0
3
0
... | ... |
@@ -286,25 +286,25 @@ |
286 | 286 |
} |
287 | 287 |
|
288 | 288 |
/// \ingroup connectivity |
289 | 289 |
/// |
290 | 290 |
/// \brief Count the strongly connected components of a directed graph |
291 | 291 |
/// |
292 | 292 |
/// Count the strongly connected components of a directed graph. |
293 | 293 |
/// The strongly connected components are the classes of an |
294 | 294 |
/// equivalence relation on the nodes of the graph. Two nodes are in |
295 | 295 |
/// the same class if they are connected with directed paths in both |
296 | 296 |
/// direction. |
297 | 297 |
/// |
298 |
/// \param |
|
298 |
/// \param digraph The graph. |
|
299 | 299 |
/// \return The number of components |
300 | 300 |
/// \note By definition, the empty graph has zero |
301 | 301 |
/// strongly connected components. |
302 | 302 |
template <typename Digraph> |
303 | 303 |
int countStronglyConnectedComponents(const Digraph& digraph) { |
304 | 304 |
checkConcept<concepts::Digraph, Digraph>(); |
305 | 305 |
|
306 | 306 |
using namespace _connectivity_bits; |
307 | 307 |
|
308 | 308 |
typedef typename Digraph::Node Node; |
309 | 309 |
typedef typename Digraph::Arc Arc; |
310 | 310 |
typedef typename Digraph::NodeIt NodeIt; |
... | ... |
@@ -1216,25 +1216,25 @@ |
1216 | 1216 |
dfs.start(); |
1217 | 1217 |
} |
1218 | 1218 |
} |
1219 | 1219 |
} |
1220 | 1220 |
|
1221 | 1221 |
/// \ingroup connectivity |
1222 | 1222 |
/// |
1223 | 1223 |
/// \brief Sort the nodes of a DAG into topolgical order. |
1224 | 1224 |
/// |
1225 | 1225 |
/// Sort the nodes of a DAG into topolgical order. It also checks |
1226 | 1226 |
/// that the given graph is DAG. |
1227 | 1227 |
/// |
1228 |
/// \param |
|
1228 |
/// \param digraph The graph. It must be directed and acyclic. |
|
1229 | 1229 |
/// \retval order A readable - writable node map. The values will be set |
1230 | 1230 |
/// from 0 to the number of the nodes in the graph minus one. Each values |
1231 | 1231 |
/// of the map will be set exactly once, the values will be set descending |
1232 | 1232 |
/// order. |
1233 | 1233 |
/// \return %False when the graph is not DAG. |
1234 | 1234 |
/// |
1235 | 1235 |
/// \see topologicalSort |
1236 | 1236 |
/// \see dag |
1237 | 1237 |
template <typename Digraph, typename NodeMap> |
1238 | 1238 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) { |
1239 | 1239 |
using namespace _connectivity_bits; |
1240 | 1240 |
... | ... |
@@ -407,25 +407,25 @@ |
407 | 407 |
~MaxMatching() { |
408 | 408 |
destroyStructures(); |
409 | 409 |
} |
410 | 410 |
|
411 | 411 |
/// \name Execution control |
412 | 412 |
/// The simplest way to execute the algorithm is to use the |
413 | 413 |
/// \c run() member function. |
414 | 414 |
/// \n |
415 | 415 |
|
416 | 416 |
/// If you need better control on the execution, you must call |
417 | 417 |
/// \ref init(), \ref greedyInit() or \ref matchingInit() |
418 | 418 |
/// functions first, then you can start the algorithm with the \ref |
419 |
/// |
|
419 |
/// startSparse() or startDense() functions. |
|
420 | 420 |
|
421 | 421 |
///@{ |
422 | 422 |
|
423 | 423 |
/// \brief Sets the actual matching to the empty matching. |
424 | 424 |
/// |
425 | 425 |
/// Sets the actual matching to the empty matching. |
426 | 426 |
/// |
427 | 427 |
void init() { |
428 | 428 |
createStructures(); |
429 | 429 |
for(NodeIt n(_graph); n != INVALID; ++n) { |
430 | 430 |
_matching->set(n, INVALID); |
431 | 431 |
_status->set(n, UNMATCHED); |
... | ... |
@@ -42,25 +42,25 @@ |
42 | 42 |
/// |
43 | 43 |
/// In fact, this implementation is the specialization of the |
44 | 44 |
/// \ref CapacityScaling "successive shortest path" algorithm. |
45 | 45 |
/// |
46 | 46 |
/// \tparam Digraph The digraph type the algorithm runs on. |
47 | 47 |
/// The default value is \c ListDigraph. |
48 | 48 |
/// \tparam LengthMap The type of the length (cost) map. |
49 | 49 |
/// The default value is <tt>Digraph::ArcMap<int></tt>. |
50 | 50 |
/// |
51 | 51 |
/// \warning Length values should be \e non-negative \e integers. |
52 | 52 |
/// |
53 | 53 |
/// \note For finding node-disjoint paths this algorithm can be used |
54 |
/// with \ref |
|
54 |
/// with \ref SplitNodes. |
|
55 | 55 |
#ifdef DOXYGEN |
56 | 56 |
template <typename Digraph, typename LengthMap> |
57 | 57 |
#else |
58 | 58 |
template < typename Digraph = ListDigraph, |
59 | 59 |
typename LengthMap = typename Digraph::template ArcMap<int> > |
60 | 60 |
#endif |
61 | 61 |
class Suurballe |
62 | 62 |
{ |
63 | 63 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
64 | 64 |
|
65 | 65 |
typedef typename LengthMap::Value Length; |
66 | 66 |
typedef ConstMap<Arc, int> ConstArcMap; |
0 comments (0 inline)