gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Various doc improvements (#248) - Rename all the ugly template parameters (too long and/or starting with an underscore). - Rename function parameters starting with an underscore. - Extend the doc for many classes. - Use LaTeX-style O(...) expressions only for the complicated ones. - A lot of small unification changes. - Small fixes. - Some other improvements.
0 33 0
default
33 files changed:
↑ Collapse diff ↑
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
namespace lemon {
20 20

	
21 21
/**
22 22
@defgroup datas Data Structures
23
This group describes the several data structures implemented in LEMON.
23
This group contains the several data structures implemented in LEMON.
24 24
*/
25 25

	
26 26
/**
27 27
@defgroup graphs Graph Structures
28 28
@ingroup datas
29 29
\brief Graph structures implemented in LEMON.
30 30

	
31 31
The implementation of combinatorial algorithms heavily relies on
32 32
efficient graph implementations. LEMON offers data structures which are
33 33
planned to be easily used in an experimental phase of implementation studies,
34 34
and thereafter the program code can be made efficient by small modifications.
35 35

	
36 36
The most efficient implementation of diverse applications require the
37 37
usage of different physical graph implementations. These differences
38 38
appear in the size of graph we require to handle, memory or time usage
39 39
limitations or in the set of operations through which the graph can be
40 40
accessed.  LEMON provides several physical graph structures to meet
41 41
the diverging requirements of the possible users.  In order to save on
42 42
running time or on memory usage, some structures may fail to provide
43 43
some graph features like arc/edge or node deletion.
44 44

	
45 45
Alteration of standard containers need a very limited number of
46 46
operations, these together satisfy the everyday requirements.
47 47
In the case of graph structures, different operations are needed which do
48 48
not alter the physical graph, but gives another view. If some nodes or
49 49
arcs have to be hidden or the reverse oriented graph have to be used, then
50 50
this is the case. It also may happen that in a flow implementation
51 51
the residual graph can be accessed by another algorithm, or a node-set
52 52
is to be shrunk for another algorithm.
53 53
LEMON also provides a variety of graphs for these requirements called
54 54
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only
55 55
in conjunction with other graph representations.
56 56

	
57 57
You are free to use the graph structure that fit your requirements
58 58
the best, most graph algorithms and auxiliary data structures can be used
59 59
with any graph structure.
60 60

	
61 61
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
62 62
*/
63 63

	
64 64
/**
65 65
@defgroup graph_adaptors Adaptor Classes for Graphs
66 66
@ingroup graphs
67 67
\brief Adaptor classes for digraphs and graphs
68 68

	
69 69
This group contains several useful adaptor classes for digraphs and graphs.
70 70

	
71 71
The main parts of LEMON are the different graph structures, generic
72 72
graph algorithms, graph concepts, which couple them, and graph
73 73
adaptors. While the previous notions are more or less clear, the
74 74
latter one needs further explanation. Graph adaptors are graph classes
75 75
which serve for considering graph structures in different ways.
76 76

	
77 77
A short example makes this much clearer.  Suppose that we have an
78 78
instance \c g of a directed graph type, say ListDigraph and an algorithm
79 79
\code
80 80
template <typename Digraph>
81 81
int algorithm(const Digraph&);
82 82
\endcode
83 83
is needed to run on the reverse oriented graph.  It may be expensive
84 84
(in time or in memory usage) to copy \c g with the reversed
85 85
arcs.  In this case, an adaptor class is used, which (according
86 86
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph.
87 87
The adaptor uses the original digraph structure and digraph operations when
88 88
methods of the reversed oriented graph are called.  This means that the adaptor
89 89
have minor memory usage, and do not perform sophisticated algorithmic
90 90
actions.  The purpose of it is to give a tool for the cases when a
91 91
graph have to be used in a specific alteration.  If this alteration is
92 92
obtained by a usual construction like filtering the node or the arc set or
93 93
considering a new orientation, then an adaptor is worthwhile to use.
94 94
To come back to the reverse oriented graph, in this situation
95 95
\code
96 96
template<typename Digraph> class ReverseDigraph;
97 97
\endcode
98 98
template class can be used. The code looks as follows
99 99
\code
100 100
ListDigraph g;
101 101
ReverseDigraph<ListDigraph> rg(g);
102 102
int result = algorithm(rg);
103 103
\endcode
104 104
During running the algorithm, the original digraph \c g is untouched.
105 105
This techniques give rise to an elegant code, and based on stable
106 106
graph adaptors, complex algorithms can be implemented easily.
107 107

	
108 108
In flow, circulation and matching problems, the residual
109 109
graph is of particular importance. Combining an adaptor implementing
110 110
this with shortest path algorithms or minimum mean cycle algorithms,
111 111
a range of weighted and cardinality optimization algorithms can be
112 112
obtained. For other examples, the interested user is referred to the
113 113
detailed documentation of particular adaptors.
114 114

	
115 115
The behavior of graph adaptors can be very different. Some of them keep
116 116
capabilities of the original graph while in other cases this would be
117 117
meaningless. This means that the concepts that they meet depend
118 118
on the graph adaptor, and the wrapped graph.
119 119
For example, if an arc of a reversed digraph is deleted, this is carried
120 120
out by deleting the corresponding arc of the original digraph, thus the
121 121
adaptor modifies the original digraph.
122 122
However in case of a residual digraph, this operation has no sense.
123 123

	
124 124
Let us stand one more example here to simplify your work.
125 125
ReverseDigraph has constructor
126 126
\code
127 127
ReverseDigraph(Digraph& digraph);
128 128
\endcode
129 129
This means that in a situation, when a <tt>const %ListDigraph&</tt>
130 130
reference to a graph is given, then it have to be instantiated with
131 131
<tt>Digraph=const %ListDigraph</tt>.
132 132
\code
133 133
int algorithm1(const ListDigraph& g) {
134 134
  ReverseDigraph<const ListDigraph> rg(g);
135 135
  return algorithm2(rg);
136 136
}
137 137
\endcode
138 138
*/
139 139

	
140 140
/**
141 141
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs
142 142
@ingroup graphs
143 143
\brief Graph types between real graphs and graph adaptors.
144 144

	
145
This group describes some graph types between real graphs and graph adaptors.
145
This group contains some graph types between real graphs and graph adaptors.
146 146
These classes wrap graphs to give new functionality as the adaptors do it.
147 147
On the other hand they are not light-weight structures as the adaptors.
148 148
*/
149 149

	
150 150
/**
151 151
@defgroup maps Maps
152 152
@ingroup datas
153 153
\brief Map structures implemented in LEMON.
154 154

	
155
This group describes the map structures implemented in LEMON.
155
This group contains the map structures implemented in LEMON.
156 156

	
157 157
LEMON provides several special purpose maps and map adaptors that e.g. combine
158 158
new maps from existing ones.
159 159

	
160 160
<b>See also:</b> \ref map_concepts "Map Concepts".
161 161
*/
162 162

	
163 163
/**
164 164
@defgroup graph_maps Graph Maps
165 165
@ingroup maps
166 166
\brief Special graph-related maps.
167 167

	
168
This group describes maps that are specifically designed to assign
168
This group contains maps that are specifically designed to assign
169 169
values to the nodes and arcs/edges of graphs.
170 170

	
171 171
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap,
172 172
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts".
173 173
*/
174 174

	
175 175
/**
176 176
\defgroup map_adaptors Map Adaptors
177 177
\ingroup maps
178 178
\brief Tools to create new maps from existing ones
179 179

	
180
This group describes map adaptors that are used to create "implicit"
180
This group contains map adaptors that are used to create "implicit"
181 181
maps from other maps.
182 182

	
183 183
Most of them are \ref concepts::ReadMap "read-only maps".
184 184
They can make arithmetic and logical operations between one or two maps
185 185
(negation, shifting, addition, multiplication, logical 'and', 'or',
186 186
'not' etc.) or e.g. convert a map to another one of different Value type.
187 187

	
188 188
The typical usage of this classes is passing implicit maps to
189 189
algorithms.  If a function type algorithm is called then the function
190 190
type map adaptors can be used comfortable. For example let's see the
191 191
usage of map adaptors with the \c graphToEps() function.
192 192
\code
193 193
  Color nodeColor(int deg) {
194 194
    if (deg >= 2) {
195 195
      return Color(0.5, 0.0, 0.5);
196 196
    } else if (deg == 1) {
197 197
      return Color(1.0, 0.5, 1.0);
198 198
    } else {
199 199
      return Color(0.0, 0.0, 0.0);
200 200
    }
201 201
  }
202 202

	
203 203
  Digraph::NodeMap<int> degree_map(graph);
204 204

	
205 205
  graphToEps(graph, "graph.eps")
206 206
    .coords(coords).scaleToA4().undirected()
207 207
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
208 208
    .run();
209 209
\endcode
210 210
The \c functorToMap() function makes an \c int to \c Color map from the
211 211
\c nodeColor() function. The \c composeMap() compose the \c degree_map
212 212
and the previously created map. The composed map is a proper function to
213 213
get the color of each node.
214 214

	
215 215
The usage with class type algorithms is little bit harder. In this
216 216
case the function type map adaptors can not be used, because the
217 217
function map adaptors give back temporary objects.
218 218
\code
219 219
  Digraph graph;
220 220

	
221 221
  typedef Digraph::ArcMap<double> DoubleArcMap;
222 222
  DoubleArcMap length(graph);
223 223
  DoubleArcMap speed(graph);
224 224

	
225 225
  typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
226 226
  TimeMap time(length, speed);
227 227

	
228 228
  Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
229 229
  dijkstra.run(source, target);
230 230
\endcode
231 231
We have a length map and a maximum speed map on the arcs of a digraph.
232 232
The minimum time to pass the arc can be calculated as the division of
233 233
the two maps which can be done implicitly with the \c DivMap template
234 234
class. We use the implicit minimum time map as the length map of the
235 235
\c Dijkstra algorithm.
236 236
*/
237 237

	
238 238
/**
239 239
@defgroup matrices Matrices
240 240
@ingroup datas
241 241
\brief Two dimensional data storages implemented in LEMON.
242 242

	
243
This group describes two dimensional data storages implemented in LEMON.
243
This group contains two dimensional data storages implemented in LEMON.
244 244
*/
245 245

	
246 246
/**
247 247
@defgroup paths Path Structures
248 248
@ingroup datas
249 249
\brief %Path structures implemented in LEMON.
250 250

	
251
This group describes the path structures implemented in LEMON.
251
This group contains the path structures implemented in LEMON.
252 252

	
253 253
LEMON provides flexible data structures to work with paths.
254 254
All of them have similar interfaces and they can be copied easily with
255 255
assignment operators and copy constructors. This makes it easy and
256 256
efficient to have e.g. the Dijkstra algorithm to store its result in
257 257
any kind of path structure.
258 258

	
259 259
\sa lemon::concepts::Path
260 260
*/
261 261

	
262 262
/**
263 263
@defgroup auxdat Auxiliary Data Structures
264 264
@ingroup datas
265 265
\brief Auxiliary data structures implemented in LEMON.
266 266

	
267
This group describes some data structures implemented in LEMON in
267
This group contains some data structures implemented in LEMON in
268 268
order to make it easier to implement combinatorial algorithms.
269 269
*/
270 270

	
271 271
/**
272 272
@defgroup algs Algorithms
273
\brief This group describes the several algorithms
273
\brief This group contains the several algorithms
274 274
implemented in LEMON.
275 275

	
276
This group describes the several algorithms
276
This group contains the several algorithms
277 277
implemented in LEMON.
278 278
*/
279 279

	
280 280
/**
281 281
@defgroup search Graph Search
282 282
@ingroup algs
283 283
\brief Common graph search algorithms.
284 284

	
285
This group describes the common graph search algorithms, namely
285
This group contains the common graph search algorithms, namely
286 286
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS).
287 287
*/
288 288

	
289 289
/**
290 290
@defgroup shortest_path Shortest Path Algorithms
291 291
@ingroup algs
292 292
\brief Algorithms for finding shortest paths.
293 293

	
294
This group describes the algorithms for finding shortest paths in digraphs.
294
This group contains the algorithms for finding shortest paths in digraphs.
295 295

	
296 296
 - \ref Dijkstra algorithm for finding shortest paths from a source node
297 297
   when all arc lengths are non-negative.
298 298
 - \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths
299 299
   from a source node when arc lenghts can be either positive or negative,
300 300
   but the digraph should not contain directed cycles with negative total
301 301
   length.
302 302
 - \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms
303 303
   for solving the \e all-pairs \e shortest \e paths \e problem when arc
304 304
   lenghts can be either positive or negative, but the digraph should
305 305
   not contain directed cycles with negative total length.
306 306
 - \ref Suurballe A successive shortest path algorithm for finding
307 307
   arc-disjoint paths between two nodes having minimum total length.
308 308
*/
309 309

	
310 310
/**
311 311
@defgroup max_flow Maximum Flow Algorithms
312 312
@ingroup algs
313 313
\brief Algorithms for finding maximum flows.
314 314

	
315
This group describes the algorithms for finding maximum flows and
315
This group contains the algorithms for finding maximum flows and
316 316
feasible circulations.
317 317

	
318 318
The \e maximum \e flow \e problem is to find a flow of maximum value between
319 319
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
320 320
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and
321 321
\f$s, t \in V\f$ source and target nodes.
322 322
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the
323 323
following optimization problem.
324 324

	
325 325
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f]
326 326
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a)
327 327
    \qquad \forall v\in V\setminus\{s,t\} \f]
328 328
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f]
329 329

	
330 330
LEMON contains several algorithms for solving maximum flow problems:
331 331
- \ref EdmondsKarp Edmonds-Karp algorithm.
332 332
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm.
333 333
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees.
334 334
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees.
335 335

	
336 336
In most cases the \ref Preflow "Preflow" algorithm provides the
337 337
fastest method for computing a maximum flow. All implementations
338 338
provides functions to also query the minimum cut, which is the dual
339 339
problem of the maximum flow.
340 340
*/
341 341

	
342 342
/**
343 343
@defgroup min_cost_flow Minimum Cost Flow Algorithms
344 344
@ingroup algs
345 345

	
346 346
\brief Algorithms for finding minimum cost flows and circulations.
347 347

	
348
This group describes the algorithms for finding minimum cost flows and
348
This group contains the algorithms for finding minimum cost flows and
349 349
circulations.
350 350

	
351 351
The \e minimum \e cost \e flow \e problem is to find a feasible flow of
352 352
minimum total cost from a set of supply nodes to a set of demand nodes
353 353
in a network with capacity constraints and arc costs.
354 354
Formally, let \f$G=(V,A)\f$ be a digraph,
355 355
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and
356 356
upper bounds for the flow values on the arcs,
357 357
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow
358 358
on the arcs, and
359 359
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values
360 360
of the nodes.
361 361
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of
362 362
the following optimization problem.
363 363

	
364 364
\f[ \min\sum_{a\in A} f(a) cost(a) \f]
365 365
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) =
366 366
    supply(v) \qquad \forall v\in V \f]
367 367
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f]
368 368

	
369 369
LEMON contains several algorithms for solving minimum cost flow problems:
370 370
 - \ref CycleCanceling Cycle-canceling algorithms.
371 371
 - \ref CapacityScaling Successive shortest path algorithm with optional
372 372
   capacity scaling.
373 373
 - \ref CostScaling Push-relabel and augment-relabel algorithms based on
374 374
   cost scaling.
375 375
 - \ref NetworkSimplex Primal network simplex algorithm with various
376 376
   pivot strategies.
377 377
*/
378 378

	
379 379
/**
380 380
@defgroup min_cut Minimum Cut Algorithms
381 381
@ingroup algs
382 382

	
383 383
\brief Algorithms for finding minimum cut in graphs.
384 384

	
385
This group describes the algorithms for finding minimum cut in graphs.
385
This group contains the algorithms for finding minimum cut in graphs.
386 386

	
387 387
The \e minimum \e cut \e problem is to find a non-empty and non-complete
388 388
\f$X\f$ subset of the nodes with minimum overall capacity on
389 389
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
390 390
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
391 391
cut is the \f$X\f$ solution of the next optimization problem:
392 392

	
393 393
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
394 394
    \sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
395 395

	
396 396
LEMON contains several algorithms related to minimum cut problems:
397 397

	
398 398
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
399 399
  in directed graphs.
400 400
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
401 401
  calculating minimum cut in undirected graphs.
402
- \ref GomoryHuTree "Gomory-Hu tree computation" for calculating
402
- \ref GomoryHu "Gomory-Hu tree computation" for calculating
403 403
  all-pairs minimum cut in undirected graphs.
404 404

	
405 405
If you want to find minimum cut just between two distinict nodes,
406 406
see the \ref max_flow "maximum flow problem".
407 407
*/
408 408

	
409 409
/**
410 410
@defgroup graph_prop Connectivity and Other Graph Properties
411 411
@ingroup algs
412 412
\brief Algorithms for discovering the graph properties
413 413

	
414
This group describes the algorithms for discovering the graph properties
414
This group contains the algorithms for discovering the graph properties
415 415
like connectivity, bipartiteness, euler property, simplicity etc.
416 416

	
417 417
\image html edge_biconnected_components.png
418 418
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
419 419
*/
420 420

	
421 421
/**
422 422
@defgroup planar Planarity Embedding and Drawing
423 423
@ingroup algs
424 424
\brief Algorithms for planarity checking, embedding and drawing
425 425

	
426
This group describes the algorithms for planarity checking,
426
This group contains the algorithms for planarity checking,
427 427
embedding and drawing.
428 428

	
429 429
\image html planar.png
430 430
\image latex planar.eps "Plane graph" width=\textwidth
431 431
*/
432 432

	
433 433
/**
434 434
@defgroup matching Matching Algorithms
435 435
@ingroup algs
436 436
\brief Algorithms for finding matchings in graphs and bipartite graphs.
437 437

	
438 438
This group contains algorithm objects and functions to calculate
439 439
matchings in graphs and bipartite graphs. The general matching problem is
440 440
finding a subset of the arcs which does not shares common endpoints.
441 441

	
442 442
There are several different algorithms for calculate matchings in
443 443
graphs.  The matching problems in bipartite graphs are generally
444 444
easier than in general graphs. The goal of the matching optimization
445 445
can be finding maximum cardinality, maximum weight or minimum cost
446 446
matching. The search can be constrained to find perfect or
447 447
maximum cardinality matching.
448 448

	
449 449
The matching algorithms implemented in LEMON:
450 450
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
451 451
  for calculating maximum cardinality matching in bipartite graphs.
452 452
- \ref PrBipartiteMatching Push-relabel algorithm
453 453
  for calculating maximum cardinality matching in bipartite graphs.
454 454
- \ref MaxWeightedBipartiteMatching
455 455
  Successive shortest path algorithm for calculating maximum weighted
456 456
  matching and maximum weighted bipartite matching in bipartite graphs.
457 457
- \ref MinCostMaxBipartiteMatching
458 458
  Successive shortest path algorithm for calculating minimum cost maximum
459 459
  matching in bipartite graphs.
460 460
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
461 461
  maximum cardinality matching in general graphs.
462 462
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
463 463
  maximum weighted matching in general graphs.
464 464
- \ref MaxWeightedPerfectMatching
465 465
  Edmond's blossom shrinking algorithm for calculating maximum weighted
466 466
  perfect matching in general graphs.
467 467

	
468 468
\image html bipartite_matching.png
469 469
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
470 470
*/
471 471

	
472 472
/**
473 473
@defgroup spantree Minimum Spanning Tree Algorithms
474 474
@ingroup algs
475 475
\brief Algorithms for finding a minimum cost spanning tree in a graph.
476 476

	
477
This group describes the algorithms for finding a minimum cost spanning
477
This group contains the algorithms for finding a minimum cost spanning
478 478
tree in a graph.
479 479
*/
480 480

	
481 481
/**
482 482
@defgroup auxalg Auxiliary Algorithms
483 483
@ingroup algs
484 484
\brief Auxiliary algorithms implemented in LEMON.
485 485

	
486
This group describes some algorithms implemented in LEMON
486
This group contains some algorithms implemented in LEMON
487 487
in order to make it easier to implement complex algorithms.
488 488
*/
489 489

	
490 490
/**
491 491
@defgroup approx Approximation Algorithms
492 492
@ingroup algs
493 493
\brief Approximation algorithms.
494 494

	
495
This group describes the approximation and heuristic algorithms
495
This group contains the approximation and heuristic algorithms
496 496
implemented in LEMON.
497 497
*/
498 498

	
499 499
/**
500 500
@defgroup gen_opt_group General Optimization Tools
501
\brief This group describes some general optimization frameworks
501
\brief This group contains some general optimization frameworks
502 502
implemented in LEMON.
503 503

	
504
This group describes some general optimization frameworks
504
This group contains some general optimization frameworks
505 505
implemented in LEMON.
506 506
*/
507 507

	
508 508
/**
509 509
@defgroup lp_group Lp and Mip Solvers
510 510
@ingroup gen_opt_group
511 511
\brief Lp and Mip solver interfaces for LEMON.
512 512

	
513
This group describes Lp and Mip solver interfaces for LEMON. The
513
This group contains Lp and Mip solver interfaces for LEMON. The
514 514
various LP solvers could be used in the same manner with this
515 515
interface.
516 516
*/
517 517

	
518 518
/**
519 519
@defgroup lp_utils Tools for Lp and Mip Solvers
520 520
@ingroup lp_group
521 521
\brief Helper tools to the Lp and Mip solvers.
522 522

	
523 523
This group adds some helper tools to general optimization framework
524 524
implemented in LEMON.
525 525
*/
526 526

	
527 527
/**
528 528
@defgroup metah Metaheuristics
529 529
@ingroup gen_opt_group
530 530
\brief Metaheuristics for LEMON library.
531 531

	
532
This group describes some metaheuristic optimization tools.
532
This group contains some metaheuristic optimization tools.
533 533
*/
534 534

	
535 535
/**
536 536
@defgroup utils Tools and Utilities
537 537
\brief Tools and utilities for programming in LEMON
538 538

	
539 539
Tools and utilities for programming in LEMON.
540 540
*/
541 541

	
542 542
/**
543 543
@defgroup gutils Basic Graph Utilities
544 544
@ingroup utils
545 545
\brief Simple basic graph utilities.
546 546

	
547
This group describes some simple basic graph utilities.
547
This group contains some simple basic graph utilities.
548 548
*/
549 549

	
550 550
/**
551 551
@defgroup misc Miscellaneous Tools
552 552
@ingroup utils
553 553
\brief Tools for development, debugging and testing.
554 554

	
555
This group describes several useful tools for development,
555
This group contains several useful tools for development,
556 556
debugging and testing.
557 557
*/
558 558

	
559 559
/**
560 560
@defgroup timecount Time Measuring and Counting
561 561
@ingroup misc
562 562
\brief Simple tools for measuring the performance of algorithms.
563 563

	
564
This group describes simple tools for measuring the performance
564
This group contains simple tools for measuring the performance
565 565
of algorithms.
566 566
*/
567 567

	
568 568
/**
569 569
@defgroup exceptions Exceptions
570 570
@ingroup utils
571 571
\brief Exceptions defined in LEMON.
572 572

	
573
This group describes the exceptions defined in LEMON.
573
This group contains the exceptions defined in LEMON.
574 574
*/
575 575

	
576 576
/**
577 577
@defgroup io_group Input-Output
578 578
\brief Graph Input-Output methods
579 579

	
580
This group describes the tools for importing and exporting graphs
580
This group contains the tools for importing and exporting graphs
581 581
and graph related data. Now it supports the \ref lgf-format
582 582
"LEMON Graph Format", the \c DIMACS format and the encapsulated
583 583
postscript (EPS) format.
584 584
*/
585 585

	
586 586
/**
587 587
@defgroup lemon_io LEMON Graph Format
588 588
@ingroup io_group
589 589
\brief Reading and writing LEMON Graph Format.
590 590

	
591
This group describes methods for reading and writing
591
This group contains methods for reading and writing
592 592
\ref lgf-format "LEMON Graph Format".
593 593
*/
594 594

	
595 595
/**
596 596
@defgroup eps_io Postscript Exporting
597 597
@ingroup io_group
598 598
\brief General \c EPS drawer and graph exporter
599 599

	
600
This group describes general \c EPS drawing methods and special
600
This group contains general \c EPS drawing methods and special
601 601
graph exporting tools.
602 602
*/
603 603

	
604 604
/**
605 605
@defgroup dimacs_group DIMACS format
606 606
@ingroup io_group
607 607
\brief Read and write files in DIMACS format
608 608

	
609 609
Tools to read a digraph from or write it to a file in DIMACS format data.
610 610
*/
611 611

	
612 612
/**
613 613
@defgroup nauty_group NAUTY Format
614 614
@ingroup io_group
615 615
\brief Read \e Nauty format
616 616

	
617 617
Tool to read graphs from \e Nauty format data.
618 618
*/
619 619

	
620 620
/**
621 621
@defgroup concept Concepts
622 622
\brief Skeleton classes and concept checking classes
623 623

	
624
This group describes the data/algorithm skeletons and concept checking
624
This group contains the data/algorithm skeletons and concept checking
625 625
classes implemented in LEMON.
626 626

	
627 627
The purpose of the classes in this group is fourfold.
628 628

	
629 629
- These classes contain the documentations of the %concepts. In order
630 630
  to avoid document multiplications, an implementation of a concept
631 631
  simply refers to the corresponding concept class.
632 632

	
633 633
- These classes declare every functions, <tt>typedef</tt>s etc. an
634 634
  implementation of the %concepts should provide, however completely
635 635
  without implementations and real data structures behind the
636 636
  interface. On the other hand they should provide nothing else. All
637 637
  the algorithms working on a data structure meeting a certain concept
638 638
  should compile with these classes. (Though it will not run properly,
639 639
  of course.) In this way it is easily to check if an algorithm
640 640
  doesn't use any extra feature of a certain implementation.
641 641

	
642 642
- The concept descriptor classes also provide a <em>checker class</em>
643 643
  that makes it possible to check whether a certain implementation of a
644 644
  concept indeed provides all the required features.
645 645

	
646 646
- Finally, They can serve as a skeleton of a new implementation of a concept.
647 647
*/
648 648

	
649 649
/**
650 650
@defgroup graph_concepts Graph Structure Concepts
651 651
@ingroup concept
652 652
\brief Skeleton and concept checking classes for graph structures
653 653

	
654
This group describes the skeletons and concept checking classes of LEMON's
654
This group contains the skeletons and concept checking classes of LEMON's
655 655
graph structures and helper classes used to implement these.
656 656
*/
657 657

	
658 658
/**
659 659
@defgroup map_concepts Map Concepts
660 660
@ingroup concept
661 661
\brief Skeleton and concept checking classes for maps
662 662

	
663
This group describes the skeletons and concept checking classes of maps.
663
This group contains the skeletons and concept checking classes of maps.
664 664
*/
665 665

	
666 666
/**
667 667
\anchor demoprograms
668 668

	
669 669
@defgroup demos Demo Programs
670 670

	
671 671
Some demo programs are listed here. Their full source codes can be found in
672 672
the \c demo subdirectory of the source tree.
673 673

	
674 674
It order to compile them, use <tt>--enable-demo</tt> configure option when
675 675
build the library.
676 676
*/
677 677

	
678 678
/**
679 679
@defgroup tools Standalone Utility Applications
680 680

	
681 681
Some utility applications are listed here.
682 682

	
683 683
The standard compilation procedure (<tt>./configure;make</tt>) will compile
684 684
them, as well.
685 685
*/
686 686

	
687 687
}
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/**
20 20
\mainpage LEMON Documentation
21 21

	
22 22
\section intro Introduction
23 23

	
24 24
\subsection whatis What is LEMON
25 25

	
26 26
LEMON stands for
27 27
<b>L</b>ibrary of <b>E</b>fficient <b>M</b>odels
28 28
and <b>O</b>ptimization in <b>N</b>etworks.
29 29
It is a C++ template
30 30
library aimed at combinatorial optimization tasks which
31 31
often involve in working
32 32
with graphs.
33 33

	
34 34
<b>
35 35
LEMON is an <a class="el" href="http://opensource.org/">open&nbsp;source</a>
36 36
project.
37 37
You are free to use it in your commercial or
38 38
non-commercial applications under very permissive
39 39
\ref license "license terms".
40 40
</b>
41 41

	
42 42
\subsection howtoread How to read the documentation
43 43

	
44 44
If you want to get a quick start and see the most important features then
45 45
take a look at our \ref quicktour
46 46
"Quick Tour to LEMON" which will guide you along.
47 47

	
48
If you already feel like using our library, see the page that tells you
49
\ref getstart "How to start using LEMON".
50

	
51
If you
52
want to see how LEMON works, see
53
some \ref demoprograms "demo programs".
48
If you already feel like using our library, see the
49
<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>.
54 50

	
55 51
If you know what you are looking for then try to find it under the
56
<a class="el" href="modules.html">Modules</a>
57
section.
52
<a class="el" href="modules.html">Modules</a> section.
58 53

	
59 54
If you are a user of the old (0.x) series of LEMON, please check out the
60 55
\ref migration "Migration Guide" for the backward incompatibilities.
61 56
*/
Ignore white space 6 line context
... ...
@@ -2001,596 +2001,594 @@
2001 2001
    void clear() { _digraph->clear(); }
2002 2002

	
2003 2003
    typedef NodeNumTagIndicator<Digraph> NodeNumTag;
2004 2004
    int nodeNum() const { return _digraph->nodeNum(); }
2005 2005

	
2006 2006
    typedef ArcNumTagIndicator<Digraph> ArcNumTag;
2007 2007
    int arcNum() const { return 2 * _digraph->arcNum(); }
2008 2008

	
2009 2009
    typedef ArcNumTag EdgeNumTag;
2010 2010
    int edgeNum() const { return _digraph->arcNum(); }
2011 2011

	
2012 2012
    typedef FindArcTagIndicator<Digraph> FindArcTag;
2013 2013
    Arc findArc(Node s, Node t, Arc p = INVALID) const {
2014 2014
      if (p == INVALID) {
2015 2015
        Edge arc = _digraph->findArc(s, t);
2016 2016
        if (arc != INVALID) return direct(arc, true);
2017 2017
        arc = _digraph->findArc(t, s);
2018 2018
        if (arc != INVALID) return direct(arc, false);
2019 2019
      } else if (direction(p)) {
2020 2020
        Edge arc = _digraph->findArc(s, t, p);
2021 2021
        if (arc != INVALID) return direct(arc, true);
2022 2022
        arc = _digraph->findArc(t, s);
2023 2023
        if (arc != INVALID) return direct(arc, false);
2024 2024
      } else {
2025 2025
        Edge arc = _digraph->findArc(t, s, p);
2026 2026
        if (arc != INVALID) return direct(arc, false);
2027 2027
      }
2028 2028
      return INVALID;
2029 2029
    }
2030 2030

	
2031 2031
    typedef FindArcTag FindEdgeTag;
2032 2032
    Edge findEdge(Node s, Node t, Edge p = INVALID) const {
2033 2033
      if (s != t) {
2034 2034
        if (p == INVALID) {
2035 2035
          Edge arc = _digraph->findArc(s, t);
2036 2036
          if (arc != INVALID) return arc;
2037 2037
          arc = _digraph->findArc(t, s);
2038 2038
          if (arc != INVALID) return arc;
2039 2039
        } else if (_digraph->source(p) == s) {
2040 2040
          Edge arc = _digraph->findArc(s, t, p);
2041 2041
          if (arc != INVALID) return arc;
2042 2042
          arc = _digraph->findArc(t, s);
2043 2043
          if (arc != INVALID) return arc;
2044 2044
        } else {
2045 2045
          Edge arc = _digraph->findArc(t, s, p);
2046 2046
          if (arc != INVALID) return arc;
2047 2047
        }
2048 2048
      } else {
2049 2049
        return _digraph->findArc(s, t, p);
2050 2050
      }
2051 2051
      return INVALID;
2052 2052
    }
2053 2053

	
2054 2054
  private:
2055 2055

	
2056 2056
    template <typename V>
2057 2057
    class ArcMapBase {
2058 2058
    private:
2059 2059

	
2060 2060
      typedef typename DGR::template ArcMap<V> MapImpl;
2061 2061

	
2062 2062
    public:
2063 2063

	
2064 2064
      typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
2065 2065

	
2066 2066
      typedef V Value;
2067 2067
      typedef Arc Key;
2068 2068
      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue;
2069 2069
      typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue;
2070 2070
      typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference;
2071 2071
      typedef typename MapTraits<MapImpl>::ReturnValue Reference;
2072 2072

	
2073 2073
      ArcMapBase(const UndirectorBase<DGR>& adaptor) :
2074 2074
        _forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
2075 2075

	
2076 2076
      ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value)
2077 2077
        : _forward(*adaptor._digraph, value), 
2078 2078
          _backward(*adaptor._digraph, value) {}
2079 2079

	
2080 2080
      void set(const Arc& a, const V& value) {
2081 2081
        if (direction(a)) {
2082 2082
          _forward.set(a, value);
2083 2083
        } else {
2084 2084
          _backward.set(a, value);
2085 2085
        }
2086 2086
      }
2087 2087

	
2088 2088
      ConstReturnValue operator[](const Arc& a) const {
2089 2089
        if (direction(a)) {
2090 2090
          return _forward[a];
2091 2091
        } else {
2092 2092
          return _backward[a];
2093 2093
        }
2094 2094
      }
2095 2095

	
2096 2096
      ReturnValue operator[](const Arc& a) {
2097 2097
        if (direction(a)) {
2098 2098
          return _forward[a];
2099 2099
        } else {
2100 2100
          return _backward[a];
2101 2101
        }
2102 2102
      }
2103 2103

	
2104 2104
    protected:
2105 2105

	
2106 2106
      MapImpl _forward, _backward;
2107 2107

	
2108 2108
    };
2109 2109

	
2110 2110
  public:
2111 2111

	
2112 2112
    template <typename V>
2113 2113
    class NodeMap : public DGR::template NodeMap<V> {
2114 2114
    public:
2115 2115

	
2116 2116
      typedef V Value;
2117 2117
      typedef typename DGR::template NodeMap<Value> Parent;
2118 2118

	
2119 2119
      explicit NodeMap(const UndirectorBase<DGR>& adaptor)
2120 2120
        : Parent(*adaptor._digraph) {}
2121 2121

	
2122 2122
      NodeMap(const UndirectorBase<DGR>& adaptor, const V& value)
2123 2123
        : Parent(*adaptor._digraph, value) { }
2124 2124

	
2125 2125
    private:
2126 2126
      NodeMap& operator=(const NodeMap& cmap) {
2127 2127
        return operator=<NodeMap>(cmap);
2128 2128
      }
2129 2129

	
2130 2130
      template <typename CMap>
2131 2131
      NodeMap& operator=(const CMap& cmap) {
2132 2132
        Parent::operator=(cmap);
2133 2133
        return *this;
2134 2134
      }
2135 2135

	
2136 2136
    };
2137 2137

	
2138 2138
    template <typename V>
2139 2139
    class ArcMap
2140 2140
      : public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> >
2141 2141
    {
2142 2142
    public:
2143 2143
      typedef V Value;
2144 2144
      typedef SubMapExtender<Adaptor, ArcMapBase<V> > Parent;
2145 2145

	
2146 2146
      explicit ArcMap(const UndirectorBase<DGR>& adaptor)
2147 2147
        : Parent(adaptor) {}
2148 2148

	
2149 2149
      ArcMap(const UndirectorBase<DGR>& adaptor, const V& value)
2150 2150
        : Parent(adaptor, value) {}
2151 2151

	
2152 2152
    private:
2153 2153
      ArcMap& operator=(const ArcMap& cmap) {
2154 2154
        return operator=<ArcMap>(cmap);
2155 2155
      }
2156 2156

	
2157 2157
      template <typename CMap>
2158 2158
      ArcMap& operator=(const CMap& cmap) {
2159 2159
        Parent::operator=(cmap);
2160 2160
        return *this;
2161 2161
      }
2162 2162
    };
2163 2163

	
2164 2164
    template <typename V>
2165 2165
    class EdgeMap : public Digraph::template ArcMap<V> {
2166 2166
    public:
2167 2167

	
2168 2168
      typedef V Value;
2169 2169
      typedef typename Digraph::template ArcMap<V> Parent;
2170 2170

	
2171 2171
      explicit EdgeMap(const UndirectorBase<DGR>& adaptor)
2172 2172
        : Parent(*adaptor._digraph) {}
2173 2173

	
2174 2174
      EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value)
2175 2175
        : Parent(*adaptor._digraph, value) {}
2176 2176

	
2177 2177
    private:
2178 2178
      EdgeMap& operator=(const EdgeMap& cmap) {
2179 2179
        return operator=<EdgeMap>(cmap);
2180 2180
      }
2181 2181

	
2182 2182
      template <typename CMap>
2183 2183
      EdgeMap& operator=(const CMap& cmap) {
2184 2184
        Parent::operator=(cmap);
2185 2185
        return *this;
2186 2186
      }
2187 2187

	
2188 2188
    };
2189 2189

	
2190 2190
    typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
2191 2191
    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
2192 2192

	
2193 2193
    typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier;
2194 2194
    EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
2195 2195

	
2196 2196
  protected:
2197 2197

	
2198 2198
    UndirectorBase() : _digraph(0) {}
2199 2199

	
2200 2200
    DGR* _digraph;
2201 2201

	
2202 2202
    void initialize(DGR& digraph) {
2203 2203
      _digraph = &digraph;
2204 2204
    }
2205 2205

	
2206 2206
  };
2207 2207

	
2208 2208
  /// \ingroup graph_adaptors
2209 2209
  ///
2210 2210
  /// \brief Adaptor class for viewing a digraph as an undirected graph.
2211 2211
  ///
2212 2212
  /// Undirector adaptor can be used for viewing a digraph as an undirected
2213 2213
  /// graph. All arcs of the underlying digraph are showed in the
2214 2214
  /// adaptor as an edge (and also as a pair of arcs, of course).
2215 2215
  /// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
2216 2216
  ///
2217 2217
  /// The adapted digraph can also be modified through this adaptor
2218 2218
  /// by adding or removing nodes or edges, unless the \c GR template
2219 2219
  /// parameter is set to be \c const.
2220 2220
  ///
2221 2221
  /// \tparam DGR The type of the adapted digraph.
2222 2222
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
2223 2223
  /// It can also be specified to be \c const.
2224 2224
  ///
2225 2225
  /// \note The \c Node type of this adaptor and the adapted digraph are
2226 2226
  /// convertible to each other, moreover the \c Edge type of the adaptor
2227 2227
  /// and the \c Arc type of the adapted digraph are also convertible to
2228 2228
  /// each other.
2229 2229
  /// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type
2230 2230
  /// of the adapted digraph.)
2231 2231
  template<typename DGR>
2232 2232
#ifdef DOXYGEN
2233 2233
  class Undirector {
2234 2234
#else
2235 2235
  class Undirector :
2236 2236
    public GraphAdaptorExtender<UndirectorBase<DGR> > {
2237 2237
#endif
2238 2238
  public:
2239 2239
    /// The type of the adapted digraph.
2240 2240
    typedef DGR Digraph;
2241 2241
    typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent;
2242 2242
  protected:
2243 2243
    Undirector() { }
2244 2244
  public:
2245 2245

	
2246 2246
    /// \brief Constructor
2247 2247
    ///
2248 2248
    /// Creates an undirected graph from the given digraph.
2249 2249
    Undirector(DGR& digraph) {
2250 2250
      initialize(digraph);
2251 2251
    }
2252 2252

	
2253 2253
    /// \brief Arc map combined from two original arc maps
2254 2254
    ///
2255 2255
    /// This map adaptor class adapts two arc maps of the underlying
2256 2256
    /// digraph to get an arc map of the undirected graph.
2257
    /// Its value type is inherited from the first arc map type
2258
    /// (\c %ForwardMap).
2259
    template <typename ForwardMap, typename BackwardMap>
2257
    /// Its value type is inherited from the first arc map type (\c FW).
2258
    /// \tparam FW The type of the "foward" arc map.
2259
    /// \tparam BK The type of the "backward" arc map.
2260
    template <typename FW, typename BK>
2260 2261
    class CombinedArcMap {
2261 2262
    public:
2262 2263

	
2263 2264
      /// The key type of the map
2264 2265
      typedef typename Parent::Arc Key;
2265 2266
      /// The value type of the map
2266
      typedef typename ForwardMap::Value Value;
2267

	
2268
      typedef typename MapTraits<ForwardMap>::ReferenceMapTag ReferenceMapTag;
2269

	
2270
      typedef typename MapTraits<ForwardMap>::ReturnValue ReturnValue;
2271
      typedef typename MapTraits<ForwardMap>::ConstReturnValue ConstReturnValue;
2272
      typedef typename MapTraits<ForwardMap>::ReturnValue Reference;
2273
      typedef typename MapTraits<ForwardMap>::ConstReturnValue ConstReference;
2267
      typedef typename FW::Value Value;
2268

	
2269
      typedef typename MapTraits<FW>::ReferenceMapTag ReferenceMapTag;
2270

	
2271
      typedef typename MapTraits<FW>::ReturnValue ReturnValue;
2272
      typedef typename MapTraits<FW>::ConstReturnValue ConstReturnValue;
2273
      typedef typename MapTraits<FW>::ReturnValue Reference;
2274
      typedef typename MapTraits<FW>::ConstReturnValue ConstReference;
2274 2275

	
2275 2276
      /// Constructor
2276
      CombinedArcMap(ForwardMap& forward, BackwardMap& backward)
2277
      CombinedArcMap(FW& forward, BK& backward)
2277 2278
        : _forward(&forward), _backward(&backward) {}
2278 2279

	
2279 2280
      /// Sets the value associated with the given key.
2280 2281
      void set(const Key& e, const Value& a) {
2281 2282
        if (Parent::direction(e)) {
2282 2283
          _forward->set(e, a);
2283 2284
        } else {
2284 2285
          _backward->set(e, a);
2285 2286
        }
2286 2287
      }
2287 2288

	
2288 2289
      /// Returns the value associated with the given key.
2289 2290
      ConstReturnValue operator[](const Key& e) const {
2290 2291
        if (Parent::direction(e)) {
2291 2292
          return (*_forward)[e];
2292 2293
        } else {
2293 2294
          return (*_backward)[e];
2294 2295
        }
2295 2296
      }
2296 2297

	
2297 2298
      /// Returns a reference to the value associated with the given key.
2298 2299
      ReturnValue operator[](const Key& e) {
2299 2300
        if (Parent::direction(e)) {
2300 2301
          return (*_forward)[e];
2301 2302
        } else {
2302 2303
          return (*_backward)[e];
2303 2304
        }
2304 2305
      }
2305 2306

	
2306 2307
    protected:
2307 2308

	
2308
      ForwardMap* _forward;
2309
      BackwardMap* _backward;
2309
      FW* _forward;
2310
      BK* _backward;
2310 2311

	
2311 2312
    };
2312 2313

	
2313 2314
    /// \brief Returns a combined arc map
2314 2315
    ///
2315 2316
    /// This function just returns a combined arc map.
2316
    template <typename ForwardMap, typename BackwardMap>
2317
    static CombinedArcMap<ForwardMap, BackwardMap>
2318
    combinedArcMap(ForwardMap& forward, BackwardMap& backward) {
2319
      return CombinedArcMap<ForwardMap, BackwardMap>(forward, backward);
2317
    template <typename FW, typename BK>
2318
    static CombinedArcMap<FW, BK>
2319
    combinedArcMap(FW& forward, BK& backward) {
2320
      return CombinedArcMap<FW, BK>(forward, backward);
2320 2321
    }
2321 2322

	
2322
    template <typename ForwardMap, typename BackwardMap>
2323
    static CombinedArcMap<const ForwardMap, BackwardMap>
2324
    combinedArcMap(const ForwardMap& forward, BackwardMap& backward) {
2325
      return CombinedArcMap<const ForwardMap,
2326
        BackwardMap>(forward, backward);
2323
    template <typename FW, typename BK>
2324
    static CombinedArcMap<const FW, BK>
2325
    combinedArcMap(const FW& forward, BK& backward) {
2326
      return CombinedArcMap<const FW, BK>(forward, backward);
2327 2327
    }
2328 2328

	
2329
    template <typename ForwardMap, typename BackwardMap>
2330
    static CombinedArcMap<ForwardMap, const BackwardMap>
2331
    combinedArcMap(ForwardMap& forward, const BackwardMap& backward) {
2332
      return CombinedArcMap<ForwardMap,
2333
        const BackwardMap>(forward, backward);
2329
    template <typename FW, typename BK>
2330
    static CombinedArcMap<FW, const BK>
2331
    combinedArcMap(FW& forward, const BK& backward) {
2332
      return CombinedArcMap<FW, const BK>(forward, backward);
2334 2333
    }
2335 2334

	
2336
    template <typename ForwardMap, typename BackwardMap>
2337
    static CombinedArcMap<const ForwardMap, const BackwardMap>
2338
    combinedArcMap(const ForwardMap& forward, const BackwardMap& backward) {
2339
      return CombinedArcMap<const ForwardMap,
2340
        const BackwardMap>(forward, backward);
2335
    template <typename FW, typename BK>
2336
    static CombinedArcMap<const FW, const BK>
2337
    combinedArcMap(const FW& forward, const BK& backward) {
2338
      return CombinedArcMap<const FW, const BK>(forward, backward);
2341 2339
    }
2342 2340

	
2343 2341
  };
2344 2342

	
2345 2343
  /// \brief Returns a read-only Undirector adaptor
2346 2344
  ///
2347 2345
  /// This function just returns a read-only \ref Undirector adaptor.
2348 2346
  /// \ingroup graph_adaptors
2349 2347
  /// \relates Undirector
2350 2348
  template<typename DGR>
2351 2349
  Undirector<const DGR> undirector(const DGR& digraph) {
2352 2350
    return Undirector<const DGR>(digraph);
2353 2351
  }
2354 2352

	
2355 2353

	
2356 2354
  template <typename GR, typename DM>
2357 2355
  class OrienterBase {
2358 2356
  public:
2359 2357

	
2360 2358
    typedef GR Graph;
2361 2359
    typedef DM DirectionMap;
2362 2360

	
2363 2361
    typedef typename GR::Node Node;
2364 2362
    typedef typename GR::Edge Arc;
2365 2363

	
2366 2364
    void reverseArc(const Arc& arc) {
2367 2365
      _direction->set(arc, !(*_direction)[arc]);
2368 2366
    }
2369 2367

	
2370 2368
    void first(Node& i) const { _graph->first(i); }
2371 2369
    void first(Arc& i) const { _graph->first(i); }
2372 2370
    void firstIn(Arc& i, const Node& n) const {
2373 2371
      bool d = true;
2374 2372
      _graph->firstInc(i, d, n);
2375 2373
      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2376 2374
    }
2377 2375
    void firstOut(Arc& i, const Node& n ) const {
2378 2376
      bool d = true;
2379 2377
      _graph->firstInc(i, d, n);
2380 2378
      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2381 2379
    }
2382 2380

	
2383 2381
    void next(Node& i) const { _graph->next(i); }
2384 2382
    void next(Arc& i) const { _graph->next(i); }
2385 2383
    void nextIn(Arc& i) const {
2386 2384
      bool d = !(*_direction)[i];
2387 2385
      _graph->nextInc(i, d);
2388 2386
      while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
2389 2387
    }
2390 2388
    void nextOut(Arc& i) const {
2391 2389
      bool d = (*_direction)[i];
2392 2390
      _graph->nextInc(i, d);
2393 2391
      while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
2394 2392
    }
2395 2393

	
2396 2394
    Node source(const Arc& e) const {
2397 2395
      return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
2398 2396
    }
2399 2397
    Node target(const Arc& e) const {
2400 2398
      return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
2401 2399
    }
2402 2400

	
2403 2401
    typedef NodeNumTagIndicator<Graph> NodeNumTag;
2404 2402
    int nodeNum() const { return _graph->nodeNum(); }
2405 2403

	
2406 2404
    typedef EdgeNumTagIndicator<Graph> ArcNumTag;
2407 2405
    int arcNum() const { return _graph->edgeNum(); }
2408 2406

	
2409 2407
    typedef FindEdgeTagIndicator<Graph> FindArcTag;
2410 2408
    Arc findArc(const Node& u, const Node& v,
2411 2409
                const Arc& prev = INVALID) const {
2412 2410
      Arc arc = _graph->findEdge(u, v, prev);
2413 2411
      while (arc != INVALID && source(arc) != u) {
2414 2412
        arc = _graph->findEdge(u, v, arc);
2415 2413
      }
2416 2414
      return arc;
2417 2415
    }
2418 2416

	
2419 2417
    Node addNode() {
2420 2418
      return Node(_graph->addNode());
2421 2419
    }
2422 2420

	
2423 2421
    Arc addArc(const Node& u, const Node& v) {
2424 2422
      Arc arc = _graph->addEdge(u, v);
2425 2423
      _direction->set(arc, _graph->u(arc) == u);
2426 2424
      return arc;
2427 2425
    }
2428 2426

	
2429 2427
    void erase(const Node& i) { _graph->erase(i); }
2430 2428
    void erase(const Arc& i) { _graph->erase(i); }
2431 2429

	
2432 2430
    void clear() { _graph->clear(); }
2433 2431

	
2434 2432
    int id(const Node& v) const { return _graph->id(v); }
2435 2433
    int id(const Arc& e) const { return _graph->id(e); }
2436 2434

	
2437 2435
    Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
2438 2436
    Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
2439 2437

	
2440 2438
    int maxNodeId() const { return _graph->maxNodeId(); }
2441 2439
    int maxArcId() const { return _graph->maxEdgeId(); }
2442 2440

	
2443 2441
    typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
2444 2442
    NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
2445 2443

	
2446 2444
    typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
2447 2445
    ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
2448 2446

	
2449 2447
    template <typename V>
2450 2448
    class NodeMap : public GR::template NodeMap<V> {
2451 2449
    public:
2452 2450

	
2453 2451
      typedef typename GR::template NodeMap<V> Parent;
2454 2452

	
2455 2453
      explicit NodeMap(const OrienterBase<GR, DM>& adapter)
2456 2454
        : Parent(*adapter._graph) {}
2457 2455

	
2458 2456
      NodeMap(const OrienterBase<GR, DM>& adapter, const V& value)
2459 2457
        : Parent(*adapter._graph, value) {}
2460 2458

	
2461 2459
    private:
2462 2460
      NodeMap& operator=(const NodeMap& cmap) {
2463 2461
        return operator=<NodeMap>(cmap);
2464 2462
      }
2465 2463

	
2466 2464
      template <typename CMap>
2467 2465
      NodeMap& operator=(const CMap& cmap) {
2468 2466
        Parent::operator=(cmap);
2469 2467
        return *this;
2470 2468
      }
2471 2469

	
2472 2470
    };
2473 2471

	
2474 2472
    template <typename V>
2475 2473
    class ArcMap : public GR::template EdgeMap<V> {
2476 2474
    public:
2477 2475

	
2478 2476
      typedef typename Graph::template EdgeMap<V> Parent;
2479 2477

	
2480 2478
      explicit ArcMap(const OrienterBase<GR, DM>& adapter)
2481 2479
        : Parent(*adapter._graph) { }
2482 2480

	
2483 2481
      ArcMap(const OrienterBase<GR, DM>& adapter, const V& value)
2484 2482
        : Parent(*adapter._graph, value) { }
2485 2483

	
2486 2484
    private:
2487 2485
      ArcMap& operator=(const ArcMap& cmap) {
2488 2486
        return operator=<ArcMap>(cmap);
2489 2487
      }
2490 2488

	
2491 2489
      template <typename CMap>
2492 2490
      ArcMap& operator=(const CMap& cmap) {
2493 2491
        Parent::operator=(cmap);
2494 2492
        return *this;
2495 2493
      }
2496 2494
    };
2497 2495

	
2498 2496

	
2499 2497

	
2500 2498
  protected:
2501 2499
    Graph* _graph;
2502 2500
    DM* _direction;
2503 2501

	
2504 2502
    void initialize(GR& graph, DM& direction) {
2505 2503
      _graph = &graph;
2506 2504
      _direction = &direction;
2507 2505
    }
2508 2506

	
2509 2507
  };
2510 2508

	
2511 2509
  /// \ingroup graph_adaptors
2512 2510
  ///
2513 2511
  /// \brief Adaptor class for orienting the edges of a graph to get a digraph
2514 2512
  ///
2515 2513
  /// Orienter adaptor can be used for orienting the edges of a graph to
2516 2514
  /// get a digraph. A \c bool edge map of the underlying graph must be
2517 2515
  /// specified, which define the direction of the arcs in the adaptor.
2518 2516
  /// The arcs can be easily reversed by the \c reverseArc() member function
2519 2517
  /// of the adaptor.
2520 2518
  /// This class conforms to the \ref concepts::Digraph "Digraph" concept.
2521 2519
  ///
2522 2520
  /// The adapted graph can also be modified through this adaptor
2523 2521
  /// by adding or removing nodes or arcs, unless the \c GR template
2524 2522
  /// parameter is set to be \c const.
2525 2523
  ///
2526 2524
  /// \tparam GR The type of the adapted graph.
2527 2525
  /// It must conform to the \ref concepts::Graph "Graph" concept.
2528 2526
  /// It can also be specified to be \c const.
2529 2527
  /// \tparam DM The type of the direction map.
2530 2528
  /// It must be a \c bool (or convertible) edge map of the
2531 2529
  /// adapted graph. The default type is
2532 2530
  /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
2533 2531
  ///
2534 2532
  /// \note The \c Node type of this adaptor and the adapted graph are
2535 2533
  /// convertible to each other, moreover the \c Arc type of the adaptor
2536 2534
  /// and the \c Edge type of the adapted graph are also convertible to
2537 2535
  /// each other.
2538 2536
#ifdef DOXYGEN
2539 2537
  template<typename GR,
2540 2538
           typename DM>
2541 2539
  class Orienter {
2542 2540
#else
2543 2541
  template<typename GR,
2544 2542
           typename DM = typename GR::template EdgeMap<bool> >
2545 2543
  class Orienter :
2546 2544
    public DigraphAdaptorExtender<OrienterBase<GR, DM> > {
2547 2545
#endif
2548 2546
  public:
2549 2547

	
2550 2548
    /// The type of the adapted graph.
2551 2549
    typedef GR Graph;
2552 2550
    /// The type of the direction edge map.
2553 2551
    typedef DM DirectionMap;
2554 2552

	
2555 2553
    typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent;
2556 2554
    typedef typename Parent::Arc Arc;
2557 2555
  protected:
2558 2556
    Orienter() { }
2559 2557
  public:
2560 2558

	
2561 2559
    /// \brief Constructor
2562 2560
    ///
2563 2561
    /// Constructor of the adaptor.
2564 2562
    Orienter(GR& graph, DM& direction) {
2565 2563
      Parent::initialize(graph, direction);
2566 2564
    }
2567 2565

	
2568 2566
    /// \brief Reverses the given arc
2569 2567
    ///
2570 2568
    /// This function reverses the given arc.
2571 2569
    /// It is done by simply negate the assigned value of \c a
2572 2570
    /// in the direction map.
2573 2571
    void reverseArc(const Arc& a) {
2574 2572
      Parent::reverseArc(a);
2575 2573
    }
2576 2574
  };
2577 2575

	
2578 2576
  /// \brief Returns a read-only Orienter adaptor
2579 2577
  ///
2580 2578
  /// This function just returns a read-only \ref Orienter adaptor.
2581 2579
  /// \ingroup graph_adaptors
2582 2580
  /// \relates Orienter
2583 2581
  template<typename GR, typename DM>
2584 2582
  Orienter<const GR, DM>
2585 2583
  orienter(const GR& graph, DM& direction) {
2586 2584
    return Orienter<const GR, DM>(graph, direction);
2587 2585
  }
2588 2586

	
2589 2587
  template<typename GR, typename DM>
2590 2588
  Orienter<const GR, const DM>
2591 2589
  orienter(const GR& graph, const DM& direction) {
2592 2590
    return Orienter<const GR, const DM>(graph, direction);
2593 2591
  }
2594 2592

	
2595 2593
  namespace _adaptor_bits {
2596 2594

	
... ...
@@ -3153,443 +3151,446 @@
3153 3151
        : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
3154 3152
      NodeMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
3155 3153
        : _in_map(*adaptor._digraph, value),
3156 3154
          _out_map(*adaptor._digraph, value) {}
3157 3155

	
3158 3156
      void set(const Node& key, const V& val) {
3159 3157
        if (SplitNodesBase<DGR>::inNode(key)) { _in_map.set(key, val); }
3160 3158
        else {_out_map.set(key, val); }
3161 3159
      }
3162 3160

	
3163 3161
      ReturnValue operator[](const Node& key) {
3164 3162
        if (SplitNodesBase<DGR>::inNode(key)) { return _in_map[key]; }
3165 3163
        else { return _out_map[key]; }
3166 3164
      }
3167 3165

	
3168 3166
      ConstReturnValue operator[](const Node& key) const {
3169 3167
        if (Adaptor::inNode(key)) { return _in_map[key]; }
3170 3168
        else { return _out_map[key]; }
3171 3169
      }
3172 3170

	
3173 3171
    private:
3174 3172
      NodeImpl _in_map, _out_map;
3175 3173
    };
3176 3174

	
3177 3175
    template <typename V>
3178 3176
    class ArcMapBase
3179 3177
      : public MapTraits<typename Parent::template ArcMap<V> > {
3180 3178
      typedef typename Parent::template ArcMap<V> ArcImpl;
3181 3179
      typedef typename Parent::template NodeMap<V> NodeImpl;
3182 3180
    public:
3183 3181
      typedef Arc Key;
3184 3182
      typedef V Value;
3185 3183
      typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag;
3186 3184
      typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue;
3187 3185
      typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue;
3188 3186
      typedef typename MapTraits<ArcImpl>::ReturnValue Reference;
3189 3187
      typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference;
3190 3188

	
3191 3189
      ArcMapBase(const SplitNodesBase<DGR>& adaptor)
3192 3190
        : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
3193 3191
      ArcMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
3194 3192
        : _arc_map(*adaptor._digraph, value),
3195 3193
          _node_map(*adaptor._digraph, value) {}
3196 3194

	
3197 3195
      void set(const Arc& key, const V& val) {
3198 3196
        if (SplitNodesBase<DGR>::origArc(key)) {
3199 3197
          _arc_map.set(static_cast<const DigraphArc&>(key), val);
3200 3198
        } else {
3201 3199
          _node_map.set(static_cast<const DigraphNode&>(key), val);
3202 3200
        }
3203 3201
      }
3204 3202

	
3205 3203
      ReturnValue operator[](const Arc& key) {
3206 3204
        if (SplitNodesBase<DGR>::origArc(key)) {
3207 3205
          return _arc_map[static_cast<const DigraphArc&>(key)];
3208 3206
        } else {
3209 3207
          return _node_map[static_cast<const DigraphNode&>(key)];
3210 3208
        }
3211 3209
      }
3212 3210

	
3213 3211
      ConstReturnValue operator[](const Arc& key) const {
3214 3212
        if (SplitNodesBase<DGR>::origArc(key)) {
3215 3213
          return _arc_map[static_cast<const DigraphArc&>(key)];
3216 3214
        } else {
3217 3215
          return _node_map[static_cast<const DigraphNode&>(key)];
3218 3216
        }
3219 3217
      }
3220 3218

	
3221 3219
    private:
3222 3220
      ArcImpl _arc_map;
3223 3221
      NodeImpl _node_map;
3224 3222
    };
3225 3223

	
3226 3224
  public:
3227 3225

	
3228 3226
    template <typename V>
3229 3227
    class NodeMap
3230 3228
      : public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> >
3231 3229
    {
3232 3230
    public:
3233 3231
      typedef V Value;
3234 3232
      typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<Value> > Parent;
3235 3233

	
3236 3234
      NodeMap(const SplitNodesBase<DGR>& adaptor)
3237 3235
        : Parent(adaptor) {}
3238 3236

	
3239 3237
      NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value)
3240 3238
        : Parent(adaptor, value) {}
3241 3239

	
3242 3240
    private:
3243 3241
      NodeMap& operator=(const NodeMap& cmap) {
3244 3242
        return operator=<NodeMap>(cmap);
3245 3243
      }
3246 3244

	
3247 3245
      template <typename CMap>
3248 3246
      NodeMap& operator=(const CMap& cmap) {
3249 3247
        Parent::operator=(cmap);
3250 3248
        return *this;
3251 3249
      }
3252 3250
    };
3253 3251

	
3254 3252
    template <typename V>
3255 3253
    class ArcMap
3256 3254
      : public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> >
3257 3255
    {
3258 3256
    public:
3259 3257
      typedef V Value;
3260 3258
      typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<Value> > Parent;
3261 3259

	
3262 3260
      ArcMap(const SplitNodesBase<DGR>& adaptor)
3263 3261
        : Parent(adaptor) {}
3264 3262

	
3265 3263
      ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value)
3266 3264
        : Parent(adaptor, value) {}
3267 3265

	
3268 3266
    private:
3269 3267
      ArcMap& operator=(const ArcMap& cmap) {
3270 3268
        return operator=<ArcMap>(cmap);
3271 3269
      }
3272 3270

	
3273 3271
      template <typename CMap>
3274 3272
      ArcMap& operator=(const CMap& cmap) {
3275 3273
        Parent::operator=(cmap);
3276 3274
        return *this;
3277 3275
      }
3278 3276
    };
3279 3277

	
3280 3278
  protected:
3281 3279

	
3282 3280
    SplitNodesBase() : _digraph(0) {}
3283 3281

	
3284 3282
    DGR* _digraph;
3285 3283

	
3286 3284
    void initialize(Digraph& digraph) {
3287 3285
      _digraph = &digraph;
3288 3286
    }
3289 3287

	
3290 3288
  };
3291 3289

	
3292 3290
  /// \ingroup graph_adaptors
3293 3291
  ///
3294 3292
  /// \brief Adaptor class for splitting the nodes of a digraph.
3295 3293
  ///
3296 3294
  /// SplitNodes adaptor can be used for splitting each node into an
3297 3295
  /// \e in-node and an \e out-node in a digraph. Formaly, the adaptor
3298 3296
  /// replaces each node \f$ u \f$ in the digraph with two nodes,
3299 3297
  /// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$.
3300 3298
  /// If there is a \f$ (v, u) \f$ arc in the original digraph, then the
3301 3299
  /// new target of the arc will be \f$ u_{in} \f$ and similarly the
3302 3300
  /// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$.
3303 3301
  /// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$
3304 3302
  /// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph.
3305 3303
  ///
3306 3304
  /// The aim of this class is running an algorithm with respect to node
3307 3305
  /// costs or capacities if the algorithm considers only arc costs or
3308 3306
  /// capacities directly.
3309 3307
  /// In this case you can use \c SplitNodes adaptor, and set the node
3310 3308
  /// costs/capacities of the original digraph to the \e bind \e arcs
3311 3309
  /// in the adaptor.
3312 3310
  ///
3313 3311
  /// \tparam DGR The type of the adapted digraph.
3314 3312
  /// It must conform to the \ref concepts::Digraph "Digraph" concept.
3315 3313
  /// It is implicitly \c const.
3316 3314
  ///
3317 3315
  /// \note The \c Node type of this adaptor is converible to the \c Node
3318 3316
  /// type of the adapted digraph.
3319 3317
  template <typename DGR>
3320 3318
#ifdef DOXYGEN
3321 3319
  class SplitNodes {
3322 3320
#else
3323 3321
  class SplitNodes
3324 3322
    : public DigraphAdaptorExtender<SplitNodesBase<const DGR> > {
3325 3323
#endif
3326 3324
  public:
3327 3325
    typedef DGR Digraph;
3328 3326
    typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent;
3329 3327

	
3330 3328
    typedef typename DGR::Node DigraphNode;
3331 3329
    typedef typename DGR::Arc DigraphArc;
3332 3330

	
3333 3331
    typedef typename Parent::Node Node;
3334 3332
    typedef typename Parent::Arc Arc;
3335 3333

	
3336 3334
    /// \brief Constructor
3337 3335
    ///
3338 3336
    /// Constructor of the adaptor.
3339 3337
    SplitNodes(const DGR& g) {
3340 3338
      Parent::initialize(g);
3341 3339
    }
3342 3340

	
3343 3341
    /// \brief Returns \c true if the given node is an in-node.
3344 3342
    ///
3345 3343
    /// Returns \c true if the given node is an in-node.
3346 3344
    static bool inNode(const Node& n) {
3347 3345
      return Parent::inNode(n);
3348 3346
    }
3349 3347

	
3350 3348
    /// \brief Returns \c true if the given node is an out-node.
3351 3349
    ///
3352 3350
    /// Returns \c true if the given node is an out-node.
3353 3351
    static bool outNode(const Node& n) {
3354 3352
      return Parent::outNode(n);
3355 3353
    }
3356 3354

	
3357 3355
    /// \brief Returns \c true if the given arc is an original arc.
3358 3356
    ///
3359 3357
    /// Returns \c true if the given arc is one of the arcs in the
3360 3358
    /// original digraph.
3361 3359
    static bool origArc(const Arc& a) {
3362 3360
      return Parent::origArc(a);
3363 3361
    }
3364 3362

	
3365 3363
    /// \brief Returns \c true if the given arc is a bind arc.
3366 3364
    ///
3367 3365
    /// Returns \c true if the given arc is a bind arc, i.e. it connects
3368 3366
    /// an in-node and an out-node.
3369 3367
    static bool bindArc(const Arc& a) {
3370 3368
      return Parent::bindArc(a);
3371 3369
    }
3372 3370

	
3373 3371
    /// \brief Returns the in-node created from the given original node.
3374 3372
    ///
3375 3373
    /// Returns the in-node created from the given original node.
3376 3374
    static Node inNode(const DigraphNode& n) {
3377 3375
      return Parent::inNode(n);
3378 3376
    }
3379 3377

	
3380 3378
    /// \brief Returns the out-node created from the given original node.
3381 3379
    ///
3382 3380
    /// Returns the out-node created from the given original node.
3383 3381
    static Node outNode(const DigraphNode& n) {
3384 3382
      return Parent::outNode(n);
3385 3383
    }
3386 3384

	
3387 3385
    /// \brief Returns the bind arc that corresponds to the given
3388 3386
    /// original node.
3389 3387
    ///
3390 3388
    /// Returns the bind arc in the adaptor that corresponds to the given
3391 3389
    /// original node, i.e. the arc connecting the in-node and out-node
3392 3390
    /// of \c n.
3393 3391
    static Arc arc(const DigraphNode& n) {
3394 3392
      return Parent::arc(n);
3395 3393
    }
3396 3394

	
3397 3395
    /// \brief Returns the arc that corresponds to the given original arc.
3398 3396
    ///
3399 3397
    /// Returns the arc in the adaptor that corresponds to the given
3400 3398
    /// original arc.
3401 3399
    static Arc arc(const DigraphArc& a) {
3402 3400
      return Parent::arc(a);
3403 3401
    }
3404 3402

	
3405 3403
    /// \brief Node map combined from two original node maps
3406 3404
    ///
3407 3405
    /// This map adaptor class adapts two node maps of the original digraph
3408 3406
    /// to get a node map of the split digraph.
3409
    /// Its value type is inherited from the first node map type
3410
    /// (\c InNodeMap).
3411
    template <typename InNodeMap, typename OutNodeMap>
3407
    /// Its value type is inherited from the first node map type (\c IN).
3408
    /// \tparam IN The type of the node map for the in-nodes. 
3409
    /// \tparam OUT The type of the node map for the out-nodes.
3410
    template <typename IN, typename OUT>
3412 3411
    class CombinedNodeMap {
3413 3412
    public:
3414 3413

	
3415 3414
      /// The key type of the map
3416 3415
      typedef Node Key;
3417 3416
      /// The value type of the map
3418
      typedef typename InNodeMap::Value Value;
3419

	
3420
      typedef typename MapTraits<InNodeMap>::ReferenceMapTag ReferenceMapTag;
3421
      typedef typename MapTraits<InNodeMap>::ReturnValue ReturnValue;
3422
      typedef typename MapTraits<InNodeMap>::ConstReturnValue ConstReturnValue;
3423
      typedef typename MapTraits<InNodeMap>::ReturnValue Reference;
3424
      typedef typename MapTraits<InNodeMap>::ConstReturnValue ConstReference;
3417
      typedef typename IN::Value Value;
3418

	
3419
      typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag;
3420
      typedef typename MapTraits<IN>::ReturnValue ReturnValue;
3421
      typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue;
3422
      typedef typename MapTraits<IN>::ReturnValue Reference;
3423
      typedef typename MapTraits<IN>::ConstReturnValue ConstReference;
3425 3424

	
3426 3425
      /// Constructor
3427
      CombinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map)
3426
      CombinedNodeMap(IN& in_map, OUT& out_map)
3428 3427
        : _in_map(in_map), _out_map(out_map) {}
3429 3428

	
3430 3429
      /// Returns the value associated with the given key.
3431 3430
      Value operator[](const Key& key) const {
3432 3431
        if (SplitNodesBase<const DGR>::inNode(key)) {
3433 3432
          return _in_map[key];
3434 3433
        } else {
3435 3434
          return _out_map[key];
3436 3435
        }
3437 3436
      }
3438 3437

	
3439 3438
      /// Returns a reference to the value associated with the given key.
3440 3439
      Value& operator[](const Key& key) {
3441 3440
        if (SplitNodesBase<const DGR>::inNode(key)) {
3442 3441
          return _in_map[key];
3443 3442
        } else {
3444 3443
          return _out_map[key];
3445 3444
        }
3446 3445
      }
3447 3446

	
3448 3447
      /// Sets the value associated with the given key.
3449 3448
      void set(const Key& key, const Value& value) {
3450 3449
        if (SplitNodesBase<const DGR>::inNode(key)) {
3451 3450
          _in_map.set(key, value);
3452 3451
        } else {
3453 3452
          _out_map.set(key, value);
3454 3453
        }
3455 3454
      }
3456 3455

	
3457 3456
    private:
3458 3457

	
3459
      InNodeMap& _in_map;
3460
      OutNodeMap& _out_map;
3458
      IN& _in_map;
3459
      OUT& _out_map;
3461 3460

	
3462 3461
    };
3463 3462

	
3464 3463

	
3465 3464
    /// \brief Returns a combined node map
3466 3465
    ///
3467 3466
    /// This function just returns a combined node map.
3468
    template <typename InNodeMap, typename OutNodeMap>
3469
    static CombinedNodeMap<InNodeMap, OutNodeMap>
3470
    combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) {
3471
      return CombinedNodeMap<InNodeMap, OutNodeMap>(in_map, out_map);
3467
    template <typename IN, typename OUT>
3468
    static CombinedNodeMap<IN, OUT>
3469
    combinedNodeMap(IN& in_map, OUT& out_map) {
3470
      return CombinedNodeMap<IN, OUT>(in_map, out_map);
3472 3471
    }
3473 3472

	
3474
    template <typename InNodeMap, typename OutNodeMap>
3475
    static CombinedNodeMap<const InNodeMap, OutNodeMap>
3476
    combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) {
3477
      return CombinedNodeMap<const InNodeMap, OutNodeMap>(in_map, out_map);
3473
    template <typename IN, typename OUT>
3474
    static CombinedNodeMap<const IN, OUT>
3475
    combinedNodeMap(const IN& in_map, OUT& out_map) {
3476
      return CombinedNodeMap<const IN, OUT>(in_map, out_map);
3478 3477
    }
3479 3478

	
3480
    template <typename InNodeMap, typename OutNodeMap>
3481
    static CombinedNodeMap<InNodeMap, const OutNodeMap>
3482
    combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) {
3483
      return CombinedNodeMap<InNodeMap, const OutNodeMap>(in_map, out_map);
3479
    template <typename IN, typename OUT>
3480
    static CombinedNodeMap<IN, const OUT>
3481
    combinedNodeMap(IN& in_map, const OUT& out_map) {
3482
      return CombinedNodeMap<IN, const OUT>(in_map, out_map);
3484 3483
    }
3485 3484

	
3486
    template <typename InNodeMap, typename OutNodeMap>
3487
    static CombinedNodeMap<const InNodeMap, const OutNodeMap>
3488
    combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) {
3489
      return CombinedNodeMap<const InNodeMap,
3490
        const OutNodeMap>(in_map, out_map);
3485
    template <typename IN, typename OUT>
3486
    static CombinedNodeMap<const IN, const OUT>
3487
    combinedNodeMap(const IN& in_map, const OUT& out_map) {
3488
      return CombinedNodeMap<const IN, const OUT>(in_map, out_map);
3491 3489
    }
3492 3490

	
3493 3491
    /// \brief Arc map combined from an arc map and a node map of the
3494 3492
    /// original digraph.
3495 3493
    ///
3496 3494
    /// This map adaptor class adapts an arc map and a node map of the
3497 3495
    /// original digraph to get an arc map of the split digraph.
3498
    /// Its value type is inherited from the original arc map type
3499
    /// (\c ArcMap).
3500
    template <typename ArcMap, typename NodeMap>
3496
    /// Its value type is inherited from the original arc map type (\c AM).
3497
    /// \tparam AM The type of the arc map.
3498
    /// \tparam NM the type of the node map.
3499
    template <typename AM, typename NM>
3501 3500
    class CombinedArcMap {
3502 3501
    public:
3503 3502

	
3504 3503
      /// The key type of the map
3505 3504
      typedef Arc Key;
3506 3505
      /// The value type of the map
3507
      typedef typename ArcMap::Value Value;
3508

	
3509
      typedef typename MapTraits<ArcMap>::ReferenceMapTag ReferenceMapTag;
3510
      typedef typename MapTraits<ArcMap>::ReturnValue ReturnValue;
3511
      typedef typename MapTraits<ArcMap>::ConstReturnValue ConstReturnValue;
3512
      typedef typename MapTraits<ArcMap>::ReturnValue Reference;
3513
      typedef typename MapTraits<ArcMap>::ConstReturnValue ConstReference;
3506
      typedef typename AM::Value Value;
3507

	
3508
      typedef typename MapTraits<AM>::ReferenceMapTag ReferenceMapTag;
3509
      typedef typename MapTraits<AM>::ReturnValue ReturnValue;
3510
      typedef typename MapTraits<AM>::ConstReturnValue ConstReturnValue;
3511
      typedef typename MapTraits<AM>::ReturnValue Reference;
3512
      typedef typename MapTraits<AM>::ConstReturnValue ConstReference;
3514 3513

	
3515 3514
      /// Constructor
3516
      CombinedArcMap(ArcMap& arc_map, NodeMap& node_map)
3515
      CombinedArcMap(AM& arc_map, NM& node_map)
3517 3516
        : _arc_map(arc_map), _node_map(node_map) {}
3518 3517

	
3519 3518
      /// Returns the value associated with the given key.
3520 3519
      Value operator[](const Key& arc) const {
3521 3520
        if (SplitNodesBase<const DGR>::origArc(arc)) {
3522 3521
          return _arc_map[arc];
3523 3522
        } else {
3524 3523
          return _node_map[arc];
3525 3524
        }
3526 3525
      }
3527 3526

	
3528 3527
      /// Returns a reference to the value associated with the given key.
3529 3528
      Value& operator[](const Key& arc) {
3530 3529
        if (SplitNodesBase<const DGR>::origArc(arc)) {
3531 3530
          return _arc_map[arc];
3532 3531
        } else {
3533 3532
          return _node_map[arc];
3534 3533
        }
3535 3534
      }
3536 3535

	
3537 3536
      /// Sets the value associated with the given key.
3538 3537
      void set(const Arc& arc, const Value& val) {
3539 3538
        if (SplitNodesBase<const DGR>::origArc(arc)) {
3540 3539
          _arc_map.set(arc, val);
3541 3540
        } else {
3542 3541
          _node_map.set(arc, val);
3543 3542
        }
3544 3543
      }
3545 3544

	
3546 3545
    private:
3547
      ArcMap& _arc_map;
3548
      NodeMap& _node_map;
3546

	
3547
      AM& _arc_map;
3548
      NM& _node_map;
3549

	
3549 3550
    };
3550 3551

	
3551 3552
    /// \brief Returns a combined arc map
3552 3553
    ///
3553 3554
    /// This function just returns a combined arc map.
3554 3555
    template <typename ArcMap, typename NodeMap>
3555 3556
    static CombinedArcMap<ArcMap, NodeMap>
3556 3557
    combinedArcMap(ArcMap& arc_map, NodeMap& node_map) {
3557 3558
      return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map);
3558 3559
    }
3559 3560

	
3560 3561
    template <typename ArcMap, typename NodeMap>
3561 3562
    static CombinedArcMap<const ArcMap, NodeMap>
3562 3563
    combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) {
3563 3564
      return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map);
3564 3565
    }
3565 3566

	
3566 3567
    template <typename ArcMap, typename NodeMap>
3567 3568
    static CombinedArcMap<ArcMap, const NodeMap>
3568 3569
    combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) {
3569 3570
      return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map);
3570 3571
    }
3571 3572

	
3572 3573
    template <typename ArcMap, typename NodeMap>
3573 3574
    static CombinedArcMap<const ArcMap, const NodeMap>
3574 3575
    combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) {
3575 3576
      return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map);
3576 3577
    }
3577 3578

	
3578 3579
  };
3579 3580

	
3580 3581
  /// \brief Returns a (read-only) SplitNodes adaptor
3581 3582
  ///
3582 3583
  /// This function just returns a (read-only) \ref SplitNodes adaptor.
3583 3584
  /// \ingroup graph_adaptors
3584 3585
  /// \relates SplitNodes
3585 3586
  template<typename DGR>
3586 3587
  SplitNodes<DGR>
3587 3588
  splitNodes(const DGR& digraph) {
3588 3589
    return SplitNodes<DGR>(digraph);
3589 3590
  }
3590 3591

	
3591 3592
#undef LEMON_SCOPE_FIX
3592 3593

	
3593 3594
} //namespace lemon
3594 3595

	
3595 3596
#endif //LEMON_ADAPTORS_H
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BIN_HEAP_H
20 20
#define LEMON_BIN_HEAP_H
21 21

	
22 22
///\ingroup auxdat
23 23
///\file
24 24
///\brief Binary Heap implementation.
25 25

	
26 26
#include <vector>
27 27
#include <utility>
28 28
#include <functional>
29 29

	
30 30
namespace lemon {
31 31

	
32 32
  ///\ingroup auxdat
33 33
  ///
34 34
  ///\brief A Binary Heap implementation.
35 35
  ///
36
  ///This class implements the \e binary \e heap data structure. A \e heap
37
  ///is a data structure for storing items with specified values called \e
38
  ///priorities in such a way that finding the item with minimum priority is
39
  ///efficient. \c Compare specifies the ordering of the priorities. In a heap
40
  ///one can change the priority of an item, add or erase an item, etc.
36
  ///This class implements the \e binary \e heap data structure. 
37
  /// 
38
  ///A \e heap is a data structure for storing items with specified values
39
  ///called \e priorities in such a way that finding the item with minimum
40
  ///priority is efficient. \c Comp specifies the ordering of the priorities.
41
  ///In a heap one can change the priority of an item, add or erase an
42
  ///item, etc.
41 43
  ///
42
  ///\tparam _Prio Type of the priority of the items.
43
  ///\tparam _ItemIntMap A read and writable Item int map, used internally
44
  ///\tparam PR Type of the priority of the items.
45
  ///\tparam IM A read and writable item map with int values, used internally
44 46
  ///to handle the cross references.
45
  ///\tparam _Compare A class for the ordering of the priorities. The
46
  ///default is \c std::less<_Prio>.
47
  ///\tparam Comp A functor class for the ordering of the priorities.
48
  ///The default is \c std::less<PR>.
47 49
  ///
48 50
  ///\sa FibHeap
49 51
  ///\sa Dijkstra
50
  template <typename _Prio, typename _ItemIntMap,
51
            typename _Compare = std::less<_Prio> >
52
  template <typename PR, typename IM, typename Comp = std::less<PR> >
52 53
  class BinHeap {
53 54

	
54 55
  public:
55 56
    ///\e
56
    typedef _ItemIntMap ItemIntMap;
57
    typedef IM ItemIntMap;
57 58
    ///\e
58
    typedef _Prio Prio;
59
    typedef PR Prio;
59 60
    ///\e
60 61
    typedef typename ItemIntMap::Key Item;
61 62
    ///\e
62 63
    typedef std::pair<Item,Prio> Pair;
63 64
    ///\e
64
    typedef _Compare Compare;
65
    typedef Comp Compare;
65 66

	
66 67
    /// \brief Type to represent the items states.
67 68
    ///
68 69
    /// Each Item element have a state associated to it. It may be "in heap",
69 70
    /// "pre heap" or "post heap". The latter two are indifferent from the
70 71
    /// heap's point of view, but may be useful to the user.
71 72
    ///
72
    /// The ItemIntMap \e should be initialized in such way that it maps
73
    /// PRE_HEAP (-1) to any element to be put in the heap...
73
    /// The item-int map must be initialized in such way that it assigns
74
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
74 75
    enum State {
75
      IN_HEAP = 0,
76
      PRE_HEAP = -1,
77
      POST_HEAP = -2
76
      IN_HEAP = 0,    ///< \e
77
      PRE_HEAP = -1,  ///< \e
78
      POST_HEAP = -2  ///< \e
78 79
    };
79 80

	
80 81
  private:
81
    std::vector<Pair> data;
82
    Compare comp;
83
    ItemIntMap &iim;
82
    std::vector<Pair> _data;
83
    Compare _comp;
84
    ItemIntMap &_iim;
84 85

	
85 86
  public:
86 87
    /// \brief The constructor.
87 88
    ///
88 89
    /// The constructor.
89
    /// \param _iim should be given to the constructor, since it is used
90
    /// \param map should be given to the constructor, since it is used
90 91
    /// internally to handle the cross references. The value of the map
91
    /// should be PRE_HEAP (-1) for each element.
92
    explicit BinHeap(ItemIntMap &_iim) : iim(_iim) {}
92
    /// must be \c PRE_HEAP (<tt>-1</tt>) for every item.
93
    explicit BinHeap(ItemIntMap &map) : _iim(map) {}
93 94

	
94 95
    /// \brief The constructor.
95 96
    ///
96 97
    /// The constructor.
97
    /// \param _iim should be given to the constructor, since it is used
98
    /// \param map should be given to the constructor, since it is used
98 99
    /// internally to handle the cross references. The value of the map
99 100
    /// should be PRE_HEAP (-1) for each element.
100 101
    ///
101
    /// \param _comp The comparator function object.
102
    BinHeap(ItemIntMap &_iim, const Compare &_comp)
103
      : iim(_iim), comp(_comp) {}
102
    /// \param comp The comparator function object.
103
    BinHeap(ItemIntMap &map, const Compare &comp)
104
      : _iim(map), _comp(comp) {}
104 105

	
105 106

	
106 107
    /// The number of items stored in the heap.
107 108
    ///
108 109
    /// \brief Returns the number of items stored in the heap.
109
    int size() const { return data.size(); }
110
    int size() const { return _data.size(); }
110 111

	
111 112
    /// \brief Checks if the heap stores no items.
112 113
    ///
113 114
    /// Returns \c true if and only if the heap stores no items.
114
    bool empty() const { return data.empty(); }
115
    bool empty() const { return _data.empty(); }
115 116

	
116 117
    /// \brief Make empty this heap.
117 118
    ///
118 119
    /// Make empty this heap. It does not change the cross reference map.
119 120
    /// If you want to reuse what is not surely empty you should first clear
120 121
    /// the heap and after that you should set the cross reference map for
121 122
    /// each item to \c PRE_HEAP.
122 123
    void clear() {
123
      data.clear();
124
      _data.clear();
124 125
    }
125 126

	
126 127
  private:
127 128
    static int parent(int i) { return (i-1)/2; }
128 129

	
129 130
    static int second_child(int i) { return 2*i+2; }
130 131
    bool less(const Pair &p1, const Pair &p2) const {
131
      return comp(p1.second, p2.second);
132
      return _comp(p1.second, p2.second);
132 133
    }
133 134

	
134 135
    int bubble_up(int hole, Pair p) {
135 136
      int par = parent(hole);
136
      while( hole>0 && less(p,data[par]) ) {
137
        move(data[par],hole);
137
      while( hole>0 && less(p,_data[par]) ) {
138
        move(_data[par],hole);
138 139
        hole = par;
139 140
        par = parent(hole);
140 141
      }
141 142
      move(p, hole);
142 143
      return hole;
143 144
    }
144 145

	
145 146
    int bubble_down(int hole, Pair p, int length) {
146 147
      int child = second_child(hole);
147 148
      while(child < length) {
148
        if( less(data[child-1], data[child]) ) {
149
        if( less(_data[child-1], _data[child]) ) {
149 150
          --child;
150 151
        }
151
        if( !less(data[child], p) )
152
        if( !less(_data[child], p) )
152 153
          goto ok;
153
        move(data[child], hole);
154
        move(_data[child], hole);
154 155
        hole = child;
155 156
        child = second_child(hole);
156 157
      }
157 158
      child--;
158
      if( child<length && less(data[child], p) ) {
159
        move(data[child], hole);
159
      if( child<length && less(_data[child], p) ) {
160
        move(_data[child], hole);
160 161
        hole=child;
161 162
      }
162 163
    ok:
163 164
      move(p, hole);
164 165
      return hole;
165 166
    }
166 167

	
167 168
    void move(const Pair &p, int i) {
168
      data[i] = p;
169
      iim.set(p.first, i);
169
      _data[i] = p;
170
      _iim.set(p.first, i);
170 171
    }
171 172

	
172 173
  public:
173 174
    /// \brief Insert a pair of item and priority into the heap.
174 175
    ///
175 176
    /// Adds \c p.first to the heap with priority \c p.second.
176 177
    /// \param p The pair to insert.
177 178
    void push(const Pair &p) {
178
      int n = data.size();
179
      data.resize(n+1);
179
      int n = _data.size();
180
      _data.resize(n+1);
180 181
      bubble_up(n, p);
181 182
    }
182 183

	
183 184
    /// \brief Insert an item into the heap with the given heap.
184 185
    ///
185 186
    /// Adds \c i to the heap with priority \c p.
186 187
    /// \param i The item to insert.
187 188
    /// \param p The priority of the item.
188 189
    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
189 190

	
190 191
    /// \brief Returns the item with minimum priority relative to \c Compare.
191 192
    ///
192 193
    /// This method returns the item with minimum priority relative to \c
193 194
    /// Compare.
194 195
    /// \pre The heap must be nonempty.
195 196
    Item top() const {
196
      return data[0].first;
197
      return _data[0].first;
197 198
    }
198 199

	
199 200
    /// \brief Returns the minimum priority relative to \c Compare.
200 201
    ///
201 202
    /// It returns the minimum priority relative to \c Compare.
202 203
    /// \pre The heap must be nonempty.
203 204
    Prio prio() const {
204
      return data[0].second;
205
      return _data[0].second;
205 206
    }
206 207

	
207 208
    /// \brief Deletes the item with minimum priority relative to \c Compare.
208 209
    ///
209 210
    /// This method deletes the item with minimum priority relative to \c
210 211
    /// Compare from the heap.
211 212
    /// \pre The heap must be non-empty.
212 213
    void pop() {
213
      int n = data.size()-1;
214
      iim.set(data[0].first, POST_HEAP);
214
      int n = _data.size()-1;
215
      _iim.set(_data[0].first, POST_HEAP);
215 216
      if (n > 0) {
216
        bubble_down(0, data[n], n);
217
        bubble_down(0, _data[n], n);
217 218
      }
218
      data.pop_back();
219
      _data.pop_back();
219 220
    }
220 221

	
221 222
    /// \brief Deletes \c i from the heap.
222 223
    ///
223 224
    /// This method deletes item \c i from the heap.
224 225
    /// \param i The item to erase.
225 226
    /// \pre The item should be in the heap.
226 227
    void erase(const Item &i) {
227
      int h = iim[i];
228
      int n = data.size()-1;
229
      iim.set(data[h].first, POST_HEAP);
228
      int h = _iim[i];
229
      int n = _data.size()-1;
230
      _iim.set(_data[h].first, POST_HEAP);
230 231
      if( h < n ) {
231
        if ( bubble_up(h, data[n]) == h) {
232
          bubble_down(h, data[n], n);
232
        if ( bubble_up(h, _data[n]) == h) {
233
          bubble_down(h, _data[n], n);
233 234
        }
234 235
      }
235
      data.pop_back();
236
      _data.pop_back();
236 237
    }
237 238

	
238 239

	
239 240
    /// \brief Returns the priority of \c i.
240 241
    ///
241 242
    /// This function returns the priority of item \c i.
243
    /// \param i The item.
242 244
    /// \pre \c i must be in the heap.
243
    /// \param i The item.
244 245
    Prio operator[](const Item &i) const {
245
      int idx = iim[i];
246
      return data[idx].second;
246
      int idx = _iim[i];
247
      return _data[idx].second;
247 248
    }
248 249

	
249 250
    /// \brief \c i gets to the heap with priority \c p independently
250 251
    /// if \c i was already there.
251 252
    ///
252 253
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
253 254
    /// in the heap and sets the priority of \c i to \c p otherwise.
254 255
    /// \param i The item.
255 256
    /// \param p The priority.
256 257
    void set(const Item &i, const Prio &p) {
257
      int idx = iim[i];
258
      int idx = _iim[i];
258 259
      if( idx < 0 ) {
259 260
        push(i,p);
260 261
      }
261
      else if( comp(p, data[idx].second) ) {
262
      else if( _comp(p, _data[idx].second) ) {
262 263
        bubble_up(idx, Pair(i,p));
263 264
      }
264 265
      else {
265
        bubble_down(idx, Pair(i,p), data.size());
266
        bubble_down(idx, Pair(i,p), _data.size());
266 267
      }
267 268
    }
268 269

	
269 270
    /// \brief Decreases the priority of \c i to \c p.
270 271
    ///
271 272
    /// This method decreases the priority of item \c i to \c p.
273
    /// \param i The item.
274
    /// \param p The priority.
272 275
    /// \pre \c i must be stored in the heap with priority at least \c
273 276
    /// p relative to \c Compare.
274
    /// \param i The item.
275
    /// \param p The priority.
276 277
    void decrease(const Item &i, const Prio &p) {
277
      int idx = iim[i];
278
      int idx = _iim[i];
278 279
      bubble_up(idx, Pair(i,p));
279 280
    }
280 281

	
281 282
    /// \brief Increases the priority of \c i to \c p.
282 283
    ///
283 284
    /// This method sets the priority of item \c i to \c p.
285
    /// \param i The item.
286
    /// \param p The priority.
284 287
    /// \pre \c i must be stored in the heap with priority at most \c
285 288
    /// p relative to \c Compare.
286
    /// \param i The item.
287
    /// \param p The priority.
288 289
    void increase(const Item &i, const Prio &p) {
289
      int idx = iim[i];
290
      bubble_down(idx, Pair(i,p), data.size());
290
      int idx = _iim[i];
291
      bubble_down(idx, Pair(i,p), _data.size());
291 292
    }
292 293

	
293 294
    /// \brief Returns if \c item is in, has already been in, or has
294 295
    /// never been in the heap.
295 296
    ///
296 297
    /// This method returns PRE_HEAP if \c item has never been in the
297 298
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
298 299
    /// otherwise. In the latter case it is possible that \c item will
299 300
    /// get back to the heap again.
300 301
    /// \param i The item.
301 302
    State state(const Item &i) const {
302
      int s = iim[i];
303
      int s = _iim[i];
303 304
      if( s>=0 )
304 305
        s=0;
305 306
      return State(s);
306 307
    }
307 308

	
308 309
    /// \brief Sets the state of the \c item in the heap.
309 310
    ///
310 311
    /// Sets the state of the \c item in the heap. It can be used to
311 312
    /// manually clear the heap when it is important to achive the
312 313
    /// better time complexity.
313 314
    /// \param i The item.
314 315
    /// \param st The state. It should not be \c IN_HEAP.
315 316
    void state(const Item& i, State st) {
316 317
      switch (st) {
317 318
      case POST_HEAP:
318 319
      case PRE_HEAP:
319 320
        if (state(i) == IN_HEAP) {
320 321
          erase(i);
321 322
        }
322
        iim[i] = st;
323
        _iim[i] = st;
323 324
        break;
324 325
      case IN_HEAP:
325 326
        break;
326 327
      }
327 328
    }
328 329

	
329 330
    /// \brief Replaces an item in the heap.
330 331
    ///
331 332
    /// The \c i item is replaced with \c j item. The \c i item should
332 333
    /// be in the heap, while the \c j should be out of the heap. The
333 334
    /// \c i item will out of the heap and \c j will be in the heap
334 335
    /// with the same prioriority as prevoiusly the \c i item.
335 336
    void replace(const Item& i, const Item& j) {
336
      int idx = iim[i];
337
      iim.set(i, iim[j]);
338
      iim.set(j, idx);
339
      data[idx].first = j;
337
      int idx = _iim[i];
338
      _iim.set(i, _iim[j]);
339
      _iim.set(j, idx);
340
      _data[idx].first = j;
340 341
    }
341 342

	
342 343
  }; // class BinHeap
343 344

	
344 345
} // namespace lemon
345 346

	
346 347
#endif // LEMON_BIN_HEAP_H
Ignore white space 6 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_EDGE_SET_EXTENDER_H
20 20
#define LEMON_BITS_EDGE_SET_EXTENDER_H
21 21

	
22 22
#include <lemon/core.h>
23 23
#include <lemon/error.h>
24 24
#include <lemon/bits/default_map.h>
25 25
#include <lemon/bits/map_extender.h>
26 26

	
27
///\ingroup digraphbits
28
///\file
29
///\brief Extenders for the arc set types
27
//\ingroup digraphbits
28
//\file
29
//\brief Extenders for the arc set types
30 30
namespace lemon {
31 31

	
32
  /// \ingroup digraphbits
33
  ///
34
  /// \brief Extender for the ArcSets
32
  // \ingroup digraphbits
33
  //
34
  // \brief Extender for the ArcSets
35 35
  template <typename Base>
36 36
  class ArcSetExtender : public Base {
37 37
  public:
38 38

	
39 39
    typedef Base Parent;
40 40
    typedef ArcSetExtender Digraph;
41 41

	
42 42
    // Base extensions
43 43

	
44 44
    typedef typename Parent::Node Node;
45 45
    typedef typename Parent::Arc Arc;
46 46

	
47 47
    int maxId(Node) const {
48 48
      return Parent::maxNodeId();
49 49
    }
50 50

	
51 51
    int maxId(Arc) const {
52 52
      return Parent::maxArcId();
53 53
    }
54 54

	
55 55
    Node fromId(int id, Node) const {
56 56
      return Parent::nodeFromId(id);
57 57
    }
58 58

	
59 59
    Arc fromId(int id, Arc) const {
60 60
      return Parent::arcFromId(id);
61 61
    }
62 62

	
63 63
    Node oppositeNode(const Node &n, const Arc &e) const {
64 64
      if (n == Parent::source(e))
65 65
	return Parent::target(e);
66 66
      else if(n==Parent::target(e))
67 67
	return Parent::source(e);
68 68
      else
69 69
	return INVALID;
70 70
    }
71 71

	
72 72

	
73 73
    // Alteration notifier extensions
74 74

	
75
    /// The arc observer registry.
75
    // The arc observer registry.
76 76
    typedef AlterationNotifier<ArcSetExtender, Arc> ArcNotifier;
77 77

	
78 78
  protected:
79 79

	
80 80
    mutable ArcNotifier arc_notifier;
81 81

	
82 82
  public:
83 83

	
84 84
    using Parent::notifier;
85 85

	
86
    /// \brief Gives back the arc alteration notifier.
87
    ///
88
    /// Gives back the arc alteration notifier.
86
    // Gives back the arc alteration notifier.
89 87
    ArcNotifier& notifier(Arc) const {
90 88
      return arc_notifier;
91 89
    }
92 90

	
93 91
    // Iterable extensions
94 92

	
95 93
    class NodeIt : public Node { 
96 94
      const Digraph* digraph;
97 95
    public:
98 96

	
99 97
      NodeIt() {}
100 98

	
101 99
      NodeIt(Invalid i) : Node(i) { }
102 100

	
103 101
      explicit NodeIt(const Digraph& _graph) : digraph(&_graph) {
104 102
	_graph.first(static_cast<Node&>(*this));
105 103
      }
106 104

	
107 105
      NodeIt(const Digraph& _graph, const Node& node) 
108 106
	: Node(node), digraph(&_graph) {}
109 107

	
110 108
      NodeIt& operator++() { 
111 109
	digraph->next(*this);
112 110
	return *this; 
113 111
      }
114 112

	
115 113
    };
116 114

	
117 115

	
118 116
    class ArcIt : public Arc { 
119 117
      const Digraph* digraph;
120 118
    public:
121 119

	
122 120
      ArcIt() { }
123 121

	
124 122
      ArcIt(Invalid i) : Arc(i) { }
125 123

	
126 124
      explicit ArcIt(const Digraph& _graph) : digraph(&_graph) {
127 125
	_graph.first(static_cast<Arc&>(*this));
128 126
      }
129 127

	
130 128
      ArcIt(const Digraph& _graph, const Arc& e) : 
131 129
	Arc(e), digraph(&_graph) { }
132 130

	
133 131
      ArcIt& operator++() { 
134 132
	digraph->next(*this);
135 133
	return *this; 
136 134
      }
137 135

	
138 136
    };
139 137

	
140 138

	
141 139
    class OutArcIt : public Arc { 
142 140
      const Digraph* digraph;
143 141
    public:
144 142

	
145 143
      OutArcIt() { }
146 144

	
147 145
      OutArcIt(Invalid i) : Arc(i) { }
148 146

	
149 147
      OutArcIt(const Digraph& _graph, const Node& node) 
150 148
	: digraph(&_graph) {
151 149
	_graph.firstOut(*this, node);
152 150
      }
153 151

	
154 152
      OutArcIt(const Digraph& _graph, const Arc& arc) 
155 153
	: Arc(arc), digraph(&_graph) {}
156 154

	
157 155
      OutArcIt& operator++() { 
158 156
	digraph->nextOut(*this);
159 157
	return *this; 
160 158
      }
161 159

	
162 160
    };
163 161

	
164 162

	
165 163
    class InArcIt : public Arc { 
166 164
      const Digraph* digraph;
167 165
    public:
168 166

	
169 167
      InArcIt() { }
170 168

	
171 169
      InArcIt(Invalid i) : Arc(i) { }
172 170

	
173 171
      InArcIt(const Digraph& _graph, const Node& node) 
174 172
	: digraph(&_graph) {
175 173
	_graph.firstIn(*this, node);
176 174
      }
177 175

	
178 176
      InArcIt(const Digraph& _graph, const Arc& arc) : 
179 177
	Arc(arc), digraph(&_graph) {}
180 178

	
181 179
      InArcIt& operator++() { 
182 180
	digraph->nextIn(*this);
183 181
	return *this; 
184 182
      }
185 183

	
186 184
    };
187 185

	
188
    /// \brief Base node of the iterator
189
    ///
190
    /// Returns the base node (ie. the source in this case) of the iterator
186
    // \brief Base node of the iterator
187
    //
188
    // Returns the base node (ie. the source in this case) of the iterator
191 189
    Node baseNode(const OutArcIt &e) const {
192 190
      return Parent::source(static_cast<const Arc&>(e));
193 191
    }
194
    /// \brief Running node of the iterator
195
    ///
196
    /// Returns the running node (ie. the target in this case) of the
197
    /// iterator
192
    // \brief Running node of the iterator
193
    //
194
    // Returns the running node (ie. the target in this case) of the
195
    // iterator
198 196
    Node runningNode(const OutArcIt &e) const {
199 197
      return Parent::target(static_cast<const Arc&>(e));
200 198
    }
201 199

	
202
    /// \brief Base node of the iterator
203
    ///
204
    /// Returns the base node (ie. the target in this case) of the iterator
200
    // \brief Base node of the iterator
201
    //
202
    // Returns the base node (ie. the target in this case) of the iterator
205 203
    Node baseNode(const InArcIt &e) const {
206 204
      return Parent::target(static_cast<const Arc&>(e));
207 205
    }
208
    /// \brief Running node of the iterator
209
    ///
210
    /// Returns the running node (ie. the source in this case) of the
211
    /// iterator
206
    // \brief Running node of the iterator
207
    //
208
    // Returns the running node (ie. the source in this case) of the
209
    // iterator
212 210
    Node runningNode(const InArcIt &e) const {
213 211
      return Parent::source(static_cast<const Arc&>(e));
214 212
    }
215 213

	
216 214
    using Parent::first;
217 215

	
218 216
    // Mappable extension
219 217
    
220 218
    template <typename _Value>
221 219
    class ArcMap 
222 220
      : public MapExtender<DefaultMap<Digraph, Arc, _Value> > {
223 221
    public:
224 222
      typedef ArcSetExtender Digraph;
225 223
      typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent;
226 224

	
227 225
      explicit ArcMap(const Digraph& _g) 
228 226
	: Parent(_g) {}
229 227
      ArcMap(const Digraph& _g, const _Value& _v) 
230 228
	: Parent(_g, _v) {}
231 229

	
232 230
      ArcMap& operator=(const ArcMap& cmap) {
233 231
	return operator=<ArcMap>(cmap);
234 232
      }
235 233

	
236 234
      template <typename CMap>
237 235
      ArcMap& operator=(const CMap& cmap) {
238 236
        Parent::operator=(cmap);
239 237
	return *this;
240 238
      }
241 239

	
242 240
    };
243 241

	
244 242

	
245 243
    // Alteration extension
246 244

	
247 245
    Arc addArc(const Node& from, const Node& to) {
248 246
      Arc arc = Parent::addArc(from, to);
249 247
      notifier(Arc()).add(arc);
250 248
      return arc;
251 249
    }
252 250
    
253 251
    void clear() {
254 252
      notifier(Arc()).clear();
255 253
      Parent::clear();
256 254
    }
257 255

	
258 256
    void erase(const Arc& arc) {
259 257
      notifier(Arc()).erase(arc);
260 258
      Parent::erase(arc);
261 259
    }
262 260

	
263 261
    ArcSetExtender() {
264 262
      arc_notifier.setContainer(*this);
265 263
    }
266 264

	
267 265
    ~ArcSetExtender() {
268 266
      arc_notifier.clear();
269 267
    }
270 268

	
271 269
  };
272 270

	
273 271

	
274
  /// \ingroup digraphbits
275
  ///
276
  /// \brief Extender for the EdgeSets
272
  // \ingroup digraphbits
273
  //
274
  // \brief Extender for the EdgeSets
277 275
  template <typename Base>
278 276
  class EdgeSetExtender : public Base {
279 277

	
280 278
  public:
281 279

	
282 280
    typedef Base Parent;
283 281
    typedef EdgeSetExtender Digraph;
284 282

	
285 283
    typedef typename Parent::Node Node;
286 284
    typedef typename Parent::Arc Arc;
287 285
    typedef typename Parent::Edge Edge;
288 286

	
289 287

	
290 288
    int maxId(Node) const {
291 289
      return Parent::maxNodeId();
292 290
    }
293 291

	
294 292
    int maxId(Arc) const {
295 293
      return Parent::maxArcId();
296 294
    }
297 295

	
298 296
    int maxId(Edge) const {
299 297
      return Parent::maxEdgeId();
300 298
    }
301 299

	
302 300
    Node fromId(int id, Node) const {
303 301
      return Parent::nodeFromId(id);
304 302
    }
305 303

	
306 304
    Arc fromId(int id, Arc) const {
307 305
      return Parent::arcFromId(id);
308 306
    }
309 307

	
310 308
    Edge fromId(int id, Edge) const {
311 309
      return Parent::edgeFromId(id);
312 310
    }
313 311

	
314 312
    Node oppositeNode(const Node &n, const Edge &e) const {
315 313
      if( n == Parent::u(e))
316 314
	return Parent::v(e);
317 315
      else if( n == Parent::v(e))
318 316
	return Parent::u(e);
319 317
      else
320 318
	return INVALID;
321 319
    }
322 320

	
323 321
    Arc oppositeArc(const Arc &e) const {
324 322
      return Parent::direct(e, !Parent::direction(e));
325 323
    }
326 324

	
327 325
    using Parent::direct;
328 326
    Arc direct(const Edge &e, const Node &s) const {
329 327
      return Parent::direct(e, Parent::u(e) == s);
330 328
    }
331 329

	
332 330
    typedef AlterationNotifier<EdgeSetExtender, Arc> ArcNotifier;
333 331
    typedef AlterationNotifier<EdgeSetExtender, Edge> EdgeNotifier;
334 332

	
335 333

	
336 334
  protected:
337 335

	
338 336
    mutable ArcNotifier arc_notifier;
339 337
    mutable EdgeNotifier edge_notifier;
340 338

	
341 339
  public:
342 340

	
343 341
    using Parent::notifier;
344 342
    
345 343
    ArcNotifier& notifier(Arc) const {
346 344
      return arc_notifier;
347 345
    }
348 346

	
349 347
    EdgeNotifier& notifier(Edge) const {
350 348
      return edge_notifier;
351 349
    }
352 350

	
353 351

	
354 352
    class NodeIt : public Node { 
355 353
      const Digraph* digraph;
356 354
    public:
357 355

	
358 356
      NodeIt() {}
359 357

	
360 358
      NodeIt(Invalid i) : Node(i) { }
361 359

	
362 360
      explicit NodeIt(const Digraph& _graph) : digraph(&_graph) {
363 361
	_graph.first(static_cast<Node&>(*this));
364 362
      }
365 363

	
366 364
      NodeIt(const Digraph& _graph, const Node& node) 
367 365
	: Node(node), digraph(&_graph) {}
368 366

	
369 367
      NodeIt& operator++() { 
370 368
	digraph->next(*this);
371 369
	return *this; 
372 370
      }
373 371

	
374 372
    };
375 373

	
376 374

	
377 375
    class ArcIt : public Arc { 
378 376
      const Digraph* digraph;
379 377
    public:
380 378

	
381 379
      ArcIt() { }
382 380

	
383 381
      ArcIt(Invalid i) : Arc(i) { }
384 382

	
385 383
      explicit ArcIt(const Digraph& _graph) : digraph(&_graph) {
386 384
	_graph.first(static_cast<Arc&>(*this));
387 385
      }
388 386

	
389 387
      ArcIt(const Digraph& _graph, const Arc& e) : 
390 388
	Arc(e), digraph(&_graph) { }
391 389

	
392 390
      ArcIt& operator++() { 
393 391
	digraph->next(*this);
394 392
	return *this; 
395 393
      }
396 394

	
397 395
    };
398 396

	
399 397

	
400 398
    class OutArcIt : public Arc { 
401 399
      const Digraph* digraph;
402 400
    public:
403 401

	
404 402
      OutArcIt() { }
405 403

	
406 404
      OutArcIt(Invalid i) : Arc(i) { }
407 405

	
408 406
      OutArcIt(const Digraph& _graph, const Node& node) 
409 407
	: digraph(&_graph) {
410 408
	_graph.firstOut(*this, node);
411 409
      }
412 410

	
413 411
      OutArcIt(const Digraph& _graph, const Arc& arc) 
414 412
	: Arc(arc), digraph(&_graph) {}
415 413

	
416 414
      OutArcIt& operator++() { 
417 415
	digraph->nextOut(*this);
418 416
	return *this; 
419 417
      }
420 418

	
421 419
    };
422 420

	
423 421

	
424 422
    class InArcIt : public Arc { 
425 423
      const Digraph* digraph;
426 424
    public:
427 425

	
428 426
      InArcIt() { }
429 427

	
430 428
      InArcIt(Invalid i) : Arc(i) { }
431 429

	
432 430
      InArcIt(const Digraph& _graph, const Node& node) 
433 431
	: digraph(&_graph) {
434 432
	_graph.firstIn(*this, node);
435 433
      }
436 434

	
437 435
      InArcIt(const Digraph& _graph, const Arc& arc) : 
438 436
	Arc(arc), digraph(&_graph) {}
439 437

	
440 438
      InArcIt& operator++() { 
441 439
	digraph->nextIn(*this);
442 440
	return *this; 
443 441
      }
444 442

	
445 443
    };
446 444

	
447 445

	
448 446
    class EdgeIt : public Parent::Edge { 
449 447
      const Digraph* digraph;
450 448
    public:
451 449

	
452 450
      EdgeIt() { }
453 451

	
454 452
      EdgeIt(Invalid i) : Edge(i) { }
455 453

	
456 454
      explicit EdgeIt(const Digraph& _graph) : digraph(&_graph) {
457 455
	_graph.first(static_cast<Edge&>(*this));
458 456
      }
459 457

	
460 458
      EdgeIt(const Digraph& _graph, const Edge& e) : 
461 459
	Edge(e), digraph(&_graph) { }
462 460

	
463 461
      EdgeIt& operator++() { 
464 462
	digraph->next(*this);
465 463
	return *this; 
466 464
      }
467 465

	
468 466
    };
469 467

	
470 468
    class IncEdgeIt : public Parent::Edge {
471 469
      friend class EdgeSetExtender;
472 470
      const Digraph* digraph;
473 471
      bool direction;
474 472
    public:
475 473

	
476 474
      IncEdgeIt() { }
477 475

	
478 476
      IncEdgeIt(Invalid i) : Edge(i), direction(false) { }
479 477

	
480 478
      IncEdgeIt(const Digraph& _graph, const Node &n) : digraph(&_graph) {
481 479
	_graph.firstInc(*this, direction, n);
482 480
      }
483 481

	
484 482
      IncEdgeIt(const Digraph& _graph, const Edge &ue, const Node &n)
485 483
	: digraph(&_graph), Edge(ue) {
486 484
	direction = (_graph.source(ue) == n);
487 485
      }
488 486

	
489 487
      IncEdgeIt& operator++() {
490 488
	digraph->nextInc(*this, direction);
491 489
	return *this; 
492 490
      }
493 491
    };
494 492

	
495
    /// \brief Base node of the iterator
496
    ///
497
    /// Returns the base node (ie. the source in this case) of the iterator
493
    // \brief Base node of the iterator
494
    //
495
    // Returns the base node (ie. the source in this case) of the iterator
498 496
    Node baseNode(const OutArcIt &e) const {
499 497
      return Parent::source(static_cast<const Arc&>(e));
500 498
    }
501
    /// \brief Running node of the iterator
502
    ///
503
    /// Returns the running node (ie. the target in this case) of the
504
    /// iterator
499
    // \brief Running node of the iterator
500
    //
501
    // Returns the running node (ie. the target in this case) of the
502
    // iterator
505 503
    Node runningNode(const OutArcIt &e) const {
506 504
      return Parent::target(static_cast<const Arc&>(e));
507 505
    }
508 506

	
509
    /// \brief Base node of the iterator
510
    ///
511
    /// Returns the base node (ie. the target in this case) of the iterator
507
    // \brief Base node of the iterator
508
    //
509
    // Returns the base node (ie. the target in this case) of the iterator
512 510
    Node baseNode(const InArcIt &e) const {
513 511
      return Parent::target(static_cast<const Arc&>(e));
514 512
    }
515
    /// \brief Running node of the iterator
516
    ///
517
    /// Returns the running node (ie. the source in this case) of the
518
    /// iterator
513
    // \brief Running node of the iterator
514
    //
515
    // Returns the running node (ie. the source in this case) of the
516
    // iterator
519 517
    Node runningNode(const InArcIt &e) const {
520 518
      return Parent::source(static_cast<const Arc&>(e));
521 519
    }
522 520

	
523
    /// Base node of the iterator
524
    ///
525
    /// Returns the base node of the iterator
521
    // Base node of the iterator
522
    //
523
    // Returns the base node of the iterator
526 524
    Node baseNode(const IncEdgeIt &e) const {
527 525
      return e.direction ? u(e) : v(e);
528 526
    }
529
    /// Running node of the iterator
530
    ///
531
    /// Returns the running node of the iterator
527
    // Running node of the iterator
528
    //
529
    // Returns the running node of the iterator
532 530
    Node runningNode(const IncEdgeIt &e) const {
533 531
      return e.direction ? v(e) : u(e);
534 532
    }
535 533

	
536 534

	
537 535
    template <typename _Value>
538 536
    class ArcMap 
539 537
      : public MapExtender<DefaultMap<Digraph, Arc, _Value> > {
540 538
    public:
541 539
      typedef EdgeSetExtender Digraph;
542 540
      typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent;
543 541

	
544 542
      ArcMap(const Digraph& _g) 
545 543
	: Parent(_g) {}
546 544
      ArcMap(const Digraph& _g, const _Value& _v) 
547 545
	: Parent(_g, _v) {}
548 546

	
549 547
      ArcMap& operator=(const ArcMap& cmap) {
550 548
	return operator=<ArcMap>(cmap);
551 549
      }
552 550

	
553 551
      template <typename CMap>
554 552
      ArcMap& operator=(const CMap& cmap) {
555 553
        Parent::operator=(cmap);
556 554
	return *this;
557 555
      }
558 556

	
559 557
    };
560 558

	
561 559

	
562 560
    template <typename _Value>
563 561
    class EdgeMap 
564 562
      : public MapExtender<DefaultMap<Digraph, Edge, _Value> > {
565 563
    public:
566 564
      typedef EdgeSetExtender Digraph;
567 565
      typedef MapExtender<DefaultMap<Digraph, Edge, _Value> > Parent;
568 566

	
569 567
      EdgeMap(const Digraph& _g) 
570 568
	: Parent(_g) {}
571 569

	
572 570
      EdgeMap(const Digraph& _g, const _Value& _v) 
573 571
	: Parent(_g, _v) {}
574 572

	
575 573
      EdgeMap& operator=(const EdgeMap& cmap) {
576 574
	return operator=<EdgeMap>(cmap);
577 575
      }
578 576

	
579 577
      template <typename CMap>
580 578
      EdgeMap& operator=(const CMap& cmap) {
581 579
        Parent::operator=(cmap);
582 580
	return *this;
583 581
      }
584 582

	
585 583
    };
586 584

	
587 585

	
588 586
    // Alteration extension
589 587

	
590 588
    Edge addEdge(const Node& from, const Node& to) {
591 589
      Edge edge = Parent::addEdge(from, to);
592 590
      notifier(Edge()).add(edge);
593 591
      std::vector<Arc> arcs;
594 592
      arcs.push_back(Parent::direct(edge, true));
595 593
      arcs.push_back(Parent::direct(edge, false));
596 594
      notifier(Arc()).add(arcs);
597 595
      return edge;
598 596
    }
599 597
    
600 598
    void clear() {
601 599
      notifier(Arc()).clear();
602 600
      notifier(Edge()).clear();
603 601
      Parent::clear();
604 602
    }
605 603

	
606 604
    void erase(const Edge& edge) {
607 605
      std::vector<Arc> arcs;
608 606
      arcs.push_back(Parent::direct(edge, true));
609 607
      arcs.push_back(Parent::direct(edge, false));
610 608
      notifier(Arc()).erase(arcs);
611 609
      notifier(Edge()).erase(edge);
612 610
      Parent::erase(edge);
613 611
    }
614 612

	
615 613

	
616 614
    EdgeSetExtender() {
617 615
      arc_notifier.setContainer(*this);
618 616
      edge_notifier.setContainer(*this);
619 617
    }
620 618

	
621 619
    ~EdgeSetExtender() {
622 620
      edge_notifier.clear();
623 621
      arc_notifier.clear();
624 622
    }
625 623
    
626 624
  };
627 625

	
628 626
}
629 627

	
630 628
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CIRCULATION_H
20 20
#define LEMON_CIRCULATION_H
21 21

	
22 22
#include <lemon/tolerance.h>
23 23
#include <lemon/elevator.h>
24 24

	
25 25
///\ingroup max_flow
26 26
///\file
27 27
///\brief Push-relabel algorithm for finding a feasible circulation.
28 28
///
29 29
namespace lemon {
30 30

	
31 31
  /// \brief Default traits class of Circulation class.
32 32
  ///
33 33
  /// Default traits class of Circulation class.
34 34
  /// \tparam GR Digraph type.
35 35
  /// \tparam LM Lower bound capacity map type.
36 36
  /// \tparam UM Upper bound capacity map type.
37 37
  /// \tparam DM Delta map type.
38 38
  template <typename GR, typename LM,
39 39
            typename UM, typename DM>
40 40
  struct CirculationDefaultTraits {
41 41

	
42 42
    /// \brief The type of the digraph the algorithm runs on.
43 43
    typedef GR Digraph;
44 44

	
45 45
    /// \brief The type of the map that stores the circulation lower
46 46
    /// bound.
47 47
    ///
48 48
    /// The type of the map that stores the circulation lower bound.
49 49
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
50 50
    typedef LM LCapMap;
51 51

	
52 52
    /// \brief The type of the map that stores the circulation upper
53 53
    /// bound.
54 54
    ///
55 55
    /// The type of the map that stores the circulation upper bound.
56 56
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
57 57
    typedef UM UCapMap;
58 58

	
59 59
    /// \brief The type of the map that stores the lower bound for
60 60
    /// the supply of the nodes.
61 61
    ///
62 62
    /// The type of the map that stores the lower bound for the supply
63 63
    /// of the nodes. It must meet the \ref concepts::ReadMap "ReadMap"
64 64
    /// concept.
65 65
    typedef DM DeltaMap;
66 66

	
67 67
    /// \brief The type of the flow values.
68 68
    typedef typename DeltaMap::Value Value;
69 69

	
70 70
    /// \brief The type of the map that stores the flow values.
71 71
    ///
72 72
    /// The type of the map that stores the flow values.
73 73
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
74 74
    typedef typename Digraph::template ArcMap<Value> FlowMap;
75 75

	
76 76
    /// \brief Instantiates a FlowMap.
77 77
    ///
78 78
    /// This function instantiates a \ref FlowMap.
79 79
    /// \param digraph The digraph, to which we would like to define
80 80
    /// the flow map.
81 81
    static FlowMap* createFlowMap(const Digraph& digraph) {
82 82
      return new FlowMap(digraph);
83 83
    }
84 84

	
85 85
    /// \brief The elevator type used by the algorithm.
86 86
    ///
87 87
    /// The elevator type used by the algorithm.
88 88
    ///
89 89
    /// \sa Elevator
90 90
    /// \sa LinkedElevator
91 91
    typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator;
92 92

	
93 93
    /// \brief Instantiates an Elevator.
94 94
    ///
95 95
    /// This function instantiates an \ref Elevator.
96 96
    /// \param digraph The digraph, to which we would like to define
97 97
    /// the elevator.
98 98
    /// \param max_level The maximum level of the elevator.
99 99
    static Elevator* createElevator(const Digraph& digraph, int max_level) {
100 100
      return new Elevator(digraph, max_level);
101 101
    }
102 102

	
103 103
    /// \brief The tolerance used by the algorithm
104 104
    ///
105 105
    /// The tolerance used by the algorithm to handle inexact computation.
106 106
    typedef lemon::Tolerance<Value> Tolerance;
107 107

	
108 108
  };
109 109

	
110 110
  /**
111 111
     \brief Push-relabel algorithm for the network circulation problem.
112 112

	
113 113
     \ingroup max_flow
114 114
     This class implements a push-relabel algorithm for the network
115 115
     circulation problem.
116 116
     It is to find a feasible circulation when lower and upper bounds
117 117
     are given for the flow values on the arcs and lower bounds
118 118
     are given for the supply values of the nodes.
119 119

	
120 120
     The exact formulation of this problem is the following.
121 121
     Let \f$G=(V,A)\f$ be a digraph,
122 122
     \f$lower, upper: A\rightarrow\mathbf{R}^+_0\f$,
123 123
     \f$delta: V\rightarrow\mathbf{R}\f$. Find a feasible circulation
124 124
     \f$f: A\rightarrow\mathbf{R}^+_0\f$ so that
125 125
     \f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a)
126 126
     \geq delta(v) \quad \forall v\in V, \f]
127 127
     \f[ lower(a)\leq f(a) \leq upper(a) \quad \forall a\in A. \f]
128 128
     \note \f$delta(v)\f$ specifies a lower bound for the supply of node
129 129
     \f$v\f$. It can be either positive or negative, however note that
130 130
     \f$\sum_{v\in V}delta(v)\f$ should be zero or negative in order to
131 131
     have a feasible solution.
132 132

	
133 133
     \note A special case of this problem is when
134 134
     \f$\sum_{v\in V}delta(v) = 0\f$. Then the supply of each node \f$v\f$
135 135
     will be \e equal \e to \f$delta(v)\f$, if a circulation can be found.
136 136
     Thus a feasible solution for the
137 137
     \ref min_cost_flow "minimum cost flow" problem can be calculated
138 138
     in this way.
139 139

	
140 140
     \tparam GR The type of the digraph the algorithm runs on.
141 141
     \tparam LM The type of the lower bound capacity map. The default
142 142
     map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
143 143
     \tparam UM The type of the upper bound capacity map. The default
144 144
     map type is \c LM.
145 145
     \tparam DM The type of the map that stores the lower bound
146 146
     for the supply of the nodes. The default map type is
147 147
     \ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>".
148 148
  */
149 149
#ifdef DOXYGEN
150 150
template< typename GR,
151 151
          typename LM,
152 152
          typename UM,
153 153
          typename DM,
154 154
          typename TR >
155 155
#else
156 156
template< typename GR,
157 157
          typename LM = typename GR::template ArcMap<int>,
158 158
          typename UM = LM,
159 159
          typename DM = typename GR::template NodeMap<typename UM::Value>,
160 160
          typename TR = CirculationDefaultTraits<GR, LM, UM, DM> >
161 161
#endif
162 162
  class Circulation {
163 163
  public:
164 164

	
165 165
    ///The \ref CirculationDefaultTraits "traits class" of the algorithm.
166 166
    typedef TR Traits;
167 167
    ///The type of the digraph the algorithm runs on.
168 168
    typedef typename Traits::Digraph Digraph;
169 169
    ///The type of the flow values.
170 170
    typedef typename Traits::Value Value;
171 171

	
172 172
    /// The type of the lower bound capacity map.
173 173
    typedef typename Traits::LCapMap LCapMap;
174 174
    /// The type of the upper bound capacity map.
175 175
    typedef typename Traits::UCapMap UCapMap;
176 176
    /// \brief The type of the map that stores the lower bound for
177 177
    /// the supply of the nodes.
178 178
    typedef typename Traits::DeltaMap DeltaMap;
179 179
    ///The type of the flow map.
180 180
    typedef typename Traits::FlowMap FlowMap;
181 181

	
182 182
    ///The type of the elevator.
183 183
    typedef typename Traits::Elevator Elevator;
184 184
    ///The type of the tolerance.
185 185
    typedef typename Traits::Tolerance Tolerance;
186 186

	
187 187
  private:
188 188

	
189 189
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
190 190

	
191 191
    const Digraph &_g;
192 192
    int _node_num;
193 193

	
194 194
    const LCapMap *_lo;
195 195
    const UCapMap *_up;
196 196
    const DeltaMap *_delta;
197 197

	
198 198
    FlowMap *_flow;
199 199
    bool _local_flow;
200 200

	
201 201
    Elevator* _level;
202 202
    bool _local_level;
203 203

	
204 204
    typedef typename Digraph::template NodeMap<Value> ExcessMap;
205 205
    ExcessMap* _excess;
206 206

	
207 207
    Tolerance _tol;
208 208
    int _el;
209 209

	
210 210
  public:
211 211

	
212 212
    typedef Circulation Create;
213 213

	
214 214
    ///\name Named Template Parameters
215 215

	
216 216
    ///@{
217 217

	
218
    template <typename _FlowMap>
218
    template <typename T>
219 219
    struct SetFlowMapTraits : public Traits {
220
      typedef _FlowMap FlowMap;
220
      typedef T FlowMap;
221 221
      static FlowMap *createFlowMap(const Digraph&) {
222 222
        LEMON_ASSERT(false, "FlowMap is not initialized");
223 223
        return 0; // ignore warnings
224 224
      }
225 225
    };
226 226

	
227 227
    /// \brief \ref named-templ-param "Named parameter" for setting
228 228
    /// FlowMap type
229 229
    ///
230 230
    /// \ref named-templ-param "Named parameter" for setting FlowMap
231 231
    /// type.
232
    template <typename _FlowMap>
232
    template <typename T>
233 233
    struct SetFlowMap
234 234
      : public Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
235
                           SetFlowMapTraits<_FlowMap> > {
235
                           SetFlowMapTraits<T> > {
236 236
      typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
237
                          SetFlowMapTraits<_FlowMap> > Create;
237
                          SetFlowMapTraits<T> > Create;
238 238
    };
239 239

	
240
    template <typename _Elevator>
240
    template <typename T>
241 241
    struct SetElevatorTraits : public Traits {
242
      typedef _Elevator Elevator;
242
      typedef T Elevator;
243 243
      static Elevator *createElevator(const Digraph&, int) {
244 244
        LEMON_ASSERT(false, "Elevator is not initialized");
245 245
        return 0; // ignore warnings
246 246
      }
247 247
    };
248 248

	
249 249
    /// \brief \ref named-templ-param "Named parameter" for setting
250 250
    /// Elevator type
251 251
    ///
252 252
    /// \ref named-templ-param "Named parameter" for setting Elevator
253 253
    /// type. If this named parameter is used, then an external
254 254
    /// elevator object must be passed to the algorithm using the
255 255
    /// \ref elevator(Elevator&) "elevator()" function before calling
256 256
    /// \ref run() or \ref init().
257 257
    /// \sa SetStandardElevator
258
    template <typename _Elevator>
258
    template <typename T>
259 259
    struct SetElevator
260 260
      : public Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
261
                           SetElevatorTraits<_Elevator> > {
261
                           SetElevatorTraits<T> > {
262 262
      typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
263
                          SetElevatorTraits<_Elevator> > Create;
263
                          SetElevatorTraits<T> > Create;
264 264
    };
265 265

	
266
    template <typename _Elevator>
266
    template <typename T>
267 267
    struct SetStandardElevatorTraits : public Traits {
268
      typedef _Elevator Elevator;
268
      typedef T Elevator;
269 269
      static Elevator *createElevator(const Digraph& digraph, int max_level) {
270 270
        return new Elevator(digraph, max_level);
271 271
      }
272 272
    };
273 273

	
274 274
    /// \brief \ref named-templ-param "Named parameter" for setting
275 275
    /// Elevator type with automatic allocation
276 276
    ///
277 277
    /// \ref named-templ-param "Named parameter" for setting Elevator
278 278
    /// type with automatic allocation.
279 279
    /// The Elevator should have standard constructor interface to be
280 280
    /// able to automatically created by the algorithm (i.e. the
281 281
    /// digraph and the maximum level should be passed to it).
282 282
    /// However an external elevator object could also be passed to the
283 283
    /// algorithm with the \ref elevator(Elevator&) "elevator()" function
284 284
    /// before calling \ref run() or \ref init().
285 285
    /// \sa SetElevator
286
    template <typename _Elevator>
286
    template <typename T>
287 287
    struct SetStandardElevator
288 288
      : public Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
289
                       SetStandardElevatorTraits<_Elevator> > {
289
                       SetStandardElevatorTraits<T> > {
290 290
      typedef Circulation<Digraph, LCapMap, UCapMap, DeltaMap,
291
                      SetStandardElevatorTraits<_Elevator> > Create;
291
                      SetStandardElevatorTraits<T> > Create;
292 292
    };
293 293

	
294 294
    /// @}
295 295

	
296 296
  protected:
297 297

	
298 298
    Circulation() {}
299 299

	
300 300
  public:
301 301

	
302 302
    /// The constructor of the class.
303 303

	
304 304
    /// The constructor of the class.
305 305
    /// \param g The digraph the algorithm runs on.
306 306
    /// \param lo The lower bound capacity of the arcs.
307 307
    /// \param up The upper bound capacity of the arcs.
308 308
    /// \param delta The lower bound for the supply of the nodes.
309 309
    Circulation(const Digraph &g,const LCapMap &lo,
310 310
                const UCapMap &up,const DeltaMap &delta)
311 311
      : _g(g), _node_num(),
312 312
        _lo(&lo),_up(&up),_delta(&delta),_flow(0),_local_flow(false),
313 313
        _level(0), _local_level(false), _excess(0), _el() {}
314 314

	
315 315
    /// Destructor.
316 316
    ~Circulation() {
317 317
      destroyStructures();
318 318
    }
319 319

	
320 320

	
321 321
  private:
322 322

	
323 323
    void createStructures() {
324 324
      _node_num = _el = countNodes(_g);
325 325

	
326 326
      if (!_flow) {
327 327
        _flow = Traits::createFlowMap(_g);
328 328
        _local_flow = true;
329 329
      }
330 330
      if (!_level) {
331 331
        _level = Traits::createElevator(_g, _node_num);
332 332
        _local_level = true;
333 333
      }
334 334
      if (!_excess) {
335 335
        _excess = new ExcessMap(_g);
336 336
      }
337 337
    }
338 338

	
339 339
    void destroyStructures() {
340 340
      if (_local_flow) {
341 341
        delete _flow;
342 342
      }
343 343
      if (_local_level) {
344 344
        delete _level;
345 345
      }
346 346
      if (_excess) {
347 347
        delete _excess;
348 348
      }
349 349
    }
350 350

	
351 351
  public:
352 352

	
353 353
    /// Sets the lower bound capacity map.
354 354

	
355 355
    /// Sets the lower bound capacity map.
356 356
    /// \return <tt>(*this)</tt>
357 357
    Circulation& lowerCapMap(const LCapMap& map) {
358 358
      _lo = &map;
359 359
      return *this;
360 360
    }
361 361

	
362 362
    /// Sets the upper bound capacity map.
363 363

	
364 364
    /// Sets the upper bound capacity map.
365 365
    /// \return <tt>(*this)</tt>
366 366
    Circulation& upperCapMap(const LCapMap& map) {
367 367
      _up = &map;
368 368
      return *this;
369 369
    }
370 370

	
371 371
    /// Sets the lower bound map for the supply of the nodes.
372 372

	
373 373
    /// Sets the lower bound map for the supply of the nodes.
374 374
    /// \return <tt>(*this)</tt>
375 375
    Circulation& deltaMap(const DeltaMap& map) {
376 376
      _delta = &map;
377 377
      return *this;
378 378
    }
379 379

	
380 380
    /// \brief Sets the flow map.
381 381
    ///
382 382
    /// Sets the flow map.
383 383
    /// If you don't use this function before calling \ref run() or
384 384
    /// \ref init(), an instance will be allocated automatically.
385 385
    /// The destructor deallocates this automatically allocated map,
386 386
    /// of course.
387 387
    /// \return <tt>(*this)</tt>
388 388
    Circulation& flowMap(FlowMap& map) {
389 389
      if (_local_flow) {
390 390
        delete _flow;
391 391
        _local_flow = false;
392 392
      }
393 393
      _flow = &map;
394 394
      return *this;
395 395
    }
396 396

	
397 397
    /// \brief Sets the elevator used by algorithm.
398 398
    ///
399 399
    /// Sets the elevator used by algorithm.
400 400
    /// If you don't use this function before calling \ref run() or
401 401
    /// \ref init(), an instance will be allocated automatically.
402 402
    /// The destructor deallocates this automatically allocated elevator,
403 403
    /// of course.
404 404
    /// \return <tt>(*this)</tt>
405 405
    Circulation& elevator(Elevator& elevator) {
406 406
      if (_local_level) {
407 407
        delete _level;
408 408
        _local_level = false;
409 409
      }
410 410
      _level = &elevator;
411 411
      return *this;
412 412
    }
413 413

	
414 414
    /// \brief Returns a const reference to the elevator.
415 415
    ///
416 416
    /// Returns a const reference to the elevator.
417 417
    ///
418 418
    /// \pre Either \ref run() or \ref init() must be called before
419 419
    /// using this function.
420 420
    const Elevator& elevator() const {
421 421
      return *_level;
422 422
    }
423 423

	
424 424
    /// \brief Sets the tolerance used by algorithm.
425 425
    ///
426 426
    /// Sets the tolerance used by algorithm.
427 427
    Circulation& tolerance(const Tolerance& tolerance) const {
428 428
      _tol = tolerance;
429 429
      return *this;
430 430
    }
431 431

	
432 432
    /// \brief Returns a const reference to the tolerance.
433 433
    ///
434 434
    /// Returns a const reference to the tolerance.
435 435
    const Tolerance& tolerance() const {
436 436
      return tolerance;
437 437
    }
438 438

	
439 439
    /// \name Execution Control
440 440
    /// The simplest way to execute the algorithm is to call \ref run().\n
441 441
    /// If you need more control on the initial solution or the execution,
442 442
    /// first you have to call one of the \ref init() functions, then
443 443
    /// the \ref start() function.
444 444

	
445 445
    ///@{
446 446

	
447 447
    /// Initializes the internal data structures.
448 448

	
449 449
    /// Initializes the internal data structures and sets all flow values
450 450
    /// to the lower bound.
451 451
    void init()
452 452
    {
453 453
      createStructures();
454 454

	
455 455
      for(NodeIt n(_g);n!=INVALID;++n) {
456 456
        _excess->set(n, (*_delta)[n]);
457 457
      }
458 458

	
459 459
      for (ArcIt e(_g);e!=INVALID;++e) {
460 460
        _flow->set(e, (*_lo)[e]);
461 461
        _excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_flow)[e]);
462 462
        _excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_flow)[e]);
463 463
      }
464 464

	
465 465
      // global relabeling tested, but in general case it provides
466 466
      // worse performance for random digraphs
467 467
      _level->initStart();
468 468
      for(NodeIt n(_g);n!=INVALID;++n)
469 469
        _level->initAddItem(n);
470 470
      _level->initFinish();
471 471
      for(NodeIt n(_g);n!=INVALID;++n)
472 472
        if(_tol.positive((*_excess)[n]))
473 473
          _level->activate(n);
474 474
    }
475 475

	
476 476
    /// Initializes the internal data structures using a greedy approach.
477 477

	
478 478
    /// Initializes the internal data structures using a greedy approach
479 479
    /// to construct the initial solution.
480 480
    void greedyInit()
481 481
    {
482 482
      createStructures();
483 483

	
484 484
      for(NodeIt n(_g);n!=INVALID;++n) {
485 485
        _excess->set(n, (*_delta)[n]);
486 486
      }
487 487

	
488 488
      for (ArcIt e(_g);e!=INVALID;++e) {
489 489
        if (!_tol.positive((*_excess)[_g.target(e)] + (*_up)[e])) {
490 490
          _flow->set(e, (*_up)[e]);
491 491
          _excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_up)[e]);
492 492
          _excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_up)[e]);
493 493
        } else if (_tol.positive((*_excess)[_g.target(e)] + (*_lo)[e])) {
494 494
          _flow->set(e, (*_lo)[e]);
495 495
          _excess->set(_g.target(e), (*_excess)[_g.target(e)] + (*_lo)[e]);
496 496
          _excess->set(_g.source(e), (*_excess)[_g.source(e)] - (*_lo)[e]);
497 497
        } else {
498 498
          Value fc = -(*_excess)[_g.target(e)];
499 499
          _flow->set(e, fc);
500 500
          _excess->set(_g.target(e), 0);
501 501
          _excess->set(_g.source(e), (*_excess)[_g.source(e)] - fc);
502 502
        }
503 503
      }
504 504

	
505 505
      _level->initStart();
506 506
      for(NodeIt n(_g);n!=INVALID;++n)
507 507
        _level->initAddItem(n);
508 508
      _level->initFinish();
509 509
      for(NodeIt n(_g);n!=INVALID;++n)
510 510
        if(_tol.positive((*_excess)[n]))
511 511
          _level->activate(n);
512 512
    }
513 513

	
514 514
    ///Executes the algorithm
515 515

	
516 516
    ///This function executes the algorithm.
517 517
    ///
518 518
    ///\return \c true if a feasible circulation is found.
519 519
    ///
520 520
    ///\sa barrier()
521 521
    ///\sa barrierMap()
522 522
    bool start()
523 523
    {
524 524

	
525 525
      Node act;
526 526
      Node bact=INVALID;
527 527
      Node last_activated=INVALID;
528 528
      while((act=_level->highestActive())!=INVALID) {
529 529
        int actlevel=(*_level)[act];
530 530
        int mlevel=_node_num;
531 531
        Value exc=(*_excess)[act];
532 532

	
533 533
        for(OutArcIt e(_g,act);e!=INVALID; ++e) {
534 534
          Node v = _g.target(e);
535 535
          Value fc=(*_up)[e]-(*_flow)[e];
536 536
          if(!_tol.positive(fc)) continue;
537 537
          if((*_level)[v]<actlevel) {
538 538
            if(!_tol.less(fc, exc)) {
539 539
              _flow->set(e, (*_flow)[e] + exc);
540 540
              _excess->set(v, (*_excess)[v] + exc);
541 541
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
542 542
                _level->activate(v);
543 543
              _excess->set(act,0);
544 544
              _level->deactivate(act);
545 545
              goto next_l;
546 546
            }
547 547
            else {
548 548
              _flow->set(e, (*_up)[e]);
549 549
              _excess->set(v, (*_excess)[v] + fc);
550 550
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
551 551
                _level->activate(v);
552 552
              exc-=fc;
553 553
            }
554 554
          }
555 555
          else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
556 556
        }
557 557
        for(InArcIt e(_g,act);e!=INVALID; ++e) {
558 558
          Node v = _g.source(e);
559 559
          Value fc=(*_flow)[e]-(*_lo)[e];
560 560
          if(!_tol.positive(fc)) continue;
561 561
          if((*_level)[v]<actlevel) {
562 562
            if(!_tol.less(fc, exc)) {
563 563
              _flow->set(e, (*_flow)[e] - exc);
564 564
              _excess->set(v, (*_excess)[v] + exc);
565 565
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
566 566
                _level->activate(v);
567 567
              _excess->set(act,0);
568 568
              _level->deactivate(act);
569 569
              goto next_l;
570 570
            }
571 571
            else {
572 572
              _flow->set(e, (*_lo)[e]);
573 573
              _excess->set(v, (*_excess)[v] + fc);
574 574
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
575 575
                _level->activate(v);
576 576
              exc-=fc;
577 577
            }
578 578
          }
579 579
          else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
580 580
        }
581 581

	
582 582
        _excess->set(act, exc);
583 583
        if(!_tol.positive(exc)) _level->deactivate(act);
584 584
        else if(mlevel==_node_num) {
585 585
          _level->liftHighestActiveToTop();
586 586
          _el = _node_num;
587 587
          return false;
588 588
        }
589 589
        else {
590 590
          _level->liftHighestActive(mlevel+1);
591 591
          if(_level->onLevel(actlevel)==0) {
592 592
            _el = actlevel;
593 593
            return false;
594 594
          }
595 595
        }
596 596
      next_l:
597 597
        ;
598 598
      }
599 599
      return true;
600 600
    }
601 601

	
602 602
    /// Runs the algorithm.
603 603

	
604 604
    /// This function runs the algorithm.
605 605
    ///
606 606
    /// \return \c true if a feasible circulation is found.
607 607
    ///
608 608
    /// \note Apart from the return value, c.run() is just a shortcut of
609 609
    /// the following code.
610 610
    /// \code
611 611
    ///   c.greedyInit();
612 612
    ///   c.start();
613 613
    /// \endcode
614 614
    bool run() {
615 615
      greedyInit();
616 616
      return start();
617 617
    }
618 618

	
619 619
    /// @}
620 620

	
621 621
    /// \name Query Functions
622 622
    /// The results of the circulation algorithm can be obtained using
623 623
    /// these functions.\n
624 624
    /// Either \ref run() or \ref start() should be called before
625 625
    /// using them.
626 626

	
627 627
    ///@{
628 628

	
629 629
    /// \brief Returns the flow on the given arc.
630 630
    ///
631 631
    /// Returns the flow on the given arc.
632 632
    ///
633 633
    /// \pre Either \ref run() or \ref init() must be called before
634 634
    /// using this function.
635 635
    Value flow(const Arc& arc) const {
636 636
      return (*_flow)[arc];
637 637
    }
638 638

	
639 639
    /// \brief Returns a const reference to the flow map.
640 640
    ///
641 641
    /// Returns a const reference to the arc map storing the found flow.
642 642
    ///
643 643
    /// \pre Either \ref run() or \ref init() must be called before
644 644
    /// using this function.
645 645
    const FlowMap& flowMap() const {
646 646
      return *_flow;
647 647
    }
648 648

	
649 649
    /**
650 650
       \brief Returns \c true if the given node is in a barrier.
651 651

	
652 652
       Barrier is a set \e B of nodes for which
653 653

	
654 654
       \f[ \sum_{a\in\delta_{out}(B)} upper(a) -
655 655
           \sum_{a\in\delta_{in}(B)} lower(a) < \sum_{v\in B}delta(v) \f]
656 656

	
657 657
       holds. The existence of a set with this property prooves that a
658 658
       feasible circualtion cannot exist.
659 659

	
660 660
       This function returns \c true if the given node is in the found
661 661
       barrier. If a feasible circulation is found, the function
662 662
       gives back \c false for every node.
663 663

	
664 664
       \pre Either \ref run() or \ref init() must be called before
665 665
       using this function.
666 666

	
667 667
       \sa barrierMap()
668 668
       \sa checkBarrier()
669 669
    */
670 670
    bool barrier(const Node& node) const
671 671
    {
672 672
      return (*_level)[node] >= _el;
673 673
    }
674 674

	
675 675
    /// \brief Gives back a barrier.
676 676
    ///
677 677
    /// This function sets \c bar to the characteristic vector of the
678 678
    /// found barrier. \c bar should be a \ref concepts::WriteMap "writable"
679 679
    /// node map with \c bool (or convertible) value type.
680 680
    ///
681 681
    /// If a feasible circulation is found, the function gives back an
682 682
    /// empty set, so \c bar[v] will be \c false for all nodes \c v.
683 683
    ///
684 684
    /// \note This function calls \ref barrier() for each node,
685
    /// so it runs in \f$O(n)\f$ time.
685
    /// so it runs in O(n) time.
686 686
    ///
687 687
    /// \pre Either \ref run() or \ref init() must be called before
688 688
    /// using this function.
689 689
    ///
690 690
    /// \sa barrier()
691 691
    /// \sa checkBarrier()
692 692
    template<class BarrierMap>
693 693
    void barrierMap(BarrierMap &bar) const
694 694
    {
695 695
      for(NodeIt n(_g);n!=INVALID;++n)
696 696
        bar.set(n, (*_level)[n] >= _el);
697 697
    }
698 698

	
699 699
    /// @}
700 700

	
701 701
    /// \name Checker Functions
702 702
    /// The feasibility of the results can be checked using
703 703
    /// these functions.\n
704 704
    /// Either \ref run() or \ref start() should be called before
705 705
    /// using them.
706 706

	
707 707
    ///@{
708 708

	
709 709
    ///Check if the found flow is a feasible circulation
710 710

	
711 711
    ///Check if the found flow is a feasible circulation,
712 712
    ///
713 713
    bool checkFlow() const {
714 714
      for(ArcIt e(_g);e!=INVALID;++e)
715 715
        if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false;
716 716
      for(NodeIt n(_g);n!=INVALID;++n)
717 717
        {
718 718
          Value dif=-(*_delta)[n];
719 719
          for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e];
720 720
          for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e];
721 721
          if(_tol.negative(dif)) return false;
722 722
        }
723 723
      return true;
724 724
    }
725 725

	
726 726
    ///Check whether or not the last execution provides a barrier
727 727

	
728 728
    ///Check whether or not the last execution provides a barrier.
729 729
    ///\sa barrier()
730 730
    ///\sa barrierMap()
731 731
    bool checkBarrier() const
732 732
    {
733 733
      Value delta=0;
734 734
      for(NodeIt n(_g);n!=INVALID;++n)
735 735
        if(barrier(n))
736 736
          delta-=(*_delta)[n];
737 737
      for(ArcIt e(_g);e!=INVALID;++e)
738 738
        {
739 739
          Node s=_g.source(e);
740 740
          Node t=_g.target(e);
741 741
          if(barrier(s)&&!barrier(t)) delta+=(*_up)[e];
742 742
          else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e];
743 743
        }
744 744
      return _tol.negative(delta);
745 745
    }
746 746

	
747 747
    /// @}
748 748

	
749 749
  };
750 750

	
751 751
}
752 752

	
753 753
#endif
Ignore white space 6 line context
... ...
@@ -348,404 +348,416 @@
348 348
        /// the items; this order has nothing to do with the iteration
349 349
        /// ordering of the items.
350 350
        bool operator<(Arc) const { return false; }
351 351

	
352 352
      };
353 353
      /// This iterator goes through each directed arc.
354 354

	
355 355
      /// This iterator goes through each arc of a graph.
356 356
      /// Its usage is quite simple, for example you can count the number
357 357
      /// of arcs in a graph \c g of type \c Graph as follows:
358 358
      ///\code
359 359
      /// int count=0;
360 360
      /// for(Graph::ArcIt e(g); e!=INVALID; ++e) ++count;
361 361
      ///\endcode
362 362
      class ArcIt : public Arc {
363 363
      public:
364 364
        /// Default constructor
365 365

	
366 366
        /// @warning The default constructor sets the iterator
367 367
        /// to an undefined value.
368 368
        ArcIt() { }
369 369
        /// Copy constructor.
370 370

	
371 371
        /// Copy constructor.
372 372
        ///
373 373
        ArcIt(const ArcIt& e) : Arc(e) { }
374 374
        /// Initialize the iterator to be invalid.
375 375

	
376 376
        /// Initialize the iterator to be invalid.
377 377
        ///
378 378
        ArcIt(Invalid) { }
379 379
        /// This constructor sets the iterator to the first arc.
380 380

	
381 381
        /// This constructor sets the iterator to the first arc of \c g.
382 382
        ///@param g the graph
383 383
        ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
384 384
        /// Arc -> ArcIt conversion
385 385

	
386 386
        /// Sets the iterator to the value of the trivial iterator \c e.
387 387
        /// This feature necessitates that each time we
388 388
        /// iterate the arc-set, the iteration order is the same.
389 389
        ArcIt(const Graph&, const Arc&) { }
390 390
        ///Next arc
391 391

	
392 392
        /// Assign the iterator to the next arc.
393 393
        ArcIt& operator++() { return *this; }
394 394
      };
395 395

	
396 396
      /// This iterator goes trough the outgoing directed arcs of a node.
397 397

	
398 398
      /// This iterator goes trough the \e outgoing arcs of a certain node
399 399
      /// of a graph.
400 400
      /// Its usage is quite simple, for example you can count the number
401 401
      /// of outgoing arcs of a node \c n
402 402
      /// in graph \c g of type \c Graph as follows.
403 403
      ///\code
404 404
      /// int count=0;
405 405
      /// for (Graph::OutArcIt e(g, n); e!=INVALID; ++e) ++count;
406 406
      ///\endcode
407 407

	
408 408
      class OutArcIt : public Arc {
409 409
      public:
410 410
        /// Default constructor
411 411

	
412 412
        /// @warning The default constructor sets the iterator
413 413
        /// to an undefined value.
414 414
        OutArcIt() { }
415 415
        /// Copy constructor.
416 416

	
417 417
        /// Copy constructor.
418 418
        ///
419 419
        OutArcIt(const OutArcIt& e) : Arc(e) { }
420 420
        /// Initialize the iterator to be invalid.
421 421

	
422 422
        /// Initialize the iterator to be invalid.
423 423
        ///
424 424
        OutArcIt(Invalid) { }
425 425
        /// This constructor sets the iterator to the first outgoing arc.
426 426

	
427 427
        /// This constructor sets the iterator to the first outgoing arc of
428 428
        /// the node.
429 429
        ///@param n the node
430 430
        ///@param g the graph
431 431
        OutArcIt(const Graph& n, const Node& g) {
432 432
          ignore_unused_variable_warning(n);
433 433
          ignore_unused_variable_warning(g);
434 434
        }
435 435
        /// Arc -> OutArcIt conversion
436 436

	
437 437
        /// Sets the iterator to the value of the trivial iterator.
438 438
        /// This feature necessitates that each time we
439 439
        /// iterate the arc-set, the iteration order is the same.
440 440
        OutArcIt(const Graph&, const Arc&) { }
441 441
        ///Next outgoing arc
442 442

	
443 443
        /// Assign the iterator to the next
444 444
        /// outgoing arc of the corresponding node.
445 445
        OutArcIt& operator++() { return *this; }
446 446
      };
447 447

	
448 448
      /// This iterator goes trough the incoming directed arcs of a node.
449 449

	
450 450
      /// This iterator goes trough the \e incoming arcs of a certain node
451 451
      /// of a graph.
452 452
      /// Its usage is quite simple, for example you can count the number
453 453
      /// of outgoing arcs of a node \c n
454 454
      /// in graph \c g of type \c Graph as follows.
455 455
      ///\code
456 456
      /// int count=0;
457 457
      /// for(Graph::InArcIt e(g, n); e!=INVALID; ++e) ++count;
458 458
      ///\endcode
459 459

	
460 460
      class InArcIt : public Arc {
461 461
      public:
462 462
        /// Default constructor
463 463

	
464 464
        /// @warning The default constructor sets the iterator
465 465
        /// to an undefined value.
466 466
        InArcIt() { }
467 467
        /// Copy constructor.
468 468

	
469 469
        /// Copy constructor.
470 470
        ///
471 471
        InArcIt(const InArcIt& e) : Arc(e) { }
472 472
        /// Initialize the iterator to be invalid.
473 473

	
474 474
        /// Initialize the iterator to be invalid.
475 475
        ///
476 476
        InArcIt(Invalid) { }
477 477
        /// This constructor sets the iterator to first incoming arc.
478 478

	
479 479
        /// This constructor set the iterator to the first incoming arc of
480 480
        /// the node.
481 481
        ///@param n the node
482 482
        ///@param g the graph
483 483
        InArcIt(const Graph& g, const Node& n) {
484 484
          ignore_unused_variable_warning(n);
485 485
          ignore_unused_variable_warning(g);
486 486
        }
487 487
        /// Arc -> InArcIt conversion
488 488

	
489 489
        /// Sets the iterator to the value of the trivial iterator \c e.
490 490
        /// This feature necessitates that each time we
491 491
        /// iterate the arc-set, the iteration order is the same.
492 492
        InArcIt(const Graph&, const Arc&) { }
493 493
        /// Next incoming arc
494 494

	
495 495
        /// Assign the iterator to the next inarc of the corresponding node.
496 496
        ///
497 497
        InArcIt& operator++() { return *this; }
498 498
      };
499 499

	
500 500
      /// \brief Read write map of the nodes to type \c T.
501 501
      ///
502 502
      /// ReadWrite map of the nodes to type \c T.
503 503
      /// \sa Reference
504 504
      template<class T>
505 505
      class NodeMap : public ReadWriteMap< Node, T >
506 506
      {
507 507
      public:
508 508

	
509 509
        ///\e
510 510
        NodeMap(const Graph&) { }
511 511
        ///\e
512 512
        NodeMap(const Graph&, T) { }
513 513

	
514 514
      private:
515 515
        ///Copy constructor
516 516
        NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
517 517
        ///Assignment operator
518 518
        template <typename CMap>
519 519
        NodeMap& operator=(const CMap&) {
520 520
          checkConcept<ReadMap<Node, T>, CMap>();
521 521
          return *this;
522 522
        }
523 523
      };
524 524

	
525 525
      /// \brief Read write map of the directed arcs to type \c T.
526 526
      ///
527 527
      /// Reference map of the directed arcs to type \c T.
528 528
      /// \sa Reference
529 529
      template<class T>
530 530
      class ArcMap : public ReadWriteMap<Arc,T>
531 531
      {
532 532
      public:
533 533

	
534 534
        ///\e
535 535
        ArcMap(const Graph&) { }
536 536
        ///\e
537 537
        ArcMap(const Graph&, T) { }
538 538
      private:
539 539
        ///Copy constructor
540 540
        ArcMap(const ArcMap& em) : ReadWriteMap<Arc,T>(em) { }
541 541
        ///Assignment operator
542 542
        template <typename CMap>
543 543
        ArcMap& operator=(const CMap&) {
544 544
          checkConcept<ReadMap<Arc, T>, CMap>();
545 545
          return *this;
546 546
        }
547 547
      };
548 548

	
549 549
      /// Read write map of the edges to type \c T.
550 550

	
551 551
      /// Reference map of the arcs to type \c T.
552 552
      /// \sa Reference
553 553
      template<class T>
554 554
      class EdgeMap : public ReadWriteMap<Edge,T>
555 555
      {
556 556
      public:
557 557

	
558 558
        ///\e
559 559
        EdgeMap(const Graph&) { }
560 560
        ///\e
561 561
        EdgeMap(const Graph&, T) { }
562 562
      private:
563 563
        ///Copy constructor
564 564
        EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) {}
565 565
        ///Assignment operator
566 566
        template <typename CMap>
567 567
        EdgeMap& operator=(const CMap&) {
568 568
          checkConcept<ReadMap<Edge, T>, CMap>();
569 569
          return *this;
570 570
        }
571 571
      };
572 572

	
573 573
      /// \brief Direct the given edge.
574 574
      ///
575 575
      /// Direct the given edge. The returned arc source
576 576
      /// will be the given node.
577 577
      Arc direct(const Edge&, const Node&) const {
578 578
        return INVALID;
579 579
      }
580 580

	
581 581
      /// \brief Direct the given edge.
582 582
      ///
583 583
      /// Direct the given edge. The returned arc
584 584
      /// represents the given edge and the direction comes
585 585
      /// from the bool parameter. The source of the edge and
586 586
      /// the directed arc is the same when the given bool is true.
587 587
      Arc direct(const Edge&, bool) const {
588 588
        return INVALID;
589 589
      }
590 590

	
591 591
      /// \brief Returns true if the arc has default orientation.
592 592
      ///
593 593
      /// Returns whether the given directed arc is same orientation as
594 594
      /// the corresponding edge's default orientation.
595 595
      bool direction(Arc) const { return true; }
596 596

	
597 597
      /// \brief Returns the opposite directed arc.
598 598
      ///
599 599
      /// Returns the opposite directed arc.
600 600
      Arc oppositeArc(Arc) const { return INVALID; }
601 601

	
602 602
      /// \brief Opposite node on an arc
603 603
      ///
604
      /// \return the opposite of the given Node on the given Edge
604
      /// \return The opposite of the given node on the given edge.
605 605
      Node oppositeNode(Node, Edge) const { return INVALID; }
606 606

	
607 607
      /// \brief First node of the edge.
608 608
      ///
609
      /// \return the first node of the given Edge.
609
      /// \return The first node of the given edge.
610 610
      ///
611 611
      /// Naturally edges don't have direction and thus
612
      /// don't have source and target node. But we use these two methods
613
      /// to query the two nodes of the arc. The direction of the arc
614
      /// which arises this way is called the inherent direction of the
612
      /// don't have source and target node. However we use \c u() and \c v()
613
      /// methods to query the two nodes of the arc. The direction of the
614
      /// arc which arises this way is called the inherent direction of the
615 615
      /// edge, and is used to define the "default" direction
616 616
      /// of the directed versions of the arcs.
617
      /// \sa direction
617
      /// \sa v()
618
      /// \sa direction()
618 619
      Node u(Edge) const { return INVALID; }
619 620

	
620 621
      /// \brief Second node of the edge.
622
      ///
623
      /// \return The second node of the given edge.
624
      ///
625
      /// Naturally edges don't have direction and thus
626
      /// don't have source and target node. However we use \c u() and \c v()
627
      /// methods to query the two nodes of the arc. The direction of the
628
      /// arc which arises this way is called the inherent direction of the
629
      /// edge, and is used to define the "default" direction
630
      /// of the directed versions of the arcs.
631
      /// \sa u()
632
      /// \sa direction()
621 633
      Node v(Edge) const { return INVALID; }
622 634

	
623 635
      /// \brief Source node of the directed arc.
624 636
      Node source(Arc) const { return INVALID; }
625 637

	
626 638
      /// \brief Target node of the directed arc.
627 639
      Node target(Arc) const { return INVALID; }
628 640

	
629 641
      /// \brief Returns the id of the node.
630 642
      int id(Node) const { return -1; }
631 643

	
632 644
      /// \brief Returns the id of the edge.
633 645
      int id(Edge) const { return -1; }
634 646

	
635 647
      /// \brief Returns the id of the arc.
636 648
      int id(Arc) const { return -1; }
637 649

	
638 650
      /// \brief Returns the node with the given id.
639 651
      ///
640 652
      /// \pre The argument should be a valid node id in the graph.
641 653
      Node nodeFromId(int) const { return INVALID; }
642 654

	
643 655
      /// \brief Returns the edge with the given id.
644 656
      ///
645 657
      /// \pre The argument should be a valid edge id in the graph.
646 658
      Edge edgeFromId(int) const { return INVALID; }
647 659

	
648 660
      /// \brief Returns the arc with the given id.
649 661
      ///
650 662
      /// \pre The argument should be a valid arc id in the graph.
651 663
      Arc arcFromId(int) const { return INVALID; }
652 664

	
653 665
      /// \brief Returns an upper bound on the node IDs.
654 666
      int maxNodeId() const { return -1; }
655 667

	
656 668
      /// \brief Returns an upper bound on the edge IDs.
657 669
      int maxEdgeId() const { return -1; }
658 670

	
659 671
      /// \brief Returns an upper bound on the arc IDs.
660 672
      int maxArcId() const { return -1; }
661 673

	
662 674
      void first(Node&) const {}
663 675
      void next(Node&) const {}
664 676

	
665 677
      void first(Edge&) const {}
666 678
      void next(Edge&) const {}
667 679

	
668 680
      void first(Arc&) const {}
669 681
      void next(Arc&) const {}
670 682

	
671 683
      void firstOut(Arc&, Node) const {}
672 684
      void nextOut(Arc&) const {}
673 685

	
674 686
      void firstIn(Arc&, Node) const {}
675 687
      void nextIn(Arc&) const {}
676 688

	
677 689
      void firstInc(Edge &, bool &, const Node &) const {}
678 690
      void nextInc(Edge &, bool &) const {}
679 691

	
680 692
      // The second parameter is dummy.
681 693
      Node fromId(int, Node) const { return INVALID; }
682 694
      // The second parameter is dummy.
683 695
      Edge fromId(int, Edge) const { return INVALID; }
684 696
      // The second parameter is dummy.
685 697
      Arc fromId(int, Arc) const { return INVALID; }
686 698

	
687 699
      // Dummy parameter.
688 700
      int maxId(Node) const { return -1; }
689 701
      // Dummy parameter.
690 702
      int maxId(Edge) const { return -1; }
691 703
      // Dummy parameter.
692 704
      int maxId(Arc) const { return -1; }
693 705

	
694 706
      /// \brief Base node of the iterator
695 707
      ///
696 708
      /// Returns the base node (the source in this case) of the iterator
697 709
      Node baseNode(OutArcIt e) const {
698 710
        return source(e);
699 711
      }
700 712
      /// \brief Running node of the iterator
701 713
      ///
702 714
      /// Returns the running node (the target in this case) of the
703 715
      /// iterator
704 716
      Node runningNode(OutArcIt e) const {
705 717
        return target(e);
706 718
      }
707 719

	
708 720
      /// \brief Base node of the iterator
709 721
      ///
710 722
      /// Returns the base node (the target in this case) of the iterator
711 723
      Node baseNode(InArcIt e) const {
712 724
        return target(e);
713 725
      }
714 726
      /// \brief Running node of the iterator
715 727
      ///
716 728
      /// Returns the running node (the source in this case) of the
717 729
      /// iterator
718 730
      Node runningNode(InArcIt e) const {
719 731
        return source(e);
720 732
      }
721 733

	
722 734
      /// \brief Base node of the iterator
723 735
      ///
724 736
      /// Returns the base node of the iterator
725 737
      Node baseNode(IncEdgeIt) const {
726 738
        return INVALID;
727 739
      }
728 740

	
729 741
      /// \brief Running node of the iterator
730 742
      ///
731 743
      /// Returns the running node of the iterator
732 744
      Node runningNode(IncEdgeIt) const {
733 745
        return INVALID;
734 746
      }
735 747

	
736 748
      template <typename _Graph>
737 749
      struct Constraints {
738 750
        void constraints() {
739 751
          checkConcept<IterableGraphComponent<>, _Graph>();
740 752
          checkConcept<IDableGraphComponent<>, _Graph>();
741 753
          checkConcept<MappableGraphComponent<>, _Graph>();
742 754
        }
743 755
      };
744 756

	
745 757
    };
746 758

	
747 759
  }
748 760

	
749 761
}
750 762

	
751 763
#endif
Ignore white space 512 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup graph_concepts
20 20
///\file
21 21
///\brief The concept of graph components.
22 22

	
23

	
24 23
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H
25 24
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H
26 25

	
27 26
#include <lemon/core.h>
28 27
#include <lemon/concepts/maps.h>
29 28

	
30 29
#include <lemon/bits/alteration_notifier.h>
31 30

	
32 31
namespace lemon {
33 32
  namespace concepts {
34 33

	
35 34
    /// \brief Skeleton class for graph Node and Arc types
36 35
    ///
37 36
    /// This class describes the interface of Node and Arc (and Edge
38 37
    /// in undirected graphs) subtypes of graph types.
39 38
    ///
40 39
    /// \note This class is a template class so that we can use it to
41 40
    /// create graph skeleton classes. The reason for this is than Node
42 41
    /// and Arc types should \em not derive from the same base class.
43 42
    /// For Node you should instantiate it with character 'n' and for Arc
44 43
    /// with 'a'.
45 44

	
46 45
#ifndef DOXYGEN
47
    template <char _selector = '0'>
46
    template <char sel = '0'>
48 47
#endif
49 48
    class GraphItem {
50 49
    public:
51 50
      /// \brief Default constructor.
52 51
      ///
53 52
      /// \warning The default constructor is not required to set
54 53
      /// the item to some well-defined value. So you should consider it
55 54
      /// as uninitialized.
56 55
      GraphItem() {}
57 56
      /// \brief Copy constructor.
58 57
      ///
59 58
      /// Copy constructor.
60 59
      ///
61 60
      GraphItem(const GraphItem &) {}
62 61
      /// \brief Invalid constructor \& conversion.
63 62
      ///
64 63
      /// This constructor initializes the item to be invalid.
65 64
      /// \sa Invalid for more details.
66 65
      GraphItem(Invalid) {}
67 66
      /// \brief Assign operator for nodes.
68 67
      ///
69 68
      /// The nodes are assignable.
70 69
      ///
71 70
      GraphItem& operator=(GraphItem const&) { return *this; }
72 71
      /// \brief Equality operator.
73 72
      ///
74 73
      /// Two iterators are equal if and only if they represents the
75 74
      /// same node in the graph or both are invalid.
76 75
      bool operator==(GraphItem) const { return false; }
77 76
      /// \brief Inequality operator.
78 77
      ///
79 78
      /// \sa operator==(const Node& n)
80 79
      ///
81 80
      bool operator!=(GraphItem) const { return false; }
82 81

	
83 82
      /// \brief Artificial ordering operator.
84 83
      ///
85 84
      /// To allow the use of graph descriptors as key type in std::map or
86 85
      /// similar associative container we require this.
87 86
      ///
88 87
      /// \note This operator only have to define some strict ordering of
89 88
      /// the items; this order has nothing to do with the iteration
90 89
      /// ordering of the items.
91 90
      bool operator<(GraphItem) const { return false; }
92 91

	
93 92
      template<typename _GraphItem>
94 93
      struct Constraints {
95 94
        void constraints() {
96 95
          _GraphItem i1;
97 96
          _GraphItem i2 = i1;
98 97
          _GraphItem i3 = INVALID;
99 98

	
100 99
          i1 = i2 = i3;
101 100

	
102 101
          bool b;
103 102
          //          b = (ia == ib) && (ia != ib) && (ia < ib);
104 103
          b = (ia == ib) && (ia != ib);
105 104
          b = (ia == INVALID) && (ib != INVALID);
106 105
          b = (ia < ib);
107 106
        }
108 107

	
109 108
        const _GraphItem &ia;
110 109
        const _GraphItem &ib;
111 110
      };
112 111
    };
113 112

	
114 113
    /// \brief An empty base directed graph class.
115 114
    ///
116 115
    /// This class provides the minimal set of features needed for a
117 116
    /// directed graph structure. All digraph concepts have to
118 117
    /// conform to this base directed graph. It just provides types
119 118
    /// for nodes and arcs and functions to get the source and the
120 119
    /// target of the arcs.
121 120
    class BaseDigraphComponent {
122 121
    public:
123 122

	
124 123
      typedef BaseDigraphComponent Digraph;
125 124

	
126 125
      /// \brief Node class of the digraph.
127 126
      ///
128 127
      /// This class represents the Nodes of the digraph.
129 128
      ///
130 129
      typedef GraphItem<'n'> Node;
131 130

	
132 131
      /// \brief Arc class of the digraph.
133 132
      ///
134 133
      /// This class represents the Arcs of the digraph.
135 134
      ///
136 135
      typedef GraphItem<'e'> Arc;
137 136

	
138 137
      /// \brief Gives back the target node of an arc.
139 138
      ///
140 139
      /// Gives back the target node of an arc.
141 140
      ///
142 141
      Node target(const Arc&) const { return INVALID;}
143 142

	
144 143
      /// \brief Gives back the source node of an arc.
145 144
      ///
146 145
      /// Gives back the source node of an arc.
147 146
      ///
148 147
      Node source(const Arc&) const { return INVALID;}
149 148

	
150 149
      /// \brief Gives back the opposite node on the given arc.
151 150
      ///
152 151
      /// Gives back the opposite node on the given arc.
153 152
      Node oppositeNode(const Node&, const Arc&) const {
154 153
        return INVALID;
155 154
      }
156 155

	
157 156
      template <typename _Digraph>
158 157
      struct Constraints {
159 158
        typedef typename _Digraph::Node Node;
160 159
        typedef typename _Digraph::Arc Arc;
161 160

	
162 161
        void constraints() {
163 162
          checkConcept<GraphItem<'n'>, Node>();
164 163
          checkConcept<GraphItem<'a'>, Arc>();
165 164
          {
166 165
            Node n;
167 166
            Arc e(INVALID);
168 167
            n = digraph.source(e);
169 168
            n = digraph.target(e);
170 169
            n = digraph.oppositeNode(n, e);
171 170
          }
172 171
        }
173 172

	
174 173
        const _Digraph& digraph;
175 174
      };
176 175
    };
177 176

	
178 177
    /// \brief An empty base undirected graph class.
179 178
    ///
180 179
    /// This class provides the minimal set of features needed for an
181 180
    /// undirected graph structure. All undirected graph concepts have
182 181
    /// to conform to this base graph. It just provides types for
183 182
    /// nodes, arcs and edges and functions to get the
184 183
    /// source and the target of the arcs and edges,
185 184
    /// conversion from arcs to edges and function to get
186 185
    /// both direction of the edges.
187 186
    class BaseGraphComponent : public BaseDigraphComponent {
188 187
    public:
189 188
      typedef BaseDigraphComponent::Node Node;
190 189
      typedef BaseDigraphComponent::Arc Arc;
191 190
      /// \brief Undirected arc class of the graph.
192 191
      ///
193 192
      /// This class represents the edges of the graph.
194 193
      /// The undirected graphs can be used as a directed graph which
195 194
      /// for each arc contains the opposite arc too so the graph is
196 195
      /// bidirected. The edge represents two opposite
197 196
      /// directed arcs.
198 197
      class Edge : public GraphItem<'u'> {
199 198
      public:
200 199
        typedef GraphItem<'u'> Parent;
201 200
        /// \brief Default constructor.
202 201
        ///
203 202
        /// \warning The default constructor is not required to set
204 203
        /// the item to some well-defined value. So you should consider it
205 204
        /// as uninitialized.
206 205
        Edge() {}
207 206
        /// \brief Copy constructor.
208 207
        ///
209 208
        /// Copy constructor.
210 209
        ///
211 210
        Edge(const Edge &) : Parent() {}
212 211
        /// \brief Invalid constructor \& conversion.
213 212
        ///
214 213
        /// This constructor initializes the item to be invalid.
215 214
        /// \sa Invalid for more details.
216 215
        Edge(Invalid) {}
217 216
        /// \brief Converter from arc to edge.
218 217
        ///
219 218
        /// Besides the core graph item functionality each arc should
220 219
        /// be convertible to the represented edge.
221 220
        Edge(const Arc&) {}
222 221
        /// \brief Assign arc to edge.
223 222
        ///
224 223
        /// Besides the core graph item functionality each arc should
225 224
        /// be convertible to the represented edge.
226 225
        Edge& operator=(const Arc&) { return *this; }
227 226
      };
228 227

	
229 228
      /// \brief Returns the direction of the arc.
230 229
      ///
231 230
      /// Returns the direction of the arc. Each arc represents an
232 231
      /// edge with a direction. It gives back the
233 232
      /// direction.
234 233
      bool direction(const Arc&) const { return true; }
235 234

	
236 235
      /// \brief Returns the directed arc.
237 236
      ///
238 237
      /// Returns the directed arc from its direction and the
239 238
      /// represented edge.
240 239
      Arc direct(const Edge&, bool) const { return INVALID;}
241 240

	
242 241
      /// \brief Returns the directed arc.
243 242
      ///
244 243
      /// Returns the directed arc from its source and the
245 244
      /// represented edge.
246 245
      Arc direct(const Edge&, const Node&) const { return INVALID;}
247 246

	
248 247
      /// \brief Returns the opposite arc.
249 248
      ///
250 249
      /// Returns the opposite arc. It is the arc representing the
251 250
      /// same edge and has opposite direction.
252 251
      Arc oppositeArc(const Arc&) const { return INVALID;}
253 252

	
254 253
      /// \brief Gives back one ending of an edge.
255 254
      ///
256 255
      /// Gives back one ending of an edge.
257 256
      Node u(const Edge&) const { return INVALID;}
258 257

	
259 258
      /// \brief Gives back the other ending of an edge.
260 259
      ///
261 260
      /// Gives back the other ending of an edge.
262 261
      Node v(const Edge&) const { return INVALID;}
263 262

	
264 263
      template <typename _Graph>
265 264
      struct Constraints {
266 265
        typedef typename _Graph::Node Node;
267 266
        typedef typename _Graph::Arc Arc;
268 267
        typedef typename _Graph::Edge Edge;
269 268

	
270 269
        void constraints() {
271 270
          checkConcept<BaseDigraphComponent, _Graph>();
272 271
          checkConcept<GraphItem<'u'>, Edge>();
273 272
          {
274 273
            Node n;
275 274
            Edge ue(INVALID);
276 275
            Arc e;
277 276
            n = graph.u(ue);
278 277
            n = graph.v(ue);
279 278
            e = graph.direct(ue, true);
280 279
            e = graph.direct(ue, n);
281 280
            e = graph.oppositeArc(e);
282 281
            ue = e;
283 282
            bool d = graph.direction(e);
284 283
            ignore_unused_variable_warning(d);
285 284
          }
286 285
        }
287 286

	
288 287
        const _Graph& graph;
289 288
      };
290 289

	
291 290
    };
292 291

	
293 292
    /// \brief An empty idable base digraph class.
294 293
    ///
295 294
    /// This class provides beside the core digraph features
296 295
    /// core id functions for the digraph structure.
297 296
    /// The most of the base digraphs should conform to this concept.
298 297
    /// The id's are unique and immutable.
299
    template <typename _Base = BaseDigraphComponent>
300
    class IDableDigraphComponent : public _Base {
298
    template <typename BAS = BaseDigraphComponent>
299
    class IDableDigraphComponent : public BAS {
301 300
    public:
302 301

	
303
      typedef _Base Base;
302
      typedef BAS Base;
304 303
      typedef typename Base::Node Node;
305 304
      typedef typename Base::Arc Arc;
306 305

	
307 306
      /// \brief Gives back an unique integer id for the Node.
308 307
      ///
309 308
      /// Gives back an unique integer id for the Node.
310 309
      ///
311 310
      int id(const Node&) const { return -1;}
312 311

	
313 312
      /// \brief Gives back the node by the unique id.
314 313
      ///
315 314
      /// Gives back the node by the unique id.
316 315
      /// If the digraph does not contain node with the given id
317 316
      /// then the result of the function is undetermined.
318 317
      Node nodeFromId(int) const { return INVALID;}
319 318

	
320 319
      /// \brief Gives back an unique integer id for the Arc.
321 320
      ///
322 321
      /// Gives back an unique integer id for the Arc.
323 322
      ///
324 323
      int id(const Arc&) const { return -1;}
325 324

	
326 325
      /// \brief Gives back the arc by the unique id.
327 326
      ///
328 327
      /// Gives back the arc by the unique id.
329 328
      /// If the digraph does not contain arc with the given id
330 329
      /// then the result of the function is undetermined.
331 330
      Arc arcFromId(int) const { return INVALID;}
332 331

	
333 332
      /// \brief Gives back an integer greater or equal to the maximum
334 333
      /// Node id.
335 334
      ///
336 335
      /// Gives back an integer greater or equal to the maximum Node
337 336
      /// id.
338 337
      int maxNodeId() const { return -1;}
339 338

	
340 339
      /// \brief Gives back an integer greater or equal to the maximum
341 340
      /// Arc id.
342 341
      ///
343 342
      /// Gives back an integer greater or equal to the maximum Arc
344 343
      /// id.
345 344
      int maxArcId() const { return -1;}
346 345

	
347 346
      template <typename _Digraph>
348 347
      struct Constraints {
349 348

	
350 349
        void constraints() {
351 350
          checkConcept<Base, _Digraph >();
352 351
          typename _Digraph::Node node;
353 352
          int nid = digraph.id(node);
354 353
          nid = digraph.id(node);
355 354
          node = digraph.nodeFromId(nid);
356 355
          typename _Digraph::Arc arc;
357 356
          int eid = digraph.id(arc);
358 357
          eid = digraph.id(arc);
359 358
          arc = digraph.arcFromId(eid);
360 359

	
361 360
          nid = digraph.maxNodeId();
362 361
          ignore_unused_variable_warning(nid);
363 362
          eid = digraph.maxArcId();
364 363
          ignore_unused_variable_warning(eid);
365 364
        }
366 365

	
367 366
        const _Digraph& digraph;
368 367
      };
369 368
    };
370 369

	
371 370
    /// \brief An empty idable base undirected graph class.
372 371
    ///
373 372
    /// This class provides beside the core undirected graph features
374 373
    /// core id functions for the undirected graph structure.  The
375 374
    /// most of the base undirected graphs should conform to this
376 375
    /// concept.  The id's are unique and immutable.
377
    template <typename _Base = BaseGraphComponent>
378
    class IDableGraphComponent : public IDableDigraphComponent<_Base> {
376
    template <typename BAS = BaseGraphComponent>
377
    class IDableGraphComponent : public IDableDigraphComponent<BAS> {
379 378
    public:
380 379

	
381
      typedef _Base Base;
380
      typedef BAS Base;
382 381
      typedef typename Base::Edge Edge;
383 382

	
384
      using IDableDigraphComponent<_Base>::id;
383
      using IDableDigraphComponent<Base>::id;
385 384

	
386 385
      /// \brief Gives back an unique integer id for the Edge.
387 386
      ///
388 387
      /// Gives back an unique integer id for the Edge.
389 388
      ///
390 389
      int id(const Edge&) const { return -1;}
391 390

	
392 391
      /// \brief Gives back the edge by the unique id.
393 392
      ///
394 393
      /// Gives back the edge by the unique id.  If the
395 394
      /// graph does not contain arc with the given id then the
396 395
      /// result of the function is undetermined.
397 396
      Edge edgeFromId(int) const { return INVALID;}
398 397

	
399 398
      /// \brief Gives back an integer greater or equal to the maximum
400 399
      /// Edge id.
401 400
      ///
402 401
      /// Gives back an integer greater or equal to the maximum Edge
403 402
      /// id.
404 403
      int maxEdgeId() const { return -1;}
405 404

	
406 405
      template <typename _Graph>
407 406
      struct Constraints {
408 407

	
409 408
        void constraints() {
410 409
          checkConcept<Base, _Graph >();
411 410
          checkConcept<IDableDigraphComponent<Base>, _Graph >();
412 411
          typename _Graph::Edge edge;
413 412
          int ueid = graph.id(edge);
414 413
          ueid = graph.id(edge);
415 414
          edge = graph.edgeFromId(ueid);
416 415
          ueid = graph.maxEdgeId();
417 416
          ignore_unused_variable_warning(ueid);
418 417
        }
419 418

	
420 419
        const _Graph& graph;
421 420
      };
422 421
    };
423 422

	
424 423
    /// \brief Skeleton class for graph NodeIt and ArcIt
425 424
    ///
426 425
    /// Skeleton class for graph NodeIt and ArcIt.
427 426
    ///
428
    template <typename _Graph, typename _Item>
429
    class GraphItemIt : public _Item {
427
    template <typename GR, typename Item>
428
    class GraphItemIt : public Item {
430 429
    public:
431 430
      /// \brief Default constructor.
432 431
      ///
433 432
      /// @warning The default constructor sets the iterator
434 433
      /// to an undefined value.
435 434
      GraphItemIt() {}
436 435
      /// \brief Copy constructor.
437 436
      ///
438 437
      /// Copy constructor.
439 438
      ///
440 439
      GraphItemIt(const GraphItemIt& ) {}
441 440
      /// \brief Sets the iterator to the first item.
442 441
      ///
443 442
      /// Sets the iterator to the first item of \c the graph.
444 443
      ///
445
      explicit GraphItemIt(const _Graph&) {}
444
      explicit GraphItemIt(const GR&) {}
446 445
      /// \brief Invalid constructor \& conversion.
447 446
      ///
448 447
      /// This constructor initializes the item to be invalid.
449 448
      /// \sa Invalid for more details.
450 449
      GraphItemIt(Invalid) {}
451 450
      /// \brief Assign operator for items.
452 451
      ///
453 452
      /// The items are assignable.
454 453
      ///
455 454
      GraphItemIt& operator=(const GraphItemIt&) { return *this; }
456 455
      /// \brief Next item.
457 456
      ///
458 457
      /// Assign the iterator to the next item.
459 458
      ///
460 459
      GraphItemIt& operator++() { return *this; }
461 460
      /// \brief Equality operator
462 461
      ///
463 462
      /// Two iterators are equal if and only if they point to the
464 463
      /// same object or both are invalid.
465 464
      bool operator==(const GraphItemIt&) const { return true;}
466 465
      /// \brief Inequality operator
467 466
      ///
468 467
      /// \sa operator==(Node n)
469 468
      ///
470 469
      bool operator!=(const GraphItemIt&) const { return true;}
471 470

	
472 471
      template<typename _GraphItemIt>
473 472
      struct Constraints {
474 473
        void constraints() {
475 474
          _GraphItemIt it1(g);
476 475
          _GraphItemIt it2;
477 476

	
478 477
          it2 = ++it1;
479 478
          ++it2 = it1;
480 479
          ++(++it1);
481 480

	
482
          _Item bi = it1;
481
          Item bi = it1;
483 482
          bi = it2;
484 483
        }
485
        _Graph& g;
484
        GR& g;
486 485
      };
487 486
    };
488 487

	
489 488
    /// \brief Skeleton class for graph InArcIt and OutArcIt
490 489
    ///
491 490
    /// \note Because InArcIt and OutArcIt may not inherit from the same
492
    /// base class, the _selector is a additional template parameter. For
493
    /// InArcIt you should instantiate it with character 'i' and for
491
    /// base class, the \c sel is a additional template parameter (selector).
492
    /// For InArcIt you should instantiate it with character 'i' and for
494 493
    /// OutArcIt with 'o'.
495
    template <typename _Graph,
496
              typename _Item = typename _Graph::Arc,
497
              typename _Base = typename _Graph::Node,
498
              char _selector = '0'>
499
    class GraphIncIt : public _Item {
494
    template <typename GR,
495
              typename Item = typename GR::Arc,
496
              typename Base = typename GR::Node,
497
              char sel = '0'>
498
    class GraphIncIt : public Item {
500 499
    public:
501 500
      /// \brief Default constructor.
502 501
      ///
503 502
      /// @warning The default constructor sets the iterator
504 503
      /// to an undefined value.
505 504
      GraphIncIt() {}
506 505
      /// \brief Copy constructor.
507 506
      ///
508 507
      /// Copy constructor.
509 508
      ///
510
      GraphIncIt(GraphIncIt const& gi) : _Item(gi) {}
509
      GraphIncIt(GraphIncIt const& gi) : Item(gi) {}
511 510
      /// \brief Sets the iterator to the first arc incoming into or outgoing
512 511
      /// from the node.
513 512
      ///
514 513
      /// Sets the iterator to the first arc incoming into or outgoing
515 514
      /// from the node.
516 515
      ///
517
      explicit GraphIncIt(const _Graph&, const _Base&) {}
516
      explicit GraphIncIt(const GR&, const Base&) {}
518 517
      /// \brief Invalid constructor \& conversion.
519 518
      ///
520 519
      /// This constructor initializes the item to be invalid.
521 520
      /// \sa Invalid for more details.
522 521
      GraphIncIt(Invalid) {}
523 522
      /// \brief Assign operator for iterators.
524 523
      ///
525 524
      /// The iterators are assignable.
526 525
      ///
527 526
      GraphIncIt& operator=(GraphIncIt const&) { return *this; }
528 527
      /// \brief Next item.
529 528
      ///
530 529
      /// Assign the iterator to the next item.
531 530
      ///
532 531
      GraphIncIt& operator++() { return *this; }
533 532

	
534 533
      /// \brief Equality operator
535 534
      ///
536 535
      /// Two iterators are equal if and only if they point to the
537 536
      /// same object or both are invalid.
538 537
      bool operator==(const GraphIncIt&) const { return true;}
539 538

	
540 539
      /// \brief Inequality operator
541 540
      ///
542 541
      /// \sa operator==(Node n)
543 542
      ///
544 543
      bool operator!=(const GraphIncIt&) const { return true;}
545 544

	
546 545
      template <typename _GraphIncIt>
547 546
      struct Constraints {
548 547
        void constraints() {
549
          checkConcept<GraphItem<_selector>, _GraphIncIt>();
548
          checkConcept<GraphItem<sel>, _GraphIncIt>();
550 549
          _GraphIncIt it1(graph, node);
551 550
          _GraphIncIt it2;
552 551

	
553 552
          it2 = ++it1;
554 553
          ++it2 = it1;
555 554
          ++(++it1);
556
          _Item e = it1;
555
          Item e = it1;
557 556
          e = it2;
558 557

	
559 558
        }
560 559

	
561
        _Item arc;
562
        _Base node;
563
        _Graph graph;
560
        Item arc;
561
        Base node;
562
        GR graph;
564 563
        _GraphIncIt it;
565 564
      };
566 565
    };
567 566

	
568 567

	
569 568
    /// \brief An empty iterable digraph class.
570 569
    ///
571 570
    /// This class provides beside the core digraph features
572 571
    /// iterator based iterable interface for the digraph structure.
573 572
    /// This concept is part of the Digraph concept.
574
    template <typename _Base = BaseDigraphComponent>
575
    class IterableDigraphComponent : public _Base {
573
    template <typename BAS = BaseDigraphComponent>
574
    class IterableDigraphComponent : public BAS {
576 575

	
577 576
    public:
578 577

	
579
      typedef _Base Base;
578
      typedef BAS Base;
580 579
      typedef typename Base::Node Node;
581 580
      typedef typename Base::Arc Arc;
582 581

	
583 582
      typedef IterableDigraphComponent Digraph;
584 583

	
585 584
      /// \name Base iteration
586 585
      ///
587 586
      /// This interface provides functions for iteration on digraph items
588 587
      ///
589 588
      /// @{
590 589

	
591 590
      /// \brief Gives back the first node in the iterating order.
592 591
      ///
593 592
      /// Gives back the first node in the iterating order.
594 593
      ///
595 594
      void first(Node&) const {}
596 595

	
597 596
      /// \brief Gives back the next node in the iterating order.
598 597
      ///
599 598
      /// Gives back the next node in the iterating order.
600 599
      ///
601 600
      void next(Node&) const {}
602 601

	
603 602
      /// \brief Gives back the first arc in the iterating order.
604 603
      ///
605 604
      /// Gives back the first arc in the iterating order.
606 605
      ///
607 606
      void first(Arc&) const {}
608 607

	
609 608
      /// \brief Gives back the next arc in the iterating order.
610 609
      ///
611 610
      /// Gives back the next arc in the iterating order.
612 611
      ///
613 612
      void next(Arc&) const {}
614 613

	
615 614

	
616 615
      /// \brief Gives back the first of the arcs point to the given
617 616
      /// node.
618 617
      ///
619 618
      /// Gives back the first of the arcs point to the given node.
620 619
      ///
621 620
      void firstIn(Arc&, const Node&) const {}
622 621

	
623 622
      /// \brief Gives back the next of the arcs points to the given
624 623
      /// node.
625 624
      ///
626 625
      /// Gives back the next of the arcs points to the given node.
627 626
      ///
628 627
      void nextIn(Arc&) const {}
629 628

	
630 629
      /// \brief Gives back the first of the arcs start from the
631 630
      /// given node.
632 631
      ///
633 632
      /// Gives back the first of the arcs start from the given node.
634 633
      ///
635 634
      void firstOut(Arc&, const Node&) const {}
636 635

	
637 636
      /// \brief Gives back the next of the arcs start from the given
638 637
      /// node.
639 638
      ///
640 639
      /// Gives back the next of the arcs start from the given node.
641 640
      ///
642 641
      void nextOut(Arc&) const {}
643 642

	
644 643
      /// @}
645 644

	
646 645
      /// \name Class based iteration
647 646
      ///
648 647
      /// This interface provides functions for iteration on digraph items
649 648
      ///
650 649
      /// @{
651 650

	
652 651
      /// \brief This iterator goes through each node.
653 652
      ///
654 653
      /// This iterator goes through each node.
655 654
      ///
656 655
      typedef GraphItemIt<Digraph, Node> NodeIt;
657 656

	
658 657
      /// \brief This iterator goes through each node.
659 658
      ///
660 659
      /// This iterator goes through each node.
661 660
      ///
662 661
      typedef GraphItemIt<Digraph, Arc> ArcIt;
663 662

	
664 663
      /// \brief This iterator goes trough the incoming arcs of a node.
665 664
      ///
666 665
      /// This iterator goes trough the \e inccoming arcs of a certain node
667 666
      /// of a digraph.
668 667
      typedef GraphIncIt<Digraph, Arc, Node, 'i'> InArcIt;
669 668

	
670 669
      /// \brief This iterator goes trough the outgoing arcs of a node.
671 670
      ///
672 671
      /// This iterator goes trough the \e outgoing arcs of a certain node
673 672
      /// of a digraph.
674 673
      typedef GraphIncIt<Digraph, Arc, Node, 'o'> OutArcIt;
675 674

	
676 675
      /// \brief The base node of the iterator.
677 676
      ///
678 677
      /// Gives back the base node of the iterator.
679 678
      /// It is always the target of the pointed arc.
680 679
      Node baseNode(const InArcIt&) const { return INVALID; }
681 680

	
682 681
      /// \brief The running node of the iterator.
683 682
      ///
684 683
      /// Gives back the running node of the iterator.
685 684
      /// It is always the source of the pointed arc.
686 685
      Node runningNode(const InArcIt&) const { return INVALID; }
687 686

	
688 687
      /// \brief The base node of the iterator.
689 688
      ///
690 689
      /// Gives back the base node of the iterator.
691 690
      /// It is always the source of the pointed arc.
692 691
      Node baseNode(const OutArcIt&) const { return INVALID; }
693 692

	
694 693
      /// \brief The running node of the iterator.
695 694
      ///
696 695
      /// Gives back the running node of the iterator.
697 696
      /// It is always the target of the pointed arc.
698 697
      Node runningNode(const OutArcIt&) const { return INVALID; }
699 698

	
700 699
      /// @}
701 700

	
702 701
      template <typename _Digraph>
703 702
      struct Constraints {
704 703
        void constraints() {
705 704
          checkConcept<Base, _Digraph>();
706 705

	
707 706
          {
708 707
            typename _Digraph::Node node(INVALID);
709 708
            typename _Digraph::Arc arc(INVALID);
710 709
            {
711 710
              digraph.first(node);
712 711
              digraph.next(node);
713 712
            }
714 713
            {
715 714
              digraph.first(arc);
716 715
              digraph.next(arc);
717 716
            }
718 717
            {
719 718
              digraph.firstIn(arc, node);
720 719
              digraph.nextIn(arc);
721 720
            }
722 721
            {
723 722
              digraph.firstOut(arc, node);
724 723
              digraph.nextOut(arc);
725 724
            }
726 725
          }
727 726

	
728 727
          {
729 728
            checkConcept<GraphItemIt<_Digraph, typename _Digraph::Arc>,
730 729
              typename _Digraph::ArcIt >();
731 730
            checkConcept<GraphItemIt<_Digraph, typename _Digraph::Node>,
732 731
              typename _Digraph::NodeIt >();
733 732
            checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc,
734 733
              typename _Digraph::Node, 'i'>, typename _Digraph::InArcIt>();
735 734
            checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc,
736 735
              typename _Digraph::Node, 'o'>, typename _Digraph::OutArcIt>();
737 736

	
738 737
            typename _Digraph::Node n;
739 738
            typename _Digraph::InArcIt ieit(INVALID);
740 739
            typename _Digraph::OutArcIt oeit(INVALID);
741 740
            n = digraph.baseNode(ieit);
742 741
            n = digraph.runningNode(ieit);
743 742
            n = digraph.baseNode(oeit);
744 743
            n = digraph.runningNode(oeit);
745 744
            ignore_unused_variable_warning(n);
746 745
          }
747 746
        }
748 747

	
749 748
        const _Digraph& digraph;
750 749

	
751 750
      };
752 751
    };
753 752

	
754 753
    /// \brief An empty iterable undirected graph class.
755 754
    ///
756 755
    /// This class provides beside the core graph features iterator
757 756
    /// based iterable interface for the undirected graph structure.
758 757
    /// This concept is part of the Graph concept.
759
    template <typename _Base = BaseGraphComponent>
760
    class IterableGraphComponent : public IterableDigraphComponent<_Base> {
758
    template <typename BAS = BaseGraphComponent>
759
    class IterableGraphComponent : public IterableDigraphComponent<BAS> {
761 760
    public:
762 761

	
763
      typedef _Base Base;
762
      typedef BAS Base;
764 763
      typedef typename Base::Node Node;
765 764
      typedef typename Base::Arc Arc;
766 765
      typedef typename Base::Edge Edge;
767 766

	
768 767

	
769 768
      typedef IterableGraphComponent Graph;
770 769

	
771 770
      /// \name Base iteration
772 771
      ///
773 772
      /// This interface provides functions for iteration on graph items
774 773
      /// @{
775 774

	
776
      using IterableDigraphComponent<_Base>::first;
777
      using IterableDigraphComponent<_Base>::next;
775
      using IterableDigraphComponent<Base>::first;
776
      using IterableDigraphComponent<Base>::next;
778 777

	
779 778
      /// \brief Gives back the first edge in the iterating
780 779
      /// order.
781 780
      ///
782 781
      /// Gives back the first edge in the iterating order.
783 782
      ///
784 783
      void first(Edge&) const {}
785 784

	
786 785
      /// \brief Gives back the next edge in the iterating
787 786
      /// order.
788 787
      ///
789 788
      /// Gives back the next edge in the iterating order.
790 789
      ///
791 790
      void next(Edge&) const {}
792 791

	
793 792

	
794 793
      /// \brief Gives back the first of the edges from the
795 794
      /// given node.
796 795
      ///
797 796
      /// Gives back the first of the edges from the given
798 797
      /// node. The bool parameter gives back that direction which
799 798
      /// gives a good direction of the edge so the source of the
800 799
      /// directed arc is the given node.
801 800
      void firstInc(Edge&, bool&, const Node&) const {}
802 801

	
803 802
      /// \brief Gives back the next of the edges from the
804 803
      /// given node.
805 804
      ///
806 805
      /// Gives back the next of the edges from the given
807 806
      /// node. The bool parameter should be used as the \c firstInc()
808 807
      /// use it.
809 808
      void nextInc(Edge&, bool&) const {}
810 809

	
811
      using IterableDigraphComponent<_Base>::baseNode;
812
      using IterableDigraphComponent<_Base>::runningNode;
810
      using IterableDigraphComponent<Base>::baseNode;
811
      using IterableDigraphComponent<Base>::runningNode;
813 812

	
814 813
      /// @}
815 814

	
816 815
      /// \name Class based iteration
817 816
      ///
818 817
      /// This interface provides functions for iteration on graph items
819 818
      ///
820 819
      /// @{
821 820

	
822 821
      /// \brief This iterator goes through each node.
823 822
      ///
824 823
      /// This iterator goes through each node.
825 824
      typedef GraphItemIt<Graph, Edge> EdgeIt;
826 825
      /// \brief This iterator goes trough the incident arcs of a
827 826
      /// node.
828 827
      ///
829 828
      /// This iterator goes trough the incident arcs of a certain
830 829
      /// node of a graph.
831 830
      typedef GraphIncIt<Graph, Edge, Node, 'u'> IncEdgeIt;
832 831
      /// \brief The base node of the iterator.
833 832
      ///
834 833
      /// Gives back the base node of the iterator.
835 834
      Node baseNode(const IncEdgeIt&) const { return INVALID; }
836 835

	
837 836
      /// \brief The running node of the iterator.
838 837
      ///
839 838
      /// Gives back the running node of the iterator.
840 839
      Node runningNode(const IncEdgeIt&) const { return INVALID; }
841 840

	
842 841
      /// @}
843 842

	
844 843
      template <typename _Graph>
845 844
      struct Constraints {
846 845
        void constraints() {
847 846
          checkConcept<IterableDigraphComponent<Base>, _Graph>();
848 847

	
849 848
          {
850 849
            typename _Graph::Node node(INVALID);
851 850
            typename _Graph::Edge edge(INVALID);
852 851
            bool dir;
853 852
            {
854 853
              graph.first(edge);
855 854
              graph.next(edge);
856 855
            }
857 856
            {
858 857
              graph.firstInc(edge, dir, node);
859 858
              graph.nextInc(edge, dir);
860 859
            }
861 860

	
862 861
          }
863 862

	
864 863
          {
865 864
            checkConcept<GraphItemIt<_Graph, typename _Graph::Edge>,
866 865
              typename _Graph::EdgeIt >();
867 866
            checkConcept<GraphIncIt<_Graph, typename _Graph::Edge,
868 867
              typename _Graph::Node, 'u'>, typename _Graph::IncEdgeIt>();
869 868

	
870 869
            typename _Graph::Node n;
871 870
            typename _Graph::IncEdgeIt ueit(INVALID);
872 871
            n = graph.baseNode(ueit);
873 872
            n = graph.runningNode(ueit);
874 873
          }
875 874
        }
876 875

	
877 876
        const _Graph& graph;
878

	
879 877
      };
880 878
    };
881 879

	
882 880
    /// \brief An empty alteration notifier digraph class.
883 881
    ///
884 882
    /// This class provides beside the core digraph features alteration
885 883
    /// notifier interface for the digraph structure.  This implements
886 884
    /// an observer-notifier pattern for each digraph item. More
887 885
    /// obsevers can be registered into the notifier and whenever an
888 886
    /// alteration occured in the digraph all the observers will
889 887
    /// notified about it.
890
    template <typename _Base = BaseDigraphComponent>
891
    class AlterableDigraphComponent : public _Base {
888
    template <typename BAS = BaseDigraphComponent>
889
    class AlterableDigraphComponent : public BAS {
892 890
    public:
893 891

	
894
      typedef _Base Base;
892
      typedef BAS Base;
895 893
      typedef typename Base::Node Node;
896 894
      typedef typename Base::Arc Arc;
897 895

	
898 896

	
899 897
      /// The node observer registry.
900 898
      typedef AlterationNotifier<AlterableDigraphComponent, Node>
901 899
      NodeNotifier;
902 900
      /// The arc observer registry.
903 901
      typedef AlterationNotifier<AlterableDigraphComponent, Arc>
904 902
      ArcNotifier;
905 903

	
906 904
      /// \brief Gives back the node alteration notifier.
907 905
      ///
908 906
      /// Gives back the node alteration notifier.
909 907
      NodeNotifier& notifier(Node) const {
910 908
        return NodeNotifier();
911 909
      }
912 910

	
913 911
      /// \brief Gives back the arc alteration notifier.
914 912
      ///
915 913
      /// Gives back the arc alteration notifier.
916 914
      ArcNotifier& notifier(Arc) const {
917 915
        return ArcNotifier();
918 916
      }
919 917

	
920 918
      template <typename _Digraph>
921 919
      struct Constraints {
922 920
        void constraints() {
923 921
          checkConcept<Base, _Digraph>();
924 922
          typename _Digraph::NodeNotifier& nn
925 923
            = digraph.notifier(typename _Digraph::Node());
926 924

	
927 925
          typename _Digraph::ArcNotifier& en
928 926
            = digraph.notifier(typename _Digraph::Arc());
929 927

	
930 928
          ignore_unused_variable_warning(nn);
931 929
          ignore_unused_variable_warning(en);
932 930
        }
933 931

	
934 932
        const _Digraph& digraph;
935 933

	
936 934
      };
937 935

	
938 936
    };
939 937

	
940 938
    /// \brief An empty alteration notifier undirected graph class.
941 939
    ///
942 940
    /// This class provides beside the core graph features alteration
943 941
    /// notifier interface for the graph structure.  This implements
944 942
    /// an observer-notifier pattern for each graph item. More
945 943
    /// obsevers can be registered into the notifier and whenever an
946 944
    /// alteration occured in the graph all the observers will
947 945
    /// notified about it.
948
    template <typename _Base = BaseGraphComponent>
949
    class AlterableGraphComponent : public AlterableDigraphComponent<_Base> {
946
    template <typename BAS = BaseGraphComponent>
947
    class AlterableGraphComponent : public AlterableDigraphComponent<BAS> {
950 948
    public:
951 949

	
952
      typedef _Base Base;
950
      typedef BAS Base;
953 951
      typedef typename Base::Edge Edge;
954 952

	
955 953

	
956 954
      /// The arc observer registry.
957 955
      typedef AlterationNotifier<AlterableGraphComponent, Edge>
958 956
      EdgeNotifier;
959 957

	
960 958
      /// \brief Gives back the arc alteration notifier.
961 959
      ///
962 960
      /// Gives back the arc alteration notifier.
963 961
      EdgeNotifier& notifier(Edge) const {
964 962
        return EdgeNotifier();
965 963
      }
966 964

	
967 965
      template <typename _Graph>
968 966
      struct Constraints {
969 967
        void constraints() {
970 968
          checkConcept<AlterableGraphComponent<Base>, _Graph>();
971 969
          typename _Graph::EdgeNotifier& uen
972 970
            = graph.notifier(typename _Graph::Edge());
973 971
          ignore_unused_variable_warning(uen);
974 972
        }
975 973

	
976 974
        const _Graph& graph;
977

	
978 975
      };
979

	
980 976
    };
981 977

	
982 978
    /// \brief Class describing the concept of graph maps
983 979
    ///
984 980
    /// This class describes the common interface of the graph maps
985 981
    /// (NodeMap, ArcMap), that is maps that can be used to
986 982
    /// associate data to graph descriptors (nodes or arcs).
987
    template <typename _Graph, typename _Item, typename _Value>
988
    class GraphMap : public ReadWriteMap<_Item, _Value> {
983
    template <typename GR, typename K, typename V>
984
    class GraphMap : public ReadWriteMap<K, V> {
989 985
    public:
990 986

	
991
      typedef ReadWriteMap<_Item, _Value> Parent;
987
      typedef ReadWriteMap<K, V> Parent;
992 988

	
993 989
      /// The graph type of the map.
994
      typedef _Graph Graph;
990
      typedef GR Graph;
995 991
      /// The key type of the map.
996
      typedef _Item Key;
992
      typedef K Key;
997 993
      /// The value type of the map.
998
      typedef _Value Value;
994
      typedef V Value;
999 995

	
1000 996
      /// \brief Construct a new map.
1001 997
      ///
1002 998
      /// Construct a new map for the graph.
1003 999
      explicit GraphMap(const Graph&) {}
1004 1000
      /// \brief Construct a new map with default value.
1005 1001
      ///
1006 1002
      /// Construct a new map for the graph and initalise the values.
1007 1003
      GraphMap(const Graph&, const Value&) {}
1008 1004

	
1009 1005
    private:
1010 1006
      /// \brief Copy constructor.
1011 1007
      ///
1012 1008
      /// Copy Constructor.
1013 1009
      GraphMap(const GraphMap&) : Parent() {}
1014 1010

	
1015 1011
      /// \brief Assign operator.
1016 1012
      ///
1017 1013
      /// Assign operator. It does not mofify the underlying graph,
1018 1014
      /// it just iterates on the current item set and set the  map
1019 1015
      /// with the value returned by the assigned map.
1020 1016
      template <typename CMap>
1021 1017
      GraphMap& operator=(const CMap&) {
1022 1018
        checkConcept<ReadMap<Key, Value>, CMap>();
1023 1019
        return *this;
1024 1020
      }
1025 1021

	
1026 1022
    public:
1027 1023
      template<typename _Map>
1028 1024
      struct Constraints {
1029 1025
        void constraints() {
1030 1026
          checkConcept<ReadWriteMap<Key, Value>, _Map >();
1031 1027
          // Construction with a graph parameter
1032 1028
          _Map a(g);
1033 1029
          // Constructor with a graph and a default value parameter
1034 1030
          _Map a2(g,t);
1035 1031
          // Copy constructor.
1036 1032
          // _Map b(c);
1037 1033

	
1038 1034
          // ReadMap<Key, Value> cmap;
1039 1035
          // b = cmap;
1040 1036

	
1041 1037
          ignore_unused_variable_warning(a);
1042 1038
          ignore_unused_variable_warning(a2);
1043 1039
          // ignore_unused_variable_warning(b);
1044 1040
        }
1045 1041

	
1046 1042
        const _Map &c;
1047 1043
        const Graph &g;
1048 1044
        const typename GraphMap::Value &t;
1049 1045
      };
1050 1046

	
1051 1047
    };
1052 1048

	
1053 1049
    /// \brief An empty mappable digraph class.
1054 1050
    ///
1055 1051
    /// This class provides beside the core digraph features
1056 1052
    /// map interface for the digraph structure.
1057 1053
    /// This concept is part of the Digraph concept.
1058
    template <typename _Base = BaseDigraphComponent>
1059
    class MappableDigraphComponent : public _Base  {
1054
    template <typename BAS = BaseDigraphComponent>
1055
    class MappableDigraphComponent : public BAS  {
1060 1056
    public:
1061 1057

	
1062
      typedef _Base Base;
1058
      typedef BAS Base;
1063 1059
      typedef typename Base::Node Node;
1064 1060
      typedef typename Base::Arc Arc;
1065 1061

	
1066 1062
      typedef MappableDigraphComponent Digraph;
1067 1063

	
1068 1064
      /// \brief ReadWrite map of the nodes.
1069 1065
      ///
1070 1066
      /// ReadWrite map of the nodes.
1071 1067
      ///
1072
      template <typename _Value>
1073
      class NodeMap : public GraphMap<Digraph, Node, _Value> {
1068
      template <typename V>
1069
      class NodeMap : public GraphMap<Digraph, Node, V> {
1074 1070
      public:
1075
        typedef GraphMap<MappableDigraphComponent, Node, _Value> Parent;
1071
        typedef GraphMap<MappableDigraphComponent, Node, V> Parent;
1076 1072

	
1077 1073
        /// \brief Construct a new map.
1078 1074
        ///
1079 1075
        /// Construct a new map for the digraph.
1080 1076
        explicit NodeMap(const MappableDigraphComponent& digraph)
1081 1077
          : Parent(digraph) {}
1082 1078

	
1083 1079
        /// \brief Construct a new map with default value.
1084 1080
        ///
1085 1081
        /// Construct a new map for the digraph and initalise the values.
1086
        NodeMap(const MappableDigraphComponent& digraph, const _Value& value)
1082
        NodeMap(const MappableDigraphComponent& digraph, const V& value)
1087 1083
          : Parent(digraph, value) {}
1088 1084

	
1089 1085
      private:
1090 1086
        /// \brief Copy constructor.
1091 1087
        ///
1092 1088
        /// Copy Constructor.
1093 1089
        NodeMap(const NodeMap& nm) : Parent(nm) {}
1094 1090

	
1095 1091
        /// \brief Assign operator.
1096 1092
        ///
1097 1093
        /// Assign operator.
1098 1094
        template <typename CMap>
1099 1095
        NodeMap& operator=(const CMap&) {
1100
          checkConcept<ReadMap<Node, _Value>, CMap>();
1096
          checkConcept<ReadMap<Node, V>, CMap>();
1101 1097
          return *this;
1102 1098
        }
1103 1099

	
1104 1100
      };
1105 1101

	
1106 1102
      /// \brief ReadWrite map of the arcs.
1107 1103
      ///
1108 1104
      /// ReadWrite map of the arcs.
1109 1105
      ///
1110
      template <typename _Value>
1111
      class ArcMap : public GraphMap<Digraph, Arc, _Value> {
1106
      template <typename V>
1107
      class ArcMap : public GraphMap<Digraph, Arc, V> {
1112 1108
      public:
1113
        typedef GraphMap<MappableDigraphComponent, Arc, _Value> Parent;
1109
        typedef GraphMap<MappableDigraphComponent, Arc, V> Parent;
1114 1110

	
1115 1111
        /// \brief Construct a new map.
1116 1112
        ///
1117 1113
        /// Construct a new map for the digraph.
1118 1114
        explicit ArcMap(const MappableDigraphComponent& digraph)
1119 1115
          : Parent(digraph) {}
1120 1116

	
1121 1117
        /// \brief Construct a new map with default value.
1122 1118
        ///
1123 1119
        /// Construct a new map for the digraph and initalise the values.
1124
        ArcMap(const MappableDigraphComponent& digraph, const _Value& value)
1120
        ArcMap(const MappableDigraphComponent& digraph, const V& value)
1125 1121
          : Parent(digraph, value) {}
1126 1122

	
1127 1123
      private:
1128 1124
        /// \brief Copy constructor.
1129 1125
        ///
1130 1126
        /// Copy Constructor.
1131 1127
        ArcMap(const ArcMap& nm) : Parent(nm) {}
1132 1128

	
1133 1129
        /// \brief Assign operator.
1134 1130
        ///
1135 1131
        /// Assign operator.
1136 1132
        template <typename CMap>
1137 1133
        ArcMap& operator=(const CMap&) {
1138
          checkConcept<ReadMap<Arc, _Value>, CMap>();
1134
          checkConcept<ReadMap<Arc, V>, CMap>();
1139 1135
          return *this;
1140 1136
        }
1141 1137

	
1142 1138
      };
1143 1139

	
1144 1140

	
1145 1141
      template <typename _Digraph>
1146 1142
      struct Constraints {
1147 1143

	
1148 1144
        struct Dummy {
1149 1145
          int value;
1150 1146
          Dummy() : value(0) {}
1151 1147
          Dummy(int _v) : value(_v) {}
1152 1148
        };
1153 1149

	
1154 1150
        void constraints() {
1155 1151
          checkConcept<Base, _Digraph>();
1156 1152
          { // int map test
1157 1153
            typedef typename _Digraph::template NodeMap<int> IntNodeMap;
1158 1154
            checkConcept<GraphMap<_Digraph, typename _Digraph::Node, int>,
1159 1155
              IntNodeMap >();
1160 1156
          } { // bool map test
1161 1157
            typedef typename _Digraph::template NodeMap<bool> BoolNodeMap;
1162 1158
            checkConcept<GraphMap<_Digraph, typename _Digraph::Node, bool>,
1163 1159
              BoolNodeMap >();
1164 1160
          } { // Dummy map test
1165 1161
            typedef typename _Digraph::template NodeMap<Dummy> DummyNodeMap;
1166 1162
            checkConcept<GraphMap<_Digraph, typename _Digraph::Node, Dummy>,
1167 1163
              DummyNodeMap >();
1168 1164
          }
1169 1165

	
1170 1166
          { // int map test
1171 1167
            typedef typename _Digraph::template ArcMap<int> IntArcMap;
1172 1168
            checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, int>,
1173 1169
              IntArcMap >();
1174 1170
          } { // bool map test
1175 1171
            typedef typename _Digraph::template ArcMap<bool> BoolArcMap;
1176 1172
            checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, bool>,
1177 1173
              BoolArcMap >();
1178 1174
          } { // Dummy map test
1179 1175
            typedef typename _Digraph::template ArcMap<Dummy> DummyArcMap;
1180 1176
            checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, Dummy>,
1181 1177
              DummyArcMap >();
1182 1178
          }
1183 1179
        }
1184 1180

	
1185 1181
        _Digraph& digraph;
1186 1182
      };
1187 1183
    };
1188 1184

	
1189 1185
    /// \brief An empty mappable base bipartite graph class.
1190 1186
    ///
1191 1187
    /// This class provides beside the core graph features
1192 1188
    /// map interface for the graph structure.
1193 1189
    /// This concept is part of the Graph concept.
1194
    template <typename _Base = BaseGraphComponent>
1195
    class MappableGraphComponent : public MappableDigraphComponent<_Base>  {
1190
    template <typename BAS = BaseGraphComponent>
1191
    class MappableGraphComponent : public MappableDigraphComponent<BAS>  {
1196 1192
    public:
1197 1193

	
1198
      typedef _Base Base;
1194
      typedef BAS Base;
1199 1195
      typedef typename Base::Edge Edge;
1200 1196

	
1201 1197
      typedef MappableGraphComponent Graph;
1202 1198

	
1203 1199
      /// \brief ReadWrite map of the edges.
1204 1200
      ///
1205 1201
      /// ReadWrite map of the edges.
1206 1202
      ///
1207
      template <typename _Value>
1208
      class EdgeMap : public GraphMap<Graph, Edge, _Value> {
1203
      template <typename V>
1204
      class EdgeMap : public GraphMap<Graph, Edge, V> {
1209 1205
      public:
1210
        typedef GraphMap<MappableGraphComponent, Edge, _Value> Parent;
1206
        typedef GraphMap<MappableGraphComponent, Edge, V> Parent;
1211 1207

	
1212 1208
        /// \brief Construct a new map.
1213 1209
        ///
1214 1210
        /// Construct a new map for the graph.
1215 1211
        explicit EdgeMap(const MappableGraphComponent& graph)
1216 1212
          : Parent(graph) {}
1217 1213

	
1218 1214
        /// \brief Construct a new map with default value.
1219 1215
        ///
1220 1216
        /// Construct a new map for the graph and initalise the values.
1221
        EdgeMap(const MappableGraphComponent& graph, const _Value& value)
1217
        EdgeMap(const MappableGraphComponent& graph, const V& value)
1222 1218
          : Parent(graph, value) {}
1223 1219

	
1224 1220
      private:
1225 1221
        /// \brief Copy constructor.
1226 1222
        ///
1227 1223
        /// Copy Constructor.
1228 1224
        EdgeMap(const EdgeMap& nm) : Parent(nm) {}
1229 1225

	
1230 1226
        /// \brief Assign operator.
1231 1227
        ///
1232 1228
        /// Assign operator.
1233 1229
        template <typename CMap>
1234 1230
        EdgeMap& operator=(const CMap&) {
1235
          checkConcept<ReadMap<Edge, _Value>, CMap>();
1231
          checkConcept<ReadMap<Edge, V>, CMap>();
1236 1232
          return *this;
1237 1233
        }
1238 1234

	
1239 1235
      };
1240 1236

	
1241 1237

	
1242 1238
      template <typename _Graph>
1243 1239
      struct Constraints {
1244 1240

	
1245 1241
        struct Dummy {
1246 1242
          int value;
1247 1243
          Dummy() : value(0) {}
1248 1244
          Dummy(int _v) : value(_v) {}
1249 1245
        };
1250 1246

	
1251 1247
        void constraints() {
1252 1248
          checkConcept<MappableGraphComponent<Base>, _Graph>();
1253 1249

	
1254 1250
          { // int map test
1255 1251
            typedef typename _Graph::template EdgeMap<int> IntEdgeMap;
1256 1252
            checkConcept<GraphMap<_Graph, typename _Graph::Edge, int>,
1257 1253
              IntEdgeMap >();
1258 1254
          } { // bool map test
1259 1255
            typedef typename _Graph::template EdgeMap<bool> BoolEdgeMap;
1260 1256
            checkConcept<GraphMap<_Graph, typename _Graph::Edge, bool>,
1261 1257
              BoolEdgeMap >();
1262 1258
          } { // Dummy map test
1263 1259
            typedef typename _Graph::template EdgeMap<Dummy> DummyEdgeMap;
1264 1260
            checkConcept<GraphMap<_Graph, typename _Graph::Edge, Dummy>,
1265 1261
              DummyEdgeMap >();
1266 1262
          }
1267 1263
        }
1268 1264

	
1269 1265
        _Graph& graph;
1270 1266
      };
1271 1267
    };
1272 1268

	
1273 1269
    /// \brief An empty extendable digraph class.
1274 1270
    ///
1275 1271
    /// This class provides beside the core digraph features digraph
1276 1272
    /// extendable interface for the digraph structure.  The main
1277 1273
    /// difference between the base and this interface is that the
1278 1274
    /// digraph alterations should handled already on this level.
1279
    template <typename _Base = BaseDigraphComponent>
1280
    class ExtendableDigraphComponent : public _Base {
1275
    template <typename BAS = BaseDigraphComponent>
1276
    class ExtendableDigraphComponent : public BAS {
1281 1277
    public:
1282
      typedef _Base Base;
1278
      typedef BAS Base;
1283 1279

	
1284
      typedef typename _Base::Node Node;
1285
      typedef typename _Base::Arc Arc;
1280
      typedef typename Base::Node Node;
1281
      typedef typename Base::Arc Arc;
1286 1282

	
1287 1283
      /// \brief Adds a new node to the digraph.
1288 1284
      ///
1289 1285
      /// Adds a new node to the digraph.
1290 1286
      ///
1291 1287
      Node addNode() {
1292 1288
        return INVALID;
1293 1289
      }
1294 1290

	
1295 1291
      /// \brief Adds a new arc connects the given two nodes.
1296 1292
      ///
1297 1293
      /// Adds a new arc connects the the given two nodes.
1298 1294
      Arc addArc(const Node&, const Node&) {
1299 1295
        return INVALID;
1300 1296
      }
1301 1297

	
1302 1298
      template <typename _Digraph>
1303 1299
      struct Constraints {
1304 1300
        void constraints() {
1305 1301
          checkConcept<Base, _Digraph>();
1306 1302
          typename _Digraph::Node node_a, node_b;
1307 1303
          node_a = digraph.addNode();
1308 1304
          node_b = digraph.addNode();
1309 1305
          typename _Digraph::Arc arc;
1310 1306
          arc = digraph.addArc(node_a, node_b);
1311 1307
        }
1312 1308

	
1313 1309
        _Digraph& digraph;
1314 1310
      };
1315 1311
    };
1316 1312

	
1317 1313
    /// \brief An empty extendable base undirected graph class.
1318 1314
    ///
1319 1315
    /// This class provides beside the core undirected graph features
1320 1316
    /// core undircted graph extend interface for the graph structure.
1321 1317
    /// The main difference between the base and this interface is
1322 1318
    /// that the graph alterations should handled already on this
1323 1319
    /// level.
1324
    template <typename _Base = BaseGraphComponent>
1325
    class ExtendableGraphComponent : public _Base {
1320
    template <typename BAS = BaseGraphComponent>
1321
    class ExtendableGraphComponent : public BAS {
1326 1322
    public:
1327 1323

	
1328
      typedef _Base Base;
1329
      typedef typename _Base::Node Node;
1330
      typedef typename _Base::Edge Edge;
1324
      typedef BAS Base;
1325
      typedef typename Base::Node Node;
1326
      typedef typename Base::Edge Edge;
1331 1327

	
1332 1328
      /// \brief Adds a new node to the graph.
1333 1329
      ///
1334 1330
      /// Adds a new node to the graph.
1335 1331
      ///
1336 1332
      Node addNode() {
1337 1333
        return INVALID;
1338 1334
      }
1339 1335

	
1340 1336
      /// \brief Adds a new arc connects the given two nodes.
1341 1337
      ///
1342 1338
      /// Adds a new arc connects the the given two nodes.
1343 1339
      Edge addArc(const Node&, const Node&) {
1344 1340
        return INVALID;
1345 1341
      }
1346 1342

	
1347 1343
      template <typename _Graph>
1348 1344
      struct Constraints {
1349 1345
        void constraints() {
1350 1346
          checkConcept<Base, _Graph>();
1351 1347
          typename _Graph::Node node_a, node_b;
1352 1348
          node_a = graph.addNode();
1353 1349
          node_b = graph.addNode();
1354 1350
          typename _Graph::Edge edge;
1355 1351
          edge = graph.addEdge(node_a, node_b);
1356 1352
        }
1357 1353

	
1358 1354
        _Graph& graph;
1359 1355
      };
1360 1356
    };
1361 1357

	
1362 1358
    /// \brief An empty erasable digraph class.
1363 1359
    ///
1364 1360
    /// This class provides beside the core digraph features core erase
1365 1361
    /// functions for the digraph structure. The main difference between
1366 1362
    /// the base and this interface is that the digraph alterations
1367 1363
    /// should handled already on this level.
1368
    template <typename _Base = BaseDigraphComponent>
1369
    class ErasableDigraphComponent : public _Base {
1364
    template <typename BAS = BaseDigraphComponent>
1365
    class ErasableDigraphComponent : public BAS {
1370 1366
    public:
1371 1367

	
1372
      typedef _Base Base;
1368
      typedef BAS Base;
1373 1369
      typedef typename Base::Node Node;
1374 1370
      typedef typename Base::Arc Arc;
1375 1371

	
1376 1372
      /// \brief Erase a node from the digraph.
1377 1373
      ///
1378 1374
      /// Erase a node from the digraph. This function should
1379 1375
      /// erase all arcs connecting to the node.
1380 1376
      void erase(const Node&) {}
1381 1377

	
1382 1378
      /// \brief Erase an arc from the digraph.
1383 1379
      ///
1384 1380
      /// Erase an arc from the digraph.
1385 1381
      ///
1386 1382
      void erase(const Arc&) {}
1387 1383

	
1388 1384
      template <typename _Digraph>
1389 1385
      struct Constraints {
1390 1386
        void constraints() {
1391 1387
          checkConcept<Base, _Digraph>();
1392 1388
          typename _Digraph::Node node;
1393 1389
          digraph.erase(node);
1394 1390
          typename _Digraph::Arc arc;
1395 1391
          digraph.erase(arc);
1396 1392
        }
1397 1393

	
1398 1394
        _Digraph& digraph;
1399 1395
      };
1400 1396
    };
1401 1397

	
1402 1398
    /// \brief An empty erasable base undirected graph class.
1403 1399
    ///
1404 1400
    /// This class provides beside the core undirected graph features
1405 1401
    /// core erase functions for the undirceted graph structure. The
1406 1402
    /// main difference between the base and this interface is that
1407 1403
    /// the graph alterations should handled already on this level.
1408
    template <typename _Base = BaseGraphComponent>
1409
    class ErasableGraphComponent : public _Base {
1404
    template <typename BAS = BaseGraphComponent>
1405
    class ErasableGraphComponent : public BAS {
1410 1406
    public:
1411 1407

	
1412
      typedef _Base Base;
1408
      typedef BAS Base;
1413 1409
      typedef typename Base::Node Node;
1414 1410
      typedef typename Base::Edge Edge;
1415 1411

	
1416 1412
      /// \brief Erase a node from the graph.
1417 1413
      ///
1418 1414
      /// Erase a node from the graph. This function should erase
1419 1415
      /// arcs connecting to the node.
1420 1416
      void erase(const Node&) {}
1421 1417

	
1422 1418
      /// \brief Erase an arc from the graph.
1423 1419
      ///
1424 1420
      /// Erase an arc from the graph.
1425 1421
      ///
1426 1422
      void erase(const Edge&) {}
1427 1423

	
1428 1424
      template <typename _Graph>
1429 1425
      struct Constraints {
1430 1426
        void constraints() {
1431 1427
          checkConcept<Base, _Graph>();
1432 1428
          typename _Graph::Node node;
1433 1429
          graph.erase(node);
1434 1430
          typename _Graph::Edge edge;
1435 1431
          graph.erase(edge);
1436 1432
        }
1437 1433

	
1438 1434
        _Graph& graph;
1439 1435
      };
1440 1436
    };
1441 1437

	
1442 1438
    /// \brief An empty clearable base digraph class.
1443 1439
    ///
1444 1440
    /// This class provides beside the core digraph features core clear
1445 1441
    /// functions for the digraph structure. The main difference between
1446 1442
    /// the base and this interface is that the digraph alterations
1447 1443
    /// should handled already on this level.
1448
    template <typename _Base = BaseDigraphComponent>
1449
    class ClearableDigraphComponent : public _Base {
1444
    template <typename BAS = BaseDigraphComponent>
1445
    class ClearableDigraphComponent : public BAS {
1450 1446
    public:
1451 1447

	
1452
      typedef _Base Base;
1448
      typedef BAS Base;
1453 1449

	
1454 1450
      /// \brief Erase all nodes and arcs from the digraph.
1455 1451
      ///
1456 1452
      /// Erase all nodes and arcs from the digraph.
1457 1453
      ///
1458 1454
      void clear() {}
1459 1455

	
1460 1456
      template <typename _Digraph>
1461 1457
      struct Constraints {
1462 1458
        void constraints() {
1463 1459
          checkConcept<Base, _Digraph>();
1464 1460
          digraph.clear();
1465 1461
        }
1466 1462

	
1467 1463
        _Digraph digraph;
1468 1464
      };
1469 1465
    };
1470 1466

	
1471 1467
    /// \brief An empty clearable base undirected graph class.
1472 1468
    ///
1473 1469
    /// This class provides beside the core undirected graph features
1474 1470
    /// core clear functions for the undirected graph structure. The
1475 1471
    /// main difference between the base and this interface is that
1476 1472
    /// the graph alterations should handled already on this level.
1477
    template <typename _Base = BaseGraphComponent>
1478
    class ClearableGraphComponent : public ClearableDigraphComponent<_Base> {
1473
    template <typename BAS = BaseGraphComponent>
1474
    class ClearableGraphComponent : public ClearableDigraphComponent<BAS> {
1479 1475
    public:
1480 1476

	
1481
      typedef _Base Base;
1477
      typedef BAS Base;
1482 1478

	
1483 1479
      template <typename _Graph>
1484 1480
      struct Constraints {
1485 1481
        void constraints() {
1486 1482
          checkConcept<ClearableGraphComponent<Base>, _Graph>();
1487 1483
        }
1488 1484

	
1489 1485
        _Graph graph;
1490 1486
      };
1491 1487
    };
1492 1488

	
1493 1489
  }
1494 1490

	
1495 1491
}
1496 1492

	
1497 1493
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup concept
20 20
///\file
21 21
///\brief The concept of heaps.
22 22

	
23 23
#ifndef LEMON_CONCEPTS_HEAP_H
24 24
#define LEMON_CONCEPTS_HEAP_H
25 25

	
26 26
#include <lemon/core.h>
27 27
#include <lemon/concept_check.h>
28 28

	
29 29
namespace lemon {
30 30

	
31 31
  namespace concepts {
32 32

	
33 33
    /// \addtogroup concept
34 34
    /// @{
35 35

	
36 36
    /// \brief The heap concept.
37 37
    ///
38
    /// Concept class describing the main interface of heaps.
39
    template <typename Priority, typename ItemIntMap>
38
    /// Concept class describing the main interface of heaps. A \e heap
39
    /// is a data structure for storing items with specified values called
40
    /// \e priorities in such a way that finding the item with minimum
41
    /// priority is efficient. In a heap one can change the priority of an
42
    /// item, add or erase an item, etc.
43
    ///
44
    /// \tparam PR Type of the priority of the items.
45
    /// \tparam IM A read and writable item map with int values, used
46
    /// internally to handle the cross references.
47
    /// \tparam Comp A functor class for the ordering of the priorities.
48
    /// The default is \c std::less<PR>.
49
#ifdef DOXYGEN
50
    template <typename PR, typename IM, typename Comp = std::less<PR> >
51
#else
52
    template <typename PR, typename IM>
53
#endif
40 54
    class Heap {
41 55
    public:
42 56

	
57
      /// Type of the item-int map.
58
      typedef IM ItemIntMap;
59
      /// Type of the priorities.
60
      typedef PR Prio;
43 61
      /// Type of the items stored in the heap.
44 62
      typedef typename ItemIntMap::Key Item;
45 63

	
46
      /// Type of the priorities.
47
      typedef Priority Prio;
48

	
49 64
      /// \brief Type to represent the states of the items.
50 65
      ///
51 66
      /// Each item has a state associated to it. It can be "in heap",
52 67
      /// "pre heap" or "post heap". The later two are indifferent
53 68
      /// from the point of view of the heap, but may be useful for
54 69
      /// the user.
55 70
      ///
56
      /// The \c ItemIntMap must be initialized in such a way, that it
57
      /// assigns \c PRE_HEAP (<tt>-1</tt>) to every item.
71
      /// The item-int map must be initialized in such way that it assigns
72
      /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
58 73
      enum State {
59
        IN_HEAP = 0,
60
        PRE_HEAP = -1,
61
        POST_HEAP = -2
74
        IN_HEAP = 0,    ///< The "in heap" state constant.
75
        PRE_HEAP = -1,  ///< The "pre heap" state constant.
76
        POST_HEAP = -2  ///< The "post heap" state constant.
62 77
      };
63 78

	
64 79
      /// \brief The constructor.
65 80
      ///
66 81
      /// The constructor.
67 82
      /// \param map A map that assigns \c int values to keys of type
68 83
      /// \c Item. It is used internally by the heap implementations to
69 84
      /// handle the cross references. The assigned value must be
70 85
      /// \c PRE_HEAP (<tt>-1</tt>) for every item.
71 86
      explicit Heap(ItemIntMap &map) {}
72 87

	
73 88
      /// \brief The number of items stored in the heap.
74 89
      ///
75 90
      /// Returns the number of items stored in the heap.
76 91
      int size() const { return 0; }
77 92

	
78 93
      /// \brief Checks if the heap is empty.
79 94
      ///
80 95
      /// Returns \c true if the heap is empty.
81 96
      bool empty() const { return false; }
82 97

	
83 98
      /// \brief Makes the heap empty.
84 99
      ///
85 100
      /// Makes the heap empty.
86 101
      void clear();
87 102

	
88 103
      /// \brief Inserts an item into the heap with the given priority.
89 104
      ///
90 105
      /// Inserts the given item into the heap with the given priority.
91 106
      /// \param i The item to insert.
92 107
      /// \param p The priority of the item.
93 108
      void push(const Item &i, const Prio &p) {}
94 109

	
95 110
      /// \brief Returns the item having minimum priority.
96 111
      ///
97 112
      /// Returns the item having minimum priority.
98 113
      /// \pre The heap must be non-empty.
99 114
      Item top() const {}
100 115

	
101 116
      /// \brief The minimum priority.
102 117
      ///
103 118
      /// Returns the minimum priority.
104 119
      /// \pre The heap must be non-empty.
105 120
      Prio prio() const {}
106 121

	
107 122
      /// \brief Removes the item having minimum priority.
108 123
      ///
109 124
      /// Removes the item having minimum priority.
110 125
      /// \pre The heap must be non-empty.
111 126
      void pop() {}
112 127

	
113 128
      /// \brief Removes an item from the heap.
114 129
      ///
115 130
      /// Removes the given item from the heap if it is already stored.
116 131
      /// \param i The item to delete.
117 132
      void erase(const Item &i) {}
118 133

	
119 134
      /// \brief The priority of an item.
120 135
      ///
121 136
      /// Returns the priority of the given item.
137
      /// \param i The item.
122 138
      /// \pre \c i must be in the heap.
123
      /// \param i The item.
124 139
      Prio operator[](const Item &i) const {}
125 140

	
126 141
      /// \brief Sets the priority of an item or inserts it, if it is
127 142
      /// not stored in the heap.
128 143
      ///
129 144
      /// This method sets the priority of the given item if it is
130 145
      /// already stored in the heap.
131 146
      /// Otherwise it inserts the given item with the given priority.
132 147
      ///
133 148
      /// \param i The item.
134 149
      /// \param p The priority.
135 150
      void set(const Item &i, const Prio &p) {}
136 151

	
137 152
      /// \brief Decreases the priority of an item to the given value.
138 153
      ///
139 154
      /// Decreases the priority of an item to the given value.
140
      /// \pre \c i must be stored in the heap with priority at least \c p.
141 155
      /// \param i The item.
142 156
      /// \param p The priority.
157
      /// \pre \c i must be stored in the heap with priority at least \c p.
143 158
      void decrease(const Item &i, const Prio &p) {}
144 159

	
145 160
      /// \brief Increases the priority of an item to the given value.
146 161
      ///
147 162
      /// Increases the priority of an item to the given value.
148
      /// \pre \c i must be stored in the heap with priority at most \c p.
149 163
      /// \param i The item.
150 164
      /// \param p The priority.
165
      /// \pre \c i must be stored in the heap with priority at most \c p.
151 166
      void increase(const Item &i, const Prio &p) {}
152 167

	
153 168
      /// \brief Returns if an item is in, has already been in, or has
154 169
      /// never been in the heap.
155 170
      ///
156 171
      /// This method returns \c PRE_HEAP if the given item has never
157 172
      /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
158 173
      /// and \c POST_HEAP otherwise.
159 174
      /// In the latter case it is possible that the item will get back
160 175
      /// to the heap again.
161 176
      /// \param i The item.
162 177
      State state(const Item &i) const {}
163 178

	
164 179
      /// \brief Sets the state of an item in the heap.
165 180
      ///
166 181
      /// Sets the state of the given item in the heap. It can be used
167 182
      /// to manually clear the heap when it is important to achive the
168 183
      /// better time complexity.
169 184
      /// \param i The item.
170 185
      /// \param st The state. It should not be \c IN_HEAP.
171 186
      void state(const Item& i, State st) {}
172 187

	
173 188

	
174 189
      template <typename _Heap>
175 190
      struct Constraints {
176 191
      public:
177 192
        void constraints() {
178 193
          typedef typename _Heap::Item OwnItem;
179 194
          typedef typename _Heap::Prio OwnPrio;
180 195
          typedef typename _Heap::State OwnState;
181 196

	
182 197
          Item item;
183 198
          Prio prio;
184 199
          item=Item();
185 200
          prio=Prio();
186 201
          ignore_unused_variable_warning(item);
187 202
          ignore_unused_variable_warning(prio);
188 203

	
189 204
          OwnItem own_item;
190 205
          OwnPrio own_prio;
191 206
          OwnState own_state;
192 207
          own_item=Item();
193 208
          own_prio=Prio();
194 209
          ignore_unused_variable_warning(own_item);
195 210
          ignore_unused_variable_warning(own_prio);
196 211
          ignore_unused_variable_warning(own_state);
197 212

	
198 213
          _Heap heap1(map);
199 214
          _Heap heap2 = heap1;
200 215
          ignore_unused_variable_warning(heap1);
201 216
          ignore_unused_variable_warning(heap2);
202 217

	
203 218
          int s = heap.size();
204 219
          ignore_unused_variable_warning(s);
205 220
          bool e = heap.empty();
206 221
          ignore_unused_variable_warning(e);
207 222

	
208 223
          prio = heap.prio();
209 224
          item = heap.top();
210 225
          prio = heap[item];
211 226
          own_prio = heap.prio();
212 227
          own_item = heap.top();
213 228
          own_prio = heap[own_item];
214 229

	
215 230
          heap.push(item, prio);
216 231
          heap.push(own_item, own_prio);
217 232
          heap.pop();
218 233

	
219 234
          heap.set(item, prio);
220 235
          heap.decrease(item, prio);
221 236
          heap.increase(item, prio);
222 237
          heap.set(own_item, own_prio);
223 238
          heap.decrease(own_item, own_prio);
224 239
          heap.increase(own_item, own_prio);
225 240

	
226 241
          heap.erase(item);
227 242
          heap.erase(own_item);
228 243
          heap.clear();
229 244

	
230 245
          own_state = heap.state(own_item);
231 246
          heap.state(own_item, own_state);
232 247

	
233 248
          own_state = _Heap::PRE_HEAP;
234 249
          own_state = _Heap::IN_HEAP;
235 250
          own_state = _Heap::POST_HEAP;
236 251
        }
237 252

	
238 253
        _Heap& heap;
239 254
        ItemIntMap& map;
240 255
      };
241 256
    };
242 257

	
243 258
    /// @}
244 259
  } // namespace lemon
245 260
}
246 261
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup concept
20 20
///\file
21 21
///\brief Classes for representing paths in digraphs.
22 22
///
23 23

	
24 24
#ifndef LEMON_CONCEPTS_PATH_H
25 25
#define LEMON_CONCEPTS_PATH_H
26 26

	
27 27
#include <lemon/core.h>
28 28
#include <lemon/concept_check.h>
29 29

	
30 30
namespace lemon {
31 31
  namespace concepts {
32 32

	
33 33
    /// \addtogroup concept
34 34
    /// @{
35 35

	
36 36
    /// \brief A skeleton structure for representing directed paths in
37 37
    /// a digraph.
38 38
    ///
39 39
    /// A skeleton structure for representing directed paths in a
40 40
    /// digraph.
41
    /// \tparam _Digraph The digraph type in which the path is.
41
    /// \tparam GR The digraph type in which the path is.
42 42
    ///
43 43
    /// In a sense, the path can be treated as a list of arcs. The
44 44
    /// lemon path type stores just this list. As a consequence it
45 45
    /// cannot enumerate the nodes in the path and the zero length
46 46
    /// paths cannot store the source.
47 47
    ///
48
    template <typename _Digraph>
48
    template <typename GR>
49 49
    class Path {
50 50
    public:
51 51

	
52 52
      /// Type of the underlying digraph.
53
      typedef _Digraph Digraph;
53
      typedef GR Digraph;
54 54
      /// Arc type of the underlying digraph.
55 55
      typedef typename Digraph::Arc Arc;
56 56

	
57 57
      class ArcIt;
58 58

	
59 59
      /// \brief Default constructor
60 60
      Path() {}
61 61

	
62 62
      /// \brief Template constructor
63 63
      template <typename CPath>
64 64
      Path(const CPath& cpath) {}
65 65

	
66 66
      /// \brief Template assigment
67 67
      template <typename CPath>
68 68
      Path& operator=(const CPath& cpath) {
69 69
        ignore_unused_variable_warning(cpath);
70 70
        return *this;
71 71
      }
72 72

	
73 73
      /// Length of the path ie. the number of arcs in the path.
74 74
      int length() const { return 0;}
75 75

	
76 76
      /// Returns whether the path is empty.
77 77
      bool empty() const { return true;}
78 78

	
79 79
      /// Resets the path to an empty path.
80 80
      void clear() {}
81 81

	
82 82
      /// \brief LEMON style iterator for path arcs
83 83
      ///
84 84
      /// This class is used to iterate on the arcs of the paths.
85 85
      class ArcIt {
86 86
      public:
87 87
        /// Default constructor
88 88
        ArcIt() {}
89 89
        /// Invalid constructor
90 90
        ArcIt(Invalid) {}
91 91
        /// Constructor for first arc
92 92
        ArcIt(const Path &) {}
93 93

	
94 94
        /// Conversion to Arc
95 95
        operator Arc() const { return INVALID; }
96 96

	
97 97
        /// Next arc
98 98
        ArcIt& operator++() {return *this;}
99 99

	
100 100
        /// Comparison operator
101 101
        bool operator==(const ArcIt&) const {return true;}
102 102
        /// Comparison operator
103 103
        bool operator!=(const ArcIt&) const {return true;}
104 104
        /// Comparison operator
105 105
        bool operator<(const ArcIt&) const {return false;}
106 106

	
107 107
      };
108 108

	
109 109
      template <typename _Path>
110 110
      struct Constraints {
111 111
        void constraints() {
112 112
          Path<Digraph> pc;
113 113
          _Path p, pp(pc);
114 114
          int l = p.length();
115 115
          int e = p.empty();
116 116
          p.clear();
117 117

	
118 118
          p = pc;
119 119

	
120 120
          typename _Path::ArcIt id, ii(INVALID), i(p);
121 121

	
122 122
          ++i;
123 123
          typename Digraph::Arc ed = i;
124 124

	
125 125
          e = (i == ii);
126 126
          e = (i != ii);
127 127
          e = (i < ii);
128 128

	
129 129
          ignore_unused_variable_warning(l);
130 130
          ignore_unused_variable_warning(pp);
131 131
          ignore_unused_variable_warning(e);
132 132
          ignore_unused_variable_warning(id);
133 133
          ignore_unused_variable_warning(ii);
134 134
          ignore_unused_variable_warning(ed);
135 135
        }
136 136
      };
137 137

	
138 138
    };
139 139

	
140 140
    namespace _path_bits {
141 141

	
142 142
      template <typename _Digraph, typename _Path, typename RevPathTag = void>
143 143
      struct PathDumperConstraints {
144 144
        void constraints() {
145 145
          int l = p.length();
146 146
          int e = p.empty();
147 147

	
148 148
          typename _Path::ArcIt id, i(p);
149 149

	
150 150
          ++i;
151 151
          typename _Digraph::Arc ed = i;
152 152

	
153 153
          e = (i == INVALID);
154 154
          e = (i != INVALID);
155 155

	
156 156
          ignore_unused_variable_warning(l);
157 157
          ignore_unused_variable_warning(e);
158 158
          ignore_unused_variable_warning(id);
159 159
          ignore_unused_variable_warning(ed);
160 160
        }
161 161
        _Path& p;
162 162
      };
163 163

	
164 164
      template <typename _Digraph, typename _Path>
165 165
      struct PathDumperConstraints<
166 166
        _Digraph, _Path,
167 167
        typename enable_if<typename _Path::RevPathTag, void>::type
168 168
      > {
169 169
        void constraints() {
170 170
          int l = p.length();
171 171
          int e = p.empty();
172 172

	
173 173
          typename _Path::RevArcIt id, i(p);
174 174

	
175 175
          ++i;
176 176
          typename _Digraph::Arc ed = i;
177 177

	
178 178
          e = (i == INVALID);
179 179
          e = (i != INVALID);
180 180

	
181 181
          ignore_unused_variable_warning(l);
182 182
          ignore_unused_variable_warning(e);
183 183
          ignore_unused_variable_warning(id);
184 184
          ignore_unused_variable_warning(ed);
185 185
        }
186 186
        _Path& p;
187 187
      };
188 188

	
189 189
    }
190 190

	
191 191

	
192 192
    /// \brief A skeleton structure for path dumpers.
193 193
    ///
194 194
    /// A skeleton structure for path dumpers. The path dumpers are
195 195
    /// the generalization of the paths. The path dumpers can
196 196
    /// enumerate the arcs of the path wheter in forward or in
197 197
    /// backward order.  In most time these classes are not used
198 198
    /// directly rather it used to assign a dumped class to a real
199 199
    /// path type.
200 200
    ///
201 201
    /// The main purpose of this concept is that the shortest path
202 202
    /// algorithms can enumerate easily the arcs in reverse order.
203 203
    /// If we would like to give back a real path from these
204 204
    /// algorithms then we should create a temporarly path object. In
205 205
    /// LEMON such algorithms gives back a path dumper what can
206 206
    /// assigned to a real path and the dumpers can be implemented as
207 207
    /// an adaptor class to the predecessor map.
208

	
209
    /// \tparam _Digraph  The digraph type in which the path is.
208
    ///
209
    /// \tparam GR The digraph type in which the path is.
210 210
    ///
211 211
    /// The paths can be constructed from any path type by a
212 212
    /// template constructor or a template assignment operator.
213
    ///
214
    template <typename _Digraph>
213
    template <typename GR>
215 214
    class PathDumper {
216 215
    public:
217 216

	
218 217
      /// Type of the underlying digraph.
219
      typedef _Digraph Digraph;
218
      typedef GR Digraph;
220 219
      /// Arc type of the underlying digraph.
221 220
      typedef typename Digraph::Arc Arc;
222 221

	
223 222
      /// Length of the path ie. the number of arcs in the path.
224 223
      int length() const { return 0;}
225 224

	
226 225
      /// Returns whether the path is empty.
227 226
      bool empty() const { return true;}
228 227

	
229 228
      /// \brief Forward or reverse dumping
230 229
      ///
231 230
      /// If the RevPathTag is defined and true then reverse dumping
232 231
      /// is provided in the path dumper. In this case instead of the
233 232
      /// ArcIt the RevArcIt iterator should be implemented in the
234 233
      /// dumper.
235 234
      typedef False RevPathTag;
236 235

	
237 236
      /// \brief LEMON style iterator for path arcs
238 237
      ///
239 238
      /// This class is used to iterate on the arcs of the paths.
240 239
      class ArcIt {
241 240
      public:
242 241
        /// Default constructor
243 242
        ArcIt() {}
244 243
        /// Invalid constructor
245 244
        ArcIt(Invalid) {}
246 245
        /// Constructor for first arc
247 246
        ArcIt(const PathDumper&) {}
248 247

	
249 248
        /// Conversion to Arc
250 249
        operator Arc() const { return INVALID; }
251 250

	
252 251
        /// Next arc
253 252
        ArcIt& operator++() {return *this;}
254 253

	
255 254
        /// Comparison operator
256 255
        bool operator==(const ArcIt&) const {return true;}
257 256
        /// Comparison operator
258 257
        bool operator!=(const ArcIt&) const {return true;}
259 258
        /// Comparison operator
260 259
        bool operator<(const ArcIt&) const {return false;}
261 260

	
262 261
      };
263 262

	
264 263
      /// \brief LEMON style iterator for path arcs
265 264
      ///
266 265
      /// This class is used to iterate on the arcs of the paths in
267 266
      /// reverse direction.
268 267
      class RevArcIt {
269 268
      public:
270 269
        /// Default constructor
271 270
        RevArcIt() {}
272 271
        /// Invalid constructor
273 272
        RevArcIt(Invalid) {}
274 273
        /// Constructor for first arc
275 274
        RevArcIt(const PathDumper &) {}
276 275

	
277 276
        /// Conversion to Arc
278 277
        operator Arc() const { return INVALID; }
279 278

	
280 279
        /// Next arc
281 280
        RevArcIt& operator++() {return *this;}
282 281

	
283 282
        /// Comparison operator
284 283
        bool operator==(const RevArcIt&) const {return true;}
285 284
        /// Comparison operator
286 285
        bool operator!=(const RevArcIt&) const {return true;}
287 286
        /// Comparison operator
288 287
        bool operator<(const RevArcIt&) const {return false;}
289 288

	
290 289
      };
291 290

	
292 291
      template <typename _Path>
293 292
      struct Constraints {
294 293
        void constraints() {
295 294
          function_requires<_path_bits::
296 295
            PathDumperConstraints<Digraph, _Path> >();
297 296
        }
298 297
      };
299 298

	
300 299
    };
301 300

	
302 301

	
303 302
    ///@}
304 303
  }
305 304

	
306 305
} // namespace lemon
307 306

	
308 307
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CONNECTIVITY_H
20 20
#define LEMON_CONNECTIVITY_H
21 21

	
22 22
#include <lemon/dfs.h>
23 23
#include <lemon/bfs.h>
24 24
#include <lemon/core.h>
25 25
#include <lemon/maps.h>
26 26
#include <lemon/adaptors.h>
27 27

	
28 28
#include <lemon/concepts/digraph.h>
29 29
#include <lemon/concepts/graph.h>
30 30
#include <lemon/concept_check.h>
31 31

	
32 32
#include <stack>
33 33
#include <functional>
34 34

	
35 35
/// \ingroup connectivity
36 36
/// \file
37 37
/// \brief Connectivity algorithms
38 38
///
39 39
/// Connectivity algorithms
40 40

	
41 41
namespace lemon {
42 42

	
43 43
  /// \ingroup connectivity
44 44
  ///
45 45
  /// \brief Check whether the given undirected graph is connected.
46 46
  ///
47 47
  /// Check whether the given undirected graph is connected.
48 48
  /// \param graph The undirected graph.
49
  /// \return %True when there is path between any two nodes in the graph.
49
  /// \return \c true when there is path between any two nodes in the graph.
50 50
  /// \note By definition, the empty graph is connected.
51 51
  template <typename Graph>
52 52
  bool connected(const Graph& graph) {
53 53
    checkConcept<concepts::Graph, Graph>();
54 54
    typedef typename Graph::NodeIt NodeIt;
55 55
    if (NodeIt(graph) == INVALID) return true;
56 56
    Dfs<Graph> dfs(graph);
57 57
    dfs.run(NodeIt(graph));
58 58
    for (NodeIt it(graph); it != INVALID; ++it) {
59 59
      if (!dfs.reached(it)) {
60 60
        return false;
61 61
      }
62 62
    }
63 63
    return true;
64 64
  }
65 65

	
66 66
  /// \ingroup connectivity
67 67
  ///
68 68
  /// \brief Count the number of connected components of an undirected graph
69 69
  ///
70 70
  /// Count the number of connected components of an undirected graph
71 71
  ///
72 72
  /// \param graph The graph. It must be undirected.
73 73
  /// \return The number of components
74 74
  /// \note By definition, the empty graph consists
75 75
  /// of zero connected components.
76 76
  template <typename Graph>
77 77
  int countConnectedComponents(const Graph &graph) {
78 78
    checkConcept<concepts::Graph, Graph>();
79 79
    typedef typename Graph::Node Node;
80 80
    typedef typename Graph::Arc Arc;
81 81

	
82 82
    typedef NullMap<Node, Arc> PredMap;
83 83
    typedef NullMap<Node, int> DistMap;
84 84

	
85 85
    int compNum = 0;
86 86
    typename Bfs<Graph>::
87 87
      template SetPredMap<PredMap>::
88 88
      template SetDistMap<DistMap>::
89 89
      Create bfs(graph);
90 90

	
91 91
    PredMap predMap;
92 92
    bfs.predMap(predMap);
93 93

	
94 94
    DistMap distMap;
95 95
    bfs.distMap(distMap);
96 96

	
97 97
    bfs.init();
98 98
    for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
99 99
      if (!bfs.reached(n)) {
100 100
        bfs.addSource(n);
101 101
        bfs.start();
102 102
        ++compNum;
103 103
      }
104 104
    }
105 105
    return compNum;
106 106
  }
107 107

	
108 108
  /// \ingroup connectivity
109 109
  ///
110 110
  /// \brief Find the connected components of an undirected graph
111 111
  ///
112 112
  /// Find the connected components of an undirected graph.
113 113
  ///
114 114
  /// \param graph The graph. It must be undirected.
115 115
  /// \retval compMap A writable node map. The values will be set from 0 to
116 116
  /// the number of the connected components minus one. Each values of the map
117 117
  /// will be set exactly once, the values of a certain component will be
118 118
  /// set continuously.
119 119
  /// \return The number of components
120 120
  ///
121 121
  template <class Graph, class NodeMap>
122 122
  int connectedComponents(const Graph &graph, NodeMap &compMap) {
123 123
    checkConcept<concepts::Graph, Graph>();
124 124
    typedef typename Graph::Node Node;
125 125
    typedef typename Graph::Arc Arc;
126 126
    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
127 127

	
128 128
    typedef NullMap<Node, Arc> PredMap;
129 129
    typedef NullMap<Node, int> DistMap;
130 130

	
131 131
    int compNum = 0;
132 132
    typename Bfs<Graph>::
133 133
      template SetPredMap<PredMap>::
134 134
      template SetDistMap<DistMap>::
135 135
      Create bfs(graph);
136 136

	
137 137
    PredMap predMap;
138 138
    bfs.predMap(predMap);
139 139

	
140 140
    DistMap distMap;
141 141
    bfs.distMap(distMap);
142 142

	
143 143
    bfs.init();
144 144
    for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
145 145
      if(!bfs.reached(n)) {
146 146
        bfs.addSource(n);
147 147
        while (!bfs.emptyQueue()) {
148 148
          compMap.set(bfs.nextNode(), compNum);
149 149
          bfs.processNextNode();
150 150
        }
151 151
        ++compNum;
152 152
      }
153 153
    }
154 154
    return compNum;
155 155
  }
156 156

	
157 157
  namespace _connectivity_bits {
158 158

	
159 159
    template <typename Digraph, typename Iterator >
160 160
    struct LeaveOrderVisitor : public DfsVisitor<Digraph> {
161 161
    public:
162 162
      typedef typename Digraph::Node Node;
163 163
      LeaveOrderVisitor(Iterator it) : _it(it) {}
164 164

	
165 165
      void leave(const Node& node) {
166 166
        *(_it++) = node;
167 167
      }
168 168

	
169 169
    private:
170 170
      Iterator _it;
171 171
    };
172 172

	
173 173
    template <typename Digraph, typename Map>
174 174
    struct FillMapVisitor : public DfsVisitor<Digraph> {
175 175
    public:
176 176
      typedef typename Digraph::Node Node;
177 177
      typedef typename Map::Value Value;
178 178

	
179 179
      FillMapVisitor(Map& map, Value& value)
180 180
        : _map(map), _value(value) {}
181 181

	
182 182
      void reach(const Node& node) {
183 183
        _map.set(node, _value);
184 184
      }
185 185
    private:
186 186
      Map& _map;
187 187
      Value& _value;
188 188
    };
189 189

	
190 190
    template <typename Digraph, typename ArcMap>
191 191
    struct StronglyConnectedCutArcsVisitor : public DfsVisitor<Digraph> {
192 192
    public:
193 193
      typedef typename Digraph::Node Node;
194 194
      typedef typename Digraph::Arc Arc;
195 195

	
196 196
      StronglyConnectedCutArcsVisitor(const Digraph& digraph,
197 197
                                      ArcMap& cutMap,
198 198
                                      int& cutNum)
199 199
        : _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum),
200 200
          _compMap(digraph, -1), _num(-1) {
201 201
      }
202 202

	
203 203
      void start(const Node&) {
204 204
        ++_num;
205 205
      }
206 206

	
207 207
      void reach(const Node& node) {
208 208
        _compMap.set(node, _num);
209 209
      }
210 210

	
211 211
      void examine(const Arc& arc) {
212 212
         if (_compMap[_digraph.source(arc)] !=
213 213
             _compMap[_digraph.target(arc)]) {
214 214
           _cutMap.set(arc, true);
215 215
           ++_cutNum;
216 216
         }
217 217
      }
218 218
    private:
219 219
      const Digraph& _digraph;
220 220
      ArcMap& _cutMap;
221 221
      int& _cutNum;
222 222

	
223 223
      typename Digraph::template NodeMap<int> _compMap;
224 224
      int _num;
225 225
    };
226 226

	
227 227
  }
228 228

	
229 229

	
230 230
  /// \ingroup connectivity
231 231
  ///
232 232
  /// \brief Check whether the given directed graph is strongly connected.
233 233
  ///
234 234
  /// Check whether the given directed graph is strongly connected. The
235 235
  /// graph is strongly connected when any two nodes of the graph are
236 236
  /// connected with directed paths in both direction.
237
  /// \return %False when the graph is not strongly connected.
237
  /// \return \c false when the graph is not strongly connected.
238 238
  /// \see connected
239 239
  ///
240 240
  /// \note By definition, the empty graph is strongly connected.
241 241
  template <typename Digraph>
242 242
  bool stronglyConnected(const Digraph& digraph) {
243 243
    checkConcept<concepts::Digraph, Digraph>();
244 244

	
245 245
    typedef typename Digraph::Node Node;
246 246
    typedef typename Digraph::NodeIt NodeIt;
247 247

	
248 248
    typename Digraph::Node source = NodeIt(digraph);
249 249
    if (source == INVALID) return true;
250 250

	
251 251
    using namespace _connectivity_bits;
252 252

	
253 253
    typedef DfsVisitor<Digraph> Visitor;
254 254
    Visitor visitor;
255 255

	
256 256
    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
257 257
    dfs.init();
258 258
    dfs.addSource(source);
259 259
    dfs.start();
260 260

	
261 261
    for (NodeIt it(digraph); it != INVALID; ++it) {
262 262
      if (!dfs.reached(it)) {
263 263
        return false;
264 264
      }
265 265
    }
266 266

	
267 267
    typedef ReverseDigraph<const Digraph> RDigraph;
268 268
    typedef typename RDigraph::NodeIt RNodeIt;
269 269
    RDigraph rdigraph(digraph);
270 270

	
271 271
    typedef DfsVisitor<Digraph> RVisitor;
272 272
    RVisitor rvisitor;
273 273

	
274 274
    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
275 275
    rdfs.init();
276 276
    rdfs.addSource(source);
277 277
    rdfs.start();
278 278

	
279 279
    for (RNodeIt it(rdigraph); it != INVALID; ++it) {
280 280
      if (!rdfs.reached(it)) {
281 281
        return false;
282 282
      }
283 283
    }
284 284

	
285 285
    return true;
286 286
  }
287 287

	
288 288
  /// \ingroup connectivity
289 289
  ///
290 290
  /// \brief Count the strongly connected components of a directed graph
291 291
  ///
292 292
  /// Count the strongly connected components of a directed graph.
293 293
  /// The strongly connected components are the classes of an
294 294
  /// equivalence relation on the nodes of the graph. Two nodes are in
295 295
  /// the same class if they are connected with directed paths in both
296 296
  /// direction.
297 297
  ///
298 298
  /// \param digraph The graph.
299 299
  /// \return The number of components
300 300
  /// \note By definition, the empty graph has zero
301 301
  /// strongly connected components.
302 302
  template <typename Digraph>
303 303
  int countStronglyConnectedComponents(const Digraph& digraph) {
304 304
    checkConcept<concepts::Digraph, Digraph>();
305 305

	
306 306
    using namespace _connectivity_bits;
307 307

	
308 308
    typedef typename Digraph::Node Node;
309 309
    typedef typename Digraph::Arc Arc;
310 310
    typedef typename Digraph::NodeIt NodeIt;
311 311
    typedef typename Digraph::ArcIt ArcIt;
312 312

	
313 313
    typedef std::vector<Node> Container;
314 314
    typedef typename Container::iterator Iterator;
315 315

	
316 316
    Container nodes(countNodes(digraph));
317 317
    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
318 318
    Visitor visitor(nodes.begin());
319 319

	
320 320
    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
321 321
    dfs.init();
322 322
    for (NodeIt it(digraph); it != INVALID; ++it) {
323 323
      if (!dfs.reached(it)) {
324 324
        dfs.addSource(it);
325 325
        dfs.start();
326 326
      }
327 327
    }
328 328

	
329 329
    typedef typename Container::reverse_iterator RIterator;
330 330
    typedef ReverseDigraph<const Digraph> RDigraph;
331 331

	
332 332
    RDigraph rdigraph(digraph);
333 333

	
334 334
    typedef DfsVisitor<Digraph> RVisitor;
335 335
    RVisitor rvisitor;
336 336

	
337 337
    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
338 338

	
339 339
    int compNum = 0;
340 340

	
341 341
    rdfs.init();
342 342
    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
343 343
      if (!rdfs.reached(*it)) {
344 344
        rdfs.addSource(*it);
345 345
        rdfs.start();
346 346
        ++compNum;
347 347
      }
348 348
    }
349 349
    return compNum;
350 350
  }
351 351

	
352 352
  /// \ingroup connectivity
353 353
  ///
354 354
  /// \brief Find the strongly connected components of a directed graph
355 355
  ///
356 356
  /// Find the strongly connected components of a directed graph.  The
357 357
  /// strongly connected components are the classes of an equivalence
358 358
  /// relation on the nodes of the graph. Two nodes are in
359 359
  /// relationship when there are directed paths between them in both
360 360
  /// direction. In addition, the numbering of components will satisfy
361 361
  /// that there is no arc going from a higher numbered component to
362 362
  /// a lower.
363 363
  ///
364 364
  /// \param digraph The digraph.
365 365
  /// \retval compMap A writable node map. The values will be set from 0 to
366 366
  /// the number of the strongly connected components minus one. Each value
367 367
  /// of the map will be set exactly once, the values of a certain component
368 368
  /// will be set continuously.
369 369
  /// \return The number of components
370 370
  ///
371 371
  template <typename Digraph, typename NodeMap>
372 372
  int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
373 373
    checkConcept<concepts::Digraph, Digraph>();
374 374
    typedef typename Digraph::Node Node;
375 375
    typedef typename Digraph::NodeIt NodeIt;
376 376
    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
377 377

	
378 378
    using namespace _connectivity_bits;
379 379

	
380 380
    typedef std::vector<Node> Container;
381 381
    typedef typename Container::iterator Iterator;
382 382

	
383 383
    Container nodes(countNodes(digraph));
384 384
    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
385 385
    Visitor visitor(nodes.begin());
386 386

	
387 387
    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
388 388
    dfs.init();
389 389
    for (NodeIt it(digraph); it != INVALID; ++it) {
390 390
      if (!dfs.reached(it)) {
391 391
        dfs.addSource(it);
392 392
        dfs.start();
393 393
      }
394 394
    }
395 395

	
396 396
    typedef typename Container::reverse_iterator RIterator;
397 397
    typedef ReverseDigraph<const Digraph> RDigraph;
398 398

	
399 399
    RDigraph rdigraph(digraph);
400 400

	
401 401
    int compNum = 0;
402 402

	
403 403
    typedef FillMapVisitor<RDigraph, NodeMap> RVisitor;
404 404
    RVisitor rvisitor(compMap, compNum);
405 405

	
406 406
    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
407 407

	
408 408
    rdfs.init();
409 409
    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
410 410
      if (!rdfs.reached(*it)) {
411 411
        rdfs.addSource(*it);
412 412
        rdfs.start();
413 413
        ++compNum;
414 414
      }
415 415
    }
416 416
    return compNum;
417 417
  }
418 418

	
419 419
  /// \ingroup connectivity
420 420
  ///
421 421
  /// \brief Find the cut arcs of the strongly connected components.
422 422
  ///
423 423
  /// Find the cut arcs of the strongly connected components.
424 424
  /// The strongly connected components are the classes of an equivalence
425 425
  /// relation on the nodes of the graph. Two nodes are in relationship
426 426
  /// when there are directed paths between them in both direction.
427 427
  /// The strongly connected components are separated by the cut arcs.
428 428
  ///
429 429
  /// \param graph The graph.
430 430
  /// \retval cutMap A writable node map. The values will be set true when the
431 431
  /// arc is a cut arc.
432 432
  ///
433 433
  /// \return The number of cut arcs
434 434
  template <typename Digraph, typename ArcMap>
435 435
  int stronglyConnectedCutArcs(const Digraph& graph, ArcMap& cutMap) {
436 436
    checkConcept<concepts::Digraph, Digraph>();
437 437
    typedef typename Digraph::Node Node;
438 438
    typedef typename Digraph::Arc Arc;
439 439
    typedef typename Digraph::NodeIt NodeIt;
440 440
    checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>();
441 441

	
442 442
    using namespace _connectivity_bits;
443 443

	
444 444
    typedef std::vector<Node> Container;
445 445
    typedef typename Container::iterator Iterator;
446 446

	
447 447
    Container nodes(countNodes(graph));
448 448
    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
449 449
    Visitor visitor(nodes.begin());
450 450

	
451 451
    DfsVisit<Digraph, Visitor> dfs(graph, visitor);
452 452
    dfs.init();
453 453
    for (NodeIt it(graph); it != INVALID; ++it) {
454 454
      if (!dfs.reached(it)) {
455 455
        dfs.addSource(it);
456 456
        dfs.start();
457 457
      }
458 458
    }
459 459

	
460 460
    typedef typename Container::reverse_iterator RIterator;
461 461
    typedef ReverseDigraph<const Digraph> RDigraph;
462 462

	
463 463
    RDigraph rgraph(graph);
464 464

	
465 465
    int cutNum = 0;
466 466

	
467 467
    typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor;
468 468
    RVisitor rvisitor(rgraph, cutMap, cutNum);
469 469

	
470 470
    DfsVisit<RDigraph, RVisitor> rdfs(rgraph, rvisitor);
471 471

	
472 472
    rdfs.init();
473 473
    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
474 474
      if (!rdfs.reached(*it)) {
475 475
        rdfs.addSource(*it);
476 476
        rdfs.start();
477 477
      }
478 478
    }
479 479
    return cutNum;
480 480
  }
481 481

	
482 482
  namespace _connectivity_bits {
483 483

	
484 484
    template <typename Digraph>
485 485
    class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
486 486
    public:
487 487
      typedef typename Digraph::Node Node;
488 488
      typedef typename Digraph::Arc Arc;
489 489
      typedef typename Digraph::Edge Edge;
490 490

	
491 491
      CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
492 492
        : _graph(graph), _compNum(compNum),
493 493
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
494 494

	
495 495
      void start(const Node& node) {
496 496
        _predMap.set(node, INVALID);
497 497
      }
498 498

	
499 499
      void reach(const Node& node) {
500 500
        _numMap.set(node, _num);
501 501
        _retMap.set(node, _num);
502 502
        ++_num;
503 503
      }
504 504

	
505 505
      void discover(const Arc& edge) {
506 506
        _predMap.set(_graph.target(edge), _graph.source(edge));
507 507
      }
508 508

	
509 509
      void examine(const Arc& edge) {
510 510
        if (_graph.source(edge) == _graph.target(edge) &&
511 511
            _graph.direction(edge)) {
512 512
          ++_compNum;
513 513
          return;
514 514
        }
515 515
        if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
516 516
          return;
517 517
        }
518 518
        if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
519 519
          _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
520 520
        }
521 521
      }
522 522

	
523 523
      void backtrack(const Arc& edge) {
524 524
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
525 525
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
526 526
        }
527 527
        if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
528 528
          ++_compNum;
529 529
        }
530 530
      }
531 531

	
532 532
    private:
533 533
      const Digraph& _graph;
534 534
      int& _compNum;
535 535

	
536 536
      typename Digraph::template NodeMap<int> _numMap;
537 537
      typename Digraph::template NodeMap<int> _retMap;
538 538
      typename Digraph::template NodeMap<Node> _predMap;
539 539
      int _num;
540 540
    };
541 541

	
542 542
    template <typename Digraph, typename ArcMap>
543 543
    class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
544 544
    public:
545 545
      typedef typename Digraph::Node Node;
546 546
      typedef typename Digraph::Arc Arc;
547 547
      typedef typename Digraph::Edge Edge;
548 548

	
549 549
      BiNodeConnectedComponentsVisitor(const Digraph& graph,
550 550
                                       ArcMap& compMap, int &compNum)
551 551
        : _graph(graph), _compMap(compMap), _compNum(compNum),
552 552
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
553 553

	
554 554
      void start(const Node& node) {
555 555
        _predMap.set(node, INVALID);
556 556
      }
557 557

	
558 558
      void reach(const Node& node) {
559 559
        _numMap.set(node, _num);
560 560
        _retMap.set(node, _num);
561 561
        ++_num;
562 562
      }
563 563

	
564 564
      void discover(const Arc& edge) {
565 565
        Node target = _graph.target(edge);
566 566
        _predMap.set(target, edge);
567 567
        _edgeStack.push(edge);
568 568
      }
569 569

	
570 570
      void examine(const Arc& edge) {
571 571
        Node source = _graph.source(edge);
572 572
        Node target = _graph.target(edge);
573 573
        if (source == target && _graph.direction(edge)) {
574 574
          _compMap.set(edge, _compNum);
575 575
          ++_compNum;
576 576
          return;
577 577
        }
578 578
        if (_numMap[target] < _numMap[source]) {
579 579
          if (_predMap[source] != _graph.oppositeArc(edge)) {
580 580
            _edgeStack.push(edge);
581 581
          }
582 582
        }
583 583
        if (_predMap[source] != INVALID &&
584 584
            target == _graph.source(_predMap[source])) {
585 585
          return;
586 586
        }
587 587
        if (_retMap[source] > _numMap[target]) {
588 588
          _retMap.set(source, _numMap[target]);
589 589
        }
590 590
      }
591 591

	
592 592
      void backtrack(const Arc& edge) {
593 593
        Node source = _graph.source(edge);
594 594
        Node target = _graph.target(edge);
595 595
        if (_retMap[source] > _retMap[target]) {
596 596
          _retMap.set(source, _retMap[target]);
597 597
        }
598 598
        if (_numMap[source] <= _retMap[target]) {
599 599
          while (_edgeStack.top() != edge) {
600 600
            _compMap.set(_edgeStack.top(), _compNum);
601 601
            _edgeStack.pop();
602 602
          }
603 603
          _compMap.set(edge, _compNum);
604 604
          _edgeStack.pop();
605 605
          ++_compNum;
606 606
        }
607 607
      }
608 608

	
609 609
    private:
610 610
      const Digraph& _graph;
611 611
      ArcMap& _compMap;
612 612
      int& _compNum;
613 613

	
614 614
      typename Digraph::template NodeMap<int> _numMap;
615 615
      typename Digraph::template NodeMap<int> _retMap;
616 616
      typename Digraph::template NodeMap<Arc> _predMap;
617 617
      std::stack<Edge> _edgeStack;
618 618
      int _num;
619 619
    };
620 620

	
621 621

	
622 622
    template <typename Digraph, typename NodeMap>
623 623
    class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Digraph> {
624 624
    public:
625 625
      typedef typename Digraph::Node Node;
626 626
      typedef typename Digraph::Arc Arc;
627 627
      typedef typename Digraph::Edge Edge;
628 628

	
629 629
      BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap,
630 630
                                     int& cutNum)
631 631
        : _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
632 632
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
633 633

	
634 634
      void start(const Node& node) {
635 635
        _predMap.set(node, INVALID);
636 636
        rootCut = false;
637 637
      }
638 638

	
639 639
      void reach(const Node& node) {
640 640
        _numMap.set(node, _num);
641 641
        _retMap.set(node, _num);
642 642
        ++_num;
643 643
      }
644 644

	
645 645
      void discover(const Arc& edge) {
646 646
        _predMap.set(_graph.target(edge), _graph.source(edge));
647 647
      }
648 648

	
649 649
      void examine(const Arc& edge) {
650 650
        if (_graph.source(edge) == _graph.target(edge) &&
651 651
            _graph.direction(edge)) {
652 652
          if (!_cutMap[_graph.source(edge)]) {
653 653
            _cutMap.set(_graph.source(edge), true);
654 654
            ++_cutNum;
655 655
          }
656 656
          return;
657 657
        }
658 658
        if (_predMap[_graph.source(edge)] == _graph.target(edge)) return;
659 659
        if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
660 660
          _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
661 661
        }
662 662
      }
663 663

	
664 664
      void backtrack(const Arc& edge) {
665 665
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
666 666
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
667 667
        }
668 668
        if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
669 669
          if (_predMap[_graph.source(edge)] != INVALID) {
670 670
            if (!_cutMap[_graph.source(edge)]) {
671 671
              _cutMap.set(_graph.source(edge), true);
672 672
              ++_cutNum;
673 673
            }
674 674
          } else if (rootCut) {
675 675
            if (!_cutMap[_graph.source(edge)]) {
676 676
              _cutMap.set(_graph.source(edge), true);
677 677
              ++_cutNum;
678 678
            }
679 679
          } else {
680 680
            rootCut = true;
681 681
          }
682 682
        }
683 683
      }
684 684

	
685 685
    private:
686 686
      const Digraph& _graph;
687 687
      NodeMap& _cutMap;
688 688
      int& _cutNum;
689 689

	
690 690
      typename Digraph::template NodeMap<int> _numMap;
691 691
      typename Digraph::template NodeMap<int> _retMap;
692 692
      typename Digraph::template NodeMap<Node> _predMap;
693 693
      std::stack<Edge> _edgeStack;
694 694
      int _num;
695 695
      bool rootCut;
696 696
    };
697 697

	
698 698
  }
699 699

	
700 700
  template <typename Graph>
701 701
  int countBiNodeConnectedComponents(const Graph& graph);
702 702

	
703 703
  /// \ingroup connectivity
704 704
  ///
705 705
  /// \brief Checks the graph is bi-node-connected.
706 706
  ///
707 707
  /// This function checks that the undirected graph is bi-node-connected
708 708
  /// graph. The graph is bi-node-connected if any two undirected edge is
709 709
  /// on same circle.
710 710
  ///
711 711
  /// \param graph The graph.
712
  /// \return %True when the graph bi-node-connected.
712
  /// \return \c true when the graph bi-node-connected.
713 713
  template <typename Graph>
714 714
  bool biNodeConnected(const Graph& graph) {
715 715
    return countBiNodeConnectedComponents(graph) <= 1;
716 716
  }
717 717

	
718 718
  /// \ingroup connectivity
719 719
  ///
720 720
  /// \brief Count the biconnected components.
721 721
  ///
722 722
  /// This function finds the bi-node-connected components in an undirected
723 723
  /// graph. The biconnected components are the classes of an equivalence
724 724
  /// relation on the undirected edges. Two undirected edge is in relationship
725 725
  /// when they are on same circle.
726 726
  ///
727 727
  /// \param graph The graph.
728 728
  /// \return The number of components.
729 729
  template <typename Graph>
730 730
  int countBiNodeConnectedComponents(const Graph& graph) {
731 731
    checkConcept<concepts::Graph, Graph>();
732 732
    typedef typename Graph::NodeIt NodeIt;
733 733

	
734 734
    using namespace _connectivity_bits;
735 735

	
736 736
    typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor;
737 737

	
738 738
    int compNum = 0;
739 739
    Visitor visitor(graph, compNum);
740 740

	
741 741
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
742 742
    dfs.init();
743 743

	
744 744
    for (NodeIt it(graph); it != INVALID; ++it) {
745 745
      if (!dfs.reached(it)) {
746 746
        dfs.addSource(it);
747 747
        dfs.start();
748 748
      }
749 749
    }
750 750
    return compNum;
751 751
  }
752 752

	
753 753
  /// \ingroup connectivity
754 754
  ///
755 755
  /// \brief Find the bi-node-connected components.
756 756
  ///
757 757
  /// This function finds the bi-node-connected components in an undirected
758 758
  /// graph. The bi-node-connected components are the classes of an equivalence
759 759
  /// relation on the undirected edges. Two undirected edge are in relationship
760 760
  /// when they are on same circle.
761 761
  ///
762 762
  /// \param graph The graph.
763 763
  /// \retval compMap A writable uedge map. The values will be set from 0
764 764
  /// to the number of the biconnected components minus one. Each values
765 765
  /// of the map will be set exactly once, the values of a certain component
766 766
  /// will be set continuously.
767 767
  /// \return The number of components.
768 768
  ///
769 769
  template <typename Graph, typename EdgeMap>
770 770
  int biNodeConnectedComponents(const Graph& graph,
771 771
                                EdgeMap& compMap) {
772 772
    checkConcept<concepts::Graph, Graph>();
773 773
    typedef typename Graph::NodeIt NodeIt;
774 774
    typedef typename Graph::Edge Edge;
775 775
    checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>();
776 776

	
777 777
    using namespace _connectivity_bits;
778 778

	
779 779
    typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor;
780 780

	
781 781
    int compNum = 0;
782 782
    Visitor visitor(graph, compMap, compNum);
783 783

	
784 784
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
785 785
    dfs.init();
786 786

	
787 787
    for (NodeIt it(graph); it != INVALID; ++it) {
788 788
      if (!dfs.reached(it)) {
789 789
        dfs.addSource(it);
790 790
        dfs.start();
791 791
      }
792 792
    }
793 793
    return compNum;
794 794
  }
795 795

	
796 796
  /// \ingroup connectivity
797 797
  ///
798 798
  /// \brief Find the bi-node-connected cut nodes.
799 799
  ///
800 800
  /// This function finds the bi-node-connected cut nodes in an undirected
801 801
  /// graph. The bi-node-connected components are the classes of an equivalence
802 802
  /// relation on the undirected edges. Two undirected edges are in
803 803
  /// relationship when they are on same circle. The biconnected components
804 804
  /// are separted by nodes which are the cut nodes of the components.
805 805
  ///
806 806
  /// \param graph The graph.
807 807
  /// \retval cutMap A writable edge map. The values will be set true when
808 808
  /// the node separate two or more components.
809 809
  /// \return The number of the cut nodes.
810 810
  template <typename Graph, typename NodeMap>
811 811
  int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
812 812
    checkConcept<concepts::Graph, Graph>();
813 813
    typedef typename Graph::Node Node;
814 814
    typedef typename Graph::NodeIt NodeIt;
815 815
    checkConcept<concepts::WriteMap<Node, bool>, NodeMap>();
816 816

	
817 817
    using namespace _connectivity_bits;
818 818

	
819 819
    typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor;
820 820

	
821 821
    int cutNum = 0;
822 822
    Visitor visitor(graph, cutMap, cutNum);
823 823

	
824 824
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
825 825
    dfs.init();
826 826

	
827 827
    for (NodeIt it(graph); it != INVALID; ++it) {
828 828
      if (!dfs.reached(it)) {
829 829
        dfs.addSource(it);
830 830
        dfs.start();
831 831
      }
832 832
    }
833 833
    return cutNum;
834 834
  }
835 835

	
836 836
  namespace _connectivity_bits {
837 837

	
838 838
    template <typename Digraph>
839 839
    class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
840 840
    public:
841 841
      typedef typename Digraph::Node Node;
842 842
      typedef typename Digraph::Arc Arc;
843 843
      typedef typename Digraph::Edge Edge;
844 844

	
845 845
      CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
846 846
        : _graph(graph), _compNum(compNum),
847 847
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
848 848

	
849 849
      void start(const Node& node) {
850 850
        _predMap.set(node, INVALID);
851 851
      }
852 852

	
853 853
      void reach(const Node& node) {
854 854
        _numMap.set(node, _num);
855 855
        _retMap.set(node, _num);
856 856
        ++_num;
857 857
      }
858 858

	
859 859
      void leave(const Node& node) {
860 860
        if (_numMap[node] <= _retMap[node]) {
861 861
          ++_compNum;
862 862
        }
863 863
      }
864 864

	
865 865
      void discover(const Arc& edge) {
866 866
        _predMap.set(_graph.target(edge), edge);
867 867
      }
868 868

	
869 869
      void examine(const Arc& edge) {
870 870
        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
871 871
          return;
872 872
        }
873 873
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
874 874
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
875 875
        }
876 876
      }
877 877

	
878 878
      void backtrack(const Arc& edge) {
879 879
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
880 880
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
881 881
        }
882 882
      }
883 883

	
884 884
    private:
885 885
      const Digraph& _graph;
886 886
      int& _compNum;
887 887

	
888 888
      typename Digraph::template NodeMap<int> _numMap;
889 889
      typename Digraph::template NodeMap<int> _retMap;
890 890
      typename Digraph::template NodeMap<Arc> _predMap;
891 891
      int _num;
892 892
    };
893 893

	
894 894
    template <typename Digraph, typename NodeMap>
895 895
    class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
896 896
    public:
897 897
      typedef typename Digraph::Node Node;
898 898
      typedef typename Digraph::Arc Arc;
899 899
      typedef typename Digraph::Edge Edge;
900 900

	
901 901
      BiEdgeConnectedComponentsVisitor(const Digraph& graph,
902 902
                                       NodeMap& compMap, int &compNum)
903 903
        : _graph(graph), _compMap(compMap), _compNum(compNum),
904 904
          _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
905 905

	
906 906
      void start(const Node& node) {
907 907
        _predMap.set(node, INVALID);
908 908
      }
909 909

	
910 910
      void reach(const Node& node) {
911 911
        _numMap.set(node, _num);
912 912
        _retMap.set(node, _num);
913 913
        _nodeStack.push(node);
914 914
        ++_num;
915 915
      }
916 916

	
917 917
      void leave(const Node& node) {
918 918
        if (_numMap[node] <= _retMap[node]) {
919 919
          while (_nodeStack.top() != node) {
920 920
            _compMap.set(_nodeStack.top(), _compNum);
921 921
            _nodeStack.pop();
922 922
          }
923 923
          _compMap.set(node, _compNum);
924 924
          _nodeStack.pop();
925 925
          ++_compNum;
926 926
        }
927 927
      }
928 928

	
929 929
      void discover(const Arc& edge) {
930 930
        _predMap.set(_graph.target(edge), edge);
931 931
      }
932 932

	
933 933
      void examine(const Arc& edge) {
934 934
        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
935 935
          return;
936 936
        }
937 937
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
938 938
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
939 939
        }
940 940
      }
941 941

	
942 942
      void backtrack(const Arc& edge) {
943 943
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
944 944
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
945 945
        }
946 946
      }
947 947

	
948 948
    private:
949 949
      const Digraph& _graph;
950 950
      NodeMap& _compMap;
951 951
      int& _compNum;
952 952

	
953 953
      typename Digraph::template NodeMap<int> _numMap;
954 954
      typename Digraph::template NodeMap<int> _retMap;
955 955
      typename Digraph::template NodeMap<Arc> _predMap;
956 956
      std::stack<Node> _nodeStack;
957 957
      int _num;
958 958
    };
959 959

	
960 960

	
961 961
    template <typename Digraph, typename ArcMap>
962 962
    class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
963 963
    public:
964 964
      typedef typename Digraph::Node Node;
965 965
      typedef typename Digraph::Arc Arc;
966 966
      typedef typename Digraph::Edge Edge;
967 967

	
968 968
      BiEdgeConnectedCutEdgesVisitor(const Digraph& graph,
... ...
@@ -977,599 +977,599 @@
977 977
      void reach(const Node& node) {
978 978
        _numMap.set(node, _num);
979 979
        _retMap.set(node, _num);
980 980
        ++_num;
981 981
      }
982 982

	
983 983
      void leave(const Node& node) {
984 984
        if (_numMap[node] <= _retMap[node]) {
985 985
          if (_predMap[node] != INVALID) {
986 986
            _cutMap.set(_predMap[node], true);
987 987
            ++_cutNum;
988 988
          }
989 989
        }
990 990
      }
991 991

	
992 992
      void discover(const Arc& edge) {
993 993
        _predMap.set(_graph.target(edge), edge);
994 994
      }
995 995

	
996 996
      void examine(const Arc& edge) {
997 997
        if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
998 998
          return;
999 999
        }
1000 1000
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
1001 1001
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
1002 1002
        }
1003 1003
      }
1004 1004

	
1005 1005
      void backtrack(const Arc& edge) {
1006 1006
        if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
1007 1007
          _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
1008 1008
        }
1009 1009
      }
1010 1010

	
1011 1011
    private:
1012 1012
      const Digraph& _graph;
1013 1013
      ArcMap& _cutMap;
1014 1014
      int& _cutNum;
1015 1015

	
1016 1016
      typename Digraph::template NodeMap<int> _numMap;
1017 1017
      typename Digraph::template NodeMap<int> _retMap;
1018 1018
      typename Digraph::template NodeMap<Arc> _predMap;
1019 1019
      int _num;
1020 1020
    };
1021 1021
  }
1022 1022

	
1023 1023
  template <typename Graph>
1024 1024
  int countBiEdgeConnectedComponents(const Graph& graph);
1025 1025

	
1026 1026
  /// \ingroup connectivity
1027 1027
  ///
1028 1028
  /// \brief Checks that the graph is bi-edge-connected.
1029 1029
  ///
1030 1030
  /// This function checks that the graph is bi-edge-connected. The undirected
1031 1031
  /// graph is bi-edge-connected when any two nodes are connected with two
1032 1032
  /// edge-disjoint paths.
1033 1033
  ///
1034 1034
  /// \param graph The undirected graph.
1035 1035
  /// \return The number of components.
1036 1036
  template <typename Graph>
1037 1037
  bool biEdgeConnected(const Graph& graph) {
1038 1038
    return countBiEdgeConnectedComponents(graph) <= 1;
1039 1039
  }
1040 1040

	
1041 1041
  /// \ingroup connectivity
1042 1042
  ///
1043 1043
  /// \brief Count the bi-edge-connected components.
1044 1044
  ///
1045 1045
  /// This function count the bi-edge-connected components in an undirected
1046 1046
  /// graph. The bi-edge-connected components are the classes of an equivalence
1047 1047
  /// relation on the nodes. Two nodes are in relationship when they are
1048 1048
  /// connected with at least two edge-disjoint paths.
1049 1049
  ///
1050 1050
  /// \param graph The undirected graph.
1051 1051
  /// \return The number of components.
1052 1052
  template <typename Graph>
1053 1053
  int countBiEdgeConnectedComponents(const Graph& graph) {
1054 1054
    checkConcept<concepts::Graph, Graph>();
1055 1055
    typedef typename Graph::NodeIt NodeIt;
1056 1056

	
1057 1057
    using namespace _connectivity_bits;
1058 1058

	
1059 1059
    typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor;
1060 1060

	
1061 1061
    int compNum = 0;
1062 1062
    Visitor visitor(graph, compNum);
1063 1063

	
1064 1064
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
1065 1065
    dfs.init();
1066 1066

	
1067 1067
    for (NodeIt it(graph); it != INVALID; ++it) {
1068 1068
      if (!dfs.reached(it)) {
1069 1069
        dfs.addSource(it);
1070 1070
        dfs.start();
1071 1071
      }
1072 1072
    }
1073 1073
    return compNum;
1074 1074
  }
1075 1075

	
1076 1076
  /// \ingroup connectivity
1077 1077
  ///
1078 1078
  /// \brief Find the bi-edge-connected components.
1079 1079
  ///
1080 1080
  /// This function finds the bi-edge-connected components in an undirected
1081 1081
  /// graph. The bi-edge-connected components are the classes of an equivalence
1082 1082
  /// relation on the nodes. Two nodes are in relationship when they are
1083 1083
  /// connected at least two edge-disjoint paths.
1084 1084
  ///
1085 1085
  /// \param graph The graph.
1086 1086
  /// \retval compMap A writable node map. The values will be set from 0 to
1087 1087
  /// the number of the biconnected components minus one. Each values
1088 1088
  /// of the map will be set exactly once, the values of a certain component
1089 1089
  /// will be set continuously.
1090 1090
  /// \return The number of components.
1091 1091
  ///
1092 1092
  template <typename Graph, typename NodeMap>
1093 1093
  int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
1094 1094
    checkConcept<concepts::Graph, Graph>();
1095 1095
    typedef typename Graph::NodeIt NodeIt;
1096 1096
    typedef typename Graph::Node Node;
1097 1097
    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
1098 1098

	
1099 1099
    using namespace _connectivity_bits;
1100 1100

	
1101 1101
    typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor;
1102 1102

	
1103 1103
    int compNum = 0;
1104 1104
    Visitor visitor(graph, compMap, compNum);
1105 1105

	
1106 1106
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
1107 1107
    dfs.init();
1108 1108

	
1109 1109
    for (NodeIt it(graph); it != INVALID; ++it) {
1110 1110
      if (!dfs.reached(it)) {
1111 1111
        dfs.addSource(it);
1112 1112
        dfs.start();
1113 1113
      }
1114 1114
    }
1115 1115
    return compNum;
1116 1116
  }
1117 1117

	
1118 1118
  /// \ingroup connectivity
1119 1119
  ///
1120 1120
  /// \brief Find the bi-edge-connected cut edges.
1121 1121
  ///
1122 1122
  /// This function finds the bi-edge-connected components in an undirected
1123 1123
  /// graph. The bi-edge-connected components are the classes of an equivalence
1124 1124
  /// relation on the nodes. Two nodes are in relationship when they are
1125 1125
  /// connected with at least two edge-disjoint paths. The bi-edge-connected
1126 1126
  /// components are separted by edges which are the cut edges of the
1127 1127
  /// components.
1128 1128
  ///
1129 1129
  /// \param graph The graph.
1130 1130
  /// \retval cutMap A writable node map. The values will be set true when the
1131 1131
  /// edge is a cut edge.
1132 1132
  /// \return The number of cut edges.
1133 1133
  template <typename Graph, typename EdgeMap>
1134 1134
  int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
1135 1135
    checkConcept<concepts::Graph, Graph>();
1136 1136
    typedef typename Graph::NodeIt NodeIt;
1137 1137
    typedef typename Graph::Edge Edge;
1138 1138
    checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>();
1139 1139

	
1140 1140
    using namespace _connectivity_bits;
1141 1141

	
1142 1142
    typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor;
1143 1143

	
1144 1144
    int cutNum = 0;
1145 1145
    Visitor visitor(graph, cutMap, cutNum);
1146 1146

	
1147 1147
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
1148 1148
    dfs.init();
1149 1149

	
1150 1150
    for (NodeIt it(graph); it != INVALID; ++it) {
1151 1151
      if (!dfs.reached(it)) {
1152 1152
        dfs.addSource(it);
1153 1153
        dfs.start();
1154 1154
      }
1155 1155
    }
1156 1156
    return cutNum;
1157 1157
  }
1158 1158

	
1159 1159

	
1160 1160
  namespace _connectivity_bits {
1161 1161

	
1162 1162
    template <typename Digraph, typename IntNodeMap>
1163 1163
    class TopologicalSortVisitor : public DfsVisitor<Digraph> {
1164 1164
    public:
1165 1165
      typedef typename Digraph::Node Node;
1166 1166
      typedef typename Digraph::Arc edge;
1167 1167

	
1168 1168
      TopologicalSortVisitor(IntNodeMap& order, int num)
1169 1169
        : _order(order), _num(num) {}
1170 1170

	
1171 1171
      void leave(const Node& node) {
1172 1172
        _order.set(node, --_num);
1173 1173
      }
1174 1174

	
1175 1175
    private:
1176 1176
      IntNodeMap& _order;
1177 1177
      int _num;
1178 1178
    };
1179 1179

	
1180 1180
  }
1181 1181

	
1182 1182
  /// \ingroup connectivity
1183 1183
  ///
1184 1184
  /// \brief Sort the nodes of a DAG into topolgical order.
1185 1185
  ///
1186 1186
  /// Sort the nodes of a DAG into topolgical order.
1187 1187
  ///
1188 1188
  /// \param graph The graph. It must be directed and acyclic.
1189 1189
  /// \retval order A writable node map. The values will be set from 0 to
1190 1190
  /// the number of the nodes in the graph minus one. Each values of the map
1191 1191
  /// will be set exactly once, the values  will be set descending order.
1192 1192
  ///
1193 1193
  /// \see checkedTopologicalSort
1194 1194
  /// \see dag
1195 1195
  template <typename Digraph, typename NodeMap>
1196 1196
  void topologicalSort(const Digraph& graph, NodeMap& order) {
1197 1197
    using namespace _connectivity_bits;
1198 1198

	
1199 1199
    checkConcept<concepts::Digraph, Digraph>();
1200 1200
    checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>();
1201 1201

	
1202 1202
    typedef typename Digraph::Node Node;
1203 1203
    typedef typename Digraph::NodeIt NodeIt;
1204 1204
    typedef typename Digraph::Arc Arc;
1205 1205

	
1206 1206
    TopologicalSortVisitor<Digraph, NodeMap>
1207 1207
      visitor(order, countNodes(graph));
1208 1208

	
1209 1209
    DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
1210 1210
      dfs(graph, visitor);
1211 1211

	
1212 1212
    dfs.init();
1213 1213
    for (NodeIt it(graph); it != INVALID; ++it) {
1214 1214
      if (!dfs.reached(it)) {
1215 1215
        dfs.addSource(it);
1216 1216
        dfs.start();
1217 1217
      }
1218 1218
    }
1219 1219
  }
1220 1220

	
1221 1221
  /// \ingroup connectivity
1222 1222
  ///
1223 1223
  /// \brief Sort the nodes of a DAG into topolgical order.
1224 1224
  ///
1225 1225
  /// Sort the nodes of a DAG into topolgical order. It also checks
1226 1226
  /// that the given graph is DAG.
1227 1227
  ///
1228 1228
  /// \param digraph The graph. It must be directed and acyclic.
1229 1229
  /// \retval order A readable - writable node map. The values will be set
1230 1230
  /// from 0 to the number of the nodes in the graph minus one. Each values
1231 1231
  /// of the map will be set exactly once, the values will be set descending
1232 1232
  /// order.
1233
  /// \return %False when the graph is not DAG.
1233
  /// \return \c false when the graph is not DAG.
1234 1234
  ///
1235 1235
  /// \see topologicalSort
1236 1236
  /// \see dag
1237 1237
  template <typename Digraph, typename NodeMap>
1238 1238
  bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
1239 1239
    using namespace _connectivity_bits;
1240 1240

	
1241 1241
    checkConcept<concepts::Digraph, Digraph>();
1242 1242
    checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>,
1243 1243
      NodeMap>();
1244 1244

	
1245 1245
    typedef typename Digraph::Node Node;
1246 1246
    typedef typename Digraph::NodeIt NodeIt;
1247 1247
    typedef typename Digraph::Arc Arc;
1248 1248

	
1249 1249
    for (NodeIt it(digraph); it != INVALID; ++it) {
1250 1250
      order.set(it, -1);
1251 1251
    }
1252 1252

	
1253 1253
    TopologicalSortVisitor<Digraph, NodeMap>
1254 1254
      visitor(order, countNodes(digraph));
1255 1255

	
1256 1256
    DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
1257 1257
      dfs(digraph, visitor);
1258 1258

	
1259 1259
    dfs.init();
1260 1260
    for (NodeIt it(digraph); it != INVALID; ++it) {
1261 1261
      if (!dfs.reached(it)) {
1262 1262
        dfs.addSource(it);
1263 1263
        while (!dfs.emptyQueue()) {
1264 1264
           Arc arc = dfs.nextArc();
1265 1265
           Node target = digraph.target(arc);
1266 1266
           if (dfs.reached(target) && order[target] == -1) {
1267 1267
             return false;
1268 1268
           }
1269 1269
           dfs.processNextArc();
1270 1270
         }
1271 1271
      }
1272 1272
    }
1273 1273
    return true;
1274 1274
  }
1275 1275

	
1276 1276
  /// \ingroup connectivity
1277 1277
  ///
1278 1278
  /// \brief Check that the given directed graph is a DAG.
1279 1279
  ///
1280 1280
  /// Check that the given directed graph is a DAG. The DAG is
1281 1281
  /// an Directed Acyclic Digraph.
1282
  /// \return %False when the graph is not DAG.
1282
  /// \return \c false when the graph is not DAG.
1283 1283
  /// \see acyclic
1284 1284
  template <typename Digraph>
1285 1285
  bool dag(const Digraph& digraph) {
1286 1286

	
1287 1287
    checkConcept<concepts::Digraph, Digraph>();
1288 1288

	
1289 1289
    typedef typename Digraph::Node Node;
1290 1290
    typedef typename Digraph::NodeIt NodeIt;
1291 1291
    typedef typename Digraph::Arc Arc;
1292 1292

	
1293 1293
    typedef typename Digraph::template NodeMap<bool> ProcessedMap;
1294 1294

	
1295 1295
    typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>::
1296 1296
      Create dfs(digraph);
1297 1297

	
1298 1298
    ProcessedMap processed(digraph);
1299 1299
    dfs.processedMap(processed);
1300 1300

	
1301 1301
    dfs.init();
1302 1302
    for (NodeIt it(digraph); it != INVALID; ++it) {
1303 1303
      if (!dfs.reached(it)) {
1304 1304
        dfs.addSource(it);
1305 1305
        while (!dfs.emptyQueue()) {
1306 1306
          Arc edge = dfs.nextArc();
1307 1307
          Node target = digraph.target(edge);
1308 1308
          if (dfs.reached(target) && !processed[target]) {
1309 1309
            return false;
1310 1310
          }
1311 1311
          dfs.processNextArc();
1312 1312
        }
1313 1313
      }
1314 1314
    }
1315 1315
    return true;
1316 1316
  }
1317 1317

	
1318 1318
  /// \ingroup connectivity
1319 1319
  ///
1320 1320
  /// \brief Check that the given undirected graph is acyclic.
1321 1321
  ///
1322 1322
  /// Check that the given undirected graph acyclic.
1323 1323
  /// \param graph The undirected graph.
1324
  /// \return %True when there is no circle in the graph.
1324
  /// \return \c true when there is no circle in the graph.
1325 1325
  /// \see dag
1326 1326
  template <typename Graph>
1327 1327
  bool acyclic(const Graph& graph) {
1328 1328
    checkConcept<concepts::Graph, Graph>();
1329 1329
    typedef typename Graph::Node Node;
1330 1330
    typedef typename Graph::NodeIt NodeIt;
1331 1331
    typedef typename Graph::Arc Arc;
1332 1332
    Dfs<Graph> dfs(graph);
1333 1333
    dfs.init();
1334 1334
    for (NodeIt it(graph); it != INVALID; ++it) {
1335 1335
      if (!dfs.reached(it)) {
1336 1336
        dfs.addSource(it);
1337 1337
        while (!dfs.emptyQueue()) {
1338 1338
          Arc edge = dfs.nextArc();
1339 1339
          Node source = graph.source(edge);
1340 1340
          Node target = graph.target(edge);
1341 1341
          if (dfs.reached(target) &&
1342 1342
              dfs.predArc(source) != graph.oppositeArc(edge)) {
1343 1343
            return false;
1344 1344
          }
1345 1345
          dfs.processNextArc();
1346 1346
        }
1347 1347
      }
1348 1348
    }
1349 1349
    return true;
1350 1350
  }
1351 1351

	
1352 1352
  /// \ingroup connectivity
1353 1353
  ///
1354 1354
  /// \brief Check that the given undirected graph is tree.
1355 1355
  ///
1356 1356
  /// Check that the given undirected graph is tree.
1357 1357
  /// \param graph The undirected graph.
1358
  /// \return %True when the graph is acyclic and connected.
1358
  /// \return \c true when the graph is acyclic and connected.
1359 1359
  template <typename Graph>
1360 1360
  bool tree(const Graph& graph) {
1361 1361
    checkConcept<concepts::Graph, Graph>();
1362 1362
    typedef typename Graph::Node Node;
1363 1363
    typedef typename Graph::NodeIt NodeIt;
1364 1364
    typedef typename Graph::Arc Arc;
1365 1365
    Dfs<Graph> dfs(graph);
1366 1366
    dfs.init();
1367 1367
    dfs.addSource(NodeIt(graph));
1368 1368
    while (!dfs.emptyQueue()) {
1369 1369
      Arc edge = dfs.nextArc();
1370 1370
      Node source = graph.source(edge);
1371 1371
      Node target = graph.target(edge);
1372 1372
      if (dfs.reached(target) &&
1373 1373
          dfs.predArc(source) != graph.oppositeArc(edge)) {
1374 1374
        return false;
1375 1375
      }
1376 1376
      dfs.processNextArc();
1377 1377
    }
1378 1378
    for (NodeIt it(graph); it != INVALID; ++it) {
1379 1379
      if (!dfs.reached(it)) {
1380 1380
        return false;
1381 1381
      }
1382 1382
    }
1383 1383
    return true;
1384 1384
  }
1385 1385

	
1386 1386
  namespace _connectivity_bits {
1387 1387

	
1388 1388
    template <typename Digraph>
1389 1389
    class BipartiteVisitor : public BfsVisitor<Digraph> {
1390 1390
    public:
1391 1391
      typedef typename Digraph::Arc Arc;
1392 1392
      typedef typename Digraph::Node Node;
1393 1393

	
1394 1394
      BipartiteVisitor(const Digraph& graph, bool& bipartite)
1395 1395
        : _graph(graph), _part(graph), _bipartite(bipartite) {}
1396 1396

	
1397 1397
      void start(const Node& node) {
1398 1398
        _part[node] = true;
1399 1399
      }
1400 1400
      void discover(const Arc& edge) {
1401 1401
        _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
1402 1402
      }
1403 1403
      void examine(const Arc& edge) {
1404 1404
        _bipartite = _bipartite &&
1405 1405
          _part[_graph.target(edge)] != _part[_graph.source(edge)];
1406 1406
      }
1407 1407

	
1408 1408
    private:
1409 1409

	
1410 1410
      const Digraph& _graph;
1411 1411
      typename Digraph::template NodeMap<bool> _part;
1412 1412
      bool& _bipartite;
1413 1413
    };
1414 1414

	
1415 1415
    template <typename Digraph, typename PartMap>
1416 1416
    class BipartitePartitionsVisitor : public BfsVisitor<Digraph> {
1417 1417
    public:
1418 1418
      typedef typename Digraph::Arc Arc;
1419 1419
      typedef typename Digraph::Node Node;
1420 1420

	
1421 1421
      BipartitePartitionsVisitor(const Digraph& graph,
1422 1422
                                 PartMap& part, bool& bipartite)
1423 1423
        : _graph(graph), _part(part), _bipartite(bipartite) {}
1424 1424

	
1425 1425
      void start(const Node& node) {
1426 1426
        _part.set(node, true);
1427 1427
      }
1428 1428
      void discover(const Arc& edge) {
1429 1429
        _part.set(_graph.target(edge), !_part[_graph.source(edge)]);
1430 1430
      }
1431 1431
      void examine(const Arc& edge) {
1432 1432
        _bipartite = _bipartite &&
1433 1433
          _part[_graph.target(edge)] != _part[_graph.source(edge)];
1434 1434
      }
1435 1435

	
1436 1436
    private:
1437 1437

	
1438 1438
      const Digraph& _graph;
1439 1439
      PartMap& _part;
1440 1440
      bool& _bipartite;
1441 1441
    };
1442 1442
  }
1443 1443

	
1444 1444
  /// \ingroup connectivity
1445 1445
  ///
1446 1446
  /// \brief Check if the given undirected graph is bipartite or not
1447 1447
  ///
1448 1448
  /// The function checks if the given undirected \c graph graph is bipartite
1449 1449
  /// or not. The \ref Bfs algorithm is used to calculate the result.
1450 1450
  /// \param graph The undirected graph.
1451
  /// \return %True if \c graph is bipartite, %false otherwise.
1451
  /// \return \c true if \c graph is bipartite, \c false otherwise.
1452 1452
  /// \sa bipartitePartitions
1453 1453
  template<typename Graph>
1454 1454
  inline bool bipartite(const Graph &graph){
1455 1455
    using namespace _connectivity_bits;
1456 1456

	
1457 1457
    checkConcept<concepts::Graph, Graph>();
1458 1458

	
1459 1459
    typedef typename Graph::NodeIt NodeIt;
1460 1460
    typedef typename Graph::ArcIt ArcIt;
1461 1461

	
1462 1462
    bool bipartite = true;
1463 1463

	
1464 1464
    BipartiteVisitor<Graph>
1465 1465
      visitor(graph, bipartite);
1466 1466
    BfsVisit<Graph, BipartiteVisitor<Graph> >
1467 1467
      bfs(graph, visitor);
1468 1468
    bfs.init();
1469 1469
    for(NodeIt it(graph); it != INVALID; ++it) {
1470 1470
      if(!bfs.reached(it)){
1471 1471
        bfs.addSource(it);
1472 1472
        while (!bfs.emptyQueue()) {
1473 1473
          bfs.processNextNode();
1474 1474
          if (!bipartite) return false;
1475 1475
        }
1476 1476
      }
1477 1477
    }
1478 1478
    return true;
1479 1479
  }
1480 1480

	
1481 1481
  /// \ingroup connectivity
1482 1482
  ///
1483 1483
  /// \brief Check if the given undirected graph is bipartite or not
1484 1484
  ///
1485 1485
  /// The function checks if the given undirected graph is bipartite
1486 1486
  /// or not. The  \ref  Bfs  algorithm  is   used  to  calculate the result.
1487 1487
  /// During the execution, the \c partMap will be set as the two
1488 1488
  /// partitions of the graph.
1489 1489
  /// \param graph The undirected graph.
1490 1490
  /// \retval partMap A writable bool map of nodes. It will be set as the
1491 1491
  /// two partitions of the graph.
1492
  /// \return %True if \c graph is bipartite, %false otherwise.
1492
  /// \return \c true if \c graph is bipartite, \c false otherwise.
1493 1493
  template<typename Graph, typename NodeMap>
1494 1494
  inline bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
1495 1495
    using namespace _connectivity_bits;
1496 1496

	
1497 1497
    checkConcept<concepts::Graph, Graph>();
1498 1498

	
1499 1499
    typedef typename Graph::Node Node;
1500 1500
    typedef typename Graph::NodeIt NodeIt;
1501 1501
    typedef typename Graph::ArcIt ArcIt;
1502 1502

	
1503 1503
    bool bipartite = true;
1504 1504

	
1505 1505
    BipartitePartitionsVisitor<Graph, NodeMap>
1506 1506
      visitor(graph, partMap, bipartite);
1507 1507
    BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> >
1508 1508
      bfs(graph, visitor);
1509 1509
    bfs.init();
1510 1510
    for(NodeIt it(graph); it != INVALID; ++it) {
1511 1511
      if(!bfs.reached(it)){
1512 1512
        bfs.addSource(it);
1513 1513
        while (!bfs.emptyQueue()) {
1514 1514
          bfs.processNextNode();
1515 1515
          if (!bipartite) return false;
1516 1516
        }
1517 1517
      }
1518 1518
    }
1519 1519
    return true;
1520 1520
  }
1521 1521

	
1522 1522
  /// \brief Returns true when there are not loop edges in the graph.
1523 1523
  ///
1524 1524
  /// Returns true when there are not loop edges in the graph.
1525 1525
  template <typename Digraph>
1526 1526
  bool loopFree(const Digraph& digraph) {
1527 1527
    for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) {
1528 1528
      if (digraph.source(it) == digraph.target(it)) return false;
1529 1529
    }
1530 1530
    return true;
1531 1531
  }
1532 1532

	
1533 1533
  /// \brief Returns true when there are not parallel edges in the graph.
1534 1534
  ///
1535 1535
  /// Returns true when there are not parallel edges in the graph.
1536 1536
  template <typename Digraph>
1537 1537
  bool parallelFree(const Digraph& digraph) {
1538 1538
    typename Digraph::template NodeMap<bool> reached(digraph, false);
1539 1539
    for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
1540 1540
      for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
1541 1541
        if (reached[digraph.target(a)]) return false;
1542 1542
        reached.set(digraph.target(a), true);
1543 1543
      }
1544 1544
      for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
1545 1545
        reached.set(digraph.target(a), false);
1546 1546
      }
1547 1547
    }
1548 1548
    return true;
1549 1549
  }
1550 1550

	
1551 1551
  /// \brief Returns true when there are not loop edges and parallel
1552 1552
  /// edges in the graph.
1553 1553
  ///
1554 1554
  /// Returns true when there are not loop edges and parallel edges in
1555 1555
  /// the graph.
1556 1556
  template <typename Digraph>
1557 1557
  bool simpleDigraph(const Digraph& digraph) {
1558 1558
    typename Digraph::template NodeMap<bool> reached(digraph, false);
1559 1559
    for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
1560 1560
      reached.set(n, true);
1561 1561
      for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
1562 1562
        if (reached[digraph.target(a)]) return false;
1563 1563
        reached.set(digraph.target(a), true);
1564 1564
      }
1565 1565
      for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
1566 1566
        reached.set(digraph.target(a), false);
1567 1567
      }
1568 1568
      reached.set(n, false);
1569 1569
    }
1570 1570
    return true;
1571 1571
  }
1572 1572

	
1573 1573
} //namespace lemon
1574 1574

	
1575 1575
#endif //LEMON_CONNECTIVITY_H

Changeset was too big and was cut off... Show full diff

0 comments (0 inline)