/// bidirected. The edge represents two opposite |
| 197 | 196 |
/// directed arcs. |
| 198 | 197 |
class Edge : public GraphItem<'u'> {
|
| 199 | 198 |
public: |
| 200 | 199 |
typedef GraphItem<'u'> Parent; |
| 201 | 200 |
/// \brief Default constructor. |
| 202 | 201 |
/// |
| 203 | 202 |
/// \warning The default constructor is not required to set |
| 204 | 203 |
/// the item to some well-defined value. So you should consider it |
| 205 | 204 |
/// as uninitialized. |
| 206 | 205 |
Edge() {}
|
| 207 | 206 |
/// \brief Copy constructor. |
| 208 | 207 |
/// |
| 209 | 208 |
/// Copy constructor. |
| 210 | 209 |
/// |
| 211 | 210 |
Edge(const Edge &) : Parent() {}
|
| 212 | 211 |
/// \brief Invalid constructor \& conversion. |
| 213 | 212 |
/// |
| 214 | 213 |
/// This constructor initializes the item to be invalid. |
| 215 | 214 |
/// \sa Invalid for more details. |
| 216 | 215 |
Edge(Invalid) {}
|
| 217 | 216 |
/// \brief Converter from arc to edge. |
| 218 | 217 |
/// |
| 219 | 218 |
/// Besides the core graph item functionality each arc should |
| 220 | 219 |
/// be convertible to the represented edge. |
| 221 | 220 |
Edge(const Arc&) {}
|
| 222 | 221 |
/// \brief Assign arc to edge. |
| 223 | 222 |
/// |
| 224 | 223 |
/// Besides the core graph item functionality each arc should |
| 225 | 224 |
/// be convertible to the represented edge. |
| 226 | 225 |
Edge& operator=(const Arc&) { return *this; }
|
| 227 | 226 |
}; |
| 228 | 227 |
|
| 229 | 228 |
/// \brief Returns the direction of the arc. |
| 230 | 229 |
/// |
| 231 | 230 |
/// Returns the direction of the arc. Each arc represents an |
| 232 | 231 |
/// edge with a direction. It gives back the |
| 233 | 232 |
/// direction. |
| 234 | 233 |
bool direction(const Arc&) const { return true; }
|
| 235 | 234 |
|
| 236 | 235 |
/// \brief Returns the directed arc. |
| 237 | 236 |
/// |
| 238 | 237 |
/// Returns the directed arc from its direction and the |
| 239 | 238 |
/// represented edge. |
| 240 | 239 |
Arc direct(const Edge&, bool) const { return INVALID;}
|
| 241 | 240 |
|
| 242 | 241 |
/// \brief Returns the directed arc. |
| 243 | 242 |
/// |
| 244 | 243 |
/// Returns the directed arc from its source and the |
| 245 | 244 |
/// represented edge. |
| 246 | 245 |
Arc direct(const Edge&, const Node&) const { return INVALID;}
|
| 247 | 246 |
|
| 248 | 247 |
/// \brief Returns the opposite arc. |
| 249 | 248 |
/// |
| 250 | 249 |
/// Returns the opposite arc. It is the arc representing the |
| 251 | 250 |
/// same edge and has opposite direction. |
| 252 | 251 |
Arc oppositeArc(const Arc&) const { return INVALID;}
|
| 253 | 252 |
|
| 254 | 253 |
/// \brief Gives back one ending of an edge. |
| 255 | 254 |
/// |
| 256 | 255 |
/// Gives back one ending of an edge. |
| 257 | 256 |
Node u(const Edge&) const { return INVALID;}
|
| 258 | 257 |
|
| 259 | 258 |
/// \brief Gives back the other ending of an edge. |
| 260 | 259 |
/// |
| 261 | 260 |
/// Gives back the other ending of an edge. |
| 262 | 261 |
Node v(const Edge&) const { return INVALID;}
|
| 263 | 262 |
|
| 264 | 263 |
template <typename _Graph> |
| 265 | 264 |
struct Constraints {
|
| 266 | 265 |
typedef typename _Graph::Node Node; |
| 267 | 266 |
typedef typename _Graph::Arc Arc; |
| 268 | 267 |
typedef typename _Graph::Edge Edge; |
| 269 | 268 |
|
| 270 | 269 |
void constraints() {
|
| 271 | 270 |
checkConcept<BaseDigraphComponent, _Graph>(); |
| 272 | 271 |
checkConcept<GraphItem<'u'>, Edge>(); |
| 273 | 272 |
{
|
| 274 | 273 |
Node n; |
| 275 | 274 |
Edge ue(INVALID); |
| 276 | 275 |
Arc e; |
| 277 | 276 |
n = graph.u(ue); |
| 278 | 277 |
n = graph.v(ue); |
| 279 | 278 |
e = graph.direct(ue, true); |
| 280 | 279 |
e = graph.direct(ue, n); |
| 281 | 280 |
e = graph.oppositeArc(e); |
| 282 | 281 |
ue = e; |
| 283 | 282 |
bool d = graph.direction(e); |
| 284 | 283 |
ignore_unused_variable_warning(d); |
| 285 | 284 |
} |
| 286 | 285 |
} |
| 287 | 286 |
|
| 288 | 287 |
const _Graph& graph; |
| 289 | 288 |
}; |
| 290 | 289 |
|
| 291 | 290 |
}; |
| 292 | 291 |
|
| 293 | 292 |
/// \brief An empty idable base digraph class. |
| 294 | 293 |
/// |
| 295 | 294 |
/// This class provides beside the core digraph features |
| 296 | 295 |
/// core id functions for the digraph structure. |
| 297 | 296 |
/// The most of the base digraphs should conform to this concept. |
| 298 | 297 |
/// The id's are unique and immutable. |
| 299 |
template <typename _Base = BaseDigraphComponent> |
|
| 300 |
class IDableDigraphComponent : public _Base {
|
|
| 298 |
template <typename BAS = BaseDigraphComponent> |
|
| 299 |
class IDableDigraphComponent : public BAS {
|
|
| 301 | 300 |
public: |
| 302 | 301 |
|
| 303 |
typedef |
|
| 302 |
typedef BAS Base; |
|
| 304 | 303 |
typedef typename Base::Node Node; |
| 305 | 304 |
typedef typename Base::Arc Arc; |
| 306 | 305 |
|
| 307 | 306 |
/// \brief Gives back an unique integer id for the Node. |
| 308 | 307 |
/// |
| 309 | 308 |
/// Gives back an unique integer id for the Node. |
| 310 | 309 |
/// |
| 311 | 310 |
int id(const Node&) const { return -1;}
|
| 312 | 311 |
|
| 313 | 312 |
/// \brief Gives back the node by the unique id. |
| 314 | 313 |
/// |
| 315 | 314 |
/// Gives back the node by the unique id. |
| 316 | 315 |
/// If the digraph does not contain node with the given id |
| 317 | 316 |
/// then the result of the function is undetermined. |
| 318 | 317 |
Node nodeFromId(int) const { return INVALID;}
|
| 319 | 318 |
|
| 320 | 319 |
/// \brief Gives back an unique integer id for the Arc. |
| 321 | 320 |
/// |
| 322 | 321 |
/// Gives back an unique integer id for the Arc. |
| 323 | 322 |
/// |
| 324 | 323 |
int id(const Arc&) const { return -1;}
|
| 325 | 324 |
|
| 326 | 325 |
/// \brief Gives back the arc by the unique id. |
| 327 | 326 |
/// |
| 328 | 327 |
/// Gives back the arc by the unique id. |
| 329 | 328 |
/// If the digraph does not contain arc with the given id |
| 330 | 329 |
/// then the result of the function is undetermined. |
| 331 | 330 |
Arc arcFromId(int) const { return INVALID;}
|
| 332 | 331 |
|
| 333 | 332 |
/// \brief Gives back an integer greater or equal to the maximum |
| 334 | 333 |
/// Node id. |
| 335 | 334 |
/// |
| 336 | 335 |
/// Gives back an integer greater or equal to the maximum Node |
| 337 | 336 |
/// id. |
| 338 | 337 |
int maxNodeId() const { return -1;}
|
| 339 | 338 |
|
| 340 | 339 |
/// \brief Gives back an integer greater or equal to the maximum |
| 341 | 340 |
/// Arc id. |
| 342 | 341 |
/// |
| 343 | 342 |
/// Gives back an integer greater or equal to the maximum Arc |
| 344 | 343 |
/// id. |
| 345 | 344 |
int maxArcId() const { return -1;}
|
| 346 | 345 |
|
| 347 | 346 |
template <typename _Digraph> |
| 348 | 347 |
struct Constraints {
|
| 349 | 348 |
|
| 350 | 349 |
void constraints() {
|
| 351 | 350 |
checkConcept<Base, _Digraph >(); |
| 352 | 351 |
typename _Digraph::Node node; |
| 353 | 352 |
int nid = digraph.id(node); |
| 354 | 353 |
nid = digraph.id(node); |
| 355 | 354 |
node = digraph.nodeFromId(nid); |
| 356 | 355 |
typename _Digraph::Arc arc; |
| 357 | 356 |
int eid = digraph.id(arc); |
| 358 | 357 |
eid = digraph.id(arc); |
| 359 | 358 |
arc = digraph.arcFromId(eid); |
| 360 | 359 |
|
| 361 | 360 |
nid = digraph.maxNodeId(); |
| 362 | 361 |
ignore_unused_variable_warning(nid); |
| 363 | 362 |
eid = digraph.maxArcId(); |
| 364 | 363 |
ignore_unused_variable_warning(eid); |
| 365 | 364 |
} |
| 366 | 365 |
|
| 367 | 366 |
const _Digraph& digraph; |
| 368 | 367 |
}; |
| 369 | 368 |
}; |
| 370 | 369 |
|
| 371 | 370 |
/// \brief An empty idable base undirected graph class. |
| 372 | 371 |
/// |
| 373 | 372 |
/// This class provides beside the core undirected graph features |
| 374 | 373 |
/// core id functions for the undirected graph structure. The |
| 375 | 374 |
/// most of the base undirected graphs should conform to this |
| 376 | 375 |
/// concept. The id's are unique and immutable. |
| 377 |
template <typename _Base = BaseGraphComponent> |
|
| 378 |
class IDableGraphComponent : public IDableDigraphComponent<_Base> {
|
|
| 376 |
template <typename BAS = BaseGraphComponent> |
|
| 377 |
class IDableGraphComponent : public IDableDigraphComponent<BAS> {
|
|
| 379 | 378 |
public: |
| 380 | 379 |
|
| 381 |
typedef |
|
| 380 |
typedef BAS Base; |
|
| 382 | 381 |
typedef typename Base::Edge Edge; |
| 383 | 382 |
|
| 384 |
using IDableDigraphComponent< |
|
| 383 |
using IDableDigraphComponent<Base>::id; |
|
| 385 | 384 |
|
| 386 | 385 |
/// \brief Gives back an unique integer id for the Edge. |
| 387 | 386 |
/// |
| 388 | 387 |
/// Gives back an unique integer id for the Edge. |
| 389 | 388 |
/// |
| 390 | 389 |
int id(const Edge&) const { return -1;}
|
| 391 | 390 |
|
| 392 | 391 |
/// \brief Gives back the edge by the unique id. |
| 393 | 392 |
/// |
| 394 | 393 |
/// Gives back the edge by the unique id. If the |
| 395 | 394 |
/// graph does not contain arc with the given id then the |
| 396 | 395 |
/// result of the function is undetermined. |
| 397 | 396 |
Edge edgeFromId(int) const { return INVALID;}
|
| 398 | 397 |
|
| 399 | 398 |
/// \brief Gives back an integer greater or equal to the maximum |
| 400 | 399 |
/// Edge id. |
| 401 | 400 |
/// |
| 402 | 401 |
/// Gives back an integer greater or equal to the maximum Edge |
| 403 | 402 |
/// id. |
| 404 | 403 |
int maxEdgeId() const { return -1;}
|
| 405 | 404 |
|
| 406 | 405 |
template <typename _Graph> |
| 407 | 406 |
struct Constraints {
|
| 408 | 407 |
|
| 409 | 408 |
void constraints() {
|
| 410 | 409 |
checkConcept<Base, _Graph >(); |
| 411 | 410 |
checkConcept<IDableDigraphComponent<Base>, _Graph >(); |
| 412 | 411 |
typename _Graph::Edge edge; |
| 413 | 412 |
int ueid = graph.id(edge); |
| 414 | 413 |
ueid = graph.id(edge); |
| 415 | 414 |
edge = graph.edgeFromId(ueid); |
| 416 | 415 |
ueid = graph.maxEdgeId(); |
| 417 | 416 |
ignore_unused_variable_warning(ueid); |
| 418 | 417 |
} |
| 419 | 418 |
|
| 420 | 419 |
const _Graph& graph; |
| 421 | 420 |
}; |
| 422 | 421 |
}; |
| 423 | 422 |
|
| 424 | 423 |
/// \brief Skeleton class for graph NodeIt and ArcIt |
| 425 | 424 |
/// |
| 426 | 425 |
/// Skeleton class for graph NodeIt and ArcIt. |
| 427 | 426 |
/// |
| 428 |
template <typename _Graph, typename _Item> |
|
| 429 |
class GraphItemIt : public _Item {
|
|
| 427 |
template <typename GR, typename Item> |
|
| 428 |
class GraphItemIt : public Item {
|
|
| 430 | 429 |
public: |
| 431 | 430 |
/// \brief Default constructor. |
| 432 | 431 |
/// |
| 433 | 432 |
/// @warning The default constructor sets the iterator |
| 434 | 433 |
/// to an undefined value. |
| 435 | 434 |
GraphItemIt() {}
|
| 436 | 435 |
/// \brief Copy constructor. |
| 437 | 436 |
/// |
| 438 | 437 |
/// Copy constructor. |
| 439 | 438 |
/// |
| 440 | 439 |
GraphItemIt(const GraphItemIt& ) {}
|
| 441 | 440 |
/// \brief Sets the iterator to the first item. |
| 442 | 441 |
/// |
| 443 | 442 |
/// Sets the iterator to the first item of \c the graph. |
| 444 | 443 |
/// |
| 445 |
explicit GraphItemIt(const |
|
| 444 |
explicit GraphItemIt(const GR&) {}
|
|
| 446 | 445 |
/// \brief Invalid constructor \& conversion. |
| 447 | 446 |
/// |
| 448 | 447 |
/// This constructor initializes the item to be invalid. |
| 449 | 448 |
/// \sa Invalid for more details. |
| 450 | 449 |
GraphItemIt(Invalid) {}
|
| 451 | 450 |
/// \brief Assign operator for items. |
| 452 | 451 |
/// |
| 453 | 452 |
/// The items are assignable. |
| 454 | 453 |
/// |
| 455 | 454 |
GraphItemIt& operator=(const GraphItemIt&) { return *this; }
|
| 456 | 455 |
/// \brief Next item. |
| 457 | 456 |
/// |
| 458 | 457 |
/// Assign the iterator to the next item. |
| 459 | 458 |
/// |
| 460 | 459 |
GraphItemIt& operator++() { return *this; }
|
| 461 | 460 |
/// \brief Equality operator |
| 462 | 461 |
/// |
| 463 | 462 |
/// Two iterators are equal if and only if they point to the |
| 464 | 463 |
/// same object or both are invalid. |
| 465 | 464 |
bool operator==(const GraphItemIt&) const { return true;}
|
| 466 | 465 |
/// \brief Inequality operator |
| 467 | 466 |
/// |
| 468 | 467 |
/// \sa operator==(Node n) |
| 469 | 468 |
/// |
| 470 | 469 |
bool operator!=(const GraphItemIt&) const { return true;}
|
| 471 | 470 |
|
| 472 | 471 |
template<typename _GraphItemIt> |
| 473 | 472 |
struct Constraints {
|
| 474 | 473 |
void constraints() {
|
| 475 | 474 |
_GraphItemIt it1(g); |
| 476 | 475 |
_GraphItemIt it2; |
| 477 | 476 |
|
| 478 | 477 |
it2 = ++it1; |
| 479 | 478 |
++it2 = it1; |
| 480 | 479 |
++(++it1); |
| 481 | 480 |
|
| 482 |
|
|
| 481 |
Item bi = it1; |
|
| 483 | 482 |
bi = it2; |
| 484 | 483 |
} |
| 485 |
|
|
| 484 |
GR& g; |
|
| 486 | 485 |
}; |
| 487 | 486 |
}; |
| 488 | 487 |
|
| 489 | 488 |
/// \brief Skeleton class for graph InArcIt and OutArcIt |
| 490 | 489 |
/// |
| 491 | 490 |
/// \note Because InArcIt and OutArcIt may not inherit from the same |
| 492 |
/// base class, the _selector is a additional template parameter. For |
|
| 493 |
/// InArcIt you should instantiate it with character 'i' and for |
|
| 491 |
/// base class, the \c sel is a additional template parameter (selector). |
|
| 492 |
/// For InArcIt you should instantiate it with character 'i' and for |
|
| 494 | 493 |
/// OutArcIt with 'o'. |
| 495 |
template <typename _Graph, |
|
| 496 |
typename _Item = typename _Graph::Arc, |
|
| 497 |
typename _Base = typename _Graph::Node, |
|
| 498 |
char _selector = '0'> |
|
| 499 |
|
|
| 494 |
template <typename GR, |
|
| 495 |
typename Item = typename GR::Arc, |
|
| 496 |
typename Base = typename GR::Node, |
|
| 497 |
char sel = '0'> |
|
| 498 |
class GraphIncIt : public Item {
|
|
| 500 | 499 |
public: |
| 501 | 500 |
/// \brief Default constructor. |
| 502 | 501 |
/// |
| 503 | 502 |
/// @warning The default constructor sets the iterator |
| 504 | 503 |
/// to an undefined value. |
| 505 | 504 |
GraphIncIt() {}
|
| 506 | 505 |
/// \brief Copy constructor. |
| 507 | 506 |
/// |
| 508 | 507 |
/// Copy constructor. |
| 509 | 508 |
/// |
| 510 |
GraphIncIt(GraphIncIt const& gi) : |
|
| 509 |
GraphIncIt(GraphIncIt const& gi) : Item(gi) {}
|
|
| 511 | 510 |
/// \brief Sets the iterator to the first arc incoming into or outgoing |
| 512 | 511 |
/// from the node. |
| 513 | 512 |
/// |
| 514 | 513 |
/// Sets the iterator to the first arc incoming into or outgoing |
| 515 | 514 |
/// from the node. |
| 516 | 515 |
/// |
| 517 |
explicit GraphIncIt(const |
|
| 516 |
explicit GraphIncIt(const GR&, const Base&) {}
|
|
| 518 | 517 |
/// \brief Invalid constructor \& conversion. |
| 519 | 518 |
/// |
| 520 | 519 |
/// This constructor initializes the item to be invalid. |
| 521 | 520 |
/// \sa Invalid for more details. |
| 522 | 521 |
GraphIncIt(Invalid) {}
|
| 523 | 522 |
/// \brief Assign operator for iterators. |
| 524 | 523 |
/// |
| 525 | 524 |
/// The iterators are assignable. |
| 526 | 525 |
/// |
| 527 | 526 |
GraphIncIt& operator=(GraphIncIt const&) { return *this; }
|
| 528 | 527 |
/// \brief Next item. |
| 529 | 528 |
/// |
| 530 | 529 |
/// Assign the iterator to the next item. |
| 531 | 530 |
/// |
| 532 | 531 |
GraphIncIt& operator++() { return *this; }
|
| 533 | 532 |
|
| 534 | 533 |
/// \brief Equality operator |
| 535 | 534 |
/// |
| 536 | 535 |
/// Two iterators are equal if and only if they point to the |
| 537 | 536 |
/// same object or both are invalid. |
| 538 | 537 |
bool operator==(const GraphIncIt&) const { return true;}
|
| 539 | 538 |
|
| 540 | 539 |
/// \brief Inequality operator |
| 541 | 540 |
/// |
| 542 | 541 |
/// \sa operator==(Node n) |
| 543 | 542 |
/// |
| 544 | 543 |
bool operator!=(const GraphIncIt&) const { return true;}
|
| 545 | 544 |
|
| 546 | 545 |
template <typename _GraphIncIt> |
| 547 | 546 |
struct Constraints {
|
| 548 | 547 |
void constraints() {
|
| 549 |
checkConcept<GraphItem< |
|
| 548 |
checkConcept<GraphItem<sel>, _GraphIncIt>(); |
|
| 550 | 549 |
_GraphIncIt it1(graph, node); |
| 551 | 550 |
_GraphIncIt it2; |
| 552 | 551 |
|
| 553 | 552 |
it2 = ++it1; |
| 554 | 553 |
++it2 = it1; |
| 555 | 554 |
++(++it1); |
| 556 |
|
|
| 555 |
Item e = it1; |
|
| 557 | 556 |
e = it2; |
| 558 | 557 |
|
| 559 | 558 |
} |
| 560 | 559 |
|
| 561 |
_Item arc; |
|
| 562 |
_Base node; |
|
| 563 |
|
|
| 560 |
Item arc; |
|
| 561 |
Base node; |
|
| 562 |
GR graph; |
|
| 564 | 563 |
_GraphIncIt it; |
| 565 | 564 |
}; |
| 566 | 565 |
}; |
| 567 | 566 |
|
| 568 | 567 |
|
| 569 | 568 |
/// \brief An empty iterable digraph class. |
| 570 | 569 |
/// |
| 571 | 570 |
/// This class provides beside the core digraph features |
| 572 | 571 |
/// iterator based iterable interface for the digraph structure. |
| 573 | 572 |
/// This concept is part of the Digraph concept. |
| 574 |
template <typename _Base = BaseDigraphComponent> |
|
| 575 |
class IterableDigraphComponent : public _Base {
|
|
| 573 |
template <typename BAS = BaseDigraphComponent> |
|
| 574 |
class IterableDigraphComponent : public BAS {
|
|
| 576 | 575 |
|
| 577 | 576 |
public: |
| 578 | 577 |
|
| 579 |
typedef |
|
| 578 |
typedef BAS Base; |
|
| 580 | 579 |
typedef typename Base::Node Node; |
| 581 | 580 |
typedef typename Base::Arc Arc; |
| 582 | 581 |
|
| 583 | 582 |
typedef IterableDigraphComponent Digraph; |
| 584 | 583 |
|
| 585 | 584 |
/// \name Base iteration |
| 586 | 585 |
/// |
| 587 | 586 |
/// This interface provides functions for iteration on digraph items |
| 588 | 587 |
/// |
| 589 | 588 |
/// @{
|
| 590 | 589 |
|
| 591 | 590 |
/// \brief Gives back the first node in the iterating order. |
| 592 | 591 |
/// |
| 593 | 592 |
/// Gives back the first node in the iterating order. |
| 594 | 593 |
/// |
| 595 | 594 |
void first(Node&) const {}
|
| 596 | 595 |
|
| 597 | 596 |
/// \brief Gives back the next node in the iterating order. |
| 598 | 597 |
/// |
| 599 | 598 |
/// Gives back the next node in the iterating order. |
| 600 | 599 |
/// |
| 601 | 600 |
void next(Node&) const {}
|
| 602 | 601 |
|
| 603 | 602 |
/// \brief Gives back the first arc in the iterating order. |
| 604 | 603 |
/// |
| 605 | 604 |
/// Gives back the first arc in the iterating order. |
| 606 | 605 |
/// |
| 607 | 606 |
void first(Arc&) const {}
|
| 608 | 607 |
|
| 609 | 608 |
/// \brief Gives back the next arc in the iterating order. |
| 610 | 609 |
/// |
| 611 | 610 |
/// Gives back the next arc in the iterating order. |
| 612 | 611 |
/// |
| 613 | 612 |
void next(Arc&) const {}
|
| 614 | 613 |
|
| 615 | 614 |
|
| 616 | 615 |
/// \brief Gives back the first of the arcs point to the given |
| 617 | 616 |
/// node. |
| 618 | 617 |
/// |
| 619 | 618 |
/// Gives back the first of the arcs point to the given node. |
| 620 | 619 |
/// |
| 621 | 620 |
void firstIn(Arc&, const Node&) const {}
|
| 622 | 621 |
|
| 623 | 622 |
/// \brief Gives back the next of the arcs points to the given |
| 624 | 623 |
/// node. |
| 625 | 624 |
/// |
| 626 | 625 |
/// Gives back the next of the arcs points to the given node. |
| 627 | 626 |
/// |
| 628 | 627 |
void nextIn(Arc&) const {}
|
| 629 | 628 |
|
| 630 | 629 |
/// \brief Gives back the first of the arcs start from the |
| 631 | 630 |
/// given node. |
| 632 | 631 |
/// |
| 633 | 632 |
/// Gives back the first of the arcs start from the given node. |
| 634 | 633 |
/// |
| 635 | 634 |
void firstOut(Arc&, const Node&) const {}
|
| 636 | 635 |
|
| 637 | 636 |
/// \brief Gives back the next of the arcs start from the given |
| 638 | 637 |
/// node. |
| 639 | 638 |
/// |
| 640 | 639 |
/// Gives back the next of the arcs start from the given node. |
| 641 | 640 |
/// |
| 642 | 641 |
void nextOut(Arc&) const {}
|
| 643 | 642 |
|
| 644 | 643 |
/// @} |
| 645 | 644 |
|
| 646 | 645 |
/// \name Class based iteration |
| 647 | 646 |
/// |
| 648 | 647 |
/// This interface provides functions for iteration on digraph items |
| 649 | 648 |
/// |
| 650 | 649 |
/// @{
|
| 651 | 650 |
|
| 652 | 651 |
/// \brief This iterator goes through each node. |
| 653 | 652 |
/// |
| 654 | 653 |
/// This iterator goes through each node. |
| 655 | 654 |
/// |
| 656 | 655 |
typedef GraphItemIt<Digraph, Node> NodeIt; |
| 657 | 656 |
|
| 658 | 657 |
/// \brief This iterator goes through each node. |
| 659 | 658 |
/// |
| 660 | 659 |
/// This iterator goes through each node. |
| 661 | 660 |
/// |
| 662 | 661 |
typedef GraphItemIt<Digraph, Arc> ArcIt; |
| 663 | 662 |
|
| 664 | 663 |
/// \brief This iterator goes trough the incoming arcs of a node. |
| 665 | 664 |
/// |
| 666 | 665 |
/// This iterator goes trough the \e inccoming arcs of a certain node |
| 667 | 666 |
/// of a digraph. |
| 668 | 667 |
typedef GraphIncIt<Digraph, Arc, Node, 'i'> InArcIt; |
| 669 | 668 |
|
| 670 | 669 |
/// \brief This iterator goes trough the outgoing arcs of a node. |
| 671 | 670 |
/// |
| 672 | 671 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
| 673 | 672 |
/// of a digraph. |
| 674 | 673 |
typedef GraphIncIt<Digraph, Arc, Node, 'o'> OutArcIt; |
| 675 | 674 |
|
| 676 | 675 |
/// \brief The base node of the iterator. |
| 677 | 676 |
/// |
| 678 | 677 |
/// Gives back the base node of the iterator. |
| 679 | 678 |
/// It is always the target of the pointed arc. |
| 680 | 679 |
Node baseNode(const InArcIt&) const { return INVALID; }
|
| 681 | 680 |
|
| 682 | 681 |
/// \brief The running node of the iterator. |
| 683 | 682 |
/// |
| 684 | 683 |
/// Gives back the running node of the iterator. |
| 685 | 684 |
/// It is always the source of the pointed arc. |
| 686 | 685 |
Node runningNode(const InArcIt&) const { return INVALID; }
|
| 687 | 686 |
|
| 688 | 687 |
/// \brief The base node of the iterator. |
| 689 | 688 |
/// |
| 690 | 689 |
/// Gives back the base node of the iterator. |
| 691 | 690 |
/// It is always the source of the pointed arc. |
| 692 | 691 |
Node baseNode(const OutArcIt&) const { return INVALID; }
|
| 693 | 692 |
|
| 694 | 693 |
/// \brief The running node of the iterator. |
| 695 | 694 |
/// |
| 696 | 695 |
/// Gives back the running node of the iterator. |
| 697 | 696 |
/// It is always the target of the pointed arc. |
| 698 | 697 |
Node runningNode(const OutArcIt&) const { return INVALID; }
|
| 699 | 698 |
|
| 700 | 699 |
/// @} |
| 701 | 700 |
|
| 702 | 701 |
template <typename _Digraph> |
| 703 | 702 |
struct Constraints {
|
| 704 | 703 |
void constraints() {
|
| 705 | 704 |
checkConcept<Base, _Digraph>(); |
| 706 | 705 |
|
| 707 | 706 |
{
|
| 708 | 707 |
typename _Digraph::Node node(INVALID); |
| 709 | 708 |
typename _Digraph::Arc arc(INVALID); |
| 710 | 709 |
{
|
| 711 | 710 |
digraph.first(node); |
| 712 | 711 |
digraph.next(node); |
| 713 | 712 |
} |
| 714 | 713 |
{
|
| 715 | 714 |
digraph.first(arc); |
| 716 | 715 |
digraph.next(arc); |
| 717 | 716 |
} |
| 718 | 717 |
{
|
| 719 | 718 |
digraph.firstIn(arc, node); |
| 720 | 719 |
digraph.nextIn(arc); |
| 721 | 720 |
} |
| 722 | 721 |
{
|
| 723 | 722 |
digraph.firstOut(arc, node); |
| 724 | 723 |
digraph.nextOut(arc); |
| 725 | 724 |
} |
| 726 | 725 |
} |
| 727 | 726 |
|
| 728 | 727 |
{
|
| 729 | 728 |
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Arc>, |
| 730 | 729 |
typename _Digraph::ArcIt >(); |
| 731 | 730 |
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Node>, |
| 732 | 731 |
typename _Digraph::NodeIt >(); |
| 733 | 732 |
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc, |
| 734 | 733 |
typename _Digraph::Node, 'i'>, typename _Digraph::InArcIt>(); |
| 735 | 734 |
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc, |
| 736 | 735 |
typename _Digraph::Node, 'o'>, typename _Digraph::OutArcIt>(); |
| 737 | 736 |
|
| 738 | 737 |
typename _Digraph::Node n; |
| 739 | 738 |
typename _Digraph::InArcIt ieit(INVALID); |
| 740 | 739 |
typename _Digraph::OutArcIt oeit(INVALID); |
| 741 | 740 |
n = digraph.baseNode(ieit); |
| 742 | 741 |
n = digraph.runningNode(ieit); |
| 743 | 742 |
n = digraph.baseNode(oeit); |
| 744 | 743 |
n = digraph.runningNode(oeit); |
| 745 | 744 |
ignore_unused_variable_warning(n); |
| 746 | 745 |
} |
| 747 | 746 |
} |
| 748 | 747 |
|
| 749 | 748 |
const _Digraph& digraph; |
| 750 | 749 |
|
| 751 | 750 |
}; |
| 752 | 751 |
}; |
| 753 | 752 |
|
| 754 | 753 |
/// \brief An empty iterable undirected graph class. |
| 755 | 754 |
/// |
| 756 | 755 |
/// This class provides beside the core graph features iterator |
| 757 | 756 |
/// based iterable interface for the undirected graph structure. |
| 758 | 757 |
/// This concept is part of the Graph concept. |
| 759 |
template <typename _Base = BaseGraphComponent> |
|
| 760 |
class IterableGraphComponent : public IterableDigraphComponent<_Base> {
|
|
| 758 |
template <typename BAS = BaseGraphComponent> |
|
| 759 |
class IterableGraphComponent : public IterableDigraphComponent<BAS> {
|
|
| 761 | 760 |
public: |
| 762 | 761 |
|
| 763 |
typedef |
|
| 762 |
typedef BAS Base; |
|
| 764 | 763 |
typedef typename Base::Node Node; |
| 765 | 764 |
typedef typename Base::Arc Arc; |
| 766 | 765 |
typedef typename Base::Edge Edge; |
| 767 | 766 |
|
| 768 | 767 |
|
| 769 | 768 |
typedef IterableGraphComponent Graph; |
| 770 | 769 |
|
| 771 | 770 |
/// \name Base iteration |
| 772 | 771 |
/// |
| 773 | 772 |
/// This interface provides functions for iteration on graph items |
| 774 | 773 |
/// @{
|
| 775 | 774 |
|
| 776 |
using IterableDigraphComponent<_Base>::first; |
|
| 777 |
using IterableDigraphComponent<_Base>::next; |
|
| 775 |
using IterableDigraphComponent<Base>::first; |
|
| 776 |
using IterableDigraphComponent<Base>::next; |
|
| 778 | 777 |
|
| 779 | 778 |
/// \brief Gives back the first edge in the iterating |
| 780 | 779 |
/// order. |
| 781 | 780 |
/// |
| 782 | 781 |
/// Gives back the first edge in the iterating order. |
| 783 | 782 |
/// |
| 784 | 783 |
void first(Edge&) const {}
|
| 785 | 784 |
|
| 786 | 785 |
/// \brief Gives back the next edge in the iterating |
| 787 | 786 |
/// order. |
| 788 | 787 |
/// |
| 789 | 788 |
/// Gives back the next edge in the iterating order. |
| 790 | 789 |
/// |
| 791 | 790 |
void next(Edge&) const {}
|
| 792 | 791 |
|
| 793 | 792 |
|
| 794 | 793 |
/// \brief Gives back the first of the edges from the |
| 795 | 794 |
/// given node. |
| 796 | 795 |
/// |
| 797 | 796 |
/// Gives back the first of the edges from the given |
| 798 | 797 |
/// node. The bool parameter gives back that direction which |
| 799 | 798 |
/// gives a good direction of the edge so the source of the |
| 800 | 799 |
/// directed arc is the given node. |
| 801 | 800 |
void firstInc(Edge&, bool&, const Node&) const {}
|
| 802 | 801 |
|
| 803 | 802 |
/// \brief Gives back the next of the edges from the |
| 804 | 803 |
/// given node. |
| 805 | 804 |
/// |
| 806 | 805 |
/// Gives back the next of the edges from the given |
| 807 | 806 |
/// node. The bool parameter should be used as the \c firstInc() |
| 808 | 807 |
/// use it. |
| 809 | 808 |
void nextInc(Edge&, bool&) const {}
|
| 810 | 809 |
|
| 811 |
using IterableDigraphComponent<_Base>::baseNode; |
|
| 812 |
using IterableDigraphComponent<_Base>::runningNode; |
|
| 810 |
using IterableDigraphComponent<Base>::baseNode; |
|
| 811 |
using IterableDigraphComponent<Base>::runningNode; |
|
| 813 | 812 |
|
| 814 | 813 |
/// @} |
| 815 | 814 |
|
| 816 | 815 |
/// \name Class based iteration |
| 817 | 816 |
/// |
| 818 | 817 |
/// This interface provides functions for iteration on graph items |
| 819 | 818 |
/// |
| 820 | 819 |
/// @{
|
| 821 | 820 |
|
| 822 | 821 |
/// \brief This iterator goes through each node. |
| 823 | 822 |
/// |
| 824 | 823 |
/// This iterator goes through each node. |
| 825 | 824 |
typedef GraphItemIt<Graph, Edge> EdgeIt; |
| 826 | 825 |
/// \brief This iterator goes trough the incident arcs of a |
| 827 | 826 |
/// node. |
| 828 | 827 |
/// |
| 829 | 828 |
/// This iterator goes trough the incident arcs of a certain |
| 830 | 829 |
/// node of a graph. |
| 831 | 830 |
typedef GraphIncIt<Graph, Edge, Node, 'u'> IncEdgeIt; |
| 832 | 831 |
/// \brief The base node of the iterator. |
| 833 | 832 |
/// |
| 834 | 833 |
/// Gives back the base node of the iterator. |
| 835 | 834 |
Node baseNode(const IncEdgeIt&) const { return INVALID; }
|
| 836 | 835 |
|
| 837 | 836 |
/// \brief The running node of the iterator. |
| 838 | 837 |
/// |
| 839 | 838 |
/// Gives back the running node of the iterator. |
| 840 | 839 |
Node runningNode(const IncEdgeIt&) const { return INVALID; }
|
| 841 | 840 |
|
| 842 | 841 |
/// @} |
| 843 | 842 |
|
| 844 | 843 |
template <typename _Graph> |
| 845 | 844 |
struct Constraints {
|
| 846 | 845 |
void constraints() {
|
| 847 | 846 |
checkConcept<IterableDigraphComponent<Base>, _Graph>(); |
| 848 | 847 |
|
| 849 | 848 |
{
|
| 850 | 849 |
typename _Graph::Node node(INVALID); |
| 851 | 850 |
typename _Graph::Edge edge(INVALID); |
| 852 | 851 |
bool dir; |
| 853 | 852 |
{
|
| 854 | 853 |
graph.first(edge); |
| 855 | 854 |
graph.next(edge); |
| 856 | 855 |
} |
| 857 | 856 |
{
|
| 858 | 857 |
graph.firstInc(edge, dir, node); |
| 859 | 858 |
graph.nextInc(edge, dir); |
| 860 | 859 |
} |
| 861 | 860 |
|
| 862 | 861 |
} |
| 863 | 862 |
|
| 864 | 863 |
{
|
| 865 | 864 |
checkConcept<GraphItemIt<_Graph, typename _Graph::Edge>, |
| 866 | 865 |
typename _Graph::EdgeIt >(); |
| 867 | 866 |
checkConcept<GraphIncIt<_Graph, typename _Graph::Edge, |
| 868 | 867 |
typename _Graph::Node, 'u'>, typename _Graph::IncEdgeIt>(); |
| 869 | 868 |
|
| 870 | 869 |
typename _Graph::Node n; |
| 871 | 870 |
typename _Graph::IncEdgeIt ueit(INVALID); |
| 872 | 871 |
n = graph.baseNode(ueit); |
| 873 | 872 |
n = graph.runningNode(ueit); |
| 874 | 873 |
} |
| 875 | 874 |
} |
| 876 | 875 |
|
| 877 | 876 |
const _Graph& graph; |
| 878 |
|
|
| 879 | 877 |
}; |
| 880 | 878 |
}; |
| 881 | 879 |
|
| 882 | 880 |
/// \brief An empty alteration notifier digraph class. |
| 883 | 881 |
/// |
| 884 | 882 |
/// This class provides beside the core digraph features alteration |
| 885 | 883 |
/// notifier interface for the digraph structure. This implements |
| 886 | 884 |
/// an observer-notifier pattern for each digraph item. More |
| 887 | 885 |
/// obsevers can be registered into the notifier and whenever an |
| 888 | 886 |
/// alteration occured in the digraph all the observers will |
| 889 | 887 |
/// notified about it. |
| 890 |
template <typename _Base = BaseDigraphComponent> |
|
| 891 |
class AlterableDigraphComponent : public _Base {
|
|
| 888 |
template <typename BAS = BaseDigraphComponent> |
|
| 889 |
class AlterableDigraphComponent : public BAS {
|
|
| 892 | 890 |
public: |
| 893 | 891 |
|
| 894 |
typedef |
|
| 892 |
typedef BAS Base; |
|
| 895 | 893 |
typedef typename Base::Node Node; |
| 896 | 894 |
typedef typename Base::Arc Arc; |
| 897 | 895 |
|
| 898 | 896 |
|
| 899 | 897 |
/// The node observer registry. |
| 900 | 898 |
typedef AlterationNotifier<AlterableDigraphComponent, Node> |
| 901 | 899 |
NodeNotifier; |
| 902 | 900 |
/// The arc observer registry. |
| 903 | 901 |
typedef AlterationNotifier<AlterableDigraphComponent, Arc> |
| 904 | 902 |
ArcNotifier; |
| 905 | 903 |
|
| 906 | 904 |
/// \brief Gives back the node alteration notifier. |
| 907 | 905 |
/// |
| 908 | 906 |
/// Gives back the node alteration notifier. |
| 909 | 907 |
NodeNotifier& notifier(Node) const {
|
| 910 | 908 |
return NodeNotifier(); |
| 911 | 909 |
} |
| 912 | 910 |
|
| 913 | 911 |
/// \brief Gives back the arc alteration notifier. |
| 914 | 912 |
/// |
| 915 | 913 |
/// Gives back the arc alteration notifier. |
| 916 | 914 |
ArcNotifier& notifier(Arc) const {
|
| 917 | 915 |
return ArcNotifier(); |
| 918 | 916 |
} |
| 919 | 917 |
|
| 920 | 918 |
template <typename _Digraph> |
| 921 | 919 |
struct Constraints {
|
| 922 | 920 |
void constraints() {
|
| 923 | 921 |
checkConcept<Base, _Digraph>(); |
| 924 | 922 |
typename _Digraph::NodeNotifier& nn |
| 925 | 923 |
= digraph.notifier(typename _Digraph::Node()); |
| 926 | 924 |
|
| 927 | 925 |
typename _Digraph::ArcNotifier& en |
| 928 | 926 |
= digraph.notifier(typename _Digraph::Arc()); |
| 929 | 927 |
|
| 930 | 928 |
ignore_unused_variable_warning(nn); |
| 931 | 929 |
ignore_unused_variable_warning(en); |
| 932 | 930 |
} |
| 933 | 931 |
|
| 934 | 932 |
const _Digraph& digraph; |
| 935 | 933 |
|
| 936 | 934 |
}; |
| 937 | 935 |
|
| 938 | 936 |
}; |
| 939 | 937 |
|
| 940 | 938 |
/// \brief An empty alteration notifier undirected graph class. |
| 941 | 939 |
/// |
| 942 | 940 |
/// This class provides beside the core graph features alteration |
| 943 | 941 |
/// notifier interface for the graph structure. This implements |
| 944 | 942 |
/// an observer-notifier pattern for each graph item. More |
| 945 | 943 |
/// obsevers can be registered into the notifier and whenever an |
| 946 | 944 |
/// alteration occured in the graph all the observers will |
| 947 | 945 |
/// notified about it. |
| 948 |
template <typename _Base = BaseGraphComponent> |
|
| 949 |
class AlterableGraphComponent : public AlterableDigraphComponent<_Base> {
|
|
| 946 |
template <typename BAS = BaseGraphComponent> |
|
| 947 |
class AlterableGraphComponent : public AlterableDigraphComponent<BAS> {
|
|
| 950 | 948 |
public: |
| 951 | 949 |
|
| 952 |
typedef |
|
| 950 |
typedef BAS Base; |
|
| 953 | 951 |
typedef typename Base::Edge Edge; |
| 954 | 952 |
|
| 955 | 953 |
|
| 956 | 954 |
/// The arc observer registry. |
| 957 | 955 |
typedef AlterationNotifier<AlterableGraphComponent, Edge> |
| 958 | 956 |
EdgeNotifier; |
| 959 | 957 |
|
| 960 | 958 |
/// \brief Gives back the arc alteration notifier. |
| 961 | 959 |
/// |
| 962 | 960 |
/// Gives back the arc alteration notifier. |
| 963 | 961 |
EdgeNotifier& notifier(Edge) const {
|
| 964 | 962 |
return EdgeNotifier(); |
| 965 | 963 |
} |
| 966 | 964 |
|
| 967 | 965 |
template <typename _Graph> |
| 968 | 966 |
struct Constraints {
|
| 969 | 967 |
void constraints() {
|
| 970 | 968 |
checkConcept<AlterableGraphComponent<Base>, _Graph>(); |
| 971 | 969 |
typename _Graph::EdgeNotifier& uen |
| 972 | 970 |
= graph.notifier(typename _Graph::Edge()); |
| 973 | 971 |
ignore_unused_variable_warning(uen); |
| 974 | 972 |
} |
| 975 | 973 |
|
| 976 | 974 |
const _Graph& graph; |
| 977 |
|
|
| 978 | 975 |
}; |
| 979 |
|
|
| 980 | 976 |
}; |
| 981 | 977 |
|
| 982 | 978 |
/// \brief Class describing the concept of graph maps |
| 983 | 979 |
/// |
| 984 | 980 |
/// This class describes the common interface of the graph maps |
| 985 | 981 |
/// (NodeMap, ArcMap), that is maps that can be used to |
| 986 | 982 |
/// associate data to graph descriptors (nodes or arcs). |
| 987 |
template <typename _Graph, typename _Item, typename _Value> |
|
| 988 |
class GraphMap : public ReadWriteMap<_Item, _Value> {
|
|
| 983 |
template <typename GR, typename K, typename V> |
|
| 984 |
class GraphMap : public ReadWriteMap<K, V> {
|
|
| 989 | 985 |
public: |
| 990 | 986 |
|
| 991 |
typedef ReadWriteMap< |
|
| 987 |
typedef ReadWriteMap<K, V> Parent; |
|
| 992 | 988 |
|
| 993 | 989 |
/// The graph type of the map. |
| 994 |
typedef |
|
| 990 |
typedef GR Graph; |
|
| 995 | 991 |
/// The key type of the map. |
| 996 |
typedef |
|
| 992 |
typedef K Key; |
|
| 997 | 993 |
/// The value type of the map. |
| 998 |
typedef |
|
| 994 |
typedef V Value; |
|
| 999 | 995 |
|
| 1000 | 996 |
/// \brief Construct a new map. |
| 1001 | 997 |
/// |
| 1002 | 998 |
/// Construct a new map for the graph. |
| 1003 | 999 |
explicit GraphMap(const Graph&) {}
|
| 1004 | 1000 |
/// \brief Construct a new map with default value. |
| 1005 | 1001 |
/// |
| 1006 | 1002 |
/// Construct a new map for the graph and initalise the values. |
| 1007 | 1003 |
GraphMap(const Graph&, const Value&) {}
|
| 1008 | 1004 |
|
| 1009 | 1005 |
private: |
| 1010 | 1006 |
/// \brief Copy constructor. |
| 1011 | 1007 |
/// |
| 1012 | 1008 |
/// Copy Constructor. |
| 1013 | 1009 |
GraphMap(const GraphMap&) : Parent() {}
|
| 1014 | 1010 |
|
| 1015 | 1011 |
/// \brief Assign operator. |
| 1016 | 1012 |
/// |
| 1017 | 1013 |
/// Assign operator. It does not mofify the underlying graph, |
| 1018 | 1014 |
/// it just iterates on the current item set and set the map |
| 1019 | 1015 |
/// with the value returned by the assigned map. |
| 1020 | 1016 |
template <typename CMap> |
| 1021 | 1017 |
GraphMap& operator=(const CMap&) {
|
| 1022 | 1018 |
checkConcept<ReadMap<Key, Value>, CMap>(); |
| 1023 | 1019 |
return *this; |
| 1024 | 1020 |
} |
| 1025 | 1021 |
|
| 1026 | 1022 |
public: |
| 1027 | 1023 |
template<typename _Map> |
| 1028 | 1024 |
struct Constraints {
|
| 1029 | 1025 |
void constraints() {
|
| 1030 | 1026 |
checkConcept<ReadWriteMap<Key, Value>, _Map >(); |
| 1031 | 1027 |
// Construction with a graph parameter |
| 1032 | 1028 |
_Map a(g); |
| 1033 | 1029 |
// Constructor with a graph and a default value parameter |
| 1034 | 1030 |
_Map a2(g,t); |
| 1035 | 1031 |
// Copy constructor. |
| 1036 | 1032 |
// _Map b(c); |
| 1037 | 1033 |
|
| 1038 | 1034 |
// ReadMap<Key, Value> cmap; |
| 1039 | 1035 |
// b = cmap; |
| 1040 | 1036 |
|
| 1041 | 1037 |
ignore_unused_variable_warning(a); |
| 1042 | 1038 |
ignore_unused_variable_warning(a2); |
| 1043 | 1039 |
// ignore_unused_variable_warning(b); |
| 1044 | 1040 |
} |
| 1045 | 1041 |
|
| 1046 | 1042 |
const _Map &c; |
| 1047 | 1043 |
const Graph &g; |
| 1048 | 1044 |
const typename GraphMap::Value &t; |
| 1049 | 1045 |
}; |
| 1050 | 1046 |
|
| 1051 | 1047 |
}; |
| 1052 | 1048 |
|
| 1053 | 1049 |
/// \brief An empty mappable digraph class. |
| 1054 | 1050 |
/// |
| 1055 | 1051 |
/// This class provides beside the core digraph features |
| 1056 | 1052 |
/// map interface for the digraph structure. |
| 1057 | 1053 |
/// This concept is part of the Digraph concept. |
| 1058 |
template <typename _Base = BaseDigraphComponent> |
|
| 1059 |
class MappableDigraphComponent : public _Base {
|
|
| 1054 |
template <typename BAS = BaseDigraphComponent> |
|
| 1055 |
class MappableDigraphComponent : public BAS {
|
|
| 1060 | 1056 |
public: |
| 1061 | 1057 |
|
| 1062 |
typedef |
|
| 1058 |
typedef BAS Base; |
|
| 1063 | 1059 |
typedef typename Base::Node Node; |
| 1064 | 1060 |
typedef typename Base::Arc Arc; |
| 1065 | 1061 |
|
| 1066 | 1062 |
typedef MappableDigraphComponent Digraph; |
| 1067 | 1063 |
|
| 1068 | 1064 |
/// \brief ReadWrite map of the nodes. |
| 1069 | 1065 |
/// |
| 1070 | 1066 |
/// ReadWrite map of the nodes. |
| 1071 | 1067 |
/// |
| 1072 |
template <typename _Value> |
|
| 1073 |
class NodeMap : public GraphMap<Digraph, Node, _Value> {
|
|
| 1068 |
template <typename V> |
|
| 1069 |
class NodeMap : public GraphMap<Digraph, Node, V> {
|
|
| 1074 | 1070 |
public: |
| 1075 |
typedef GraphMap<MappableDigraphComponent, Node, |
|
| 1071 |
typedef GraphMap<MappableDigraphComponent, Node, V> Parent; |
|
| 1076 | 1072 |
|
| 1077 | 1073 |
/// \brief Construct a new map. |
| 1078 | 1074 |
/// |
| 1079 | 1075 |
/// Construct a new map for the digraph. |
| 1080 | 1076 |
explicit NodeMap(const MappableDigraphComponent& digraph) |
| 1081 | 1077 |
: Parent(digraph) {}
|
| 1082 | 1078 |
|
| 1083 | 1079 |
/// \brief Construct a new map with default value. |
| 1084 | 1080 |
/// |
| 1085 | 1081 |
/// Construct a new map for the digraph and initalise the values. |
| 1086 |
NodeMap(const MappableDigraphComponent& digraph, const |
|
| 1082 |
NodeMap(const MappableDigraphComponent& digraph, const V& value) |
|
| 1087 | 1083 |
: Parent(digraph, value) {}
|
| 1088 | 1084 |
|
| 1089 | 1085 |
private: |
| 1090 | 1086 |
/// \brief Copy constructor. |
| 1091 | 1087 |
/// |
| 1092 | 1088 |
/// Copy Constructor. |
| 1093 | 1089 |
NodeMap(const NodeMap& nm) : Parent(nm) {}
|
| 1094 | 1090 |
|
| 1095 | 1091 |
/// \brief Assign operator. |
| 1096 | 1092 |
/// |
| 1097 | 1093 |
/// Assign operator. |
| 1098 | 1094 |
template <typename CMap> |
| 1099 | 1095 |
NodeMap& operator=(const CMap&) {
|
| 1100 |
checkConcept<ReadMap<Node, |
|
| 1096 |
checkConcept<ReadMap<Node, V>, CMap>(); |
|
| 1101 | 1097 |
return *this; |
| 1102 | 1098 |
} |
| 1103 | 1099 |
|
| 1104 | 1100 |
}; |
| 1105 | 1101 |
|
| 1106 | 1102 |
/// \brief ReadWrite map of the arcs. |
| 1107 | 1103 |
/// |
| 1108 | 1104 |
/// ReadWrite map of the arcs. |
| 1109 | 1105 |
/// |
| 1110 |
template <typename _Value> |
|
| 1111 |
class ArcMap : public GraphMap<Digraph, Arc, _Value> {
|
|
| 1106 |
template <typename V> |
|
| 1107 |
class ArcMap : public GraphMap<Digraph, Arc, V> {
|
|
| 1112 | 1108 |
public: |
| 1113 |
typedef GraphMap<MappableDigraphComponent, Arc, |
|
| 1109 |
typedef GraphMap<MappableDigraphComponent, Arc, V> Parent; |
|
| 1114 | 1110 |
|
| 1115 | 1111 |
/// \brief Construct a new map. |
| 1116 | 1112 |
/// |
| 1117 | 1113 |
/// Construct a new map for the digraph. |
| 1118 | 1114 |
explicit ArcMap(const MappableDigraphComponent& digraph) |
| 1119 | 1115 |
: Parent(digraph) {}
|
| 1120 | 1116 |
|
| 1121 | 1117 |
/// \brief Construct a new map with default value. |
| 1122 | 1118 |
/// |
| 1123 | 1119 |
/// Construct a new map for the digraph and initalise the values. |
| 1124 |
ArcMap(const MappableDigraphComponent& digraph, const |
|
| 1120 |
ArcMap(const MappableDigraphComponent& digraph, const V& value) |
|
| 1125 | 1121 |
: Parent(digraph, value) {}
|
| 1126 | 1122 |
|
| 1127 | 1123 |
private: |
| 1128 | 1124 |
/// \brief Copy constructor. |
| 1129 | 1125 |
/// |
| 1130 | 1126 |
/// Copy Constructor. |
| 1131 | 1127 |
ArcMap(const ArcMap& nm) : Parent(nm) {}
|
| 1132 | 1128 |
|
| 1133 | 1129 |
/// \brief Assign operator. |
| 1134 | 1130 |
/// |
| 1135 | 1131 |
/// Assign operator. |
| 1136 | 1132 |
template <typename CMap> |
| 1137 | 1133 |
ArcMap& operator=(const CMap&) {
|
| 1138 |
checkConcept<ReadMap<Arc, |
|
| 1134 |
checkConcept<ReadMap<Arc, V>, CMap>(); |
|
| 1139 | 1135 |
return *this; |
| 1140 | 1136 |
} |
| 1141 | 1137 |
|
| 1142 | 1138 |
}; |
| 1143 | 1139 |
|
| 1144 | 1140 |
|
| 1145 | 1141 |
template <typename _Digraph> |
| 1146 | 1142 |
struct Constraints {
|
| 1147 | 1143 |
|
| 1148 | 1144 |
struct Dummy {
|
| 1149 | 1145 |
int value; |
| 1150 | 1146 |
Dummy() : value(0) {}
|
| 1151 | 1147 |
Dummy(int _v) : value(_v) {}
|
| 1152 | 1148 |
}; |
| 1153 | 1149 |
|
| 1154 | 1150 |
void constraints() {
|
| 1155 | 1151 |
checkConcept<Base, _Digraph>(); |
| 1156 | 1152 |
{ // int map test
|
| 1157 | 1153 |
typedef typename _Digraph::template NodeMap<int> IntNodeMap; |
| 1158 | 1154 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, int>, |
| 1159 | 1155 |
IntNodeMap >(); |
| 1160 | 1156 |
} { // bool map test
|
| 1161 | 1157 |
typedef typename _Digraph::template NodeMap<bool> BoolNodeMap; |
| 1162 | 1158 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, bool>, |
| 1163 | 1159 |
BoolNodeMap >(); |
| 1164 | 1160 |
} { // Dummy map test
|
| 1165 | 1161 |
typedef typename _Digraph::template NodeMap<Dummy> DummyNodeMap; |
| 1166 | 1162 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, Dummy>, |
| 1167 | 1163 |
DummyNodeMap >(); |
| 1168 | 1164 |
} |
| 1169 | 1165 |
|
| 1170 | 1166 |
{ // int map test
|
| 1171 | 1167 |
typedef typename _Digraph::template ArcMap<int> IntArcMap; |
| 1172 | 1168 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, int>, |
| 1173 | 1169 |
IntArcMap >(); |
| 1174 | 1170 |
} { // bool map test
|
| 1175 | 1171 |
typedef typename _Digraph::template ArcMap<bool> BoolArcMap; |
| 1176 | 1172 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, bool>, |
| 1177 | 1173 |
BoolArcMap >(); |
| 1178 | 1174 |
} { // Dummy map test
|
| 1179 | 1175 |
typedef typename _Digraph::template ArcMap<Dummy> DummyArcMap; |
| 1180 | 1176 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, Dummy>, |
| 1181 | 1177 |
DummyArcMap >(); |
| 1182 | 1178 |
} |
| 1183 | 1179 |
} |
| 1184 | 1180 |
|
| 1185 | 1181 |
_Digraph& digraph; |
| 1186 | 1182 |
}; |
| 1187 | 1183 |
}; |
| 1188 | 1184 |
|
| 1189 | 1185 |
/// \brief An empty mappable base bipartite graph class. |
| 1190 | 1186 |
/// |
| 1191 | 1187 |
/// This class provides beside the core graph features |
| 1192 | 1188 |
/// map interface for the graph structure. |
| 1193 | 1189 |
/// This concept is part of the Graph concept. |
| 1194 |
template <typename _Base = BaseGraphComponent> |
|
| 1195 |
class MappableGraphComponent : public MappableDigraphComponent<_Base> {
|
|
| 1190 |
template <typename BAS = BaseGraphComponent> |
|
| 1191 |
class MappableGraphComponent : public MappableDigraphComponent<BAS> {
|
|
| 1196 | 1192 |
public: |
| 1197 | 1193 |
|
| 1198 |
typedef |
|
| 1194 |
typedef BAS Base; |
|
| 1199 | 1195 |
typedef typename Base::Edge Edge; |
| 1200 | 1196 |
|
| 1201 | 1197 |
typedef MappableGraphComponent Graph; |
| 1202 | 1198 |
|
| 1203 | 1199 |
/// \brief ReadWrite map of the edges. |
| 1204 | 1200 |
/// |
| 1205 | 1201 |
/// ReadWrite map of the edges. |
| 1206 | 1202 |
/// |
| 1207 |
template <typename _Value> |
|
| 1208 |
class EdgeMap : public GraphMap<Graph, Edge, _Value> {
|
|
| 1203 |
template <typename V> |
|
| 1204 |
class EdgeMap : public GraphMap<Graph, Edge, V> {
|
|
| 1209 | 1205 |
public: |
| 1210 |
typedef GraphMap<MappableGraphComponent, Edge, |
|
| 1206 |
typedef GraphMap<MappableGraphComponent, Edge, V> Parent; |
|
| 1211 | 1207 |
|
| 1212 | 1208 |
/// \brief Construct a new map. |
| 1213 | 1209 |
/// |
| 1214 | 1210 |
/// Construct a new map for the graph. |
| 1215 | 1211 |
explicit EdgeMap(const MappableGraphComponent& graph) |
| 1216 | 1212 |
: Parent(graph) {}
|
| 1217 | 1213 |
|
| 1218 | 1214 |
/// \brief Construct a new map with default value. |
| 1219 | 1215 |
/// |
| 1220 | 1216 |
/// Construct a new map for the graph and initalise the values. |
| 1221 |
EdgeMap(const MappableGraphComponent& graph, const |
|
| 1217 |
EdgeMap(const MappableGraphComponent& graph, const V& value) |
|
| 1222 | 1218 |
: Parent(graph, value) {}
|
| 1223 | 1219 |
|
| 1224 | 1220 |
private: |
| 1225 | 1221 |
/// \brief Copy constructor. |
| 1226 | 1222 |
/// |
| 1227 | 1223 |
/// Copy Constructor. |
| 1228 | 1224 |
EdgeMap(const EdgeMap& nm) : Parent(nm) {}
|
| 1229 | 1225 |
|
| 1230 | 1226 |
/// \brief Assign operator. |
| 1231 | 1227 |
/// |
| 1232 | 1228 |
/// Assign operator. |
| 1233 | 1229 |
template <typename CMap> |
| 1234 | 1230 |
EdgeMap& operator=(const CMap&) {
|
| 1235 |
checkConcept<ReadMap<Edge, |
|
| 1231 |
checkConcept<ReadMap<Edge, V>, CMap>(); |
|
| 1236 | 1232 |
return *this; |
| 1237 | 1233 |
} |
| 1238 | 1234 |
|
| 1239 | 1235 |
}; |
| 1240 | 1236 |
|
| 1241 | 1237 |
|
| 1242 | 1238 |
template <typename _Graph> |
| 1243 | 1239 |
struct Constraints {
|
| 1244 | 1240 |
|
| 1245 | 1241 |
struct Dummy {
|
| 1246 | 1242 |
int value; |
| 1247 | 1243 |
Dummy() : value(0) {}
|
| 1248 | 1244 |
Dummy(int _v) : value(_v) {}
|
| 1249 | 1245 |
}; |
| 1250 | 1246 |
|
| 1251 | 1247 |
void constraints() {
|
| 1252 | 1248 |
checkConcept<MappableGraphComponent<Base>, _Graph>(); |
| 1253 | 1249 |
|
| 1254 | 1250 |
{ // int map test
|
| 1255 | 1251 |
typedef typename _Graph::template EdgeMap<int> IntEdgeMap; |
| 1256 | 1252 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, int>, |
| 1257 | 1253 |
IntEdgeMap >(); |
| 1258 | 1254 |
} { // bool map test
|
| 1259 | 1255 |
typedef typename _Graph::template EdgeMap<bool> BoolEdgeMap; |
| 1260 | 1256 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, bool>, |
| 1261 | 1257 |
BoolEdgeMap >(); |
| 1262 | 1258 |
} { // Dummy map test
|
| 1263 | 1259 |
typedef typename _Graph::template EdgeMap<Dummy> DummyEdgeMap; |
| 1264 | 1260 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, Dummy>, |
| 1265 | 1261 |
DummyEdgeMap >(); |
| 1266 | 1262 |
} |
| 1267 | 1263 |
} |
| 1268 | 1264 |
|
| 1269 | 1265 |
_Graph& graph; |
| 1270 | 1266 |
}; |
| 1271 | 1267 |
}; |
| 1272 | 1268 |
|
| 1273 | 1269 |
/// \brief An empty extendable digraph class. |
| 1274 | 1270 |
/// |
| 1275 | 1271 |
/// This class provides beside the core digraph features digraph |
| 1276 | 1272 |
/// extendable interface for the digraph structure. The main |
| 1277 | 1273 |
/// difference between the base and this interface is that the |
| 1278 | 1274 |
/// digraph alterations should handled already on this level. |
| 1279 |
template <typename _Base = BaseDigraphComponent> |
|
| 1280 |
class ExtendableDigraphComponent : public _Base {
|
|
| 1275 |
template <typename BAS = BaseDigraphComponent> |
|
| 1276 |
class ExtendableDigraphComponent : public BAS {
|
|
| 1281 | 1277 |
public: |
| 1282 |
typedef |
|
| 1278 |
typedef BAS Base; |
|
| 1283 | 1279 |
|
| 1284 |
typedef typename _Base::Node Node; |
|
| 1285 |
typedef typename _Base::Arc Arc; |
|
| 1280 |
typedef typename Base::Node Node; |
|
| 1281 |
typedef typename Base::Arc Arc; |
|
| 1286 | 1282 |
|
| 1287 | 1283 |
/// \brief Adds a new node to the digraph. |
| 1288 | 1284 |
/// |
| 1289 | 1285 |
/// Adds a new node to the digraph. |
| 1290 | 1286 |
/// |
| 1291 | 1287 |
Node addNode() {
|
| 1292 | 1288 |
return INVALID; |
| 1293 | 1289 |
} |
| 1294 | 1290 |
|
| 1295 | 1291 |
/// \brief Adds a new arc connects the given two nodes. |
| 1296 | 1292 |
/// |
| 1297 | 1293 |
/// Adds a new arc connects the the given two nodes. |
| 1298 | 1294 |
Arc addArc(const Node&, const Node&) {
|
| 1299 | 1295 |
return INVALID; |
| 1300 | 1296 |
} |
| 1301 | 1297 |
|
| 1302 | 1298 |
template <typename _Digraph> |
| 1303 | 1299 |
struct Constraints {
|
| 1304 | 1300 |
void constraints() {
|
| 1305 | 1301 |
checkConcept<Base, _Digraph>(); |
| 1306 | 1302 |
typename _Digraph::Node node_a, node_b; |
| 1307 | 1303 |
node_a = digraph.addNode(); |
| 1308 | 1304 |
node_b = digraph.addNode(); |
| 1309 | 1305 |
typename _Digraph::Arc arc; |
| 1310 | 1306 |
arc = digraph.addArc(node_a, node_b); |
| 1311 | 1307 |
} |
| 1312 | 1308 |
|
| 1313 | 1309 |
_Digraph& digraph; |
| 1314 | 1310 |
}; |
| 1315 | 1311 |
}; |
| 1316 | 1312 |
|
| 1317 | 1313 |
/// \brief An empty extendable base undirected graph class. |
| 1318 | 1314 |
/// |
| 1319 | 1315 |
/// This class provides beside the core undirected graph features |
| 1320 | 1316 |
/// core undircted graph extend interface for the graph structure. |
| 1321 | 1317 |
/// The main difference between the base and this interface is |
| 1322 | 1318 |
/// that the graph alterations should handled already on this |
| 1323 | 1319 |
/// level. |
| 1324 |
template <typename _Base = BaseGraphComponent> |
|
| 1325 |
class ExtendableGraphComponent : public _Base {
|
|
| 1320 |
template <typename BAS = BaseGraphComponent> |
|
| 1321 |
class ExtendableGraphComponent : public BAS {
|
|
| 1326 | 1322 |
public: |
| 1327 | 1323 |
|
| 1328 |
typedef _Base Base; |
|
| 1329 |
typedef typename _Base::Node Node; |
|
| 1330 |
typedef |
|
| 1324 |
typedef BAS Base; |
|
| 1325 |
typedef typename Base::Node Node; |
|
| 1326 |
typedef typename Base::Edge Edge; |
|
| 1331 | 1327 |
|
| 1332 | 1328 |
/// \brief Adds a new node to the graph. |
| 1333 | 1329 |
/// |
| 1334 | 1330 |
/// Adds a new node to the graph. |
| 1335 | 1331 |
/// |
| 1336 | 1332 |
Node addNode() {
|
| 1337 | 1333 |
return INVALID; |
| 1338 | 1334 |
} |
| 1339 | 1335 |
|
| 1340 | 1336 |
/// \brief Adds a new arc connects the given two nodes. |
| 1341 | 1337 |
/// |
| 1342 | 1338 |
/// Adds a new arc connects the the given two nodes. |
| 1343 | 1339 |
Edge addArc(const Node&, const Node&) {
|
| 1344 | 1340 |
return INVALID; |
| 1345 | 1341 |
} |
| 1346 | 1342 |
|
| 1347 | 1343 |
template <typename _Graph> |
| 1348 | 1344 |
struct Constraints {
|
| 1349 | 1345 |
void constraints() {
|
| 1350 | 1346 |
checkConcept<Base, _Graph>(); |
| 1351 | 1347 |
typename _Graph::Node node_a, node_b; |
| 1352 | 1348 |
node_a = graph.addNode(); |
| 1353 | 1349 |
node_b = graph.addNode(); |
| 1354 | 1350 |
typename _Graph::Edge edge; |
| 1355 | 1351 |
edge = graph.addEdge(node_a, node_b); |
| 1356 | 1352 |
} |
| 1357 | 1353 |
|
| 1358 | 1354 |
_Graph& graph; |
| 1359 | 1355 |
}; |
| 1360 | 1356 |
}; |
| 1361 | 1357 |
|
| 1362 | 1358 |
/// \brief An empty erasable digraph class. |
| 1363 | 1359 |
/// |
| 1364 | 1360 |
/// This class provides beside the core digraph features core erase |
| 1365 | 1361 |
/// functions for the digraph structure. The main difference between |
| 1366 | 1362 |
/// the base and this interface is that the digraph alterations |
| 1367 | 1363 |
/// should handled already on this level. |
| 1368 |
template <typename _Base = BaseDigraphComponent> |
|
| 1369 |
class ErasableDigraphComponent : public _Base {
|
|
| 1364 |
template <typename BAS = BaseDigraphComponent> |
|
| 1365 |
class ErasableDigraphComponent : public BAS {
|
|
| 1370 | 1366 |
public: |
| 1371 | 1367 |
|
| 1372 |
typedef |
|
| 1368 |
typedef BAS Base; |
|
| 1373 | 1369 |
typedef typename Base::Node Node; |
| 1374 | 1370 |
typedef typename Base::Arc Arc; |
| 1375 | 1371 |
|
| 1376 | 1372 |
/// \brief Erase a node from the digraph. |
| 1377 | 1373 |
/// |
| 1378 | 1374 |
/// Erase a node from the digraph. This function should |
| 1379 | 1375 |
/// erase all arcs connecting to the node. |
| 1380 | 1376 |
void erase(const Node&) {}
|
| 1381 | 1377 |
|
| 1382 | 1378 |
/// \brief Erase an arc from the digraph. |
| 1383 | 1379 |
/// |
| 1384 | 1380 |
/// Erase an arc from the digraph. |
| 1385 | 1381 |
/// |
| 1386 | 1382 |
void erase(const Arc&) {}
|
| 1387 | 1383 |
|
| 1388 | 1384 |
template <typename _Digraph> |
| 1389 | 1385 |
struct Constraints {
|
| 1390 | 1386 |
void constraints() {
|
| 1391 | 1387 |
checkConcept<Base, _Digraph>(); |
| 1392 | 1388 |
typename _Digraph::Node node; |
| 1393 | 1389 |
digraph.erase(node); |
| 1394 | 1390 |
typename _Digraph::Arc arc; |
| 1395 | 1391 |
digraph.erase(arc); |
| 1396 | 1392 |
} |
| 1397 | 1393 |
|
| 1398 | 1394 |
_Digraph& digraph; |
| 1399 | 1395 |
}; |
| 1400 | 1396 |
}; |
| 1401 | 1397 |
|
| 1402 | 1398 |
/// \brief An empty erasable base undirected graph class. |
| 1403 | 1399 |
/// |
| 1404 | 1400 |
/// This class provides beside the core undirected graph features |
| 1405 | 1401 |
/// core erase functions for the undirceted graph structure. The |
| 1406 | 1402 |
/// main difference between the base and this interface is that |
| 1407 | 1403 |
/// the graph alterations should handled already on this level. |
| 1408 |
template <typename _Base = BaseGraphComponent> |
|
| 1409 |
class ErasableGraphComponent : public _Base {
|
|
| 1404 |
template <typename BAS = BaseGraphComponent> |
|
| 1405 |
class ErasableGraphComponent : public BAS {
|
|
| 1410 | 1406 |
public: |
| 1411 | 1407 |
|
| 1412 |
typedef |
|
| 1408 |
typedef BAS Base; |
|
| 1413 | 1409 |
typedef typename Base::Node Node; |
| 1414 | 1410 |
typedef typename Base::Edge Edge; |
| 1415 | 1411 |
|
| 1416 | 1412 |
/// \brief Erase a node from the graph. |
| 1417 | 1413 |
/// |
| 1418 | 1414 |
/// Erase a node from the graph. This function should erase |
| 1419 | 1415 |
/// arcs connecting to the node. |
| 1420 | 1416 |
void erase(const Node&) {}
|
| 1421 | 1417 |
|
| 1422 | 1418 |
/// \brief Erase an arc from the graph. |
| 1423 | 1419 |
/// |
| 1424 | 1420 |
/// Erase an arc from the graph. |
| 1425 | 1421 |
/// |
| 1426 | 1422 |
void erase(const Edge&) {}
|
| 1427 | 1423 |
|
| 1428 | 1424 |
template <typename _Graph> |
| 1429 | 1425 |
struct Constraints {
|
| 1430 | 1426 |
void constraints() {
|
| 1431 | 1427 |
checkConcept<Base, _Graph>(); |
| 1432 | 1428 |
typename _Graph::Node node; |
| 1433 | 1429 |
graph.erase(node); |
| 1434 | 1430 |
typename _Graph::Edge edge; |
| 1435 | 1431 |
graph.erase(edge); |
| 1436 | 1432 |
} |
| 1437 | 1433 |
|
| 1438 | 1434 |
_Graph& graph; |
| 1439 | 1435 |
}; |
| 1440 | 1436 |
}; |
| 1441 | 1437 |
|
| 1442 | 1438 |
/// \brief An empty clearable base digraph class. |
| 1443 | 1439 |
/// |
| 1444 | 1440 |
/// This class provides beside the core digraph features core clear |
| 1445 | 1441 |
/// functions for the digraph structure. The main difference between |
| 1446 | 1442 |
/// the base and this interface is that the digraph alterations |
| 1447 | 1443 |
/// should handled already on this level. |
| 1448 |
template <typename _Base = BaseDigraphComponent> |
|
| 1449 |
class ClearableDigraphComponent : public _Base {
|
|
| 1444 |
template <typename BAS = BaseDigraphComponent> |
|
| 1445 |
class ClearableDigraphComponent : public BAS {
|
|
| 1450 | 1446 |
public: |
| 1451 | 1447 |
|
| 1452 |
typedef |
|
| 1448 |
typedef BAS Base; |
|
| 1453 | 1449 |
|
| 1454 | 1450 |
/// \brief Erase all nodes and arcs from the digraph. |
| 1455 | 1451 |
/// |
| 1456 | 1452 |
/// Erase all nodes and arcs from the digraph. |
| 1457 | 1453 |
/// |
| 1458 | 1454 |
void clear() {}
|
| 1459 | 1455 |
|
| 1460 | 1456 |
template <typename _Digraph> |
| 1461 | 1457 |
struct Constraints {
|
| 1462 | 1458 |
void constraints() {
|
| 1463 | 1459 |
checkConcept<Base, _Digraph>(); |
| 1464 | 1460 |
digraph.clear(); |
| 1465 | 1461 |
} |
| 1466 | 1462 |
|
| 1467 | 1463 |
_Digraph digraph; |
| 1468 | 1464 |
}; |
| 1469 | 1465 |
}; |
| 1470 | 1466 |
|
| 1471 | 1467 |
/// \brief An empty clearable base undirected graph class. |
| 1472 | 1468 |
/// |
| 1473 | 1469 |
/// This class provides beside the core undirected graph features |
| 1474 | 1470 |
/// core clear functions for the undirected graph structure. The |
| 1475 | 1471 |
/// main difference between the base and this interface is that |
| 1476 | 1472 |
/// the graph alterations should handled already on this level. |
| 1477 |
template <typename _Base = BaseGraphComponent> |
|
| 1478 |
class ClearableGraphComponent : public ClearableDigraphComponent<_Base> {
|
|
| 1473 |
template <typename BAS = BaseGraphComponent> |
|
| 1474 |
class ClearableGraphComponent : public ClearableDigraphComponent<BAS> {
|
|
| 1479 | 1475 |
public: |
| 1480 | 1476 |
|
| 1481 |
typedef |
|
| 1477 |
typedef BAS Base; |
|
| 1482 | 1478 |
|
| 1483 | 1479 |
template <typename _Graph> |
| 1484 | 1480 |
struct Constraints {
|
| 1485 | 1481 |
void constraints() {
|
| 1486 | 1482 |
checkConcept<ClearableGraphComponent<Base>, _Graph>(); |
| 1487 | 1483 |
} |
| 1488 | 1484 |
|
| 1489 | 1485 |
_Graph graph; |
| 1490 | 1486 |
}; |
| 1491 | 1487 |
}; |
| 1492 | 1488 |
|
| 1493 | 1489 |
} |
| 1494 | 1490 |
|
| 1495 | 1491 |
} |
| 1496 | 1492 |
|
| 1497 | 1493 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup concept |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief The concept of heaps. |
| 22 | 22 |
|
| 23 | 23 |
#ifndef LEMON_CONCEPTS_HEAP_H |
| 24 | 24 |
#define LEMON_CONCEPTS_HEAP_H |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concept_check.h> |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
namespace concepts {
|
| 32 | 32 |
|
| 33 | 33 |
/// \addtogroup concept |
| 34 | 34 |
/// @{
|
| 35 | 35 |
|
| 36 | 36 |
/// \brief The heap concept. |
| 37 | 37 |
/// |
| 38 |
/// Concept class describing the main interface of heaps. |
|
| 39 |
template <typename Priority, typename ItemIntMap> |
|
| 38 |
/// Concept class describing the main interface of heaps. A \e heap |
|
| 39 |
/// is a data structure for storing items with specified values called |
|
| 40 |
/// \e priorities in such a way that finding the item with minimum |
|
| 41 |
/// priority is efficient. In a heap one can change the priority of an |
|
| 42 |
/// item, add or erase an item, etc. |
|
| 43 |
/// |
|
| 44 |
/// \tparam PR Type of the priority of the items. |
|
| 45 |
/// \tparam IM A read and writable item map with int values, used |
|
| 46 |
/// internally to handle the cross references. |
|
| 47 |
/// \tparam Comp A functor class for the ordering of the priorities. |
|
| 48 |
/// The default is \c std::less<PR>. |
|
| 49 |
#ifdef DOXYGEN |
|
| 50 |
template <typename PR, typename IM, typename Comp = std::less<PR> > |
|
| 51 |
#else |
|
| 52 |
template <typename PR, typename IM> |
|
| 53 |
#endif |
|
| 40 | 54 |
class Heap {
|
| 41 | 55 |
public: |
| 42 | 56 |
|
| 57 |
/// Type of the item-int map. |
|
| 58 |
typedef IM ItemIntMap; |
|
| 59 |
/// Type of the priorities. |
|
| 60 |
typedef PR Prio; |
|
| 43 | 61 |
/// Type of the items stored in the heap. |
| 44 | 62 |
typedef typename ItemIntMap::Key Item; |
| 45 | 63 |
|
| 46 |
/// Type of the priorities. |
|
| 47 |
typedef Priority Prio; |
|
| 48 |
|
|
| 49 | 64 |
/// \brief Type to represent the states of the items. |
| 50 | 65 |
/// |
| 51 | 66 |
/// Each item has a state associated to it. It can be "in heap", |
| 52 | 67 |
/// "pre heap" or "post heap". The later two are indifferent |
| 53 | 68 |
/// from the point of view of the heap, but may be useful for |
| 54 | 69 |
/// the user. |
| 55 | 70 |
/// |
| 56 |
/// The \c ItemIntMap must be initialized in such a way, that it |
|
| 57 |
/// assigns \c PRE_HEAP (<tt>-1</tt>) to every item. |
|
| 71 |
/// The item-int map must be initialized in such way that it assigns |
|
| 72 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
| 58 | 73 |
enum State {
|
| 59 |
IN_HEAP = 0, |
|
| 60 |
PRE_HEAP = -1, |
|
| 61 |
|
|
| 74 |
IN_HEAP = 0, ///< The "in heap" state constant. |
|
| 75 |
PRE_HEAP = -1, ///< The "pre heap" state constant. |
|
| 76 |
POST_HEAP = -2 ///< The "post heap" state constant. |
|
| 62 | 77 |
}; |
| 63 | 78 |
|
| 64 | 79 |
/// \brief The constructor. |
| 65 | 80 |
/// |
| 66 | 81 |
/// The constructor. |
| 67 | 82 |
/// \param map A map that assigns \c int values to keys of type |
| 68 | 83 |
/// \c Item. It is used internally by the heap implementations to |
| 69 | 84 |
/// handle the cross references. The assigned value must be |
| 70 | 85 |
/// \c PRE_HEAP (<tt>-1</tt>) for every item. |
| 71 | 86 |
explicit Heap(ItemIntMap &map) {}
|
| 72 | 87 |
|
| 73 | 88 |
/// \brief The number of items stored in the heap. |
| 74 | 89 |
/// |
| 75 | 90 |
/// Returns the number of items stored in the heap. |
| 76 | 91 |
int size() const { return 0; }
|
| 77 | 92 |
|
| 78 | 93 |
/// \brief Checks if the heap is empty. |
| 79 | 94 |
/// |
| 80 | 95 |
/// Returns \c true if the heap is empty. |
| 81 | 96 |
bool empty() const { return false; }
|
| 82 | 97 |
|
| 83 | 98 |
/// \brief Makes the heap empty. |
| 84 | 99 |
/// |
| 85 | 100 |
/// Makes the heap empty. |
| 86 | 101 |
void clear(); |
| 87 | 102 |
|
| 88 | 103 |
/// \brief Inserts an item into the heap with the given priority. |
| 89 | 104 |
/// |
| 90 | 105 |
/// Inserts the given item into the heap with the given priority. |
| 91 | 106 |
/// \param i The item to insert. |
| 92 | 107 |
/// \param p The priority of the item. |
| 93 | 108 |
void push(const Item &i, const Prio &p) {}
|
| 94 | 109 |
|
| 95 | 110 |
/// \brief Returns the item having minimum priority. |
| 96 | 111 |
/// |
| 97 | 112 |
/// Returns the item having minimum priority. |
| 98 | 113 |
/// \pre The heap must be non-empty. |
| 99 | 114 |
Item top() const {}
|
| 100 | 115 |
|
| 101 | 116 |
/// \brief The minimum priority. |
| 102 | 117 |
/// |
| 103 | 118 |
/// Returns the minimum priority. |
| 104 | 119 |
/// \pre The heap must be non-empty. |
| 105 | 120 |
Prio prio() const {}
|
| 106 | 121 |
|
| 107 | 122 |
/// \brief Removes the item having minimum priority. |
| 108 | 123 |
/// |
| 109 | 124 |
/// Removes the item having minimum priority. |
| 110 | 125 |
/// \pre The heap must be non-empty. |
| 111 | 126 |
void pop() {}
|
| 112 | 127 |
|
| 113 | 128 |
/// \brief Removes an item from the heap. |
| 114 | 129 |
/// |
| 115 | 130 |
/// Removes the given item from the heap if it is already stored. |
| 116 | 131 |
/// \param i The item to delete. |
| 117 | 132 |
void erase(const Item &i) {}
|
| 118 | 133 |
|
| 119 | 134 |
/// \brief The priority of an item. |
| 120 | 135 |
/// |
| 121 | 136 |
/// Returns the priority of the given item. |
| 137 |
/// \param i The item. |
|
| 122 | 138 |
/// \pre \c i must be in the heap. |
| 123 |
/// \param i The item. |
|
| 124 | 139 |
Prio operator[](const Item &i) const {}
|
| 125 | 140 |
|
| 126 | 141 |
/// \brief Sets the priority of an item or inserts it, if it is |
| 127 | 142 |
/// not stored in the heap. |
| 128 | 143 |
/// |
| 129 | 144 |
/// This method sets the priority of the given item if it is |
| 130 | 145 |
/// already stored in the heap. |
| 131 | 146 |
/// Otherwise it inserts the given item with the given priority. |
| 132 | 147 |
/// |
| 133 | 148 |
/// \param i The item. |
| 134 | 149 |
/// \param p The priority. |
| 135 | 150 |
void set(const Item &i, const Prio &p) {}
|
| 136 | 151 |
|
| 137 | 152 |
/// \brief Decreases the priority of an item to the given value. |
| 138 | 153 |
/// |
| 139 | 154 |
/// Decreases the priority of an item to the given value. |
| 140 |
/// \pre \c i must be stored in the heap with priority at least \c p. |
|
| 141 | 155 |
/// \param i The item. |
| 142 | 156 |
/// \param p The priority. |
| 157 |
/// \pre \c i must be stored in the heap with priority at least \c p. |
|
| 143 | 158 |
void decrease(const Item &i, const Prio &p) {}
|
| 144 | 159 |
|
| 145 | 160 |
/// \brief Increases the priority of an item to the given value. |
| 146 | 161 |
/// |
| 147 | 162 |
/// Increases the priority of an item to the given value. |
| 148 |
/// \pre \c i must be stored in the heap with priority at most \c p. |
|
| 149 | 163 |
/// \param i The item. |
| 150 | 164 |
/// \param p The priority. |
| 165 |
/// \pre \c i must be stored in the heap with priority at most \c p. |
|
| 151 | 166 |
void increase(const Item &i, const Prio &p) {}
|
| 152 | 167 |
|
| 153 | 168 |
/// \brief Returns if an item is in, has already been in, or has |
| 154 | 169 |
/// never been in the heap. |
| 155 | 170 |
/// |
| 156 | 171 |
/// This method returns \c PRE_HEAP if the given item has never |
| 157 | 172 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
| 158 | 173 |
/// and \c POST_HEAP otherwise. |
| 159 | 174 |
/// In the latter case it is possible that the item will get back |
| 160 | 175 |
/// to the heap again. |
| 161 | 176 |
/// \param i The item. |
| 162 | 177 |
State state(const Item &i) const {}
|
| 163 | 178 |
|
| 164 | 179 |
/// \brief Sets the state of an item in the heap. |
| 165 | 180 |
/// |
| 166 | 181 |
/// Sets the state of the given item in the heap. It can be used |
| 167 | 182 |
/// to manually clear the heap when it is important to achive the |
| 168 | 183 |
/// better time complexity. |
| 169 | 184 |
/// \param i The item. |
| 170 | 185 |
/// \param st The state. It should not be \c IN_HEAP. |
| 171 | 186 |
void state(const Item& i, State st) {}
|
| 172 | 187 |
|
| 173 | 188 |
|
| 174 | 189 |
template <typename _Heap> |
| 175 | 190 |
struct Constraints {
|
| 176 | 191 |
public: |
| 177 | 192 |
void constraints() {
|
| 178 | 193 |
typedef typename _Heap::Item OwnItem; |
| 179 | 194 |
typedef typename _Heap::Prio OwnPrio; |
| 180 | 195 |
typedef typename _Heap::State OwnState; |
| 181 | 196 |
|
| 182 | 197 |
Item item; |
| 183 | 198 |
Prio prio; |
| 184 | 199 |
item=Item(); |
| 185 | 200 |
prio=Prio(); |
| 186 | 201 |
ignore_unused_variable_warning(item); |
| 187 | 202 |
ignore_unused_variable_warning(prio); |
| 188 | 203 |
|
| 189 | 204 |
OwnItem own_item; |
| 190 | 205 |
OwnPrio own_prio; |
| 191 | 206 |
OwnState own_state; |
| 192 | 207 |
own_item=Item(); |
| 193 | 208 |
own_prio=Prio(); |
| 194 | 209 |
ignore_unused_variable_warning(own_item); |
| 195 | 210 |
ignore_unused_variable_warning(own_prio); |
| 196 | 211 |
ignore_unused_variable_warning(own_state); |
| 197 | 212 |
|
| 198 | 213 |
_Heap heap1(map); |
| 199 | 214 |
_Heap heap2 = heap1; |
| 200 | 215 |
ignore_unused_variable_warning(heap1); |
| 201 | 216 |
ignore_unused_variable_warning(heap2); |
| 202 | 217 |
|
| 203 | 218 |
int s = heap.size(); |
| 204 | 219 |
ignore_unused_variable_warning(s); |
| 205 | 220 |
bool e = heap.empty(); |
| 206 | 221 |
ignore_unused_variable_warning(e); |
| 207 | 222 |
|
| 208 | 223 |
prio = heap.prio(); |
| 209 | 224 |
item = heap.top(); |
| 210 | 225 |
prio = heap[item]; |
| 211 | 226 |
own_prio = heap.prio(); |
| 212 | 227 |
own_item = heap.top(); |
| 213 | 228 |
own_prio = heap[own_item]; |
| 214 | 229 |
|
| 215 | 230 |
heap.push(item, prio); |
| 216 | 231 |
heap.push(own_item, own_prio); |
| 217 | 232 |
heap.pop(); |
| 218 | 233 |
|
| 219 | 234 |
heap.set(item, prio); |
| 220 | 235 |
heap.decrease(item, prio); |
| 221 | 236 |
heap.increase(item, prio); |
| 222 | 237 |
heap.set(own_item, own_prio); |
| 223 | 238 |
heap.decrease(own_item, own_prio); |
| 224 | 239 |
heap.increase(own_item, own_prio); |
| 225 | 240 |
|
| 226 | 241 |
heap.erase(item); |
| 227 | 242 |
heap.erase(own_item); |
| 228 | 243 |
heap.clear(); |
| 229 | 244 |
|
| 230 | 245 |
own_state = heap.state(own_item); |
| 231 | 246 |
heap.state(own_item, own_state); |
| 232 | 247 |
|
| 233 | 248 |
own_state = _Heap::PRE_HEAP; |
| 234 | 249 |
own_state = _Heap::IN_HEAP; |
| 235 | 250 |
own_state = _Heap::POST_HEAP; |
| 236 | 251 |
} |
| 237 | 252 |
|
| 238 | 253 |
_Heap& heap; |
| 239 | 254 |
ItemIntMap& map; |
| 240 | 255 |
}; |
| 241 | 256 |
}; |
| 242 | 257 |
|
| 243 | 258 |
/// @} |
| 244 | 259 |
} // namespace lemon |
| 245 | 260 |
} |
| 246 | 261 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup concept |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief Classes for representing paths in digraphs. |
| 22 | 22 |
/// |
| 23 | 23 |
|
| 24 | 24 |
#ifndef LEMON_CONCEPTS_PATH_H |
| 25 | 25 |
#define LEMON_CONCEPTS_PATH_H |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/core.h> |
| 28 | 28 |
#include <lemon/concept_check.h> |
| 29 | 29 |
|
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
namespace concepts {
|
| 32 | 32 |
|
| 33 | 33 |
/// \addtogroup concept |
| 34 | 34 |
/// @{
|
| 35 | 35 |
|
| 36 | 36 |
/// \brief A skeleton structure for representing directed paths in |
| 37 | 37 |
/// a digraph. |
| 38 | 38 |
/// |
| 39 | 39 |
/// A skeleton structure for representing directed paths in a |
| 40 | 40 |
/// digraph. |
| 41 |
/// \tparam |
|
| 41 |
/// \tparam GR The digraph type in which the path is. |
|
| 42 | 42 |
/// |
| 43 | 43 |
/// In a sense, the path can be treated as a list of arcs. The |
| 44 | 44 |
/// lemon path type stores just this list. As a consequence it |
| 45 | 45 |
/// cannot enumerate the nodes in the path and the zero length |
| 46 | 46 |
/// paths cannot store the source. |
| 47 | 47 |
/// |
| 48 |
template <typename |
|
| 48 |
template <typename GR> |
|
| 49 | 49 |
class Path {
|
| 50 | 50 |
public: |
| 51 | 51 |
|
| 52 | 52 |
/// Type of the underlying digraph. |
| 53 |
typedef |
|
| 53 |
typedef GR Digraph; |
|
| 54 | 54 |
/// Arc type of the underlying digraph. |
| 55 | 55 |
typedef typename Digraph::Arc Arc; |
| 56 | 56 |
|
| 57 | 57 |
class ArcIt; |
| 58 | 58 |
|
| 59 | 59 |
/// \brief Default constructor |
| 60 | 60 |
Path() {}
|
| 61 | 61 |
|
| 62 | 62 |
/// \brief Template constructor |
| 63 | 63 |
template <typename CPath> |
| 64 | 64 |
Path(const CPath& cpath) {}
|
| 65 | 65 |
|
| 66 | 66 |
/// \brief Template assigment |
| 67 | 67 |
template <typename CPath> |
| 68 | 68 |
Path& operator=(const CPath& cpath) {
|
| 69 | 69 |
ignore_unused_variable_warning(cpath); |
| 70 | 70 |
return *this; |
| 71 | 71 |
} |
| 72 | 72 |
|
| 73 | 73 |
/// Length of the path ie. the number of arcs in the path. |
| 74 | 74 |
int length() const { return 0;}
|
| 75 | 75 |
|
| 76 | 76 |
/// Returns whether the path is empty. |
| 77 | 77 |
bool empty() const { return true;}
|
| 78 | 78 |
|
| 79 | 79 |
/// Resets the path to an empty path. |
| 80 | 80 |
void clear() {}
|
| 81 | 81 |
|
| 82 | 82 |
/// \brief LEMON style iterator for path arcs |
| 83 | 83 |
/// |
| 84 | 84 |
/// This class is used to iterate on the arcs of the paths. |
| 85 | 85 |
class ArcIt {
|
| 86 | 86 |
public: |
| 87 | 87 |
/// Default constructor |
| 88 | 88 |
ArcIt() {}
|
| 89 | 89 |
/// Invalid constructor |
| 90 | 90 |
ArcIt(Invalid) {}
|
| 91 | 91 |
/// Constructor for first arc |
| 92 | 92 |
ArcIt(const Path &) {}
|
| 93 | 93 |
|
| 94 | 94 |
/// Conversion to Arc |
| 95 | 95 |
operator Arc() const { return INVALID; }
|
| 96 | 96 |
|
| 97 | 97 |
/// Next arc |
| 98 | 98 |
ArcIt& operator++() {return *this;}
|
| 99 | 99 |
|
| 100 | 100 |
/// Comparison operator |
| 101 | 101 |
bool operator==(const ArcIt&) const {return true;}
|
| 102 | 102 |
/// Comparison operator |
| 103 | 103 |
bool operator!=(const ArcIt&) const {return true;}
|
| 104 | 104 |
/// Comparison operator |
| 105 | 105 |
bool operator<(const ArcIt&) const {return false;}
|
| 106 | 106 |
|
| 107 | 107 |
}; |
| 108 | 108 |
|
| 109 | 109 |
template <typename _Path> |
| 110 | 110 |
struct Constraints {
|
| 111 | 111 |
void constraints() {
|
| 112 | 112 |
Path<Digraph> pc; |
| 113 | 113 |
_Path p, pp(pc); |
| 114 | 114 |
int l = p.length(); |
| 115 | 115 |
int e = p.empty(); |
| 116 | 116 |
p.clear(); |
| 117 | 117 |
|
| 118 | 118 |
p = pc; |
| 119 | 119 |
|
| 120 | 120 |
typename _Path::ArcIt id, ii(INVALID), i(p); |
| 121 | 121 |
|
| 122 | 122 |
++i; |
| 123 | 123 |
typename Digraph::Arc ed = i; |
| 124 | 124 |
|
| 125 | 125 |
e = (i == ii); |
| 126 | 126 |
e = (i != ii); |
| 127 | 127 |
e = (i < ii); |
| 128 | 128 |
|
| 129 | 129 |
ignore_unused_variable_warning(l); |
| 130 | 130 |
ignore_unused_variable_warning(pp); |
| 131 | 131 |
ignore_unused_variable_warning(e); |
| 132 | 132 |
ignore_unused_variable_warning(id); |
| 133 | 133 |
ignore_unused_variable_warning(ii); |
| 134 | 134 |
ignore_unused_variable_warning(ed); |
| 135 | 135 |
} |
| 136 | 136 |
}; |
| 137 | 137 |
|
| 138 | 138 |
}; |
| 139 | 139 |
|
| 140 | 140 |
namespace _path_bits {
|
| 141 | 141 |
|
| 142 | 142 |
template <typename _Digraph, typename _Path, typename RevPathTag = void> |
| 143 | 143 |
struct PathDumperConstraints {
|
| 144 | 144 |
void constraints() {
|
| 145 | 145 |
int l = p.length(); |
| 146 | 146 |
int e = p.empty(); |
| 147 | 147 |
|
| 148 | 148 |
typename _Path::ArcIt id, i(p); |
| 149 | 149 |
|
| 150 | 150 |
++i; |
| 151 | 151 |
typename _Digraph::Arc ed = i; |
| 152 | 152 |
|
| 153 | 153 |
e = (i == INVALID); |
| 154 | 154 |
e = (i != INVALID); |
| 155 | 155 |
|
| 156 | 156 |
ignore_unused_variable_warning(l); |
| 157 | 157 |
ignore_unused_variable_warning(e); |
| 158 | 158 |
ignore_unused_variable_warning(id); |
| 159 | 159 |
ignore_unused_variable_warning(ed); |
| 160 | 160 |
} |
| 161 | 161 |
_Path& p; |
| 162 | 162 |
}; |
| 163 | 163 |
|
| 164 | 164 |
template <typename _Digraph, typename _Path> |
| 165 | 165 |
struct PathDumperConstraints< |
| 166 | 166 |
_Digraph, _Path, |
| 167 | 167 |
typename enable_if<typename _Path::RevPathTag, void>::type |
| 168 | 168 |
> {
|
| 169 | 169 |
void constraints() {
|
| 170 | 170 |
int l = p.length(); |
| 171 | 171 |
int e = p.empty(); |
| 172 | 172 |
|
| 173 | 173 |
typename _Path::RevArcIt id, i(p); |
| 174 | 174 |
|
| 175 | 175 |
++i; |
| 176 | 176 |
typename _Digraph::Arc ed = i; |
| 177 | 177 |
|
| 178 | 178 |
e = (i == INVALID); |
| 179 | 179 |
e = (i != INVALID); |
| 180 | 180 |
|
| 181 | 181 |
ignore_unused_variable_warning(l); |
| 182 | 182 |
ignore_unused_variable_warning(e); |
| 183 | 183 |
ignore_unused_variable_warning(id); |
| 184 | 184 |
ignore_unused_variable_warning(ed); |
| 185 | 185 |
} |
| 186 | 186 |
_Path& p; |
| 187 | 187 |
}; |
| 188 | 188 |
|
| 189 | 189 |
} |
| 190 | 190 |
|
| 191 | 191 |
|
| 192 | 192 |
/// \brief A skeleton structure for path dumpers. |
| 193 | 193 |
/// |
| 194 | 194 |
/// A skeleton structure for path dumpers. The path dumpers are |
| 195 | 195 |
/// the generalization of the paths. The path dumpers can |
| 196 | 196 |
/// enumerate the arcs of the path wheter in forward or in |
| 197 | 197 |
/// backward order. In most time these classes are not used |
| 198 | 198 |
/// directly rather it used to assign a dumped class to a real |
| 199 | 199 |
/// path type. |
| 200 | 200 |
/// |
| 201 | 201 |
/// The main purpose of this concept is that the shortest path |
| 202 | 202 |
/// algorithms can enumerate easily the arcs in reverse order. |
| 203 | 203 |
/// If we would like to give back a real path from these |
| 204 | 204 |
/// algorithms then we should create a temporarly path object. In |
| 205 | 205 |
/// LEMON such algorithms gives back a path dumper what can |
| 206 | 206 |
/// assigned to a real path and the dumpers can be implemented as |
| 207 | 207 |
/// an adaptor class to the predecessor map. |
| 208 |
|
|
| 209 |
/// \tparam _Digraph The digraph type in which the path is. |
|
| 208 |
/// |
|
| 209 |
/// \tparam GR The digraph type in which the path is. |
|
| 210 | 210 |
/// |
| 211 | 211 |
/// The paths can be constructed from any path type by a |
| 212 | 212 |
/// template constructor or a template assignment operator. |
| 213 |
/// |
|
| 214 |
template <typename _Digraph> |
|
| 213 |
template <typename GR> |
|
| 215 | 214 |
class PathDumper {
|
| 216 | 215 |
public: |
| 217 | 216 |
|
| 218 | 217 |
/// Type of the underlying digraph. |
| 219 |
typedef |
|
| 218 |
typedef GR Digraph; |
|
| 220 | 219 |
/// Arc type of the underlying digraph. |
| 221 | 220 |
typedef typename Digraph::Arc Arc; |
| 222 | 221 |
|
| 223 | 222 |
/// Length of the path ie. the number of arcs in the path. |
| 224 | 223 |
int length() const { return 0;}
|
| 225 | 224 |
|
| 226 | 225 |
/// Returns whether the path is empty. |
| 227 | 226 |
bool empty() const { return true;}
|
| 228 | 227 |
|
| 229 | 228 |
/// \brief Forward or reverse dumping |
| 230 | 229 |
/// |
| 231 | 230 |
/// If the RevPathTag is defined and true then reverse dumping |
| 232 | 231 |
/// is provided in the path dumper. In this case instead of the |
| 233 | 232 |
/// ArcIt the RevArcIt iterator should be implemented in the |
| 234 | 233 |
/// dumper. |
| 235 | 234 |
typedef False RevPathTag; |
| 236 | 235 |
|
| 237 | 236 |
/// \brief LEMON style iterator for path arcs |
| 238 | 237 |
/// |
| 239 | 238 |
/// This class is used to iterate on the arcs of the paths. |
| 240 | 239 |
class ArcIt {
|
| 241 | 240 |
public: |
| 242 | 241 |
/// Default constructor |
| 243 | 242 |
ArcIt() {}
|
| 244 | 243 |
/// Invalid constructor |
| 245 | 244 |
ArcIt(Invalid) {}
|
| 246 | 245 |
/// Constructor for first arc |
| 247 | 246 |
ArcIt(const PathDumper&) {}
|
| 248 | 247 |
|
| 249 | 248 |
/// Conversion to Arc |
| 250 | 249 |
operator Arc() const { return INVALID; }
|
| 251 | 250 |
|
| 252 | 251 |
/// Next arc |
| 253 | 252 |
ArcIt& operator++() {return *this;}
|
| 254 | 253 |
|
| 255 | 254 |
/// Comparison operator |
| 256 | 255 |
bool operator==(const ArcIt&) const {return true;}
|
| 257 | 256 |
/// Comparison operator |
| 258 | 257 |
bool operator!=(const ArcIt&) const {return true;}
|
| 259 | 258 |
/// Comparison operator |
| 260 | 259 |
bool operator<(const ArcIt&) const {return false;}
|
| 261 | 260 |
|
| 262 | 261 |
}; |
| 263 | 262 |
|
| 264 | 263 |
/// \brief LEMON style iterator for path arcs |
| 265 | 264 |
/// |
| 266 | 265 |
/// This class is used to iterate on the arcs of the paths in |
| 267 | 266 |
/// reverse direction. |
| 268 | 267 |
class RevArcIt {
|
| 269 | 268 |
public: |
| 270 | 269 |
/// Default constructor |
| 271 | 270 |
RevArcIt() {}
|
| 272 | 271 |
/// Invalid constructor |
| 273 | 272 |
RevArcIt(Invalid) {}
|
| 274 | 273 |
/// Constructor for first arc |
| 275 | 274 |
RevArcIt(const PathDumper &) {}
|
| 276 | 275 |
|
| 277 | 276 |
/// Conversion to Arc |
| 278 | 277 |
operator Arc() const { return INVALID; }
|
| 279 | 278 |
|
| 280 | 279 |
/// Next arc |
| 281 | 280 |
RevArcIt& operator++() {return *this;}
|
| 282 | 281 |
|
| 283 | 282 |
/// Comparison operator |
| 284 | 283 |
bool operator==(const RevArcIt&) const {return true;}
|
| 285 | 284 |
/// Comparison operator |
| 286 | 285 |
bool operator!=(const RevArcIt&) const {return true;}
|
| 287 | 286 |
/// Comparison operator |
| 288 | 287 |
bool operator<(const RevArcIt&) const {return false;}
|
| 289 | 288 |
|
| 290 | 289 |
}; |
| 291 | 290 |
|
| 292 | 291 |
template <typename _Path> |
| 293 | 292 |
struct Constraints {
|
| 294 | 293 |
void constraints() {
|
| 295 | 294 |
function_requires<_path_bits:: |
| 296 | 295 |
PathDumperConstraints<Digraph, _Path> >(); |
| 297 | 296 |
} |
| 298 | 297 |
}; |
| 299 | 298 |
|
| 300 | 299 |
}; |
| 301 | 300 |
|
| 302 | 301 |
|
| 303 | 302 |
///@} |
| 304 | 303 |
} |
| 305 | 304 |
|
| 306 | 305 |
} // namespace lemon |
| 307 | 306 |
|
| 308 | 307 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CONNECTIVITY_H |
| 20 | 20 |
#define LEMON_CONNECTIVITY_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/dfs.h> |
| 23 | 23 |
#include <lemon/bfs.h> |
| 24 | 24 |
#include <lemon/core.h> |
| 25 | 25 |
#include <lemon/maps.h> |
| 26 | 26 |
#include <lemon/adaptors.h> |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/concepts/digraph.h> |
| 29 | 29 |
#include <lemon/concepts/graph.h> |
| 30 | 30 |
#include <lemon/concept_check.h> |
| 31 | 31 |
|
| 32 | 32 |
#include <stack> |
| 33 | 33 |
#include <functional> |
| 34 | 34 |
|
| 35 | 35 |
/// \ingroup connectivity |
| 36 | 36 |
/// \file |
| 37 | 37 |
/// \brief Connectivity algorithms |
| 38 | 38 |
/// |
| 39 | 39 |
/// Connectivity algorithms |
| 40 | 40 |
|
| 41 | 41 |
namespace lemon {
|
| 42 | 42 |
|
| 43 | 43 |
/// \ingroup connectivity |
| 44 | 44 |
/// |
| 45 | 45 |
/// \brief Check whether the given undirected graph is connected. |
| 46 | 46 |
/// |
| 47 | 47 |
/// Check whether the given undirected graph is connected. |
| 48 | 48 |
/// \param graph The undirected graph. |
| 49 |
/// \return |
|
| 49 |
/// \return \c true when there is path between any two nodes in the graph. |
|
| 50 | 50 |
/// \note By definition, the empty graph is connected. |
| 51 | 51 |
template <typename Graph> |
| 52 | 52 |
bool connected(const Graph& graph) {
|
| 53 | 53 |
checkConcept<concepts::Graph, Graph>(); |
| 54 | 54 |
typedef typename Graph::NodeIt NodeIt; |
| 55 | 55 |
if (NodeIt(graph) == INVALID) return true; |
| 56 | 56 |
Dfs<Graph> dfs(graph); |
| 57 | 57 |
dfs.run(NodeIt(graph)); |
| 58 | 58 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 59 | 59 |
if (!dfs.reached(it)) {
|
| 60 | 60 |
return false; |
| 61 | 61 |
} |
| 62 | 62 |
} |
| 63 | 63 |
return true; |
| 64 | 64 |
} |
| 65 | 65 |
|
| 66 | 66 |
/// \ingroup connectivity |
| 67 | 67 |
/// |
| 68 | 68 |
/// \brief Count the number of connected components of an undirected graph |
| 69 | 69 |
/// |
| 70 | 70 |
/// Count the number of connected components of an undirected graph |
| 71 | 71 |
/// |
| 72 | 72 |
/// \param graph The graph. It must be undirected. |
| 73 | 73 |
/// \return The number of components |
| 74 | 74 |
/// \note By definition, the empty graph consists |
| 75 | 75 |
/// of zero connected components. |
| 76 | 76 |
template <typename Graph> |
| 77 | 77 |
int countConnectedComponents(const Graph &graph) {
|
| 78 | 78 |
checkConcept<concepts::Graph, Graph>(); |
| 79 | 79 |
typedef typename Graph::Node Node; |
| 80 | 80 |
typedef typename Graph::Arc Arc; |
| 81 | 81 |
|
| 82 | 82 |
typedef NullMap<Node, Arc> PredMap; |
| 83 | 83 |
typedef NullMap<Node, int> DistMap; |
| 84 | 84 |
|
| 85 | 85 |
int compNum = 0; |
| 86 | 86 |
typename Bfs<Graph>:: |
| 87 | 87 |
template SetPredMap<PredMap>:: |
| 88 | 88 |
template SetDistMap<DistMap>:: |
| 89 | 89 |
Create bfs(graph); |
| 90 | 90 |
|
| 91 | 91 |
PredMap predMap; |
| 92 | 92 |
bfs.predMap(predMap); |
| 93 | 93 |
|
| 94 | 94 |
DistMap distMap; |
| 95 | 95 |
bfs.distMap(distMap); |
| 96 | 96 |
|
| 97 | 97 |
bfs.init(); |
| 98 | 98 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
| 99 | 99 |
if (!bfs.reached(n)) {
|
| 100 | 100 |
bfs.addSource(n); |
| 101 | 101 |
bfs.start(); |
| 102 | 102 |
++compNum; |
| 103 | 103 |
} |
| 104 | 104 |
} |
| 105 | 105 |
return compNum; |
| 106 | 106 |
} |
| 107 | 107 |
|
| 108 | 108 |
/// \ingroup connectivity |
| 109 | 109 |
/// |
| 110 | 110 |
/// \brief Find the connected components of an undirected graph |
| 111 | 111 |
/// |
| 112 | 112 |
/// Find the connected components of an undirected graph. |
| 113 | 113 |
/// |
| 114 | 114 |
/// \param graph The graph. It must be undirected. |
| 115 | 115 |
/// \retval compMap A writable node map. The values will be set from 0 to |
| 116 | 116 |
/// the number of the connected components minus one. Each values of the map |
| 117 | 117 |
/// will be set exactly once, the values of a certain component will be |
| 118 | 118 |
/// set continuously. |
| 119 | 119 |
/// \return The number of components |
| 120 | 120 |
/// |
| 121 | 121 |
template <class Graph, class NodeMap> |
| 122 | 122 |
int connectedComponents(const Graph &graph, NodeMap &compMap) {
|
| 123 | 123 |
checkConcept<concepts::Graph, Graph>(); |
| 124 | 124 |
typedef typename Graph::Node Node; |
| 125 | 125 |
typedef typename Graph::Arc Arc; |
| 126 | 126 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| 127 | 127 |
|
| 128 | 128 |
typedef NullMap<Node, Arc> PredMap; |
| 129 | 129 |
typedef NullMap<Node, int> DistMap; |
| 130 | 130 |
|
| 131 | 131 |
int compNum = 0; |
| 132 | 132 |
typename Bfs<Graph>:: |
| 133 | 133 |
template SetPredMap<PredMap>:: |
| 134 | 134 |
template SetDistMap<DistMap>:: |
| 135 | 135 |
Create bfs(graph); |
| 136 | 136 |
|
| 137 | 137 |
PredMap predMap; |
| 138 | 138 |
bfs.predMap(predMap); |
| 139 | 139 |
|
| 140 | 140 |
DistMap distMap; |
| 141 | 141 |
bfs.distMap(distMap); |
| 142 | 142 |
|
| 143 | 143 |
bfs.init(); |
| 144 | 144 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
| 145 | 145 |
if(!bfs.reached(n)) {
|
| 146 | 146 |
bfs.addSource(n); |
| 147 | 147 |
while (!bfs.emptyQueue()) {
|
| 148 | 148 |
compMap.set(bfs.nextNode(), compNum); |
| 149 | 149 |
bfs.processNextNode(); |
| 150 | 150 |
} |
| 151 | 151 |
++compNum; |
| 152 | 152 |
} |
| 153 | 153 |
} |
| 154 | 154 |
return compNum; |
| 155 | 155 |
} |
| 156 | 156 |
|
| 157 | 157 |
namespace _connectivity_bits {
|
| 158 | 158 |
|
| 159 | 159 |
template <typename Digraph, typename Iterator > |
| 160 | 160 |
struct LeaveOrderVisitor : public DfsVisitor<Digraph> {
|
| 161 | 161 |
public: |
| 162 | 162 |
typedef typename Digraph::Node Node; |
| 163 | 163 |
LeaveOrderVisitor(Iterator it) : _it(it) {}
|
| 164 | 164 |
|
| 165 | 165 |
void leave(const Node& node) {
|
| 166 | 166 |
*(_it++) = node; |
| 167 | 167 |
} |
| 168 | 168 |
|
| 169 | 169 |
private: |
| 170 | 170 |
Iterator _it; |
| 171 | 171 |
}; |
| 172 | 172 |
|
| 173 | 173 |
template <typename Digraph, typename Map> |
| 174 | 174 |
struct FillMapVisitor : public DfsVisitor<Digraph> {
|
| 175 | 175 |
public: |
| 176 | 176 |
typedef typename Digraph::Node Node; |
| 177 | 177 |
typedef typename Map::Value Value; |
| 178 | 178 |
|
| 179 | 179 |
FillMapVisitor(Map& map, Value& value) |
| 180 | 180 |
: _map(map), _value(value) {}
|
| 181 | 181 |
|
| 182 | 182 |
void reach(const Node& node) {
|
| 183 | 183 |
_map.set(node, _value); |
| 184 | 184 |
} |
| 185 | 185 |
private: |
| 186 | 186 |
Map& _map; |
| 187 | 187 |
Value& _value; |
| 188 | 188 |
}; |
| 189 | 189 |
|
| 190 | 190 |
template <typename Digraph, typename ArcMap> |
| 191 | 191 |
struct StronglyConnectedCutArcsVisitor : public DfsVisitor<Digraph> {
|
| 192 | 192 |
public: |
| 193 | 193 |
typedef typename Digraph::Node Node; |
| 194 | 194 |
typedef typename Digraph::Arc Arc; |
| 195 | 195 |
|
| 196 | 196 |
StronglyConnectedCutArcsVisitor(const Digraph& digraph, |
| 197 | 197 |
ArcMap& cutMap, |
| 198 | 198 |
int& cutNum) |
| 199 | 199 |
: _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum), |
| 200 | 200 |
_compMap(digraph, -1), _num(-1) {
|
| 201 | 201 |
} |
| 202 | 202 |
|
| 203 | 203 |
void start(const Node&) {
|
| 204 | 204 |
++_num; |
| 205 | 205 |
} |
| 206 | 206 |
|
| 207 | 207 |
void reach(const Node& node) {
|
| 208 | 208 |
_compMap.set(node, _num); |
| 209 | 209 |
} |
| 210 | 210 |
|
| 211 | 211 |
void examine(const Arc& arc) {
|
| 212 | 212 |
if (_compMap[_digraph.source(arc)] != |
| 213 | 213 |
_compMap[_digraph.target(arc)]) {
|
| 214 | 214 |
_cutMap.set(arc, true); |
| 215 | 215 |
++_cutNum; |
| 216 | 216 |
} |
| 217 | 217 |
} |
| 218 | 218 |
private: |
| 219 | 219 |
const Digraph& _digraph; |
| 220 | 220 |
ArcMap& _cutMap; |
| 221 | 221 |
int& _cutNum; |
| 222 | 222 |
|
| 223 | 223 |
typename Digraph::template NodeMap<int> _compMap; |
| 224 | 224 |
int _num; |
| 225 | 225 |
}; |
| 226 | 226 |
|
| 227 | 227 |
} |
| 228 | 228 |
|
| 229 | 229 |
|
| 230 | 230 |
/// \ingroup connectivity |
| 231 | 231 |
/// |
| 232 | 232 |
/// \brief Check whether the given directed graph is strongly connected. |
| 233 | 233 |
/// |
| 234 | 234 |
/// Check whether the given directed graph is strongly connected. The |
| 235 | 235 |
/// graph is strongly connected when any two nodes of the graph are |
| 236 | 236 |
/// connected with directed paths in both direction. |
| 237 |
/// \return |
|
| 237 |
/// \return \c false when the graph is not strongly connected. |
|
| 238 | 238 |
/// \see connected |
| 239 | 239 |
/// |
| 240 | 240 |
/// \note By definition, the empty graph is strongly connected. |
| 241 | 241 |
template <typename Digraph> |
| 242 | 242 |
bool stronglyConnected(const Digraph& digraph) {
|
| 243 | 243 |
checkConcept<concepts::Digraph, Digraph>(); |
| 244 | 244 |
|
| 245 | 245 |
typedef typename Digraph::Node Node; |
| 246 | 246 |
typedef typename Digraph::NodeIt NodeIt; |
| 247 | 247 |
|
| 248 | 248 |
typename Digraph::Node source = NodeIt(digraph); |
| 249 | 249 |
if (source == INVALID) return true; |
| 250 | 250 |
|
| 251 | 251 |
using namespace _connectivity_bits; |
| 252 | 252 |
|
| 253 | 253 |
typedef DfsVisitor<Digraph> Visitor; |
| 254 | 254 |
Visitor visitor; |
| 255 | 255 |
|
| 256 | 256 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| 257 | 257 |
dfs.init(); |
| 258 | 258 |
dfs.addSource(source); |
| 259 | 259 |
dfs.start(); |
| 260 | 260 |
|
| 261 | 261 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 262 | 262 |
if (!dfs.reached(it)) {
|
| 263 | 263 |
return false; |
| 264 | 264 |
} |
| 265 | 265 |
} |
| 266 | 266 |
|
| 267 | 267 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 268 | 268 |
typedef typename RDigraph::NodeIt RNodeIt; |
| 269 | 269 |
RDigraph rdigraph(digraph); |
| 270 | 270 |
|
| 271 | 271 |
typedef DfsVisitor<Digraph> RVisitor; |
| 272 | 272 |
RVisitor rvisitor; |
| 273 | 273 |
|
| 274 | 274 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| 275 | 275 |
rdfs.init(); |
| 276 | 276 |
rdfs.addSource(source); |
| 277 | 277 |
rdfs.start(); |
| 278 | 278 |
|
| 279 | 279 |
for (RNodeIt it(rdigraph); it != INVALID; ++it) {
|
| 280 | 280 |
if (!rdfs.reached(it)) {
|
| 281 | 281 |
return false; |
| 282 | 282 |
} |
| 283 | 283 |
} |
| 284 | 284 |
|
| 285 | 285 |
return true; |
| 286 | 286 |
} |
| 287 | 287 |
|
| 288 | 288 |
/// \ingroup connectivity |
| 289 | 289 |
/// |
| 290 | 290 |
/// \brief Count the strongly connected components of a directed graph |
| 291 | 291 |
/// |
| 292 | 292 |
/// Count the strongly connected components of a directed graph. |
| 293 | 293 |
/// The strongly connected components are the classes of an |
| 294 | 294 |
/// equivalence relation on the nodes of the graph. Two nodes are in |
| 295 | 295 |
/// the same class if they are connected with directed paths in both |
| 296 | 296 |
/// direction. |
| 297 | 297 |
/// |
| 298 | 298 |
/// \param digraph The graph. |
| 299 | 299 |
/// \return The number of components |
| 300 | 300 |
/// \note By definition, the empty graph has zero |
| 301 | 301 |
/// strongly connected components. |
| 302 | 302 |
template <typename Digraph> |
| 303 | 303 |
int countStronglyConnectedComponents(const Digraph& digraph) {
|
| 304 | 304 |
checkConcept<concepts::Digraph, Digraph>(); |
| 305 | 305 |
|
| 306 | 306 |
using namespace _connectivity_bits; |
| 307 | 307 |
|
| 308 | 308 |
typedef typename Digraph::Node Node; |
| 309 | 309 |
typedef typename Digraph::Arc Arc; |
| 310 | 310 |
typedef typename Digraph::NodeIt NodeIt; |
| 311 | 311 |
typedef typename Digraph::ArcIt ArcIt; |
| 312 | 312 |
|
| 313 | 313 |
typedef std::vector<Node> Container; |
| 314 | 314 |
typedef typename Container::iterator Iterator; |
| 315 | 315 |
|
| 316 | 316 |
Container nodes(countNodes(digraph)); |
| 317 | 317 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| 318 | 318 |
Visitor visitor(nodes.begin()); |
| 319 | 319 |
|
| 320 | 320 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| 321 | 321 |
dfs.init(); |
| 322 | 322 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 323 | 323 |
if (!dfs.reached(it)) {
|
| 324 | 324 |
dfs.addSource(it); |
| 325 | 325 |
dfs.start(); |
| 326 | 326 |
} |
| 327 | 327 |
} |
| 328 | 328 |
|
| 329 | 329 |
typedef typename Container::reverse_iterator RIterator; |
| 330 | 330 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 331 | 331 |
|
| 332 | 332 |
RDigraph rdigraph(digraph); |
| 333 | 333 |
|
| 334 | 334 |
typedef DfsVisitor<Digraph> RVisitor; |
| 335 | 335 |
RVisitor rvisitor; |
| 336 | 336 |
|
| 337 | 337 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| 338 | 338 |
|
| 339 | 339 |
int compNum = 0; |
| 340 | 340 |
|
| 341 | 341 |
rdfs.init(); |
| 342 | 342 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
| 343 | 343 |
if (!rdfs.reached(*it)) {
|
| 344 | 344 |
rdfs.addSource(*it); |
| 345 | 345 |
rdfs.start(); |
| 346 | 346 |
++compNum; |
| 347 | 347 |
} |
| 348 | 348 |
} |
| 349 | 349 |
return compNum; |
| 350 | 350 |
} |
| 351 | 351 |
|
| 352 | 352 |
/// \ingroup connectivity |
| 353 | 353 |
/// |
| 354 | 354 |
/// \brief Find the strongly connected components of a directed graph |
| 355 | 355 |
/// |
| 356 | 356 |
/// Find the strongly connected components of a directed graph. The |
| 357 | 357 |
/// strongly connected components are the classes of an equivalence |
| 358 | 358 |
/// relation on the nodes of the graph. Two nodes are in |
| 359 | 359 |
/// relationship when there are directed paths between them in both |
| 360 | 360 |
/// direction. In addition, the numbering of components will satisfy |
| 361 | 361 |
/// that there is no arc going from a higher numbered component to |
| 362 | 362 |
/// a lower. |
| 363 | 363 |
/// |
| 364 | 364 |
/// \param digraph The digraph. |
| 365 | 365 |
/// \retval compMap A writable node map. The values will be set from 0 to |
| 366 | 366 |
/// the number of the strongly connected components minus one. Each value |
| 367 | 367 |
/// of the map will be set exactly once, the values of a certain component |
| 368 | 368 |
/// will be set continuously. |
| 369 | 369 |
/// \return The number of components |
| 370 | 370 |
/// |
| 371 | 371 |
template <typename Digraph, typename NodeMap> |
| 372 | 372 |
int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
|
| 373 | 373 |
checkConcept<concepts::Digraph, Digraph>(); |
| 374 | 374 |
typedef typename Digraph::Node Node; |
| 375 | 375 |
typedef typename Digraph::NodeIt NodeIt; |
| 376 | 376 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| 377 | 377 |
|
| 378 | 378 |
using namespace _connectivity_bits; |
| 379 | 379 |
|
| 380 | 380 |
typedef std::vector<Node> Container; |
| 381 | 381 |
typedef typename Container::iterator Iterator; |
| 382 | 382 |
|
| 383 | 383 |
Container nodes(countNodes(digraph)); |
| 384 | 384 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| 385 | 385 |
Visitor visitor(nodes.begin()); |
| 386 | 386 |
|
| 387 | 387 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| 388 | 388 |
dfs.init(); |
| 389 | 389 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 390 | 390 |
if (!dfs.reached(it)) {
|
| 391 | 391 |
dfs.addSource(it); |
| 392 | 392 |
dfs.start(); |
| 393 | 393 |
} |
| 394 | 394 |
} |
| 395 | 395 |
|
| 396 | 396 |
typedef typename Container::reverse_iterator RIterator; |
| 397 | 397 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 398 | 398 |
|
| 399 | 399 |
RDigraph rdigraph(digraph); |
| 400 | 400 |
|
| 401 | 401 |
int compNum = 0; |
| 402 | 402 |
|
| 403 | 403 |
typedef FillMapVisitor<RDigraph, NodeMap> RVisitor; |
| 404 | 404 |
RVisitor rvisitor(compMap, compNum); |
| 405 | 405 |
|
| 406 | 406 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| 407 | 407 |
|
| 408 | 408 |
rdfs.init(); |
| 409 | 409 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
| 410 | 410 |
if (!rdfs.reached(*it)) {
|
| 411 | 411 |
rdfs.addSource(*it); |
| 412 | 412 |
rdfs.start(); |
| 413 | 413 |
++compNum; |
| 414 | 414 |
} |
| 415 | 415 |
} |
| 416 | 416 |
return compNum; |
| 417 | 417 |
} |
| 418 | 418 |
|
| 419 | 419 |
/// \ingroup connectivity |
| 420 | 420 |
/// |
| 421 | 421 |
/// \brief Find the cut arcs of the strongly connected components. |
| 422 | 422 |
/// |
| 423 | 423 |
/// Find the cut arcs of the strongly connected components. |
| 424 | 424 |
/// The strongly connected components are the classes of an equivalence |
| 425 | 425 |
/// relation on the nodes of the graph. Two nodes are in relationship |
| 426 | 426 |
/// when there are directed paths between them in both direction. |
| 427 | 427 |
/// The strongly connected components are separated by the cut arcs. |
| 428 | 428 |
/// |
| 429 | 429 |
/// \param graph The graph. |
| ... | ... |
@@ -520,385 +520,385 @@ |
| 520 | 520 |
} |
| 521 | 521 |
} |
| 522 | 522 |
|
| 523 | 523 |
void backtrack(const Arc& edge) {
|
| 524 | 524 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 525 | 525 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 526 | 526 |
} |
| 527 | 527 |
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
|
| 528 | 528 |
++_compNum; |
| 529 | 529 |
} |
| 530 | 530 |
} |
| 531 | 531 |
|
| 532 | 532 |
private: |
| 533 | 533 |
const Digraph& _graph; |
| 534 | 534 |
int& _compNum; |
| 535 | 535 |
|
| 536 | 536 |
typename Digraph::template NodeMap<int> _numMap; |
| 537 | 537 |
typename Digraph::template NodeMap<int> _retMap; |
| 538 | 538 |
typename Digraph::template NodeMap<Node> _predMap; |
| 539 | 539 |
int _num; |
| 540 | 540 |
}; |
| 541 | 541 |
|
| 542 | 542 |
template <typename Digraph, typename ArcMap> |
| 543 | 543 |
class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
| 544 | 544 |
public: |
| 545 | 545 |
typedef typename Digraph::Node Node; |
| 546 | 546 |
typedef typename Digraph::Arc Arc; |
| 547 | 547 |
typedef typename Digraph::Edge Edge; |
| 548 | 548 |
|
| 549 | 549 |
BiNodeConnectedComponentsVisitor(const Digraph& graph, |
| 550 | 550 |
ArcMap& compMap, int &compNum) |
| 551 | 551 |
: _graph(graph), _compMap(compMap), _compNum(compNum), |
| 552 | 552 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
| 553 | 553 |
|
| 554 | 554 |
void start(const Node& node) {
|
| 555 | 555 |
_predMap.set(node, INVALID); |
| 556 | 556 |
} |
| 557 | 557 |
|
| 558 | 558 |
void reach(const Node& node) {
|
| 559 | 559 |
_numMap.set(node, _num); |
| 560 | 560 |
_retMap.set(node, _num); |
| 561 | 561 |
++_num; |
| 562 | 562 |
} |
| 563 | 563 |
|
| 564 | 564 |
void discover(const Arc& edge) {
|
| 565 | 565 |
Node target = _graph.target(edge); |
| 566 | 566 |
_predMap.set(target, edge); |
| 567 | 567 |
_edgeStack.push(edge); |
| 568 | 568 |
} |
| 569 | 569 |
|
| 570 | 570 |
void examine(const Arc& edge) {
|
| 571 | 571 |
Node source = _graph.source(edge); |
| 572 | 572 |
Node target = _graph.target(edge); |
| 573 | 573 |
if (source == target && _graph.direction(edge)) {
|
| 574 | 574 |
_compMap.set(edge, _compNum); |
| 575 | 575 |
++_compNum; |
| 576 | 576 |
return; |
| 577 | 577 |
} |
| 578 | 578 |
if (_numMap[target] < _numMap[source]) {
|
| 579 | 579 |
if (_predMap[source] != _graph.oppositeArc(edge)) {
|
| 580 | 580 |
_edgeStack.push(edge); |
| 581 | 581 |
} |
| 582 | 582 |
} |
| 583 | 583 |
if (_predMap[source] != INVALID && |
| 584 | 584 |
target == _graph.source(_predMap[source])) {
|
| 585 | 585 |
return; |
| 586 | 586 |
} |
| 587 | 587 |
if (_retMap[source] > _numMap[target]) {
|
| 588 | 588 |
_retMap.set(source, _numMap[target]); |
| 589 | 589 |
} |
| 590 | 590 |
} |
| 591 | 591 |
|
| 592 | 592 |
void backtrack(const Arc& edge) {
|
| 593 | 593 |
Node source = _graph.source(edge); |
| 594 | 594 |
Node target = _graph.target(edge); |
| 595 | 595 |
if (_retMap[source] > _retMap[target]) {
|
| 596 | 596 |
_retMap.set(source, _retMap[target]); |
| 597 | 597 |
} |
| 598 | 598 |
if (_numMap[source] <= _retMap[target]) {
|
| 599 | 599 |
while (_edgeStack.top() != edge) {
|
| 600 | 600 |
_compMap.set(_edgeStack.top(), _compNum); |
| 601 | 601 |
_edgeStack.pop(); |
| 602 | 602 |
} |
| 603 | 603 |
_compMap.set(edge, _compNum); |
| 604 | 604 |
_edgeStack.pop(); |
| 605 | 605 |
++_compNum; |
| 606 | 606 |
} |
| 607 | 607 |
} |
| 608 | 608 |
|
| 609 | 609 |
private: |
| 610 | 610 |
const Digraph& _graph; |
| 611 | 611 |
ArcMap& _compMap; |
| 612 | 612 |
int& _compNum; |
| 613 | 613 |
|
| 614 | 614 |
typename Digraph::template NodeMap<int> _numMap; |
| 615 | 615 |
typename Digraph::template NodeMap<int> _retMap; |
| 616 | 616 |
typename Digraph::template NodeMap<Arc> _predMap; |
| 617 | 617 |
std::stack<Edge> _edgeStack; |
| 618 | 618 |
int _num; |
| 619 | 619 |
}; |
| 620 | 620 |
|
| 621 | 621 |
|
| 622 | 622 |
template <typename Digraph, typename NodeMap> |
| 623 | 623 |
class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Digraph> {
|
| 624 | 624 |
public: |
| 625 | 625 |
typedef typename Digraph::Node Node; |
| 626 | 626 |
typedef typename Digraph::Arc Arc; |
| 627 | 627 |
typedef typename Digraph::Edge Edge; |
| 628 | 628 |
|
| 629 | 629 |
BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap, |
| 630 | 630 |
int& cutNum) |
| 631 | 631 |
: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
| 632 | 632 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
| 633 | 633 |
|
| 634 | 634 |
void start(const Node& node) {
|
| 635 | 635 |
_predMap.set(node, INVALID); |
| 636 | 636 |
rootCut = false; |
| 637 | 637 |
} |
| 638 | 638 |
|
| 639 | 639 |
void reach(const Node& node) {
|
| 640 | 640 |
_numMap.set(node, _num); |
| 641 | 641 |
_retMap.set(node, _num); |
| 642 | 642 |
++_num; |
| 643 | 643 |
} |
| 644 | 644 |
|
| 645 | 645 |
void discover(const Arc& edge) {
|
| 646 | 646 |
_predMap.set(_graph.target(edge), _graph.source(edge)); |
| 647 | 647 |
} |
| 648 | 648 |
|
| 649 | 649 |
void examine(const Arc& edge) {
|
| 650 | 650 |
if (_graph.source(edge) == _graph.target(edge) && |
| 651 | 651 |
_graph.direction(edge)) {
|
| 652 | 652 |
if (!_cutMap[_graph.source(edge)]) {
|
| 653 | 653 |
_cutMap.set(_graph.source(edge), true); |
| 654 | 654 |
++_cutNum; |
| 655 | 655 |
} |
| 656 | 656 |
return; |
| 657 | 657 |
} |
| 658 | 658 |
if (_predMap[_graph.source(edge)] == _graph.target(edge)) return; |
| 659 | 659 |
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
|
| 660 | 660 |
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
| 661 | 661 |
} |
| 662 | 662 |
} |
| 663 | 663 |
|
| 664 | 664 |
void backtrack(const Arc& edge) {
|
| 665 | 665 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 666 | 666 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 667 | 667 |
} |
| 668 | 668 |
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
|
| 669 | 669 |
if (_predMap[_graph.source(edge)] != INVALID) {
|
| 670 | 670 |
if (!_cutMap[_graph.source(edge)]) {
|
| 671 | 671 |
_cutMap.set(_graph.source(edge), true); |
| 672 | 672 |
++_cutNum; |
| 673 | 673 |
} |
| 674 | 674 |
} else if (rootCut) {
|
| 675 | 675 |
if (!_cutMap[_graph.source(edge)]) {
|
| 676 | 676 |
_cutMap.set(_graph.source(edge), true); |
| 677 | 677 |
++_cutNum; |
| 678 | 678 |
} |
| 679 | 679 |
} else {
|
| 680 | 680 |
rootCut = true; |
| 681 | 681 |
} |
| 682 | 682 |
} |
| 683 | 683 |
} |
| 684 | 684 |
|
| 685 | 685 |
private: |
| 686 | 686 |
const Digraph& _graph; |
| 687 | 687 |
NodeMap& _cutMap; |
| 688 | 688 |
int& _cutNum; |
| 689 | 689 |
|
| 690 | 690 |
typename Digraph::template NodeMap<int> _numMap; |
| 691 | 691 |
typename Digraph::template NodeMap<int> _retMap; |
| 692 | 692 |
typename Digraph::template NodeMap<Node> _predMap; |
| 693 | 693 |
std::stack<Edge> _edgeStack; |
| 694 | 694 |
int _num; |
| 695 | 695 |
bool rootCut; |
| 696 | 696 |
}; |
| 697 | 697 |
|
| 698 | 698 |
} |
| 699 | 699 |
|
| 700 | 700 |
template <typename Graph> |
| 701 | 701 |
int countBiNodeConnectedComponents(const Graph& graph); |
| 702 | 702 |
|
| 703 | 703 |
/// \ingroup connectivity |
| 704 | 704 |
/// |
| 705 | 705 |
/// \brief Checks the graph is bi-node-connected. |
| 706 | 706 |
/// |
| 707 | 707 |
/// This function checks that the undirected graph is bi-node-connected |
| 708 | 708 |
/// graph. The graph is bi-node-connected if any two undirected edge is |
| 709 | 709 |
/// on same circle. |
| 710 | 710 |
/// |
| 711 | 711 |
/// \param graph The graph. |
| 712 |
/// \return |
|
| 712 |
/// \return \c true when the graph bi-node-connected. |
|
| 713 | 713 |
template <typename Graph> |
| 714 | 714 |
bool biNodeConnected(const Graph& graph) {
|
| 715 | 715 |
return countBiNodeConnectedComponents(graph) <= 1; |
| 716 | 716 |
} |
| 717 | 717 |
|
| 718 | 718 |
/// \ingroup connectivity |
| 719 | 719 |
/// |
| 720 | 720 |
/// \brief Count the biconnected components. |
| 721 | 721 |
/// |
| 722 | 722 |
/// This function finds the bi-node-connected components in an undirected |
| 723 | 723 |
/// graph. The biconnected components are the classes of an equivalence |
| 724 | 724 |
/// relation on the undirected edges. Two undirected edge is in relationship |
| 725 | 725 |
/// when they are on same circle. |
| 726 | 726 |
/// |
| 727 | 727 |
/// \param graph The graph. |
| 728 | 728 |
/// \return The number of components. |
| 729 | 729 |
template <typename Graph> |
| 730 | 730 |
int countBiNodeConnectedComponents(const Graph& graph) {
|
| 731 | 731 |
checkConcept<concepts::Graph, Graph>(); |
| 732 | 732 |
typedef typename Graph::NodeIt NodeIt; |
| 733 | 733 |
|
| 734 | 734 |
using namespace _connectivity_bits; |
| 735 | 735 |
|
| 736 | 736 |
typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor; |
| 737 | 737 |
|
| 738 | 738 |
int compNum = 0; |
| 739 | 739 |
Visitor visitor(graph, compNum); |
| 740 | 740 |
|
| 741 | 741 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 742 | 742 |
dfs.init(); |
| 743 | 743 |
|
| 744 | 744 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 745 | 745 |
if (!dfs.reached(it)) {
|
| 746 | 746 |
dfs.addSource(it); |
| 747 | 747 |
dfs.start(); |
| 748 | 748 |
} |
| 749 | 749 |
} |
| 750 | 750 |
return compNum; |
| 751 | 751 |
} |
| 752 | 752 |
|
| 753 | 753 |
/// \ingroup connectivity |
| 754 | 754 |
/// |
| 755 | 755 |
/// \brief Find the bi-node-connected components. |
| 756 | 756 |
/// |
| 757 | 757 |
/// This function finds the bi-node-connected components in an undirected |
| 758 | 758 |
/// graph. The bi-node-connected components are the classes of an equivalence |
| 759 | 759 |
/// relation on the undirected edges. Two undirected edge are in relationship |
| 760 | 760 |
/// when they are on same circle. |
| 761 | 761 |
/// |
| 762 | 762 |
/// \param graph The graph. |
| 763 | 763 |
/// \retval compMap A writable uedge map. The values will be set from 0 |
| 764 | 764 |
/// to the number of the biconnected components minus one. Each values |
| 765 | 765 |
/// of the map will be set exactly once, the values of a certain component |
| 766 | 766 |
/// will be set continuously. |
| 767 | 767 |
/// \return The number of components. |
| 768 | 768 |
/// |
| 769 | 769 |
template <typename Graph, typename EdgeMap> |
| 770 | 770 |
int biNodeConnectedComponents(const Graph& graph, |
| 771 | 771 |
EdgeMap& compMap) {
|
| 772 | 772 |
checkConcept<concepts::Graph, Graph>(); |
| 773 | 773 |
typedef typename Graph::NodeIt NodeIt; |
| 774 | 774 |
typedef typename Graph::Edge Edge; |
| 775 | 775 |
checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>(); |
| 776 | 776 |
|
| 777 | 777 |
using namespace _connectivity_bits; |
| 778 | 778 |
|
| 779 | 779 |
typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor; |
| 780 | 780 |
|
| 781 | 781 |
int compNum = 0; |
| 782 | 782 |
Visitor visitor(graph, compMap, compNum); |
| 783 | 783 |
|
| 784 | 784 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 785 | 785 |
dfs.init(); |
| 786 | 786 |
|
| 787 | 787 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 788 | 788 |
if (!dfs.reached(it)) {
|
| 789 | 789 |
dfs.addSource(it); |
| 790 | 790 |
dfs.start(); |
| 791 | 791 |
} |
| 792 | 792 |
} |
| 793 | 793 |
return compNum; |
| 794 | 794 |
} |
| 795 | 795 |
|
| 796 | 796 |
/// \ingroup connectivity |
| 797 | 797 |
/// |
| 798 | 798 |
/// \brief Find the bi-node-connected cut nodes. |
| 799 | 799 |
/// |
| 800 | 800 |
/// This function finds the bi-node-connected cut nodes in an undirected |
| 801 | 801 |
/// graph. The bi-node-connected components are the classes of an equivalence |
| 802 | 802 |
/// relation on the undirected edges. Two undirected edges are in |
| 803 | 803 |
/// relationship when they are on same circle. The biconnected components |
| 804 | 804 |
/// are separted by nodes which are the cut nodes of the components. |
| 805 | 805 |
/// |
| 806 | 806 |
/// \param graph The graph. |
| 807 | 807 |
/// \retval cutMap A writable edge map. The values will be set true when |
| 808 | 808 |
/// the node separate two or more components. |
| 809 | 809 |
/// \return The number of the cut nodes. |
| 810 | 810 |
template <typename Graph, typename NodeMap> |
| 811 | 811 |
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
|
| 812 | 812 |
checkConcept<concepts::Graph, Graph>(); |
| 813 | 813 |
typedef typename Graph::Node Node; |
| 814 | 814 |
typedef typename Graph::NodeIt NodeIt; |
| 815 | 815 |
checkConcept<concepts::WriteMap<Node, bool>, NodeMap>(); |
| 816 | 816 |
|
| 817 | 817 |
using namespace _connectivity_bits; |
| 818 | 818 |
|
| 819 | 819 |
typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor; |
| 820 | 820 |
|
| 821 | 821 |
int cutNum = 0; |
| 822 | 822 |
Visitor visitor(graph, cutMap, cutNum); |
| 823 | 823 |
|
| 824 | 824 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 825 | 825 |
dfs.init(); |
| 826 | 826 |
|
| 827 | 827 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 828 | 828 |
if (!dfs.reached(it)) {
|
| 829 | 829 |
dfs.addSource(it); |
| 830 | 830 |
dfs.start(); |
| 831 | 831 |
} |
| 832 | 832 |
} |
| 833 | 833 |
return cutNum; |
| 834 | 834 |
} |
| 835 | 835 |
|
| 836 | 836 |
namespace _connectivity_bits {
|
| 837 | 837 |
|
| 838 | 838 |
template <typename Digraph> |
| 839 | 839 |
class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
| 840 | 840 |
public: |
| 841 | 841 |
typedef typename Digraph::Node Node; |
| 842 | 842 |
typedef typename Digraph::Arc Arc; |
| 843 | 843 |
typedef typename Digraph::Edge Edge; |
| 844 | 844 |
|
| 845 | 845 |
CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
| 846 | 846 |
: _graph(graph), _compNum(compNum), |
| 847 | 847 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
| 848 | 848 |
|
| 849 | 849 |
void start(const Node& node) {
|
| 850 | 850 |
_predMap.set(node, INVALID); |
| 851 | 851 |
} |
| 852 | 852 |
|
| 853 | 853 |
void reach(const Node& node) {
|
| 854 | 854 |
_numMap.set(node, _num); |
| 855 | 855 |
_retMap.set(node, _num); |
| 856 | 856 |
++_num; |
| 857 | 857 |
} |
| 858 | 858 |
|
| 859 | 859 |
void leave(const Node& node) {
|
| 860 | 860 |
if (_numMap[node] <= _retMap[node]) {
|
| 861 | 861 |
++_compNum; |
| 862 | 862 |
} |
| 863 | 863 |
} |
| 864 | 864 |
|
| 865 | 865 |
void discover(const Arc& edge) {
|
| 866 | 866 |
_predMap.set(_graph.target(edge), edge); |
| 867 | 867 |
} |
| 868 | 868 |
|
| 869 | 869 |
void examine(const Arc& edge) {
|
| 870 | 870 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
|
| 871 | 871 |
return; |
| 872 | 872 |
} |
| 873 | 873 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 874 | 874 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 875 | 875 |
} |
| 876 | 876 |
} |
| 877 | 877 |
|
| 878 | 878 |
void backtrack(const Arc& edge) {
|
| 879 | 879 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 880 | 880 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
| 881 | 881 |
} |
| 882 | 882 |
} |
| 883 | 883 |
|
| 884 | 884 |
private: |
| 885 | 885 |
const Digraph& _graph; |
| 886 | 886 |
int& _compNum; |
| 887 | 887 |
|
| 888 | 888 |
typename Digraph::template NodeMap<int> _numMap; |
| 889 | 889 |
typename Digraph::template NodeMap<int> _retMap; |
| 890 | 890 |
typename Digraph::template NodeMap<Arc> _predMap; |
| 891 | 891 |
int _num; |
| 892 | 892 |
}; |
| 893 | 893 |
|
| 894 | 894 |
template <typename Digraph, typename NodeMap> |
| 895 | 895 |
class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
| 896 | 896 |
public: |
| 897 | 897 |
typedef typename Digraph::Node Node; |
| 898 | 898 |
typedef typename Digraph::Arc Arc; |
| 899 | 899 |
typedef typename Digraph::Edge Edge; |
| 900 | 900 |
|
| 901 | 901 |
BiEdgeConnectedComponentsVisitor(const Digraph& graph, |
| 902 | 902 |
NodeMap& compMap, int &compNum) |
| 903 | 903 |
: _graph(graph), _compMap(compMap), _compNum(compNum), |
| 904 | 904 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
| ... | ... |
@@ -1041,535 +1041,535 @@ |
| 1041 | 1041 |
/// \ingroup connectivity |
| 1042 | 1042 |
/// |
| 1043 | 1043 |
/// \brief Count the bi-edge-connected components. |
| 1044 | 1044 |
/// |
| 1045 | 1045 |
/// This function count the bi-edge-connected components in an undirected |
| 1046 | 1046 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
| 1047 | 1047 |
/// relation on the nodes. Two nodes are in relationship when they are |
| 1048 | 1048 |
/// connected with at least two edge-disjoint paths. |
| 1049 | 1049 |
/// |
| 1050 | 1050 |
/// \param graph The undirected graph. |
| 1051 | 1051 |
/// \return The number of components. |
| 1052 | 1052 |
template <typename Graph> |
| 1053 | 1053 |
int countBiEdgeConnectedComponents(const Graph& graph) {
|
| 1054 | 1054 |
checkConcept<concepts::Graph, Graph>(); |
| 1055 | 1055 |
typedef typename Graph::NodeIt NodeIt; |
| 1056 | 1056 |
|
| 1057 | 1057 |
using namespace _connectivity_bits; |
| 1058 | 1058 |
|
| 1059 | 1059 |
typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor; |
| 1060 | 1060 |
|
| 1061 | 1061 |
int compNum = 0; |
| 1062 | 1062 |
Visitor visitor(graph, compNum); |
| 1063 | 1063 |
|
| 1064 | 1064 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 1065 | 1065 |
dfs.init(); |
| 1066 | 1066 |
|
| 1067 | 1067 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1068 | 1068 |
if (!dfs.reached(it)) {
|
| 1069 | 1069 |
dfs.addSource(it); |
| 1070 | 1070 |
dfs.start(); |
| 1071 | 1071 |
} |
| 1072 | 1072 |
} |
| 1073 | 1073 |
return compNum; |
| 1074 | 1074 |
} |
| 1075 | 1075 |
|
| 1076 | 1076 |
/// \ingroup connectivity |
| 1077 | 1077 |
/// |
| 1078 | 1078 |
/// \brief Find the bi-edge-connected components. |
| 1079 | 1079 |
/// |
| 1080 | 1080 |
/// This function finds the bi-edge-connected components in an undirected |
| 1081 | 1081 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
| 1082 | 1082 |
/// relation on the nodes. Two nodes are in relationship when they are |
| 1083 | 1083 |
/// connected at least two edge-disjoint paths. |
| 1084 | 1084 |
/// |
| 1085 | 1085 |
/// \param graph The graph. |
| 1086 | 1086 |
/// \retval compMap A writable node map. The values will be set from 0 to |
| 1087 | 1087 |
/// the number of the biconnected components minus one. Each values |
| 1088 | 1088 |
/// of the map will be set exactly once, the values of a certain component |
| 1089 | 1089 |
/// will be set continuously. |
| 1090 | 1090 |
/// \return The number of components. |
| 1091 | 1091 |
/// |
| 1092 | 1092 |
template <typename Graph, typename NodeMap> |
| 1093 | 1093 |
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
|
| 1094 | 1094 |
checkConcept<concepts::Graph, Graph>(); |
| 1095 | 1095 |
typedef typename Graph::NodeIt NodeIt; |
| 1096 | 1096 |
typedef typename Graph::Node Node; |
| 1097 | 1097 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| 1098 | 1098 |
|
| 1099 | 1099 |
using namespace _connectivity_bits; |
| 1100 | 1100 |
|
| 1101 | 1101 |
typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor; |
| 1102 | 1102 |
|
| 1103 | 1103 |
int compNum = 0; |
| 1104 | 1104 |
Visitor visitor(graph, compMap, compNum); |
| 1105 | 1105 |
|
| 1106 | 1106 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 1107 | 1107 |
dfs.init(); |
| 1108 | 1108 |
|
| 1109 | 1109 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1110 | 1110 |
if (!dfs.reached(it)) {
|
| 1111 | 1111 |
dfs.addSource(it); |
| 1112 | 1112 |
dfs.start(); |
| 1113 | 1113 |
} |
| 1114 | 1114 |
} |
| 1115 | 1115 |
return compNum; |
| 1116 | 1116 |
} |
| 1117 | 1117 |
|
| 1118 | 1118 |
/// \ingroup connectivity |
| 1119 | 1119 |
/// |
| 1120 | 1120 |
/// \brief Find the bi-edge-connected cut edges. |
| 1121 | 1121 |
/// |
| 1122 | 1122 |
/// This function finds the bi-edge-connected components in an undirected |
| 1123 | 1123 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
| 1124 | 1124 |
/// relation on the nodes. Two nodes are in relationship when they are |
| 1125 | 1125 |
/// connected with at least two edge-disjoint paths. The bi-edge-connected |
| 1126 | 1126 |
/// components are separted by edges which are the cut edges of the |
| 1127 | 1127 |
/// components. |
| 1128 | 1128 |
/// |
| 1129 | 1129 |
/// \param graph The graph. |
| 1130 | 1130 |
/// \retval cutMap A writable node map. The values will be set true when the |
| 1131 | 1131 |
/// edge is a cut edge. |
| 1132 | 1132 |
/// \return The number of cut edges. |
| 1133 | 1133 |
template <typename Graph, typename EdgeMap> |
| 1134 | 1134 |
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
|
| 1135 | 1135 |
checkConcept<concepts::Graph, Graph>(); |
| 1136 | 1136 |
typedef typename Graph::NodeIt NodeIt; |
| 1137 | 1137 |
typedef typename Graph::Edge Edge; |
| 1138 | 1138 |
checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>(); |
| 1139 | 1139 |
|
| 1140 | 1140 |
using namespace _connectivity_bits; |
| 1141 | 1141 |
|
| 1142 | 1142 |
typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor; |
| 1143 | 1143 |
|
| 1144 | 1144 |
int cutNum = 0; |
| 1145 | 1145 |
Visitor visitor(graph, cutMap, cutNum); |
| 1146 | 1146 |
|
| 1147 | 1147 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 1148 | 1148 |
dfs.init(); |
| 1149 | 1149 |
|
| 1150 | 1150 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1151 | 1151 |
if (!dfs.reached(it)) {
|
| 1152 | 1152 |
dfs.addSource(it); |
| 1153 | 1153 |
dfs.start(); |
| 1154 | 1154 |
} |
| 1155 | 1155 |
} |
| 1156 | 1156 |
return cutNum; |
| 1157 | 1157 |
} |
| 1158 | 1158 |
|
| 1159 | 1159 |
|
| 1160 | 1160 |
namespace _connectivity_bits {
|
| 1161 | 1161 |
|
| 1162 | 1162 |
template <typename Digraph, typename IntNodeMap> |
| 1163 | 1163 |
class TopologicalSortVisitor : public DfsVisitor<Digraph> {
|
| 1164 | 1164 |
public: |
| 1165 | 1165 |
typedef typename Digraph::Node Node; |
| 1166 | 1166 |
typedef typename Digraph::Arc edge; |
| 1167 | 1167 |
|
| 1168 | 1168 |
TopologicalSortVisitor(IntNodeMap& order, int num) |
| 1169 | 1169 |
: _order(order), _num(num) {}
|
| 1170 | 1170 |
|
| 1171 | 1171 |
void leave(const Node& node) {
|
| 1172 | 1172 |
_order.set(node, --_num); |
| 1173 | 1173 |
} |
| 1174 | 1174 |
|
| 1175 | 1175 |
private: |
| 1176 | 1176 |
IntNodeMap& _order; |
| 1177 | 1177 |
int _num; |
| 1178 | 1178 |
}; |
| 1179 | 1179 |
|
| 1180 | 1180 |
} |
| 1181 | 1181 |
|
| 1182 | 1182 |
/// \ingroup connectivity |
| 1183 | 1183 |
/// |
| 1184 | 1184 |
/// \brief Sort the nodes of a DAG into topolgical order. |
| 1185 | 1185 |
/// |
| 1186 | 1186 |
/// Sort the nodes of a DAG into topolgical order. |
| 1187 | 1187 |
/// |
| 1188 | 1188 |
/// \param graph The graph. It must be directed and acyclic. |
| 1189 | 1189 |
/// \retval order A writable node map. The values will be set from 0 to |
| 1190 | 1190 |
/// the number of the nodes in the graph minus one. Each values of the map |
| 1191 | 1191 |
/// will be set exactly once, the values will be set descending order. |
| 1192 | 1192 |
/// |
| 1193 | 1193 |
/// \see checkedTopologicalSort |
| 1194 | 1194 |
/// \see dag |
| 1195 | 1195 |
template <typename Digraph, typename NodeMap> |
| 1196 | 1196 |
void topologicalSort(const Digraph& graph, NodeMap& order) {
|
| 1197 | 1197 |
using namespace _connectivity_bits; |
| 1198 | 1198 |
|
| 1199 | 1199 |
checkConcept<concepts::Digraph, Digraph>(); |
| 1200 | 1200 |
checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>(); |
| 1201 | 1201 |
|
| 1202 | 1202 |
typedef typename Digraph::Node Node; |
| 1203 | 1203 |
typedef typename Digraph::NodeIt NodeIt; |
| 1204 | 1204 |
typedef typename Digraph::Arc Arc; |
| 1205 | 1205 |
|
| 1206 | 1206 |
TopologicalSortVisitor<Digraph, NodeMap> |
| 1207 | 1207 |
visitor(order, countNodes(graph)); |
| 1208 | 1208 |
|
| 1209 | 1209 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
| 1210 | 1210 |
dfs(graph, visitor); |
| 1211 | 1211 |
|
| 1212 | 1212 |
dfs.init(); |
| 1213 | 1213 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1214 | 1214 |
if (!dfs.reached(it)) {
|
| 1215 | 1215 |
dfs.addSource(it); |
| 1216 | 1216 |
dfs.start(); |
| 1217 | 1217 |
} |
| 1218 | 1218 |
} |
| 1219 | 1219 |
} |
| 1220 | 1220 |
|
| 1221 | 1221 |
/// \ingroup connectivity |
| 1222 | 1222 |
/// |
| 1223 | 1223 |
/// \brief Sort the nodes of a DAG into topolgical order. |
| 1224 | 1224 |
/// |
| 1225 | 1225 |
/// Sort the nodes of a DAG into topolgical order. It also checks |
| 1226 | 1226 |
/// that the given graph is DAG. |
| 1227 | 1227 |
/// |
| 1228 | 1228 |
/// \param digraph The graph. It must be directed and acyclic. |
| 1229 | 1229 |
/// \retval order A readable - writable node map. The values will be set |
| 1230 | 1230 |
/// from 0 to the number of the nodes in the graph minus one. Each values |
| 1231 | 1231 |
/// of the map will be set exactly once, the values will be set descending |
| 1232 | 1232 |
/// order. |
| 1233 |
/// \return |
|
| 1233 |
/// \return \c false when the graph is not DAG. |
|
| 1234 | 1234 |
/// |
| 1235 | 1235 |
/// \see topologicalSort |
| 1236 | 1236 |
/// \see dag |
| 1237 | 1237 |
template <typename Digraph, typename NodeMap> |
| 1238 | 1238 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
|
| 1239 | 1239 |
using namespace _connectivity_bits; |
| 1240 | 1240 |
|
| 1241 | 1241 |
checkConcept<concepts::Digraph, Digraph>(); |
| 1242 | 1242 |
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>, |
| 1243 | 1243 |
NodeMap>(); |
| 1244 | 1244 |
|
| 1245 | 1245 |
typedef typename Digraph::Node Node; |
| 1246 | 1246 |
typedef typename Digraph::NodeIt NodeIt; |
| 1247 | 1247 |
typedef typename Digraph::Arc Arc; |
| 1248 | 1248 |
|
| 1249 | 1249 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1250 | 1250 |
order.set(it, -1); |
| 1251 | 1251 |
} |
| 1252 | 1252 |
|
| 1253 | 1253 |
TopologicalSortVisitor<Digraph, NodeMap> |
| 1254 | 1254 |
visitor(order, countNodes(digraph)); |
| 1255 | 1255 |
|
| 1256 | 1256 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
| 1257 | 1257 |
dfs(digraph, visitor); |
| 1258 | 1258 |
|
| 1259 | 1259 |
dfs.init(); |
| 1260 | 1260 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1261 | 1261 |
if (!dfs.reached(it)) {
|
| 1262 | 1262 |
dfs.addSource(it); |
| 1263 | 1263 |
while (!dfs.emptyQueue()) {
|
| 1264 | 1264 |
Arc arc = dfs.nextArc(); |
| 1265 | 1265 |
Node target = digraph.target(arc); |
| 1266 | 1266 |
if (dfs.reached(target) && order[target] == -1) {
|
| 1267 | 1267 |
return false; |
| 1268 | 1268 |
} |
| 1269 | 1269 |
dfs.processNextArc(); |
| 1270 | 1270 |
} |
| 1271 | 1271 |
} |
| 1272 | 1272 |
} |
| 1273 | 1273 |
return true; |
| 1274 | 1274 |
} |
| 1275 | 1275 |
|
| 1276 | 1276 |
/// \ingroup connectivity |
| 1277 | 1277 |
/// |
| 1278 | 1278 |
/// \brief Check that the given directed graph is a DAG. |
| 1279 | 1279 |
/// |
| 1280 | 1280 |
/// Check that the given directed graph is a DAG. The DAG is |
| 1281 | 1281 |
/// an Directed Acyclic Digraph. |
| 1282 |
/// \return |
|
| 1282 |
/// \return \c false when the graph is not DAG. |
|
| 1283 | 1283 |
/// \see acyclic |
| 1284 | 1284 |
template <typename Digraph> |
| 1285 | 1285 |
bool dag(const Digraph& digraph) {
|
| 1286 | 1286 |
|
| 1287 | 1287 |
checkConcept<concepts::Digraph, Digraph>(); |
| 1288 | 1288 |
|
| 1289 | 1289 |
typedef typename Digraph::Node Node; |
| 1290 | 1290 |
typedef typename Digraph::NodeIt NodeIt; |
| 1291 | 1291 |
typedef typename Digraph::Arc Arc; |
| 1292 | 1292 |
|
| 1293 | 1293 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 1294 | 1294 |
|
| 1295 | 1295 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
| 1296 | 1296 |
Create dfs(digraph); |
| 1297 | 1297 |
|
| 1298 | 1298 |
ProcessedMap processed(digraph); |
| 1299 | 1299 |
dfs.processedMap(processed); |
| 1300 | 1300 |
|
| 1301 | 1301 |
dfs.init(); |
| 1302 | 1302 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1303 | 1303 |
if (!dfs.reached(it)) {
|
| 1304 | 1304 |
dfs.addSource(it); |
| 1305 | 1305 |
while (!dfs.emptyQueue()) {
|
| 1306 | 1306 |
Arc edge = dfs.nextArc(); |
| 1307 | 1307 |
Node target = digraph.target(edge); |
| 1308 | 1308 |
if (dfs.reached(target) && !processed[target]) {
|
| 1309 | 1309 |
return false; |
| 1310 | 1310 |
} |
| 1311 | 1311 |
dfs.processNextArc(); |
| 1312 | 1312 |
} |
| 1313 | 1313 |
} |
| 1314 | 1314 |
} |
| 1315 | 1315 |
return true; |
| 1316 | 1316 |
} |
| 1317 | 1317 |
|
| 1318 | 1318 |
/// \ingroup connectivity |
| 1319 | 1319 |
/// |
| 1320 | 1320 |
/// \brief Check that the given undirected graph is acyclic. |
| 1321 | 1321 |
/// |
| 1322 | 1322 |
/// Check that the given undirected graph acyclic. |
| 1323 | 1323 |
/// \param graph The undirected graph. |
| 1324 |
/// \return |
|
| 1324 |
/// \return \c true when there is no circle in the graph. |
|
| 1325 | 1325 |
/// \see dag |
| 1326 | 1326 |
template <typename Graph> |
| 1327 | 1327 |
bool acyclic(const Graph& graph) {
|
| 1328 | 1328 |
checkConcept<concepts::Graph, Graph>(); |
| 1329 | 1329 |
typedef typename Graph::Node Node; |
| 1330 | 1330 |
typedef typename Graph::NodeIt NodeIt; |
| 1331 | 1331 |
typedef typename Graph::Arc Arc; |
| 1332 | 1332 |
Dfs<Graph> dfs(graph); |
| 1333 | 1333 |
dfs.init(); |
| 1334 | 1334 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1335 | 1335 |
if (!dfs.reached(it)) {
|
| 1336 | 1336 |
dfs.addSource(it); |
| 1337 | 1337 |
while (!dfs.emptyQueue()) {
|
| 1338 | 1338 |
Arc edge = dfs.nextArc(); |
| 1339 | 1339 |
Node source = graph.source(edge); |
| 1340 | 1340 |
Node target = graph.target(edge); |
| 1341 | 1341 |
if (dfs.reached(target) && |
| 1342 | 1342 |
dfs.predArc(source) != graph.oppositeArc(edge)) {
|
| 1343 | 1343 |
return false; |
| 1344 | 1344 |
} |
| 1345 | 1345 |
dfs.processNextArc(); |
| 1346 | 1346 |
} |
| 1347 | 1347 |
} |
| 1348 | 1348 |
} |
| 1349 | 1349 |
return true; |
| 1350 | 1350 |
} |
| 1351 | 1351 |
|
| 1352 | 1352 |
/// \ingroup connectivity |
| 1353 | 1353 |
/// |
| 1354 | 1354 |
/// \brief Check that the given undirected graph is tree. |
| 1355 | 1355 |
/// |
| 1356 | 1356 |
/// Check that the given undirected graph is tree. |
| 1357 | 1357 |
/// \param graph The undirected graph. |
| 1358 |
/// \return |
|
| 1358 |
/// \return \c true when the graph is acyclic and connected. |
|
| 1359 | 1359 |
template <typename Graph> |
| 1360 | 1360 |
bool tree(const Graph& graph) {
|
| 1361 | 1361 |
checkConcept<concepts::Graph, Graph>(); |
| 1362 | 1362 |
typedef typename Graph::Node Node; |
| 1363 | 1363 |
typedef typename Graph::NodeIt NodeIt; |
| 1364 | 1364 |
typedef typename Graph::Arc Arc; |
| 1365 | 1365 |
Dfs<Graph> dfs(graph); |
| 1366 | 1366 |
dfs.init(); |
| 1367 | 1367 |
dfs.addSource(NodeIt(graph)); |
| 1368 | 1368 |
while (!dfs.emptyQueue()) {
|
| 1369 | 1369 |
Arc edge = dfs.nextArc(); |
| 1370 | 1370 |
Node source = graph.source(edge); |
| 1371 | 1371 |
Node target = graph.target(edge); |
| 1372 | 1372 |
if (dfs.reached(target) && |
| 1373 | 1373 |
dfs.predArc(source) != graph.oppositeArc(edge)) {
|
| 1374 | 1374 |
return false; |
| 1375 | 1375 |
} |
| 1376 | 1376 |
dfs.processNextArc(); |
| 1377 | 1377 |
} |
| 1378 | 1378 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1379 | 1379 |
if (!dfs.reached(it)) {
|
| 1380 | 1380 |
return false; |
| 1381 | 1381 |
} |
| 1382 | 1382 |
} |
| 1383 | 1383 |
return true; |
| 1384 | 1384 |
} |
| 1385 | 1385 |
|
| 1386 | 1386 |
namespace _connectivity_bits {
|
| 1387 | 1387 |
|
| 1388 | 1388 |
template <typename Digraph> |
| 1389 | 1389 |
class BipartiteVisitor : public BfsVisitor<Digraph> {
|
| 1390 | 1390 |
public: |
| 1391 | 1391 |
typedef typename Digraph::Arc Arc; |
| 1392 | 1392 |
typedef typename Digraph::Node Node; |
| 1393 | 1393 |
|
| 1394 | 1394 |
BipartiteVisitor(const Digraph& graph, bool& bipartite) |
| 1395 | 1395 |
: _graph(graph), _part(graph), _bipartite(bipartite) {}
|
| 1396 | 1396 |
|
| 1397 | 1397 |
void start(const Node& node) {
|
| 1398 | 1398 |
_part[node] = true; |
| 1399 | 1399 |
} |
| 1400 | 1400 |
void discover(const Arc& edge) {
|
| 1401 | 1401 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
| 1402 | 1402 |
} |
| 1403 | 1403 |
void examine(const Arc& edge) {
|
| 1404 | 1404 |
_bipartite = _bipartite && |
| 1405 | 1405 |
_part[_graph.target(edge)] != _part[_graph.source(edge)]; |
| 1406 | 1406 |
} |
| 1407 | 1407 |
|
| 1408 | 1408 |
private: |
| 1409 | 1409 |
|
| 1410 | 1410 |
const Digraph& _graph; |
| 1411 | 1411 |
typename Digraph::template NodeMap<bool> _part; |
| 1412 | 1412 |
bool& _bipartite; |
| 1413 | 1413 |
}; |
| 1414 | 1414 |
|
| 1415 | 1415 |
template <typename Digraph, typename PartMap> |
| 1416 | 1416 |
class BipartitePartitionsVisitor : public BfsVisitor<Digraph> {
|
| 1417 | 1417 |
public: |
| 1418 | 1418 |
typedef typename Digraph::Arc Arc; |
| 1419 | 1419 |
typedef typename Digraph::Node Node; |
| 1420 | 1420 |
|
| 1421 | 1421 |
BipartitePartitionsVisitor(const Digraph& graph, |
| 1422 | 1422 |
PartMap& part, bool& bipartite) |
| 1423 | 1423 |
: _graph(graph), _part(part), _bipartite(bipartite) {}
|
| 1424 | 1424 |
|
| 1425 | 1425 |
void start(const Node& node) {
|
| 1426 | 1426 |
_part.set(node, true); |
| 1427 | 1427 |
} |
| 1428 | 1428 |
void discover(const Arc& edge) {
|
| 1429 | 1429 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
| 1430 | 1430 |
} |
| 1431 | 1431 |
void examine(const Arc& edge) {
|
| 1432 | 1432 |
_bipartite = _bipartite && |
| 1433 | 1433 |
_part[_graph.target(edge)] != _part[_graph.source(edge)]; |
| 1434 | 1434 |
} |
| 1435 | 1435 |
|
| 1436 | 1436 |
private: |
| 1437 | 1437 |
|
| 1438 | 1438 |
const Digraph& _graph; |
| 1439 | 1439 |
PartMap& _part; |
| 1440 | 1440 |
bool& _bipartite; |
| 1441 | 1441 |
}; |
| 1442 | 1442 |
} |
| 1443 | 1443 |
|
| 1444 | 1444 |
/// \ingroup connectivity |
| 1445 | 1445 |
/// |
| 1446 | 1446 |
/// \brief Check if the given undirected graph is bipartite or not |
| 1447 | 1447 |
/// |
| 1448 | 1448 |
/// The function checks if the given undirected \c graph graph is bipartite |
| 1449 | 1449 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
| 1450 | 1450 |
/// \param graph The undirected graph. |
| 1451 |
/// \return |
|
| 1451 |
/// \return \c true if \c graph is bipartite, \c false otherwise. |
|
| 1452 | 1452 |
/// \sa bipartitePartitions |
| 1453 | 1453 |
template<typename Graph> |
| 1454 | 1454 |
inline bool bipartite(const Graph &graph){
|
| 1455 | 1455 |
using namespace _connectivity_bits; |
| 1456 | 1456 |
|
| 1457 | 1457 |
checkConcept<concepts::Graph, Graph>(); |
| 1458 | 1458 |
|
| 1459 | 1459 |
typedef typename Graph::NodeIt NodeIt; |
| 1460 | 1460 |
typedef typename Graph::ArcIt ArcIt; |
| 1461 | 1461 |
|
| 1462 | 1462 |
bool bipartite = true; |
| 1463 | 1463 |
|
| 1464 | 1464 |
BipartiteVisitor<Graph> |
| 1465 | 1465 |
visitor(graph, bipartite); |
| 1466 | 1466 |
BfsVisit<Graph, BipartiteVisitor<Graph> > |
| 1467 | 1467 |
bfs(graph, visitor); |
| 1468 | 1468 |
bfs.init(); |
| 1469 | 1469 |
for(NodeIt it(graph); it != INVALID; ++it) {
|
| 1470 | 1470 |
if(!bfs.reached(it)){
|
| 1471 | 1471 |
bfs.addSource(it); |
| 1472 | 1472 |
while (!bfs.emptyQueue()) {
|
| 1473 | 1473 |
bfs.processNextNode(); |
| 1474 | 1474 |
if (!bipartite) return false; |
| 1475 | 1475 |
} |
| 1476 | 1476 |
} |
| 1477 | 1477 |
} |
| 1478 | 1478 |
return true; |
| 1479 | 1479 |
} |
| 1480 | 1480 |
|
| 1481 | 1481 |
/// \ingroup connectivity |
| 1482 | 1482 |
/// |
| 1483 | 1483 |
/// \brief Check if the given undirected graph is bipartite or not |
| 1484 | 1484 |
/// |
| 1485 | 1485 |
/// The function checks if the given undirected graph is bipartite |
| 1486 | 1486 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
| 1487 | 1487 |
/// During the execution, the \c partMap will be set as the two |
| 1488 | 1488 |
/// partitions of the graph. |
| 1489 | 1489 |
/// \param graph The undirected graph. |
| 1490 | 1490 |
/// \retval partMap A writable bool map of nodes. It will be set as the |
| 1491 | 1491 |
/// two partitions of the graph. |
| 1492 |
/// \return |
|
| 1492 |
/// \return \c true if \c graph is bipartite, \c false otherwise. |
|
| 1493 | 1493 |
template<typename Graph, typename NodeMap> |
| 1494 | 1494 |
inline bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
|
| 1495 | 1495 |
using namespace _connectivity_bits; |
| 1496 | 1496 |
|
| 1497 | 1497 |
checkConcept<concepts::Graph, Graph>(); |
| 1498 | 1498 |
|
| 1499 | 1499 |
typedef typename Graph::Node Node; |
| 1500 | 1500 |
typedef typename Graph::NodeIt NodeIt; |
| 1501 | 1501 |
typedef typename Graph::ArcIt ArcIt; |
| 1502 | 1502 |
|
| 1503 | 1503 |
bool bipartite = true; |
| 1504 | 1504 |
|
| 1505 | 1505 |
BipartitePartitionsVisitor<Graph, NodeMap> |
| 1506 | 1506 |
visitor(graph, partMap, bipartite); |
| 1507 | 1507 |
BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> > |
| 1508 | 1508 |
bfs(graph, visitor); |
| 1509 | 1509 |
bfs.init(); |
| 1510 | 1510 |
for(NodeIt it(graph); it != INVALID; ++it) {
|
| 1511 | 1511 |
if(!bfs.reached(it)){
|
| 1512 | 1512 |
bfs.addSource(it); |
| 1513 | 1513 |
while (!bfs.emptyQueue()) {
|
| 1514 | 1514 |
bfs.processNextNode(); |
| 1515 | 1515 |
if (!bipartite) return false; |
| 1516 | 1516 |
} |
| 1517 | 1517 |
} |
| 1518 | 1518 |
} |
| 1519 | 1519 |
return true; |
| 1520 | 1520 |
} |
| 1521 | 1521 |
|
| 1522 | 1522 |
/// \brief Returns true when there are not loop edges in the graph. |
| 1523 | 1523 |
/// |
| 1524 | 1524 |
/// Returns true when there are not loop edges in the graph. |
| 1525 | 1525 |
template <typename Digraph> |
| 1526 | 1526 |
bool loopFree(const Digraph& digraph) {
|
| 1527 | 1527 |
for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) {
|
| 1528 | 1528 |
if (digraph.source(it) == digraph.target(it)) return false; |
| 1529 | 1529 |
} |
| 1530 | 1530 |
return true; |
| 1531 | 1531 |
} |
| 1532 | 1532 |
|
| 1533 | 1533 |
/// \brief Returns true when there are not parallel edges in the graph. |
| 1534 | 1534 |
/// |
| 1535 | 1535 |
/// Returns true when there are not parallel edges in the graph. |
| 1536 | 1536 |
template <typename Digraph> |
| 1537 | 1537 |
bool parallelFree(const Digraph& digraph) {
|
| 1538 | 1538 |
typename Digraph::template NodeMap<bool> reached(digraph, false); |
| 1539 | 1539 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
|
| 1540 | 1540 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
| 1541 | 1541 |
if (reached[digraph.target(a)]) return false; |
| 1542 | 1542 |
reached.set(digraph.target(a), true); |
| 1543 | 1543 |
} |
| 1544 | 1544 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
| 1545 | 1545 |
reached.set(digraph.target(a), false); |
| 1546 | 1546 |
} |
| 1547 | 1547 |
} |
| 1548 | 1548 |
return true; |
| 1549 | 1549 |
} |
| 1550 | 1550 |
|
| 1551 | 1551 |
/// \brief Returns true when there are not loop edges and parallel |
| 1552 | 1552 |
/// edges in the graph. |
| 1553 | 1553 |
/// |
| 1554 | 1554 |
/// Returns true when there are not loop edges and parallel edges in |
| 1555 | 1555 |
/// the graph. |
| 1556 | 1556 |
template <typename Digraph> |
| 1557 | 1557 |
bool simpleDigraph(const Digraph& digraph) {
|
| 1558 | 1558 |
typename Digraph::template NodeMap<bool> reached(digraph, false); |
| 1559 | 1559 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
|
| 1560 | 1560 |
reached.set(n, true); |
| 1561 | 1561 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
| 1562 | 1562 |
if (reached[digraph.target(a)]) return false; |
| 1563 | 1563 |
reached.set(digraph.target(a), true); |
| 1564 | 1564 |
} |
| 1565 | 1565 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
| 1566 | 1566 |
reached.set(digraph.target(a), false); |
| 1567 | 1567 |
} |
| 1568 | 1568 |
reached.set(n, false); |
| 1569 | 1569 |
} |
| 1570 | 1570 |
return true; |
| 1571 | 1571 |
} |
| 1572 | 1572 |
|
| 1573 | 1573 |
} //namespace lemon |
| 1574 | 1574 |
|
| 1575 | 1575 |
#endif //LEMON_CONNECTIVITY_H |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)