0
2
0
... | ... |
@@ -40,14 +40,20 @@ |
40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 41 |
/// |
42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
44 |
/// This algorithm is a specialized version of the linear programming |
|
45 |
/// simplex method directly for the minimum cost flow problem. |
|
46 |
/// It is one of the most efficient solution methods. |
|
47 |
/// |
|
48 |
/// In general this class is the fastest implementation available |
|
49 |
/// in LEMON for the minimum cost flow problem. |
|
44 | 50 |
/// |
45 | 51 |
/// \tparam GR The digraph type the algorithm runs on. |
46 | 52 |
/// \tparam V The value type used in the algorithm. |
47 | 53 |
/// By default it is \c int. |
48 | 54 |
/// |
49 |
/// \warning |
|
55 |
/// \warning The value type must be a signed integer type. |
|
50 | 56 |
/// |
51 | 57 |
/// \note %NetworkSimplex provides five different pivot rule |
52 | 58 |
/// implementations. For more information see \ref PivotRule. |
53 | 59 |
template <typename GR, typename V = int> |
... | ... |
@@ -797,16 +803,66 @@ |
797 | 803 |
/// ns.boundMaps(lower, upper).costMap(cost) |
798 | 804 |
/// .supplyMap(sup).run(); |
799 | 805 |
/// \endcode |
800 | 806 |
/// |
807 |
/// This function can be called more than once. All the parameters |
|
808 |
/// that have been given are kept for the next call, unless |
|
809 |
/// \ref reset() is called, thus only the modified parameters |
|
810 |
/// have to be set again. See \ref reset() for examples. |
|
811 |
/// |
|
801 | 812 |
/// \param pivot_rule The pivot rule that will be used during the |
802 | 813 |
/// algorithm. For more information see \ref PivotRule. |
803 | 814 |
/// |
804 | 815 |
/// \return \c true if a feasible flow can be found. |
805 | 816 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) { |
806 | 817 |
return init() && start(pivot_rule); |
807 | 818 |
} |
808 | 819 |
|
820 |
/// \brief Reset all the parameters that have been given before. |
|
821 |
/// |
|
822 |
/// This function resets all the paramaters that have been given |
|
823 |
/// using \ref lowerMap(), \ref upperMap(), \ref capacityMap(), |
|
824 |
/// \ref boundMaps(), \ref costMap(), \ref supplyMap() and |
|
825 |
/// \ref stSupply() functions before. |
|
826 |
/// |
|
827 |
/// It is useful for multiple run() calls. If this function is not |
|
828 |
/// used, all the parameters given before are kept for the next |
|
829 |
/// \ref run() call. |
|
830 |
/// |
|
831 |
/// For example, |
|
832 |
/// \code |
|
833 |
/// NetworkSimplex<ListDigraph> ns(graph); |
|
834 |
/// |
|
835 |
/// // First run |
|
836 |
/// ns.lowerMap(lower).capacityMap(cap).costMap(cost) |
|
837 |
/// .supplyMap(sup).run(); |
|
838 |
/// |
|
839 |
/// // Run again with modified cost map (reset() is not called, |
|
840 |
/// // so only the cost map have to be set again) |
|
841 |
/// cost[e] += 100; |
|
842 |
/// ns.costMap(cost).run(); |
|
843 |
/// |
|
844 |
/// // Run again from scratch using reset() |
|
845 |
/// // (the lower bounds will be set to zero on all arcs) |
|
846 |
/// ns.reset(); |
|
847 |
/// ns.capacityMap(cap).costMap(cost) |
|
848 |
/// .supplyMap(sup).run(); |
|
849 |
/// \endcode |
|
850 |
/// |
|
851 |
/// \return <tt>(*this)</tt> |
|
852 |
NetworkSimplex& reset() { |
|
853 |
delete _plower; |
|
854 |
delete _pupper; |
|
855 |
delete _pcost; |
|
856 |
delete _psupply; |
|
857 |
_plower = NULL; |
|
858 |
_pupper = NULL; |
|
859 |
_pcost = NULL; |
|
860 |
_psupply = NULL; |
|
861 |
_pstsup = false; |
|
862 |
return *this; |
|
863 |
} |
|
864 |
|
|
809 | 865 |
/// @} |
810 | 866 |
|
811 | 867 |
/// \name Query Functions |
812 | 868 |
/// The results of the algorithm can be obtained using these |
... | ... |
@@ -919,19 +975,19 @@ |
919 | 975 |
|
920 | 976 |
_cap.resize(all_arc_num); |
921 | 977 |
_cost.resize(all_arc_num); |
922 | 978 |
_supply.resize(all_node_num); |
923 |
_flow.resize(all_arc_num, 0); |
|
924 |
_pi.resize(all_node_num, 0); |
|
979 |
_flow.resize(all_arc_num); |
|
980 |
_pi.resize(all_node_num); |
|
925 | 981 |
|
926 | 982 |
_parent.resize(all_node_num); |
927 | 983 |
_pred.resize(all_node_num); |
928 | 984 |
_forward.resize(all_node_num); |
929 | 985 |
_thread.resize(all_node_num); |
930 | 986 |
_rev_thread.resize(all_node_num); |
931 | 987 |
_succ_num.resize(all_node_num); |
932 | 988 |
_last_succ.resize(all_node_num); |
933 |
_state.resize(all_arc_num |
|
989 |
_state.resize(all_arc_num); |
|
934 | 990 |
|
935 | 991 |
// Initialize node related data |
936 | 992 |
bool valid_supply = true; |
937 | 993 |
if (!_pstsup && !_psupply) { |
... | ... |
@@ -985,14 +1041,18 @@ |
985 | 1041 |
_source[i] = _node_id[_graph.source(e)]; |
986 | 1042 |
_target[i] = _node_id[_graph.target(e)]; |
987 | 1043 |
_cap[i] = (*_pupper)[e]; |
988 | 1044 |
_cost[i] = (*_pcost)[e]; |
1045 |
_flow[i] = 0; |
|
1046 |
_state[i] = STATE_LOWER; |
|
989 | 1047 |
} |
990 | 1048 |
} else { |
991 | 1049 |
for (int i = 0; i != _arc_num; ++i) { |
992 | 1050 |
Arc e = _arc_ref[i]; |
993 | 1051 |
_source[i] = _node_id[_graph.source(e)]; |
994 | 1052 |
_target[i] = _node_id[_graph.target(e)]; |
1053 |
_flow[i] = 0; |
|
1054 |
_state[i] = STATE_LOWER; |
|
995 | 1055 |
} |
996 | 1056 |
if (_pupper) { |
997 | 1057 |
for (int i = 0; i != _arc_num; ++i) |
998 | 1058 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
... | ... |
@@ -1031,8 +1091,11 @@ |
1031 | 1091 |
_succ_num[u] = 1; |
1032 | 1092 |
_last_succ[u] = u; |
1033 | 1093 |
_parent[u] = _root; |
1034 | 1094 |
_pred[u] = e; |
1095 |
_cost[e] = max_cost; |
|
1096 |
_cap[e] = max_cap; |
|
1097 |
_state[e] = STATE_TREE; |
|
1035 | 1098 |
if (_supply[u] >= 0) { |
1036 | 1099 |
_flow[e] = _supply[u]; |
1037 | 1100 |
_forward[u] = true; |
1038 | 1101 |
_pi[u] = -max_cost; |
... | ... |
@@ -1040,11 +1103,8 @@ |
1040 | 1103 |
_flow[e] = -_supply[u]; |
1041 | 1104 |
_forward[u] = false; |
1042 | 1105 |
_pi[u] = max_cost; |
1043 | 1106 |
} |
1044 |
_cost[e] = max_cost; |
|
1045 |
_cap[e] = max_cap; |
|
1046 |
_state[e] = STATE_TREE; |
|
1047 | 1107 |
} |
1048 | 1108 |
|
1049 | 1109 |
return true; |
1050 | 1110 |
} |
... | ... |
@@ -88,9 +88,10 @@ |
88 | 88 |
checkConcept<concepts::Digraph, GR>(); |
89 | 89 |
|
90 | 90 |
MCF mcf(g); |
91 | 91 |
|
92 |
b = mcf. |
|
92 |
b = mcf.reset() |
|
93 |
.lowerMap(lower) |
|
93 | 94 |
.upperMap(upper) |
94 | 95 |
.capacityMap(upper) |
95 | 96 |
.boundMaps(lower, upper) |
96 | 97 |
.costMap(cost) |
... | ... |
@@ -241,48 +242,46 @@ |
241 | 242 |
.run(); |
242 | 243 |
|
243 | 244 |
// A. Test NetworkSimplex with the default pivot rule |
244 | 245 |
{ |
245 |
NetworkSimplex<Digraph> mcf1(gr), mcf2(gr), mcf3(gr), mcf4(gr), |
|
246 |
mcf5(gr), mcf6(gr), mcf7(gr), mcf8(gr); |
|
246 |
NetworkSimplex<Digraph> mcf(gr); |
|
247 | 247 |
|
248 |
|
|
248 |
mcf.upperMap(u).costMap(c); |
|
249 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
|
249 | 250 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
250 |
checkMcf( |
|
251 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
|
251 | 252 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
252 |
|
|
253 |
mcf.lowerMap(l2); |
|
254 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
|
253 | 255 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
254 |
checkMcf( |
|
256 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
|
255 | 257 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
256 |
|
|
258 |
mcf.reset(); |
|
259 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
|
257 | 260 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
258 |
checkMcf( |
|
261 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
|
259 | 262 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
260 |
|
|
263 |
mcf.reset(); |
|
264 |
checkMcf(mcf, mcf.run(), |
|
261 | 265 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
262 |
checkMcf( |
|
266 |
checkMcf(mcf, mcf.boundMaps(l2, u).run(), |
|
263 | 267 |
gr, l2, u, cc, s3, false, 0, "#A8"); |
264 | 268 |
} |
265 | 269 |
|
266 | 270 |
// B. Test NetworkSimplex with each pivot rule |
267 | 271 |
{ |
268 |
NetworkSimplex<Digraph> mcf1(gr), mcf2(gr), mcf3(gr), mcf4(gr), mcf5(gr); |
|
269 |
NetworkSimplex<Digraph>::PivotRule pr; |
|
272 |
NetworkSimplex<Digraph> mcf(gr); |
|
273 |
mcf.supplyMap(s1).costMap(c).capacityMap(u).lowerMap(l2); |
|
270 | 274 |
|
271 |
pr = NetworkSimplex<Digraph>::FIRST_ELIGIBLE; |
|
272 |
checkMcf(mcf1, mcf1.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
275 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
|
273 | 276 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
274 |
pr = NetworkSimplex<Digraph>::BEST_ELIGIBLE; |
|
275 |
checkMcf(mcf2, mcf2.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
277 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
|
276 | 278 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
277 |
pr = NetworkSimplex<Digraph>::BLOCK_SEARCH; |
|
278 |
checkMcf(mcf3, mcf3.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
279 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
|
279 | 280 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
280 |
pr = NetworkSimplex<Digraph>::CANDIDATE_LIST; |
|
281 |
checkMcf(mcf4, mcf4.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
281 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
|
282 | 282 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
283 |
pr = NetworkSimplex<Digraph>::ALTERING_LIST; |
|
284 |
checkMcf(mcf5, mcf5.boundMaps(l2, u).costMap(c).supplyMap(s1).run(pr), |
|
283 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
|
285 | 284 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
286 | 285 |
} |
287 | 286 |
|
288 | 287 |
return 0; |
0 comments (0 inline)