0
7
0
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_ADAPTORS_H |
| 20 | 20 |
#define LEMON_ADAPTORS_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup graph_adaptors |
| 23 | 23 |
/// \file |
| 24 | 24 |
/// \brief Adaptor classes for digraphs and graphs |
| 25 | 25 |
/// |
| 26 | 26 |
/// This file contains several useful adaptors for digraphs and graphs. |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/maps.h> |
| 30 | 30 |
#include <lemon/bits/variant.h> |
| 31 | 31 |
|
| 32 | 32 |
#include <lemon/bits/graph_adaptor_extender.h> |
| 33 |
#include <lemon/bits/map_extender.h> |
|
| 33 | 34 |
#include <lemon/tolerance.h> |
| 34 | 35 |
|
| 35 | 36 |
#include <algorithm> |
| 36 | 37 |
|
| 37 | 38 |
namespace lemon {
|
| 38 | 39 |
|
| 39 | 40 |
#ifdef _MSC_VER |
| 40 | 41 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED |
| 41 | 42 |
#else |
| 42 | 43 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED |
| 43 | 44 |
#endif |
| 44 | 45 |
|
| 45 | 46 |
template<typename DGR> |
| 46 | 47 |
class DigraphAdaptorBase {
|
| 47 | 48 |
public: |
| 48 | 49 |
typedef DGR Digraph; |
| 49 | 50 |
typedef DigraphAdaptorBase Adaptor; |
| 50 | 51 |
|
| 51 | 52 |
protected: |
| 52 | 53 |
DGR* _digraph; |
| 53 | 54 |
DigraphAdaptorBase() : _digraph(0) { }
|
| 54 | 55 |
void initialize(DGR& digraph) { _digraph = &digraph; }
|
| 55 | 56 |
|
| 56 | 57 |
public: |
| 57 | 58 |
DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { }
|
| 58 | 59 |
|
| 59 | 60 |
typedef typename DGR::Node Node; |
| 60 | 61 |
typedef typename DGR::Arc Arc; |
| 61 | 62 |
|
| 62 | 63 |
void first(Node& i) const { _digraph->first(i); }
|
| 63 | 64 |
void first(Arc& i) const { _digraph->first(i); }
|
| 64 | 65 |
void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
|
| 65 | 66 |
void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
|
| 66 | 67 |
|
| 67 | 68 |
void next(Node& i) const { _digraph->next(i); }
|
| 68 | 69 |
void next(Arc& i) const { _digraph->next(i); }
|
| 69 | 70 |
void nextIn(Arc& i) const { _digraph->nextIn(i); }
|
| 70 | 71 |
void nextOut(Arc& i) const { _digraph->nextOut(i); }
|
| 71 | 72 |
|
| 72 | 73 |
Node source(const Arc& a) const { return _digraph->source(a); }
|
| 73 | 74 |
Node target(const Arc& a) const { return _digraph->target(a); }
|
| 74 | 75 |
|
| 75 | 76 |
typedef NodeNumTagIndicator<DGR> NodeNumTag; |
| 76 | 77 |
int nodeNum() const { return _digraph->nodeNum(); }
|
| 77 | 78 |
|
| 78 | 79 |
typedef ArcNumTagIndicator<DGR> ArcNumTag; |
| 79 | 80 |
int arcNum() const { return _digraph->arcNum(); }
|
| 80 | 81 |
|
| 81 | 82 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
| 82 | 83 |
Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const {
|
| 83 | 84 |
return _digraph->findArc(u, v, prev); |
| 84 | 85 |
} |
| 85 | 86 |
|
| 86 | 87 |
Node addNode() { return _digraph->addNode(); }
|
| 87 | 88 |
Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
|
| 88 | 89 |
|
| 89 | 90 |
void erase(const Node& n) { _digraph->erase(n); }
|
| 90 | 91 |
void erase(const Arc& a) { _digraph->erase(a); }
|
| 91 | 92 |
|
| 92 | 93 |
void clear() { _digraph->clear(); }
|
| 93 | 94 |
|
| 94 | 95 |
int id(const Node& n) const { return _digraph->id(n); }
|
| 95 | 96 |
int id(const Arc& a) const { return _digraph->id(a); }
|
| 96 | 97 |
|
| 97 | 98 |
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
|
| 98 | 99 |
Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
|
| 99 | 100 |
|
| 100 | 101 |
int maxNodeId() const { return _digraph->maxNodeId(); }
|
| 101 | 102 |
int maxArcId() const { return _digraph->maxArcId(); }
|
| 102 | 103 |
|
| 103 | 104 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
| 104 | 105 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
|
| 105 | 106 |
|
| 106 | 107 |
typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier; |
| 107 | 108 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
|
| 108 | 109 |
|
| 109 | 110 |
template <typename V> |
| 110 | 111 |
class NodeMap : public DGR::template NodeMap<V> {
|
| 111 | 112 |
public: |
| 112 | 113 |
|
| 113 | 114 |
typedef typename DGR::template NodeMap<V> Parent; |
| 114 | 115 |
|
| 115 | 116 |
explicit NodeMap(const Adaptor& adaptor) |
| 116 | 117 |
: Parent(*adaptor._digraph) {}
|
| 117 | 118 |
|
| 118 | 119 |
NodeMap(const Adaptor& adaptor, const V& value) |
| 119 | 120 |
: Parent(*adaptor._digraph, value) { }
|
| 120 | 121 |
|
| 121 | 122 |
private: |
| 122 | 123 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 123 | 124 |
return operator=<NodeMap>(cmap); |
| 124 | 125 |
} |
| 125 | 126 |
|
| 126 | 127 |
template <typename CMap> |
| 127 | 128 |
NodeMap& operator=(const CMap& cmap) {
|
| 128 | 129 |
Parent::operator=(cmap); |
| 129 | 130 |
return *this; |
| 130 | 131 |
} |
| 131 | 132 |
|
| 132 | 133 |
}; |
| 133 | 134 |
|
| 134 | 135 |
template <typename V> |
| 135 | 136 |
class ArcMap : public DGR::template ArcMap<V> {
|
| 136 | 137 |
public: |
| 137 | 138 |
|
| 138 | 139 |
typedef typename DGR::template ArcMap<V> Parent; |
| 139 | 140 |
|
| 140 | 141 |
explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor) |
| 141 | 142 |
: Parent(*adaptor._digraph) {}
|
| 142 | 143 |
|
| 143 | 144 |
ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value) |
| 144 | 145 |
: Parent(*adaptor._digraph, value) {}
|
| 145 | 146 |
|
| 146 | 147 |
private: |
| 147 | 148 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 148 | 149 |
return operator=<ArcMap>(cmap); |
| 149 | 150 |
} |
| 150 | 151 |
|
| 151 | 152 |
template <typename CMap> |
| 152 | 153 |
ArcMap& operator=(const CMap& cmap) {
|
| 153 | 154 |
Parent::operator=(cmap); |
| 154 | 155 |
return *this; |
| 155 | 156 |
} |
| 156 | 157 |
|
| 157 | 158 |
}; |
| 158 | 159 |
|
| 159 | 160 |
}; |
| 160 | 161 |
|
| 161 | 162 |
template<typename GR> |
| 162 | 163 |
class GraphAdaptorBase {
|
| 163 | 164 |
public: |
| 164 | 165 |
typedef GR Graph; |
| 165 | 166 |
|
| 166 | 167 |
protected: |
| 167 | 168 |
GR* _graph; |
| 168 | 169 |
|
| 169 | 170 |
GraphAdaptorBase() : _graph(0) {}
|
| 170 | 171 |
|
| 171 | 172 |
void initialize(GR& graph) { _graph = &graph; }
|
| 172 | 173 |
|
| 173 | 174 |
public: |
| 174 | 175 |
GraphAdaptorBase(GR& graph) : _graph(&graph) {}
|
| 175 | 176 |
|
| 176 | 177 |
typedef typename GR::Node Node; |
| 177 | 178 |
typedef typename GR::Arc Arc; |
| 178 | 179 |
typedef typename GR::Edge Edge; |
| 179 | 180 |
|
| 180 | 181 |
void first(Node& i) const { _graph->first(i); }
|
| 181 | 182 |
void first(Arc& i) const { _graph->first(i); }
|
| 182 | 183 |
void first(Edge& i) const { _graph->first(i); }
|
| 183 | 184 |
void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
|
| 184 | 185 |
void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
|
| 185 | 186 |
void firstInc(Edge &i, bool &d, const Node &n) const {
|
| 186 | 187 |
_graph->firstInc(i, d, n); |
| 187 | 188 |
} |
| 188 | 189 |
|
| 189 | 190 |
void next(Node& i) const { _graph->next(i); }
|
| 190 | 191 |
void next(Arc& i) const { _graph->next(i); }
|
| 191 | 192 |
void next(Edge& i) const { _graph->next(i); }
|
| 192 | 193 |
void nextIn(Arc& i) const { _graph->nextIn(i); }
|
| 193 | 194 |
void nextOut(Arc& i) const { _graph->nextOut(i); }
|
| 194 | 195 |
void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
|
| 195 | 196 |
|
| 196 | 197 |
Node u(const Edge& e) const { return _graph->u(e); }
|
| 197 | 198 |
Node v(const Edge& e) const { return _graph->v(e); }
|
| 198 | 199 |
|
| 199 | 200 |
Node source(const Arc& a) const { return _graph->source(a); }
|
| 200 | 201 |
Node target(const Arc& a) const { return _graph->target(a); }
|
| 201 | 202 |
|
| 202 | 203 |
typedef NodeNumTagIndicator<Graph> NodeNumTag; |
| 203 | 204 |
int nodeNum() const { return _graph->nodeNum(); }
|
| 204 | 205 |
|
| 205 | 206 |
typedef ArcNumTagIndicator<Graph> ArcNumTag; |
| 206 | 207 |
int arcNum() const { return _graph->arcNum(); }
|
| 207 | 208 |
|
| 208 | 209 |
typedef EdgeNumTagIndicator<Graph> EdgeNumTag; |
| 209 | 210 |
int edgeNum() const { return _graph->edgeNum(); }
|
| 210 | 211 |
|
| 211 | 212 |
typedef FindArcTagIndicator<Graph> FindArcTag; |
| 212 | 213 |
Arc findArc(const Node& u, const Node& v, |
| 213 | 214 |
const Arc& prev = INVALID) const {
|
| 214 | 215 |
return _graph->findArc(u, v, prev); |
| 215 | 216 |
} |
| 216 | 217 |
|
| 217 | 218 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
| 218 | 219 |
Edge findEdge(const Node& u, const Node& v, |
| 219 | 220 |
const Edge& prev = INVALID) const {
|
| 220 | 221 |
return _graph->findEdge(u, v, prev); |
| 221 | 222 |
} |
| 222 | 223 |
|
| 223 | 224 |
Node addNode() { return _graph->addNode(); }
|
| 224 | 225 |
Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
|
| 225 | 226 |
|
| 226 | 227 |
void erase(const Node& i) { _graph->erase(i); }
|
| 227 | 228 |
void erase(const Edge& i) { _graph->erase(i); }
|
| 228 | 229 |
|
| 229 | 230 |
void clear() { _graph->clear(); }
|
| 230 | 231 |
|
| 231 | 232 |
bool direction(const Arc& a) const { return _graph->direction(a); }
|
| 232 | 233 |
Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
|
| 233 | 234 |
|
| 234 | 235 |
int id(const Node& v) const { return _graph->id(v); }
|
| 235 | 236 |
int id(const Arc& a) const { return _graph->id(a); }
|
| 236 | 237 |
int id(const Edge& e) const { return _graph->id(e); }
|
| 237 | 238 |
|
| 238 | 239 |
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
|
| 239 | 240 |
Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
|
| 240 | 241 |
Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
|
| 241 | 242 |
|
| 242 | 243 |
int maxNodeId() const { return _graph->maxNodeId(); }
|
| 243 | 244 |
int maxArcId() const { return _graph->maxArcId(); }
|
| 244 | 245 |
int maxEdgeId() const { return _graph->maxEdgeId(); }
|
| 245 | 246 |
|
| 246 | 247 |
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier; |
| 247 | 248 |
NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
|
| 248 | 249 |
|
| 249 | 250 |
typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier; |
| 250 | 251 |
ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
|
| 251 | 252 |
|
| 252 | 253 |
typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier; |
| 253 | 254 |
EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
|
| 254 | 255 |
|
| 255 | 256 |
template <typename V> |
| 256 | 257 |
class NodeMap : public GR::template NodeMap<V> {
|
| 257 | 258 |
public: |
| 258 | 259 |
typedef typename GR::template NodeMap<V> Parent; |
| 259 | 260 |
explicit NodeMap(const GraphAdaptorBase<GR>& adapter) |
| 260 | 261 |
: Parent(*adapter._graph) {}
|
| 261 | 262 |
NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
| 262 | 263 |
: Parent(*adapter._graph, value) {}
|
| 263 | 264 |
|
| 264 | 265 |
private: |
| 265 | 266 |
NodeMap& operator=(const NodeMap& cmap) {
|
| 266 | 267 |
return operator=<NodeMap>(cmap); |
| 267 | 268 |
} |
| 268 | 269 |
|
| 269 | 270 |
template <typename CMap> |
| 270 | 271 |
NodeMap& operator=(const CMap& cmap) {
|
| 271 | 272 |
Parent::operator=(cmap); |
| 272 | 273 |
return *this; |
| 273 | 274 |
} |
| 274 | 275 |
|
| 275 | 276 |
}; |
| 276 | 277 |
|
| 277 | 278 |
template <typename V> |
| 278 | 279 |
class ArcMap : public GR::template ArcMap<V> {
|
| 279 | 280 |
public: |
| 280 | 281 |
typedef typename GR::template ArcMap<V> Parent; |
| 281 | 282 |
explicit ArcMap(const GraphAdaptorBase<GR>& adapter) |
| 282 | 283 |
: Parent(*adapter._graph) {}
|
| 283 | 284 |
ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
| 284 | 285 |
: Parent(*adapter._graph, value) {}
|
| 285 | 286 |
|
| 286 | 287 |
private: |
| 287 | 288 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 288 | 289 |
return operator=<ArcMap>(cmap); |
| 289 | 290 |
} |
| 290 | 291 |
|
| 291 | 292 |
template <typename CMap> |
| 292 | 293 |
ArcMap& operator=(const CMap& cmap) {
|
| 293 | 294 |
Parent::operator=(cmap); |
| 294 | 295 |
return *this; |
| 295 | 296 |
} |
| 296 | 297 |
}; |
| 297 | 298 |
|
| 298 | 299 |
template <typename V> |
| 299 | 300 |
class EdgeMap : public GR::template EdgeMap<V> {
|
| 300 | 301 |
public: |
| 301 | 302 |
typedef typename GR::template EdgeMap<V> Parent; |
| 302 | 303 |
explicit EdgeMap(const GraphAdaptorBase<GR>& adapter) |
| 303 | 304 |
: Parent(*adapter._graph) {}
|
| 304 | 305 |
EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value) |
| 305 | 306 |
: Parent(*adapter._graph, value) {}
|
| 306 | 307 |
|
| 307 | 308 |
private: |
| 308 | 309 |
EdgeMap& operator=(const EdgeMap& cmap) {
|
| 309 | 310 |
return operator=<EdgeMap>(cmap); |
| 310 | 311 |
} |
| 311 | 312 |
|
| 312 | 313 |
template <typename CMap> |
| 313 | 314 |
EdgeMap& operator=(const CMap& cmap) {
|
| 314 | 315 |
Parent::operator=(cmap); |
| 315 | 316 |
return *this; |
| 316 | 317 |
} |
| 317 | 318 |
}; |
| 318 | 319 |
|
| 319 | 320 |
}; |
| 320 | 321 |
|
| 321 | 322 |
template <typename DGR> |
| 322 | 323 |
class ReverseDigraphBase : public DigraphAdaptorBase<DGR> {
|
| 323 | 324 |
public: |
| 324 | 325 |
typedef DGR Digraph; |
| 325 | 326 |
typedef DigraphAdaptorBase<DGR> Parent; |
| 326 | 327 |
protected: |
| 327 | 328 |
ReverseDigraphBase() : Parent() { }
|
| 328 | 329 |
public: |
| 329 | 330 |
typedef typename Parent::Node Node; |
| 330 | 331 |
typedef typename Parent::Arc Arc; |
| 331 | 332 |
|
| 332 | 333 |
void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
|
| 333 | 334 |
void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
|
| 334 | 335 |
|
| 335 | 336 |
void nextIn(Arc& a) const { Parent::nextOut(a); }
|
| 336 | 337 |
void nextOut(Arc& a) const { Parent::nextIn(a); }
|
| 337 | 338 |
|
| 338 | 339 |
Node source(const Arc& a) const { return Parent::target(a); }
|
| 339 | 340 |
Node target(const Arc& a) const { return Parent::source(a); }
|
| 340 | 341 |
|
| 341 | 342 |
Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
|
| 342 | 343 |
|
| 343 | 344 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
| 344 | 345 |
Arc findArc(const Node& u, const Node& v, |
| 345 | 346 |
const Arc& prev = INVALID) const {
|
| 346 | 347 |
return Parent::findArc(v, u, prev); |
| 347 | 348 |
} |
| 348 | 349 |
|
| 349 | 350 |
}; |
| 350 | 351 |
|
| 351 | 352 |
/// \ingroup graph_adaptors |
| 352 | 353 |
/// |
| 353 | 354 |
/// \brief Adaptor class for reversing the orientation of the arcs in |
| 354 | 355 |
/// a digraph. |
| 355 | 356 |
/// |
| 356 | 357 |
/// ReverseDigraph can be used for reversing the arcs in a digraph. |
| 357 | 358 |
/// It conforms to the \ref concepts::Digraph "Digraph" concept. |
| 358 | 359 |
/// |
| 359 | 360 |
/// The adapted digraph can also be modified through this adaptor |
| 360 | 361 |
/// by adding or removing nodes or arcs, unless the \c GR template |
| 361 | 362 |
/// parameter is set to be \c const. |
| 362 | 363 |
/// |
| 363 | 364 |
/// \tparam DGR The type of the adapted digraph. |
| 364 | 365 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 365 | 366 |
/// It can also be specified to be \c const. |
| 366 | 367 |
/// |
| 367 | 368 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
| 368 | 369 |
/// digraph are convertible to each other. |
| 369 | 370 |
template<typename DGR> |
| 370 | 371 |
#ifdef DOXYGEN |
| 371 | 372 |
class ReverseDigraph {
|
| 372 | 373 |
#else |
| 373 | 374 |
class ReverseDigraph : |
| 374 | 375 |
public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > {
|
| 375 | 376 |
#endif |
| 376 | 377 |
public: |
| 377 | 378 |
/// The type of the adapted digraph. |
| 378 | 379 |
typedef DGR Digraph; |
| 379 | 380 |
typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent; |
| 380 | 381 |
protected: |
| 381 | 382 |
ReverseDigraph() { }
|
| 382 | 383 |
public: |
| 383 | 384 |
|
| 384 | 385 |
/// \brief Constructor |
| 385 | 386 |
/// |
| 386 | 387 |
/// Creates a reverse digraph adaptor for the given digraph. |
| 387 | 388 |
explicit ReverseDigraph(DGR& digraph) {
|
| 388 | 389 |
Parent::initialize(digraph); |
| 389 | 390 |
} |
| 390 | 391 |
}; |
| 391 | 392 |
|
| 392 | 393 |
/// \brief Returns a read-only ReverseDigraph adaptor |
| 393 | 394 |
/// |
| 394 | 395 |
/// This function just returns a read-only \ref ReverseDigraph adaptor. |
| 395 | 396 |
/// \ingroup graph_adaptors |
| 396 | 397 |
/// \relates ReverseDigraph |
| 397 | 398 |
template<typename DGR> |
| 398 | 399 |
ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) {
|
| 399 | 400 |
return ReverseDigraph<const DGR>(digraph); |
| 400 | 401 |
} |
| 401 | 402 |
|
| 402 | 403 |
|
| 403 | 404 |
template <typename DGR, typename NF, typename AF, bool ch = true> |
| 404 | 405 |
class SubDigraphBase : public DigraphAdaptorBase<DGR> {
|
| 405 | 406 |
public: |
| 406 | 407 |
typedef DGR Digraph; |
| 407 | 408 |
typedef NF NodeFilterMap; |
| 408 | 409 |
typedef AF ArcFilterMap; |
| 409 | 410 |
|
| 410 | 411 |
typedef SubDigraphBase Adaptor; |
| 411 | 412 |
typedef DigraphAdaptorBase<DGR> Parent; |
| 412 | 413 |
protected: |
| 413 | 414 |
NF* _node_filter; |
| 414 | 415 |
AF* _arc_filter; |
| 415 | 416 |
SubDigraphBase() |
| 416 | 417 |
: Parent(), _node_filter(0), _arc_filter(0) { }
|
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_EDGE_SET_EXTENDER_H |
| 20 | 20 |
#define LEMON_BITS_EDGE_SET_EXTENDER_H |
| 21 | 21 |
|
| 22 |
#include <lemon/core.h> |
|
| 22 | 23 |
#include <lemon/error.h> |
| 23 | 24 |
#include <lemon/bits/default_map.h> |
| 25 |
#include <lemon/bits/map_extender.h> |
|
| 24 | 26 |
|
| 25 | 27 |
///\ingroup digraphbits |
| 26 | 28 |
///\file |
| 27 | 29 |
///\brief Extenders for the arc set types |
| 28 | 30 |
namespace lemon {
|
| 29 | 31 |
|
| 30 | 32 |
/// \ingroup digraphbits |
| 31 | 33 |
/// |
| 32 | 34 |
/// \brief Extender for the ArcSets |
| 33 | 35 |
template <typename Base> |
| 34 | 36 |
class ArcSetExtender : public Base {
|
| 35 | 37 |
public: |
| 36 | 38 |
|
| 37 | 39 |
typedef Base Parent; |
| 38 | 40 |
typedef ArcSetExtender Digraph; |
| 39 | 41 |
|
| 40 | 42 |
// Base extensions |
| 41 | 43 |
|
| 42 | 44 |
typedef typename Parent::Node Node; |
| 43 | 45 |
typedef typename Parent::Arc Arc; |
| 44 | 46 |
|
| 45 | 47 |
int maxId(Node) const {
|
| 46 | 48 |
return Parent::maxNodeId(); |
| 47 | 49 |
} |
| 48 | 50 |
|
| 49 | 51 |
int maxId(Arc) const {
|
| 50 | 52 |
return Parent::maxArcId(); |
| 51 | 53 |
} |
| 52 | 54 |
|
| 53 | 55 |
Node fromId(int id, Node) const {
|
| 54 | 56 |
return Parent::nodeFromId(id); |
| 55 | 57 |
} |
| 56 | 58 |
|
| 57 | 59 |
Arc fromId(int id, Arc) const {
|
| 58 | 60 |
return Parent::arcFromId(id); |
| 59 | 61 |
} |
| 60 | 62 |
|
| 61 | 63 |
Node oppositeNode(const Node &n, const Arc &e) const {
|
| 62 | 64 |
if (n == Parent::source(e)) |
| 63 | 65 |
return Parent::target(e); |
| 64 | 66 |
else if(n==Parent::target(e)) |
| 65 | 67 |
return Parent::source(e); |
| 66 | 68 |
else |
| 67 | 69 |
return INVALID; |
| 68 | 70 |
} |
| 69 | 71 |
|
| 70 | 72 |
|
| 71 | 73 |
// Alteration notifier extensions |
| 72 | 74 |
|
| 73 | 75 |
/// The arc observer registry. |
| 74 | 76 |
typedef AlterationNotifier<ArcSetExtender, Arc> ArcNotifier; |
| 75 | 77 |
|
| 76 | 78 |
protected: |
| 77 | 79 |
|
| 78 | 80 |
mutable ArcNotifier arc_notifier; |
| 79 | 81 |
|
| 80 | 82 |
public: |
| 81 | 83 |
|
| 82 | 84 |
using Parent::notifier; |
| 83 | 85 |
|
| 84 | 86 |
/// \brief Gives back the arc alteration notifier. |
| 85 | 87 |
/// |
| 86 | 88 |
/// Gives back the arc alteration notifier. |
| 87 | 89 |
ArcNotifier& notifier(Arc) const {
|
| 88 | 90 |
return arc_notifier; |
| 89 | 91 |
} |
| 90 | 92 |
|
| 91 | 93 |
// Iterable extensions |
| 92 | 94 |
|
| 93 | 95 |
class NodeIt : public Node {
|
| 94 | 96 |
const Digraph* digraph; |
| 95 | 97 |
public: |
| 96 | 98 |
|
| 97 | 99 |
NodeIt() {}
|
| 98 | 100 |
|
| 99 | 101 |
NodeIt(Invalid i) : Node(i) { }
|
| 100 | 102 |
|
| 101 | 103 |
explicit NodeIt(const Digraph& _graph) : digraph(&_graph) {
|
| 102 | 104 |
_graph.first(static_cast<Node&>(*this)); |
| 103 | 105 |
} |
| 104 | 106 |
|
| 105 | 107 |
NodeIt(const Digraph& _graph, const Node& node) |
| 106 | 108 |
: Node(node), digraph(&_graph) {}
|
| 107 | 109 |
|
| 108 | 110 |
NodeIt& operator++() {
|
| 109 | 111 |
digraph->next(*this); |
| 110 | 112 |
return *this; |
| 111 | 113 |
} |
| 112 | 114 |
|
| 113 | 115 |
}; |
| 114 | 116 |
|
| 115 | 117 |
|
| 116 | 118 |
class ArcIt : public Arc {
|
| 117 | 119 |
const Digraph* digraph; |
| 118 | 120 |
public: |
| 119 | 121 |
|
| 120 | 122 |
ArcIt() { }
|
| 121 | 123 |
|
| 122 | 124 |
ArcIt(Invalid i) : Arc(i) { }
|
| 123 | 125 |
|
| 124 | 126 |
explicit ArcIt(const Digraph& _graph) : digraph(&_graph) {
|
| 125 | 127 |
_graph.first(static_cast<Arc&>(*this)); |
| 126 | 128 |
} |
| 127 | 129 |
|
| 128 | 130 |
ArcIt(const Digraph& _graph, const Arc& e) : |
| 129 | 131 |
Arc(e), digraph(&_graph) { }
|
| 130 | 132 |
|
| 131 | 133 |
ArcIt& operator++() {
|
| 132 | 134 |
digraph->next(*this); |
| 133 | 135 |
return *this; |
| 134 | 136 |
} |
| 135 | 137 |
|
| 136 | 138 |
}; |
| 137 | 139 |
|
| 138 | 140 |
|
| 139 | 141 |
class OutArcIt : public Arc {
|
| 140 | 142 |
const Digraph* digraph; |
| 141 | 143 |
public: |
| 142 | 144 |
|
| 143 | 145 |
OutArcIt() { }
|
| 144 | 146 |
|
| 145 | 147 |
OutArcIt(Invalid i) : Arc(i) { }
|
| 146 | 148 |
|
| 147 | 149 |
OutArcIt(const Digraph& _graph, const Node& node) |
| 148 | 150 |
: digraph(&_graph) {
|
| 149 | 151 |
_graph.firstOut(*this, node); |
| 150 | 152 |
} |
| 151 | 153 |
|
| 152 | 154 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
| 153 | 155 |
: Arc(arc), digraph(&_graph) {}
|
| 154 | 156 |
|
| 155 | 157 |
OutArcIt& operator++() {
|
| 156 | 158 |
digraph->nextOut(*this); |
| 157 | 159 |
return *this; |
| 158 | 160 |
} |
| 159 | 161 |
|
| 160 | 162 |
}; |
| 161 | 163 |
|
| 162 | 164 |
|
| 163 | 165 |
class InArcIt : public Arc {
|
| 164 | 166 |
const Digraph* digraph; |
| 165 | 167 |
public: |
| 166 | 168 |
|
| 167 | 169 |
InArcIt() { }
|
| 168 | 170 |
|
| 169 | 171 |
InArcIt(Invalid i) : Arc(i) { }
|
| 170 | 172 |
|
| 171 | 173 |
InArcIt(const Digraph& _graph, const Node& node) |
| 172 | 174 |
: digraph(&_graph) {
|
| 173 | 175 |
_graph.firstIn(*this, node); |
| 174 | 176 |
} |
| 175 | 177 |
|
| 176 | 178 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
| 177 | 179 |
Arc(arc), digraph(&_graph) {}
|
| 178 | 180 |
|
| 179 | 181 |
InArcIt& operator++() {
|
| 180 | 182 |
digraph->nextIn(*this); |
| 181 | 183 |
return *this; |
| 182 | 184 |
} |
| 183 | 185 |
|
| 184 | 186 |
}; |
| 185 | 187 |
|
| 186 | 188 |
/// \brief Base node of the iterator |
| 187 | 189 |
/// |
| 188 | 190 |
/// Returns the base node (ie. the source in this case) of the iterator |
| 189 | 191 |
Node baseNode(const OutArcIt &e) const {
|
| 190 | 192 |
return Parent::source(static_cast<const Arc&>(e)); |
| 191 | 193 |
} |
| 192 | 194 |
/// \brief Running node of the iterator |
| 193 | 195 |
/// |
| 194 | 196 |
/// Returns the running node (ie. the target in this case) of the |
| 195 | 197 |
/// iterator |
| 196 | 198 |
Node runningNode(const OutArcIt &e) const {
|
| 197 | 199 |
return Parent::target(static_cast<const Arc&>(e)); |
| 198 | 200 |
} |
| 199 | 201 |
|
| 200 | 202 |
/// \brief Base node of the iterator |
| 201 | 203 |
/// |
| 202 | 204 |
/// Returns the base node (ie. the target in this case) of the iterator |
| 203 | 205 |
Node baseNode(const InArcIt &e) const {
|
| 204 | 206 |
return Parent::target(static_cast<const Arc&>(e)); |
| 205 | 207 |
} |
| 206 | 208 |
/// \brief Running node of the iterator |
| 207 | 209 |
/// |
| 208 | 210 |
/// Returns the running node (ie. the source in this case) of the |
| 209 | 211 |
/// iterator |
| 210 | 212 |
Node runningNode(const InArcIt &e) const {
|
| 211 | 213 |
return Parent::source(static_cast<const Arc&>(e)); |
| 212 | 214 |
} |
| 213 | 215 |
|
| 214 | 216 |
using Parent::first; |
| 215 | 217 |
|
| 216 | 218 |
// Mappable extension |
| 217 | 219 |
|
| 218 | 220 |
template <typename _Value> |
| 219 | 221 |
class ArcMap |
| 220 | 222 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > {
|
| 221 | 223 |
public: |
| 222 | 224 |
typedef ArcSetExtender Digraph; |
| 223 | 225 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
| 224 | 226 |
|
| 225 | 227 |
explicit ArcMap(const Digraph& _g) |
| 226 | 228 |
: Parent(_g) {}
|
| 227 | 229 |
ArcMap(const Digraph& _g, const _Value& _v) |
| 228 | 230 |
: Parent(_g, _v) {}
|
| 229 | 231 |
|
| 230 | 232 |
ArcMap& operator=(const ArcMap& cmap) {
|
| 231 | 233 |
return operator=<ArcMap>(cmap); |
| 232 | 234 |
} |
| 233 | 235 |
|
| 234 | 236 |
template <typename CMap> |
| 235 | 237 |
ArcMap& operator=(const CMap& cmap) {
|
| 236 | 238 |
Parent::operator=(cmap); |
| 237 | 239 |
return *this; |
| 238 | 240 |
} |
| 239 | 241 |
|
| 240 | 242 |
}; |
| 241 | 243 |
|
| 242 | 244 |
|
| 243 | 245 |
// Alteration extension |
| 244 | 246 |
|
| 245 | 247 |
Arc addArc(const Node& from, const Node& to) {
|
| 246 | 248 |
Arc arc = Parent::addArc(from, to); |
| 247 | 249 |
notifier(Arc()).add(arc); |
| 248 | 250 |
return arc; |
| 249 | 251 |
} |
| 250 | 252 |
|
| 251 | 253 |
void clear() {
|
| 252 | 254 |
notifier(Arc()).clear(); |
| 253 | 255 |
Parent::clear(); |
| 254 | 256 |
} |
| 255 | 257 |
|
| 256 | 258 |
void erase(const Arc& arc) {
|
| 257 | 259 |
notifier(Arc()).erase(arc); |
| 258 | 260 |
Parent::erase(arc); |
| 259 | 261 |
} |
| 260 | 262 |
|
| 261 | 263 |
ArcSetExtender() {
|
| 262 | 264 |
arc_notifier.setContainer(*this); |
| 263 | 265 |
} |
| 264 | 266 |
|
| 265 | 267 |
~ArcSetExtender() {
|
| 266 | 268 |
arc_notifier.clear(); |
| 267 | 269 |
} |
| 268 | 270 |
|
| 269 | 271 |
}; |
| 270 | 272 |
|
| 271 | 273 |
|
| 272 | 274 |
/// \ingroup digraphbits |
| 273 | 275 |
/// |
| 274 | 276 |
/// \brief Extender for the EdgeSets |
| 275 | 277 |
template <typename Base> |
| 276 | 278 |
class EdgeSetExtender : public Base {
|
| 277 | 279 |
|
| 278 | 280 |
public: |
| 279 | 281 |
|
| 280 | 282 |
typedef Base Parent; |
| 281 | 283 |
typedef EdgeSetExtender Digraph; |
| 282 | 284 |
|
| 283 | 285 |
typedef typename Parent::Node Node; |
| 284 | 286 |
typedef typename Parent::Arc Arc; |
| 285 | 287 |
typedef typename Parent::Edge Edge; |
| 286 | 288 |
|
| 287 | 289 |
|
| 288 | 290 |
int maxId(Node) const {
|
| 289 | 291 |
return Parent::maxNodeId(); |
| 290 | 292 |
} |
| 291 | 293 |
|
| 292 | 294 |
int maxId(Arc) const {
|
| 293 | 295 |
return Parent::maxArcId(); |
| 294 | 296 |
} |
| 295 | 297 |
|
| 296 | 298 |
int maxId(Edge) const {
|
| 297 | 299 |
return Parent::maxEdgeId(); |
| 298 | 300 |
} |
| 299 | 301 |
|
| 300 | 302 |
Node fromId(int id, Node) const {
|
| 301 | 303 |
return Parent::nodeFromId(id); |
| 302 | 304 |
} |
| 303 | 305 |
|
| 304 | 306 |
Arc fromId(int id, Arc) const {
|
| 305 | 307 |
return Parent::arcFromId(id); |
| 306 | 308 |
} |
| 307 | 309 |
|
| 308 | 310 |
Edge fromId(int id, Edge) const {
|
| 309 | 311 |
return Parent::edgeFromId(id); |
| 310 | 312 |
} |
| 311 | 313 |
|
| 312 | 314 |
Node oppositeNode(const Node &n, const Edge &e) const {
|
| 313 | 315 |
if( n == Parent::u(e)) |
| 314 | 316 |
return Parent::v(e); |
| 315 | 317 |
else if( n == Parent::v(e)) |
| 316 | 318 |
return Parent::u(e); |
| 317 | 319 |
else |
| 318 | 320 |
return INVALID; |
| 319 | 321 |
} |
| 320 | 322 |
|
| 321 | 323 |
Arc oppositeArc(const Arc &e) const {
|
| 322 | 324 |
return Parent::direct(e, !Parent::direction(e)); |
| 323 | 325 |
} |
| 324 | 326 |
|
| 325 | 327 |
using Parent::direct; |
| 326 | 328 |
Arc direct(const Edge &e, const Node &s) const {
|
| 327 | 329 |
return Parent::direct(e, Parent::u(e) == s); |
| 328 | 330 |
} |
| 329 | 331 |
|
| 330 | 332 |
typedef AlterationNotifier<EdgeSetExtender, Arc> ArcNotifier; |
| 331 | 333 |
typedef AlterationNotifier<EdgeSetExtender, Edge> EdgeNotifier; |
| 332 | 334 |
|
| 333 | 335 |
|
| 334 | 336 |
protected: |
| 335 | 337 |
|
| 336 | 338 |
mutable ArcNotifier arc_notifier; |
| 337 | 339 |
mutable EdgeNotifier edge_notifier; |
| 338 | 340 |
|
| 339 | 341 |
public: |
| 340 | 342 |
|
| 341 | 343 |
using Parent::notifier; |
| 342 | 344 |
|
| 343 | 345 |
ArcNotifier& notifier(Arc) const {
|
| 344 | 346 |
return arc_notifier; |
| 345 | 347 |
} |
| 346 | 348 |
|
| 347 | 349 |
EdgeNotifier& notifier(Edge) const {
|
| 348 | 350 |
return edge_notifier; |
| 349 | 351 |
} |
| 350 | 352 |
|
| 351 | 353 |
|
| 352 | 354 |
class NodeIt : public Node {
|
| 353 | 355 |
const Digraph* digraph; |
| 354 | 356 |
public: |
| 355 | 357 |
|
| 356 | 358 |
NodeIt() {}
|
| 357 | 359 |
|
| 358 | 360 |
NodeIt(Invalid i) : Node(i) { }
|
| 359 | 361 |
|
| 360 | 362 |
explicit NodeIt(const Digraph& _graph) : digraph(&_graph) {
|
| 361 | 363 |
_graph.first(static_cast<Node&>(*this)); |
| 362 | 364 |
} |
| 363 | 365 |
|
| 364 | 366 |
NodeIt(const Digraph& _graph, const Node& node) |
| 365 | 367 |
: Node(node), digraph(&_graph) {}
|
| 366 | 368 |
|
| 367 | 369 |
NodeIt& operator++() {
|
| 368 | 370 |
digraph->next(*this); |
| 369 | 371 |
return *this; |
| 370 | 372 |
} |
| 371 | 373 |
|
| 372 | 374 |
}; |
| 373 | 375 |
|
| 374 | 376 |
|
| 375 | 377 |
class ArcIt : public Arc {
|
| 376 | 378 |
const Digraph* digraph; |
| 377 | 379 |
public: |
| 378 | 380 |
|
| 379 | 381 |
ArcIt() { }
|
| 380 | 382 |
|
| 381 | 383 |
ArcIt(Invalid i) : Arc(i) { }
|
| 382 | 384 |
|
| 383 | 385 |
explicit ArcIt(const Digraph& _graph) : digraph(&_graph) {
|
| 384 | 386 |
_graph.first(static_cast<Arc&>(*this)); |
| 385 | 387 |
} |
| 386 | 388 |
|
| 387 | 389 |
ArcIt(const Digraph& _graph, const Arc& e) : |
| 388 | 390 |
Arc(e), digraph(&_graph) { }
|
| 389 | 391 |
|
| 390 | 392 |
ArcIt& operator++() {
|
| 391 | 393 |
digraph->next(*this); |
| 392 | 394 |
return *this; |
| 393 | 395 |
} |
| 394 | 396 |
|
| 395 | 397 |
}; |
| 396 | 398 |
|
| 397 | 399 |
|
| 398 | 400 |
class OutArcIt : public Arc {
|
| 399 | 401 |
const Digraph* digraph; |
| 400 | 402 |
public: |
| 401 | 403 |
|
| 402 | 404 |
OutArcIt() { }
|
| 403 | 405 |
|
| 404 | 406 |
OutArcIt(Invalid i) : Arc(i) { }
|
| 405 | 407 |
|
| 406 | 408 |
OutArcIt(const Digraph& _graph, const Node& node) |
| 407 | 409 |
: digraph(&_graph) {
|
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_PRED_MAP_PATH_H |
| 20 | 20 |
#define LEMON_BITS_PRED_MAP_PATH_H |
| 21 | 21 |
|
| 22 |
#include <lemon/core.h> |
|
| 23 |
#include <lemon/concept_check.h> |
|
| 24 |
|
|
| 22 | 25 |
namespace lemon {
|
| 23 | 26 |
|
| 24 | 27 |
template <typename _Digraph, typename _PredMap> |
| 25 | 28 |
class PredMapPath {
|
| 26 | 29 |
public: |
| 27 | 30 |
typedef True RevPathTag; |
| 28 | 31 |
|
| 29 | 32 |
typedef _Digraph Digraph; |
| 30 | 33 |
typedef typename Digraph::Arc Arc; |
| 31 | 34 |
typedef _PredMap PredMap; |
| 32 | 35 |
|
| 33 | 36 |
PredMapPath(const Digraph& _digraph, const PredMap& _predMap, |
| 34 | 37 |
typename Digraph::Node _target) |
| 35 | 38 |
: digraph(_digraph), predMap(_predMap), target(_target) {}
|
| 36 | 39 |
|
| 37 | 40 |
int length() const {
|
| 38 | 41 |
int len = 0; |
| 39 | 42 |
typename Digraph::Node node = target; |
| 40 | 43 |
typename Digraph::Arc arc; |
| 41 | 44 |
while ((arc = predMap[node]) != INVALID) {
|
| 42 | 45 |
node = digraph.source(arc); |
| 43 | 46 |
++len; |
| 44 | 47 |
} |
| 45 | 48 |
return len; |
| 46 | 49 |
} |
| 47 | 50 |
|
| 48 | 51 |
bool empty() const {
|
| 49 | 52 |
return predMap[target] != INVALID; |
| 50 | 53 |
} |
| 51 | 54 |
|
| 52 | 55 |
class RevArcIt {
|
| 53 | 56 |
public: |
| 54 | 57 |
RevArcIt() {}
|
| 55 | 58 |
RevArcIt(Invalid) : path(0), current(INVALID) {}
|
| 56 | 59 |
RevArcIt(const PredMapPath& _path) |
| 57 | 60 |
: path(&_path), current(_path.target) {
|
| 58 | 61 |
if (path->predMap[current] == INVALID) current = INVALID; |
| 59 | 62 |
} |
| 60 | 63 |
|
| 61 | 64 |
operator const typename Digraph::Arc() const {
|
| 62 | 65 |
return path->predMap[current]; |
| 63 | 66 |
} |
| 64 | 67 |
|
| 65 | 68 |
RevArcIt& operator++() {
|
| 66 | 69 |
current = path->digraph.source(path->predMap[current]); |
| 67 | 70 |
if (path->predMap[current] == INVALID) current = INVALID; |
| 68 | 71 |
return *this; |
| 69 | 72 |
} |
| 70 | 73 |
|
| 71 | 74 |
bool operator==(const RevArcIt& e) const {
|
| 72 | 75 |
return current == e.current; |
| 73 | 76 |
} |
| 74 | 77 |
|
| 75 | 78 |
bool operator!=(const RevArcIt& e) const {
|
| 76 | 79 |
return current != e.current; |
| 77 | 80 |
} |
| 78 | 81 |
|
| 79 | 82 |
bool operator<(const RevArcIt& e) const {
|
| 80 | 83 |
return current < e.current; |
| 81 | 84 |
} |
| 82 | 85 |
|
| 83 | 86 |
private: |
| 84 | 87 |
const PredMapPath* path; |
| 85 | 88 |
typename Digraph::Node current; |
| 86 | 89 |
}; |
| 87 | 90 |
|
| 88 | 91 |
private: |
| 89 | 92 |
const Digraph& digraph; |
| 90 | 93 |
const PredMap& predMap; |
| 91 | 94 |
typename Digraph::Node target; |
| 92 | 95 |
}; |
| 93 | 96 |
|
| 94 | 97 |
|
| 95 | 98 |
template <typename _Digraph, typename _PredMatrixMap> |
| 96 | 99 |
class PredMatrixMapPath {
|
| 97 | 100 |
public: |
| 98 | 101 |
typedef True RevPathTag; |
| 99 | 102 |
|
| 100 | 103 |
typedef _Digraph Digraph; |
| 101 | 104 |
typedef typename Digraph::Arc Arc; |
| 102 | 105 |
typedef _PredMatrixMap PredMatrixMap; |
| 103 | 106 |
|
| 104 | 107 |
PredMatrixMapPath(const Digraph& _digraph, |
| 105 | 108 |
const PredMatrixMap& _predMatrixMap, |
| 106 | 109 |
typename Digraph::Node _source, |
| 107 | 110 |
typename Digraph::Node _target) |
| 108 | 111 |
: digraph(_digraph), predMatrixMap(_predMatrixMap), |
| 109 | 112 |
source(_source), target(_target) {}
|
| 110 | 113 |
|
| 111 | 114 |
int length() const {
|
| 112 | 115 |
int len = 0; |
| 113 | 116 |
typename Digraph::Node node = target; |
| 114 | 117 |
typename Digraph::Arc arc; |
| 115 | 118 |
while ((arc = predMatrixMap(source, node)) != INVALID) {
|
| 116 | 119 |
node = digraph.source(arc); |
| 117 | 120 |
++len; |
| 118 | 121 |
} |
| 119 | 122 |
return len; |
| 120 | 123 |
} |
| 121 | 124 |
|
| 122 | 125 |
bool empty() const {
|
| 123 | 126 |
return source != target; |
| 124 | 127 |
} |
| 125 | 128 |
|
| 126 | 129 |
class RevArcIt {
|
| 127 | 130 |
public: |
| 128 | 131 |
RevArcIt() {}
|
| 129 | 132 |
RevArcIt(Invalid) : path(0), current(INVALID) {}
|
| 130 | 133 |
RevArcIt(const PredMatrixMapPath& _path) |
| 131 | 134 |
: path(&_path), current(_path.target) {
|
| 132 | 135 |
if (path->predMatrixMap(path->source, current) == INVALID) |
| 133 | 136 |
current = INVALID; |
| 134 | 137 |
} |
| 135 | 138 |
|
| 136 | 139 |
operator const typename Digraph::Arc() const {
|
| 137 | 140 |
return path->predMatrixMap(path->source, current); |
| 138 | 141 |
} |
| 139 | 142 |
|
| 140 | 143 |
RevArcIt& operator++() {
|
| 141 | 144 |
current = |
| 142 | 145 |
path->digraph.source(path->predMatrixMap(path->source, current)); |
| 143 | 146 |
if (path->predMatrixMap(path->source, current) == INVALID) |
| 144 | 147 |
current = INVALID; |
| 145 | 148 |
return *this; |
| 146 | 149 |
} |
| 147 | 150 |
|
| 148 | 151 |
bool operator==(const RevArcIt& e) const {
|
| 149 | 152 |
return current == e.current; |
| 150 | 153 |
} |
| 151 | 154 |
|
| 152 | 155 |
bool operator!=(const RevArcIt& e) const {
|
| 153 | 156 |
return current != e.current; |
| 154 | 157 |
} |
| 155 | 158 |
|
| 156 | 159 |
bool operator<(const RevArcIt& e) const {
|
| 157 | 160 |
return current < e.current; |
| 158 | 161 |
} |
| 159 | 162 |
|
| 160 | 163 |
private: |
| 161 | 164 |
const PredMatrixMapPath* path; |
| 162 | 165 |
typename Digraph::Node current; |
| 163 | 166 |
}; |
| 164 | 167 |
|
| 165 | 168 |
private: |
| 166 | 169 |
const Digraph& digraph; |
| 167 | 170 |
const PredMatrixMap& predMatrixMap; |
| 168 | 171 |
typename Digraph::Node source; |
| 169 | 172 |
typename Digraph::Node target; |
| 170 | 173 |
}; |
| 171 | 174 |
|
| 172 | 175 |
} |
| 173 | 176 |
|
| 174 | 177 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_SOLVER_BITS_H |
| 20 | 20 |
#define LEMON_BITS_SOLVER_BITS_H |
| 21 | 21 |
|
| 22 |
#include <vector> |
|
| 23 |
|
|
| 22 | 24 |
namespace lemon {
|
| 23 | 25 |
|
| 24 | 26 |
namespace _solver_bits {
|
| 25 | 27 |
|
| 26 | 28 |
class VarIndex {
|
| 27 | 29 |
private: |
| 28 | 30 |
struct ItemT {
|
| 29 | 31 |
int prev, next; |
| 30 | 32 |
int index; |
| 31 | 33 |
}; |
| 32 | 34 |
std::vector<ItemT> items; |
| 33 | 35 |
int first_item, last_item, first_free_item; |
| 34 | 36 |
|
| 35 | 37 |
std::vector<int> cross; |
| 36 | 38 |
|
| 37 | 39 |
public: |
| 38 | 40 |
|
| 39 | 41 |
VarIndex() |
| 40 | 42 |
: first_item(-1), last_item(-1), first_free_item(-1) {
|
| 41 | 43 |
} |
| 42 | 44 |
|
| 43 | 45 |
void clear() {
|
| 44 | 46 |
first_item = -1; |
| 45 | 47 |
first_free_item = -1; |
| 46 | 48 |
items.clear(); |
| 47 | 49 |
cross.clear(); |
| 48 | 50 |
} |
| 49 | 51 |
|
| 50 | 52 |
int addIndex(int idx) {
|
| 51 | 53 |
int n; |
| 52 | 54 |
if (first_free_item == -1) {
|
| 53 | 55 |
n = items.size(); |
| 54 | 56 |
items.push_back(ItemT()); |
| 55 | 57 |
} else {
|
| 56 | 58 |
n = first_free_item; |
| 57 | 59 |
first_free_item = items[n].next; |
| 58 | 60 |
if (first_free_item != -1) {
|
| 59 | 61 |
items[first_free_item].prev = -1; |
| 60 | 62 |
} |
| 61 | 63 |
} |
| 62 | 64 |
items[n].index = idx; |
| 63 | 65 |
if (static_cast<int>(cross.size()) <= idx) {
|
| 64 | 66 |
cross.resize(idx + 1, -1); |
| 65 | 67 |
} |
| 66 | 68 |
cross[idx] = n; |
| 67 | 69 |
|
| 68 | 70 |
items[n].prev = last_item; |
| 69 | 71 |
items[n].next = -1; |
| 70 | 72 |
if (last_item != -1) {
|
| 71 | 73 |
items[last_item].next = n; |
| 72 | 74 |
} else {
|
| 73 | 75 |
first_item = n; |
| 74 | 76 |
} |
| 75 | 77 |
last_item = n; |
| 76 | 78 |
|
| 77 | 79 |
return n; |
| 78 | 80 |
} |
| 79 | 81 |
|
| 80 | 82 |
int addIndex(int idx, int n) {
|
| 81 | 83 |
while (n >= static_cast<int>(items.size())) {
|
| 82 | 84 |
items.push_back(ItemT()); |
| 83 | 85 |
items.back().prev = -1; |
| 84 | 86 |
items.back().next = first_free_item; |
| 85 | 87 |
if (first_free_item != -1) {
|
| 86 | 88 |
items[first_free_item].prev = items.size() - 1; |
| 87 | 89 |
} |
| 88 | 90 |
first_free_item = items.size() - 1; |
| 89 | 91 |
} |
| 90 | 92 |
if (items[n].next != -1) {
|
| 91 | 93 |
items[items[n].next].prev = items[n].prev; |
| 92 | 94 |
} |
| 93 | 95 |
if (items[n].prev != -1) {
|
| 94 | 96 |
items[items[n].prev].next = items[n].next; |
| 95 | 97 |
} else {
|
| 96 | 98 |
first_free_item = items[n].next; |
| 97 | 99 |
} |
| 98 | 100 |
|
| 99 | 101 |
items[n].index = idx; |
| 100 | 102 |
if (static_cast<int>(cross.size()) <= idx) {
|
| 101 | 103 |
cross.resize(idx + 1, -1); |
| 102 | 104 |
} |
| 103 | 105 |
cross[idx] = n; |
| 104 | 106 |
|
| 105 | 107 |
items[n].prev = last_item; |
| 106 | 108 |
items[n].next = -1; |
| 107 | 109 |
if (last_item != -1) {
|
| 108 | 110 |
items[last_item].next = n; |
| 109 | 111 |
} else {
|
| 110 | 112 |
first_item = n; |
| 111 | 113 |
} |
| 112 | 114 |
last_item = n; |
| 113 | 115 |
|
| 114 | 116 |
return n; |
| 115 | 117 |
} |
| 116 | 118 |
|
| 117 | 119 |
void eraseIndex(int idx) {
|
| 118 | 120 |
int n = cross[idx]; |
| 119 | 121 |
|
| 120 | 122 |
if (items[n].prev != -1) {
|
| 121 | 123 |
items[items[n].prev].next = items[n].next; |
| 122 | 124 |
} else {
|
| 123 | 125 |
first_item = items[n].next; |
| 124 | 126 |
} |
| 125 | 127 |
if (items[n].next != -1) {
|
| 126 | 128 |
items[items[n].next].prev = items[n].prev; |
| 127 | 129 |
} else {
|
| 128 | 130 |
last_item = items[n].prev; |
| 129 | 131 |
} |
| 130 | 132 |
|
| 131 | 133 |
if (first_free_item != -1) {
|
| 132 | 134 |
items[first_free_item].prev = n; |
| 133 | 135 |
} |
| 134 | 136 |
items[n].next = first_free_item; |
| 135 | 137 |
items[n].prev = -1; |
| 136 | 138 |
first_free_item = n; |
| 137 | 139 |
|
| 138 | 140 |
while (!cross.empty() && cross.back() == -1) {
|
| 139 | 141 |
cross.pop_back(); |
| 140 | 142 |
} |
| 141 | 143 |
} |
| 142 | 144 |
|
| 143 | 145 |
int maxIndex() const {
|
| 144 | 146 |
return cross.size() - 1; |
| 145 | 147 |
} |
| 146 | 148 |
|
| 147 | 149 |
void shiftIndices(int idx) {
|
| 148 | 150 |
for (int i = idx + 1; i < static_cast<int>(cross.size()); ++i) {
|
| 149 | 151 |
cross[i - 1] = cross[i]; |
| 150 | 152 |
if (cross[i] != -1) {
|
| 151 | 153 |
--items[cross[i]].index; |
| 152 | 154 |
} |
| 153 | 155 |
} |
| 154 | 156 |
cross.back() = -1; |
| 155 | 157 |
cross.pop_back(); |
| 156 | 158 |
while (!cross.empty() && cross.back() == -1) {
|
| 157 | 159 |
cross.pop_back(); |
| 158 | 160 |
} |
| 159 | 161 |
} |
| 160 | 162 |
|
| 161 | 163 |
void relocateIndex(int idx, int jdx) {
|
| 162 | 164 |
cross[idx] = cross[jdx]; |
| 163 | 165 |
items[cross[jdx]].index = idx; |
| 164 | 166 |
cross[jdx] = -1; |
| 165 | 167 |
|
| 166 | 168 |
while (!cross.empty() && cross.back() == -1) {
|
| 167 | 169 |
cross.pop_back(); |
| 168 | 170 |
} |
| 169 | 171 |
} |
| 170 | 172 |
|
| 171 | 173 |
int operator[](int idx) const {
|
| 172 | 174 |
return cross[idx]; |
| 173 | 175 |
} |
| 174 | 176 |
|
| 175 | 177 |
int operator()(int fdx) const {
|
| 176 | 178 |
return items[fdx].index; |
| 177 | 179 |
} |
| 178 | 180 |
|
| 179 | 181 |
void firstItem(int& fdx) const {
|
| 180 | 182 |
fdx = first_item; |
| 181 | 183 |
} |
| 182 | 184 |
|
| 183 | 185 |
void nextItem(int& fdx) const {
|
| 184 | 186 |
fdx = items[fdx].next; |
| 185 | 187 |
} |
| 186 | 188 |
|
| 187 | 189 |
}; |
| 188 | 190 |
} |
| 189 | 191 |
} |
| 190 | 192 |
|
| 191 | 193 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup concept |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief The concept of heaps. |
| 22 | 22 |
|
| 23 | 23 |
#ifndef LEMON_CONCEPT_HEAP_H |
| 24 | 24 |
#define LEMON_CONCEPT_HEAP_H |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 |
#include <lemon/concept_check.h> |
|
| 27 | 28 |
|
| 28 | 29 |
namespace lemon {
|
| 29 | 30 |
|
| 30 | 31 |
namespace concepts {
|
| 31 | 32 |
|
| 32 | 33 |
/// \addtogroup concept |
| 33 | 34 |
/// @{
|
| 34 | 35 |
|
| 35 | 36 |
/// \brief The heap concept. |
| 36 | 37 |
/// |
| 37 | 38 |
/// Concept class describing the main interface of heaps. |
| 38 | 39 |
template <typename Priority, typename ItemIntMap> |
| 39 | 40 |
class Heap {
|
| 40 | 41 |
public: |
| 41 | 42 |
|
| 42 | 43 |
/// Type of the items stored in the heap. |
| 43 | 44 |
typedef typename ItemIntMap::Key Item; |
| 44 | 45 |
|
| 45 | 46 |
/// Type of the priorities. |
| 46 | 47 |
typedef Priority Prio; |
| 47 | 48 |
|
| 48 | 49 |
/// \brief Type to represent the states of the items. |
| 49 | 50 |
/// |
| 50 | 51 |
/// Each item has a state associated to it. It can be "in heap", |
| 51 | 52 |
/// "pre heap" or "post heap". The later two are indifferent |
| 52 | 53 |
/// from the point of view of the heap, but may be useful for |
| 53 | 54 |
/// the user. |
| 54 | 55 |
/// |
| 55 | 56 |
/// The \c ItemIntMap must be initialized in such a way, that it |
| 56 | 57 |
/// assigns \c PRE_HEAP (<tt>-1</tt>) to every item. |
| 57 | 58 |
enum State {
|
| 58 | 59 |
IN_HEAP = 0, |
| 59 | 60 |
PRE_HEAP = -1, |
| 60 | 61 |
POST_HEAP = -2 |
| 61 | 62 |
}; |
| 62 | 63 |
|
| 63 | 64 |
/// \brief The constructor. |
| 64 | 65 |
/// |
| 65 | 66 |
/// The constructor. |
| 66 | 67 |
/// \param map A map that assigns \c int values to keys of type |
| 67 | 68 |
/// \c Item. It is used internally by the heap implementations to |
| 68 | 69 |
/// handle the cross references. The assigned value must be |
| 69 | 70 |
/// \c PRE_HEAP (<tt>-1</tt>) for every item. |
| 70 | 71 |
explicit Heap(ItemIntMap &map) {}
|
| 71 | 72 |
|
| 72 | 73 |
/// \brief The number of items stored in the heap. |
| 73 | 74 |
/// |
| 74 | 75 |
/// Returns the number of items stored in the heap. |
| 75 | 76 |
int size() const { return 0; }
|
| 76 | 77 |
|
| 77 | 78 |
/// \brief Checks if the heap is empty. |
| 78 | 79 |
/// |
| 79 | 80 |
/// Returns \c true if the heap is empty. |
| 80 | 81 |
bool empty() const { return false; }
|
| 81 | 82 |
|
| 82 | 83 |
/// \brief Makes the heap empty. |
| 83 | 84 |
/// |
| 84 | 85 |
/// Makes the heap empty. |
| 85 | 86 |
void clear(); |
| 86 | 87 |
|
| 87 | 88 |
/// \brief Inserts an item into the heap with the given priority. |
| 88 | 89 |
/// |
| 89 | 90 |
/// Inserts the given item into the heap with the given priority. |
| 90 | 91 |
/// \param i The item to insert. |
| 91 | 92 |
/// \param p The priority of the item. |
| 92 | 93 |
void push(const Item &i, const Prio &p) {}
|
| 93 | 94 |
|
| 94 | 95 |
/// \brief Returns the item having minimum priority. |
| 95 | 96 |
/// |
| 96 | 97 |
/// Returns the item having minimum priority. |
| 97 | 98 |
/// \pre The heap must be non-empty. |
| 98 | 99 |
Item top() const {}
|
| 99 | 100 |
|
| 100 | 101 |
/// \brief The minimum priority. |
| 101 | 102 |
/// |
| 102 | 103 |
/// Returns the minimum priority. |
| 103 | 104 |
/// \pre The heap must be non-empty. |
| 104 | 105 |
Prio prio() const {}
|
| 105 | 106 |
|
| 106 | 107 |
/// \brief Removes the item having minimum priority. |
| 107 | 108 |
/// |
| 108 | 109 |
/// Removes the item having minimum priority. |
| 109 | 110 |
/// \pre The heap must be non-empty. |
| 110 | 111 |
void pop() {}
|
| 111 | 112 |
|
| 112 | 113 |
/// \brief Removes an item from the heap. |
| 113 | 114 |
/// |
| 114 | 115 |
/// Removes the given item from the heap if it is already stored. |
| 115 | 116 |
/// \param i The item to delete. |
| 116 | 117 |
void erase(const Item &i) {}
|
| 117 | 118 |
|
| 118 | 119 |
/// \brief The priority of an item. |
| 119 | 120 |
/// |
| 120 | 121 |
/// Returns the priority of the given item. |
| 121 | 122 |
/// \pre \c i must be in the heap. |
| 122 | 123 |
/// \param i The item. |
| 123 | 124 |
Prio operator[](const Item &i) const {}
|
| 124 | 125 |
|
| 125 | 126 |
/// \brief Sets the priority of an item or inserts it, if it is |
| 126 | 127 |
/// not stored in the heap. |
| 127 | 128 |
/// |
| 128 | 129 |
/// This method sets the priority of the given item if it is |
| 129 | 130 |
/// already stored in the heap. |
| 130 | 131 |
/// Otherwise it inserts the given item with the given priority. |
| 131 | 132 |
/// |
| 132 | 133 |
/// \param i The item. |
| 133 | 134 |
/// \param p The priority. |
| 134 | 135 |
void set(const Item &i, const Prio &p) {}
|
| 135 | 136 |
|
| 136 | 137 |
/// \brief Decreases the priority of an item to the given value. |
| 137 | 138 |
/// |
| 138 | 139 |
/// Decreases the priority of an item to the given value. |
| 139 | 140 |
/// \pre \c i must be stored in the heap with priority at least \c p. |
| 140 | 141 |
/// \param i The item. |
| 141 | 142 |
/// \param p The priority. |
| 142 | 143 |
void decrease(const Item &i, const Prio &p) {}
|
| 143 | 144 |
|
| 144 | 145 |
/// \brief Increases the priority of an item to the given value. |
| 145 | 146 |
/// |
| 146 | 147 |
/// Increases the priority of an item to the given value. |
| 147 | 148 |
/// \pre \c i must be stored in the heap with priority at most \c p. |
| 148 | 149 |
/// \param i The item. |
| 149 | 150 |
/// \param p The priority. |
| 150 | 151 |
void increase(const Item &i, const Prio &p) {}
|
| 151 | 152 |
|
| 152 | 153 |
/// \brief Returns if an item is in, has already been in, or has |
| 153 | 154 |
/// never been in the heap. |
| 154 | 155 |
/// |
| 155 | 156 |
/// This method returns \c PRE_HEAP if the given item has never |
| 156 | 157 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
| 157 | 158 |
/// and \c POST_HEAP otherwise. |
| 158 | 159 |
/// In the latter case it is possible that the item will get back |
| 159 | 160 |
/// to the heap again. |
| 160 | 161 |
/// \param i The item. |
| 161 | 162 |
State state(const Item &i) const {}
|
| 162 | 163 |
|
| 163 | 164 |
/// \brief Sets the state of an item in the heap. |
| 164 | 165 |
/// |
| 165 | 166 |
/// Sets the state of the given item in the heap. It can be used |
| 166 | 167 |
/// to manually clear the heap when it is important to achive the |
| 167 | 168 |
/// better time complexity. |
| 168 | 169 |
/// \param i The item. |
| 169 | 170 |
/// \param st The state. It should not be \c IN_HEAP. |
| 170 | 171 |
void state(const Item& i, State st) {}
|
| 171 | 172 |
|
| 172 | 173 |
|
| 173 | 174 |
template <typename _Heap> |
| 174 | 175 |
struct Constraints {
|
| 175 | 176 |
public: |
| 176 | 177 |
void constraints() {
|
| 177 | 178 |
typedef typename _Heap::Item OwnItem; |
| 178 | 179 |
typedef typename _Heap::Prio OwnPrio; |
| 179 | 180 |
typedef typename _Heap::State OwnState; |
| 180 | 181 |
|
| 181 | 182 |
Item item; |
| 182 | 183 |
Prio prio; |
| 183 | 184 |
item=Item(); |
| 184 | 185 |
prio=Prio(); |
| 185 | 186 |
ignore_unused_variable_warning(item); |
| 186 | 187 |
ignore_unused_variable_warning(prio); |
| 187 | 188 |
|
| 188 | 189 |
OwnItem own_item; |
| 189 | 190 |
OwnPrio own_prio; |
| 190 | 191 |
OwnState own_state; |
| 191 | 192 |
own_item=Item(); |
| 192 | 193 |
own_prio=Prio(); |
| 193 | 194 |
ignore_unused_variable_warning(own_item); |
| 194 | 195 |
ignore_unused_variable_warning(own_prio); |
| 195 | 196 |
ignore_unused_variable_warning(own_state); |
| 196 | 197 |
|
| 197 | 198 |
_Heap heap1(map); |
| 198 | 199 |
_Heap heap2 = heap1; |
| 199 | 200 |
ignore_unused_variable_warning(heap1); |
| 200 | 201 |
ignore_unused_variable_warning(heap2); |
| 201 | 202 |
|
| 202 | 203 |
int s = heap.size(); |
| 203 | 204 |
ignore_unused_variable_warning(s); |
| 204 | 205 |
bool e = heap.empty(); |
| 205 | 206 |
ignore_unused_variable_warning(e); |
| 206 | 207 |
|
| 207 | 208 |
prio = heap.prio(); |
| 208 | 209 |
item = heap.top(); |
| 209 | 210 |
prio = heap[item]; |
| 210 | 211 |
own_prio = heap.prio(); |
| 211 | 212 |
own_item = heap.top(); |
| 212 | 213 |
own_prio = heap[own_item]; |
| 213 | 214 |
|
| 214 | 215 |
heap.push(item, prio); |
| 215 | 216 |
heap.push(own_item, own_prio); |
| 216 | 217 |
heap.pop(); |
| 217 | 218 |
|
| 218 | 219 |
heap.set(item, prio); |
| 219 | 220 |
heap.decrease(item, prio); |
| 220 | 221 |
heap.increase(item, prio); |
| 221 | 222 |
heap.set(own_item, own_prio); |
| 222 | 223 |
heap.decrease(own_item, own_prio); |
| 223 | 224 |
heap.increase(own_item, own_prio); |
| 224 | 225 |
|
| 225 | 226 |
heap.erase(item); |
| 226 | 227 |
heap.erase(own_item); |
| 227 | 228 |
heap.clear(); |
| 228 | 229 |
|
| 229 | 230 |
own_state = heap.state(own_item); |
| 230 | 231 |
heap.state(own_item, own_state); |
| 231 | 232 |
|
| 232 | 233 |
own_state = _Heap::PRE_HEAP; |
| 233 | 234 |
own_state = _Heap::IN_HEAP; |
| 234 | 235 |
own_state = _Heap::POST_HEAP; |
| 235 | 236 |
} |
| 236 | 237 |
|
| 237 | 238 |
_Heap& heap; |
| 238 | 239 |
ItemIntMap& map; |
| 239 | 240 |
}; |
| 240 | 241 |
}; |
| 241 | 242 |
|
| 242 | 243 |
/// @} |
| 243 | 244 |
} // namespace lemon |
| 244 | 245 |
} |
| 245 | 246 |
#endif // LEMON_CONCEPT_PATH_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_ELEVATOR_H |
| 20 | 20 |
#define LEMON_ELEVATOR_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup auxdat |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Elevator class |
| 25 | 25 |
/// |
| 26 | 26 |
///Elevator class implements an efficient data structure |
| 27 | 27 |
///for labeling items in push-relabel type algorithms. |
| 28 | 28 |
/// |
| 29 | 29 |
|
| 30 |
#include <lemon/core.h> |
|
| 30 | 31 |
#include <lemon/bits/traits.h> |
| 31 | 32 |
|
| 32 | 33 |
namespace lemon {
|
| 33 | 34 |
|
| 34 | 35 |
///Class for handling "labels" in push-relabel type algorithms. |
| 35 | 36 |
|
| 36 | 37 |
///A class for handling "labels" in push-relabel type algorithms. |
| 37 | 38 |
/// |
| 38 | 39 |
///\ingroup auxdat |
| 39 | 40 |
///Using this class you can assign "labels" (nonnegative integer numbers) |
| 40 | 41 |
///to the edges or nodes of a graph, manipulate and query them through |
| 41 | 42 |
///operations typically arising in "push-relabel" type algorithms. |
| 42 | 43 |
/// |
| 43 | 44 |
///Each item is either \em active or not, and you can also choose a |
| 44 | 45 |
///highest level active item. |
| 45 | 46 |
/// |
| 46 | 47 |
///\sa LinkedElevator |
| 47 | 48 |
/// |
| 48 | 49 |
///\param Graph Type of the underlying graph. |
| 49 | 50 |
///\param Item Type of the items the data is assigned to (Graph::Node, |
| 50 | 51 |
///Graph::Arc, Graph::Edge). |
| 51 | 52 |
template<class Graph, class Item> |
| 52 | 53 |
class Elevator |
| 53 | 54 |
{
|
| 54 | 55 |
public: |
| 55 | 56 |
|
| 56 | 57 |
typedef Item Key; |
| 57 | 58 |
typedef int Value; |
| 58 | 59 |
|
| 59 | 60 |
private: |
| 60 | 61 |
|
| 61 | 62 |
typedef Item *Vit; |
| 62 | 63 |
typedef typename ItemSetTraits<Graph,Item>::template Map<Vit>::Type VitMap; |
| 63 | 64 |
typedef typename ItemSetTraits<Graph,Item>::template Map<int>::Type IntMap; |
| 64 | 65 |
|
| 65 | 66 |
const Graph &_g; |
| 66 | 67 |
int _max_level; |
| 67 | 68 |
int _item_num; |
| 68 | 69 |
VitMap _where; |
| 69 | 70 |
IntMap _level; |
| 70 | 71 |
std::vector<Item> _items; |
| 71 | 72 |
std::vector<Vit> _first; |
| 72 | 73 |
std::vector<Vit> _last_active; |
| 73 | 74 |
|
| 74 | 75 |
int _highest_active; |
| 75 | 76 |
|
| 76 | 77 |
void copy(Item i, Vit p) |
| 77 | 78 |
{
|
| 78 | 79 |
_where.set(*p=i,p); |
| 79 | 80 |
} |
| 80 | 81 |
void copy(Vit s, Vit p) |
| 81 | 82 |
{
|
| 82 | 83 |
if(s!=p) |
| 83 | 84 |
{
|
| 84 | 85 |
Item i=*s; |
| 85 | 86 |
*p=i; |
| 86 | 87 |
_where.set(i,p); |
| 87 | 88 |
} |
| 88 | 89 |
} |
| 89 | 90 |
void swap(Vit i, Vit j) |
| 90 | 91 |
{
|
| 91 | 92 |
Item ti=*i; |
| 92 | 93 |
Vit ct = _where[ti]; |
| 93 | 94 |
_where.set(ti,_where[*i=*j]); |
| 94 | 95 |
_where.set(*j,ct); |
| 95 | 96 |
*j=ti; |
| 96 | 97 |
} |
| 97 | 98 |
|
| 98 | 99 |
public: |
| 99 | 100 |
|
| 100 | 101 |
///Constructor with given maximum level. |
| 101 | 102 |
|
| 102 | 103 |
///Constructor with given maximum level. |
| 103 | 104 |
/// |
| 104 | 105 |
///\param graph The underlying graph. |
| 105 | 106 |
///\param max_level The maximum allowed level. |
| 106 | 107 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>. |
| 107 | 108 |
Elevator(const Graph &graph,int max_level) : |
| 108 | 109 |
_g(graph), |
| 109 | 110 |
_max_level(max_level), |
| 110 | 111 |
_item_num(_max_level), |
| 111 | 112 |
_where(graph), |
| 112 | 113 |
_level(graph,0), |
| 113 | 114 |
_items(_max_level), |
| 114 | 115 |
_first(_max_level+2), |
| 115 | 116 |
_last_active(_max_level+2), |
| 116 | 117 |
_highest_active(-1) {}
|
| 117 | 118 |
///Constructor. |
| 118 | 119 |
|
| 119 | 120 |
///Constructor. |
| 120 | 121 |
/// |
| 121 | 122 |
///\param graph The underlying graph. |
| 122 | 123 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>, |
| 123 | 124 |
///where \c max_level is equal to the number of labeled items in the graph. |
| 124 | 125 |
Elevator(const Graph &graph) : |
| 125 | 126 |
_g(graph), |
| 126 | 127 |
_max_level(countItems<Graph, Item>(graph)), |
| 127 | 128 |
_item_num(_max_level), |
| 128 | 129 |
_where(graph), |
| 129 | 130 |
_level(graph,0), |
| 130 | 131 |
_items(_max_level), |
| 131 | 132 |
_first(_max_level+2), |
| 132 | 133 |
_last_active(_max_level+2), |
| 133 | 134 |
_highest_active(-1) |
| 134 | 135 |
{
|
| 135 | 136 |
} |
| 136 | 137 |
|
| 137 | 138 |
///Activate item \c i. |
| 138 | 139 |
|
| 139 | 140 |
///Activate item \c i. |
| 140 | 141 |
///\pre Item \c i shouldn't be active before. |
| 141 | 142 |
void activate(Item i) |
| 142 | 143 |
{
|
| 143 | 144 |
const int l=_level[i]; |
| 144 | 145 |
swap(_where[i],++_last_active[l]); |
| 145 | 146 |
if(l>_highest_active) _highest_active=l; |
| 146 | 147 |
} |
| 147 | 148 |
|
| 148 | 149 |
///Deactivate item \c i. |
| 149 | 150 |
|
| 150 | 151 |
///Deactivate item \c i. |
| 151 | 152 |
///\pre Item \c i must be active before. |
| 152 | 153 |
void deactivate(Item i) |
| 153 | 154 |
{
|
| 154 | 155 |
swap(_where[i],_last_active[_level[i]]--); |
| 155 | 156 |
while(_highest_active>=0 && |
| 156 | 157 |
_last_active[_highest_active]<_first[_highest_active]) |
| 157 | 158 |
_highest_active--; |
| 158 | 159 |
} |
| 159 | 160 |
|
| 160 | 161 |
///Query whether item \c i is active |
| 161 | 162 |
bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; }
|
| 162 | 163 |
|
| 163 | 164 |
///Return the level of item \c i. |
| 164 | 165 |
int operator[](Item i) const { return _level[i]; }
|
| 165 | 166 |
|
| 166 | 167 |
///Return the number of items on level \c l. |
| 167 | 168 |
int onLevel(int l) const |
| 168 | 169 |
{
|
| 169 | 170 |
return _first[l+1]-_first[l]; |
| 170 | 171 |
} |
| 171 | 172 |
///Return true if level \c l is empty. |
| 172 | 173 |
bool emptyLevel(int l) const |
| 173 | 174 |
{
|
| 174 | 175 |
return _first[l+1]-_first[l]==0; |
| 175 | 176 |
} |
| 176 | 177 |
///Return the number of items above level \c l. |
| 177 | 178 |
int aboveLevel(int l) const |
| 178 | 179 |
{
|
| 179 | 180 |
return _first[_max_level+1]-_first[l+1]; |
| 180 | 181 |
} |
| 181 | 182 |
///Return the number of active items on level \c l. |
| 182 | 183 |
int activesOnLevel(int l) const |
| 183 | 184 |
{
|
| 184 | 185 |
return _last_active[l]-_first[l]+1; |
| 185 | 186 |
} |
| 186 | 187 |
///Return true if there is no active item on level \c l. |
| 187 | 188 |
bool activeFree(int l) const |
| 188 | 189 |
{
|
| 189 | 190 |
return _last_active[l]<_first[l]; |
| 190 | 191 |
} |
| 191 | 192 |
///Return the maximum allowed level. |
| 192 | 193 |
int maxLevel() const |
| 193 | 194 |
{
|
| 194 | 195 |
return _max_level; |
| 195 | 196 |
} |
| 196 | 197 |
|
| 197 | 198 |
///\name Highest Active Item |
| 198 | 199 |
///Functions for working with the highest level |
| 199 | 200 |
///active item. |
| 200 | 201 |
|
| 201 | 202 |
///@{
|
| 202 | 203 |
|
| 203 | 204 |
///Return a highest level active item. |
| 204 | 205 |
|
| 205 | 206 |
///Return a highest level active item or INVALID if there is no active |
| 206 | 207 |
///item. |
| 207 | 208 |
Item highestActive() const |
| 208 | 209 |
{
|
| 209 | 210 |
return _highest_active>=0?*_last_active[_highest_active]:INVALID; |
| 210 | 211 |
} |
| 211 | 212 |
|
| 212 | 213 |
///Return the highest active level. |
| 213 | 214 |
|
| 214 | 215 |
///Return the level of the highest active item or -1 if there is no active |
| 215 | 216 |
///item. |
| 216 | 217 |
int highestActiveLevel() const |
| 217 | 218 |
{
|
| 218 | 219 |
return _highest_active; |
| 219 | 220 |
} |
| 220 | 221 |
|
| 221 | 222 |
///Lift the highest active item by one. |
| 222 | 223 |
|
| 223 | 224 |
///Lift the item returned by highestActive() by one. |
| 224 | 225 |
/// |
| 225 | 226 |
void liftHighestActive() |
| 226 | 227 |
{
|
| 227 | 228 |
Item it = *_last_active[_highest_active]; |
| 228 | 229 |
_level.set(it,_level[it]+1); |
| 229 | 230 |
swap(_last_active[_highest_active]--,_last_active[_highest_active+1]); |
| 230 | 231 |
--_first[++_highest_active]; |
| 231 | 232 |
} |
| 232 | 233 |
|
| 233 | 234 |
///Lift the highest active item to the given level. |
| 234 | 235 |
|
| 235 | 236 |
///Lift the item returned by highestActive() to level \c new_level. |
| 236 | 237 |
/// |
| 237 | 238 |
///\warning \c new_level must be strictly higher |
| 238 | 239 |
///than the current level. |
| 239 | 240 |
/// |
| 240 | 241 |
void liftHighestActive(int new_level) |
| 241 | 242 |
{
|
| 242 | 243 |
const Item li = *_last_active[_highest_active]; |
| 243 | 244 |
|
| 244 | 245 |
copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
| 245 | 246 |
for(int l=_highest_active+1;l<new_level;l++) |
| 246 | 247 |
{
|
| 247 | 248 |
copy(--_first[l+1],_first[l]); |
| 248 | 249 |
--_last_active[l]; |
| 249 | 250 |
} |
| 250 | 251 |
copy(li,_first[new_level]); |
| 251 | 252 |
_level.set(li,new_level); |
| 252 | 253 |
_highest_active=new_level; |
| 253 | 254 |
} |
| 254 | 255 |
|
| 255 | 256 |
///Lift the highest active item to the top level. |
| 256 | 257 |
|
| 257 | 258 |
///Lift the item returned by highestActive() to the top level and |
| 258 | 259 |
///deactivate it. |
| 259 | 260 |
void liftHighestActiveToTop() |
| 260 | 261 |
{
|
| 261 | 262 |
const Item li = *_last_active[_highest_active]; |
| 262 | 263 |
|
| 263 | 264 |
copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
| 264 | 265 |
for(int l=_highest_active+1;l<_max_level;l++) |
| 265 | 266 |
{
|
| 266 | 267 |
copy(--_first[l+1],_first[l]); |
| 267 | 268 |
--_last_active[l]; |
| 268 | 269 |
} |
| 269 | 270 |
copy(li,_first[_max_level]); |
| 270 | 271 |
--_last_active[_max_level]; |
| 271 | 272 |
_level.set(li,_max_level); |
| 272 | 273 |
|
| 273 | 274 |
while(_highest_active>=0 && |
| 274 | 275 |
_last_active[_highest_active]<_first[_highest_active]) |
| 275 | 276 |
_highest_active--; |
| 276 | 277 |
} |
| 277 | 278 |
|
| 278 | 279 |
///@} |
| 279 | 280 |
|
| 280 | 281 |
///\name Active Item on Certain Level |
| 281 | 282 |
///Functions for working with the active items. |
| 282 | 283 |
|
| 283 | 284 |
///@{
|
| 284 | 285 |
|
| 285 | 286 |
///Return an active item on level \c l. |
| 286 | 287 |
|
| 287 | 288 |
///Return an active item on level \c l or \ref INVALID if there is no such |
| 288 | 289 |
///an item. (\c l must be from the range [0...\c max_level]. |
| 289 | 290 |
Item activeOn(int l) const |
| 290 | 291 |
{
|
| 291 | 292 |
return _last_active[l]>=_first[l]?*_last_active[l]:INVALID; |
| 292 | 293 |
} |
| 293 | 294 |
|
| 294 | 295 |
///Lift the active item returned by \c activeOn(level) by one. |
| 295 | 296 |
|
| 296 | 297 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
| 297 | 298 |
///by one. |
| 298 | 299 |
Item liftActiveOn(int level) |
| 299 | 300 |
{
|
| 300 | 301 |
Item it =*_last_active[level]; |
| 301 | 302 |
_level.set(it,_level[it]+1); |
| 302 | 303 |
swap(_last_active[level]--, --_first[level+1]); |
| 303 | 304 |
if (level+1>_highest_active) ++_highest_active; |
| 304 | 305 |
} |
| 305 | 306 |
|
| 306 | 307 |
///Lift the active item returned by \c activeOn(level) to the given level. |
| 307 | 308 |
|
| 308 | 309 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
| 309 | 310 |
///to the given level. |
| 310 | 311 |
void liftActiveOn(int level, int new_level) |
| 311 | 312 |
{
|
| 312 | 313 |
const Item ai = *_last_active[level]; |
| 313 | 314 |
|
| 314 | 315 |
copy(--_first[level+1], _last_active[level]--); |
| 315 | 316 |
for(int l=level+1;l<new_level;l++) |
| 316 | 317 |
{
|
| 317 | 318 |
copy(_last_active[l],_first[l]); |
| 318 | 319 |
copy(--_first[l+1], _last_active[l]--); |
| 319 | 320 |
} |
| 320 | 321 |
copy(ai,_first[new_level]); |
| 321 | 322 |
_level.set(ai,new_level); |
| 322 | 323 |
if (new_level>_highest_active) _highest_active=new_level; |
| 323 | 324 |
} |
| 324 | 325 |
|
| 325 | 326 |
///Lift the active item returned by \c activeOn(level) to the top level. |
| 326 | 327 |
|
| 327 | 328 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
| 328 | 329 |
///to the top level and deactivate it. |
| 329 | 330 |
void liftActiveToTop(int level) |
| 330 | 331 |
{
|
| 331 | 332 |
const Item ai = *_last_active[level]; |
| 332 | 333 |
|
| 333 | 334 |
copy(--_first[level+1],_last_active[level]--); |
| 334 | 335 |
for(int l=level+1;l<_max_level;l++) |
| 335 | 336 |
{
|
| 336 | 337 |
copy(_last_active[l],_first[l]); |
| 337 | 338 |
copy(--_first[l+1], _last_active[l]--); |
| 338 | 339 |
} |
| 339 | 340 |
copy(ai,_first[_max_level]); |
| 340 | 341 |
--_last_active[_max_level]; |
| 341 | 342 |
_level.set(ai,_max_level); |
| 342 | 343 |
|
| 343 | 344 |
if (_highest_active==level) {
|
| 344 | 345 |
while(_highest_active>=0 && |
| 345 | 346 |
_last_active[_highest_active]<_first[_highest_active]) |
| 346 | 347 |
_highest_active--; |
| 347 | 348 |
} |
| 348 | 349 |
} |
| 349 | 350 |
|
| 350 | 351 |
///@} |
| 351 | 352 |
|
| 352 | 353 |
///Lift an active item to a higher level. |
| 353 | 354 |
|
| 354 | 355 |
///Lift an active item to a higher level. |
| 355 | 356 |
///\param i The item to be lifted. It must be active. |
| 356 | 357 |
///\param new_level The new level of \c i. It must be strictly higher |
| 357 | 358 |
///than the current level. |
| 358 | 359 |
/// |
| 359 | 360 |
void lift(Item i, int new_level) |
| 360 | 361 |
{
|
| 361 | 362 |
const int lo = _level[i]; |
| 362 | 363 |
const Vit w = _where[i]; |
| 363 | 364 |
|
| 364 | 365 |
copy(_last_active[lo],w); |
| 365 | 366 |
copy(--_first[lo+1],_last_active[lo]--); |
| 366 | 367 |
for(int l=lo+1;l<new_level;l++) |
| 367 | 368 |
{
|
| 368 | 369 |
copy(_last_active[l],_first[l]); |
| 369 | 370 |
copy(--_first[l+1],_last_active[l]--); |
| 370 | 371 |
} |
| 371 | 372 |
copy(i,_first[new_level]); |
| 372 | 373 |
_level.set(i,new_level); |
| 373 | 374 |
if(new_level>_highest_active) _highest_active=new_level; |
| 374 | 375 |
} |
| 375 | 376 |
|
| 376 | 377 |
///Move an inactive item to the top but one level (in a dirty way). |
| 377 | 378 |
|
| 378 | 379 |
///This function moves an inactive item from the top level to the top |
| 379 | 380 |
///but one level (in a dirty way). |
| 380 | 381 |
///\warning It makes the underlying datastructure corrupt, so use it |
| 381 | 382 |
///only if you really know what it is for. |
| 382 | 383 |
///\pre The item is on the top level. |
| 383 | 384 |
void dirtyTopButOne(Item i) {
|
| 384 | 385 |
_level.set(i,_max_level - 1); |
| 385 | 386 |
} |
| 386 | 387 |
|
| 387 | 388 |
///Lift all items on and above the given level to the top level. |
| 388 | 389 |
|
| 389 | 390 |
///This function lifts all items on and above level \c l to the top |
| 390 | 391 |
///level and deactivates them. |
| 391 | 392 |
void liftToTop(int l) |
| 392 | 393 |
{
|
| 393 | 394 |
const Vit f=_first[l]; |
| 394 | 395 |
const Vit tl=_first[_max_level]; |
| 395 | 396 |
for(Vit i=f;i!=tl;++i) |
| 396 | 397 |
_level.set(*i,_max_level); |
| 397 | 398 |
for(int i=l;i<=_max_level;i++) |
| 398 | 399 |
{
|
| 399 | 400 |
_first[i]=f; |
| 400 | 401 |
_last_active[i]=f-1; |
| 401 | 402 |
} |
| 402 | 403 |
for(_highest_active=l-1; |
| 403 | 404 |
_highest_active>=0 && |
| 404 | 405 |
_last_active[_highest_active]<_first[_highest_active]; |
| 405 | 406 |
_highest_active--) ; |
| 406 | 407 |
} |
| 407 | 408 |
|
| 408 | 409 |
private: |
| 409 | 410 |
int _init_lev; |
| 410 | 411 |
Vit _init_num; |
| 411 | 412 |
|
| 412 | 413 |
public: |
| 413 | 414 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_SUURBALLE_H |
| 20 | 20 |
#define LEMON_SUURBALLE_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup shortest_path |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief An algorithm for finding arc-disjoint paths between two |
| 25 | 25 |
/// nodes having minimum total length. |
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <lemon/bin_heap.h> |
| 29 | 29 |
#include <lemon/path.h> |
| 30 |
#include <lemon/list_graph.h> |
|
| 31 |
#include <lemon/maps.h> |
|
| 30 | 32 |
|
| 31 | 33 |
namespace lemon {
|
| 32 | 34 |
|
| 33 | 35 |
/// \addtogroup shortest_path |
| 34 | 36 |
/// @{
|
| 35 | 37 |
|
| 36 | 38 |
/// \brief Algorithm for finding arc-disjoint paths between two nodes |
| 37 | 39 |
/// having minimum total length. |
| 38 | 40 |
/// |
| 39 | 41 |
/// \ref lemon::Suurballe "Suurballe" implements an algorithm for |
| 40 | 42 |
/// finding arc-disjoint paths having minimum total length (cost) |
| 41 | 43 |
/// from a given source node to a given target node in a digraph. |
| 42 | 44 |
/// |
| 43 | 45 |
/// In fact, this implementation is the specialization of the |
| 44 | 46 |
/// \ref CapacityScaling "successive shortest path" algorithm. |
| 45 | 47 |
/// |
| 46 | 48 |
/// \tparam Digraph The digraph type the algorithm runs on. |
| 47 | 49 |
/// The default value is \c ListDigraph. |
| 48 | 50 |
/// \tparam LengthMap The type of the length (cost) map. |
| 49 | 51 |
/// The default value is <tt>Digraph::ArcMap<int></tt>. |
| 50 | 52 |
/// |
| 51 | 53 |
/// \warning Length values should be \e non-negative \e integers. |
| 52 | 54 |
/// |
| 53 | 55 |
/// \note For finding node-disjoint paths this algorithm can be used |
| 54 | 56 |
/// with \ref SplitNodes. |
| 55 | 57 |
#ifdef DOXYGEN |
| 56 | 58 |
template <typename Digraph, typename LengthMap> |
| 57 | 59 |
#else |
| 58 | 60 |
template < typename Digraph = ListDigraph, |
| 59 | 61 |
typename LengthMap = typename Digraph::template ArcMap<int> > |
| 60 | 62 |
#endif |
| 61 | 63 |
class Suurballe |
| 62 | 64 |
{
|
| 63 | 65 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 64 | 66 |
|
| 65 | 67 |
typedef typename LengthMap::Value Length; |
| 66 | 68 |
typedef ConstMap<Arc, int> ConstArcMap; |
| 67 | 69 |
typedef typename Digraph::template NodeMap<Arc> PredMap; |
| 68 | 70 |
|
| 69 | 71 |
public: |
| 70 | 72 |
|
| 71 | 73 |
/// The type of the flow map. |
| 72 | 74 |
typedef typename Digraph::template ArcMap<int> FlowMap; |
| 73 | 75 |
/// The type of the potential map. |
| 74 | 76 |
typedef typename Digraph::template NodeMap<Length> PotentialMap; |
| 75 | 77 |
/// The type of the path structures. |
| 76 | 78 |
typedef SimplePath<Digraph> Path; |
| 77 | 79 |
|
| 78 | 80 |
private: |
| 79 | 81 |
|
| 80 | 82 |
/// \brief Special implementation of the Dijkstra algorithm |
| 81 | 83 |
/// for finding shortest paths in the residual network. |
| 82 | 84 |
/// |
| 83 | 85 |
/// \ref ResidualDijkstra is a special implementation of the |
| 84 | 86 |
/// \ref Dijkstra algorithm for finding shortest paths in the |
| 85 | 87 |
/// residual network of the digraph with respect to the reduced arc |
| 86 | 88 |
/// lengths and modifying the node potentials according to the |
| 87 | 89 |
/// distance of the nodes. |
| 88 | 90 |
class ResidualDijkstra |
| 89 | 91 |
{
|
| 90 | 92 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 91 | 93 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
| 92 | 94 |
|
| 93 | 95 |
private: |
| 94 | 96 |
|
| 95 | 97 |
// The digraph the algorithm runs on |
| 96 | 98 |
const Digraph &_graph; |
| 97 | 99 |
|
| 98 | 100 |
// The main maps |
| 99 | 101 |
const FlowMap &_flow; |
| 100 | 102 |
const LengthMap &_length; |
| 101 | 103 |
PotentialMap &_potential; |
| 102 | 104 |
|
| 103 | 105 |
// The distance map |
| 104 | 106 |
PotentialMap _dist; |
| 105 | 107 |
// The pred arc map |
| 106 | 108 |
PredMap &_pred; |
| 107 | 109 |
// The processed (i.e. permanently labeled) nodes |
| 108 | 110 |
std::vector<Node> _proc_nodes; |
| 109 | 111 |
|
| 110 | 112 |
Node _s; |
| 111 | 113 |
Node _t; |
| 112 | 114 |
|
| 113 | 115 |
public: |
| 114 | 116 |
|
| 115 | 117 |
/// Constructor. |
| 116 | 118 |
ResidualDijkstra( const Digraph &digraph, |
| 117 | 119 |
const FlowMap &flow, |
| 118 | 120 |
const LengthMap &length, |
| 119 | 121 |
PotentialMap &potential, |
| 120 | 122 |
PredMap &pred, |
| 121 | 123 |
Node s, Node t ) : |
| 122 | 124 |
_graph(digraph), _flow(flow), _length(length), _potential(potential), |
| 123 | 125 |
_dist(digraph), _pred(pred), _s(s), _t(t) {}
|
| 124 | 126 |
|
| 125 | 127 |
/// \brief Run the algorithm. It returns \c true if a path is found |
| 126 | 128 |
/// from the source node to the target node. |
| 127 | 129 |
bool run() {
|
| 128 | 130 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
| 129 | 131 |
Heap heap(heap_cross_ref); |
| 130 | 132 |
heap.push(_s, 0); |
| 131 | 133 |
_pred[_s] = INVALID; |
| 132 | 134 |
_proc_nodes.clear(); |
| 133 | 135 |
|
| 134 | 136 |
// Process nodes |
| 135 | 137 |
while (!heap.empty() && heap.top() != _t) {
|
| 136 | 138 |
Node u = heap.top(), v; |
| 137 | 139 |
Length d = heap.prio() + _potential[u], nd; |
| 138 | 140 |
_dist[u] = heap.prio(); |
| 139 | 141 |
heap.pop(); |
| 140 | 142 |
_proc_nodes.push_back(u); |
| 141 | 143 |
|
| 142 | 144 |
// Traverse outgoing arcs |
| 143 | 145 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) {
|
| 144 | 146 |
if (_flow[e] == 0) {
|
| 145 | 147 |
v = _graph.target(e); |
| 146 | 148 |
switch(heap.state(v)) {
|
| 147 | 149 |
case Heap::PRE_HEAP: |
| 148 | 150 |
heap.push(v, d + _length[e] - _potential[v]); |
| 149 | 151 |
_pred[v] = e; |
| 150 | 152 |
break; |
| 151 | 153 |
case Heap::IN_HEAP: |
| 152 | 154 |
nd = d + _length[e] - _potential[v]; |
| 153 | 155 |
if (nd < heap[v]) {
|
| 154 | 156 |
heap.decrease(v, nd); |
| 155 | 157 |
_pred[v] = e; |
| 156 | 158 |
} |
| 157 | 159 |
break; |
| 158 | 160 |
case Heap::POST_HEAP: |
| 159 | 161 |
break; |
| 160 | 162 |
} |
| 161 | 163 |
} |
| 162 | 164 |
} |
| 163 | 165 |
|
| 164 | 166 |
// Traverse incoming arcs |
| 165 | 167 |
for (InArcIt e(_graph, u); e != INVALID; ++e) {
|
| 166 | 168 |
if (_flow[e] == 1) {
|
| 167 | 169 |
v = _graph.source(e); |
| 168 | 170 |
switch(heap.state(v)) {
|
| 169 | 171 |
case Heap::PRE_HEAP: |
| 170 | 172 |
heap.push(v, d - _length[e] - _potential[v]); |
| 171 | 173 |
_pred[v] = e; |
| 172 | 174 |
break; |
| 173 | 175 |
case Heap::IN_HEAP: |
| 174 | 176 |
nd = d - _length[e] - _potential[v]; |
| 175 | 177 |
if (nd < heap[v]) {
|
| 176 | 178 |
heap.decrease(v, nd); |
| 177 | 179 |
_pred[v] = e; |
| 178 | 180 |
} |
| 179 | 181 |
break; |
| 180 | 182 |
case Heap::POST_HEAP: |
| 181 | 183 |
break; |
| 182 | 184 |
} |
| 183 | 185 |
} |
| 184 | 186 |
} |
| 185 | 187 |
} |
| 186 | 188 |
if (heap.empty()) return false; |
| 187 | 189 |
|
| 188 | 190 |
// Update potentials of processed nodes |
| 189 | 191 |
Length t_dist = heap.prio(); |
| 190 | 192 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
| 191 | 193 |
_potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; |
| 192 | 194 |
return true; |
| 193 | 195 |
} |
| 194 | 196 |
|
| 195 | 197 |
}; //class ResidualDijkstra |
| 196 | 198 |
|
| 197 | 199 |
private: |
| 198 | 200 |
|
| 199 | 201 |
// The digraph the algorithm runs on |
| 200 | 202 |
const Digraph &_graph; |
| 201 | 203 |
// The length map |
| 202 | 204 |
const LengthMap &_length; |
| 203 | 205 |
|
| 204 | 206 |
// Arc map of the current flow |
| 205 | 207 |
FlowMap *_flow; |
| 206 | 208 |
bool _local_flow; |
| 207 | 209 |
// Node map of the current potentials |
| 208 | 210 |
PotentialMap *_potential; |
| 209 | 211 |
bool _local_potential; |
| 210 | 212 |
|
| 211 | 213 |
// The source node |
| 212 | 214 |
Node _source; |
| 213 | 215 |
// The target node |
| 214 | 216 |
Node _target; |
| 215 | 217 |
|
| 216 | 218 |
// Container to store the found paths |
| 217 | 219 |
std::vector< SimplePath<Digraph> > paths; |
| 218 | 220 |
int _path_num; |
| 219 | 221 |
|
| 220 | 222 |
// The pred arc map |
| 221 | 223 |
PredMap _pred; |
| 222 | 224 |
// Implementation of the Dijkstra algorithm for finding augmenting |
| 223 | 225 |
// shortest paths in the residual network |
| 224 | 226 |
ResidualDijkstra *_dijkstra; |
| 225 | 227 |
|
| 226 | 228 |
public: |
| 227 | 229 |
|
| 228 | 230 |
/// \brief Constructor. |
| 229 | 231 |
/// |
| 230 | 232 |
/// Constructor. |
| 231 | 233 |
/// |
| 232 | 234 |
/// \param digraph The digraph the algorithm runs on. |
| 233 | 235 |
/// \param length The length (cost) values of the arcs. |
| 234 | 236 |
/// \param s The source node. |
| 235 | 237 |
/// \param t The target node. |
| 236 | 238 |
Suurballe( const Digraph &digraph, |
| 237 | 239 |
const LengthMap &length, |
| 238 | 240 |
Node s, Node t ) : |
| 239 | 241 |
_graph(digraph), _length(length), _flow(0), _local_flow(false), |
| 240 | 242 |
_potential(0), _local_potential(false), _source(s), _target(t), |
| 241 | 243 |
_pred(digraph) {}
|
| 242 | 244 |
|
| 243 | 245 |
/// Destructor. |
| 244 | 246 |
~Suurballe() {
|
| 245 | 247 |
if (_local_flow) delete _flow; |
| 246 | 248 |
if (_local_potential) delete _potential; |
| 247 | 249 |
delete _dijkstra; |
| 248 | 250 |
} |
| 249 | 251 |
|
| 250 | 252 |
/// \brief Set the flow map. |
| 251 | 253 |
/// |
| 252 | 254 |
/// This function sets the flow map. |
| 253 | 255 |
/// |
| 254 | 256 |
/// The found flow contains only 0 and 1 values. It is the union of |
| 255 | 257 |
/// the found arc-disjoint paths. |
| 256 | 258 |
/// |
| 257 | 259 |
/// \return \c (*this) |
| 258 | 260 |
Suurballe& flowMap(FlowMap &map) {
|
| 259 | 261 |
if (_local_flow) {
|
| 260 | 262 |
delete _flow; |
| 261 | 263 |
_local_flow = false; |
| 262 | 264 |
} |
| 263 | 265 |
_flow = ↦ |
| 264 | 266 |
return *this; |
| 265 | 267 |
} |
| 266 | 268 |
|
| 267 | 269 |
/// \brief Set the potential map. |
| 268 | 270 |
/// |
| 269 | 271 |
/// This function sets the potential map. |
| 270 | 272 |
/// |
| 271 | 273 |
/// The potentials provide the dual solution of the underlying |
| 272 | 274 |
/// minimum cost flow problem. |
| 273 | 275 |
/// |
| 274 | 276 |
/// \return \c (*this) |
| 275 | 277 |
Suurballe& potentialMap(PotentialMap &map) {
|
| 276 | 278 |
if (_local_potential) {
|
| 277 | 279 |
delete _potential; |
| 278 | 280 |
_local_potential = false; |
| 279 | 281 |
} |
| 280 | 282 |
_potential = ↦ |
| 281 | 283 |
return *this; |
| 282 | 284 |
} |
| 283 | 285 |
|
| 284 | 286 |
/// \name Execution control |
| 285 | 287 |
/// The simplest way to execute the algorithm is to call the run() |
| 286 | 288 |
/// function. |
| 287 | 289 |
/// \n |
| 288 | 290 |
/// If you only need the flow that is the union of the found |
| 289 | 291 |
/// arc-disjoint paths, you may call init() and findFlow(). |
| 290 | 292 |
|
| 291 | 293 |
/// @{
|
| 292 | 294 |
|
| 293 | 295 |
/// \brief Run the algorithm. |
| 294 | 296 |
/// |
| 295 | 297 |
/// This function runs the algorithm. |
| 296 | 298 |
/// |
| 297 | 299 |
/// \param k The number of paths to be found. |
| 298 | 300 |
/// |
| 299 | 301 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
| 300 | 302 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
| 301 | 303 |
/// arc-disjoint paths found. |
| 302 | 304 |
/// |
| 303 | 305 |
/// \note Apart from the return value, <tt>s.run(k)</tt> is just a |
| 304 | 306 |
/// shortcut of the following code. |
| 305 | 307 |
/// \code |
| 306 | 308 |
/// s.init(); |
| 307 | 309 |
/// s.findFlow(k); |
| 308 | 310 |
/// s.findPaths(); |
| 309 | 311 |
/// \endcode |
| 310 | 312 |
int run(int k = 2) {
|
| 311 | 313 |
init(); |
| 312 | 314 |
findFlow(k); |
| 313 | 315 |
findPaths(); |
| 314 | 316 |
return _path_num; |
| 315 | 317 |
} |
| 316 | 318 |
|
| 317 | 319 |
/// \brief Initialize the algorithm. |
| 318 | 320 |
/// |
| 319 | 321 |
/// This function initializes the algorithm. |
| 320 | 322 |
void init() {
|
| 321 | 323 |
// Initialize maps |
| 322 | 324 |
if (!_flow) {
|
| 323 | 325 |
_flow = new FlowMap(_graph); |
| 324 | 326 |
_local_flow = true; |
| 325 | 327 |
} |
| 326 | 328 |
if (!_potential) {
|
| 327 | 329 |
_potential = new PotentialMap(_graph); |
| 328 | 330 |
_local_potential = true; |
| 329 | 331 |
} |
| 330 | 332 |
for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0; |
| 331 | 333 |
for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0; |
| 332 | 334 |
|
| 333 | 335 |
_dijkstra = new ResidualDijkstra( _graph, *_flow, _length, |
| 334 | 336 |
*_potential, _pred, |
| 335 | 337 |
_source, _target ); |
| 336 | 338 |
} |
| 337 | 339 |
|
| 338 | 340 |
/// \brief Execute the successive shortest path algorithm to find |
| 339 | 341 |
/// an optimal flow. |
| 340 | 342 |
/// |
| 341 | 343 |
/// This function executes the successive shortest path algorithm to |
| 342 | 344 |
/// find a minimum cost flow, which is the union of \c k or less |
| 343 | 345 |
/// arc-disjoint paths. |
| 344 | 346 |
/// |
| 345 | 347 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
| 346 | 348 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
| 347 | 349 |
/// arc-disjoint paths found. |
| 348 | 350 |
/// |
| 349 | 351 |
/// \pre \ref init() must be called before using this function. |
| 350 | 352 |
int findFlow(int k = 2) {
|
| 351 | 353 |
// Find shortest paths |
| 352 | 354 |
_path_num = 0; |
| 353 | 355 |
while (_path_num < k) {
|
| 354 | 356 |
// Run Dijkstra |
| 355 | 357 |
if (!_dijkstra->run()) break; |
| 356 | 358 |
++_path_num; |
| 357 | 359 |
|
| 358 | 360 |
// Set the flow along the found shortest path |
| 359 | 361 |
Node u = _target; |
| 360 | 362 |
Arc e; |
| 361 | 363 |
while ((e = _pred[u]) != INVALID) {
|
| 362 | 364 |
if (u == _graph.target(e)) {
|
| 363 | 365 |
(*_flow)[e] = 1; |
| 364 | 366 |
u = _graph.source(e); |
| 365 | 367 |
} else {
|
| 366 | 368 |
(*_flow)[e] = 0; |
| 367 | 369 |
u = _graph.target(e); |
| 368 | 370 |
} |
| 369 | 371 |
} |
| 370 | 372 |
} |
| 371 | 373 |
return _path_num; |
| 372 | 374 |
} |
| 373 | 375 |
|
| 374 | 376 |
/// \brief Compute the paths from the flow. |
| 375 | 377 |
/// |
| 376 | 378 |
/// This function computes the paths from the flow. |
| 377 | 379 |
/// |
| 378 | 380 |
/// \pre \ref init() and \ref findFlow() must be called before using |
| 379 | 381 |
/// this function. |
| 380 | 382 |
void findPaths() {
|
| 381 | 383 |
// Create the residual flow map (the union of the paths not found |
| 382 | 384 |
// so far) |
| 383 | 385 |
FlowMap res_flow(_graph); |
| 384 | 386 |
for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a]; |
| 385 | 387 |
|
| 386 | 388 |
paths.clear(); |
| 387 | 389 |
paths.resize(_path_num); |
| 388 | 390 |
for (int i = 0; i < _path_num; ++i) {
|
| 389 | 391 |
Node n = _source; |
| 390 | 392 |
while (n != _target) {
|
| 391 | 393 |
OutArcIt e(_graph, n); |
| 392 | 394 |
for ( ; res_flow[e] == 0; ++e) ; |
| 393 | 395 |
n = _graph.target(e); |
| 394 | 396 |
paths[i].addBack(e); |
| 395 | 397 |
res_flow[e] = 0; |
| 396 | 398 |
} |
| 397 | 399 |
} |
| 398 | 400 |
} |
| 399 | 401 |
|
| 400 | 402 |
/// @} |
| 401 | 403 |
|
| 402 | 404 |
/// \name Query Functions |
| 403 | 405 |
/// The results of the algorithm can be obtained using these |
| 404 | 406 |
/// functions. |
| 405 | 407 |
/// \n The algorithm should be executed before using them. |
| 406 | 408 |
|
| 407 | 409 |
/// @{
|
| 408 | 410 |
|
| 409 | 411 |
/// \brief Return a const reference to the arc map storing the |
| 410 | 412 |
/// found flow. |
| 411 | 413 |
/// |
| 412 | 414 |
/// This function returns a const reference to the arc map storing |
| 413 | 415 |
/// the flow that is the union of the found arc-disjoint paths. |
0 comments (0 inline)