↑ Collapse diff ↑
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
namespace lemon {
20 20

	
21 21
/**
22 22
\page min_cost_flow Minimum Cost Flow Problem
23 23

	
24 24
\section mcf_def Definition (GEQ form)
25 25

	
26 26
The \e minimum \e cost \e flow \e problem is to find a feasible flow of
27 27
minimum total cost from a set of supply nodes to a set of demand nodes
28 28
in a network with capacity constraints (lower and upper bounds)
29 29
and arc costs \ref amo93networkflows.
30 30

	
31 31
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
32 32
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
33 33
upper bounds for the flow values on the arcs, for which
34 34
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$,
35 35
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow
36 36
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the
37 37
signed supply values of the nodes.
38 38
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
39 39
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
40 40
\f$-sup(u)\f$ demand.
41 41
A minimum cost flow is an \f$f: A\rightarrow\mathbf{R}\f$ solution
42 42
of the following optimization problem.
43 43

	
44 44
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
45 45
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
46 46
    sup(u) \quad \forall u\in V \f]
47 47
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
48 48

	
49 49
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
50 50
zero or negative in order to have a feasible solution (since the sum
51 51
of the expressions on the left-hand side of the inequalities is zero).
52 52
It means that the total demand must be greater or equal to the total
53 53
supply and all the supplies have to be carried out from the supply nodes,
54 54
but there could be demands that are not satisfied.
55 55
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
56 56
constraints have to be satisfied with equality, i.e. all demands
57 57
have to be satisfied and all supplies have to be used.
58 58

	
59 59

	
60 60
\section mcf_algs Algorithms
61 61

	
62 62
LEMON contains several algorithms for solving this problem, for more
63 63
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms".
64 64

	
65 65
A feasible solution for this problem can be found using \ref Circulation.
66 66

	
67 67

	
68 68
\section mcf_dual Dual Solution
69 69

	
70 70
The dual solution of the minimum cost flow problem is represented by
71 71
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$.
72 72
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal
73 73
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials
74 74
the following \e complementary \e slackness optimality conditions hold.
75 75

	
76 76
 - For all \f$uv\in A\f$ arcs:
77 77
   - if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$;
78 78
   - if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;
79 79
   - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.
80 80
 - For all \f$u\in V\f$ nodes:
81
   - \f$\pi(u)<=0\f$;
81
   - \f$\pi(u)\leq 0\f$;
82 82
   - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
83 83
     then \f$\pi(u)=0\f$.
84 84
 
85 85
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc
86 86
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e.
87 87
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f]
88 88

	
89 89
All algorithms provide dual solution (node potentials), as well,
90 90
if an optimal flow is found.
91 91

	
92 92

	
93 93
\section mcf_eq Equality Form
94 94

	
95 95
The above \ref mcf_def "definition" is actually more general than the
96 96
usual formulation of the minimum cost flow problem, in which strict
97 97
equalities are required in the supply/demand contraints.
98 98

	
99 99
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
100 100
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) =
101 101
    sup(u) \quad \forall u\in V \f]
102 102
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
103 103

	
104 104
However if the sum of the supply values is zero, then these two problems
105 105
are equivalent.
106 106
The \ref min_cost_flow_algs "algorithms" in LEMON support the general
107 107
form, so if you need the equality form, you have to ensure this additional
108 108
contraint manually.
109 109

	
110 110

	
111 111
\section mcf_leq Opposite Inequalites (LEQ Form)
112 112

	
113 113
Another possible definition of the minimum cost flow problem is
114 114
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints,
115 115
instead of the <em>"greater or equal"</em> (GEQ) constraints.
116 116

	
117 117
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
118 118
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
119 119
    sup(u) \quad \forall u\in V \f]
120 120
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
121 121

	
122 122
It means that the total demand must be less or equal to the 
123 123
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
124 124
positive) and all the demands have to be satisfied, but there
125 125
could be supplies that are not carried out from the supply
126 126
nodes.
127 127
The equality form is also a special case of this form, of course.
128 128

	
129 129
You could easily transform this case to the \ref mcf_def "GEQ form"
130 130
of the problem by reversing the direction of the arcs and taking the
131 131
negative of the supply values (e.g. using \ref ReverseDigraph and
132 132
\ref NegMap adaptors).
133 133
However \ref NetworkSimplex algorithm also supports this form directly
134 134
for the sake of convenience.
135 135

	
136 136
Note that the optimality conditions for this supply constraint type are
137 137
slightly differ from the conditions that are discussed for the GEQ form,
138 138
namely the potentials have to be non-negative instead of non-positive.
139 139
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem
140 140
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$
141 141
node potentials the following conditions hold.
142 142

	
143 143
 - For all \f$uv\in A\f$ arcs:
144 144
   - if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$;
145 145
   - if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;
146 146
   - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.
147 147
 - For all \f$u\in V\f$ nodes:
148
   - \f$\pi(u)>=0\f$;
148
   - \f$\pi(u)\geq 0\f$;
149 149
   - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
150 150
     then \f$\pi(u)=0\f$.
151 151

	
152 152
*/
153 153
}
Ignore white space 6 line context
... ...
@@ -111,385 +111,385 @@
111 111
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
112 112
 
113 113
    /// \brief The type of the map that stores the last arcs of the 
114 114
    /// shortest paths.
115 115
    /// 
116 116
    /// The type of the map that stores the last
117 117
    /// arcs of the shortest paths.
118 118
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
119 119
    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
120 120

	
121 121
    /// \brief Instantiates a \c PredMap.
122 122
    /// 
123 123
    /// This function instantiates a \ref PredMap. 
124 124
    /// \param g is the digraph to which we would like to define the
125 125
    /// \ref PredMap.
126 126
    static PredMap *createPredMap(const GR& g) {
127 127
      return new PredMap(g);
128 128
    }
129 129

	
130 130
    /// \brief The type of the map that stores the distances of the nodes.
131 131
    ///
132 132
    /// The type of the map that stores the distances of the nodes.
133 133
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
134 134
    typedef typename GR::template NodeMap<typename LEN::Value> DistMap;
135 135

	
136 136
    /// \brief Instantiates a \c DistMap.
137 137
    ///
138 138
    /// This function instantiates a \ref DistMap. 
139 139
    /// \param g is the digraph to which we would like to define the 
140 140
    /// \ref DistMap.
141 141
    static DistMap *createDistMap(const GR& g) {
142 142
      return new DistMap(g);
143 143
    }
144 144

	
145 145
  };
146 146
  
147 147
  /// \brief %BellmanFord algorithm class.
148 148
  ///
149 149
  /// \ingroup shortest_path
150 150
  /// This class provides an efficient implementation of the Bellman-Ford 
151 151
  /// algorithm. The maximum time complexity of the algorithm is
152 152
  /// <tt>O(ne)</tt>.
153 153
  ///
154 154
  /// The Bellman-Ford algorithm solves the single-source shortest path
155 155
  /// problem when the arcs can have negative lengths, but the digraph
156 156
  /// should not contain directed cycles with negative total length.
157 157
  /// If all arc costs are non-negative, consider to use the Dijkstra
158 158
  /// algorithm instead, since it is more efficient.
159 159
  ///
160 160
  /// The arc lengths are passed to the algorithm using a
161 161
  /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any 
162 162
  /// kind of length. The type of the length values is determined by the
163 163
  /// \ref concepts::ReadMap::Value "Value" type of the length map.
164 164
  ///
165 165
  /// There is also a \ref bellmanFord() "function-type interface" for the
166 166
  /// Bellman-Ford algorithm, which is convenient in the simplier cases and
167 167
  /// it can be used easier.
168 168
  ///
169 169
  /// \tparam GR The type of the digraph the algorithm runs on.
170 170
  /// The default type is \ref ListDigraph.
171 171
  /// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
172 172
  /// the lengths of the arcs. The default map type is
173 173
  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
174 174
#ifdef DOXYGEN
175 175
  template <typename GR, typename LEN, typename TR>
176 176
#else
177 177
  template <typename GR=ListDigraph,
178 178
            typename LEN=typename GR::template ArcMap<int>,
179 179
            typename TR=BellmanFordDefaultTraits<GR,LEN> >
180 180
#endif
181 181
  class BellmanFord {
182 182
  public:
183 183

	
184 184
    ///The type of the underlying digraph.
185 185
    typedef typename TR::Digraph Digraph;
186 186
    
187 187
    /// \brief The type of the arc lengths.
188 188
    typedef typename TR::LengthMap::Value Value;
189 189
    /// \brief The type of the map that stores the arc lengths.
190 190
    typedef typename TR::LengthMap LengthMap;
191 191
    /// \brief The type of the map that stores the last
192 192
    /// arcs of the shortest paths.
193 193
    typedef typename TR::PredMap PredMap;
194 194
    /// \brief The type of the map that stores the distances of the nodes.
195 195
    typedef typename TR::DistMap DistMap;
196 196
    /// The type of the paths.
197 197
    typedef PredMapPath<Digraph, PredMap> Path;
198 198
    ///\brief The \ref BellmanFordDefaultOperationTraits
199 199
    /// "operation traits class" of the algorithm.
200 200
    typedef typename TR::OperationTraits OperationTraits;
201 201

	
202 202
    ///The \ref BellmanFordDefaultTraits "traits class" of the algorithm.
203 203
    typedef TR Traits;
204 204

	
205 205
  private:
206 206

	
207 207
    typedef typename Digraph::Node Node;
208 208
    typedef typename Digraph::NodeIt NodeIt;
209 209
    typedef typename Digraph::Arc Arc;
210 210
    typedef typename Digraph::OutArcIt OutArcIt;
211 211

	
212 212
    // Pointer to the underlying digraph.
213 213
    const Digraph *_gr;
214 214
    // Pointer to the length map
215 215
    const LengthMap *_length;
216 216
    // Pointer to the map of predecessors arcs.
217 217
    PredMap *_pred;
218 218
    // Indicates if _pred is locally allocated (true) or not.
219 219
    bool _local_pred;
220 220
    // Pointer to the map of distances.
221 221
    DistMap *_dist;
222 222
    // Indicates if _dist is locally allocated (true) or not.
223 223
    bool _local_dist;
224 224

	
225 225
    typedef typename Digraph::template NodeMap<bool> MaskMap;
226 226
    MaskMap *_mask;
227 227

	
228 228
    std::vector<Node> _process;
229 229

	
230 230
    // Creates the maps if necessary.
231 231
    void create_maps() {
232 232
      if(!_pred) {
233 233
	_local_pred = true;
234 234
	_pred = Traits::createPredMap(*_gr);
235 235
      }
236 236
      if(!_dist) {
237 237
	_local_dist = true;
238 238
	_dist = Traits::createDistMap(*_gr);
239 239
      }
240 240
      _mask = new MaskMap(*_gr, false);
241 241
    }
242 242
    
243 243
  public :
244 244
 
245 245
    typedef BellmanFord Create;
246 246

	
247 247
    /// \name Named Template Parameters
248 248

	
249 249
    ///@{
250 250

	
251 251
    template <class T>
252 252
    struct SetPredMapTraits : public Traits {
253 253
      typedef T PredMap;
254 254
      static PredMap *createPredMap(const Digraph&) {
255 255
        LEMON_ASSERT(false, "PredMap is not initialized");
256 256
        return 0; // ignore warnings
257 257
      }
258 258
    };
259 259

	
260 260
    /// \brief \ref named-templ-param "Named parameter" for setting
261 261
    /// \c PredMap type.
262 262
    ///
263 263
    /// \ref named-templ-param "Named parameter" for setting
264 264
    /// \c PredMap type.
265 265
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
266 266
    template <class T>
267 267
    struct SetPredMap 
268 268
      : public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
269 269
      typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
270 270
    };
271 271
    
272 272
    template <class T>
273 273
    struct SetDistMapTraits : public Traits {
274 274
      typedef T DistMap;
275 275
      static DistMap *createDistMap(const Digraph&) {
276 276
        LEMON_ASSERT(false, "DistMap is not initialized");
277 277
        return 0; // ignore warnings
278 278
      }
279 279
    };
280 280

	
281 281
    /// \brief \ref named-templ-param "Named parameter" for setting
282 282
    /// \c DistMap type.
283 283
    ///
284 284
    /// \ref named-templ-param "Named parameter" for setting
285 285
    /// \c DistMap type.
286 286
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
287 287
    template <class T>
288 288
    struct SetDistMap 
289 289
      : public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
290 290
      typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
291 291
    };
292 292

	
293 293
    template <class T>
294 294
    struct SetOperationTraitsTraits : public Traits {
295 295
      typedef T OperationTraits;
296 296
    };
297 297
    
298 298
    /// \brief \ref named-templ-param "Named parameter" for setting 
299 299
    /// \c OperationTraits type.
300 300
    ///
301 301
    /// \ref named-templ-param "Named parameter" for setting
302 302
    /// \c OperationTraits type.
303
    /// For more information see \ref BellmanFordDefaultOperationTraits.
303
    /// For more information, see \ref BellmanFordDefaultOperationTraits.
304 304
    template <class T>
305 305
    struct SetOperationTraits
306 306
      : public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
307 307
      typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
308 308
      Create;
309 309
    };
310 310
    
311 311
    ///@}
312 312

	
313 313
  protected:
314 314
    
315 315
    BellmanFord() {}
316 316

	
317 317
  public:      
318 318
    
319 319
    /// \brief Constructor.
320 320
    ///
321 321
    /// Constructor.
322 322
    /// \param g The digraph the algorithm runs on.
323 323
    /// \param length The length map used by the algorithm.
324 324
    BellmanFord(const Digraph& g, const LengthMap& length) :
325 325
      _gr(&g), _length(&length),
326 326
      _pred(0), _local_pred(false),
327 327
      _dist(0), _local_dist(false), _mask(0) {}
328 328
    
329 329
    ///Destructor.
330 330
    ~BellmanFord() {
331 331
      if(_local_pred) delete _pred;
332 332
      if(_local_dist) delete _dist;
333 333
      if(_mask) delete _mask;
334 334
    }
335 335

	
336 336
    /// \brief Sets the length map.
337 337
    ///
338 338
    /// Sets the length map.
339 339
    /// \return <tt>(*this)</tt>
340 340
    BellmanFord &lengthMap(const LengthMap &map) {
341 341
      _length = &map;
342 342
      return *this;
343 343
    }
344 344

	
345 345
    /// \brief Sets the map that stores the predecessor arcs.
346 346
    ///
347 347
    /// Sets the map that stores the predecessor arcs.
348 348
    /// If you don't use this function before calling \ref run()
349 349
    /// or \ref init(), an instance will be allocated automatically.
350 350
    /// The destructor deallocates this automatically allocated map,
351 351
    /// of course.
352 352
    /// \return <tt>(*this)</tt>
353 353
    BellmanFord &predMap(PredMap &map) {
354 354
      if(_local_pred) {
355 355
	delete _pred;
356 356
	_local_pred=false;
357 357
      }
358 358
      _pred = &map;
359 359
      return *this;
360 360
    }
361 361

	
362 362
    /// \brief Sets the map that stores the distances of the nodes.
363 363
    ///
364 364
    /// Sets the map that stores the distances of the nodes calculated
365 365
    /// by the algorithm.
366 366
    /// If you don't use this function before calling \ref run()
367 367
    /// or \ref init(), an instance will be allocated automatically.
368 368
    /// The destructor deallocates this automatically allocated map,
369 369
    /// of course.
370 370
    /// \return <tt>(*this)</tt>
371 371
    BellmanFord &distMap(DistMap &map) {
372 372
      if(_local_dist) {
373 373
	delete _dist;
374 374
	_local_dist=false;
375 375
      }
376 376
      _dist = &map;
377 377
      return *this;
378 378
    }
379 379

	
380 380
    /// \name Execution Control
381 381
    /// The simplest way to execute the Bellman-Ford algorithm is to use
382 382
    /// one of the member functions called \ref run().\n
383 383
    /// If you need better control on the execution, you have to call
384 384
    /// \ref init() first, then you can add several source nodes
385 385
    /// with \ref addSource(). Finally the actual path computation can be
386 386
    /// performed with \ref start(), \ref checkedStart() or
387 387
    /// \ref limitedStart().
388 388

	
389 389
    ///@{
390 390

	
391 391
    /// \brief Initializes the internal data structures.
392 392
    /// 
393 393
    /// Initializes the internal data structures. The optional parameter
394 394
    /// is the initial distance of each node.
395 395
    void init(const Value value = OperationTraits::infinity()) {
396 396
      create_maps();
397 397
      for (NodeIt it(*_gr); it != INVALID; ++it) {
398 398
	_pred->set(it, INVALID);
399 399
	_dist->set(it, value);
400 400
      }
401 401
      _process.clear();
402 402
      if (OperationTraits::less(value, OperationTraits::infinity())) {
403 403
	for (NodeIt it(*_gr); it != INVALID; ++it) {
404 404
	  _process.push_back(it);
405 405
	  _mask->set(it, true);
406 406
	}
407 407
      }
408 408
    }
409 409
    
410 410
    /// \brief Adds a new source node.
411 411
    ///
412 412
    /// This function adds a new source node. The optional second parameter
413 413
    /// is the initial distance of the node.
414 414
    void addSource(Node source, Value dst = OperationTraits::zero()) {
415 415
      _dist->set(source, dst);
416 416
      if (!(*_mask)[source]) {
417 417
	_process.push_back(source);
418 418
	_mask->set(source, true);
419 419
      }
420 420
    }
421 421

	
422 422
    /// \brief Executes one round from the Bellman-Ford algorithm.
423 423
    ///
424 424
    /// If the algoritm calculated the distances in the previous round
425 425
    /// exactly for the paths of at most \c k arcs, then this function
426 426
    /// will calculate the distances exactly for the paths of at most
427 427
    /// <tt>k+1</tt> arcs. Performing \c k iterations using this function
428 428
    /// calculates the shortest path distances exactly for the paths
429 429
    /// consisting of at most \c k arcs.
430 430
    ///
431 431
    /// \warning The paths with limited arc number cannot be retrieved
432 432
    /// easily with \ref path() or \ref predArc() functions. If you also
433 433
    /// need the shortest paths and not only the distances, you should
434 434
    /// store the \ref predMap() "predecessor map" after each iteration
435 435
    /// and build the path manually.
436 436
    ///
437 437
    /// \return \c true when the algorithm have not found more shorter
438 438
    /// paths.
439 439
    ///
440 440
    /// \see ActiveIt
441 441
    bool processNextRound() {
442 442
      for (int i = 0; i < int(_process.size()); ++i) {
443 443
	_mask->set(_process[i], false);
444 444
      }
445 445
      std::vector<Node> nextProcess;
446 446
      std::vector<Value> values(_process.size());
447 447
      for (int i = 0; i < int(_process.size()); ++i) {
448 448
	values[i] = (*_dist)[_process[i]];
449 449
      }
450 450
      for (int i = 0; i < int(_process.size()); ++i) {
451 451
	for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
452 452
	  Node target = _gr->target(it);
453 453
	  Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
454 454
	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
455 455
	    _pred->set(target, it);
456 456
	    _dist->set(target, relaxed);
457 457
	    if (!(*_mask)[target]) {
458 458
	      _mask->set(target, true);
459 459
	      nextProcess.push_back(target);
460 460
	    }
461 461
	  }	  
462 462
	}
463 463
      }
464 464
      _process.swap(nextProcess);
465 465
      return _process.empty();
466 466
    }
467 467

	
468 468
    /// \brief Executes one weak round from the Bellman-Ford algorithm.
469 469
    ///
470 470
    /// If the algorithm calculated the distances in the previous round
471 471
    /// at least for the paths of at most \c k arcs, then this function
472 472
    /// will calculate the distances at least for the paths of at most
473 473
    /// <tt>k+1</tt> arcs.
474 474
    /// This function does not make it possible to calculate the shortest
475 475
    /// path distances exactly for paths consisting of at most \c k arcs,
476 476
    /// this is why it is called weak round.
477 477
    ///
478 478
    /// \return \c true when the algorithm have not found more shorter
479 479
    /// paths.
480 480
    ///
481 481
    /// \see ActiveIt
482 482
    bool processNextWeakRound() {
483 483
      for (int i = 0; i < int(_process.size()); ++i) {
484 484
	_mask->set(_process[i], false);
485 485
      }
486 486
      std::vector<Node> nextProcess;
487 487
      for (int i = 0; i < int(_process.size()); ++i) {
488 488
	for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
489 489
	  Node target = _gr->target(it);
490 490
	  Value relaxed = 
491 491
	    OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
492 492
	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
493 493
	    _pred->set(target, it);
494 494
	    _dist->set(target, relaxed);
495 495
	    if (!(*_mask)[target]) {
... ...
@@ -529,400 +529,400 @@
529 529
    ///
530 530
    /// This method runs the Bellman-Ford algorithm from the root node(s)
531 531
    /// in order to compute the shortest path to each node and also checks
532 532
    /// if the digraph contains cycles with negative total length.
533 533
    ///
534 534
    /// The algorithm computes 
535 535
    /// - the shortest path tree (forest),
536 536
    /// - the distance of each node from the root(s).
537 537
    /// 
538 538
    /// \return \c false if there is a negative cycle in the digraph.
539 539
    ///
540 540
    /// \pre init() must be called and at least one root node should be
541 541
    /// added with addSource() before using this function. 
542 542
    bool checkedStart() {
543 543
      int num = countNodes(*_gr);
544 544
      for (int i = 0; i < num; ++i) {
545 545
	if (processNextWeakRound()) return true;
546 546
      }
547 547
      return _process.empty();
548 548
    }
549 549

	
550 550
    /// \brief Executes the algorithm with arc number limit.
551 551
    ///
552 552
    /// Executes the algorithm with arc number limit.
553 553
    ///
554 554
    /// This method runs the Bellman-Ford algorithm from the root node(s)
555 555
    /// in order to compute the shortest path distance for each node
556 556
    /// using only the paths consisting of at most \c num arcs.
557 557
    ///
558 558
    /// The algorithm computes
559 559
    /// - the limited distance of each node from the root(s),
560 560
    /// - the predecessor arc for each node.
561 561
    ///
562 562
    /// \warning The paths with limited arc number cannot be retrieved
563 563
    /// easily with \ref path() or \ref predArc() functions. If you also
564 564
    /// need the shortest paths and not only the distances, you should
565 565
    /// store the \ref predMap() "predecessor map" after each iteration
566 566
    /// and build the path manually.
567 567
    ///
568 568
    /// \pre init() must be called and at least one root node should be
569 569
    /// added with addSource() before using this function. 
570 570
    void limitedStart(int num) {
571 571
      for (int i = 0; i < num; ++i) {
572 572
	if (processNextRound()) break;
573 573
      }
574 574
    }
575 575
    
576 576
    /// \brief Runs the algorithm from the given root node.
577 577
    ///    
578 578
    /// This method runs the Bellman-Ford algorithm from the given root
579 579
    /// node \c s in order to compute the shortest path to each node.
580 580
    ///
581 581
    /// The algorithm computes
582 582
    /// - the shortest path tree (forest),
583 583
    /// - the distance of each node from the root(s).
584 584
    ///
585 585
    /// \note bf.run(s) is just a shortcut of the following code.
586 586
    /// \code
587 587
    ///   bf.init();
588 588
    ///   bf.addSource(s);
589 589
    ///   bf.start();
590 590
    /// \endcode
591 591
    void run(Node s) {
592 592
      init();
593 593
      addSource(s);
594 594
      start();
595 595
    }
596 596
    
597 597
    /// \brief Runs the algorithm from the given root node with arc
598 598
    /// number limit.
599 599
    ///    
600 600
    /// This method runs the Bellman-Ford algorithm from the given root
601 601
    /// node \c s in order to compute the shortest path distance for each
602 602
    /// node using only the paths consisting of at most \c num arcs.
603 603
    ///
604 604
    /// The algorithm computes
605 605
    /// - the limited distance of each node from the root(s),
606 606
    /// - the predecessor arc for each node.
607 607
    ///
608 608
    /// \warning The paths with limited arc number cannot be retrieved
609 609
    /// easily with \ref path() or \ref predArc() functions. If you also
610 610
    /// need the shortest paths and not only the distances, you should
611 611
    /// store the \ref predMap() "predecessor map" after each iteration
612 612
    /// and build the path manually.
613 613
    ///
614 614
    /// \note bf.run(s, num) is just a shortcut of the following code.
615 615
    /// \code
616 616
    ///   bf.init();
617 617
    ///   bf.addSource(s);
618 618
    ///   bf.limitedStart(num);
619 619
    /// \endcode
620 620
    void run(Node s, int num) {
621 621
      init();
622 622
      addSource(s);
623 623
      limitedStart(num);
624 624
    }
625 625
    
626 626
    ///@}
627 627

	
628 628
    /// \brief LEMON iterator for getting the active nodes.
629 629
    ///
630 630
    /// This class provides a common style LEMON iterator that traverses
631 631
    /// the active nodes of the Bellman-Ford algorithm after the last
632 632
    /// phase. These nodes should be checked in the next phase to
633 633
    /// find augmenting arcs outgoing from them.
634 634
    class ActiveIt {
635 635
    public:
636 636

	
637 637
      /// \brief Constructor.
638 638
      ///
639 639
      /// Constructor for getting the active nodes of the given BellmanFord
640 640
      /// instance. 
641 641
      ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
642 642
      {
643 643
        _index = _algorithm->_process.size() - 1;
644 644
      }
645 645

	
646 646
      /// \brief Invalid constructor.
647 647
      ///
648 648
      /// Invalid constructor.
649 649
      ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
650 650

	
651 651
      /// \brief Conversion to \c Node.
652 652
      ///
653 653
      /// Conversion to \c Node.
654 654
      operator Node() const { 
655 655
        return _index >= 0 ? _algorithm->_process[_index] : INVALID;
656 656
      }
657 657

	
658 658
      /// \brief Increment operator.
659 659
      ///
660 660
      /// Increment operator.
661 661
      ActiveIt& operator++() {
662 662
        --_index;
663 663
        return *this; 
664 664
      }
665 665

	
666 666
      bool operator==(const ActiveIt& it) const { 
667 667
        return static_cast<Node>(*this) == static_cast<Node>(it); 
668 668
      }
669 669
      bool operator!=(const ActiveIt& it) const { 
670 670
        return static_cast<Node>(*this) != static_cast<Node>(it); 
671 671
      }
672 672
      bool operator<(const ActiveIt& it) const { 
673 673
        return static_cast<Node>(*this) < static_cast<Node>(it); 
674 674
      }
675 675
      
676 676
    private:
677 677
      const BellmanFord* _algorithm;
678 678
      int _index;
679 679
    };
680 680
    
681 681
    /// \name Query Functions
682 682
    /// The result of the Bellman-Ford algorithm can be obtained using these
683 683
    /// functions.\n
684 684
    /// Either \ref run() or \ref init() should be called before using them.
685 685
    
686 686
    ///@{
687 687

	
688 688
    /// \brief The shortest path to the given node.
689 689
    ///    
690 690
    /// Gives back the shortest path to the given node from the root(s).
691 691
    ///
692 692
    /// \warning \c t should be reached from the root(s).
693 693
    ///
694 694
    /// \pre Either \ref run() or \ref init() must be called before
695 695
    /// using this function.
696 696
    Path path(Node t) const
697 697
    {
698 698
      return Path(*_gr, *_pred, t);
699 699
    }
700 700
	  
701 701
    /// \brief The distance of the given node from the root(s).
702 702
    ///
703 703
    /// Returns the distance of the given node from the root(s).
704 704
    ///
705 705
    /// \warning If node \c v is not reached from the root(s), then
706 706
    /// the return value of this function is undefined.
707 707
    ///
708 708
    /// \pre Either \ref run() or \ref init() must be called before
709 709
    /// using this function.
710 710
    Value dist(Node v) const { return (*_dist)[v]; }
711 711

	
712 712
    /// \brief Returns the 'previous arc' of the shortest path tree for
713 713
    /// the given node.
714 714
    ///
715 715
    /// This function returns the 'previous arc' of the shortest path
716 716
    /// tree for node \c v, i.e. it returns the last arc of a
717 717
    /// shortest path from a root to \c v. It is \c INVALID if \c v
718 718
    /// is not reached from the root(s) or if \c v is a root.
719 719
    ///
720 720
    /// The shortest path tree used here is equal to the shortest path
721
    /// tree used in \ref predNode() and \predMap().
721
    /// tree used in \ref predNode() and \ref predMap().
722 722
    ///
723 723
    /// \pre Either \ref run() or \ref init() must be called before
724 724
    /// using this function.
725 725
    Arc predArc(Node v) const { return (*_pred)[v]; }
726 726

	
727 727
    /// \brief Returns the 'previous node' of the shortest path tree for
728 728
    /// the given node.
729 729
    ///
730 730
    /// This function returns the 'previous node' of the shortest path
731 731
    /// tree for node \c v, i.e. it returns the last but one node of
732 732
    /// a shortest path from a root to \c v. It is \c INVALID if \c v
733 733
    /// is not reached from the root(s) or if \c v is a root.
734 734
    ///
735 735
    /// The shortest path tree used here is equal to the shortest path
736
    /// tree used in \ref predArc() and \predMap().
736
    /// tree used in \ref predArc() and \ref predMap().
737 737
    ///
738 738
    /// \pre Either \ref run() or \ref init() must be called before
739 739
    /// using this function.
740 740
    Node predNode(Node v) const { 
741 741
      return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); 
742 742
    }
743 743
    
744 744
    /// \brief Returns a const reference to the node map that stores the
745 745
    /// distances of the nodes.
746 746
    ///
747 747
    /// Returns a const reference to the node map that stores the distances
748 748
    /// of the nodes calculated by the algorithm.
749 749
    ///
750 750
    /// \pre Either \ref run() or \ref init() must be called before
751 751
    /// using this function.
752 752
    const DistMap &distMap() const { return *_dist;}
753 753
 
754 754
    /// \brief Returns a const reference to the node map that stores the
755 755
    /// predecessor arcs.
756 756
    ///
757 757
    /// Returns a const reference to the node map that stores the predecessor
758 758
    /// arcs, which form the shortest path tree (forest).
759 759
    ///
760 760
    /// \pre Either \ref run() or \ref init() must be called before
761 761
    /// using this function.
762 762
    const PredMap &predMap() const { return *_pred; }
763 763
 
764 764
    /// \brief Checks if a node is reached from the root(s).
765 765
    ///
766 766
    /// Returns \c true if \c v is reached from the root(s).
767 767
    ///
768 768
    /// \pre Either \ref run() or \ref init() must be called before
769 769
    /// using this function.
770 770
    bool reached(Node v) const {
771 771
      return (*_dist)[v] != OperationTraits::infinity();
772 772
    }
773 773

	
774 774
    /// \brief Gives back a negative cycle.
775 775
    ///    
776 776
    /// This function gives back a directed cycle with negative total
777 777
    /// length if the algorithm has already found one.
778 778
    /// Otherwise it gives back an empty path.
779 779
    lemon::Path<Digraph> negativeCycle() const {
780 780
      typename Digraph::template NodeMap<int> state(*_gr, -1);
781 781
      lemon::Path<Digraph> cycle;
782 782
      for (int i = 0; i < int(_process.size()); ++i) {
783 783
        if (state[_process[i]] != -1) continue;
784 784
        for (Node v = _process[i]; (*_pred)[v] != INVALID;
785 785
             v = _gr->source((*_pred)[v])) {
786 786
          if (state[v] == i) {
787 787
            cycle.addFront((*_pred)[v]);
788 788
            for (Node u = _gr->source((*_pred)[v]); u != v;
789 789
                 u = _gr->source((*_pred)[u])) {
790 790
              cycle.addFront((*_pred)[u]);
791 791
            }
792 792
            return cycle;
793 793
          }
794 794
          else if (state[v] >= 0) {
795 795
            break;
796 796
          }
797 797
          state[v] = i;
798 798
        }
799 799
      }
800 800
      return cycle;
801 801
    }
802 802
    
803 803
    ///@}
804 804
  };
805 805
 
806 806
  /// \brief Default traits class of bellmanFord() function.
807 807
  ///
808 808
  /// Default traits class of bellmanFord() function.
809 809
  /// \tparam GR The type of the digraph.
810 810
  /// \tparam LEN The type of the length map.
811 811
  template <typename GR, typename LEN>
812 812
  struct BellmanFordWizardDefaultTraits {
813 813
    /// The type of the digraph the algorithm runs on. 
814 814
    typedef GR Digraph;
815 815

	
816 816
    /// \brief The type of the map that stores the arc lengths.
817 817
    ///
818 818
    /// The type of the map that stores the arc lengths.
819 819
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
820 820
    typedef LEN LengthMap;
821 821

	
822 822
    /// The type of the arc lengths.
823 823
    typedef typename LEN::Value Value;
824 824

	
825 825
    /// \brief Operation traits for Bellman-Ford algorithm.
826 826
    ///
827 827
    /// It defines the used operations and the infinity value for the
828 828
    /// given \c Value type.
829 829
    /// \see BellmanFordDefaultOperationTraits
830 830
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
831 831

	
832 832
    /// \brief The type of the map that stores the last
833 833
    /// arcs of the shortest paths.
834 834
    /// 
835 835
    /// The type of the map that stores the last arcs of the shortest paths.
836 836
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
837 837
    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
838 838

	
839 839
    /// \brief Instantiates a \c PredMap.
840 840
    /// 
841 841
    /// This function instantiates a \ref PredMap.
842 842
    /// \param g is the digraph to which we would like to define the
843 843
    /// \ref PredMap.
844 844
    static PredMap *createPredMap(const GR &g) {
845 845
      return new PredMap(g);
846 846
    }
847 847

	
848 848
    /// \brief The type of the map that stores the distances of the nodes.
849 849
    ///
850 850
    /// The type of the map that stores the distances of the nodes.
851 851
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
852 852
    typedef typename GR::template NodeMap<Value> DistMap;
853 853

	
854 854
    /// \brief Instantiates a \c DistMap.
855 855
    ///
856 856
    /// This function instantiates a \ref DistMap. 
857 857
    /// \param g is the digraph to which we would like to define the
858 858
    /// \ref DistMap.
859 859
    static DistMap *createDistMap(const GR &g) {
860 860
      return new DistMap(g);
861 861
    }
862 862

	
863 863
    ///The type of the shortest paths.
864 864

	
865 865
    ///The type of the shortest paths.
866 866
    ///It must meet the \ref concepts::Path "Path" concept.
867 867
    typedef lemon::Path<Digraph> Path;
868 868
  };
869 869
  
870 870
  /// \brief Default traits class used by BellmanFordWizard.
871 871
  ///
872 872
  /// Default traits class used by BellmanFordWizard.
873 873
  /// \tparam GR The type of the digraph.
874 874
  /// \tparam LEN The type of the length map.
875 875
  template <typename GR, typename LEN>
876 876
  class BellmanFordWizardBase 
877 877
    : public BellmanFordWizardDefaultTraits<GR, LEN> {
878 878

	
879 879
    typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
880 880
  protected:
881 881
    // Type of the nodes in the digraph.
882 882
    typedef typename Base::Digraph::Node Node;
883 883

	
884 884
    // Pointer to the underlying digraph.
885 885
    void *_graph;
886 886
    // Pointer to the length map
887 887
    void *_length;
888 888
    // Pointer to the map of predecessors arcs.
889 889
    void *_pred;
890 890
    // Pointer to the map of distances.
891 891
    void *_dist;
892 892
    //Pointer to the shortest path to the target node.
893 893
    void *_path;
894 894
    //Pointer to the distance of the target node.
895 895
    void *_di;
896 896

	
897 897
    public:
898 898
    /// Constructor.
899 899
    
900 900
    /// This constructor does not require parameters, it initiates
901 901
    /// all of the attributes to default values \c 0.
902 902
    BellmanFordWizardBase() :
903 903
      _graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
904 904

	
905 905
    /// Constructor.
906 906
    
907 907
    /// This constructor requires two parameters,
908 908
    /// others are initiated to \c 0.
909 909
    /// \param gr The digraph the algorithm runs on.
910 910
    /// \param len The length map.
911 911
    BellmanFordWizardBase(const GR& gr, 
912 912
			  const LEN& len) :
913 913
      _graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), 
914 914
      _length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), 
915 915
      _pred(0), _dist(0), _path(0), _di(0) {}
916 916

	
917 917
  };
918 918
  
919 919
  /// \brief Auxiliary class for the function-type interface of the
920 920
  /// \ref BellmanFord "Bellman-Ford" algorithm.
921 921
  ///
922 922
  /// This auxiliary class is created to implement the
923 923
  /// \ref bellmanFord() "function-type interface" of the
924 924
  /// \ref BellmanFord "Bellman-Ford" algorithm.
925 925
  /// It does not have own \ref run() method, it uses the
926 926
  /// functions and features of the plain \ref BellmanFord.
927 927
  ///
928 928
  /// This class should only be used through the \ref bellmanFord()
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BFS_H
20 20
#define LEMON_BFS_H
21 21

	
22 22
///\ingroup search
23 23
///\file
24 24
///\brief BFS algorithm.
25 25

	
26 26
#include <lemon/list_graph.h>
27 27
#include <lemon/bits/path_dump.h>
28 28
#include <lemon/core.h>
29 29
#include <lemon/error.h>
30 30
#include <lemon/maps.h>
31 31
#include <lemon/path.h>
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  ///Default traits class of Bfs class.
36 36

	
37 37
  ///Default traits class of Bfs class.
38 38
  ///\tparam GR Digraph type.
39 39
  template<class GR>
40 40
  struct BfsDefaultTraits
41 41
  {
42 42
    ///The type of the digraph the algorithm runs on.
43 43
    typedef GR Digraph;
44 44

	
45 45
    ///\brief The type of the map that stores the predecessor
46 46
    ///arcs of the shortest paths.
47 47
    ///
48 48
    ///The type of the map that stores the predecessor
49 49
    ///arcs of the shortest paths.
50 50
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
51 51
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
52 52
    ///Instantiates a \c PredMap.
53 53

	
54 54
    ///This function instantiates a \ref PredMap.
55 55
    ///\param g is the digraph, to which we would like to define the
56 56
    ///\ref PredMap.
57 57
    static PredMap *createPredMap(const Digraph &g)
58 58
    {
59 59
      return new PredMap(g);
60 60
    }
61 61

	
62 62
    ///The type of the map that indicates which nodes are processed.
63 63

	
64 64
    ///The type of the map that indicates which nodes are processed.
65 65
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
66
    ///By default it is a NullMap.
66
    ///By default, it is a NullMap.
67 67
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
68 68
    ///Instantiates a \c ProcessedMap.
69 69

	
70 70
    ///This function instantiates a \ref ProcessedMap.
71 71
    ///\param g is the digraph, to which
72 72
    ///we would like to define the \ref ProcessedMap
73 73
#ifdef DOXYGEN
74 74
    static ProcessedMap *createProcessedMap(const Digraph &g)
75 75
#else
76 76
    static ProcessedMap *createProcessedMap(const Digraph &)
77 77
#endif
78 78
    {
79 79
      return new ProcessedMap();
80 80
    }
81 81

	
82 82
    ///The type of the map that indicates which nodes are reached.
83 83

	
84 84
    ///The type of the map that indicates which nodes are reached.
85 85
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
86 86
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
87 87
    ///Instantiates a \c ReachedMap.
88 88

	
89 89
    ///This function instantiates a \ref ReachedMap.
90 90
    ///\param g is the digraph, to which
91 91
    ///we would like to define the \ref ReachedMap.
92 92
    static ReachedMap *createReachedMap(const Digraph &g)
93 93
    {
94 94
      return new ReachedMap(g);
95 95
    }
96 96

	
97 97
    ///The type of the map that stores the distances of the nodes.
98 98

	
99 99
    ///The type of the map that stores the distances of the nodes.
100 100
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
101 101
    typedef typename Digraph::template NodeMap<int> DistMap;
102 102
    ///Instantiates a \c DistMap.
103 103

	
104 104
    ///This function instantiates a \ref DistMap.
105 105
    ///\param g is the digraph, to which we would like to define the
106 106
    ///\ref DistMap.
107 107
    static DistMap *createDistMap(const Digraph &g)
108 108
    {
109 109
      return new DistMap(g);
110 110
    }
111 111
  };
112 112

	
113 113
  ///%BFS algorithm class.
114 114

	
115 115
  ///\ingroup search
116 116
  ///This class provides an efficient implementation of the %BFS algorithm.
117 117
  ///
118 118
  ///There is also a \ref bfs() "function-type interface" for the BFS
119 119
  ///algorithm, which is convenient in the simplier cases and it can be
120 120
  ///used easier.
121 121
  ///
122 122
  ///\tparam GR The type of the digraph the algorithm runs on.
123 123
  ///The default type is \ref ListDigraph.
124 124
#ifdef DOXYGEN
125 125
  template <typename GR,
126 126
            typename TR>
127 127
#else
128 128
  template <typename GR=ListDigraph,
129 129
            typename TR=BfsDefaultTraits<GR> >
130 130
#endif
131 131
  class Bfs {
132 132
  public:
133 133

	
134 134
    ///The type of the digraph the algorithm runs on.
135 135
    typedef typename TR::Digraph Digraph;
136 136

	
137 137
    ///\brief The type of the map that stores the predecessor arcs of the
138 138
    ///shortest paths.
139 139
    typedef typename TR::PredMap PredMap;
140 140
    ///The type of the map that stores the distances of the nodes.
141 141
    typedef typename TR::DistMap DistMap;
142 142
    ///The type of the map that indicates which nodes are reached.
143 143
    typedef typename TR::ReachedMap ReachedMap;
144 144
    ///The type of the map that indicates which nodes are processed.
145 145
    typedef typename TR::ProcessedMap ProcessedMap;
146 146
    ///The type of the paths.
147 147
    typedef PredMapPath<Digraph, PredMap> Path;
148 148

	
149 149
    ///The \ref BfsDefaultTraits "traits class" of the algorithm.
150 150
    typedef TR Traits;
151 151

	
152 152
  private:
153 153

	
154 154
    typedef typename Digraph::Node Node;
155 155
    typedef typename Digraph::NodeIt NodeIt;
156 156
    typedef typename Digraph::Arc Arc;
157 157
    typedef typename Digraph::OutArcIt OutArcIt;
158 158

	
159 159
    //Pointer to the underlying digraph.
160 160
    const Digraph *G;
161 161
    //Pointer to the map of predecessor arcs.
162 162
    PredMap *_pred;
163 163
    //Indicates if _pred is locally allocated (true) or not.
164 164
    bool local_pred;
165 165
    //Pointer to the map of distances.
166 166
    DistMap *_dist;
167 167
    //Indicates if _dist is locally allocated (true) or not.
168 168
    bool local_dist;
169 169
    //Pointer to the map of reached status of the nodes.
170 170
    ReachedMap *_reached;
171 171
    //Indicates if _reached is locally allocated (true) or not.
172 172
    bool local_reached;
173 173
    //Pointer to the map of processed status of the nodes.
174 174
    ProcessedMap *_processed;
175 175
    //Indicates if _processed is locally allocated (true) or not.
176 176
    bool local_processed;
177 177

	
178 178
    std::vector<typename Digraph::Node> _queue;
179 179
    int _queue_head,_queue_tail,_queue_next_dist;
180 180
    int _curr_dist;
181 181

	
182 182
    //Creates the maps if necessary.
183 183
    void create_maps()
184 184
    {
185 185
      if(!_pred) {
186 186
        local_pred = true;
187 187
        _pred = Traits::createPredMap(*G);
188 188
      }
189 189
      if(!_dist) {
190 190
        local_dist = true;
191 191
        _dist = Traits::createDistMap(*G);
192 192
      }
193 193
      if(!_reached) {
194 194
        local_reached = true;
195 195
        _reached = Traits::createReachedMap(*G);
196 196
      }
197 197
      if(!_processed) {
198 198
        local_processed = true;
199 199
        _processed = Traits::createProcessedMap(*G);
200 200
      }
201 201
    }
202 202

	
203 203
  protected:
204 204

	
205 205
    Bfs() {}
206 206

	
207 207
  public:
208 208

	
209 209
    typedef Bfs Create;
210 210

	
211 211
    ///\name Named Template Parameters
212 212

	
213 213
    ///@{
214 214

	
215 215
    template <class T>
216 216
    struct SetPredMapTraits : public Traits {
217 217
      typedef T PredMap;
218 218
      static PredMap *createPredMap(const Digraph &)
219 219
      {
220 220
        LEMON_ASSERT(false, "PredMap is not initialized");
221 221
        return 0; // ignore warnings
222 222
      }
223 223
    };
224 224
    ///\brief \ref named-templ-param "Named parameter" for setting
225 225
    ///\c PredMap type.
226 226
    ///
227 227
    ///\ref named-templ-param "Named parameter" for setting
228 228
    ///\c PredMap type.
229 229
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
230 230
    template <class T>
231 231
    struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
232 232
      typedef Bfs< Digraph, SetPredMapTraits<T> > Create;
233 233
    };
234 234

	
235 235
    template <class T>
236 236
    struct SetDistMapTraits : public Traits {
237 237
      typedef T DistMap;
238 238
      static DistMap *createDistMap(const Digraph &)
239 239
      {
240 240
        LEMON_ASSERT(false, "DistMap is not initialized");
241 241
        return 0; // ignore warnings
242 242
      }
243 243
    };
244 244
    ///\brief \ref named-templ-param "Named parameter" for setting
245 245
    ///\c DistMap type.
246 246
    ///
247 247
    ///\ref named-templ-param "Named parameter" for setting
248 248
    ///\c DistMap type.
249 249
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
250 250
    template <class T>
251 251
    struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
252 252
      typedef Bfs< Digraph, SetDistMapTraits<T> > Create;
253 253
    };
254 254

	
255 255
    template <class T>
256 256
    struct SetReachedMapTraits : public Traits {
257 257
      typedef T ReachedMap;
258 258
      static ReachedMap *createReachedMap(const Digraph &)
... ...
@@ -659,385 +659,385 @@
659 659
    ///Runs the algorithm from the given source node.
660 660

	
661 661
    ///This method runs the %BFS algorithm from node \c s
662 662
    ///in order to compute the shortest path to each node.
663 663
    ///
664 664
    ///The algorithm computes
665 665
    ///- the shortest path tree,
666 666
    ///- the distance of each node from the root.
667 667
    ///
668 668
    ///\note <tt>b.run(s)</tt> is just a shortcut of the following code.
669 669
    ///\code
670 670
    ///  b.init();
671 671
    ///  b.addSource(s);
672 672
    ///  b.start();
673 673
    ///\endcode
674 674
    void run(Node s) {
675 675
      init();
676 676
      addSource(s);
677 677
      start();
678 678
    }
679 679

	
680 680
    ///Finds the shortest path between \c s and \c t.
681 681

	
682 682
    ///This method runs the %BFS algorithm from node \c s
683 683
    ///in order to compute the shortest path to node \c t
684 684
    ///(it stops searching when \c t is processed).
685 685
    ///
686 686
    ///\return \c true if \c t is reachable form \c s.
687 687
    ///
688 688
    ///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a
689 689
    ///shortcut of the following code.
690 690
    ///\code
691 691
    ///  b.init();
692 692
    ///  b.addSource(s);
693 693
    ///  b.start(t);
694 694
    ///\endcode
695 695
    bool run(Node s,Node t) {
696 696
      init();
697 697
      addSource(s);
698 698
      start(t);
699 699
      return reached(t);
700 700
    }
701 701

	
702 702
    ///Runs the algorithm to visit all nodes in the digraph.
703 703

	
704 704
    ///This method runs the %BFS algorithm in order to visit all nodes
705 705
    ///in the digraph.
706 706
    ///
707 707
    ///\note <tt>b.run(s)</tt> is just a shortcut of the following code.
708 708
    ///\code
709 709
    ///  b.init();
710 710
    ///  for (NodeIt n(gr); n != INVALID; ++n) {
711 711
    ///    if (!b.reached(n)) {
712 712
    ///      b.addSource(n);
713 713
    ///      b.start();
714 714
    ///    }
715 715
    ///  }
716 716
    ///\endcode
717 717
    void run() {
718 718
      init();
719 719
      for (NodeIt n(*G); n != INVALID; ++n) {
720 720
        if (!reached(n)) {
721 721
          addSource(n);
722 722
          start();
723 723
        }
724 724
      }
725 725
    }
726 726

	
727 727
    ///@}
728 728

	
729 729
    ///\name Query Functions
730 730
    ///The results of the BFS algorithm can be obtained using these
731 731
    ///functions.\n
732 732
    ///Either \ref run(Node) "run()" or \ref start() should be called
733 733
    ///before using them.
734 734

	
735 735
    ///@{
736 736

	
737 737
    ///The shortest path to the given node.
738 738

	
739 739
    ///Returns the shortest path to the given node from the root(s).
740 740
    ///
741 741
    ///\warning \c t should be reached from the root(s).
742 742
    ///
743 743
    ///\pre Either \ref run(Node) "run()" or \ref init()
744 744
    ///must be called before using this function.
745 745
    Path path(Node t) const { return Path(*G, *_pred, t); }
746 746

	
747 747
    ///The distance of the given node from the root(s).
748 748

	
749 749
    ///Returns the distance of the given node from the root(s).
750 750
    ///
751 751
    ///\warning If node \c v is not reached from the root(s), then
752 752
    ///the return value of this function is undefined.
753 753
    ///
754 754
    ///\pre Either \ref run(Node) "run()" or \ref init()
755 755
    ///must be called before using this function.
756 756
    int dist(Node v) const { return (*_dist)[v]; }
757 757

	
758 758
    ///\brief Returns the 'previous arc' of the shortest path tree for
759 759
    ///the given node.
760 760
    ///
761 761
    ///This function returns the 'previous arc' of the shortest path
762 762
    ///tree for the node \c v, i.e. it returns the last arc of a
763 763
    ///shortest path from a root to \c v. It is \c INVALID if \c v
764 764
    ///is not reached from the root(s) or if \c v is a root.
765 765
    ///
766 766
    ///The shortest path tree used here is equal to the shortest path
767 767
    ///tree used in \ref predNode() and \ref predMap().
768 768
    ///
769 769
    ///\pre Either \ref run(Node) "run()" or \ref init()
770 770
    ///must be called before using this function.
771 771
    Arc predArc(Node v) const { return (*_pred)[v];}
772 772

	
773 773
    ///\brief Returns the 'previous node' of the shortest path tree for
774 774
    ///the given node.
775 775
    ///
776 776
    ///This function returns the 'previous node' of the shortest path
777 777
    ///tree for the node \c v, i.e. it returns the last but one node
778 778
    ///of a shortest path from a root to \c v. It is \c INVALID
779 779
    ///if \c v is not reached from the root(s) or if \c v is a root.
780 780
    ///
781 781
    ///The shortest path tree used here is equal to the shortest path
782 782
    ///tree used in \ref predArc() and \ref predMap().
783 783
    ///
784 784
    ///\pre Either \ref run(Node) "run()" or \ref init()
785 785
    ///must be called before using this function.
786 786
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
787 787
                                  G->source((*_pred)[v]); }
788 788

	
789 789
    ///\brief Returns a const reference to the node map that stores the
790 790
    /// distances of the nodes.
791 791
    ///
792 792
    ///Returns a const reference to the node map that stores the distances
793 793
    ///of the nodes calculated by the algorithm.
794 794
    ///
795 795
    ///\pre Either \ref run(Node) "run()" or \ref init()
796 796
    ///must be called before using this function.
797 797
    const DistMap &distMap() const { return *_dist;}
798 798

	
799 799
    ///\brief Returns a const reference to the node map that stores the
800 800
    ///predecessor arcs.
801 801
    ///
802 802
    ///Returns a const reference to the node map that stores the predecessor
803 803
    ///arcs, which form the shortest path tree (forest).
804 804
    ///
805 805
    ///\pre Either \ref run(Node) "run()" or \ref init()
806 806
    ///must be called before using this function.
807 807
    const PredMap &predMap() const { return *_pred;}
808 808

	
809 809
    ///Checks if the given node is reached from the root(s).
810 810

	
811 811
    ///Returns \c true if \c v is reached from the root(s).
812 812
    ///
813 813
    ///\pre Either \ref run(Node) "run()" or \ref init()
814 814
    ///must be called before using this function.
815 815
    bool reached(Node v) const { return (*_reached)[v]; }
816 816

	
817 817
    ///@}
818 818
  };
819 819

	
820 820
  ///Default traits class of bfs() function.
821 821

	
822 822
  ///Default traits class of bfs() function.
823 823
  ///\tparam GR Digraph type.
824 824
  template<class GR>
825 825
  struct BfsWizardDefaultTraits
826 826
  {
827 827
    ///The type of the digraph the algorithm runs on.
828 828
    typedef GR Digraph;
829 829

	
830 830
    ///\brief The type of the map that stores the predecessor
831 831
    ///arcs of the shortest paths.
832 832
    ///
833 833
    ///The type of the map that stores the predecessor
834 834
    ///arcs of the shortest paths.
835 835
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
836 836
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
837 837
    ///Instantiates a PredMap.
838 838

	
839 839
    ///This function instantiates a PredMap.
840 840
    ///\param g is the digraph, to which we would like to define the
841 841
    ///PredMap.
842 842
    static PredMap *createPredMap(const Digraph &g)
843 843
    {
844 844
      return new PredMap(g);
845 845
    }
846 846

	
847 847
    ///The type of the map that indicates which nodes are processed.
848 848

	
849 849
    ///The type of the map that indicates which nodes are processed.
850 850
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
851
    ///By default it is a NullMap.
851
    ///By default, it is a NullMap.
852 852
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
853 853
    ///Instantiates a ProcessedMap.
854 854

	
855 855
    ///This function instantiates a ProcessedMap.
856 856
    ///\param g is the digraph, to which
857 857
    ///we would like to define the ProcessedMap.
858 858
#ifdef DOXYGEN
859 859
    static ProcessedMap *createProcessedMap(const Digraph &g)
860 860
#else
861 861
    static ProcessedMap *createProcessedMap(const Digraph &)
862 862
#endif
863 863
    {
864 864
      return new ProcessedMap();
865 865
    }
866 866

	
867 867
    ///The type of the map that indicates which nodes are reached.
868 868

	
869 869
    ///The type of the map that indicates which nodes are reached.
870 870
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
871 871
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
872 872
    ///Instantiates a ReachedMap.
873 873

	
874 874
    ///This function instantiates a ReachedMap.
875 875
    ///\param g is the digraph, to which
876 876
    ///we would like to define the ReachedMap.
877 877
    static ReachedMap *createReachedMap(const Digraph &g)
878 878
    {
879 879
      return new ReachedMap(g);
880 880
    }
881 881

	
882 882
    ///The type of the map that stores the distances of the nodes.
883 883

	
884 884
    ///The type of the map that stores the distances of the nodes.
885 885
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
886 886
    typedef typename Digraph::template NodeMap<int> DistMap;
887 887
    ///Instantiates a DistMap.
888 888

	
889 889
    ///This function instantiates a DistMap.
890 890
    ///\param g is the digraph, to which we would like to define
891 891
    ///the DistMap
892 892
    static DistMap *createDistMap(const Digraph &g)
893 893
    {
894 894
      return new DistMap(g);
895 895
    }
896 896

	
897 897
    ///The type of the shortest paths.
898 898

	
899 899
    ///The type of the shortest paths.
900 900
    ///It must conform to the \ref concepts::Path "Path" concept.
901 901
    typedef lemon::Path<Digraph> Path;
902 902
  };
903 903

	
904 904
  /// Default traits class used by BfsWizard
905 905

	
906 906
  /// Default traits class used by BfsWizard.
907 907
  /// \tparam GR The type of the digraph.
908 908
  template<class GR>
909 909
  class BfsWizardBase : public BfsWizardDefaultTraits<GR>
910 910
  {
911 911

	
912 912
    typedef BfsWizardDefaultTraits<GR> Base;
913 913
  protected:
914 914
    //The type of the nodes in the digraph.
915 915
    typedef typename Base::Digraph::Node Node;
916 916

	
917 917
    //Pointer to the digraph the algorithm runs on.
918 918
    void *_g;
919 919
    //Pointer to the map of reached nodes.
920 920
    void *_reached;
921 921
    //Pointer to the map of processed nodes.
922 922
    void *_processed;
923 923
    //Pointer to the map of predecessors arcs.
924 924
    void *_pred;
925 925
    //Pointer to the map of distances.
926 926
    void *_dist;
927 927
    //Pointer to the shortest path to the target node.
928 928
    void *_path;
929 929
    //Pointer to the distance of the target node.
930 930
    int *_di;
931 931

	
932 932
    public:
933 933
    /// Constructor.
934 934

	
935 935
    /// This constructor does not require parameters, it initiates
936 936
    /// all of the attributes to \c 0.
937 937
    BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
938 938
                      _dist(0), _path(0), _di(0) {}
939 939

	
940 940
    /// Constructor.
941 941

	
942 942
    /// This constructor requires one parameter,
943 943
    /// others are initiated to \c 0.
944 944
    /// \param g The digraph the algorithm runs on.
945 945
    BfsWizardBase(const GR &g) :
946 946
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
947 947
      _reached(0), _processed(0), _pred(0), _dist(0),  _path(0), _di(0) {}
948 948

	
949 949
  };
950 950

	
951 951
  /// Auxiliary class for the function-type interface of BFS algorithm.
952 952

	
953 953
  /// This auxiliary class is created to implement the
954 954
  /// \ref bfs() "function-type interface" of \ref Bfs algorithm.
955 955
  /// It does not have own \ref run(Node) "run()" method, it uses the
956 956
  /// functions and features of the plain \ref Bfs.
957 957
  ///
958 958
  /// This class should only be used through the \ref bfs() function,
959 959
  /// which makes it easier to use the algorithm.
960 960
  template<class TR>
961 961
  class BfsWizard : public TR
962 962
  {
963 963
    typedef TR Base;
964 964

	
965 965
    typedef typename TR::Digraph Digraph;
966 966

	
967 967
    typedef typename Digraph::Node Node;
968 968
    typedef typename Digraph::NodeIt NodeIt;
969 969
    typedef typename Digraph::Arc Arc;
970 970
    typedef typename Digraph::OutArcIt OutArcIt;
971 971

	
972 972
    typedef typename TR::PredMap PredMap;
973 973
    typedef typename TR::DistMap DistMap;
974 974
    typedef typename TR::ReachedMap ReachedMap;
975 975
    typedef typename TR::ProcessedMap ProcessedMap;
976 976
    typedef typename TR::Path Path;
977 977

	
978 978
  public:
979 979

	
980 980
    /// Constructor.
981 981
    BfsWizard() : TR() {}
982 982

	
983 983
    /// Constructor that requires parameters.
984 984

	
985 985
    /// Constructor that requires parameters.
986 986
    /// These parameters will be the default values for the traits class.
987 987
    /// \param g The digraph the algorithm runs on.
988 988
    BfsWizard(const Digraph &g) :
989 989
      TR(g) {}
990 990

	
991 991
    ///Copy constructor
992 992
    BfsWizard(const TR &b) : TR(b) {}
993 993

	
994 994
    ~BfsWizard() {}
995 995

	
996 996
    ///Runs BFS algorithm from the given source node.
997 997

	
998 998
    ///This method runs BFS algorithm from node \c s
999 999
    ///in order to compute the shortest path to each node.
1000 1000
    void run(Node s)
1001 1001
    {
1002 1002
      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
1003 1003
      if (Base::_pred)
1004 1004
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1005 1005
      if (Base::_dist)
1006 1006
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1007 1007
      if (Base::_reached)
1008 1008
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
1009 1009
      if (Base::_processed)
1010 1010
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1011 1011
      if (s!=INVALID)
1012 1012
        alg.run(s);
1013 1013
      else
1014 1014
        alg.run();
1015 1015
    }
1016 1016

	
1017 1017
    ///Finds the shortest path between \c s and \c t.
1018 1018

	
1019 1019
    ///This method runs BFS algorithm from node \c s
1020 1020
    ///in order to compute the shortest path to node \c t
1021 1021
    ///(it stops searching when \c t is processed).
1022 1022
    ///
1023 1023
    ///\return \c true if \c t is reachable form \c s.
1024 1024
    bool run(Node s, Node t)
1025 1025
    {
1026 1026
      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
1027 1027
      if (Base::_pred)
1028 1028
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1029 1029
      if (Base::_dist)
1030 1030
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1031 1031
      if (Base::_reached)
1032 1032
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
1033 1033
      if (Base::_processed)
1034 1034
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1035 1035
      alg.run(s,t);
1036 1036
      if (Base::_path)
1037 1037
        *reinterpret_cast<Path*>(Base::_path) = alg.path(t);
1038 1038
      if (Base::_di)
1039 1039
        *Base::_di = alg.dist(t);
1040 1040
      return alg.reached(t);
1041 1041
    }
1042 1042

	
1043 1043
    ///Runs BFS algorithm to visit all nodes in the digraph.
Ignore white space 6 line context
... ...
@@ -117,385 +117,385 @@
117 117

	
118 118
  /**
119 119
     \brief Push-relabel algorithm for the network circulation problem.
120 120

	
121 121
     \ingroup max_flow
122 122
     This class implements a push-relabel algorithm for the \e network
123 123
     \e circulation problem.
124 124
     It is to find a feasible circulation when lower and upper bounds
125 125
     are given for the flow values on the arcs and lower bounds are
126 126
     given for the difference between the outgoing and incoming flow
127 127
     at the nodes.
128 128

	
129 129
     The exact formulation of this problem is the following.
130 130
     Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
131 131
     \f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
132 132
     upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$
133 133
     holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
134 134
     denotes the signed supply values of the nodes.
135 135
     If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$
136 136
     supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with
137 137
     \f$-sup(u)\f$ demand.
138 138
     A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
139 139
     solution of the following problem.
140 140

	
141 141
     \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
142 142
     \geq sup(u) \quad \forall u\in V, \f]
143 143
     \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f]
144 144
     
145 145
     The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
146 146
     zero or negative in order to have a feasible solution (since the sum
147 147
     of the expressions on the left-hand side of the inequalities is zero).
148 148
     It means that the total demand must be greater or equal to the total
149 149
     supply and all the supplies have to be carried out from the supply nodes,
150 150
     but there could be demands that are not satisfied.
151 151
     If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
152 152
     constraints have to be satisfied with equality, i.e. all demands
153 153
     have to be satisfied and all supplies have to be used.
154 154
     
155 155
     If you need the opposite inequalities in the supply/demand constraints
156 156
     (i.e. the total demand is less than the total supply and all the demands
157 157
     have to be satisfied while there could be supplies that are not used),
158 158
     then you could easily transform the problem to the above form by reversing
159 159
     the direction of the arcs and taking the negative of the supply values
160 160
     (e.g. using \ref ReverseDigraph and \ref NegMap adaptors).
161 161

	
162 162
     This algorithm either calculates a feasible circulation, or provides
163 163
     a \ref barrier() "barrier", which prooves that a feasible soultion
164 164
     cannot exist.
165 165

	
166 166
     Note that this algorithm also provides a feasible solution for the
167 167
     \ref min_cost_flow "minimum cost flow problem".
168 168

	
169 169
     \tparam GR The type of the digraph the algorithm runs on.
170 170
     \tparam LM The type of the lower bound map. The default
171 171
     map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
172 172
     \tparam UM The type of the upper bound (capacity) map.
173 173
     The default map type is \c LM.
174 174
     \tparam SM The type of the supply map. The default map type is
175 175
     \ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>".
176 176
  */
177 177
#ifdef DOXYGEN
178 178
template< typename GR,
179 179
          typename LM,
180 180
          typename UM,
181 181
          typename SM,
182 182
          typename TR >
183 183
#else
184 184
template< typename GR,
185 185
          typename LM = typename GR::template ArcMap<int>,
186 186
          typename UM = LM,
187 187
          typename SM = typename GR::template NodeMap<typename UM::Value>,
188 188
          typename TR = CirculationDefaultTraits<GR, LM, UM, SM> >
189 189
#endif
190 190
  class Circulation {
191 191
  public:
192 192

	
193 193
    ///The \ref CirculationDefaultTraits "traits class" of the algorithm.
194 194
    typedef TR Traits;
195 195
    ///The type of the digraph the algorithm runs on.
196 196
    typedef typename Traits::Digraph Digraph;
197 197
    ///The type of the flow and supply values.
198 198
    typedef typename Traits::Value Value;
199 199

	
200 200
    ///The type of the lower bound map.
201 201
    typedef typename Traits::LowerMap LowerMap;
202 202
    ///The type of the upper bound (capacity) map.
203 203
    typedef typename Traits::UpperMap UpperMap;
204 204
    ///The type of the supply map.
205 205
    typedef typename Traits::SupplyMap SupplyMap;
206 206
    ///The type of the flow map.
207 207
    typedef typename Traits::FlowMap FlowMap;
208 208

	
209 209
    ///The type of the elevator.
210 210
    typedef typename Traits::Elevator Elevator;
211 211
    ///The type of the tolerance.
212 212
    typedef typename Traits::Tolerance Tolerance;
213 213

	
214 214
  private:
215 215

	
216 216
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
217 217

	
218 218
    const Digraph &_g;
219 219
    int _node_num;
220 220

	
221 221
    const LowerMap *_lo;
222 222
    const UpperMap *_up;
223 223
    const SupplyMap *_supply;
224 224

	
225 225
    FlowMap *_flow;
226 226
    bool _local_flow;
227 227

	
228 228
    Elevator* _level;
229 229
    bool _local_level;
230 230

	
231 231
    typedef typename Digraph::template NodeMap<Value> ExcessMap;
232 232
    ExcessMap* _excess;
233 233

	
234 234
    Tolerance _tol;
235 235
    int _el;
236 236

	
237 237
  public:
238 238

	
239 239
    typedef Circulation Create;
240 240

	
241 241
    ///\name Named Template Parameters
242 242

	
243 243
    ///@{
244 244

	
245 245
    template <typename T>
246 246
    struct SetFlowMapTraits : public Traits {
247 247
      typedef T FlowMap;
248 248
      static FlowMap *createFlowMap(const Digraph&) {
249 249
        LEMON_ASSERT(false, "FlowMap is not initialized");
250 250
        return 0; // ignore warnings
251 251
      }
252 252
    };
253 253

	
254 254
    /// \brief \ref named-templ-param "Named parameter" for setting
255 255
    /// FlowMap type
256 256
    ///
257 257
    /// \ref named-templ-param "Named parameter" for setting FlowMap
258 258
    /// type.
259 259
    template <typename T>
260 260
    struct SetFlowMap
261 261
      : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
262 262
                           SetFlowMapTraits<T> > {
263 263
      typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
264 264
                          SetFlowMapTraits<T> > Create;
265 265
    };
266 266

	
267 267
    template <typename T>
268 268
    struct SetElevatorTraits : public Traits {
269 269
      typedef T Elevator;
270 270
      static Elevator *createElevator(const Digraph&, int) {
271 271
        LEMON_ASSERT(false, "Elevator is not initialized");
272 272
        return 0; // ignore warnings
273 273
      }
274 274
    };
275 275

	
276 276
    /// \brief \ref named-templ-param "Named parameter" for setting
277 277
    /// Elevator type
278 278
    ///
279 279
    /// \ref named-templ-param "Named parameter" for setting Elevator
280 280
    /// type. If this named parameter is used, then an external
281 281
    /// elevator object must be passed to the algorithm using the
282 282
    /// \ref elevator(Elevator&) "elevator()" function before calling
283 283
    /// \ref run() or \ref init().
284 284
    /// \sa SetStandardElevator
285 285
    template <typename T>
286 286
    struct SetElevator
287 287
      : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
288 288
                           SetElevatorTraits<T> > {
289 289
      typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
290 290
                          SetElevatorTraits<T> > Create;
291 291
    };
292 292

	
293 293
    template <typename T>
294 294
    struct SetStandardElevatorTraits : public Traits {
295 295
      typedef T Elevator;
296 296
      static Elevator *createElevator(const Digraph& digraph, int max_level) {
297 297
        return new Elevator(digraph, max_level);
298 298
      }
299 299
    };
300 300

	
301 301
    /// \brief \ref named-templ-param "Named parameter" for setting
302 302
    /// Elevator type with automatic allocation
303 303
    ///
304 304
    /// \ref named-templ-param "Named parameter" for setting Elevator
305 305
    /// type with automatic allocation.
306 306
    /// The Elevator should have standard constructor interface to be
307 307
    /// able to automatically created by the algorithm (i.e. the
308 308
    /// digraph and the maximum level should be passed to it).
309
    /// However an external elevator object could also be passed to the
309
    /// However, an external elevator object could also be passed to the
310 310
    /// algorithm with the \ref elevator(Elevator&) "elevator()" function
311 311
    /// before calling \ref run() or \ref init().
312 312
    /// \sa SetElevator
313 313
    template <typename T>
314 314
    struct SetStandardElevator
315 315
      : public Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
316 316
                       SetStandardElevatorTraits<T> > {
317 317
      typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap,
318 318
                      SetStandardElevatorTraits<T> > Create;
319 319
    };
320 320

	
321 321
    /// @}
322 322

	
323 323
  protected:
324 324

	
325 325
    Circulation() {}
326 326

	
327 327
  public:
328 328

	
329 329
    /// Constructor.
330 330

	
331 331
    /// The constructor of the class.
332 332
    ///
333 333
    /// \param graph The digraph the algorithm runs on.
334 334
    /// \param lower The lower bounds for the flow values on the arcs.
335 335
    /// \param upper The upper bounds (capacities) for the flow values 
336 336
    /// on the arcs.
337 337
    /// \param supply The signed supply values of the nodes.
338 338
    Circulation(const Digraph &graph, const LowerMap &lower,
339 339
                const UpperMap &upper, const SupplyMap &supply)
340 340
      : _g(graph), _lo(&lower), _up(&upper), _supply(&supply),
341 341
        _flow(NULL), _local_flow(false), _level(NULL), _local_level(false),
342 342
        _excess(NULL) {}
343 343

	
344 344
    /// Destructor.
345 345
    ~Circulation() {
346 346
      destroyStructures();
347 347
    }
348 348

	
349 349

	
350 350
  private:
351 351

	
352 352
    bool checkBoundMaps() {
353 353
      for (ArcIt e(_g);e!=INVALID;++e) {
354 354
        if (_tol.less((*_up)[e], (*_lo)[e])) return false;
355 355
      }
356 356
      return true;
357 357
    }
358 358

	
359 359
    void createStructures() {
360 360
      _node_num = _el = countNodes(_g);
361 361

	
362 362
      if (!_flow) {
363 363
        _flow = Traits::createFlowMap(_g);
364 364
        _local_flow = true;
365 365
      }
366 366
      if (!_level) {
367 367
        _level = Traits::createElevator(_g, _node_num);
368 368
        _local_level = true;
369 369
      }
370 370
      if (!_excess) {
371 371
        _excess = new ExcessMap(_g);
372 372
      }
373 373
    }
374 374

	
375 375
    void destroyStructures() {
376 376
      if (_local_flow) {
377 377
        delete _flow;
378 378
      }
379 379
      if (_local_level) {
380 380
        delete _level;
381 381
      }
382 382
      if (_excess) {
383 383
        delete _excess;
384 384
      }
385 385
    }
386 386

	
387 387
  public:
388 388

	
389 389
    /// Sets the lower bound map.
390 390

	
391 391
    /// Sets the lower bound map.
392 392
    /// \return <tt>(*this)</tt>
393 393
    Circulation& lowerMap(const LowerMap& map) {
394 394
      _lo = &map;
395 395
      return *this;
396 396
    }
397 397

	
398 398
    /// Sets the upper bound (capacity) map.
399 399

	
400 400
    /// Sets the upper bound (capacity) map.
401 401
    /// \return <tt>(*this)</tt>
402 402
    Circulation& upperMap(const UpperMap& map) {
403 403
      _up = &map;
404 404
      return *this;
405 405
    }
406 406

	
407 407
    /// Sets the supply map.
408 408

	
409 409
    /// Sets the supply map.
410 410
    /// \return <tt>(*this)</tt>
411 411
    Circulation& supplyMap(const SupplyMap& map) {
412 412
      _supply = &map;
413 413
      return *this;
414 414
    }
415 415

	
416 416
    /// \brief Sets the flow map.
417 417
    ///
418 418
    /// Sets the flow map.
419 419
    /// If you don't use this function before calling \ref run() or
420 420
    /// \ref init(), an instance will be allocated automatically.
421 421
    /// The destructor deallocates this automatically allocated map,
422 422
    /// of course.
423 423
    /// \return <tt>(*this)</tt>
424 424
    Circulation& flowMap(FlowMap& map) {
425 425
      if (_local_flow) {
426 426
        delete _flow;
427 427
        _local_flow = false;
428 428
      }
429 429
      _flow = &map;
430 430
      return *this;
431 431
    }
432 432

	
433 433
    /// \brief Sets the elevator used by algorithm.
434 434
    ///
435 435
    /// Sets the elevator used by algorithm.
436 436
    /// If you don't use this function before calling \ref run() or
437 437
    /// \ref init(), an instance will be allocated automatically.
438 438
    /// The destructor deallocates this automatically allocated elevator,
439 439
    /// of course.
440 440
    /// \return <tt>(*this)</tt>
441 441
    Circulation& elevator(Elevator& elevator) {
442 442
      if (_local_level) {
443 443
        delete _level;
444 444
        _local_level = false;
445 445
      }
446 446
      _level = &elevator;
447 447
      return *this;
448 448
    }
449 449

	
450 450
    /// \brief Returns a const reference to the elevator.
451 451
    ///
452 452
    /// Returns a const reference to the elevator.
453 453
    ///
454 454
    /// \pre Either \ref run() or \ref init() must be called before
455 455
    /// using this function.
456 456
    const Elevator& elevator() const {
457 457
      return *_level;
458 458
    }
459 459

	
460 460
    /// \brief Sets the tolerance used by the algorithm.
461 461
    ///
462 462
    /// Sets the tolerance object used by the algorithm.
463 463
    /// \return <tt>(*this)</tt>
464 464
    Circulation& tolerance(const Tolerance& tolerance) {
465 465
      _tol = tolerance;
466 466
      return *this;
467 467
    }
468 468

	
469 469
    /// \brief Returns a const reference to the tolerance.
470 470
    ///
471 471
    /// Returns a const reference to the tolerance object used by
472 472
    /// the algorithm.
473 473
    const Tolerance& tolerance() const {
474 474
      return _tol;
475 475
    }
476 476

	
477 477
    /// \name Execution Control
478 478
    /// The simplest way to execute the algorithm is to call \ref run().\n
479 479
    /// If you need better control on the initial solution or the execution,
480 480
    /// you have to call one of the \ref init() functions first, then
481 481
    /// the \ref start() function.
482 482

	
483 483
    ///@{
484 484

	
485 485
    /// Initializes the internal data structures.
486 486

	
487 487
    /// Initializes the internal data structures and sets all flow values
488 488
    /// to the lower bound.
489 489
    void init()
490 490
    {
491 491
      LEMON_DEBUG(checkBoundMaps(),
492 492
        "Upper bounds must be greater or equal to the lower bounds");
493 493

	
494 494
      createStructures();
495 495

	
496 496
      for(NodeIt n(_g);n!=INVALID;++n) {
497 497
        (*_excess)[n] = (*_supply)[n];
498 498
      }
499 499

	
500 500
      for (ArcIt e(_g);e!=INVALID;++e) {
501 501
        _flow->set(e, (*_lo)[e]);
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CONCEPTS_DIGRAPH_H
20 20
#define LEMON_CONCEPTS_DIGRAPH_H
21 21

	
22 22
///\ingroup graph_concepts
23 23
///\file
24 24
///\brief The concept of directed graphs.
25 25

	
26 26
#include <lemon/core.h>
27 27
#include <lemon/concepts/maps.h>
28 28
#include <lemon/concept_check.h>
29 29
#include <lemon/concepts/graph_components.h>
30 30

	
31 31
namespace lemon {
32 32
  namespace concepts {
33 33

	
34 34
    /// \ingroup graph_concepts
35 35
    ///
36 36
    /// \brief Class describing the concept of directed graphs.
37 37
    ///
38 38
    /// This class describes the common interface of all directed
39 39
    /// graphs (digraphs).
40 40
    ///
41 41
    /// Like all concept classes, it only provides an interface
42 42
    /// without any sensible implementation. So any general algorithm for
43 43
    /// directed graphs should compile with this class, but it will not
44 44
    /// run properly, of course.
45 45
    /// An actual digraph implementation like \ref ListDigraph or
46 46
    /// \ref SmartDigraph may have additional functionality.
47 47
    ///
48 48
    /// \sa Graph
49 49
    class Digraph {
50 50
    private:
51 51
      /// Diraphs are \e not copy constructible. Use DigraphCopy instead.
52 52
      Digraph(const Digraph &) {}
53 53
      /// \brief Assignment of a digraph to another one is \e not allowed.
54 54
      /// Use DigraphCopy instead.
55 55
      void operator=(const Digraph &) {}
56 56

	
57 57
    public:
58 58
      /// Default constructor.
59 59
      Digraph() { }
60 60

	
61 61
      /// The node type of the digraph
62 62

	
63 63
      /// This class identifies a node of the digraph. It also serves
64 64
      /// as a base class of the node iterators,
65 65
      /// thus they convert to this type.
66 66
      class Node {
67 67
      public:
68 68
        /// Default constructor
69 69

	
70 70
        /// Default constructor.
71 71
        /// \warning It sets the object to an undefined value.
72 72
        Node() { }
73 73
        /// Copy constructor.
74 74

	
75 75
        /// Copy constructor.
76 76
        ///
77 77
        Node(const Node&) { }
78 78

	
79 79
        /// %Invalid constructor \& conversion.
80 80

	
81 81
        /// Initializes the object to be invalid.
82 82
        /// \sa Invalid for more details.
83 83
        Node(Invalid) { }
84 84
        /// Equality operator
85 85

	
86 86
        /// Equality operator.
87 87
        ///
88 88
        /// Two iterators are equal if and only if they point to the
89 89
        /// same object or both are \c INVALID.
90 90
        bool operator==(Node) const { return true; }
91 91

	
92 92
        /// Inequality operator
93 93

	
94 94
        /// Inequality operator.
95 95
        bool operator!=(Node) const { return true; }
96 96

	
97 97
        /// Artificial ordering operator.
98 98

	
99 99
        /// Artificial ordering operator.
100 100
        ///
101 101
        /// \note This operator only has to define some strict ordering of
102 102
        /// the nodes; this order has nothing to do with the iteration
103 103
        /// ordering of the nodes.
104 104
        bool operator<(Node) const { return false; }
105 105
      };
106 106

	
107 107
      /// Iterator class for the nodes.
108 108

	
109 109
      /// This iterator goes through each node of the digraph.
110
      /// Its usage is quite simple, for example you can count the number
110
      /// Its usage is quite simple, for example, you can count the number
111 111
      /// of nodes in a digraph \c g of type \c %Digraph like this:
112 112
      ///\code
113 113
      /// int count=0;
114 114
      /// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count;
115 115
      ///\endcode
116 116
      class NodeIt : public Node {
117 117
      public:
118 118
        /// Default constructor
119 119

	
120 120
        /// Default constructor.
121 121
        /// \warning It sets the iterator to an undefined value.
122 122
        NodeIt() { }
123 123
        /// Copy constructor.
124 124

	
125 125
        /// Copy constructor.
126 126
        ///
127 127
        NodeIt(const NodeIt& n) : Node(n) { }
128 128
        /// %Invalid constructor \& conversion.
129 129

	
130 130
        /// Initializes the iterator to be invalid.
131 131
        /// \sa Invalid for more details.
132 132
        NodeIt(Invalid) { }
133 133
        /// Sets the iterator to the first node.
134 134

	
135 135
        /// Sets the iterator to the first node of the given digraph.
136 136
        ///
137 137
        explicit NodeIt(const Digraph&) { }
138 138
        /// Sets the iterator to the given node.
139 139

	
140 140
        /// Sets the iterator to the given node of the given digraph.
141 141
        ///
142 142
        NodeIt(const Digraph&, const Node&) { }
143 143
        /// Next node.
144 144

	
145 145
        /// Assign the iterator to the next node.
146 146
        ///
147 147
        NodeIt& operator++() { return *this; }
148 148
      };
149 149

	
150 150

	
151 151
      /// The arc type of the digraph
152 152

	
153 153
      /// This class identifies an arc of the digraph. It also serves
154 154
      /// as a base class of the arc iterators,
155 155
      /// thus they will convert to this type.
156 156
      class Arc {
157 157
      public:
158 158
        /// Default constructor
159 159

	
160 160
        /// Default constructor.
161 161
        /// \warning It sets the object to an undefined value.
162 162
        Arc() { }
163 163
        /// Copy constructor.
164 164

	
165 165
        /// Copy constructor.
166 166
        ///
167 167
        Arc(const Arc&) { }
168 168
        /// %Invalid constructor \& conversion.
169 169

	
170 170
        /// Initializes the object to be invalid.
171 171
        /// \sa Invalid for more details.
172 172
        Arc(Invalid) { }
173 173
        /// Equality operator
174 174

	
175 175
        /// Equality operator.
176 176
        ///
177 177
        /// Two iterators are equal if and only if they point to the
178 178
        /// same object or both are \c INVALID.
179 179
        bool operator==(Arc) const { return true; }
180 180
        /// Inequality operator
181 181

	
182 182
        /// Inequality operator.
183 183
        bool operator!=(Arc) const { return true; }
184 184

	
185 185
        /// Artificial ordering operator.
186 186

	
187 187
        /// Artificial ordering operator.
188 188
        ///
189 189
        /// \note This operator only has to define some strict ordering of
190 190
        /// the arcs; this order has nothing to do with the iteration
191 191
        /// ordering of the arcs.
192 192
        bool operator<(Arc) const { return false; }
193 193
      };
194 194

	
195 195
      /// Iterator class for the outgoing arcs of a node.
196 196

	
197 197
      /// This iterator goes trough the \e outgoing arcs of a certain node
198 198
      /// of a digraph.
199
      /// Its usage is quite simple, for example you can count the number
199
      /// Its usage is quite simple, for example, you can count the number
200 200
      /// of outgoing arcs of a node \c n
201 201
      /// in a digraph \c g of type \c %Digraph as follows.
202 202
      ///\code
203 203
      /// int count=0;
204 204
      /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
205 205
      ///\endcode
206 206
      class OutArcIt : public Arc {
207 207
      public:
208 208
        /// Default constructor
209 209

	
210 210
        /// Default constructor.
211 211
        /// \warning It sets the iterator to an undefined value.
212 212
        OutArcIt() { }
213 213
        /// Copy constructor.
214 214

	
215 215
        /// Copy constructor.
216 216
        ///
217 217
        OutArcIt(const OutArcIt& e) : Arc(e) { }
218 218
        /// %Invalid constructor \& conversion.
219 219

	
220 220
        /// Initializes the iterator to be invalid.
221 221
        /// \sa Invalid for more details.
222 222
        OutArcIt(Invalid) { }
223 223
        /// Sets the iterator to the first outgoing arc.
224 224

	
225 225
        /// Sets the iterator to the first outgoing arc of the given node.
226 226
        ///
227 227
        OutArcIt(const Digraph&, const Node&) { }
228 228
        /// Sets the iterator to the given arc.
229 229

	
230 230
        /// Sets the iterator to the given arc of the given digraph.
231 231
        ///
232 232
        OutArcIt(const Digraph&, const Arc&) { }
233 233
        /// Next outgoing arc
234 234

	
235 235
        /// Assign the iterator to the next
236 236
        /// outgoing arc of the corresponding node.
237 237
        OutArcIt& operator++() { return *this; }
238 238
      };
239 239

	
240 240
      /// Iterator class for the incoming arcs of a node.
241 241

	
242 242
      /// This iterator goes trough the \e incoming arcs of a certain node
243 243
      /// of a digraph.
244
      /// Its usage is quite simple, for example you can count the number
244
      /// Its usage is quite simple, for example, you can count the number
245 245
      /// of incoming arcs of a node \c n
246 246
      /// in a digraph \c g of type \c %Digraph as follows.
247 247
      ///\code
248 248
      /// int count=0;
249 249
      /// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
250 250
      ///\endcode
251 251
      class InArcIt : public Arc {
252 252
      public:
253 253
        /// Default constructor
254 254

	
255 255
        /// Default constructor.
256 256
        /// \warning It sets the iterator to an undefined value.
257 257
        InArcIt() { }
258 258
        /// Copy constructor.
259 259

	
260 260
        /// Copy constructor.
261 261
        ///
262 262
        InArcIt(const InArcIt& e) : Arc(e) { }
263 263
        /// %Invalid constructor \& conversion.
264 264

	
265 265
        /// Initializes the iterator to be invalid.
266 266
        /// \sa Invalid for more details.
267 267
        InArcIt(Invalid) { }
268 268
        /// Sets the iterator to the first incoming arc.
269 269

	
270 270
        /// Sets the iterator to the first incoming arc of the given node.
271 271
        ///
272 272
        InArcIt(const Digraph&, const Node&) { }
273 273
        /// Sets the iterator to the given arc.
274 274

	
275 275
        /// Sets the iterator to the given arc of the given digraph.
276 276
        ///
277 277
        InArcIt(const Digraph&, const Arc&) { }
278 278
        /// Next incoming arc
279 279

	
280 280
        /// Assign the iterator to the next
281 281
        /// incoming arc of the corresponding node.
282 282
        InArcIt& operator++() { return *this; }
283 283
      };
284 284

	
285 285
      /// Iterator class for the arcs.
286 286

	
287 287
      /// This iterator goes through each arc of the digraph.
288
      /// Its usage is quite simple, for example you can count the number
288
      /// Its usage is quite simple, for example, you can count the number
289 289
      /// of arcs in a digraph \c g of type \c %Digraph as follows:
290 290
      ///\code
291 291
      /// int count=0;
292 292
      /// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count;
293 293
      ///\endcode
294 294
      class ArcIt : public Arc {
295 295
      public:
296 296
        /// Default constructor
297 297

	
298 298
        /// Default constructor.
299 299
        /// \warning It sets the iterator to an undefined value.
300 300
        ArcIt() { }
301 301
        /// Copy constructor.
302 302

	
303 303
        /// Copy constructor.
304 304
        ///
305 305
        ArcIt(const ArcIt& e) : Arc(e) { }
306 306
        /// %Invalid constructor \& conversion.
307 307

	
308 308
        /// Initializes the iterator to be invalid.
309 309
        /// \sa Invalid for more details.
310 310
        ArcIt(Invalid) { }
311 311
        /// Sets the iterator to the first arc.
312 312

	
313 313
        /// Sets the iterator to the first arc of the given digraph.
314 314
        ///
315 315
        explicit ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
316 316
        /// Sets the iterator to the given arc.
317 317

	
318 318
        /// Sets the iterator to the given arc of the given digraph.
319 319
        ///
320 320
        ArcIt(const Digraph&, const Arc&) { }
321 321
        /// Next arc
322 322

	
323 323
        /// Assign the iterator to the next arc.
324 324
        ///
325 325
        ArcIt& operator++() { return *this; }
326 326
      };
327 327

	
328 328
      /// \brief The source node of the arc.
329 329
      ///
330 330
      /// Returns the source node of the given arc.
331 331
      Node source(Arc) const { return INVALID; }
332 332

	
333 333
      /// \brief The target node of the arc.
334 334
      ///
335 335
      /// Returns the target node of the given arc.
336 336
      Node target(Arc) const { return INVALID; }
337 337

	
338 338
      /// \brief The ID of the node.
339 339
      ///
340 340
      /// Returns the ID of the given node.
341 341
      int id(Node) const { return -1; }
342 342

	
343 343
      /// \brief The ID of the arc.
344 344
      ///
345 345
      /// Returns the ID of the given arc.
346 346
      int id(Arc) const { return -1; }
347 347

	
348 348
      /// \brief The node with the given ID.
349 349
      ///
350 350
      /// Returns the node with the given ID.
351 351
      /// \pre The argument should be a valid node ID in the digraph.
352 352
      Node nodeFromId(int) const { return INVALID; }
353 353

	
354 354
      /// \brief The arc with the given ID.
355 355
      ///
356 356
      /// Returns the arc with the given ID.
357 357
      /// \pre The argument should be a valid arc ID in the digraph.
358 358
      Arc arcFromId(int) const { return INVALID; }
359 359

	
360 360
      /// \brief An upper bound on the node IDs.
361 361
      ///
362 362
      /// Returns an upper bound on the node IDs.
363 363
      int maxNodeId() const { return -1; }
364 364

	
365 365
      /// \brief An upper bound on the arc IDs.
366 366
      ///
367 367
      /// Returns an upper bound on the arc IDs.
368 368
      int maxArcId() const { return -1; }
369 369

	
370 370
      void first(Node&) const {}
371 371
      void next(Node&) const {}
372 372

	
373 373
      void first(Arc&) const {}
374 374
      void next(Arc&) const {}
375 375

	
376 376

	
377 377
      void firstIn(Arc&, const Node&) const {}
378 378
      void nextIn(Arc&) const {}
379 379

	
380 380
      void firstOut(Arc&, const Node&) const {}
381 381
      void nextOut(Arc&) const {}
382 382

	
383 383
      // The second parameter is dummy.
384 384
      Node fromId(int, Node) const { return INVALID; }
385 385
      // The second parameter is dummy.
386 386
      Arc fromId(int, Arc) const { return INVALID; }
387 387

	
388 388
      // Dummy parameter.
389 389
      int maxId(Node) const { return -1; }
390 390
      // Dummy parameter.
391 391
      int maxId(Arc) const { return -1; }
392 392

	
393 393
      /// \brief The opposite node on the arc.
394 394
      ///
395 395
      /// Returns the opposite node on the given arc.
396 396
      Node oppositeNode(Node, Arc) const { return INVALID; }
397 397

	
398 398
      /// \brief The base node of the iterator.
399 399
      ///
400 400
      /// Returns the base node of the given outgoing arc iterator
401 401
      /// (i.e. the source node of the corresponding arc).
402 402
      Node baseNode(OutArcIt) const { return INVALID; }
403 403

	
404 404
      /// \brief The running node of the iterator.
405 405
      ///
406 406
      /// Returns the running node of the given outgoing arc iterator
407 407
      /// (i.e. the target node of the corresponding arc).
408 408
      Node runningNode(OutArcIt) const { return INVALID; }
409 409

	
410 410
      /// \brief The base node of the iterator.
411 411
      ///
412 412
      /// Returns the base node of the given incomming arc iterator
413 413
      /// (i.e. the target node of the corresponding arc).
414 414
      Node baseNode(InArcIt) const { return INVALID; }
415 415

	
416 416
      /// \brief The running node of the iterator.
417 417
      ///
418 418
      /// Returns the running node of the given incomming arc iterator
419 419
      /// (i.e. the source node of the corresponding arc).
420 420
      Node runningNode(InArcIt) const { return INVALID; }
421 421

	
422 422
      /// \brief Standard graph map type for the nodes.
423 423
      ///
424 424
      /// Standard graph map type for the nodes.
425 425
      /// It conforms to the ReferenceMap concept.
426 426
      template<class T>
427 427
      class NodeMap : public ReferenceMap<Node, T, T&, const T&> {
428 428
      public:
429 429

	
430 430
        /// Constructor
431 431
        explicit NodeMap(const Digraph&) { }
432 432
        /// Constructor with given initial value
433 433
        NodeMap(const Digraph&, T) { }
434 434

	
435 435
      private:
436 436
        ///Copy constructor
437 437
        NodeMap(const NodeMap& nm) : 
438 438
          ReferenceMap<Node, T, T&, const T&>(nm) { }
439 439
        ///Assignment operator
440 440
        template <typename CMap>
441 441
        NodeMap& operator=(const CMap&) {
442 442
          checkConcept<ReadMap<Node, T>, CMap>();
443 443
          return *this;
444 444
        }
445 445
      };
446 446

	
447 447
      /// \brief Standard graph map type for the arcs.
448 448
      ///
449 449
      /// Standard graph map type for the arcs.
450 450
      /// It conforms to the ReferenceMap concept.
451 451
      template<class T>
452 452
      class ArcMap : public ReferenceMap<Arc, T, T&, const T&> {
453 453
      public:
454 454

	
455 455
        /// Constructor
456 456
        explicit ArcMap(const Digraph&) { }
457 457
        /// Constructor with given initial value
458 458
        ArcMap(const Digraph&, T) { }
459 459

	
460 460
      private:
461 461
        ///Copy constructor
462 462
        ArcMap(const ArcMap& em) :
463 463
          ReferenceMap<Arc, T, T&, const T&>(em) { }
464 464
        ///Assignment operator
465 465
        template <typename CMap>
466 466
        ArcMap& operator=(const CMap&) {
467 467
          checkConcept<ReadMap<Arc, T>, CMap>();
468 468
          return *this;
469 469
        }
470 470
      };
471 471

	
472 472
      template <typename _Digraph>
473 473
      struct Constraints {
474 474
        void constraints() {
475 475
          checkConcept<BaseDigraphComponent, _Digraph>();
476 476
          checkConcept<IterableDigraphComponent<>, _Digraph>();
477 477
          checkConcept<IDableDigraphComponent<>, _Digraph>();
478 478
          checkConcept<MappableDigraphComponent<>, _Digraph>();
479 479
        }
480 480
      };
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup graph_concepts
20 20
///\file
21 21
///\brief The concept of undirected graphs.
22 22

	
23 23
#ifndef LEMON_CONCEPTS_GRAPH_H
24 24
#define LEMON_CONCEPTS_GRAPH_H
25 25

	
26 26
#include <lemon/concepts/graph_components.h>
27 27
#include <lemon/concepts/maps.h>
28 28
#include <lemon/concept_check.h>
29 29
#include <lemon/core.h>
30 30

	
31 31
namespace lemon {
32 32
  namespace concepts {
33 33

	
34 34
    /// \ingroup graph_concepts
35 35
    ///
36 36
    /// \brief Class describing the concept of undirected graphs.
37 37
    ///
38 38
    /// This class describes the common interface of all undirected
39 39
    /// graphs.
40 40
    ///
41 41
    /// Like all concept classes, it only provides an interface
42 42
    /// without any sensible implementation. So any general algorithm for
43 43
    /// undirected graphs should compile with this class, but it will not
44 44
    /// run properly, of course.
45 45
    /// An actual graph implementation like \ref ListGraph or
46 46
    /// \ref SmartGraph may have additional functionality.    
47 47
    ///
48 48
    /// The undirected graphs also fulfill the concept of \ref Digraph
49 49
    /// "directed graphs", since each edge can also be regarded as two
50 50
    /// oppositely directed arcs.
51 51
    /// Undirected graphs provide an Edge type for the undirected edges and
52 52
    /// an Arc type for the directed arcs. The Arc type is convertible to
53 53
    /// Edge or inherited from it, i.e. the corresponding edge can be
54 54
    /// obtained from an arc.
55 55
    /// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt
56 56
    /// and ArcMap classes can be used for the arcs (just like in digraphs).
57 57
    /// Both InArcIt and OutArcIt iterates on the same edges but with
58 58
    /// opposite direction. IncEdgeIt also iterates on the same edges
59 59
    /// as OutArcIt and InArcIt, but it is not convertible to Arc,
60 60
    /// only to Edge.
61 61
    ///
62 62
    /// In LEMON, each undirected edge has an inherent orientation.
63 63
    /// Thus it can defined if an arc is forward or backward oriented in
64 64
    /// an undirected graph with respect to this default oriantation of
65 65
    /// the represented edge.
66 66
    /// With the direction() and direct() functions the direction
67 67
    /// of an arc can be obtained and set, respectively.
68 68
    ///
69 69
    /// Only nodes and edges can be added to or removed from an undirected
70 70
    /// graph and the corresponding arcs are added or removed automatically.
71 71
    ///
72 72
    /// \sa Digraph
73 73
    class Graph {
74 74
    private:
75 75
      /// Graphs are \e not copy constructible. Use DigraphCopy instead.
76 76
      Graph(const Graph&) {}
77 77
      /// \brief Assignment of a graph to another one is \e not allowed.
78 78
      /// Use DigraphCopy instead.
79 79
      void operator=(const Graph&) {}
80 80

	
81 81
    public:
82 82
      /// Default constructor.
83 83
      Graph() {}
84 84

	
85 85
      /// \brief Undirected graphs should be tagged with \c UndirectedTag.
86 86
      ///
87 87
      /// Undirected graphs should be tagged with \c UndirectedTag.
88 88
      /// 
89 89
      /// This tag helps the \c enable_if technics to make compile time
90 90
      /// specializations for undirected graphs.
91 91
      typedef True UndirectedTag;
92 92

	
93 93
      /// The node type of the graph
94 94

	
95 95
      /// This class identifies a node of the graph. It also serves
96 96
      /// as a base class of the node iterators,
97 97
      /// thus they convert to this type.
98 98
      class Node {
99 99
      public:
100 100
        /// Default constructor
101 101

	
102 102
        /// Default constructor.
103 103
        /// \warning It sets the object to an undefined value.
104 104
        Node() { }
105 105
        /// Copy constructor.
106 106

	
107 107
        /// Copy constructor.
108 108
        ///
109 109
        Node(const Node&) { }
110 110

	
111 111
        /// %Invalid constructor \& conversion.
112 112

	
113 113
        /// Initializes the object to be invalid.
114 114
        /// \sa Invalid for more details.
115 115
        Node(Invalid) { }
116 116
        /// Equality operator
117 117

	
118 118
        /// Equality operator.
119 119
        ///
120 120
        /// Two iterators are equal if and only if they point to the
121 121
        /// same object or both are \c INVALID.
122 122
        bool operator==(Node) const { return true; }
123 123

	
124 124
        /// Inequality operator
125 125

	
126 126
        /// Inequality operator.
127 127
        bool operator!=(Node) const { return true; }
128 128

	
129 129
        /// Artificial ordering operator.
130 130

	
131 131
        /// Artificial ordering operator.
132 132
        ///
133 133
        /// \note This operator only has to define some strict ordering of
134 134
        /// the items; this order has nothing to do with the iteration
135 135
        /// ordering of the items.
136 136
        bool operator<(Node) const { return false; }
137 137

	
138 138
      };
139 139

	
140 140
      /// Iterator class for the nodes.
141 141

	
142 142
      /// This iterator goes through each node of the graph.
143
      /// Its usage is quite simple, for example you can count the number
143
      /// Its usage is quite simple, for example, you can count the number
144 144
      /// of nodes in a graph \c g of type \c %Graph like this:
145 145
      ///\code
146 146
      /// int count=0;
147 147
      /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
148 148
      ///\endcode
149 149
      class NodeIt : public Node {
150 150
      public:
151 151
        /// Default constructor
152 152

	
153 153
        /// Default constructor.
154 154
        /// \warning It sets the iterator to an undefined value.
155 155
        NodeIt() { }
156 156
        /// Copy constructor.
157 157

	
158 158
        /// Copy constructor.
159 159
        ///
160 160
        NodeIt(const NodeIt& n) : Node(n) { }
161 161
        /// %Invalid constructor \& conversion.
162 162

	
163 163
        /// Initializes the iterator to be invalid.
164 164
        /// \sa Invalid for more details.
165 165
        NodeIt(Invalid) { }
166 166
        /// Sets the iterator to the first node.
167 167

	
168 168
        /// Sets the iterator to the first node of the given digraph.
169 169
        ///
170 170
        explicit NodeIt(const Graph&) { }
171 171
        /// Sets the iterator to the given node.
172 172

	
173 173
        /// Sets the iterator to the given node of the given digraph.
174 174
        ///
175 175
        NodeIt(const Graph&, const Node&) { }
176 176
        /// Next node.
177 177

	
178 178
        /// Assign the iterator to the next node.
179 179
        ///
180 180
        NodeIt& operator++() { return *this; }
181 181
      };
182 182

	
183 183

	
184 184
      /// The edge type of the graph
185 185

	
186 186
      /// This class identifies an edge of the graph. It also serves
187 187
      /// as a base class of the edge iterators,
188 188
      /// thus they will convert to this type.
189 189
      class Edge {
190 190
      public:
191 191
        /// Default constructor
192 192

	
193 193
        /// Default constructor.
194 194
        /// \warning It sets the object to an undefined value.
195 195
        Edge() { }
196 196
        /// Copy constructor.
197 197

	
198 198
        /// Copy constructor.
199 199
        ///
200 200
        Edge(const Edge&) { }
201 201
        /// %Invalid constructor \& conversion.
202 202

	
203 203
        /// Initializes the object to be invalid.
204 204
        /// \sa Invalid for more details.
205 205
        Edge(Invalid) { }
206 206
        /// Equality operator
207 207

	
208 208
        /// Equality operator.
209 209
        ///
210 210
        /// Two iterators are equal if and only if they point to the
211 211
        /// same object or both are \c INVALID.
212 212
        bool operator==(Edge) const { return true; }
213 213
        /// Inequality operator
214 214

	
215 215
        /// Inequality operator.
216 216
        bool operator!=(Edge) const { return true; }
217 217

	
218 218
        /// Artificial ordering operator.
219 219

	
220 220
        /// Artificial ordering operator.
221 221
        ///
222 222
        /// \note This operator only has to define some strict ordering of
223 223
        /// the edges; this order has nothing to do with the iteration
224 224
        /// ordering of the edges.
225 225
        bool operator<(Edge) const { return false; }
226 226
      };
227 227

	
228 228
      /// Iterator class for the edges.
229 229

	
230 230
      /// This iterator goes through each edge of the graph.
231
      /// Its usage is quite simple, for example you can count the number
231
      /// Its usage is quite simple, for example, you can count the number
232 232
      /// of edges in a graph \c g of type \c %Graph as follows:
233 233
      ///\code
234 234
      /// int count=0;
235 235
      /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
236 236
      ///\endcode
237 237
      class EdgeIt : public Edge {
238 238
      public:
239 239
        /// Default constructor
240 240

	
241 241
        /// Default constructor.
242 242
        /// \warning It sets the iterator to an undefined value.
243 243
        EdgeIt() { }
244 244
        /// Copy constructor.
245 245

	
246 246
        /// Copy constructor.
247 247
        ///
248 248
        EdgeIt(const EdgeIt& e) : Edge(e) { }
249 249
        /// %Invalid constructor \& conversion.
250 250

	
251 251
        /// Initializes the iterator to be invalid.
252 252
        /// \sa Invalid for more details.
253 253
        EdgeIt(Invalid) { }
254 254
        /// Sets the iterator to the first edge.
255 255

	
256 256
        /// Sets the iterator to the first edge of the given graph.
257 257
        ///
258 258
        explicit EdgeIt(const Graph&) { }
259 259
        /// Sets the iterator to the given edge.
260 260

	
261 261
        /// Sets the iterator to the given edge of the given graph.
262 262
        ///
263 263
        EdgeIt(const Graph&, const Edge&) { }
264 264
        /// Next edge
265 265

	
266 266
        /// Assign the iterator to the next edge.
267 267
        ///
268 268
        EdgeIt& operator++() { return *this; }
269 269
      };
270 270

	
271 271
      /// Iterator class for the incident edges of a node.
272 272

	
273 273
      /// This iterator goes trough the incident undirected edges
274 274
      /// of a certain node of a graph.
275
      /// Its usage is quite simple, for example you can compute the
275
      /// Its usage is quite simple, for example, you can compute the
276 276
      /// degree (i.e. the number of incident edges) of a node \c n
277 277
      /// in a graph \c g of type \c %Graph as follows.
278 278
      ///
279 279
      ///\code
280 280
      /// int count=0;
281 281
      /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
282 282
      ///\endcode
283 283
      ///
284 284
      /// \warning Loop edges will be iterated twice.
285 285
      class IncEdgeIt : public Edge {
286 286
      public:
287 287
        /// Default constructor
288 288

	
289 289
        /// Default constructor.
290 290
        /// \warning It sets the iterator to an undefined value.
291 291
        IncEdgeIt() { }
292 292
        /// Copy constructor.
293 293

	
294 294
        /// Copy constructor.
295 295
        ///
296 296
        IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
297 297
        /// %Invalid constructor \& conversion.
298 298

	
299 299
        /// Initializes the iterator to be invalid.
300 300
        /// \sa Invalid for more details.
301 301
        IncEdgeIt(Invalid) { }
302 302
        /// Sets the iterator to the first incident edge.
303 303

	
304 304
        /// Sets the iterator to the first incident edge of the given node.
305 305
        ///
306 306
        IncEdgeIt(const Graph&, const Node&) { }
307 307
        /// Sets the iterator to the given edge.
308 308

	
309 309
        /// Sets the iterator to the given edge of the given graph.
310 310
        ///
311 311
        IncEdgeIt(const Graph&, const Edge&) { }
312 312
        /// Next incident edge
313 313

	
314 314
        /// Assign the iterator to the next incident edge
315 315
        /// of the corresponding node.
316 316
        IncEdgeIt& operator++() { return *this; }
317 317
      };
318 318

	
319 319
      /// The arc type of the graph
320 320

	
321 321
      /// This class identifies a directed arc of the graph. It also serves
322 322
      /// as a base class of the arc iterators,
323 323
      /// thus they will convert to this type.
324 324
      class Arc {
325 325
      public:
326 326
        /// Default constructor
327 327

	
328 328
        /// Default constructor.
329 329
        /// \warning It sets the object to an undefined value.
330 330
        Arc() { }
331 331
        /// Copy constructor.
332 332

	
333 333
        /// Copy constructor.
334 334
        ///
335 335
        Arc(const Arc&) { }
336 336
        /// %Invalid constructor \& conversion.
337 337

	
338 338
        /// Initializes the object to be invalid.
339 339
        /// \sa Invalid for more details.
340 340
        Arc(Invalid) { }
341 341
        /// Equality operator
342 342

	
343 343
        /// Equality operator.
344 344
        ///
345 345
        /// Two iterators are equal if and only if they point to the
346 346
        /// same object or both are \c INVALID.
347 347
        bool operator==(Arc) const { return true; }
348 348
        /// Inequality operator
349 349

	
350 350
        /// Inequality operator.
351 351
        bool operator!=(Arc) const { return true; }
352 352

	
353 353
        /// Artificial ordering operator.
354 354

	
355 355
        /// Artificial ordering operator.
356 356
        ///
357 357
        /// \note This operator only has to define some strict ordering of
358 358
        /// the arcs; this order has nothing to do with the iteration
359 359
        /// ordering of the arcs.
360 360
        bool operator<(Arc) const { return false; }
361 361

	
362 362
        /// Converison to \c Edge
363 363
        
364 364
        /// Converison to \c Edge.
365 365
        ///
366 366
        operator Edge() const { return Edge(); }
367 367
      };
368 368

	
369 369
      /// Iterator class for the arcs.
370 370

	
371 371
      /// This iterator goes through each directed arc of the graph.
372
      /// Its usage is quite simple, for example you can count the number
372
      /// Its usage is quite simple, for example, you can count the number
373 373
      /// of arcs in a graph \c g of type \c %Graph as follows:
374 374
      ///\code
375 375
      /// int count=0;
376 376
      /// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count;
377 377
      ///\endcode
378 378
      class ArcIt : public Arc {
379 379
      public:
380 380
        /// Default constructor
381 381

	
382 382
        /// Default constructor.
383 383
        /// \warning It sets the iterator to an undefined value.
384 384
        ArcIt() { }
385 385
        /// Copy constructor.
386 386

	
387 387
        /// Copy constructor.
388 388
        ///
389 389
        ArcIt(const ArcIt& e) : Arc(e) { }
390 390
        /// %Invalid constructor \& conversion.
391 391

	
392 392
        /// Initializes the iterator to be invalid.
393 393
        /// \sa Invalid for more details.
394 394
        ArcIt(Invalid) { }
395 395
        /// Sets the iterator to the first arc.
396 396

	
397 397
        /// Sets the iterator to the first arc of the given graph.
398 398
        ///
399 399
        explicit ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
400 400
        /// Sets the iterator to the given arc.
401 401

	
402 402
        /// Sets the iterator to the given arc of the given graph.
403 403
        ///
404 404
        ArcIt(const Graph&, const Arc&) { }
405 405
        /// Next arc
406 406

	
407 407
        /// Assign the iterator to the next arc.
408 408
        ///
409 409
        ArcIt& operator++() { return *this; }
410 410
      };
411 411

	
412 412
      /// Iterator class for the outgoing arcs of a node.
413 413

	
414 414
      /// This iterator goes trough the \e outgoing directed arcs of a
415 415
      /// certain node of a graph.
416
      /// Its usage is quite simple, for example you can count the number
416
      /// Its usage is quite simple, for example, you can count the number
417 417
      /// of outgoing arcs of a node \c n
418 418
      /// in a graph \c g of type \c %Graph as follows.
419 419
      ///\code
420 420
      /// int count=0;
421 421
      /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
422 422
      ///\endcode
423 423
      class OutArcIt : public Arc {
424 424
      public:
425 425
        /// Default constructor
426 426

	
427 427
        /// Default constructor.
428 428
        /// \warning It sets the iterator to an undefined value.
429 429
        OutArcIt() { }
430 430
        /// Copy constructor.
431 431

	
432 432
        /// Copy constructor.
433 433
        ///
434 434
        OutArcIt(const OutArcIt& e) : Arc(e) { }
435 435
        /// %Invalid constructor \& conversion.
436 436

	
437 437
        /// Initializes the iterator to be invalid.
438 438
        /// \sa Invalid for more details.
439 439
        OutArcIt(Invalid) { }
440 440
        /// Sets the iterator to the first outgoing arc.
441 441

	
442 442
        /// Sets the iterator to the first outgoing arc of the given node.
443 443
        ///
444 444
        OutArcIt(const Graph& n, const Node& g) {
445 445
          ignore_unused_variable_warning(n);
446 446
          ignore_unused_variable_warning(g);
447 447
        }
448 448
        /// Sets the iterator to the given arc.
449 449

	
450 450
        /// Sets the iterator to the given arc of the given graph.
451 451
        ///
452 452
        OutArcIt(const Graph&, const Arc&) { }
453 453
        /// Next outgoing arc
454 454

	
455 455
        /// Assign the iterator to the next
456 456
        /// outgoing arc of the corresponding node.
457 457
        OutArcIt& operator++() { return *this; }
458 458
      };
459 459

	
460 460
      /// Iterator class for the incoming arcs of a node.
461 461

	
462 462
      /// This iterator goes trough the \e incoming directed arcs of a
463 463
      /// certain node of a graph.
464
      /// Its usage is quite simple, for example you can count the number
464
      /// Its usage is quite simple, for example, you can count the number
465 465
      /// of incoming arcs of a node \c n
466 466
      /// in a graph \c g of type \c %Graph as follows.
467 467
      ///\code
468 468
      /// int count=0;
469 469
      /// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
470 470
      ///\endcode
471 471
      class InArcIt : public Arc {
472 472
      public:
473 473
        /// Default constructor
474 474

	
475 475
        /// Default constructor.
476 476
        /// \warning It sets the iterator to an undefined value.
477 477
        InArcIt() { }
478 478
        /// Copy constructor.
479 479

	
480 480
        /// Copy constructor.
481 481
        ///
482 482
        InArcIt(const InArcIt& e) : Arc(e) { }
483 483
        /// %Invalid constructor \& conversion.
484 484

	
485 485
        /// Initializes the iterator to be invalid.
486 486
        /// \sa Invalid for more details.
487 487
        InArcIt(Invalid) { }
488 488
        /// Sets the iterator to the first incoming arc.
489 489

	
490 490
        /// Sets the iterator to the first incoming arc of the given node.
491 491
        ///
492 492
        InArcIt(const Graph& g, const Node& n) {
493 493
          ignore_unused_variable_warning(n);
494 494
          ignore_unused_variable_warning(g);
495 495
        }
496 496
        /// Sets the iterator to the given arc.
497 497

	
498 498
        /// Sets the iterator to the given arc of the given graph.
499 499
        ///
500 500
        InArcIt(const Graph&, const Arc&) { }
501 501
        /// Next incoming arc
502 502

	
503 503
        /// Assign the iterator to the next
504 504
        /// incoming arc of the corresponding node.
505 505
        InArcIt& operator++() { return *this; }
506 506
      };
507 507

	
508 508
      /// \brief Standard graph map type for the nodes.
509 509
      ///
510 510
      /// Standard graph map type for the nodes.
511 511
      /// It conforms to the ReferenceMap concept.
512 512
      template<class T>
513 513
      class NodeMap : public ReferenceMap<Node, T, T&, const T&>
514 514
      {
515 515
      public:
516 516

	
517 517
        /// Constructor
518 518
        explicit NodeMap(const Graph&) { }
519 519
        /// Constructor with given initial value
520 520
        NodeMap(const Graph&, T) { }
521 521

	
522 522
      private:
523 523
        ///Copy constructor
524 524
        NodeMap(const NodeMap& nm) :
525 525
          ReferenceMap<Node, T, T&, const T&>(nm) { }
526 526
        ///Assignment operator
527 527
        template <typename CMap>
528 528
        NodeMap& operator=(const CMap&) {
529 529
          checkConcept<ReadMap<Node, T>, CMap>();
530 530
          return *this;
531 531
        }
532 532
      };
533 533

	
534 534
      /// \brief Standard graph map type for the arcs.
535 535
      ///
536 536
      /// Standard graph map type for the arcs.
537 537
      /// It conforms to the ReferenceMap concept.
538 538
      template<class T>
539 539
      class ArcMap : public ReferenceMap<Arc, T, T&, const T&>
540 540
      {
541 541
      public:
542 542

	
543 543
        /// Constructor
544 544
        explicit ArcMap(const Graph&) { }
545 545
        /// Constructor with given initial value
546 546
        ArcMap(const Graph&, T) { }
547 547

	
548 548
      private:
549 549
        ///Copy constructor
550 550
        ArcMap(const ArcMap& em) :
551 551
          ReferenceMap<Arc, T, T&, const T&>(em) { }
552 552
        ///Assignment operator
553 553
        template <typename CMap>
554 554
        ArcMap& operator=(const CMap&) {
555 555
          checkConcept<ReadMap<Arc, T>, CMap>();
556 556
          return *this;
557 557
        }
558 558
      };
559 559

	
560 560
      /// \brief Standard graph map type for the edges.
561 561
      ///
562 562
      /// Standard graph map type for the edges.
563 563
      /// It conforms to the ReferenceMap concept.
564 564
      template<class T>
565 565
      class EdgeMap : public ReferenceMap<Edge, T, T&, const T&>
566 566
      {
567 567
      public:
568 568

	
569 569
        /// Constructor
570 570
        explicit EdgeMap(const Graph&) { }
571 571
        /// Constructor with given initial value
572 572
        EdgeMap(const Graph&, T) { }
573 573

	
574 574
      private:
575 575
        ///Copy constructor
576 576
        EdgeMap(const EdgeMap& em) :
577 577
          ReferenceMap<Edge, T, T&, const T&>(em) {}
578 578
        ///Assignment operator
579 579
        template <typename CMap>
580 580
        EdgeMap& operator=(const CMap&) {
581 581
          checkConcept<ReadMap<Edge, T>, CMap>();
582 582
          return *this;
583 583
        }
584 584
      };
585 585

	
586 586
      /// \brief The first node of the edge.
587 587
      ///
588 588
      /// Returns the first node of the given edge.
589 589
      ///
590
      /// Edges don't have source and target nodes, however methods
590
      /// Edges don't have source and target nodes, however, methods
591 591
      /// u() and v() are used to query the two end-nodes of an edge.
592 592
      /// The orientation of an edge that arises this way is called
593 593
      /// the inherent direction, it is used to define the default
594 594
      /// direction for the corresponding arcs.
595 595
      /// \sa v()
596 596
      /// \sa direction()
597 597
      Node u(Edge) const { return INVALID; }
598 598

	
599 599
      /// \brief The second node of the edge.
600 600
      ///
601 601
      /// Returns the second node of the given edge.
602 602
      ///
603
      /// Edges don't have source and target nodes, however methods
603
      /// Edges don't have source and target nodes, however, methods
604 604
      /// u() and v() are used to query the two end-nodes of an edge.
605 605
      /// The orientation of an edge that arises this way is called
606 606
      /// the inherent direction, it is used to define the default
607 607
      /// direction for the corresponding arcs.
608 608
      /// \sa u()
609 609
      /// \sa direction()
610 610
      Node v(Edge) const { return INVALID; }
611 611

	
612 612
      /// \brief The source node of the arc.
613 613
      ///
614 614
      /// Returns the source node of the given arc.
615 615
      Node source(Arc) const { return INVALID; }
616 616

	
617 617
      /// \brief The target node of the arc.
618 618
      ///
619 619
      /// Returns the target node of the given arc.
620 620
      Node target(Arc) const { return INVALID; }
621 621

	
622 622
      /// \brief The ID of the node.
623 623
      ///
624 624
      /// Returns the ID of the given node.
625 625
      int id(Node) const { return -1; }
626 626

	
627 627
      /// \brief The ID of the edge.
628 628
      ///
629 629
      /// Returns the ID of the given edge.
630 630
      int id(Edge) const { return -1; }
631 631

	
632 632
      /// \brief The ID of the arc.
633 633
      ///
634 634
      /// Returns the ID of the given arc.
635 635
      int id(Arc) const { return -1; }
636 636

	
637 637
      /// \brief The node with the given ID.
638 638
      ///
639 639
      /// Returns the node with the given ID.
640 640
      /// \pre The argument should be a valid node ID in the graph.
641 641
      Node nodeFromId(int) const { return INVALID; }
642 642

	
643 643
      /// \brief The edge with the given ID.
644 644
      ///
645 645
      /// Returns the edge with the given ID.
646 646
      /// \pre The argument should be a valid edge ID in the graph.
647 647
      Edge edgeFromId(int) const { return INVALID; }
648 648

	
649 649
      /// \brief The arc with the given ID.
650 650
      ///
651 651
      /// Returns the arc with the given ID.
652 652
      /// \pre The argument should be a valid arc ID in the graph.
653 653
      Arc arcFromId(int) const { return INVALID; }
654 654

	
655 655
      /// \brief An upper bound on the node IDs.
656 656
      ///
657 657
      /// Returns an upper bound on the node IDs.
658 658
      int maxNodeId() const { return -1; }
659 659

	
660 660
      /// \brief An upper bound on the edge IDs.
661 661
      ///
662 662
      /// Returns an upper bound on the edge IDs.
663 663
      int maxEdgeId() const { return -1; }
664 664

	
665 665
      /// \brief An upper bound on the arc IDs.
666 666
      ///
667 667
      /// Returns an upper bound on the arc IDs.
668 668
      int maxArcId() const { return -1; }
669 669

	
670 670
      /// \brief The direction of the arc.
671 671
      ///
672 672
      /// Returns \c true if the direction of the given arc is the same as
673 673
      /// the inherent orientation of the represented edge.
674 674
      bool direction(Arc) const { return true; }
675 675

	
676 676
      /// \brief Direct the edge.
677 677
      ///
678 678
      /// Direct the given edge. The returned arc
679 679
      /// represents the given edge and its direction comes
680 680
      /// from the bool parameter. If it is \c true, then the direction
681 681
      /// of the arc is the same as the inherent orientation of the edge.
682 682
      Arc direct(Edge, bool) const {
683 683
        return INVALID;
684 684
      }
685 685

	
686 686
      /// \brief Direct the edge.
687 687
      ///
688 688
      /// Direct the given edge. The returned arc represents the given
689 689
      /// edge and its source node is the given node.
690 690
      Arc direct(Edge, Node) const {
691 691
        return INVALID;
692 692
      }
693 693

	
694 694
      /// \brief The oppositely directed arc.
695 695
      ///
696 696
      /// Returns the oppositely directed arc representing the same edge.
697 697
      Arc oppositeArc(Arc) const { return INVALID; }
698 698

	
699 699
      /// \brief The opposite node on the edge.
700 700
      ///
701 701
      /// Returns the opposite node on the given edge.
702 702
      Node oppositeNode(Node, Edge) const { return INVALID; }
703 703

	
704 704
      void first(Node&) const {}
705 705
      void next(Node&) const {}
706 706

	
707 707
      void first(Edge&) const {}
708 708
      void next(Edge&) const {}
709 709

	
710 710
      void first(Arc&) const {}
711 711
      void next(Arc&) const {}
712 712

	
713 713
      void firstOut(Arc&, Node) const {}
714 714
      void nextOut(Arc&) const {}
715 715

	
716 716
      void firstIn(Arc&, Node) const {}
717 717
      void nextIn(Arc&) const {}
718 718

	
719 719
      void firstInc(Edge &, bool &, const Node &) const {}
720 720
      void nextInc(Edge &, bool &) const {}
721 721

	
722 722
      // The second parameter is dummy.
723 723
      Node fromId(int, Node) const { return INVALID; }
724 724
      // The second parameter is dummy.
725 725
      Edge fromId(int, Edge) const { return INVALID; }
726 726
      // The second parameter is dummy.
727 727
      Arc fromId(int, Arc) const { return INVALID; }
728 728

	
729 729
      // Dummy parameter.
730 730
      int maxId(Node) const { return -1; }
731 731
      // Dummy parameter.
732 732
      int maxId(Edge) const { return -1; }
733 733
      // Dummy parameter.
734 734
      int maxId(Arc) const { return -1; }
735 735

	
736 736
      /// \brief The base node of the iterator.
737 737
      ///
738 738
      /// Returns the base node of the given incident edge iterator.
739 739
      Node baseNode(IncEdgeIt) const { return INVALID; }
740 740

	
741 741
      /// \brief The running node of the iterator.
742 742
      ///
743 743
      /// Returns the running node of the given incident edge iterator.
744 744
      Node runningNode(IncEdgeIt) const { return INVALID; }
745 745

	
746 746
      /// \brief The base node of the iterator.
747 747
      ///
748 748
      /// Returns the base node of the given outgoing arc iterator
749 749
      /// (i.e. the source node of the corresponding arc).
750 750
      Node baseNode(OutArcIt) const { return INVALID; }
751 751

	
752 752
      /// \brief The running node of the iterator.
753 753
      ///
754 754
      /// Returns the running node of the given outgoing arc iterator
755 755
      /// (i.e. the target node of the corresponding arc).
756 756
      Node runningNode(OutArcIt) const { return INVALID; }
757 757

	
758 758
      /// \brief The base node of the iterator.
759 759
      ///
760 760
      /// Returns the base node of the given incomming arc iterator
761 761
      /// (i.e. the target node of the corresponding arc).
762 762
      Node baseNode(InArcIt) const { return INVALID; }
763 763

	
764 764
      /// \brief The running node of the iterator.
765 765
      ///
766 766
      /// Returns the running node of the given incomming arc iterator
767 767
      /// (i.e. the source node of the corresponding arc).
768 768
      Node runningNode(InArcIt) const { return INVALID; }
769 769

	
770 770
      template <typename _Graph>
771 771
      struct Constraints {
772 772
        void constraints() {
773 773
          checkConcept<BaseGraphComponent, _Graph>();
774 774
          checkConcept<IterableGraphComponent<>, _Graph>();
775 775
          checkConcept<IDableGraphComponent<>, _Graph>();
776 776
          checkConcept<MappableGraphComponent<>, _Graph>();
777 777
        }
778 778
      };
779 779

	
780 780
    };
781 781

	
782 782
  }
783 783

	
784 784
}
785 785

	
786 786
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup graph_concepts
20 20
///\file
21
///\brief The concept of graph components.
21
///\brief The concepts of graph components.
22 22

	
23 23
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H
24 24
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H
25 25

	
26 26
#include <lemon/core.h>
27 27
#include <lemon/concepts/maps.h>
28 28

	
29 29
#include <lemon/bits/alteration_notifier.h>
30 30

	
31 31
namespace lemon {
32 32
  namespace concepts {
33 33

	
34 34
    /// \brief Concept class for \c Node, \c Arc and \c Edge types.
35 35
    ///
36 36
    /// This class describes the concept of \c Node, \c Arc and \c Edge
37 37
    /// subtypes of digraph and graph types.
38 38
    ///
39 39
    /// \note This class is a template class so that we can use it to
40 40
    /// create graph skeleton classes. The reason for this is that \c Node
41 41
    /// and \c Arc (or \c Edge) types should \e not derive from the same 
42 42
    /// base class. For \c Node you should instantiate it with character
43 43
    /// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'.
44 44
#ifndef DOXYGEN
45 45
    template <char sel = '0'>
46 46
#endif
47 47
    class GraphItem {
48 48
    public:
49 49
      /// \brief Default constructor.
50 50
      ///
51 51
      /// Default constructor.
52 52
      /// \warning The default constructor is not required to set
53 53
      /// the item to some well-defined value. So you should consider it
54 54
      /// as uninitialized.
55 55
      GraphItem() {}
56 56

	
57 57
      /// \brief Copy constructor.
58 58
      ///
59 59
      /// Copy constructor.
60 60
      GraphItem(const GraphItem &) {}
61 61

	
62 62
      /// \brief Constructor for conversion from \c INVALID.
63 63
      ///
64 64
      /// Constructor for conversion from \c INVALID.
65 65
      /// It initializes the item to be invalid.
66 66
      /// \sa Invalid for more details.
67 67
      GraphItem(Invalid) {}
68 68

	
69 69
      /// \brief Assignment operator.
70 70
      ///
71 71
      /// Assignment operator for the item.
72 72
      GraphItem& operator=(const GraphItem&) { return *this; }
73 73

	
74 74
      /// \brief Assignment operator for INVALID.
75 75
      ///
76 76
      /// This operator makes the item invalid.
77 77
      GraphItem& operator=(Invalid) { return *this; }
78 78

	
79 79
      /// \brief Equality operator.
80 80
      ///
81 81
      /// Equality operator.
82 82
      bool operator==(const GraphItem&) const { return false; }
83 83

	
84 84
      /// \brief Inequality operator.
85 85
      ///
86 86
      /// Inequality operator.
87 87
      bool operator!=(const GraphItem&) const { return false; }
88 88

	
89 89
      /// \brief Ordering operator.
90 90
      ///
91 91
      /// This operator defines an ordering of the items.
92 92
      /// It makes possible to use graph item types as key types in 
93 93
      /// associative containers (e.g. \c std::map).
94 94
      ///
95 95
      /// \note This operator only has to define some strict ordering of
96 96
      /// the items; this order has nothing to do with the iteration
97 97
      /// ordering of the items.
98 98
      bool operator<(const GraphItem&) const { return false; }
99 99

	
100 100
      template<typename _GraphItem>
101 101
      struct Constraints {
102 102
        void constraints() {
103 103
          _GraphItem i1;
104 104
          i1=INVALID;
105 105
          _GraphItem i2 = i1;
106 106
          _GraphItem i3 = INVALID;
107 107

	
108 108
          i1 = i2 = i3;
109 109

	
110 110
          bool b;
111 111
          b = (ia == ib) && (ia != ib);
112 112
          b = (ia == INVALID) && (ib != INVALID);
113 113
          b = (ia < ib);
114 114
        }
115 115

	
116 116
        const _GraphItem &ia;
117 117
        const _GraphItem &ib;
118 118
      };
119 119
    };
120 120

	
121 121
    /// \brief Base skeleton class for directed graphs.
122 122
    ///
123 123
    /// This class describes the base interface of directed graph types.
124 124
    /// All digraph %concepts have to conform to this class.
125 125
    /// It just provides types for nodes and arcs and functions 
126 126
    /// to get the source and the target nodes of arcs.
127 127
    class BaseDigraphComponent {
128 128
    public:
129 129

	
130 130
      typedef BaseDigraphComponent Digraph;
131 131

	
132 132
      /// \brief Node class of the digraph.
133 133
      ///
134 134
      /// This class represents the nodes of the digraph.
135 135
      typedef GraphItem<'n'> Node;
136 136

	
137 137
      /// \brief Arc class of the digraph.
138 138
      ///
139 139
      /// This class represents the arcs of the digraph.
140 140
      typedef GraphItem<'a'> Arc;
141 141

	
142 142
      /// \brief Return the source node of an arc.
143 143
      ///
144 144
      /// This function returns the source node of an arc.
145 145
      Node source(const Arc&) const { return INVALID; }
146 146

	
147 147
      /// \brief Return the target node of an arc.
148 148
      ///
149 149
      /// This function returns the target node of an arc.
150 150
      Node target(const Arc&) const { return INVALID; }
151 151

	
152 152
      /// \brief Return the opposite node on the given arc.
153 153
      ///
154 154
      /// This function returns the opposite node on the given arc.
155 155
      Node oppositeNode(const Node&, const Arc&) const {
156 156
        return INVALID;
157 157
      }
158 158

	
159 159
      template <typename _Digraph>
160 160
      struct Constraints {
161 161
        typedef typename _Digraph::Node Node;
162 162
        typedef typename _Digraph::Arc Arc;
163 163

	
164 164
        void constraints() {
165 165
          checkConcept<GraphItem<'n'>, Node>();
166 166
          checkConcept<GraphItem<'a'>, Arc>();
167 167
          {
168 168
            Node n;
169 169
            Arc e(INVALID);
170 170
            n = digraph.source(e);
171 171
            n = digraph.target(e);
172 172
            n = digraph.oppositeNode(n, e);
173 173
          }
174 174
        }
175 175

	
176 176
        const _Digraph& digraph;
177 177
      };
178 178
    };
179 179

	
180 180
    /// \brief Base skeleton class for undirected graphs.
181 181
    ///
182 182
    /// This class describes the base interface of undirected graph types.
183 183
    /// All graph %concepts have to conform to this class.
184 184
    /// It extends the interface of \ref BaseDigraphComponent with an
185 185
    /// \c Edge type and functions to get the end nodes of edges,
186 186
    /// to convert from arcs to edges and to get both direction of edges.
187 187
    class BaseGraphComponent : public BaseDigraphComponent {
188 188
    public:
189 189

	
190 190
      typedef BaseGraphComponent Graph;
191 191

	
192 192
      typedef BaseDigraphComponent::Node Node;
193 193
      typedef BaseDigraphComponent::Arc Arc;
194 194

	
195 195
      /// \brief Undirected edge class of the graph.
196 196
      ///
197 197
      /// This class represents the undirected edges of the graph.
198 198
      /// Undirected graphs can be used as directed graphs, each edge is
199 199
      /// represented by two opposite directed arcs.
200 200
      class Edge : public GraphItem<'e'> {
201 201
        typedef GraphItem<'e'> Parent;
202 202

	
203 203
      public:
204 204
        /// \brief Default constructor.
205 205
        ///
206 206
        /// Default constructor.
207 207
        /// \warning The default constructor is not required to set
208 208
        /// the item to some well-defined value. So you should consider it
209 209
        /// as uninitialized.
210 210
        Edge() {}
211 211

	
212 212
        /// \brief Copy constructor.
213 213
        ///
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup concept
20 20
///\file
21
///\brief Classes for representing paths in digraphs.
21
///\brief The concept of paths
22 22
///
23 23

	
24 24
#ifndef LEMON_CONCEPTS_PATH_H
25 25
#define LEMON_CONCEPTS_PATH_H
26 26

	
27 27
#include <lemon/core.h>
28 28
#include <lemon/concept_check.h>
29 29

	
30 30
namespace lemon {
31 31
  namespace concepts {
32 32

	
33 33
    /// \addtogroup concept
34 34
    /// @{
35 35

	
36 36
    /// \brief A skeleton structure for representing directed paths in
37 37
    /// a digraph.
38 38
    ///
39 39
    /// A skeleton structure for representing directed paths in a
40 40
    /// digraph.
41
    /// In a sense, a path can be treated as a list of arcs.
42
    /// LEMON path types just store this list. As a consequence, they cannot
43
    /// enumerate the nodes on the path directly and a zero length path
44
    /// cannot store its source node.
45
    ///
46
    /// The arcs of a path should be stored in the order of their directions,
47
    /// i.e. the target node of each arc should be the same as the source
48
    /// node of the next arc. This consistency could be checked using
49
    /// \ref checkPath().
50
    /// The source and target nodes of a (consistent) path can be obtained
51
    /// using \ref pathSource() and \ref pathTarget().
52
    ///
53
    /// A path can be constructed from another path of any type using the
54
    /// copy constructor or the assignment operator.
55
    ///
41 56
    /// \tparam GR The digraph type in which the path is.
42
    ///
43
    /// In a sense, the path can be treated as a list of arcs. The
44
    /// lemon path type stores just this list. As a consequence it
45
    /// cannot enumerate the nodes in the path and the zero length
46
    /// paths cannot store the source.
47
    ///
48 57
    template <typename GR>
49 58
    class Path {
50 59
    public:
51 60

	
52 61
      /// Type of the underlying digraph.
53 62
      typedef GR Digraph;
54 63
      /// Arc type of the underlying digraph.
55 64
      typedef typename Digraph::Arc Arc;
56 65

	
57 66
      class ArcIt;
58 67

	
59 68
      /// \brief Default constructor
60 69
      Path() {}
61 70

	
62
      /// \brief Template constructor
71
      /// \brief Template copy constructor
63 72
      template <typename CPath>
64 73
      Path(const CPath& cpath) {}
65 74

	
66
      /// \brief Template assigment
75
      /// \brief Template assigment operator
67 76
      template <typename CPath>
68 77
      Path& operator=(const CPath& cpath) {
69 78
        ignore_unused_variable_warning(cpath);
70 79
        return *this;
71 80
      }
72 81

	
73
      /// Length of the path ie. the number of arcs in the path.
82
      /// Length of the path, i.e. the number of arcs on the path.
74 83
      int length() const { return 0;}
75 84

	
76 85
      /// Returns whether the path is empty.
77 86
      bool empty() const { return true;}
78 87

	
79 88
      /// Resets the path to an empty path.
80 89
      void clear() {}
81 90

	
82
      /// \brief LEMON style iterator for path arcs
91
      /// \brief LEMON style iterator for enumerating the arcs of a path.
83 92
      ///
84
      /// This class is used to iterate on the arcs of the paths.
93
      /// LEMON style iterator class for enumerating the arcs of a path.
85 94
      class ArcIt {
86 95
      public:
87 96
        /// Default constructor
88 97
        ArcIt() {}
89 98
        /// Invalid constructor
90 99
        ArcIt(Invalid) {}
91
        /// Constructor for first arc
100
        /// Sets the iterator to the first arc of the given path
92 101
        ArcIt(const Path &) {}
93 102

	
94
        /// Conversion to Arc
103
        /// Conversion to \c Arc
95 104
        operator Arc() const { return INVALID; }
96 105

	
97 106
        /// Next arc
98 107
        ArcIt& operator++() {return *this;}
99 108

	
100 109
        /// Comparison operator
101 110
        bool operator==(const ArcIt&) const {return true;}
102 111
        /// Comparison operator
103 112
        bool operator!=(const ArcIt&) const {return true;}
104 113
        /// Comparison operator
105 114
        bool operator<(const ArcIt&) const {return false;}
106 115

	
107 116
      };
108 117

	
109 118
      template <typename _Path>
110 119
      struct Constraints {
111 120
        void constraints() {
112 121
          Path<Digraph> pc;
113 122
          _Path p, pp(pc);
114 123
          int l = p.length();
115 124
          int e = p.empty();
116 125
          p.clear();
117 126

	
118 127
          p = pc;
119 128

	
120 129
          typename _Path::ArcIt id, ii(INVALID), i(p);
121 130

	
122 131
          ++i;
123 132
          typename Digraph::Arc ed = i;
124 133

	
125 134
          e = (i == ii);
126 135
          e = (i != ii);
127 136
          e = (i < ii);
128 137

	
129 138
          ignore_unused_variable_warning(l);
130 139
          ignore_unused_variable_warning(pp);
131 140
          ignore_unused_variable_warning(e);
132 141
          ignore_unused_variable_warning(id);
133 142
          ignore_unused_variable_warning(ii);
134 143
          ignore_unused_variable_warning(ed);
135 144
        }
136 145
      };
137 146

	
138 147
    };
139 148

	
140 149
    namespace _path_bits {
141 150

	
142 151
      template <typename _Digraph, typename _Path, typename RevPathTag = void>
143 152
      struct PathDumperConstraints {
144 153
        void constraints() {
145 154
          int l = p.length();
146 155
          int e = p.empty();
147 156

	
148 157
          typename _Path::ArcIt id, i(p);
149 158

	
150 159
          ++i;
151 160
          typename _Digraph::Arc ed = i;
152 161

	
153 162
          e = (i == INVALID);
154 163
          e = (i != INVALID);
155 164

	
156 165
          ignore_unused_variable_warning(l);
157 166
          ignore_unused_variable_warning(e);
158 167
          ignore_unused_variable_warning(id);
159 168
          ignore_unused_variable_warning(ed);
160 169
        }
161 170
        _Path& p;
162 171
      };
163 172

	
164 173
      template <typename _Digraph, typename _Path>
165 174
      struct PathDumperConstraints<
166 175
        _Digraph, _Path,
167 176
        typename enable_if<typename _Path::RevPathTag, void>::type
168 177
      > {
169 178
        void constraints() {
170 179
          int l = p.length();
171 180
          int e = p.empty();
172 181

	
173 182
          typename _Path::RevArcIt id, i(p);
174 183

	
175 184
          ++i;
176 185
          typename _Digraph::Arc ed = i;
177 186

	
178 187
          e = (i == INVALID);
179 188
          e = (i != INVALID);
180 189

	
181 190
          ignore_unused_variable_warning(l);
182 191
          ignore_unused_variable_warning(e);
183 192
          ignore_unused_variable_warning(id);
184 193
          ignore_unused_variable_warning(ed);
185 194
        }
186 195
        _Path& p;
187 196
      };
188 197

	
189 198
    }
190 199

	
191 200

	
192 201
    /// \brief A skeleton structure for path dumpers.
193 202
    ///
194 203
    /// A skeleton structure for path dumpers. The path dumpers are
195
    /// the generalization of the paths. The path dumpers can
196
    /// enumerate the arcs of the path wheter in forward or in
197
    /// backward order.  In most time these classes are not used
198
    /// directly rather it used to assign a dumped class to a real
199
    /// path type.
204
    /// the generalization of the paths, they can enumerate the arcs
205
    /// of the path either in forward or in backward order.
206
    /// These classes are typically not used directly, they are rather
207
    /// used to be assigned to a real path type.
200 208
    ///
201 209
    /// The main purpose of this concept is that the shortest path
202
    /// algorithms can enumerate easily the arcs in reverse order.
203
    /// If we would like to give back a real path from these
204
    /// algorithms then we should create a temporarly path object. In
205
    /// LEMON such algorithms gives back a path dumper what can
206
    /// assigned to a real path and the dumpers can be implemented as
210
    /// algorithms can enumerate the arcs easily in reverse order.
211
    /// In LEMON, such algorithms give back a (reverse) path dumper that
212
    /// can be assigned to a real path. The dumpers can be implemented as
207 213
    /// an adaptor class to the predecessor map.
208 214
    ///
209 215
    /// \tparam GR The digraph type in which the path is.
210
    ///
211
    /// The paths can be constructed from any path type by a
212
    /// template constructor or a template assignment operator.
213 216
    template <typename GR>
214 217
    class PathDumper {
215 218
    public:
216 219

	
217 220
      /// Type of the underlying digraph.
218 221
      typedef GR Digraph;
219 222
      /// Arc type of the underlying digraph.
220 223
      typedef typename Digraph::Arc Arc;
221 224

	
222
      /// Length of the path ie. the number of arcs in the path.
225
      /// Length of the path, i.e. the number of arcs on the path.
223 226
      int length() const { return 0;}
224 227

	
225 228
      /// Returns whether the path is empty.
226 229
      bool empty() const { return true;}
227 230

	
228 231
      /// \brief Forward or reverse dumping
229 232
      ///
230
      /// If the RevPathTag is defined and true then reverse dumping
231
      /// is provided in the path dumper. In this case instead of the
232
      /// ArcIt the RevArcIt iterator should be implemented in the
233
      /// dumper.
233
      /// If this tag is defined to be \c True, then reverse dumping
234
      /// is provided in the path dumper. In this case, \c RevArcIt
235
      /// iterator should be implemented instead of \c ArcIt iterator.
234 236
      typedef False RevPathTag;
235 237

	
236
      /// \brief LEMON style iterator for path arcs
238
      /// \brief LEMON style iterator for enumerating the arcs of a path.
237 239
      ///
238
      /// This class is used to iterate on the arcs of the paths.
240
      /// LEMON style iterator class for enumerating the arcs of a path.
239 241
      class ArcIt {
240 242
      public:
241 243
        /// Default constructor
242 244
        ArcIt() {}
243 245
        /// Invalid constructor
244 246
        ArcIt(Invalid) {}
245
        /// Constructor for first arc
247
        /// Sets the iterator to the first arc of the given path
246 248
        ArcIt(const PathDumper&) {}
247 249

	
248
        /// Conversion to Arc
250
        /// Conversion to \c Arc
249 251
        operator Arc() const { return INVALID; }
250 252

	
251 253
        /// Next arc
252 254
        ArcIt& operator++() {return *this;}
253 255

	
254 256
        /// Comparison operator
255 257
        bool operator==(const ArcIt&) const {return true;}
256 258
        /// Comparison operator
257 259
        bool operator!=(const ArcIt&) const {return true;}
258 260
        /// Comparison operator
259 261
        bool operator<(const ArcIt&) const {return false;}
260 262

	
261 263
      };
262 264

	
263
      /// \brief LEMON style iterator for path arcs
265
      /// \brief LEMON style iterator for enumerating the arcs of a path
266
      /// in reverse direction.
264 267
      ///
265
      /// This class is used to iterate on the arcs of the paths in
266
      /// reverse direction.
268
      /// LEMON style iterator class for enumerating the arcs of a path
269
      /// in reverse direction.
267 270
      class RevArcIt {
268 271
      public:
269 272
        /// Default constructor
270 273
        RevArcIt() {}
271 274
        /// Invalid constructor
272 275
        RevArcIt(Invalid) {}
273
        /// Constructor for first arc
276
        /// Sets the iterator to the last arc of the given path
274 277
        RevArcIt(const PathDumper &) {}
275 278

	
276
        /// Conversion to Arc
279
        /// Conversion to \c Arc
277 280
        operator Arc() const { return INVALID; }
278 281

	
279 282
        /// Next arc
280 283
        RevArcIt& operator++() {return *this;}
281 284

	
282 285
        /// Comparison operator
283 286
        bool operator==(const RevArcIt&) const {return true;}
284 287
        /// Comparison operator
285 288
        bool operator!=(const RevArcIt&) const {return true;}
286 289
        /// Comparison operator
287 290
        bool operator<(const RevArcIt&) const {return false;}
288 291

	
289 292
      };
290 293

	
291 294
      template <typename _Path>
292 295
      struct Constraints {
293 296
        void constraints() {
294 297
          function_requires<_path_bits::
295 298
            PathDumperConstraints<Digraph, _Path> >();
296 299
        }
297 300
      };
298 301

	
299 302
    };
300 303

	
301 304

	
302 305
    ///@}
303 306
  }
304 307

	
305 308
} // namespace lemon
306 309

	
307 310
#endif
Ignore white space 6 line context
... ...
@@ -23,227 +23,227 @@
23 23
#include <iostream>
24 24

	
25 25
///\ingroup timecount
26 26
///\file
27 27
///\brief Tools for counting steps and events
28 28

	
29 29
namespace lemon
30 30
{
31 31

	
32 32
  template<class P> class _NoSubCounter;
33 33

	
34 34
  template<class P>
35 35
  class _SubCounter
36 36
  {
37 37
    P &_parent;
38 38
    std::string _title;
39 39
    std::ostream &_os;
40 40
    int count;
41 41
  public:
42 42

	
43 43
    typedef _SubCounter<_SubCounter<P> > SubCounter;
44 44
    typedef _NoSubCounter<_SubCounter<P> > NoSubCounter;
45 45

	
46 46
    _SubCounter(P &parent)
47 47
      : _parent(parent), _title(), _os(std::cerr), count(0) {}
48 48
    _SubCounter(P &parent,std::string title,std::ostream &os=std::cerr)
49 49
      : _parent(parent), _title(title), _os(os), count(0) {}
50 50
    _SubCounter(P &parent,const char *title,std::ostream &os=std::cerr)
51 51
      : _parent(parent), _title(title), _os(os), count(0) {}
52 52
    ~_SubCounter() {
53 53
      _os << _title << count <<std::endl;
54 54
      _parent+=count;
55 55
    }
56 56
    _SubCounter &operator++() { count++; return *this;}
57 57
    int operator++(int) { return count++; }
58 58
    _SubCounter &operator--() { count--; return *this;}
59 59
    int operator--(int) { return count--; }
60 60
    _SubCounter &operator+=(int c) { count+=c; return *this;}
61 61
    _SubCounter &operator-=(int c) { count-=c; return *this;}
62 62
    operator int() {return count;}
63 63
  };
64 64

	
65 65
  template<class P>
66 66
  class _NoSubCounter
67 67
  {
68 68
    P &_parent;
69 69
  public:
70 70
    typedef _NoSubCounter<_NoSubCounter<P> > SubCounter;
71 71
    typedef _NoSubCounter<_NoSubCounter<P> > NoSubCounter;
72 72

	
73 73
    _NoSubCounter(P &parent) :_parent(parent) {}
74 74
    _NoSubCounter(P &parent,std::string,std::ostream &)
75 75
      :_parent(parent) {}
76 76
    _NoSubCounter(P &parent,std::string)
77 77
      :_parent(parent) {}
78 78
    _NoSubCounter(P &parent,const char *,std::ostream &)
79 79
      :_parent(parent) {}
80 80
    _NoSubCounter(P &parent,const char *)
81 81
      :_parent(parent) {}
82 82
    ~_NoSubCounter() {}
83 83
    _NoSubCounter &operator++() { ++_parent; return *this;}
84 84
    int operator++(int) { _parent++; return 0;}
85 85
    _NoSubCounter &operator--() { --_parent; return *this;}
86 86
    int operator--(int) { _parent--; return 0;}
87 87
    _NoSubCounter &operator+=(int c) { _parent+=c; return *this;}
88 88
    _NoSubCounter &operator-=(int c) { _parent-=c; return *this;}
89 89
    operator int() {return 0;}
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup timecount
94 94
  /// @{
95 95

	
96 96
  /// A counter class
97 97

	
98 98
  /// This class makes it easier to count certain events (e.g. for debug
99 99
  /// reasons).
100 100
  /// You can increment or decrement the counter using \c operator++,
101 101
  /// \c operator--, \c operator+= and \c operator-=. You can also
102 102
  /// define subcounters for the different phases of the algorithm or
103 103
  /// for different types of operations.
104 104
  /// A report containing the given title and the value of the counter
105 105
  /// is automatically printed on destruction.
106 106
  ///
107 107
  /// The following example shows the usage of counters and subcounters.
108 108
  /// \code
109 109
  /// // Bubble sort
110 110
  /// std::vector<T> v;
111 111
  /// ...
112 112
  /// Counter op("Operations: ");
113 113
  /// Counter::SubCounter as(op, "Assignments: ");
114 114
  /// Counter::SubCounter co(op, "Comparisons: ");
115 115
  /// for (int i = v.size()-1; i > 0; --i) {
116 116
  ///   for (int j = 0; j < i; ++j) {
117 117
  ///     if (v[j] > v[j+1]) {
118 118
  ///       T tmp = v[j];
119 119
  ///       v[j] = v[j+1];
120 120
  ///       v[j+1] = tmp;
121 121
  ///       as += 3;          // three assignments
122 122
  ///     }
123 123
  ///     ++co;               // one comparison
124 124
  ///   }
125 125
  /// }
126 126
  /// \endcode
127 127
  ///
128 128
  /// This code prints out something like that:
129 129
  /// \code
130 130
  /// Comparisons: 45
131 131
  /// Assignments: 57
132 132
  /// Operations: 102
133 133
  /// \endcode
134 134
  ///
135 135
  /// \sa NoCounter
136 136
  class Counter
137 137
  {
138 138
    std::string _title;
139 139
    std::ostream &_os;
140 140
    int count;
141 141
  public:
142 142

	
143 143
    /// SubCounter class
144 144

	
145 145
    /// This class can be used to setup subcounters for a \ref Counter
146 146
    /// to have finer reports. A subcounter provides exactly the same
147 147
    /// operations as the main \ref Counter, but it also increments and
148 148
    /// decrements the value of its parent.
149 149
    /// Subcounters can also have subcounters.
150 150
    ///
151 151
    /// The parent counter must be given as the first parameter of the
152 152
    /// constructor. Apart from that a title and an \c ostream object
153 153
    /// can also be given just like for the main \ref Counter.
154 154
    ///
155 155
    /// A report containing the given title and the value of the
156 156
    /// subcounter is automatically printed on destruction. If you
157 157
    /// would like to turn off this report, use \ref NoSubCounter
158 158
    /// instead.
159 159
    ///
160 160
    /// \sa NoSubCounter
161 161
    typedef _SubCounter<Counter> SubCounter;
162 162

	
163 163
    /// SubCounter class without printing report on destruction
164 164

	
165 165
    /// This class can be used to setup subcounters for a \ref Counter.
166 166
    /// It is the same as \ref SubCounter but it does not print report
167 167
    /// on destruction. (It modifies the value of its parent, so 'No'
168 168
    /// only means 'do not print'.)
169 169
    ///
170 170
    /// Replacing \ref SubCounter "SubCounter"s with \ref NoSubCounter
171 171
    /// "NoSubCounter"s makes it possible to turn off reporting
172 172
    /// subcounter values without actually removing the definitions
173 173
    /// and the increment or decrement operators.
174 174
    ///
175 175
    /// \sa SubCounter
176 176
    typedef _NoSubCounter<Counter> NoSubCounter;
177 177

	
178 178
    /// Constructor.
179 179
    Counter() : _title(), _os(std::cerr), count(0) {}
180 180
    /// Constructor.
181 181
    Counter(std::string title,std::ostream &os=std::cerr)
182 182
      : _title(title), _os(os), count(0) {}
183 183
    /// Constructor.
184 184
    Counter(const char *title,std::ostream &os=std::cerr)
185 185
      : _title(title), _os(os), count(0) {}
186 186
    /// Destructor. Prints the given title and the value of the counter.
187 187
    ~Counter() {
188 188
      _os << _title << count <<std::endl;
189 189
    }
190 190
    ///\e
191 191
    Counter &operator++() { count++; return *this;}
192 192
    ///\e
193 193
    int operator++(int) { return count++;}
194 194
    ///\e
195 195
    Counter &operator--() { count--; return *this;}
196 196
    ///\e
197 197
    int operator--(int) { return count--;}
198 198
    ///\e
199 199
    Counter &operator+=(int c) { count+=c; return *this;}
200 200
    ///\e
201 201
    Counter &operator-=(int c) { count-=c; return *this;}
202 202
    /// Resets the counter to the given value.
203 203

	
204 204
    /// Resets the counter to the given value.
205 205
    /// \note This function does not reset the values of
206 206
    /// \ref SubCounter "SubCounter"s but it resets \ref NoSubCounter
207 207
    /// "NoSubCounter"s along with the main counter.
208 208
    void reset(int c=0) {count=c;}
209 209
    /// Returns the value of the counter.
210 210
    operator int() {return count;}
211 211
  };
212 212

	
213 213
  /// 'Do nothing' version of Counter.
214 214

	
215
  /// This class can be used in the same way as \ref Counter however it
215
  /// This class can be used in the same way as \ref Counter, but it
216 216
  /// does not count at all and does not print report on destruction.
217 217
  ///
218 218
  /// Replacing a \ref Counter with a \ref NoCounter makes it possible
219 219
  /// to turn off all counting and reporting (SubCounters should also
220 220
  /// be replaced with NoSubCounters), so it does not affect the
221 221
  /// efficiency of the program at all.
222 222
  ///
223 223
  /// \sa Counter
224 224
  class NoCounter
225 225
  {
226 226
  public:
227 227
    typedef _NoSubCounter<NoCounter> SubCounter;
228 228
    typedef _NoSubCounter<NoCounter> NoSubCounter;
229 229

	
230 230
    NoCounter() {}
231 231
    NoCounter(std::string,std::ostream &) {}
232 232
    NoCounter(const char *,std::ostream &) {}
233 233
    NoCounter(std::string) {}
234 234
    NoCounter(const char *) {}
235 235
    NoCounter &operator++() { return *this; }
236 236
    int operator++(int) { return 0; }
237 237
    NoCounter &operator--() { return *this; }
238 238
    int operator--(int) { return 0; }
239 239
    NoCounter &operator+=(int) { return *this;}
240 240
    NoCounter &operator-=(int) { return *this;}
241 241
    void reset(int) {}
242 242
    void reset() {}
243 243
    operator int() {return 0;}
244 244
  };
245 245

	
246 246
  ///@}
247 247
}
248 248

	
249 249
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_DFS_H
20 20
#define LEMON_DFS_H
21 21

	
22 22
///\ingroup search
23 23
///\file
24 24
///\brief DFS algorithm.
25 25

	
26 26
#include <lemon/list_graph.h>
27 27
#include <lemon/bits/path_dump.h>
28 28
#include <lemon/core.h>
29 29
#include <lemon/error.h>
30 30
#include <lemon/maps.h>
31 31
#include <lemon/path.h>
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  ///Default traits class of Dfs class.
36 36

	
37 37
  ///Default traits class of Dfs class.
38 38
  ///\tparam GR Digraph type.
39 39
  template<class GR>
40 40
  struct DfsDefaultTraits
41 41
  {
42 42
    ///The type of the digraph the algorithm runs on.
43 43
    typedef GR Digraph;
44 44

	
45 45
    ///\brief The type of the map that stores the predecessor
46 46
    ///arcs of the %DFS paths.
47 47
    ///
48 48
    ///The type of the map that stores the predecessor
49 49
    ///arcs of the %DFS paths.
50 50
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
51 51
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
52 52
    ///Instantiates a \c PredMap.
53 53

	
54 54
    ///This function instantiates a \ref PredMap.
55 55
    ///\param g is the digraph, to which we would like to define the
56 56
    ///\ref PredMap.
57 57
    static PredMap *createPredMap(const Digraph &g)
58 58
    {
59 59
      return new PredMap(g);
60 60
    }
61 61

	
62 62
    ///The type of the map that indicates which nodes are processed.
63 63

	
64 64
    ///The type of the map that indicates which nodes are processed.
65 65
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
66
    ///By default it is a NullMap.
66
    ///By default, it is a NullMap.
67 67
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
68 68
    ///Instantiates a \c ProcessedMap.
69 69

	
70 70
    ///This function instantiates a \ref ProcessedMap.
71 71
    ///\param g is the digraph, to which
72 72
    ///we would like to define the \ref ProcessedMap.
73 73
#ifdef DOXYGEN
74 74
    static ProcessedMap *createProcessedMap(const Digraph &g)
75 75
#else
76 76
    static ProcessedMap *createProcessedMap(const Digraph &)
77 77
#endif
78 78
    {
79 79
      return new ProcessedMap();
80 80
    }
81 81

	
82 82
    ///The type of the map that indicates which nodes are reached.
83 83

	
84 84
    ///The type of the map that indicates which nodes are reached.
85 85
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
86 86
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
87 87
    ///Instantiates a \c ReachedMap.
88 88

	
89 89
    ///This function instantiates a \ref ReachedMap.
90 90
    ///\param g is the digraph, to which
91 91
    ///we would like to define the \ref ReachedMap.
92 92
    static ReachedMap *createReachedMap(const Digraph &g)
93 93
    {
94 94
      return new ReachedMap(g);
95 95
    }
96 96

	
97 97
    ///The type of the map that stores the distances of the nodes.
98 98

	
99 99
    ///The type of the map that stores the distances of the nodes.
100 100
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
101 101
    typedef typename Digraph::template NodeMap<int> DistMap;
102 102
    ///Instantiates a \c DistMap.
103 103

	
104 104
    ///This function instantiates a \ref DistMap.
105 105
    ///\param g is the digraph, to which we would like to define the
106 106
    ///\ref DistMap.
107 107
    static DistMap *createDistMap(const Digraph &g)
108 108
    {
109 109
      return new DistMap(g);
110 110
    }
111 111
  };
112 112

	
113 113
  ///%DFS algorithm class.
114 114

	
115 115
  ///\ingroup search
116 116
  ///This class provides an efficient implementation of the %DFS algorithm.
117 117
  ///
118 118
  ///There is also a \ref dfs() "function-type interface" for the DFS
119 119
  ///algorithm, which is convenient in the simplier cases and it can be
120 120
  ///used easier.
121 121
  ///
122 122
  ///\tparam GR The type of the digraph the algorithm runs on.
123 123
  ///The default type is \ref ListDigraph.
124 124
#ifdef DOXYGEN
125 125
  template <typename GR,
126 126
            typename TR>
127 127
#else
128 128
  template <typename GR=ListDigraph,
129 129
            typename TR=DfsDefaultTraits<GR> >
130 130
#endif
131 131
  class Dfs {
132 132
  public:
133 133

	
134 134
    ///The type of the digraph the algorithm runs on.
135 135
    typedef typename TR::Digraph Digraph;
136 136

	
137 137
    ///\brief The type of the map that stores the predecessor arcs of the
138 138
    ///DFS paths.
139 139
    typedef typename TR::PredMap PredMap;
140 140
    ///The type of the map that stores the distances of the nodes.
141 141
    typedef typename TR::DistMap DistMap;
142 142
    ///The type of the map that indicates which nodes are reached.
143 143
    typedef typename TR::ReachedMap ReachedMap;
144 144
    ///The type of the map that indicates which nodes are processed.
145 145
    typedef typename TR::ProcessedMap ProcessedMap;
146 146
    ///The type of the paths.
147 147
    typedef PredMapPath<Digraph, PredMap> Path;
148 148

	
149 149
    ///The \ref DfsDefaultTraits "traits class" of the algorithm.
150 150
    typedef TR Traits;
151 151

	
152 152
  private:
153 153

	
154 154
    typedef typename Digraph::Node Node;
155 155
    typedef typename Digraph::NodeIt NodeIt;
156 156
    typedef typename Digraph::Arc Arc;
157 157
    typedef typename Digraph::OutArcIt OutArcIt;
158 158

	
159 159
    //Pointer to the underlying digraph.
160 160
    const Digraph *G;
161 161
    //Pointer to the map of predecessor arcs.
162 162
    PredMap *_pred;
163 163
    //Indicates if _pred is locally allocated (true) or not.
164 164
    bool local_pred;
165 165
    //Pointer to the map of distances.
166 166
    DistMap *_dist;
167 167
    //Indicates if _dist is locally allocated (true) or not.
168 168
    bool local_dist;
169 169
    //Pointer to the map of reached status of the nodes.
170 170
    ReachedMap *_reached;
171 171
    //Indicates if _reached is locally allocated (true) or not.
172 172
    bool local_reached;
173 173
    //Pointer to the map of processed status of the nodes.
174 174
    ProcessedMap *_processed;
175 175
    //Indicates if _processed is locally allocated (true) or not.
176 176
    bool local_processed;
177 177

	
178 178
    std::vector<typename Digraph::OutArcIt> _stack;
179 179
    int _stack_head;
180 180

	
181 181
    //Creates the maps if necessary.
182 182
    void create_maps()
183 183
    {
184 184
      if(!_pred) {
185 185
        local_pred = true;
186 186
        _pred = Traits::createPredMap(*G);
187 187
      }
188 188
      if(!_dist) {
189 189
        local_dist = true;
190 190
        _dist = Traits::createDistMap(*G);
191 191
      }
192 192
      if(!_reached) {
193 193
        local_reached = true;
194 194
        _reached = Traits::createReachedMap(*G);
195 195
      }
196 196
      if(!_processed) {
197 197
        local_processed = true;
198 198
        _processed = Traits::createProcessedMap(*G);
199 199
      }
200 200
    }
201 201

	
202 202
  protected:
203 203

	
204 204
    Dfs() {}
205 205

	
206 206
  public:
207 207

	
208 208
    typedef Dfs Create;
209 209

	
210 210
    ///\name Named Template Parameters
211 211

	
212 212
    ///@{
213 213

	
214 214
    template <class T>
215 215
    struct SetPredMapTraits : public Traits {
216 216
      typedef T PredMap;
217 217
      static PredMap *createPredMap(const Digraph &)
218 218
      {
219 219
        LEMON_ASSERT(false, "PredMap is not initialized");
220 220
        return 0; // ignore warnings
221 221
      }
222 222
    };
223 223
    ///\brief \ref named-templ-param "Named parameter" for setting
224 224
    ///\c PredMap type.
225 225
    ///
226 226
    ///\ref named-templ-param "Named parameter" for setting
227 227
    ///\c PredMap type.
228 228
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
229 229
    template <class T>
230 230
    struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
231 231
      typedef Dfs<Digraph, SetPredMapTraits<T> > Create;
232 232
    };
233 233

	
234 234
    template <class T>
235 235
    struct SetDistMapTraits : public Traits {
236 236
      typedef T DistMap;
237 237
      static DistMap *createDistMap(const Digraph &)
238 238
      {
239 239
        LEMON_ASSERT(false, "DistMap is not initialized");
240 240
        return 0; // ignore warnings
241 241
      }
242 242
    };
243 243
    ///\brief \ref named-templ-param "Named parameter" for setting
244 244
    ///\c DistMap type.
245 245
    ///
246 246
    ///\ref named-templ-param "Named parameter" for setting
247 247
    ///\c DistMap type.
248 248
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
249 249
    template <class T>
250 250
    struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
251 251
      typedef Dfs<Digraph, SetDistMapTraits<T> > Create;
252 252
    };
253 253

	
254 254
    template <class T>
255 255
    struct SetReachedMapTraits : public Traits {
256 256
      typedef T ReachedMap;
257 257
      static ReachedMap *createReachedMap(const Digraph &)
258 258
      {
... ...
@@ -589,385 +589,385 @@
589 589
    }
590 590

	
591 591
    ///Runs the algorithm from the given source node.
592 592

	
593 593
    ///This method runs the %DFS algorithm from node \c s
594 594
    ///in order to compute the DFS path to each node.
595 595
    ///
596 596
    ///The algorithm computes
597 597
    ///- the %DFS tree,
598 598
    ///- the distance of each node from the root in the %DFS tree.
599 599
    ///
600 600
    ///\note <tt>d.run(s)</tt> is just a shortcut of the following code.
601 601
    ///\code
602 602
    ///  d.init();
603 603
    ///  d.addSource(s);
604 604
    ///  d.start();
605 605
    ///\endcode
606 606
    void run(Node s) {
607 607
      init();
608 608
      addSource(s);
609 609
      start();
610 610
    }
611 611

	
612 612
    ///Finds the %DFS path between \c s and \c t.
613 613

	
614 614
    ///This method runs the %DFS algorithm from node \c s
615 615
    ///in order to compute the DFS path to node \c t
616 616
    ///(it stops searching when \c t is processed)
617 617
    ///
618 618
    ///\return \c true if \c t is reachable form \c s.
619 619
    ///
620 620
    ///\note Apart from the return value, <tt>d.run(s,t)</tt> is
621 621
    ///just a shortcut of the following code.
622 622
    ///\code
623 623
    ///  d.init();
624 624
    ///  d.addSource(s);
625 625
    ///  d.start(t);
626 626
    ///\endcode
627 627
    bool run(Node s,Node t) {
628 628
      init();
629 629
      addSource(s);
630 630
      start(t);
631 631
      return reached(t);
632 632
    }
633 633

	
634 634
    ///Runs the algorithm to visit all nodes in the digraph.
635 635

	
636 636
    ///This method runs the %DFS algorithm in order to visit all nodes
637 637
    ///in the digraph.
638 638
    ///
639 639
    ///\note <tt>d.run()</tt> is just a shortcut of the following code.
640 640
    ///\code
641 641
    ///  d.init();
642 642
    ///  for (NodeIt n(digraph); n != INVALID; ++n) {
643 643
    ///    if (!d.reached(n)) {
644 644
    ///      d.addSource(n);
645 645
    ///      d.start();
646 646
    ///    }
647 647
    ///  }
648 648
    ///\endcode
649 649
    void run() {
650 650
      init();
651 651
      for (NodeIt it(*G); it != INVALID; ++it) {
652 652
        if (!reached(it)) {
653 653
          addSource(it);
654 654
          start();
655 655
        }
656 656
      }
657 657
    }
658 658

	
659 659
    ///@}
660 660

	
661 661
    ///\name Query Functions
662 662
    ///The results of the DFS algorithm can be obtained using these
663 663
    ///functions.\n
664 664
    ///Either \ref run(Node) "run()" or \ref start() should be called
665 665
    ///before using them.
666 666

	
667 667
    ///@{
668 668

	
669 669
    ///The DFS path to the given node.
670 670

	
671 671
    ///Returns the DFS path to the given node from the root(s).
672 672
    ///
673 673
    ///\warning \c t should be reached from the root(s).
674 674
    ///
675 675
    ///\pre Either \ref run(Node) "run()" or \ref init()
676 676
    ///must be called before using this function.
677 677
    Path path(Node t) const { return Path(*G, *_pred, t); }
678 678

	
679 679
    ///The distance of the given node from the root(s).
680 680

	
681 681
    ///Returns the distance of the given node from the root(s).
682 682
    ///
683 683
    ///\warning If node \c v is not reached from the root(s), then
684 684
    ///the return value of this function is undefined.
685 685
    ///
686 686
    ///\pre Either \ref run(Node) "run()" or \ref init()
687 687
    ///must be called before using this function.
688 688
    int dist(Node v) const { return (*_dist)[v]; }
689 689

	
690 690
    ///Returns the 'previous arc' of the %DFS tree for the given node.
691 691

	
692 692
    ///This function returns the 'previous arc' of the %DFS tree for the
693 693
    ///node \c v, i.e. it returns the last arc of a %DFS path from a
694 694
    ///root to \c v. It is \c INVALID if \c v is not reached from the
695 695
    ///root(s) or if \c v is a root.
696 696
    ///
697 697
    ///The %DFS tree used here is equal to the %DFS tree used in
698 698
    ///\ref predNode() and \ref predMap().
699 699
    ///
700 700
    ///\pre Either \ref run(Node) "run()" or \ref init()
701 701
    ///must be called before using this function.
702 702
    Arc predArc(Node v) const { return (*_pred)[v];}
703 703

	
704 704
    ///Returns the 'previous node' of the %DFS tree for the given node.
705 705

	
706 706
    ///This function returns the 'previous node' of the %DFS
707 707
    ///tree for the node \c v, i.e. it returns the last but one node
708 708
    ///of a %DFS path from a root to \c v. It is \c INVALID
709 709
    ///if \c v is not reached from the root(s) or if \c v is a root.
710 710
    ///
711 711
    ///The %DFS tree used here is equal to the %DFS tree used in
712 712
    ///\ref predArc() and \ref predMap().
713 713
    ///
714 714
    ///\pre Either \ref run(Node) "run()" or \ref init()
715 715
    ///must be called before using this function.
716 716
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
717 717
                                  G->source((*_pred)[v]); }
718 718

	
719 719
    ///\brief Returns a const reference to the node map that stores the
720 720
    ///distances of the nodes.
721 721
    ///
722 722
    ///Returns a const reference to the node map that stores the
723 723
    ///distances of the nodes calculated by the algorithm.
724 724
    ///
725 725
    ///\pre Either \ref run(Node) "run()" or \ref init()
726 726
    ///must be called before using this function.
727 727
    const DistMap &distMap() const { return *_dist;}
728 728

	
729 729
    ///\brief Returns a const reference to the node map that stores the
730 730
    ///predecessor arcs.
731 731
    ///
732 732
    ///Returns a const reference to the node map that stores the predecessor
733 733
    ///arcs, which form the DFS tree (forest).
734 734
    ///
735 735
    ///\pre Either \ref run(Node) "run()" or \ref init()
736 736
    ///must be called before using this function.
737 737
    const PredMap &predMap() const { return *_pred;}
738 738

	
739 739
    ///Checks if the given node. node is reached from the root(s).
740 740

	
741 741
    ///Returns \c true if \c v is reached from the root(s).
742 742
    ///
743 743
    ///\pre Either \ref run(Node) "run()" or \ref init()
744 744
    ///must be called before using this function.
745 745
    bool reached(Node v) const { return (*_reached)[v]; }
746 746

	
747 747
    ///@}
748 748
  };
749 749

	
750 750
  ///Default traits class of dfs() function.
751 751

	
752 752
  ///Default traits class of dfs() function.
753 753
  ///\tparam GR Digraph type.
754 754
  template<class GR>
755 755
  struct DfsWizardDefaultTraits
756 756
  {
757 757
    ///The type of the digraph the algorithm runs on.
758 758
    typedef GR Digraph;
759 759

	
760 760
    ///\brief The type of the map that stores the predecessor
761 761
    ///arcs of the %DFS paths.
762 762
    ///
763 763
    ///The type of the map that stores the predecessor
764 764
    ///arcs of the %DFS paths.
765 765
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
766 766
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
767 767
    ///Instantiates a PredMap.
768 768

	
769 769
    ///This function instantiates a PredMap.
770 770
    ///\param g is the digraph, to which we would like to define the
771 771
    ///PredMap.
772 772
    static PredMap *createPredMap(const Digraph &g)
773 773
    {
774 774
      return new PredMap(g);
775 775
    }
776 776

	
777 777
    ///The type of the map that indicates which nodes are processed.
778 778

	
779 779
    ///The type of the map that indicates which nodes are processed.
780 780
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
781
    ///By default it is a NullMap.
781
    ///By default, it is a NullMap.
782 782
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
783 783
    ///Instantiates a ProcessedMap.
784 784

	
785 785
    ///This function instantiates a ProcessedMap.
786 786
    ///\param g is the digraph, to which
787 787
    ///we would like to define the ProcessedMap.
788 788
#ifdef DOXYGEN
789 789
    static ProcessedMap *createProcessedMap(const Digraph &g)
790 790
#else
791 791
    static ProcessedMap *createProcessedMap(const Digraph &)
792 792
#endif
793 793
    {
794 794
      return new ProcessedMap();
795 795
    }
796 796

	
797 797
    ///The type of the map that indicates which nodes are reached.
798 798

	
799 799
    ///The type of the map that indicates which nodes are reached.
800 800
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
801 801
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
802 802
    ///Instantiates a ReachedMap.
803 803

	
804 804
    ///This function instantiates a ReachedMap.
805 805
    ///\param g is the digraph, to which
806 806
    ///we would like to define the ReachedMap.
807 807
    static ReachedMap *createReachedMap(const Digraph &g)
808 808
    {
809 809
      return new ReachedMap(g);
810 810
    }
811 811

	
812 812
    ///The type of the map that stores the distances of the nodes.
813 813

	
814 814
    ///The type of the map that stores the distances of the nodes.
815 815
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
816 816
    typedef typename Digraph::template NodeMap<int> DistMap;
817 817
    ///Instantiates a DistMap.
818 818

	
819 819
    ///This function instantiates a DistMap.
820 820
    ///\param g is the digraph, to which we would like to define
821 821
    ///the DistMap
822 822
    static DistMap *createDistMap(const Digraph &g)
823 823
    {
824 824
      return new DistMap(g);
825 825
    }
826 826

	
827 827
    ///The type of the DFS paths.
828 828

	
829 829
    ///The type of the DFS paths.
830 830
    ///It must conform to the \ref concepts::Path "Path" concept.
831 831
    typedef lemon::Path<Digraph> Path;
832 832
  };
833 833

	
834 834
  /// Default traits class used by DfsWizard
835 835

	
836 836
  /// Default traits class used by DfsWizard.
837 837
  /// \tparam GR The type of the digraph.
838 838
  template<class GR>
839 839
  class DfsWizardBase : public DfsWizardDefaultTraits<GR>
840 840
  {
841 841

	
842 842
    typedef DfsWizardDefaultTraits<GR> Base;
843 843
  protected:
844 844
    //The type of the nodes in the digraph.
845 845
    typedef typename Base::Digraph::Node Node;
846 846

	
847 847
    //Pointer to the digraph the algorithm runs on.
848 848
    void *_g;
849 849
    //Pointer to the map of reached nodes.
850 850
    void *_reached;
851 851
    //Pointer to the map of processed nodes.
852 852
    void *_processed;
853 853
    //Pointer to the map of predecessors arcs.
854 854
    void *_pred;
855 855
    //Pointer to the map of distances.
856 856
    void *_dist;
857 857
    //Pointer to the DFS path to the target node.
858 858
    void *_path;
859 859
    //Pointer to the distance of the target node.
860 860
    int *_di;
861 861

	
862 862
    public:
863 863
    /// Constructor.
864 864

	
865 865
    /// This constructor does not require parameters, it initiates
866 866
    /// all of the attributes to \c 0.
867 867
    DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
868 868
                      _dist(0), _path(0), _di(0) {}
869 869

	
870 870
    /// Constructor.
871 871

	
872 872
    /// This constructor requires one parameter,
873 873
    /// others are initiated to \c 0.
874 874
    /// \param g The digraph the algorithm runs on.
875 875
    DfsWizardBase(const GR &g) :
876 876
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
877 877
      _reached(0), _processed(0), _pred(0), _dist(0),  _path(0), _di(0) {}
878 878

	
879 879
  };
880 880

	
881 881
  /// Auxiliary class for the function-type interface of DFS algorithm.
882 882

	
883 883
  /// This auxiliary class is created to implement the
884 884
  /// \ref dfs() "function-type interface" of \ref Dfs algorithm.
885 885
  /// It does not have own \ref run(Node) "run()" method, it uses the
886 886
  /// functions and features of the plain \ref Dfs.
887 887
  ///
888 888
  /// This class should only be used through the \ref dfs() function,
889 889
  /// which makes it easier to use the algorithm.
890 890
  template<class TR>
891 891
  class DfsWizard : public TR
892 892
  {
893 893
    typedef TR Base;
894 894

	
895 895
    typedef typename TR::Digraph Digraph;
896 896

	
897 897
    typedef typename Digraph::Node Node;
898 898
    typedef typename Digraph::NodeIt NodeIt;
899 899
    typedef typename Digraph::Arc Arc;
900 900
    typedef typename Digraph::OutArcIt OutArcIt;
901 901

	
902 902
    typedef typename TR::PredMap PredMap;
903 903
    typedef typename TR::DistMap DistMap;
904 904
    typedef typename TR::ReachedMap ReachedMap;
905 905
    typedef typename TR::ProcessedMap ProcessedMap;
906 906
    typedef typename TR::Path Path;
907 907

	
908 908
  public:
909 909

	
910 910
    /// Constructor.
911 911
    DfsWizard() : TR() {}
912 912

	
913 913
    /// Constructor that requires parameters.
914 914

	
915 915
    /// Constructor that requires parameters.
916 916
    /// These parameters will be the default values for the traits class.
917 917
    /// \param g The digraph the algorithm runs on.
918 918
    DfsWizard(const Digraph &g) :
919 919
      TR(g) {}
920 920

	
921 921
    ///Copy constructor
922 922
    DfsWizard(const TR &b) : TR(b) {}
923 923

	
924 924
    ~DfsWizard() {}
925 925

	
926 926
    ///Runs DFS algorithm from the given source node.
927 927

	
928 928
    ///This method runs DFS algorithm from node \c s
929 929
    ///in order to compute the DFS path to each node.
930 930
    void run(Node s)
931 931
    {
932 932
      Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
933 933
      if (Base::_pred)
934 934
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
935 935
      if (Base::_dist)
936 936
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
937 937
      if (Base::_reached)
938 938
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
939 939
      if (Base::_processed)
940 940
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
941 941
      if (s!=INVALID)
942 942
        alg.run(s);
943 943
      else
944 944
        alg.run();
945 945
    }
946 946

	
947 947
    ///Finds the DFS path between \c s and \c t.
948 948

	
949 949
    ///This method runs DFS algorithm from node \c s
950 950
    ///in order to compute the DFS path to node \c t
951 951
    ///(it stops searching when \c t is processed).
952 952
    ///
953 953
    ///\return \c true if \c t is reachable form \c s.
954 954
    bool run(Node s, Node t)
955 955
    {
956 956
      Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
957 957
      if (Base::_pred)
958 958
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
959 959
      if (Base::_dist)
960 960
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
961 961
      if (Base::_reached)
962 962
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
963 963
      if (Base::_processed)
964 964
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
965 965
      alg.run(s,t);
966 966
      if (Base::_path)
967 967
        *reinterpret_cast<Path*>(Base::_path) = alg.path(t);
968 968
      if (Base::_di)
969 969
        *Base::_di = alg.dist(t);
970 970
      return alg.reached(t);
971 971
      }
972 972

	
973 973
    ///Runs DFS algorithm to visit all nodes in the digraph.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_DIJKSTRA_H
20 20
#define LEMON_DIJKSTRA_H
21 21

	
22 22
///\ingroup shortest_path
23 23
///\file
24 24
///\brief Dijkstra algorithm.
25 25

	
26 26
#include <limits>
27 27
#include <lemon/list_graph.h>
28 28
#include <lemon/bin_heap.h>
29 29
#include <lemon/bits/path_dump.h>
30 30
#include <lemon/core.h>
31 31
#include <lemon/error.h>
32 32
#include <lemon/maps.h>
33 33
#include <lemon/path.h>
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  /// \brief Default operation traits for the Dijkstra algorithm class.
38 38
  ///
39 39
  /// This operation traits class defines all computational operations and
40 40
  /// constants which are used in the Dijkstra algorithm.
41 41
  template <typename V>
42 42
  struct DijkstraDefaultOperationTraits {
43 43
    /// \e
44 44
    typedef V Value;
45 45
    /// \brief Gives back the zero value of the type.
46 46
    static Value zero() {
47 47
      return static_cast<Value>(0);
48 48
    }
49 49
    /// \brief Gives back the sum of the given two elements.
50 50
    static Value plus(const Value& left, const Value& right) {
51 51
      return left + right;
52 52
    }
53 53
    /// \brief Gives back true only if the first value is less than the second.
54 54
    static bool less(const Value& left, const Value& right) {
55 55
      return left < right;
56 56
    }
57 57
  };
58 58

	
59 59
  ///Default traits class of Dijkstra class.
60 60

	
61 61
  ///Default traits class of Dijkstra class.
62 62
  ///\tparam GR The type of the digraph.
63 63
  ///\tparam LEN The type of the length map.
64 64
  template<typename GR, typename LEN>
65 65
  struct DijkstraDefaultTraits
66 66
  {
67 67
    ///The type of the digraph the algorithm runs on.
68 68
    typedef GR Digraph;
69 69

	
70 70
    ///The type of the map that stores the arc lengths.
71 71

	
72 72
    ///The type of the map that stores the arc lengths.
73 73
    ///It must conform to the \ref concepts::ReadMap "ReadMap" concept.
74 74
    typedef LEN LengthMap;
75 75
    ///The type of the arc lengths.
76 76
    typedef typename LEN::Value Value;
77 77

	
78 78
    /// Operation traits for %Dijkstra algorithm.
79 79

	
80 80
    /// This class defines the operations that are used in the algorithm.
81 81
    /// \see DijkstraDefaultOperationTraits
82 82
    typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
83 83

	
84 84
    /// The cross reference type used by the heap.
85 85

	
86 86
    /// The cross reference type used by the heap.
87 87
    /// Usually it is \c Digraph::NodeMap<int>.
88 88
    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
89 89
    ///Instantiates a \c HeapCrossRef.
90 90

	
91 91
    ///This function instantiates a \ref HeapCrossRef.
92 92
    /// \param g is the digraph, to which we would like to define the
93 93
    /// \ref HeapCrossRef.
94 94
    static HeapCrossRef *createHeapCrossRef(const Digraph &g)
95 95
    {
96 96
      return new HeapCrossRef(g);
97 97
    }
98 98

	
99 99
    ///The heap type used by the %Dijkstra algorithm.
100 100

	
101 101
    ///The heap type used by the Dijkstra algorithm.
102 102
    ///
103 103
    ///\sa BinHeap
104 104
    ///\sa Dijkstra
105 105
    typedef BinHeap<typename LEN::Value, HeapCrossRef, std::less<Value> > Heap;
106 106
    ///Instantiates a \c Heap.
107 107

	
108 108
    ///This function instantiates a \ref Heap.
109 109
    static Heap *createHeap(HeapCrossRef& r)
110 110
    {
111 111
      return new Heap(r);
112 112
    }
113 113

	
114 114
    ///\brief The type of the map that stores the predecessor
115 115
    ///arcs of the shortest paths.
116 116
    ///
117 117
    ///The type of the map that stores the predecessor
118 118
    ///arcs of the shortest paths.
119 119
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
120 120
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
121 121
    ///Instantiates a \c PredMap.
122 122

	
123 123
    ///This function instantiates a \ref PredMap.
124 124
    ///\param g is the digraph, to which we would like to define the
125 125
    ///\ref PredMap.
126 126
    static PredMap *createPredMap(const Digraph &g)
127 127
    {
128 128
      return new PredMap(g);
129 129
    }
130 130

	
131 131
    ///The type of the map that indicates which nodes are processed.
132 132

	
133 133
    ///The type of the map that indicates which nodes are processed.
134 134
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
135
    ///By default it is a NullMap.
135
    ///By default, it is a NullMap.
136 136
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
137 137
    ///Instantiates a \c ProcessedMap.
138 138

	
139 139
    ///This function instantiates a \ref ProcessedMap.
140 140
    ///\param g is the digraph, to which
141 141
    ///we would like to define the \ref ProcessedMap.
142 142
#ifdef DOXYGEN
143 143
    static ProcessedMap *createProcessedMap(const Digraph &g)
144 144
#else
145 145
    static ProcessedMap *createProcessedMap(const Digraph &)
146 146
#endif
147 147
    {
148 148
      return new ProcessedMap();
149 149
    }
150 150

	
151 151
    ///The type of the map that stores the distances of the nodes.
152 152

	
153 153
    ///The type of the map that stores the distances of the nodes.
154 154
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
155 155
    typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap;
156 156
    ///Instantiates a \c DistMap.
157 157

	
158 158
    ///This function instantiates a \ref DistMap.
159 159
    ///\param g is the digraph, to which we would like to define
160 160
    ///the \ref DistMap.
161 161
    static DistMap *createDistMap(const Digraph &g)
162 162
    {
163 163
      return new DistMap(g);
164 164
    }
165 165
  };
166 166

	
167 167
  ///%Dijkstra algorithm class.
168 168

	
169 169
  /// \ingroup shortest_path
170 170
  ///This class provides an efficient implementation of the %Dijkstra algorithm.
171 171
  ///
172 172
  ///The %Dijkstra algorithm solves the single-source shortest path problem
173 173
  ///when all arc lengths are non-negative. If there are negative lengths,
174 174
  ///the BellmanFord algorithm should be used instead.
175 175
  ///
176 176
  ///The arc lengths are passed to the algorithm using a
177 177
  ///\ref concepts::ReadMap "ReadMap",
178 178
  ///so it is easy to change it to any kind of length.
179 179
  ///The type of the length is determined by the
180 180
  ///\ref concepts::ReadMap::Value "Value" of the length map.
181 181
  ///It is also possible to change the underlying priority heap.
182 182
  ///
183 183
  ///There is also a \ref dijkstra() "function-type interface" for the
184 184
  ///%Dijkstra algorithm, which is convenient in the simplier cases and
185 185
  ///it can be used easier.
186 186
  ///
187 187
  ///\tparam GR The type of the digraph the algorithm runs on.
188 188
  ///The default type is \ref ListDigraph.
189 189
  ///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
190 190
  ///the lengths of the arcs.
191 191
  ///It is read once for each arc, so the map may involve in
192 192
  ///relatively time consuming process to compute the arc lengths if
193 193
  ///it is necessary. The default map type is \ref
194 194
  ///concepts::Digraph::ArcMap "GR::ArcMap<int>".
195 195
#ifdef DOXYGEN
196 196
  template <typename GR, typename LEN, typename TR>
197 197
#else
198 198
  template <typename GR=ListDigraph,
199 199
            typename LEN=typename GR::template ArcMap<int>,
200 200
            typename TR=DijkstraDefaultTraits<GR,LEN> >
201 201
#endif
202 202
  class Dijkstra {
203 203
  public:
204 204

	
205 205
    ///The type of the digraph the algorithm runs on.
206 206
    typedef typename TR::Digraph Digraph;
207 207

	
208 208
    ///The type of the arc lengths.
209 209
    typedef typename TR::Value Value;
210 210
    ///The type of the map that stores the arc lengths.
211 211
    typedef typename TR::LengthMap LengthMap;
212 212
    ///\brief The type of the map that stores the predecessor arcs of the
213 213
    ///shortest paths.
214 214
    typedef typename TR::PredMap PredMap;
215 215
    ///The type of the map that stores the distances of the nodes.
216 216
    typedef typename TR::DistMap DistMap;
217 217
    ///The type of the map that indicates which nodes are processed.
218 218
    typedef typename TR::ProcessedMap ProcessedMap;
219 219
    ///The type of the paths.
220 220
    typedef PredMapPath<Digraph, PredMap> Path;
221 221
    ///The cross reference type used for the current heap.
222 222
    typedef typename TR::HeapCrossRef HeapCrossRef;
223 223
    ///The heap type used by the algorithm.
224 224
    typedef typename TR::Heap Heap;
225 225
    ///\brief The \ref DijkstraDefaultOperationTraits "operation traits class"
226 226
    ///of the algorithm.
227 227
    typedef typename TR::OperationTraits OperationTraits;
228 228

	
229 229
    ///The \ref DijkstraDefaultTraits "traits class" of the algorithm.
230 230
    typedef TR Traits;
231 231

	
232 232
  private:
233 233

	
234 234
    typedef typename Digraph::Node Node;
235 235
    typedef typename Digraph::NodeIt NodeIt;
236 236
    typedef typename Digraph::Arc Arc;
237 237
    typedef typename Digraph::OutArcIt OutArcIt;
238 238

	
239 239
    //Pointer to the underlying digraph.
240 240
    const Digraph *G;
241 241
    //Pointer to the length map.
242 242
    const LengthMap *_length;
243 243
    //Pointer to the map of predecessors arcs.
244 244
    PredMap *_pred;
245 245
    //Indicates if _pred is locally allocated (true) or not.
246 246
    bool local_pred;
247 247
    //Pointer to the map of distances.
248 248
    DistMap *_dist;
249 249
    //Indicates if _dist is locally allocated (true) or not.
250 250
    bool local_dist;
251 251
    //Pointer to the map of processed status of the nodes.
252 252
    ProcessedMap *_processed;
253 253
    //Indicates if _processed is locally allocated (true) or not.
254 254
    bool local_processed;
255 255
    //Pointer to the heap cross references.
256 256
    HeapCrossRef *_heap_cross_ref;
257 257
    //Indicates if _heap_cross_ref is locally allocated (true) or not.
258 258
    bool local_heap_cross_ref;
259 259
    //Pointer to the heap.
260 260
    Heap *_heap;
261 261
    //Indicates if _heap is locally allocated (true) or not.
262 262
    bool local_heap;
263 263

	
264 264
    //Creates the maps if necessary.
265 265
    void create_maps()
266 266
    {
267 267
      if(!_pred) {
268 268
        local_pred = true;
269 269
        _pred = Traits::createPredMap(*G);
270 270
      }
271 271
      if(!_dist) {
272 272
        local_dist = true;
273 273
        _dist = Traits::createDistMap(*G);
274 274
      }
275 275
      if(!_processed) {
276 276
        local_processed = true;
277 277
        _processed = Traits::createProcessedMap(*G);
278 278
      }
279 279
      if (!_heap_cross_ref) {
280 280
        local_heap_cross_ref = true;
281 281
        _heap_cross_ref = Traits::createHeapCrossRef(*G);
282 282
      }
283 283
      if (!_heap) {
284 284
        local_heap = true;
285 285
        _heap = Traits::createHeap(*_heap_cross_ref);
286 286
      }
287 287
    }
288 288

	
289 289
  public:
290 290

	
291 291
    typedef Dijkstra Create;
292 292

	
293 293
    ///\name Named Template Parameters
294 294

	
295 295
    ///@{
296 296

	
297 297
    template <class T>
298 298
    struct SetPredMapTraits : public Traits {
299 299
      typedef T PredMap;
300 300
      static PredMap *createPredMap(const Digraph &)
301 301
      {
302 302
        LEMON_ASSERT(false, "PredMap is not initialized");
303 303
        return 0; // ignore warnings
304 304
      }
305 305
    };
306 306
    ///\brief \ref named-templ-param "Named parameter" for setting
307 307
    ///\c PredMap type.
308 308
    ///
309 309
    ///\ref named-templ-param "Named parameter" for setting
310 310
    ///\c PredMap type.
311 311
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
312 312
    template <class T>
313 313
    struct SetPredMap
314 314
      : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
315 315
      typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create;
316 316
    };
317 317

	
318 318
    template <class T>
319 319
    struct SetDistMapTraits : public Traits {
320 320
      typedef T DistMap;
321 321
      static DistMap *createDistMap(const Digraph &)
322 322
      {
323 323
        LEMON_ASSERT(false, "DistMap is not initialized");
324 324
        return 0; // ignore warnings
325 325
      }
326 326
    };
327 327
    ///\brief \ref named-templ-param "Named parameter" for setting
328 328
    ///\c DistMap type.
329 329
    ///
330 330
    ///\ref named-templ-param "Named parameter" for setting
331 331
    ///\c DistMap type.
332 332
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
333 333
    template <class T>
334 334
    struct SetDistMap
335 335
      : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
336 336
      typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create;
337 337
    };
338 338

	
339 339
    template <class T>
340 340
    struct SetProcessedMapTraits : public Traits {
341 341
      typedef T ProcessedMap;
342 342
      static ProcessedMap *createProcessedMap(const Digraph &)
343 343
      {
344 344
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
345 345
        return 0; // ignore warnings
346 346
      }
347 347
    };
348 348
    ///\brief \ref named-templ-param "Named parameter" for setting
349 349
    ///\c ProcessedMap type.
350 350
    ///
351 351
    ///\ref named-templ-param "Named parameter" for setting
352 352
    ///\c ProcessedMap type.
353 353
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
354 354
    template <class T>
355 355
    struct SetProcessedMap
356 356
      : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
357 357
      typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create;
358 358
    };
359 359

	
360 360
    struct SetStandardProcessedMapTraits : public Traits {
361 361
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
362 362
      static ProcessedMap *createProcessedMap(const Digraph &g)
363 363
      {
364 364
        return new ProcessedMap(g);
365 365
      }
366 366
    };
367 367
    ///\brief \ref named-templ-param "Named parameter" for setting
368 368
    ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
369 369
    ///
370 370
    ///\ref named-templ-param "Named parameter" for setting
371 371
    ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
372 372
    ///If you don't set it explicitly, it will be automatically allocated.
373 373
    struct SetStandardProcessedMap
374 374
      : public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
375 375
      typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits >
376 376
      Create;
377 377
    };
378 378

	
379 379
    template <class H, class CR>
380 380
    struct SetHeapTraits : public Traits {
381 381
      typedef CR HeapCrossRef;
382 382
      typedef H Heap;
383 383
      static HeapCrossRef *createHeapCrossRef(const Digraph &) {
384 384
        LEMON_ASSERT(false, "HeapCrossRef is not initialized");
385 385
        return 0; // ignore warnings
386 386
      }
387 387
      static Heap *createHeap(HeapCrossRef &)
388 388
      {
389 389
        LEMON_ASSERT(false, "Heap is not initialized");
390 390
        return 0; // ignore warnings
391 391
      }
392 392
    };
393 393
    ///\brief \ref named-templ-param "Named parameter" for setting
394 394
    ///heap and cross reference types
395 395
    ///
396 396
    ///\ref named-templ-param "Named parameter" for setting heap and cross
397 397
    ///reference types. If this named parameter is used, then external
398 398
    ///heap and cross reference objects must be passed to the algorithm
399 399
    ///using the \ref heap() function before calling \ref run(Node) "run()"
400 400
    ///or \ref init().
401 401
    ///\sa SetStandardHeap
402 402
    template <class H, class CR = typename Digraph::template NodeMap<int> >
403 403
    struct SetHeap
404 404
      : public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
405 405
      typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create;
406 406
    };
407 407

	
408 408
    template <class H, class CR>
409 409
    struct SetStandardHeapTraits : public Traits {
410 410
      typedef CR HeapCrossRef;
411 411
      typedef H Heap;
412 412
      static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
413 413
        return new HeapCrossRef(G);
414 414
      }
415 415
      static Heap *createHeap(HeapCrossRef &R)
416 416
      {
417 417
        return new Heap(R);
418 418
      }
419 419
    };
420 420
    ///\brief \ref named-templ-param "Named parameter" for setting
421 421
    ///heap and cross reference types with automatic allocation
422 422
    ///
423 423
    ///\ref named-templ-param "Named parameter" for setting heap and cross
424 424
    ///reference types with automatic allocation.
425 425
    ///They should have standard constructor interfaces to be able to
426 426
    ///automatically created by the algorithm (i.e. the digraph should be
427 427
    ///passed to the constructor of the cross reference and the cross
428 428
    ///reference should be passed to the constructor of the heap).
429
    ///However external heap and cross reference objects could also be
429
    ///However, external heap and cross reference objects could also be
430 430
    ///passed to the algorithm using the \ref heap() function before
431 431
    ///calling \ref run(Node) "run()" or \ref init().
432 432
    ///\sa SetHeap
433 433
    template <class H, class CR = typename Digraph::template NodeMap<int> >
434 434
    struct SetStandardHeap
435 435
      : public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
436 436
      typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> >
437 437
      Create;
438 438
    };
439 439

	
440 440
    template <class T>
441 441
    struct SetOperationTraitsTraits : public Traits {
442 442
      typedef T OperationTraits;
443 443
    };
444 444

	
445 445
    /// \brief \ref named-templ-param "Named parameter" for setting
446 446
    ///\c OperationTraits type
447 447
    ///
448 448
    ///\ref named-templ-param "Named parameter" for setting
449 449
    ///\c OperationTraits type.
450
    /// For more information see \ref DijkstraDefaultOperationTraits.
450
    /// For more information, see \ref DijkstraDefaultOperationTraits.
451 451
    template <class T>
452 452
    struct SetOperationTraits
453 453
      : public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
454 454
      typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> >
455 455
      Create;
456 456
    };
457 457

	
458 458
    ///@}
459 459

	
460 460
  protected:
461 461

	
462 462
    Dijkstra() {}
463 463

	
464 464
  public:
465 465

	
466 466
    ///Constructor.
467 467

	
468 468
    ///Constructor.
469 469
    ///\param g The digraph the algorithm runs on.
470 470
    ///\param length The length map used by the algorithm.
471 471
    Dijkstra(const Digraph& g, const LengthMap& length) :
472 472
      G(&g), _length(&length),
473 473
      _pred(NULL), local_pred(false),
474 474
      _dist(NULL), local_dist(false),
475 475
      _processed(NULL), local_processed(false),
476 476
      _heap_cross_ref(NULL), local_heap_cross_ref(false),
477 477
      _heap(NULL), local_heap(false)
478 478
    { }
479 479

	
480 480
    ///Destructor.
481 481
    ~Dijkstra()
482 482
    {
483 483
      if(local_pred) delete _pred;
484 484
      if(local_dist) delete _dist;
485 485
      if(local_processed) delete _processed;
486 486
      if(local_heap_cross_ref) delete _heap_cross_ref;
487 487
      if(local_heap) delete _heap;
488 488
    }
489 489

	
490 490
    ///Sets the length map.
491 491

	
492 492
    ///Sets the length map.
493 493
    ///\return <tt> (*this) </tt>
494 494
    Dijkstra &lengthMap(const LengthMap &m)
495 495
    {
496 496
      _length = &m;
497 497
      return *this;
498 498
    }
499 499

	
500 500
    ///Sets the map that stores the predecessor arcs.
501 501

	
502 502
    ///Sets the map that stores the predecessor arcs.
503 503
    ///If you don't use this function before calling \ref run(Node) "run()"
504 504
    ///or \ref init(), an instance will be allocated automatically.
505 505
    ///The destructor deallocates this automatically allocated map,
506 506
    ///of course.
507 507
    ///\return <tt> (*this) </tt>
508 508
    Dijkstra &predMap(PredMap &m)
509 509
    {
510 510
      if(local_pred) {
511 511
        delete _pred;
512 512
        local_pred=false;
513 513
      }
514 514
      _pred = &m;
515 515
      return *this;
516 516
    }
517 517

	
518 518
    ///Sets the map that indicates which nodes are processed.
519 519

	
520 520
    ///Sets the map that indicates which nodes are processed.
521 521
    ///If you don't use this function before calling \ref run(Node) "run()"
522 522
    ///or \ref init(), an instance will be allocated automatically.
523 523
    ///The destructor deallocates this automatically allocated map,
524 524
    ///of course.
525 525
    ///\return <tt> (*this) </tt>
526 526
    Dijkstra &processedMap(ProcessedMap &m)
527 527
    {
528 528
      if(local_processed) {
529 529
        delete _processed;
530 530
        local_processed=false;
531 531
      }
532 532
      _processed = &m;
533 533
      return *this;
534 534
    }
535 535

	
536 536
    ///Sets the map that stores the distances of the nodes.
537 537

	
538 538
    ///Sets the map that stores the distances of the nodes calculated by the
539 539
    ///algorithm.
540 540
    ///If you don't use this function before calling \ref run(Node) "run()"
541 541
    ///or \ref init(), an instance will be allocated automatically.
542 542
    ///The destructor deallocates this automatically allocated map,
543 543
    ///of course.
544 544
    ///\return <tt> (*this) </tt>
545 545
    Dijkstra &distMap(DistMap &m)
546 546
    {
547 547
      if(local_dist) {
548 548
        delete _dist;
549 549
        local_dist=false;
550 550
      }
551 551
      _dist = &m;
552 552
      return *this;
553 553
    }
554 554

	
555 555
    ///Sets the heap and the cross reference used by algorithm.
556 556

	
557 557
    ///Sets the heap and the cross reference used by algorithm.
558 558
    ///If you don't use this function before calling \ref run(Node) "run()"
559 559
    ///or \ref init(), heap and cross reference instances will be
560 560
    ///allocated automatically.
561 561
    ///The destructor deallocates these automatically allocated objects,
562 562
    ///of course.
563 563
    ///\return <tt> (*this) </tt>
564 564
    Dijkstra &heap(Heap& hp, HeapCrossRef &cr)
565 565
    {
566 566
      if(local_heap_cross_ref) {
567 567
        delete _heap_cross_ref;
568 568
        local_heap_cross_ref=false;
569 569
      }
570 570
      _heap_cross_ref = &cr;
571 571
      if(local_heap) {
572 572
        delete _heap;
573 573
        local_heap=false;
574 574
      }
575 575
      _heap = &hp;
576 576
      return *this;
577 577
    }
578 578

	
579 579
  private:
580 580

	
581 581
    void finalizeNodeData(Node v,Value dst)
582 582
    {
583 583
      _processed->set(v,true);
584 584
      _dist->set(v, dst);
585 585
    }
586 586

	
587 587
  public:
588 588

	
589 589
    ///\name Execution Control
590 590
    ///The simplest way to execute the %Dijkstra algorithm is to use
591 591
    ///one of the member functions called \ref run(Node) "run()".\n
592 592
    ///If you need better control on the execution, you have to call
593 593
    ///\ref init() first, then you can add several source nodes with
594 594
    ///\ref addSource(). Finally the actual path computation can be
595 595
    ///performed with one of the \ref start() functions.
596 596

	
597 597
    ///@{
598 598

	
599 599
    ///\brief Initializes the internal data structures.
600 600
    ///
601 601
    ///Initializes the internal data structures.
602 602
    void init()
603 603
    {
604 604
      create_maps();
605 605
      _heap->clear();
606 606
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
607 607
        _pred->set(u,INVALID);
608 608
        _processed->set(u,false);
609 609
        _heap_cross_ref->set(u,Heap::PRE_HEAP);
610 610
      }
611 611
    }
612 612

	
613 613
    ///Adds a new source node.
614 614

	
615 615
    ///Adds a new source node to the priority heap.
616 616
    ///The optional second parameter is the initial distance of the node.
617 617
    ///
618 618
    ///The function checks if the node has already been added to the heap and
619 619
    ///it is pushed to the heap only if either it was not in the heap
620 620
    ///or the shortest path found till then is shorter than \c dst.
621 621
    void addSource(Node s,Value dst=OperationTraits::zero())
622 622
    {
623 623
      if(_heap->state(s) != Heap::IN_HEAP) {
624 624
        _heap->push(s,dst);
625 625
      } else if(OperationTraits::less((*_heap)[s], dst)) {
626 626
        _heap->set(s,dst);
627 627
        _pred->set(s,INVALID);
628 628
      }
629 629
    }
630 630

	
631 631
    ///Processes the next node in the priority heap
632 632

	
633 633
    ///Processes the next node in the priority heap.
634 634
    ///
635 635
    ///\return The processed node.
636 636
    ///
637 637
    ///\warning The priority heap must not be empty.
638 638
    Node processNextNode()
639 639
    {
640 640
      Node v=_heap->top();
641 641
      Value oldvalue=_heap->prio();
642 642
      _heap->pop();
... ...
@@ -807,385 +807,385 @@
807 807
    ///The results of the %Dijkstra algorithm can be obtained using these
808 808
    ///functions.\n
809 809
    ///Either \ref run(Node) "run()" or \ref init() should be called
810 810
    ///before using them.
811 811

	
812 812
    ///@{
813 813

	
814 814
    ///The shortest path to the given node.
815 815

	
816 816
    ///Returns the shortest path to the given node from the root(s).
817 817
    ///
818 818
    ///\warning \c t should be reached from the root(s).
819 819
    ///
820 820
    ///\pre Either \ref run(Node) "run()" or \ref init()
821 821
    ///must be called before using this function.
822 822
    Path path(Node t) const { return Path(*G, *_pred, t); }
823 823

	
824 824
    ///The distance of the given node from the root(s).
825 825

	
826 826
    ///Returns the distance of the given node from the root(s).
827 827
    ///
828 828
    ///\warning If node \c v is not reached from the root(s), then
829 829
    ///the return value of this function is undefined.
830 830
    ///
831 831
    ///\pre Either \ref run(Node) "run()" or \ref init()
832 832
    ///must be called before using this function.
833 833
    Value dist(Node v) const { return (*_dist)[v]; }
834 834

	
835 835
    ///\brief Returns the 'previous arc' of the shortest path tree for
836 836
    ///the given node.
837 837
    ///
838 838
    ///This function returns the 'previous arc' of the shortest path
839 839
    ///tree for the node \c v, i.e. it returns the last arc of a
840 840
    ///shortest path from a root to \c v. It is \c INVALID if \c v
841 841
    ///is not reached from the root(s) or if \c v is a root.
842 842
    ///
843 843
    ///The shortest path tree used here is equal to the shortest path
844 844
    ///tree used in \ref predNode() and \ref predMap().
845 845
    ///
846 846
    ///\pre Either \ref run(Node) "run()" or \ref init()
847 847
    ///must be called before using this function.
848 848
    Arc predArc(Node v) const { return (*_pred)[v]; }
849 849

	
850 850
    ///\brief Returns the 'previous node' of the shortest path tree for
851 851
    ///the given node.
852 852
    ///
853 853
    ///This function returns the 'previous node' of the shortest path
854 854
    ///tree for the node \c v, i.e. it returns the last but one node
855 855
    ///of a shortest path from a root to \c v. It is \c INVALID
856 856
    ///if \c v is not reached from the root(s) or if \c v is a root.
857 857
    ///
858 858
    ///The shortest path tree used here is equal to the shortest path
859 859
    ///tree used in \ref predArc() and \ref predMap().
860 860
    ///
861 861
    ///\pre Either \ref run(Node) "run()" or \ref init()
862 862
    ///must be called before using this function.
863 863
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
864 864
                                  G->source((*_pred)[v]); }
865 865

	
866 866
    ///\brief Returns a const reference to the node map that stores the
867 867
    ///distances of the nodes.
868 868
    ///
869 869
    ///Returns a const reference to the node map that stores the distances
870 870
    ///of the nodes calculated by the algorithm.
871 871
    ///
872 872
    ///\pre Either \ref run(Node) "run()" or \ref init()
873 873
    ///must be called before using this function.
874 874
    const DistMap &distMap() const { return *_dist;}
875 875

	
876 876
    ///\brief Returns a const reference to the node map that stores the
877 877
    ///predecessor arcs.
878 878
    ///
879 879
    ///Returns a const reference to the node map that stores the predecessor
880 880
    ///arcs, which form the shortest path tree (forest).
881 881
    ///
882 882
    ///\pre Either \ref run(Node) "run()" or \ref init()
883 883
    ///must be called before using this function.
884 884
    const PredMap &predMap() const { return *_pred;}
885 885

	
886 886
    ///Checks if the given node is reached from the root(s).
887 887

	
888 888
    ///Returns \c true if \c v is reached from the root(s).
889 889
    ///
890 890
    ///\pre Either \ref run(Node) "run()" or \ref init()
891 891
    ///must be called before using this function.
892 892
    bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
893 893
                                        Heap::PRE_HEAP; }
894 894

	
895 895
    ///Checks if a node is processed.
896 896

	
897 897
    ///Returns \c true if \c v is processed, i.e. the shortest
898 898
    ///path to \c v has already found.
899 899
    ///
900 900
    ///\pre Either \ref run(Node) "run()" or \ref init()
901 901
    ///must be called before using this function.
902 902
    bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
903 903
                                          Heap::POST_HEAP; }
904 904

	
905 905
    ///The current distance of the given node from the root(s).
906 906

	
907 907
    ///Returns the current distance of the given node from the root(s).
908 908
    ///It may be decreased in the following processes.
909 909
    ///
910 910
    ///\pre Either \ref run(Node) "run()" or \ref init()
911 911
    ///must be called before using this function and
912 912
    ///node \c v must be reached but not necessarily processed.
913 913
    Value currentDist(Node v) const {
914 914
      return processed(v) ? (*_dist)[v] : (*_heap)[v];
915 915
    }
916 916

	
917 917
    ///@}
918 918
  };
919 919

	
920 920

	
921 921
  ///Default traits class of dijkstra() function.
922 922

	
923 923
  ///Default traits class of dijkstra() function.
924 924
  ///\tparam GR The type of the digraph.
925 925
  ///\tparam LEN The type of the length map.
926 926
  template<class GR, class LEN>
927 927
  struct DijkstraWizardDefaultTraits
928 928
  {
929 929
    ///The type of the digraph the algorithm runs on.
930 930
    typedef GR Digraph;
931 931
    ///The type of the map that stores the arc lengths.
932 932

	
933 933
    ///The type of the map that stores the arc lengths.
934 934
    ///It must conform to the \ref concepts::ReadMap "ReadMap" concept.
935 935
    typedef LEN LengthMap;
936 936
    ///The type of the arc lengths.
937 937
    typedef typename LEN::Value Value;
938 938

	
939 939
    /// Operation traits for Dijkstra algorithm.
940 940

	
941 941
    /// This class defines the operations that are used in the algorithm.
942 942
    /// \see DijkstraDefaultOperationTraits
943 943
    typedef DijkstraDefaultOperationTraits<Value> OperationTraits;
944 944

	
945 945
    /// The cross reference type used by the heap.
946 946

	
947 947
    /// The cross reference type used by the heap.
948 948
    /// Usually it is \c Digraph::NodeMap<int>.
949 949
    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
950 950
    ///Instantiates a \ref HeapCrossRef.
951 951

	
952 952
    ///This function instantiates a \ref HeapCrossRef.
953 953
    /// \param g is the digraph, to which we would like to define the
954 954
    /// HeapCrossRef.
955 955
    static HeapCrossRef *createHeapCrossRef(const Digraph &g)
956 956
    {
957 957
      return new HeapCrossRef(g);
958 958
    }
959 959

	
960 960
    ///The heap type used by the Dijkstra algorithm.
961 961

	
962 962
    ///The heap type used by the Dijkstra algorithm.
963 963
    ///
964 964
    ///\sa BinHeap
965 965
    ///\sa Dijkstra
966 966
    typedef BinHeap<Value, typename Digraph::template NodeMap<int>,
967 967
                    std::less<Value> > Heap;
968 968

	
969 969
    ///Instantiates a \ref Heap.
970 970

	
971 971
    ///This function instantiates a \ref Heap.
972 972
    /// \param r is the HeapCrossRef which is used.
973 973
    static Heap *createHeap(HeapCrossRef& r)
974 974
    {
975 975
      return new Heap(r);
976 976
    }
977 977

	
978 978
    ///\brief The type of the map that stores the predecessor
979 979
    ///arcs of the shortest paths.
980 980
    ///
981 981
    ///The type of the map that stores the predecessor
982 982
    ///arcs of the shortest paths.
983 983
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
984 984
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
985 985
    ///Instantiates a PredMap.
986 986

	
987 987
    ///This function instantiates a PredMap.
988 988
    ///\param g is the digraph, to which we would like to define the
989 989
    ///PredMap.
990 990
    static PredMap *createPredMap(const Digraph &g)
991 991
    {
992 992
      return new PredMap(g);
993 993
    }
994 994

	
995 995
    ///The type of the map that indicates which nodes are processed.
996 996

	
997 997
    ///The type of the map that indicates which nodes are processed.
998 998
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
999
    ///By default it is a NullMap.
999
    ///By default, it is a NullMap.
1000 1000
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
1001 1001
    ///Instantiates a ProcessedMap.
1002 1002

	
1003 1003
    ///This function instantiates a ProcessedMap.
1004 1004
    ///\param g is the digraph, to which
1005 1005
    ///we would like to define the ProcessedMap.
1006 1006
#ifdef DOXYGEN
1007 1007
    static ProcessedMap *createProcessedMap(const Digraph &g)
1008 1008
#else
1009 1009
    static ProcessedMap *createProcessedMap(const Digraph &)
1010 1010
#endif
1011 1011
    {
1012 1012
      return new ProcessedMap();
1013 1013
    }
1014 1014

	
1015 1015
    ///The type of the map that stores the distances of the nodes.
1016 1016

	
1017 1017
    ///The type of the map that stores the distances of the nodes.
1018 1018
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
1019 1019
    typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap;
1020 1020
    ///Instantiates a DistMap.
1021 1021

	
1022 1022
    ///This function instantiates a DistMap.
1023 1023
    ///\param g is the digraph, to which we would like to define
1024 1024
    ///the DistMap
1025 1025
    static DistMap *createDistMap(const Digraph &g)
1026 1026
    {
1027 1027
      return new DistMap(g);
1028 1028
    }
1029 1029

	
1030 1030
    ///The type of the shortest paths.
1031 1031

	
1032 1032
    ///The type of the shortest paths.
1033 1033
    ///It must conform to the \ref concepts::Path "Path" concept.
1034 1034
    typedef lemon::Path<Digraph> Path;
1035 1035
  };
1036 1036

	
1037 1037
  /// Default traits class used by DijkstraWizard
1038 1038

	
1039 1039
  /// Default traits class used by DijkstraWizard.
1040 1040
  /// \tparam GR The type of the digraph.
1041 1041
  /// \tparam LEN The type of the length map.
1042 1042
  template<typename GR, typename LEN>
1043 1043
  class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN>
1044 1044
  {
1045 1045
    typedef DijkstraWizardDefaultTraits<GR,LEN> Base;
1046 1046
  protected:
1047 1047
    //The type of the nodes in the digraph.
1048 1048
    typedef typename Base::Digraph::Node Node;
1049 1049

	
1050 1050
    //Pointer to the digraph the algorithm runs on.
1051 1051
    void *_g;
1052 1052
    //Pointer to the length map.
1053 1053
    void *_length;
1054 1054
    //Pointer to the map of processed nodes.
1055 1055
    void *_processed;
1056 1056
    //Pointer to the map of predecessors arcs.
1057 1057
    void *_pred;
1058 1058
    //Pointer to the map of distances.
1059 1059
    void *_dist;
1060 1060
    //Pointer to the shortest path to the target node.
1061 1061
    void *_path;
1062 1062
    //Pointer to the distance of the target node.
1063 1063
    void *_di;
1064 1064

	
1065 1065
  public:
1066 1066
    /// Constructor.
1067 1067

	
1068 1068
    /// This constructor does not require parameters, therefore it initiates
1069 1069
    /// all of the attributes to \c 0.
1070 1070
    DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0),
1071 1071
                           _dist(0), _path(0), _di(0) {}
1072 1072

	
1073 1073
    /// Constructor.
1074 1074

	
1075 1075
    /// This constructor requires two parameters,
1076 1076
    /// others are initiated to \c 0.
1077 1077
    /// \param g The digraph the algorithm runs on.
1078 1078
    /// \param l The length map.
1079 1079
    DijkstraWizardBase(const GR &g,const LEN &l) :
1080 1080
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
1081 1081
      _length(reinterpret_cast<void*>(const_cast<LEN*>(&l))),
1082 1082
      _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
1083 1083

	
1084 1084
  };
1085 1085

	
1086 1086
  /// Auxiliary class for the function-type interface of Dijkstra algorithm.
1087 1087

	
1088 1088
  /// This auxiliary class is created to implement the
1089 1089
  /// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm.
1090 1090
  /// It does not have own \ref run(Node) "run()" method, it uses the
1091 1091
  /// functions and features of the plain \ref Dijkstra.
1092 1092
  ///
1093 1093
  /// This class should only be used through the \ref dijkstra() function,
1094 1094
  /// which makes it easier to use the algorithm.
1095 1095
  template<class TR>
1096 1096
  class DijkstraWizard : public TR
1097 1097
  {
1098 1098
    typedef TR Base;
1099 1099

	
1100 1100
    typedef typename TR::Digraph Digraph;
1101 1101

	
1102 1102
    typedef typename Digraph::Node Node;
1103 1103
    typedef typename Digraph::NodeIt NodeIt;
1104 1104
    typedef typename Digraph::Arc Arc;
1105 1105
    typedef typename Digraph::OutArcIt OutArcIt;
1106 1106

	
1107 1107
    typedef typename TR::LengthMap LengthMap;
1108 1108
    typedef typename LengthMap::Value Value;
1109 1109
    typedef typename TR::PredMap PredMap;
1110 1110
    typedef typename TR::DistMap DistMap;
1111 1111
    typedef typename TR::ProcessedMap ProcessedMap;
1112 1112
    typedef typename TR::Path Path;
1113 1113
    typedef typename TR::Heap Heap;
1114 1114

	
1115 1115
  public:
1116 1116

	
1117 1117
    /// Constructor.
1118 1118
    DijkstraWizard() : TR() {}
1119 1119

	
1120 1120
    /// Constructor that requires parameters.
1121 1121

	
1122 1122
    /// Constructor that requires parameters.
1123 1123
    /// These parameters will be the default values for the traits class.
1124 1124
    /// \param g The digraph the algorithm runs on.
1125 1125
    /// \param l The length map.
1126 1126
    DijkstraWizard(const Digraph &g, const LengthMap &l) :
1127 1127
      TR(g,l) {}
1128 1128

	
1129 1129
    ///Copy constructor
1130 1130
    DijkstraWizard(const TR &b) : TR(b) {}
1131 1131

	
1132 1132
    ~DijkstraWizard() {}
1133 1133

	
1134 1134
    ///Runs Dijkstra algorithm from the given source node.
1135 1135

	
1136 1136
    ///This method runs %Dijkstra algorithm from the given source node
1137 1137
    ///in order to compute the shortest path to each node.
1138 1138
    void run(Node s)
1139 1139
    {
1140 1140
      Dijkstra<Digraph,LengthMap,TR>
1141 1141
        dijk(*reinterpret_cast<const Digraph*>(Base::_g),
1142 1142
             *reinterpret_cast<const LengthMap*>(Base::_length));
1143 1143
      if (Base::_pred)
1144 1144
        dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1145 1145
      if (Base::_dist)
1146 1146
        dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1147 1147
      if (Base::_processed)
1148 1148
        dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1149 1149
      dijk.run(s);
1150 1150
    }
1151 1151

	
1152 1152
    ///Finds the shortest path between \c s and \c t.
1153 1153

	
1154 1154
    ///This method runs the %Dijkstra algorithm from node \c s
1155 1155
    ///in order to compute the shortest path to node \c t
1156 1156
    ///(it stops searching when \c t is processed).
1157 1157
    ///
1158 1158
    ///\return \c true if \c t is reachable form \c s.
1159 1159
    bool run(Node s, Node t)
1160 1160
    {
1161 1161
      Dijkstra<Digraph,LengthMap,TR>
1162 1162
        dijk(*reinterpret_cast<const Digraph*>(Base::_g),
1163 1163
             *reinterpret_cast<const LengthMap*>(Base::_length));
1164 1164
      if (Base::_pred)
1165 1165
        dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1166 1166
      if (Base::_dist)
1167 1167
        dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1168 1168
      if (Base::_processed)
1169 1169
        dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1170 1170
      dijk.run(s,t);
1171 1171
      if (Base::_path)
1172 1172
        *reinterpret_cast<Path*>(Base::_path) = dijk.path(t);
1173 1173
      if (Base::_di)
1174 1174
        *reinterpret_cast<Value*>(Base::_di) = dijk.dist(t);
1175 1175
      return dijk.reached(t);
1176 1176
    }
1177 1177

	
1178 1178
    template<class T>
1179 1179
    struct SetPredMapBase : public Base {
1180 1180
      typedef T PredMap;
1181 1181
      static PredMap *createPredMap(const Digraph &) { return 0; };
1182 1182
      SetPredMapBase(const TR &b) : TR(b) {}
1183 1183
    };
1184 1184

	
1185 1185
    ///\brief \ref named-templ-param "Named parameter" for setting
1186 1186
    ///the predecessor map.
1187 1187
    ///
1188 1188
    ///\ref named-templ-param "Named parameter" function for setting
1189 1189
    ///the map that stores the predecessor arcs of the nodes.
1190 1190
    template<class T>
1191 1191
    DijkstraWizard<SetPredMapBase<T> > predMap(const T &t)
Ignore white space 6 line context
... ...
@@ -105,466 +105,464 @@
105 105
      }
106 106
      if (_weight) {
107 107
	delete _weight;
108 108
      }
109 109
      if (_order) {
110 110
	delete _order;
111 111
      }
112 112
    }
113 113
  
114 114
  public:
115 115

	
116 116
    /// \brief Constructor
117 117
    ///
118 118
    /// Constructor.
119 119
    /// \param graph The undirected graph the algorithm runs on.
120 120
    /// \param capacity The edge capacity map.
121 121
    GomoryHu(const Graph& graph, const Capacity& capacity) 
122 122
      : _graph(graph), _capacity(capacity),
123 123
	_pred(0), _weight(0), _order(0) 
124 124
    {
125 125
      checkConcept<concepts::ReadMap<Edge, Value>, Capacity>();
126 126
    }
127 127

	
128 128

	
129 129
    /// \brief Destructor
130 130
    ///
131 131
    /// Destructor.
132 132
    ~GomoryHu() {
133 133
      destroyStructures();
134 134
    }
135 135

	
136 136
  private:
137 137
  
138 138
    // Initialize the internal data structures
139 139
    void init() {
140 140
      createStructures();
141 141

	
142 142
      _root = NodeIt(_graph);
143 143
      for (NodeIt n(_graph); n != INVALID; ++n) {
144 144
        (*_pred)[n] = _root;
145 145
        (*_order)[n] = -1;
146 146
      }
147 147
      (*_pred)[_root] = INVALID;
148 148
      (*_weight)[_root] = std::numeric_limits<Value>::max(); 
149 149
    }
150 150

	
151 151

	
152 152
    // Start the algorithm
153 153
    void start() {
154 154
      Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID);
155 155

	
156 156
      for (NodeIt n(_graph); n != INVALID; ++n) {
157 157
	if (n == _root) continue;
158 158

	
159 159
	Node pn = (*_pred)[n];
160 160
	fa.source(n);
161 161
	fa.target(pn);
162 162

	
163 163
	fa.runMinCut();
164 164

	
165 165
	(*_weight)[n] = fa.flowValue();
166 166

	
167 167
	for (NodeIt nn(_graph); nn != INVALID; ++nn) {
168 168
	  if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
169 169
	    (*_pred)[nn] = n;
170 170
	  }
171 171
	}
172 172
	if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
173 173
	  (*_pred)[n] = (*_pred)[pn];
174 174
	  (*_pred)[pn] = n;
175 175
	  (*_weight)[n] = (*_weight)[pn];
176 176
	  (*_weight)[pn] = fa.flowValue();
177 177
	}
178 178
      }
179 179

	
180 180
      (*_order)[_root] = 0;
181 181
      int index = 1;
182 182

	
183 183
      for (NodeIt n(_graph); n != INVALID; ++n) {
184 184
	std::vector<Node> st;
185 185
	Node nn = n;
186 186
	while ((*_order)[nn] == -1) {
187 187
	  st.push_back(nn);
188 188
	  nn = (*_pred)[nn];
189 189
	}
190 190
	while (!st.empty()) {
191 191
	  (*_order)[st.back()] = index++;
192 192
	  st.pop_back();
193 193
	}
194 194
      }
195 195
    }
196 196

	
197 197
  public:
198 198

	
199 199
    ///\name Execution Control
200 200
 
201 201
    ///@{
202 202

	
203 203
    /// \brief Run the Gomory-Hu algorithm.
204 204
    ///
205 205
    /// This function runs the Gomory-Hu algorithm.
206 206
    void run() {
207 207
      init();
208 208
      start();
209 209
    }
210 210
    
211 211
    /// @}
212 212

	
213 213
    ///\name Query Functions
214 214
    ///The results of the algorithm can be obtained using these
215 215
    ///functions.\n
216 216
    ///\ref run() should be called before using them.\n
217 217
    ///See also \ref MinCutNodeIt and \ref MinCutEdgeIt.
218 218

	
219 219
    ///@{
220 220

	
221 221
    /// \brief Return the predecessor node in the Gomory-Hu tree.
222 222
    ///
223 223
    /// This function returns the predecessor node of the given node
224 224
    /// in the Gomory-Hu tree.
225 225
    /// If \c node is the root of the tree, then it returns \c INVALID.
226 226
    ///
227 227
    /// \pre \ref run() must be called before using this function.
228 228
    Node predNode(const Node& node) const {
229 229
      return (*_pred)[node];
230 230
    }
231 231

	
232 232
    /// \brief Return the weight of the predecessor edge in the
233 233
    /// Gomory-Hu tree.
234 234
    ///
235 235
    /// This function returns the weight of the predecessor edge of the 
236 236
    /// given node in the Gomory-Hu tree.
237 237
    /// If \c node is the root of the tree, the result is undefined.
238 238
    ///
239 239
    /// \pre \ref run() must be called before using this function.
240 240
    Value predValue(const Node& node) const {
241 241
      return (*_weight)[node];
242 242
    }
243 243

	
244 244
    /// \brief Return the distance from the root node in the Gomory-Hu tree.
245 245
    ///
246 246
    /// This function returns the distance of the given node from the root
247 247
    /// node in the Gomory-Hu tree.
248 248
    ///
249 249
    /// \pre \ref run() must be called before using this function.
250 250
    int rootDist(const Node& node) const {
251 251
      return (*_order)[node];
252 252
    }
253 253

	
254 254
    /// \brief Return the minimum cut value between two nodes
255 255
    ///
256 256
    /// This function returns the minimum cut value between the nodes
257 257
    /// \c s and \c t. 
258 258
    /// It finds the nearest common ancestor of the given nodes in the
259 259
    /// Gomory-Hu tree and calculates the minimum weight edge on the
260 260
    /// paths to the ancestor.
261 261
    ///
262 262
    /// \pre \ref run() must be called before using this function.
263 263
    Value minCutValue(const Node& s, const Node& t) const {
264 264
      Node sn = s, tn = t;
265 265
      Value value = std::numeric_limits<Value>::max();
266 266
      
267 267
      while (sn != tn) {
268 268
	if ((*_order)[sn] < (*_order)[tn]) {
269 269
	  if ((*_weight)[tn] <= value) value = (*_weight)[tn];
270 270
	  tn = (*_pred)[tn];
271 271
	} else {
272 272
	  if ((*_weight)[sn] <= value) value = (*_weight)[sn];
273 273
	  sn = (*_pred)[sn];
274 274
	}
275 275
      }
276 276
      return value;
277 277
    }
278 278

	
279 279
    /// \brief Return the minimum cut between two nodes
280 280
    ///
281 281
    /// This function returns the minimum cut between the nodes \c s and \c t
282 282
    /// in the \c cutMap parameter by setting the nodes in the component of
283 283
    /// \c s to \c true and the other nodes to \c false.
284 284
    ///
285 285
    /// For higher level interfaces see MinCutNodeIt and MinCutEdgeIt.
286 286
    ///
287 287
    /// \param s The base node.
288 288
    /// \param t The node you want to separate from node \c s.
289 289
    /// \param cutMap The cut will be returned in this map.
290 290
    /// It must be a \c bool (or convertible) \ref concepts::ReadWriteMap
291 291
    /// "ReadWriteMap" on the graph nodes.
292 292
    ///
293 293
    /// \return The value of the minimum cut between \c s and \c t.
294 294
    ///
295 295
    /// \pre \ref run() must be called before using this function.
296 296
    template <typename CutMap>
297
    Value minCutMap(const Node& s, ///< 
297
    Value minCutMap(const Node& s,
298 298
                    const Node& t,
299
                    ///< 
300 299
                    CutMap& cutMap
301
                    ///< 
302 300
                    ) const {
303 301
      Node sn = s, tn = t;
304 302
      bool s_root=false;
305 303
      Node rn = INVALID;
306 304
      Value value = std::numeric_limits<Value>::max();
307 305
      
308 306
      while (sn != tn) {
309 307
	if ((*_order)[sn] < (*_order)[tn]) {
310 308
	  if ((*_weight)[tn] <= value) {
311 309
	    rn = tn;
312 310
            s_root = false;
313 311
	    value = (*_weight)[tn];
314 312
	  }
315 313
	  tn = (*_pred)[tn];
316 314
	} else {
317 315
	  if ((*_weight)[sn] <= value) {
318 316
	    rn = sn;
319 317
            s_root = true;
320 318
	    value = (*_weight)[sn];
321 319
	  }
322 320
	  sn = (*_pred)[sn];
323 321
	}
324 322
      }
325 323

	
326 324
      typename Graph::template NodeMap<bool> reached(_graph, false);
327 325
      reached[_root] = true;
328 326
      cutMap.set(_root, !s_root);
329 327
      reached[rn] = true;
330 328
      cutMap.set(rn, s_root);
331 329

	
332 330
      std::vector<Node> st;
333 331
      for (NodeIt n(_graph); n != INVALID; ++n) {
334 332
	st.clear();
335 333
        Node nn = n;
336 334
	while (!reached[nn]) {
337 335
	  st.push_back(nn);
338 336
	  nn = (*_pred)[nn];
339 337
	}
340 338
	while (!st.empty()) {
341 339
	  cutMap.set(st.back(), cutMap[nn]);
342 340
	  st.pop_back();
343 341
	}
344 342
      }
345 343
      
346 344
      return value;
347 345
    }
348 346

	
349 347
    ///@}
350 348

	
351 349
    friend class MinCutNodeIt;
352 350

	
353 351
    /// Iterate on the nodes of a minimum cut
354 352
    
355 353
    /// This iterator class lists the nodes of a minimum cut found by
356 354
    /// GomoryHu. Before using it, you must allocate a GomoryHu class
357 355
    /// and call its \ref GomoryHu::run() "run()" method.
358 356
    ///
359 357
    /// This example counts the nodes in the minimum cut separating \c s from
360 358
    /// \c t.
361 359
    /// \code
362 360
    /// GomoryHu<Graph> gom(g, capacities);
363 361
    /// gom.run();
364 362
    /// int cnt=0;
365 363
    /// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt;
366 364
    /// \endcode
367 365
    class MinCutNodeIt
368 366
    {
369 367
      bool _side;
370 368
      typename Graph::NodeIt _node_it;
371 369
      typename Graph::template NodeMap<bool> _cut;
372 370
    public:
373 371
      /// Constructor
374 372

	
375 373
      /// Constructor.
376 374
      ///
377 375
      MinCutNodeIt(GomoryHu const &gomory,
378 376
                   ///< The GomoryHu class. You must call its
379 377
                   ///  run() method
380 378
                   ///  before initializing this iterator.
381 379
                   const Node& s, ///< The base node.
382 380
                   const Node& t,
383 381
                   ///< The node you want to separate from node \c s.
384 382
                   bool side=true
385 383
                   ///< If it is \c true (default) then the iterator lists
386 384
                   ///  the nodes of the component containing \c s,
387 385
                   ///  otherwise it lists the other component.
388 386
                   /// \note As the minimum cut is not always unique,
389 387
                   /// \code
390 388
                   /// MinCutNodeIt(gomory, s, t, true);
391 389
                   /// \endcode
392 390
                   /// and
393 391
                   /// \code
394 392
                   /// MinCutNodeIt(gomory, t, s, false);
395 393
                   /// \endcode
396 394
                   /// does not necessarily give the same set of nodes.
397
                   /// However it is ensured that
395
                   /// However, it is ensured that
398 396
                   /// \code
399 397
                   /// MinCutNodeIt(gomory, s, t, true);
400 398
                   /// \endcode
401 399
                   /// and
402 400
                   /// \code
403 401
                   /// MinCutNodeIt(gomory, s, t, false);
404 402
                   /// \endcode
405 403
                   /// together list each node exactly once.
406 404
                   )
407 405
        : _side(side), _cut(gomory._graph)
408 406
      {
409 407
        gomory.minCutMap(s,t,_cut);
410 408
        for(_node_it=typename Graph::NodeIt(gomory._graph);
411 409
            _node_it!=INVALID && _cut[_node_it]!=_side;
412 410
            ++_node_it) {}
413 411
      }
414 412
      /// Conversion to \c Node
415 413

	
416 414
      /// Conversion to \c Node.
417 415
      ///
418 416
      operator typename Graph::Node() const
419 417
      {
420 418
        return _node_it;
421 419
      }
422 420
      bool operator==(Invalid) { return _node_it==INVALID; }
423 421
      bool operator!=(Invalid) { return _node_it!=INVALID; }
424 422
      /// Next node
425 423

	
426 424
      /// Next node.
427 425
      ///
428 426
      MinCutNodeIt &operator++()
429 427
      {
430 428
        for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {}
431 429
        return *this;
432 430
      }
433 431
      /// Postfix incrementation
434 432

	
435 433
      /// Postfix incrementation.
436 434
      ///
437 435
      /// \warning This incrementation
438 436
      /// returns a \c Node, not a \c MinCutNodeIt, as one may
439 437
      /// expect.
440 438
      typename Graph::Node operator++(int)
441 439
      {
442 440
        typename Graph::Node n=*this;
443 441
        ++(*this);
444 442
        return n;
445 443
      }
446 444
    };
447 445
    
448 446
    friend class MinCutEdgeIt;
449 447
    
450 448
    /// Iterate on the edges of a minimum cut
451 449
    
452 450
    /// This iterator class lists the edges of a minimum cut found by
453 451
    /// GomoryHu. Before using it, you must allocate a GomoryHu class
454 452
    /// and call its \ref GomoryHu::run() "run()" method.
455 453
    ///
456 454
    /// This example computes the value of the minimum cut separating \c s from
457 455
    /// \c t.
458 456
    /// \code
459 457
    /// GomoryHu<Graph> gom(g, capacities);
460 458
    /// gom.run();
461 459
    /// int value=0;
462 460
    /// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e)
463 461
    ///   value+=capacities[e];
464 462
    /// \endcode
465 463
    /// The result will be the same as the value returned by
466 464
    /// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)".
467 465
    class MinCutEdgeIt
468 466
    {
469 467
      bool _side;
470 468
      const Graph &_graph;
471 469
      typename Graph::NodeIt _node_it;
472 470
      typename Graph::OutArcIt _arc_it;
473 471
      typename Graph::template NodeMap<bool> _cut;
474 472
      void step()
475 473
      {
476 474
        ++_arc_it;
477 475
        while(_node_it!=INVALID && _arc_it==INVALID)
478 476
          {
479 477
            for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {}
480 478
            if(_node_it!=INVALID)
481 479
              _arc_it=typename Graph::OutArcIt(_graph,_node_it);
482 480
          }
483 481
      }
484 482
      
485 483
    public:
486 484
      /// Constructor
487 485

	
488 486
      /// Constructor.
489 487
      ///
490 488
      MinCutEdgeIt(GomoryHu const &gomory,
491 489
                   ///< The GomoryHu class. You must call its
492 490
                   ///  run() method
493 491
                   ///  before initializing this iterator.
494 492
                   const Node& s,  ///< The base node.
495 493
                   const Node& t,
496 494
                   ///< The node you want to separate from node \c s.
497 495
                   bool side=true
498 496
                   ///< If it is \c true (default) then the listed arcs
499 497
                   ///  will be oriented from the
500 498
                   ///  nodes of the component containing \c s,
501 499
                   ///  otherwise they will be oriented in the opposite
502 500
                   ///  direction.
503 501
                   )
504 502
        : _graph(gomory._graph), _cut(_graph)
505 503
      {
506 504
        gomory.minCutMap(s,t,_cut);
507 505
        if(!side)
508 506
          for(typename Graph::NodeIt n(_graph);n!=INVALID;++n)
509 507
            _cut[n]=!_cut[n];
510 508

	
511 509
        for(_node_it=typename Graph::NodeIt(_graph);
512 510
            _node_it!=INVALID && !_cut[_node_it];
513 511
            ++_node_it) {}
514 512
        _arc_it = _node_it!=INVALID ?
515 513
          typename Graph::OutArcIt(_graph,_node_it) : INVALID;
516 514
        while(_node_it!=INVALID && _arc_it == INVALID)
517 515
          {
518 516
            for(++_node_it; _node_it!=INVALID&&!_cut[_node_it]; ++_node_it) {}
519 517
            if(_node_it!=INVALID)
520 518
              _arc_it= typename Graph::OutArcIt(_graph,_node_it);
521 519
          }
522 520
        while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step();
523 521
      }
524 522
      /// Conversion to \c Arc
525 523

	
526 524
      /// Conversion to \c Arc.
527 525
      ///
528 526
      operator typename Graph::Arc() const
529 527
      {
530 528
        return _arc_it;
531 529
      }
532 530
      /// Conversion to \c Edge
533 531

	
534 532
      /// Conversion to \c Edge.
535 533
      ///
536 534
      operator typename Graph::Edge() const
537 535
      {
538 536
        return _arc_it;
539 537
      }
540 538
      bool operator==(Invalid) { return _node_it==INVALID; }
541 539
      bool operator!=(Invalid) { return _node_it!=INVALID; }
542 540
      /// Next edge
543 541

	
544 542
      /// Next edge.
545 543
      ///
546 544
      MinCutEdgeIt &operator++()
547 545
      {
548 546
        step();
549 547
        while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step();
550 548
        return *this;
551 549
      }
552 550
      /// Postfix incrementation
553 551
      
554 552
      /// Postfix incrementation.
555 553
      ///
556 554
      /// \warning This incrementation
557 555
      /// returns an \c Arc, not a \c MinCutEdgeIt, as one may expect.
558 556
      typename Graph::Arc operator++(int)
559 557
      {
560 558
        typename Graph::Arc e=*this;
561 559
        ++(*this);
562 560
        return e;
563 561
      }
564 562
    };
565 563

	
566 564
  };
567 565

	
568 566
}
569 567

	
570 568
#endif
Ignore white space 384 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_GRAPH_TO_EPS_H
20 20
#define LEMON_GRAPH_TO_EPS_H
21 21

	
22 22
#include<iostream>
23 23
#include<fstream>
24 24
#include<sstream>
25 25
#include<algorithm>
26 26
#include<vector>
27 27

	
28 28
#ifndef WIN32
29 29
#include<sys/time.h>
30 30
#include<ctime>
31 31
#else
32 32
#include<lemon/bits/windows.h>
33 33
#endif
34 34

	
35 35
#include<lemon/math.h>
36 36
#include<lemon/core.h>
37 37
#include<lemon/dim2.h>
38 38
#include<lemon/maps.h>
39 39
#include<lemon/color.h>
40 40
#include<lemon/bits/bezier.h>
41 41
#include<lemon/error.h>
42 42

	
43 43

	
44 44
///\ingroup eps_io
45 45
///\file
46 46
///\brief A well configurable tool for visualizing graphs
47 47

	
48 48
namespace lemon {
49 49

	
50 50
  namespace _graph_to_eps_bits {
51 51
    template<class MT>
52 52
    class _NegY {
53 53
    public:
54 54
      typedef typename MT::Key Key;
55 55
      typedef typename MT::Value Value;
56 56
      const MT &map;
57 57
      int yscale;
58 58
      _NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {}
59 59
      Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);}
60 60
    };
61 61
  }
62 62

	
63 63
///Default traits class of GraphToEps
64 64

	
65 65
///Default traits class of \ref GraphToEps.
66 66
///
67 67
///\param GR is the type of the underlying graph.
68 68
template<class GR>
69 69
struct DefaultGraphToEpsTraits
70 70
{
71 71
  typedef GR Graph;
72 72
  typedef GR Digraph;
73 73
  typedef typename Graph::Node Node;
74 74
  typedef typename Graph::NodeIt NodeIt;
75 75
  typedef typename Graph::Arc Arc;
76 76
  typedef typename Graph::ArcIt ArcIt;
77 77
  typedef typename Graph::InArcIt InArcIt;
78 78
  typedef typename Graph::OutArcIt OutArcIt;
79 79

	
80 80

	
81 81
  const Graph &g;
82 82

	
83 83
  std::ostream& os;
84 84

	
85 85
  typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType;
86 86
  CoordsMapType _coords;
87 87
  ConstMap<typename Graph::Node,double > _nodeSizes;
88 88
  ConstMap<typename Graph::Node,int > _nodeShapes;
89 89

	
90 90
  ConstMap<typename Graph::Node,Color > _nodeColors;
91 91
  ConstMap<typename Graph::Arc,Color > _arcColors;
92 92

	
93 93
  ConstMap<typename Graph::Arc,double > _arcWidths;
94 94

	
95 95
  double _arcWidthScale;
96 96

	
97 97
  double _nodeScale;
98 98
  double _xBorder, _yBorder;
99 99
  double _scale;
100 100
  double _nodeBorderQuotient;
101 101

	
102 102
  bool _drawArrows;
103 103
  double _arrowLength, _arrowWidth;
104 104

	
105 105
  bool _showNodes, _showArcs;
106 106

	
107 107
  bool _enableParallel;
108 108
  double _parArcDist;
109 109

	
110 110
  bool _showNodeText;
111 111
  ConstMap<typename Graph::Node,bool > _nodeTexts;
112 112
  double _nodeTextSize;
113 113

	
114 114
  bool _showNodePsText;
115 115
  ConstMap<typename Graph::Node,bool > _nodePsTexts;
116 116
  char *_nodePsTextsPreamble;
117 117

	
118 118
  bool _undirected;
119 119

	
120 120
  bool _pleaseRemoveOsStream;
121 121

	
122 122
  bool _scaleToA4;
123 123

	
124 124
  std::string _title;
125 125
  std::string _copyright;
126 126

	
127 127
  enum NodeTextColorType
128 128
    { DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType;
129 129
  ConstMap<typename Graph::Node,Color > _nodeTextColors;
130 130

	
131 131
  bool _autoNodeScale;
132 132
  bool _autoArcWidthScale;
133 133

	
134 134
  bool _absoluteNodeSizes;
135 135
  bool _absoluteArcWidths;
136 136

	
137 137
  bool _negY;
138 138

	
139 139
  bool _preScale;
140 140
  ///Constructor
141 141

	
142 142
  ///Constructor
143 143
  ///\param gr  Reference to the graph to be printed.
144 144
  ///\param ost Reference to the output stream.
145
  ///By default it is <tt>std::cout</tt>.
145
  ///By default, it is <tt>std::cout</tt>.
146 146
  ///\param pros If it is \c true, then the \c ostream referenced by \c os
147 147
  ///will be explicitly deallocated by the destructor.
148 148
  DefaultGraphToEpsTraits(const GR &gr, std::ostream& ost = std::cout,
149 149
                          bool pros = false) :
150 150
    g(gr), os(ost),
151 151
    _coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0),
152 152
    _nodeColors(WHITE), _arcColors(BLACK),
153 153
    _arcWidths(1.0), _arcWidthScale(0.003),
154 154
    _nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0),
155 155
    _nodeBorderQuotient(.1),
156 156
    _drawArrows(false), _arrowLength(1), _arrowWidth(0.3),
157 157
    _showNodes(true), _showArcs(true),
158 158
    _enableParallel(false), _parArcDist(1),
159 159
    _showNodeText(false), _nodeTexts(false), _nodeTextSize(1),
160 160
    _showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0),
161 161
    _undirected(lemon::UndirectedTagIndicator<GR>::value),
162 162
    _pleaseRemoveOsStream(pros), _scaleToA4(false),
163 163
    _nodeTextColorType(SAME_COL), _nodeTextColors(BLACK),
164 164
    _autoNodeScale(false),
165 165
    _autoArcWidthScale(false),
166 166
    _absoluteNodeSizes(false),
167 167
    _absoluteArcWidths(false),
168 168
    _negY(false),
169 169
    _preScale(true)
170 170
  {}
171 171
};
172 172

	
173 173
///Auxiliary class to implement the named parameters of \ref graphToEps()
174 174

	
175 175
///Auxiliary class to implement the named parameters of \ref graphToEps().
176 176
///
177 177
///For detailed examples see the \ref graph_to_eps_demo.cc demo file.
178 178
template<class T> class GraphToEps : public T
179 179
{
180 180
  // Can't believe it is required by the C++ standard
181 181
  using T::g;
182 182
  using T::os;
183 183

	
184 184
  using T::_coords;
185 185
  using T::_nodeSizes;
186 186
  using T::_nodeShapes;
187 187
  using T::_nodeColors;
188 188
  using T::_arcColors;
189 189
  using T::_arcWidths;
190 190

	
191 191
  using T::_arcWidthScale;
192 192
  using T::_nodeScale;
193 193
  using T::_xBorder;
194 194
  using T::_yBorder;
195 195
  using T::_scale;
196 196
  using T::_nodeBorderQuotient;
197 197

	
198 198
  using T::_drawArrows;
199 199
  using T::_arrowLength;
200 200
  using T::_arrowWidth;
201 201

	
202 202
  using T::_showNodes;
203 203
  using T::_showArcs;
204 204

	
205 205
  using T::_enableParallel;
206 206
  using T::_parArcDist;
207 207

	
208 208
  using T::_showNodeText;
209 209
  using T::_nodeTexts;
210 210
  using T::_nodeTextSize;
211 211

	
212 212
  using T::_showNodePsText;
213 213
  using T::_nodePsTexts;
214 214
  using T::_nodePsTextsPreamble;
215 215

	
216 216
  using T::_undirected;
217 217

	
218 218
  using T::_pleaseRemoveOsStream;
219 219

	
220 220
  using T::_scaleToA4;
221 221

	
222 222
  using T::_title;
223 223
  using T::_copyright;
224 224

	
225 225
  using T::NodeTextColorType;
226 226
  using T::CUST_COL;
227 227
  using T::DIST_COL;
228 228
  using T::DIST_BW;
229 229
  using T::_nodeTextColorType;
230 230
  using T::_nodeTextColors;
231 231

	
232 232
  using T::_autoNodeScale;
233 233
  using T::_autoArcWidthScale;
234 234

	
235 235
  using T::_absoluteNodeSizes;
236 236
  using T::_absoluteArcWidths;
237 237

	
238 238

	
239 239
  using T::_negY;
240 240
  using T::_preScale;
241 241

	
242 242
  // dradnats ++C eht yb deriuqer si ti eveileb t'naC
243 243

	
244 244
  typedef typename T::Graph Graph;
245 245
  typedef typename T::Digraph Digraph;
246 246
  typedef typename Graph::Node Node;
247 247
  typedef typename Graph::NodeIt NodeIt;
248 248
  typedef typename Graph::Arc Arc;
249 249
  typedef typename Graph::ArcIt ArcIt;
250 250
  typedef typename Graph::InArcIt InArcIt;
251 251
  typedef typename Graph::OutArcIt OutArcIt;
252 252

	
253 253
  static const int INTERPOL_PREC;
254 254
  static const double A4HEIGHT;
255 255
  static const double A4WIDTH;
256 256
  static const double A4BORDER;
257 257

	
258 258
  bool dontPrint;
259 259

	
260 260
public:
261 261
  ///Node shapes
262 262

	
263 263
  ///Node shapes.
264 264
  ///
265 265
  enum NodeShapes {
266 266
    /// = 0
267 267
    ///\image html nodeshape_0.png
268 268
    ///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm
269 269
    CIRCLE=0,
270 270
    /// = 1
271 271
    ///\image html nodeshape_1.png
272 272
    ///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm
273 273
    SQUARE=1,
274 274
    /// = 2
275 275
    ///\image html nodeshape_2.png
276 276
    ///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm
277 277
    DIAMOND=2,
278 278
    /// = 3
279 279
    ///\image html nodeshape_3.png
280 280
    ///\image latex nodeshape_3.eps "MALE shape (3)" width=2cm
281 281
    MALE=3,
282 282
    /// = 4
283 283
    ///\image html nodeshape_4.png
284 284
    ///\image latex nodeshape_4.eps "FEMALE shape (4)" width=2cm
285 285
    FEMALE=4
286 286
  };
287 287

	
288 288
private:
289 289
  class arcLess {
290 290
    const Graph &g;
291 291
  public:
292 292
    arcLess(const Graph &_g) : g(_g) {}
293 293
    bool operator()(Arc a,Arc b) const
294 294
    {
295 295
      Node ai=std::min(g.source(a),g.target(a));
296 296
      Node aa=std::max(g.source(a),g.target(a));
297 297
      Node bi=std::min(g.source(b),g.target(b));
298 298
      Node ba=std::max(g.source(b),g.target(b));
299 299
      return ai<bi ||
300 300
        (ai==bi && (aa < ba ||
301 301
                    (aa==ba && ai==g.source(a) && bi==g.target(b))));
302 302
    }
303 303
  };
304 304
  bool isParallel(Arc e,Arc f) const
305 305
  {
306 306
    return (g.source(e)==g.source(f)&&
307 307
            g.target(e)==g.target(f)) ||
308 308
      (g.source(e)==g.target(f)&&
309 309
       g.target(e)==g.source(f));
310 310
  }
311 311
  template<class TT>
312 312
  static std::string psOut(const dim2::Point<TT> &p)
313 313
    {
314 314
      std::ostringstream os;
315 315
      os << p.x << ' ' << p.y;
316 316
      return os.str();
317 317
    }
318 318
  static std::string psOut(const Color &c)
319 319
    {
320 320
      std::ostringstream os;
321 321
      os << c.red() << ' ' << c.green() << ' ' << c.blue();
322 322
      return os.str();
323 323
    }
324 324

	
325 325
public:
326 326
  GraphToEps(const T &t) : T(t), dontPrint(false) {};
327 327

	
328 328
  template<class X> struct CoordsTraits : public T {
329 329
  typedef X CoordsMapType;
330 330
    const X &_coords;
331 331
    CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {}
332 332
  };
333 333
  ///Sets the map of the node coordinates
334 334

	
335 335
  ///Sets the map of the node coordinates.
336 336
  ///\param x must be a node map with \ref dim2::Point "dim2::Point<double>" or
337 337
  ///\ref dim2::Point "dim2::Point<int>" values.
338 338
  template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) {
339 339
    dontPrint=true;
340 340
    return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x));
341 341
  }
342 342
  template<class X> struct NodeSizesTraits : public T {
343 343
    const X &_nodeSizes;
344 344
    NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {}
345 345
  };
346 346
  ///Sets the map of the node sizes
347 347

	
348 348
  ///Sets the map of the node sizes.
349 349
  ///\param x must be a node map with \c double (or convertible) values.
350 350
  template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x)
351 351
  {
352 352
    dontPrint=true;
353 353
    return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x));
354 354
  }
355 355
  template<class X> struct NodeShapesTraits : public T {
356 356
    const X &_nodeShapes;
357 357
    NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {}
358 358
  };
359 359
  ///Sets the map of the node shapes
360 360

	
361 361
  ///Sets the map of the node shapes.
362 362
  ///The available shape values
363 363
  ///can be found in \ref NodeShapes "enum NodeShapes".
364 364
  ///\param x must be a node map with \c int (or convertible) values.
365 365
  ///\sa NodeShapes
366 366
  template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x)
367 367
  {
368 368
    dontPrint=true;
369 369
    return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x));
370 370
  }
371 371
  template<class X> struct NodeTextsTraits : public T {
372 372
    const X &_nodeTexts;
373 373
    NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {}
374 374
  };
375 375
  ///Sets the text printed on the nodes
376 376

	
377 377
  ///Sets the text printed on the nodes.
378 378
  ///\param x must be a node map with type that can be pushed to a standard
379 379
  ///\c ostream.
380 380
  template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x)
381 381
  {
382 382
    dontPrint=true;
383 383
    _showNodeText=true;
384 384
    return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x));
385 385
  }
386 386
  template<class X> struct NodePsTextsTraits : public T {
387 387
    const X &_nodePsTexts;
388 388
    NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {}
389 389
  };
390 390
  ///Inserts a PostScript block to the nodes
391 391

	
392 392
  ///With this command it is possible to insert a verbatim PostScript
393 393
  ///block to the nodes.
394 394
  ///The PS current point will be moved to the center of the node before
395 395
  ///the PostScript block inserted.
396 396
  ///
397 397
  ///Before and after the block a newline character is inserted so you
398 398
  ///don't have to bother with the separators.
399 399
  ///
400 400
  ///\param x must be a node map with type that can be pushed to a standard
401 401
  ///\c ostream.
402 402
  ///
403 403
  ///\sa nodePsTextsPreamble()
404 404
  template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x)
405 405
  {
406 406
    dontPrint=true;
407 407
    _showNodePsText=true;
408 408
    return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x));
409 409
  }
410 410
  template<class X> struct ArcWidthsTraits : public T {
411 411
    const X &_arcWidths;
412 412
    ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {}
413 413
  };
414 414
  ///Sets the map of the arc widths
415 415

	
416 416
  ///Sets the map of the arc widths.
417 417
  ///\param x must be an arc map with \c double (or convertible) values.
418 418
  template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x)
419 419
  {
420 420
    dontPrint=true;
421 421
    return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x));
422 422
  }
423 423

	
424 424
  template<class X> struct NodeColorsTraits : public T {
425 425
    const X &_nodeColors;
426 426
    NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {}
427 427
  };
428 428
  ///Sets the map of the node colors
429 429

	
430 430
  ///Sets the map of the node colors.
431 431
  ///\param x must be a node map with \ref Color values.
432 432
  ///
433 433
  ///\sa Palette
434 434
  template<class X> GraphToEps<NodeColorsTraits<X> >
435 435
  nodeColors(const X &x)
436 436
  {
437 437
    dontPrint=true;
438 438
    return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x));
439 439
  }
440 440
  template<class X> struct NodeTextColorsTraits : public T {
441 441
    const X &_nodeTextColors;
442 442
    NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {}
443 443
  };
444 444
  ///Sets the map of the node text colors
445 445

	
446 446
  ///Sets the map of the node text colors.
447 447
  ///\param x must be a node map with \ref Color values.
448 448
  ///
449 449
  ///\sa Palette
450 450
  template<class X> GraphToEps<NodeTextColorsTraits<X> >
451 451
  nodeTextColors(const X &x)
452 452
  {
453 453
    dontPrint=true;
454 454
    _nodeTextColorType=CUST_COL;
455 455
    return GraphToEps<NodeTextColorsTraits<X> >
456 456
      (NodeTextColorsTraits<X>(*this,x));
457 457
  }
458 458
  template<class X> struct ArcColorsTraits : public T {
459 459
    const X &_arcColors;
460 460
    ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {}
461 461
  };
462 462
  ///Sets the map of the arc colors
463 463

	
464 464
  ///Sets the map of the arc colors.
465 465
  ///\param x must be an arc map with \ref Color values.
466 466
  ///
467 467
  ///\sa Palette
468 468
  template<class X> GraphToEps<ArcColorsTraits<X> >
469 469
  arcColors(const X &x)
470 470
  {
471 471
    dontPrint=true;
472 472
    return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x));
473 473
  }
474 474
  ///Sets a global scale factor for node sizes
475 475

	
476 476
  ///Sets a global scale factor for node sizes.
477 477
  ///
478 478
  /// If nodeSizes() is not given, this function simply sets the node
479 479
  /// sizes to \c d.  If nodeSizes() is given, but
480 480
  /// autoNodeScale() is not, then the node size given by
481 481
  /// nodeSizes() will be multiplied by the value \c d.
482 482
  /// If both nodeSizes() and autoNodeScale() are used, then the
483 483
  /// node sizes will be scaled in such a way that the greatest size will be
484 484
  /// equal to \c d.
485 485
  /// \sa nodeSizes()
486 486
  /// \sa autoNodeScale()
487 487
  GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;}
488 488
  ///Turns on/off the automatic node size scaling.
489 489

	
490 490
  ///Turns on/off the automatic node size scaling.
491 491
  ///
492 492
  ///\sa nodeScale()
493 493
  ///
494 494
  GraphToEps<T> &autoNodeScale(bool b=true) {
495 495
    _autoNodeScale=b;return *this;
496 496
  }
497 497

	
498 498
  ///Turns on/off the absolutematic node size scaling.
499 499

	
500 500
  ///Turns on/off the absolutematic node size scaling.
501 501
  ///
502 502
  ///\sa nodeScale()
503 503
  ///
504 504
  GraphToEps<T> &absoluteNodeSizes(bool b=true) {
505 505
    _absoluteNodeSizes=b;return *this;
506 506
  }
507 507

	
508 508
  ///Negates the Y coordinates.
509 509
  GraphToEps<T> &negateY(bool b=true) {
510 510
    _negY=b;return *this;
511 511
  }
512 512

	
513 513
  ///Turn on/off pre-scaling
514 514

	
515
  ///By default graphToEps() rescales the whole image in order to avoid
515
  ///By default, graphToEps() rescales the whole image in order to avoid
516 516
  ///very big or very small bounding boxes.
517 517
  ///
518 518
  ///This (p)rescaling can be turned off with this function.
519 519
  ///
520 520
  GraphToEps<T> &preScale(bool b=true) {
521 521
    _preScale=b;return *this;
522 522
  }
523 523

	
524 524
  ///Sets a global scale factor for arc widths
525 525

	
526 526
  /// Sets a global scale factor for arc widths.
527 527
  ///
528 528
  /// If arcWidths() is not given, this function simply sets the arc
529 529
  /// widths to \c d.  If arcWidths() is given, but
530 530
  /// autoArcWidthScale() is not, then the arc withs given by
531 531
  /// arcWidths() will be multiplied by the value \c d.
532 532
  /// If both arcWidths() and autoArcWidthScale() are used, then the
533 533
  /// arc withs will be scaled in such a way that the greatest width will be
534 534
  /// equal to \c d.
535 535
  GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;}
536 536
  ///Turns on/off the automatic arc width scaling.
537 537

	
538 538
  ///Turns on/off the automatic arc width scaling.
539 539
  ///
540 540
  ///\sa arcWidthScale()
541 541
  ///
542 542
  GraphToEps<T> &autoArcWidthScale(bool b=true) {
543 543
    _autoArcWidthScale=b;return *this;
544 544
  }
545 545
  ///Turns on/off the absolutematic arc width scaling.
546 546

	
547 547
  ///Turns on/off the absolutematic arc width scaling.
548 548
  ///
549 549
  ///\sa arcWidthScale()
550 550
  ///
551 551
  GraphToEps<T> &absoluteArcWidths(bool b=true) {
552 552
    _absoluteArcWidths=b;return *this;
553 553
  }
554 554
  ///Sets a global scale factor for the whole picture
555 555
  GraphToEps<T> &scale(double d) {_scale=d;return *this;}
556 556
  ///Sets the width of the border around the picture
557 557
  GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;}
558 558
  ///Sets the width of the border around the picture
559 559
  GraphToEps<T> &border(double x, double y) {
560 560
    _xBorder=x;_yBorder=y;return *this;
561 561
  }
562 562
  ///Sets whether to draw arrows
563 563
  GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;}
564 564
  ///Sets the length of the arrowheads
565 565
  GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;}
566 566
  ///Sets the width of the arrowheads
567 567
  GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;}
568 568

	
569 569
  ///Scales the drawing to fit to A4 page
570 570
  GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;}
571 571

	
572 572
  ///Enables parallel arcs
573 573
  GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;}
574 574

	
575 575
  ///Sets the distance between parallel arcs
576 576
  GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;}
577 577

	
578 578
  ///Hides the arcs
579 579
  GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;}
580 580
  ///Hides the nodes
581 581
  GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;}
582 582

	
583 583
  ///Sets the size of the node texts
584 584
  GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;}
585 585

	
586 586
  ///Sets the color of the node texts to be different from the node color
587 587

	
588 588
  ///Sets the color of the node texts to be as different from the node color
589 589
  ///as it is possible.
590 590
  GraphToEps<T> &distantColorNodeTexts()
591 591
  {_nodeTextColorType=DIST_COL;return *this;}
592 592
  ///Sets the color of the node texts to be black or white and always visible.
593 593

	
594 594
  ///Sets the color of the node texts to be black or white according to
595 595
  ///which is more different from the node color.
596 596
  GraphToEps<T> &distantBWNodeTexts()
597 597
  {_nodeTextColorType=DIST_BW;return *this;}
598 598

	
599 599
  ///Gives a preamble block for node Postscript block.
600 600

	
601 601
  ///Gives a preamble block for node Postscript block.
602 602
  ///
603 603
  ///\sa nodePsTexts()
604 604
  GraphToEps<T> & nodePsTextsPreamble(const char *str) {
605 605
    _nodePsTextsPreamble=str ;return *this;
606 606
  }
607 607
  ///Sets whether the graph is undirected
608 608

	
609 609
  ///Sets whether the graph is undirected.
610 610
  ///
611 611
  ///This setting is the default for undirected graphs.
612 612
  ///
613 613
  ///\sa directed()
614 614
   GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;}
615 615

	
616 616
  ///Sets whether the graph is directed
617 617

	
618 618
  ///Sets whether the graph is directed.
619 619
  ///Use it to show the edges as a pair of directed ones.
620 620
  ///
621 621
  ///This setting is the default for digraphs.
622 622
  ///
623 623
  ///\sa undirected()
624 624
  GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;}
625 625

	
626 626
  ///Sets the title.
627 627

	
628 628
  ///Sets the title of the generated image,
629 629
  ///namely it inserts a <tt>%%Title:</tt> DSC field to the header of
630 630
  ///the EPS file.
631 631
  GraphToEps<T> &title(const std::string &t) {_title=t;return *this;}
632 632
  ///Sets the copyright statement.
633 633

	
634 634
  ///Sets the copyright statement of the generated image,
635 635
  ///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of
636 636
  ///the EPS file.
637 637
  GraphToEps<T> &copyright(const std::string &t) {_copyright=t;return *this;}
638 638

	
639 639
protected:
640 640
  bool isInsideNode(dim2::Point<double> p, double r,int t)
641 641
  {
642 642
    switch(t) {
643 643
    case CIRCLE:
644 644
    case MALE:
645 645
    case FEMALE:
646 646
      return p.normSquare()<=r*r;
647 647
    case SQUARE:
648 648
      return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r;
649 649
    case DIAMOND:
650 650
      return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r;
651 651
    }
652 652
    return false;
653 653
  }
654 654

	
655 655
public:
656 656
  ~GraphToEps() { }
657 657

	
658 658
  ///Draws the graph.
659 659

	
660 660
  ///Like other functions using
661 661
  ///\ref named-templ-func-param "named template parameters",
662 662
  ///this function calls the algorithm itself, i.e. in this case
663 663
  ///it draws the graph.
664 664
  void run() {
665 665
    const double EPSILON=1e-9;
666 666
    if(dontPrint) return;
667 667

	
668 668
    _graph_to_eps_bits::_NegY<typename T::CoordsMapType>
669 669
      mycoords(_coords,_negY);
670 670

	
671 671
    os << "%!PS-Adobe-2.0 EPSF-2.0\n";
672 672
    if(_title.size()>0) os << "%%Title: " << _title << '\n';
673 673
     if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n';
674 674
    os << "%%Creator: LEMON, graphToEps()\n";
675 675

	
676 676
    {
677 677
      os << "%%CreationDate: ";
678 678
#ifndef WIN32
679 679
      timeval tv;
680 680
      gettimeofday(&tv, 0);
681 681

	
682 682
      char cbuf[26];
683 683
      ctime_r(&tv.tv_sec,cbuf);
684 684
      os << cbuf;
685 685
#else
686 686
      os << bits::getWinFormattedDate();
687 687
#endif
688 688
    }
689 689
    os << std::endl;
690 690

	
691 691
    if (_autoArcWidthScale) {
692 692
      double max_w=0;
693 693
      for(ArcIt e(g);e!=INVALID;++e)
694 694
        max_w=std::max(double(_arcWidths[e]),max_w);
695 695
      if(max_w>EPSILON) {
696 696
        _arcWidthScale/=max_w;
697 697
      }
698 698
    }
699 699

	
700 700
    if (_autoNodeScale) {
701 701
      double max_s=0;
702 702
      for(NodeIt n(g);n!=INVALID;++n)
703 703
        max_s=std::max(double(_nodeSizes[n]),max_s);
704 704
      if(max_s>EPSILON) {
705 705
        _nodeScale/=max_s;
706 706
      }
707 707
    }
... ...
@@ -925,263 +925,263 @@
925 925
              bez=bez.before((t1+t2)/2);
926 926
//               rn=_nodeSizes[g.source(*e)]*_nodeScale;
927 927
//               node_shape=_nodeShapes[g.source(*e)];
928 928
//               t1=0;t2=1;
929 929
//               for(int i=0;i<INTERPOL_PREC;++i)
930 930
//                 if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape))
931 931
//                   t1=(t1+t2)/2;
932 932
//                 else t2=(t1+t2)/2;
933 933
//               bez=bez.after((t1+t2)/2);
934 934
              os << _arcWidths[*e]*_arcWidthScale << " setlinewidth "
935 935
                 << _arcColors[*e].red() << ' '
936 936
                 << _arcColors[*e].green() << ' '
937 937
                 << _arcColors[*e].blue() << " setrgbcolor newpath\n"
938 938
                 << bez.p1.x << ' ' <<  bez.p1.y << " moveto\n"
939 939
                 << bez.p2.x << ' ' << bez.p2.y << ' '
940 940
                 << bez.p3.x << ' ' << bez.p3.y << ' '
941 941
                 << bez.p4.x << ' ' << bez.p4.y << " curveto stroke\n";
942 942
              dim2::Point<double> dd(rot90(linend-apoint));
943 943
              dd*=(.5*_arcWidths[*e]*_arcWidthScale+_arrowWidth)/
944 944
                std::sqrt(dd.normSquare());
945 945
              os << "newpath " << psOut(apoint) << " moveto "
946 946
                 << psOut(linend+dd) << " lineto "
947 947
                 << psOut(linend-dd) << " lineto closepath fill\n";
948 948
            }
949 949
            else {
950 950
              os << mycoords[g.source(*e)].x << ' '
951 951
                 << mycoords[g.source(*e)].y << ' '
952 952
                 << mm.x << ' ' << mm.y << ' '
953 953
                 << mycoords[g.target(*e)].x << ' '
954 954
                 << mycoords[g.target(*e)].y << ' '
955 955
                 << _arcColors[*e].red() << ' '
956 956
                 << _arcColors[*e].green() << ' '
957 957
                 << _arcColors[*e].blue() << ' '
958 958
                 << _arcWidths[*e]*_arcWidthScale << " lb\n";
959 959
            }
960 960
            sw+=_arcWidths[*e]*_arcWidthScale/2.0+_parArcDist;
961 961
          }
962 962
        }
963 963
      }
964 964
      else for(ArcIt e(g);e!=INVALID;++e)
965 965
        if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0
966 966
           &&g.source(e)!=g.target(e)) {
967 967
          if(_drawArrows) {
968 968
            dim2::Point<double> d(mycoords[g.target(e)]-mycoords[g.source(e)]);
969 969
            double rn=_nodeSizes[g.target(e)]*_nodeScale;
970 970
            int node_shape=_nodeShapes[g.target(e)];
971 971
            double t1=0,t2=1;
972 972
            for(int i=0;i<INTERPOL_PREC;++i)
973 973
              if(isInsideNode((-(t1+t2)/2)*d,rn,node_shape)) t1=(t1+t2)/2;
974 974
              else t2=(t1+t2)/2;
975 975
            double l=std::sqrt(d.normSquare());
976 976
            d/=l;
977 977

	
978 978
            os << l*(1-(t1+t2)/2) << ' '
979 979
               << _arcWidths[e]*_arcWidthScale << ' '
980 980
               << d.x << ' ' << d.y << ' '
981 981
               << mycoords[g.source(e)].x << ' '
982 982
               << mycoords[g.source(e)].y << ' '
983 983
               << _arcColors[e].red() << ' '
984 984
               << _arcColors[e].green() << ' '
985 985
               << _arcColors[e].blue() << " arr\n";
986 986
          }
987 987
          else os << mycoords[g.source(e)].x << ' '
988 988
                  << mycoords[g.source(e)].y << ' '
989 989
                  << mycoords[g.target(e)].x << ' '
990 990
                  << mycoords[g.target(e)].y << ' '
991 991
                  << _arcColors[e].red() << ' '
992 992
                  << _arcColors[e].green() << ' '
993 993
                  << _arcColors[e].blue() << ' '
994 994
                  << _arcWidths[e]*_arcWidthScale << " l\n";
995 995
        }
996 996
      os << "grestore\n";
997 997
    }
998 998
    if(_showNodes) {
999 999
      os << "%Nodes:\ngsave\n";
1000 1000
      for(NodeIt n(g);n!=INVALID;++n) {
1001 1001
        os << mycoords[n].x << ' ' << mycoords[n].y << ' '
1002 1002
           << _nodeSizes[n]*_nodeScale << ' '
1003 1003
           << _nodeColors[n].red() << ' '
1004 1004
           << _nodeColors[n].green() << ' '
1005 1005
           << _nodeColors[n].blue() << ' ';
1006 1006
        switch(_nodeShapes[n]) {
1007 1007
        case CIRCLE:
1008 1008
          os<< "nc";break;
1009 1009
        case SQUARE:
1010 1010
          os<< "nsq";break;
1011 1011
        case DIAMOND:
1012 1012
          os<< "ndi";break;
1013 1013
        case MALE:
1014 1014
          os<< "nmale";break;
1015 1015
        case FEMALE:
1016 1016
          os<< "nfemale";break;
1017 1017
        }
1018 1018
        os<<'\n';
1019 1019
      }
1020 1020
      os << "grestore\n";
1021 1021
    }
1022 1022
    if(_showNodeText) {
1023 1023
      os << "%Node texts:\ngsave\n";
1024 1024
      os << "/fosi " << _nodeTextSize << " def\n";
1025 1025
      os << "(Helvetica) findfont fosi scalefont setfont\n";
1026 1026
      for(NodeIt n(g);n!=INVALID;++n) {
1027 1027
        switch(_nodeTextColorType) {
1028 1028
        case DIST_COL:
1029 1029
          os << psOut(distantColor(_nodeColors[n])) << " setrgbcolor\n";
1030 1030
          break;
1031 1031
        case DIST_BW:
1032 1032
          os << psOut(distantBW(_nodeColors[n])) << " setrgbcolor\n";
1033 1033
          break;
1034 1034
        case CUST_COL:
1035 1035
          os << psOut(distantColor(_nodeTextColors[n])) << " setrgbcolor\n";
1036 1036
          break;
1037 1037
        default:
1038 1038
          os << "0 0 0 setrgbcolor\n";
1039 1039
        }
1040 1040
        os << mycoords[n].x << ' ' << mycoords[n].y
1041 1041
           << " (" << _nodeTexts[n] << ") cshow\n";
1042 1042
      }
1043 1043
      os << "grestore\n";
1044 1044
    }
1045 1045
    if(_showNodePsText) {
1046 1046
      os << "%Node PS blocks:\ngsave\n";
1047 1047
      for(NodeIt n(g);n!=INVALID;++n)
1048 1048
        os << mycoords[n].x << ' ' << mycoords[n].y
1049 1049
           << " moveto\n" << _nodePsTexts[n] << "\n";
1050 1050
      os << "grestore\n";
1051 1051
    }
1052 1052

	
1053 1053
    os << "grestore\nshowpage\n";
1054 1054

	
1055 1055
    //CleanUp:
1056 1056
    if(_pleaseRemoveOsStream) {delete &os;}
1057 1057
  }
1058 1058

	
1059 1059
  ///\name Aliases
1060 1060
  ///These are just some aliases to other parameter setting functions.
1061 1061

	
1062 1062
  ///@{
1063 1063

	
1064 1064
  ///An alias for arcWidths()
1065 1065
  template<class X> GraphToEps<ArcWidthsTraits<X> > edgeWidths(const X &x)
1066 1066
  {
1067 1067
    return arcWidths(x);
1068 1068
  }
1069 1069

	
1070 1070
  ///An alias for arcColors()
1071 1071
  template<class X> GraphToEps<ArcColorsTraits<X> >
1072 1072
  edgeColors(const X &x)
1073 1073
  {
1074 1074
    return arcColors(x);
1075 1075
  }
1076 1076

	
1077 1077
  ///An alias for arcWidthScale()
1078 1078
  GraphToEps<T> &edgeWidthScale(double d) {return arcWidthScale(d);}
1079 1079

	
1080 1080
  ///An alias for autoArcWidthScale()
1081 1081
  GraphToEps<T> &autoEdgeWidthScale(bool b=true)
1082 1082
  {
1083 1083
    return autoArcWidthScale(b);
1084 1084
  }
1085 1085

	
1086 1086
  ///An alias for absoluteArcWidths()
1087 1087
  GraphToEps<T> &absoluteEdgeWidths(bool b=true)
1088 1088
  {
1089 1089
    return absoluteArcWidths(b);
1090 1090
  }
1091 1091

	
1092 1092
  ///An alias for parArcDist()
1093 1093
  GraphToEps<T> &parEdgeDist(double d) {return parArcDist(d);}
1094 1094

	
1095 1095
  ///An alias for hideArcs()
1096 1096
  GraphToEps<T> &hideEdges(bool b=true) {return hideArcs(b);}
1097 1097

	
1098 1098
  ///@}
1099 1099
};
1100 1100

	
1101 1101
template<class T>
1102 1102
const int GraphToEps<T>::INTERPOL_PREC = 20;
1103 1103
template<class T>
1104 1104
const double GraphToEps<T>::A4HEIGHT = 841.8897637795276;
1105 1105
template<class T>
1106 1106
const double GraphToEps<T>::A4WIDTH  = 595.275590551181;
1107 1107
template<class T>
1108 1108
const double GraphToEps<T>::A4BORDER = 15;
1109 1109

	
1110 1110

	
1111 1111
///Generates an EPS file from a graph
1112 1112

	
1113 1113
///\ingroup eps_io
1114 1114
///Generates an EPS file from a graph.
1115 1115
///\param g Reference to the graph to be printed.
1116 1116
///\param os Reference to the output stream.
1117
///By default it is <tt>std::cout</tt>.
1117
///By default, it is <tt>std::cout</tt>.
1118 1118
///
1119 1119
///This function also has a lot of
1120 1120
///\ref named-templ-func-param "named parameters",
1121 1121
///they are declared as the members of class \ref GraphToEps. The following
1122 1122
///example shows how to use these parameters.
1123 1123
///\code
1124 1124
/// graphToEps(g,os).scale(10).coords(coords)
1125 1125
///              .nodeScale(2).nodeSizes(sizes)
1126 1126
///              .arcWidthScale(.4).run();
1127 1127
///\endcode
1128 1128
///
1129
///For more detailed examples see the \ref graph_to_eps_demo.cc demo file.
1129
///For more detailed examples, see the \ref graph_to_eps_demo.cc demo file.
1130 1130
///
1131 1131
///\warning Don't forget to put the \ref GraphToEps::run() "run()"
1132 1132
///to the end of the parameter list.
1133 1133
///\sa GraphToEps
1134 1134
///\sa graphToEps(GR &g, const char *file_name)
1135 1135
template<class GR>
1136 1136
GraphToEps<DefaultGraphToEpsTraits<GR> >
1137 1137
graphToEps(GR &g, std::ostream& os=std::cout)
1138 1138
{
1139 1139
  return
1140 1140
    GraphToEps<DefaultGraphToEpsTraits<GR> >(DefaultGraphToEpsTraits<GR>(g,os));
1141 1141
}
1142 1142

	
1143 1143
///Generates an EPS file from a graph
1144 1144

	
1145 1145
///\ingroup eps_io
1146 1146
///This function does the same as
1147 1147
///\ref graphToEps(GR &g,std::ostream& os)
1148 1148
///but it writes its output into the file \c file_name
1149 1149
///instead of a stream.
1150 1150
///\sa graphToEps(GR &g, std::ostream& os)
1151 1151
template<class GR>
1152 1152
GraphToEps<DefaultGraphToEpsTraits<GR> >
1153 1153
graphToEps(GR &g,const char *file_name)
1154 1154
{
1155 1155
  std::ostream* os = new std::ofstream(file_name);
1156 1156
  if (!(*os)) {
1157 1157
    delete os;
1158 1158
    throw IoError("Cannot write file", file_name);
1159 1159
  }
1160 1160
  return GraphToEps<DefaultGraphToEpsTraits<GR> >
1161 1161
    (DefaultGraphToEpsTraits<GR>(g,*os,true));
1162 1162
}
1163 1163

	
1164 1164
///Generates an EPS file from a graph
1165 1165

	
1166 1166
///\ingroup eps_io
1167 1167
///This function does the same as
1168 1168
///\ref graphToEps(GR &g,std::ostream& os)
1169 1169
///but it writes its output into the file \c file_name
1170 1170
///instead of a stream.
1171 1171
///\sa graphToEps(GR &g, std::ostream& os)
1172 1172
template<class GR>
1173 1173
GraphToEps<DefaultGraphToEpsTraits<GR> >
1174 1174
graphToEps(GR &g,const std::string& file_name)
1175 1175
{
1176 1176
  std::ostream* os = new std::ofstream(file_name.c_str());
1177 1177
  if (!(*os)) {
1178 1178
    delete os;
1179 1179
    throw IoError("Cannot write file", file_name);
1180 1180
  }
1181 1181
  return GraphToEps<DefaultGraphToEpsTraits<GR> >
1182 1182
    (DefaultGraphToEpsTraits<GR>(g,*os,true));
1183 1183
}
1184 1184

	
1185 1185
} //END OF NAMESPACE LEMON
1186 1186

	
1187 1187
#endif // LEMON_GRAPH_TO_EPS_H
Ignore white space 6 line context
... ...
@@ -98,362 +98,362 @@
98 98
    typedef True FindEdgeTag;
99 99
    typedef True FindArcTag;
100 100

	
101 101
    Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
102 102
      if (prev != INVALID) return INVALID;
103 103
      int d = u._id ^ v._id;
104 104
      int k = 0;
105 105
      if (d == 0) return INVALID;
106 106
      for ( ; (d & 1) == 0; d >>= 1) ++k;
107 107
      if (d >> 1 != 0) return INVALID;
108 108
      return (k << (_dim-1)) | ((u._id >> (k+1)) << k) |
109 109
        (u._id & ((1 << k) - 1));
110 110
    }
111 111

	
112 112
    Arc findArc(Node u, Node v, Arc prev = INVALID) const {
113 113
      Edge edge = findEdge(u, v, prev);
114 114
      if (edge == INVALID) return INVALID;
115 115
      int k = edge._id >> (_dim-1);
116 116
      return ((u._id >> k) & 1) == 1 ? edge._id << 1 : (edge._id << 1) | 1;
117 117
    }
118 118

	
119 119
    class Node {
120 120
      friend class HypercubeGraphBase;
121 121

	
122 122
    protected:
123 123
      int _id;
124 124
      Node(int id) : _id(id) {}
125 125
    public:
126 126
      Node() {}
127 127
      Node (Invalid) : _id(-1) {}
128 128
      bool operator==(const Node node) const {return _id == node._id;}
129 129
      bool operator!=(const Node node) const {return _id != node._id;}
130 130
      bool operator<(const Node node) const {return _id < node._id;}
131 131
    };
132 132

	
133 133
    class Edge {
134 134
      friend class HypercubeGraphBase;
135 135
      friend class Arc;
136 136

	
137 137
    protected:
138 138
      int _id;
139 139

	
140 140
      Edge(int id) : _id(id) {}
141 141

	
142 142
    public:
143 143
      Edge() {}
144 144
      Edge (Invalid) : _id(-1) {}
145 145
      bool operator==(const Edge edge) const {return _id == edge._id;}
146 146
      bool operator!=(const Edge edge) const {return _id != edge._id;}
147 147
      bool operator<(const Edge edge) const {return _id < edge._id;}
148 148
    };
149 149

	
150 150
    class Arc {
151 151
      friend class HypercubeGraphBase;
152 152

	
153 153
    protected:
154 154
      int _id;
155 155

	
156 156
      Arc(int id) : _id(id) {}
157 157

	
158 158
    public:
159 159
      Arc() {}
160 160
      Arc (Invalid) : _id(-1) {}
161 161
      operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; }
162 162
      bool operator==(const Arc arc) const {return _id == arc._id;}
163 163
      bool operator!=(const Arc arc) const {return _id != arc._id;}
164 164
      bool operator<(const Arc arc) const {return _id < arc._id;}
165 165
    };
166 166

	
167 167
    void first(Node& node) const {
168 168
      node._id = _node_num - 1;
169 169
    }
170 170

	
171 171
    static void next(Node& node) {
172 172
      --node._id;
173 173
    }
174 174

	
175 175
    void first(Edge& edge) const {
176 176
      edge._id = _edge_num - 1;
177 177
    }
178 178

	
179 179
    static void next(Edge& edge) {
180 180
      --edge._id;
181 181
    }
182 182

	
183 183
    void first(Arc& arc) const {
184 184
      arc._id = 2 * _edge_num - 1;
185 185
    }
186 186

	
187 187
    static void next(Arc& arc) {
188 188
      --arc._id;
189 189
    }
190 190

	
191 191
    void firstInc(Edge& edge, bool& dir, const Node& node) const {
192 192
      edge._id = node._id >> 1;
193 193
      dir = (node._id & 1) == 0;
194 194
    }
195 195

	
196 196
    void nextInc(Edge& edge, bool& dir) const {
197 197
      Node n = dir ? u(edge) : v(edge);
198 198
      int k = (edge._id >> (_dim-1)) + 1;
199 199
      if (k < _dim) {
200 200
        edge._id = (k << (_dim-1)) |
201 201
          ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
202 202
        dir = ((n._id >> k) & 1) == 0;
203 203
      } else {
204 204
        edge._id = -1;
205 205
        dir = true;
206 206
      }
207 207
    }
208 208

	
209 209
    void firstOut(Arc& arc, const Node& node) const {
210 210
      arc._id = ((node._id >> 1) << 1) | (~node._id & 1);
211 211
    }
212 212

	
213 213
    void nextOut(Arc& arc) const {
214 214
      Node n = (arc._id & 1) == 1 ? u(arc) : v(arc);
215 215
      int k = (arc._id >> _dim) + 1;
216 216
      if (k < _dim) {
217 217
        arc._id = (k << (_dim-1)) |
218 218
          ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
219 219
        arc._id = (arc._id << 1) | (~(n._id >> k) & 1);
220 220
      } else {
221 221
        arc._id = -1;
222 222
      }
223 223
    }
224 224

	
225 225
    void firstIn(Arc& arc, const Node& node) const {
226 226
      arc._id = ((node._id >> 1) << 1) | (node._id & 1);
227 227
    }
228 228

	
229 229
    void nextIn(Arc& arc) const {
230 230
      Node n = (arc._id & 1) == 1 ? v(arc) : u(arc);
231 231
      int k = (arc._id >> _dim) + 1;
232 232
      if (k < _dim) {
233 233
        arc._id = (k << (_dim-1)) |
234 234
          ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1));
235 235
        arc._id = (arc._id << 1) | ((n._id >> k) & 1);
236 236
      } else {
237 237
        arc._id = -1;
238 238
      }
239 239
    }
240 240

	
241 241
    static bool direction(Arc arc) {
242 242
      return (arc._id & 1) == 1;
243 243
    }
244 244

	
245 245
    static Arc direct(Edge edge, bool dir) {
246 246
      return Arc((edge._id << 1) | (dir ? 1 : 0));
247 247
    }
248 248

	
249 249
    int dimension() const {
250 250
      return _dim;
251 251
    }
252 252

	
253 253
    bool projection(Node node, int n) const {
254 254
      return static_cast<bool>(node._id & (1 << n));
255 255
    }
256 256

	
257 257
    int dimension(Edge edge) const {
258 258
      return edge._id >> (_dim-1);
259 259
    }
260 260

	
261 261
    int dimension(Arc arc) const {
262 262
      return arc._id >> _dim;
263 263
    }
264 264

	
265 265
    static int index(Node node) {
266 266
      return node._id;
267 267
    }
268 268

	
269 269
    Node operator()(int ix) const {
270 270
      return Node(ix);
271 271
    }
272 272

	
273 273
  private:
274 274
    int _dim;
275 275
    int _node_num, _edge_num;
276 276
  };
277 277

	
278 278

	
279 279
  typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase;
280 280

	
281 281
  /// \ingroup graphs
282 282
  ///
283 283
  /// \brief Hypercube graph class
284 284
  ///
285 285
  /// HypercubeGraph implements a special graph type. The nodes of the
286 286
  /// graph are indexed with integers having at most \c dim binary digits.
287 287
  /// Two nodes are connected in the graph if and only if their indices
288 288
  /// differ only on one position in the binary form.
289 289
  /// This class is completely static and it needs constant memory space.
290
  /// Thus you can neither add nor delete nodes or edges, however 
290
  /// Thus you can neither add nor delete nodes or edges, however,
291 291
  /// the structure can be resized using resize().
292 292
  ///
293 293
  /// This type fully conforms to the \ref concepts::Graph "Graph concept".
294 294
  /// Most of its member functions and nested classes are documented
295 295
  /// only in the concept class.
296 296
  ///
297 297
  /// This class provides constant time counting for nodes, edges and arcs.
298 298
  ///
299 299
  /// \note The type of the indices is chosen to \c int for efficiency
300 300
  /// reasons. Thus the maximum dimension of this implementation is 26
301 301
  /// (assuming that the size of \c int is 32 bit).
302 302
  class HypercubeGraph : public ExtendedHypercubeGraphBase {
303 303
    typedef ExtendedHypercubeGraphBase Parent;
304 304

	
305 305
  public:
306 306

	
307 307
    /// \brief Constructs a hypercube graph with \c dim dimensions.
308 308
    ///
309 309
    /// Constructs a hypercube graph with \c dim dimensions.
310 310
    HypercubeGraph(int dim) { construct(dim); }
311 311

	
312 312
    /// \brief Resizes the graph
313 313
    ///
314 314
    /// This function resizes the graph. It fully destroys and
315 315
    /// rebuilds the structure, therefore the maps of the graph will be
316 316
    /// reallocated automatically and the previous values will be lost.
317 317
    void resize(int dim) {
318 318
      Parent::notifier(Arc()).clear();
319 319
      Parent::notifier(Edge()).clear();
320 320
      Parent::notifier(Node()).clear();
321 321
      construct(dim);
322 322
      Parent::notifier(Node()).build();
323 323
      Parent::notifier(Edge()).build();
324 324
      Parent::notifier(Arc()).build();
325 325
    }
326 326

	
327 327
    /// \brief The number of dimensions.
328 328
    ///
329 329
    /// Gives back the number of dimensions.
330 330
    int dimension() const {
331 331
      return Parent::dimension();
332 332
    }
333 333

	
334 334
    /// \brief Returns \c true if the n'th bit of the node is one.
335 335
    ///
336 336
    /// Returns \c true if the n'th bit of the node is one.
337 337
    bool projection(Node node, int n) const {
338 338
      return Parent::projection(node, n);
339 339
    }
340 340

	
341 341
    /// \brief The dimension id of an edge.
342 342
    ///
343 343
    /// Gives back the dimension id of the given edge.
344 344
    /// It is in the range <tt>[0..dim-1]</tt>.
345 345
    int dimension(Edge edge) const {
346 346
      return Parent::dimension(edge);
347 347
    }
348 348

	
349 349
    /// \brief The dimension id of an arc.
350 350
    ///
351 351
    /// Gives back the dimension id of the given arc.
352 352
    /// It is in the range <tt>[0..dim-1]</tt>.
353 353
    int dimension(Arc arc) const {
354 354
      return Parent::dimension(arc);
355 355
    }
356 356

	
357 357
    /// \brief The index of a node.
358 358
    ///
359 359
    /// Gives back the index of the given node.
360 360
    /// The lower bits of the integer describes the node.
361 361
    static int index(Node node) {
362 362
      return Parent::index(node);
363 363
    }
364 364

	
365 365
    /// \brief Gives back a node by its index.
366 366
    ///
367 367
    /// Gives back a node by its index.
368 368
    Node operator()(int ix) const {
369 369
      return Parent::operator()(ix);
370 370
    }
371 371

	
372 372
    /// \brief Number of nodes.
373 373
    int nodeNum() const { return Parent::nodeNum(); }
374 374
    /// \brief Number of edges.
375 375
    int edgeNum() const { return Parent::edgeNum(); }
376 376
    /// \brief Number of arcs.
377 377
    int arcNum() const { return Parent::arcNum(); }
378 378

	
379 379
    /// \brief Linear combination map.
380 380
    ///
381 381
    /// This map makes possible to give back a linear combination
382 382
    /// for each node. It works like the \c std::accumulate function,
383 383
    /// so it accumulates the \c bf binary function with the \c fv first
384 384
    /// value. The map accumulates only on that positions (dimensions)
385 385
    /// where the index of the node is one. The values that have to be
386 386
    /// accumulated should be given by the \c begin and \c end iterators
387 387
    /// and the length of this range should be equal to the dimension
388 388
    /// number of the graph.
389 389
    ///
390 390
    ///\code
391 391
    /// const int DIM = 3;
392 392
    /// HypercubeGraph graph(DIM);
393 393
    /// dim2::Point<double> base[DIM];
394 394
    /// for (int k = 0; k < DIM; ++k) {
395 395
    ///   base[k].x = rnd();
396 396
    ///   base[k].y = rnd();
397 397
    /// }
398 398
    /// HypercubeGraph::HyperMap<dim2::Point<double> >
399 399
    ///   pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
400 400
    ///\endcode
401 401
    ///
402 402
    /// \see HypercubeGraph
403 403
    template <typename T, typename BF = std::plus<T> >
404 404
    class HyperMap {
405 405
    public:
406 406

	
407 407
      /// \brief The key type of the map
408 408
      typedef Node Key;
409 409
      /// \brief The value type of the map
410 410
      typedef T Value;
411 411

	
412 412
      /// \brief Constructor for HyperMap.
413 413
      ///
414 414
      /// Construct a HyperMap for the given graph. The values that have
415 415
      /// to be accumulated should be given by the \c begin and \c end
416 416
      /// iterators and the length of this range should be equal to the
417 417
      /// dimension number of the graph.
418 418
      ///
419 419
      /// This map accumulates the \c bf binary function with the \c fv
420 420
      /// first value on that positions (dimensions) where the index of
421 421
      /// the node is one.
422 422
      template <typename It>
423 423
      HyperMap(const Graph& graph, It begin, It end,
424 424
               T fv = 0, const BF& bf = BF())
425 425
        : _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf)
426 426
      {
427 427
        LEMON_ASSERT(_values.size() == graph.dimension(),
428 428
                     "Wrong size of range");
429 429
      }
430 430

	
431 431
      /// \brief The partial accumulated value.
432 432
      ///
433 433
      /// Gives back the partial accumulated value.
434 434
      Value operator[](const Key& k) const {
435 435
        Value val = _first_value;
436 436
        int id = _graph.index(k);
437 437
        int n = 0;
438 438
        while (id != 0) {
439 439
          if (id & 1) {
440 440
            val = _bin_func(val, _values[n]);
441 441
          }
442 442
          id >>= 1;
443 443
          ++n;
444 444
        }
445 445
        return val;
446 446
      }
447 447

	
448 448
    private:
449 449
      const Graph& _graph;
450 450
      std::vector<T> _values;
451 451
      T _first_value;
452 452
      BF _bin_func;
453 453
    };
454 454

	
455 455
  };
456 456

	
457 457
}
458 458

	
459 459
#endif

Changeset was too big and was cut off... Show full diff

0 comments (0 inline)