0
3
0
| ... | ... |
@@ -106,385 +106,385 @@ |
| 106 | 106 |
} |
| 107 | 107 |
|
| 108 | 108 |
/// \ingroup connectivity |
| 109 | 109 |
/// |
| 110 | 110 |
/// \brief Find the connected components of an undirected graph |
| 111 | 111 |
/// |
| 112 | 112 |
/// Find the connected components of an undirected graph. |
| 113 | 113 |
/// |
| 114 | 114 |
/// \param graph The graph. It must be undirected. |
| 115 | 115 |
/// \retval compMap A writable node map. The values will be set from 0 to |
| 116 | 116 |
/// the number of the connected components minus one. Each values of the map |
| 117 | 117 |
/// will be set exactly once, the values of a certain component will be |
| 118 | 118 |
/// set continuously. |
| 119 | 119 |
/// \return The number of components |
| 120 | 120 |
/// |
| 121 | 121 |
template <class Graph, class NodeMap> |
| 122 | 122 |
int connectedComponents(const Graph &graph, NodeMap &compMap) {
|
| 123 | 123 |
checkConcept<concepts::Graph, Graph>(); |
| 124 | 124 |
typedef typename Graph::Node Node; |
| 125 | 125 |
typedef typename Graph::Arc Arc; |
| 126 | 126 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| 127 | 127 |
|
| 128 | 128 |
typedef NullMap<Node, Arc> PredMap; |
| 129 | 129 |
typedef NullMap<Node, int> DistMap; |
| 130 | 130 |
|
| 131 | 131 |
int compNum = 0; |
| 132 | 132 |
typename Bfs<Graph>:: |
| 133 | 133 |
template SetPredMap<PredMap>:: |
| 134 | 134 |
template SetDistMap<DistMap>:: |
| 135 | 135 |
Create bfs(graph); |
| 136 | 136 |
|
| 137 | 137 |
PredMap predMap; |
| 138 | 138 |
bfs.predMap(predMap); |
| 139 | 139 |
|
| 140 | 140 |
DistMap distMap; |
| 141 | 141 |
bfs.distMap(distMap); |
| 142 | 142 |
|
| 143 | 143 |
bfs.init(); |
| 144 | 144 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
| 145 | 145 |
if(!bfs.reached(n)) {
|
| 146 | 146 |
bfs.addSource(n); |
| 147 | 147 |
while (!bfs.emptyQueue()) {
|
| 148 | 148 |
compMap.set(bfs.nextNode(), compNum); |
| 149 | 149 |
bfs.processNextNode(); |
| 150 | 150 |
} |
| 151 | 151 |
++compNum; |
| 152 | 152 |
} |
| 153 | 153 |
} |
| 154 | 154 |
return compNum; |
| 155 | 155 |
} |
| 156 | 156 |
|
| 157 | 157 |
namespace _connectivity_bits {
|
| 158 | 158 |
|
| 159 | 159 |
template <typename Digraph, typename Iterator > |
| 160 | 160 |
struct LeaveOrderVisitor : public DfsVisitor<Digraph> {
|
| 161 | 161 |
public: |
| 162 | 162 |
typedef typename Digraph::Node Node; |
| 163 | 163 |
LeaveOrderVisitor(Iterator it) : _it(it) {}
|
| 164 | 164 |
|
| 165 | 165 |
void leave(const Node& node) {
|
| 166 | 166 |
*(_it++) = node; |
| 167 | 167 |
} |
| 168 | 168 |
|
| 169 | 169 |
private: |
| 170 | 170 |
Iterator _it; |
| 171 | 171 |
}; |
| 172 | 172 |
|
| 173 | 173 |
template <typename Digraph, typename Map> |
| 174 | 174 |
struct FillMapVisitor : public DfsVisitor<Digraph> {
|
| 175 | 175 |
public: |
| 176 | 176 |
typedef typename Digraph::Node Node; |
| 177 | 177 |
typedef typename Map::Value Value; |
| 178 | 178 |
|
| 179 | 179 |
FillMapVisitor(Map& map, Value& value) |
| 180 | 180 |
: _map(map), _value(value) {}
|
| 181 | 181 |
|
| 182 | 182 |
void reach(const Node& node) {
|
| 183 | 183 |
_map.set(node, _value); |
| 184 | 184 |
} |
| 185 | 185 |
private: |
| 186 | 186 |
Map& _map; |
| 187 | 187 |
Value& _value; |
| 188 | 188 |
}; |
| 189 | 189 |
|
| 190 | 190 |
template <typename Digraph, typename ArcMap> |
| 191 | 191 |
struct StronglyConnectedCutArcsVisitor : public DfsVisitor<Digraph> {
|
| 192 | 192 |
public: |
| 193 | 193 |
typedef typename Digraph::Node Node; |
| 194 | 194 |
typedef typename Digraph::Arc Arc; |
| 195 | 195 |
|
| 196 | 196 |
StronglyConnectedCutArcsVisitor(const Digraph& digraph, |
| 197 | 197 |
ArcMap& cutMap, |
| 198 | 198 |
int& cutNum) |
| 199 | 199 |
: _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum), |
| 200 | 200 |
_compMap(digraph, -1), _num(-1) {
|
| 201 | 201 |
} |
| 202 | 202 |
|
| 203 | 203 |
void start(const Node&) {
|
| 204 | 204 |
++_num; |
| 205 | 205 |
} |
| 206 | 206 |
|
| 207 | 207 |
void reach(const Node& node) {
|
| 208 | 208 |
_compMap.set(node, _num); |
| 209 | 209 |
} |
| 210 | 210 |
|
| 211 | 211 |
void examine(const Arc& arc) {
|
| 212 | 212 |
if (_compMap[_digraph.source(arc)] != |
| 213 | 213 |
_compMap[_digraph.target(arc)]) {
|
| 214 | 214 |
_cutMap.set(arc, true); |
| 215 | 215 |
++_cutNum; |
| 216 | 216 |
} |
| 217 | 217 |
} |
| 218 | 218 |
private: |
| 219 | 219 |
const Digraph& _digraph; |
| 220 | 220 |
ArcMap& _cutMap; |
| 221 | 221 |
int& _cutNum; |
| 222 | 222 |
|
| 223 | 223 |
typename Digraph::template NodeMap<int> _compMap; |
| 224 | 224 |
int _num; |
| 225 | 225 |
}; |
| 226 | 226 |
|
| 227 | 227 |
} |
| 228 | 228 |
|
| 229 | 229 |
|
| 230 | 230 |
/// \ingroup connectivity |
| 231 | 231 |
/// |
| 232 | 232 |
/// \brief Check whether the given directed graph is strongly connected. |
| 233 | 233 |
/// |
| 234 | 234 |
/// Check whether the given directed graph is strongly connected. The |
| 235 | 235 |
/// graph is strongly connected when any two nodes of the graph are |
| 236 | 236 |
/// connected with directed paths in both direction. |
| 237 | 237 |
/// \return %False when the graph is not strongly connected. |
| 238 | 238 |
/// \see connected |
| 239 | 239 |
/// |
| 240 | 240 |
/// \note By definition, the empty graph is strongly connected. |
| 241 | 241 |
template <typename Digraph> |
| 242 | 242 |
bool stronglyConnected(const Digraph& digraph) {
|
| 243 | 243 |
checkConcept<concepts::Digraph, Digraph>(); |
| 244 | 244 |
|
| 245 | 245 |
typedef typename Digraph::Node Node; |
| 246 | 246 |
typedef typename Digraph::NodeIt NodeIt; |
| 247 | 247 |
|
| 248 | 248 |
typename Digraph::Node source = NodeIt(digraph); |
| 249 | 249 |
if (source == INVALID) return true; |
| 250 | 250 |
|
| 251 | 251 |
using namespace _connectivity_bits; |
| 252 | 252 |
|
| 253 | 253 |
typedef DfsVisitor<Digraph> Visitor; |
| 254 | 254 |
Visitor visitor; |
| 255 | 255 |
|
| 256 | 256 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| 257 | 257 |
dfs.init(); |
| 258 | 258 |
dfs.addSource(source); |
| 259 | 259 |
dfs.start(); |
| 260 | 260 |
|
| 261 | 261 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 262 | 262 |
if (!dfs.reached(it)) {
|
| 263 | 263 |
return false; |
| 264 | 264 |
} |
| 265 | 265 |
} |
| 266 | 266 |
|
| 267 | 267 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 268 | 268 |
typedef typename RDigraph::NodeIt RNodeIt; |
| 269 | 269 |
RDigraph rdigraph(digraph); |
| 270 | 270 |
|
| 271 | 271 |
typedef DfsVisitor<Digraph> RVisitor; |
| 272 | 272 |
RVisitor rvisitor; |
| 273 | 273 |
|
| 274 | 274 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| 275 | 275 |
rdfs.init(); |
| 276 | 276 |
rdfs.addSource(source); |
| 277 | 277 |
rdfs.start(); |
| 278 | 278 |
|
| 279 | 279 |
for (RNodeIt it(rdigraph); it != INVALID; ++it) {
|
| 280 | 280 |
if (!rdfs.reached(it)) {
|
| 281 | 281 |
return false; |
| 282 | 282 |
} |
| 283 | 283 |
} |
| 284 | 284 |
|
| 285 | 285 |
return true; |
| 286 | 286 |
} |
| 287 | 287 |
|
| 288 | 288 |
/// \ingroup connectivity |
| 289 | 289 |
/// |
| 290 | 290 |
/// \brief Count the strongly connected components of a directed graph |
| 291 | 291 |
/// |
| 292 | 292 |
/// Count the strongly connected components of a directed graph. |
| 293 | 293 |
/// The strongly connected components are the classes of an |
| 294 | 294 |
/// equivalence relation on the nodes of the graph. Two nodes are in |
| 295 | 295 |
/// the same class if they are connected with directed paths in both |
| 296 | 296 |
/// direction. |
| 297 | 297 |
/// |
| 298 |
/// \param |
|
| 298 |
/// \param digraph The graph. |
|
| 299 | 299 |
/// \return The number of components |
| 300 | 300 |
/// \note By definition, the empty graph has zero |
| 301 | 301 |
/// strongly connected components. |
| 302 | 302 |
template <typename Digraph> |
| 303 | 303 |
int countStronglyConnectedComponents(const Digraph& digraph) {
|
| 304 | 304 |
checkConcept<concepts::Digraph, Digraph>(); |
| 305 | 305 |
|
| 306 | 306 |
using namespace _connectivity_bits; |
| 307 | 307 |
|
| 308 | 308 |
typedef typename Digraph::Node Node; |
| 309 | 309 |
typedef typename Digraph::Arc Arc; |
| 310 | 310 |
typedef typename Digraph::NodeIt NodeIt; |
| 311 | 311 |
typedef typename Digraph::ArcIt ArcIt; |
| 312 | 312 |
|
| 313 | 313 |
typedef std::vector<Node> Container; |
| 314 | 314 |
typedef typename Container::iterator Iterator; |
| 315 | 315 |
|
| 316 | 316 |
Container nodes(countNodes(digraph)); |
| 317 | 317 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| 318 | 318 |
Visitor visitor(nodes.begin()); |
| 319 | 319 |
|
| 320 | 320 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| 321 | 321 |
dfs.init(); |
| 322 | 322 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 323 | 323 |
if (!dfs.reached(it)) {
|
| 324 | 324 |
dfs.addSource(it); |
| 325 | 325 |
dfs.start(); |
| 326 | 326 |
} |
| 327 | 327 |
} |
| 328 | 328 |
|
| 329 | 329 |
typedef typename Container::reverse_iterator RIterator; |
| 330 | 330 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 331 | 331 |
|
| 332 | 332 |
RDigraph rdigraph(digraph); |
| 333 | 333 |
|
| 334 | 334 |
typedef DfsVisitor<Digraph> RVisitor; |
| 335 | 335 |
RVisitor rvisitor; |
| 336 | 336 |
|
| 337 | 337 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| 338 | 338 |
|
| 339 | 339 |
int compNum = 0; |
| 340 | 340 |
|
| 341 | 341 |
rdfs.init(); |
| 342 | 342 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
| 343 | 343 |
if (!rdfs.reached(*it)) {
|
| 344 | 344 |
rdfs.addSource(*it); |
| 345 | 345 |
rdfs.start(); |
| 346 | 346 |
++compNum; |
| 347 | 347 |
} |
| 348 | 348 |
} |
| 349 | 349 |
return compNum; |
| 350 | 350 |
} |
| 351 | 351 |
|
| 352 | 352 |
/// \ingroup connectivity |
| 353 | 353 |
/// |
| 354 | 354 |
/// \brief Find the strongly connected components of a directed graph |
| 355 | 355 |
/// |
| 356 | 356 |
/// Find the strongly connected components of a directed graph. The |
| 357 | 357 |
/// strongly connected components are the classes of an equivalence |
| 358 | 358 |
/// relation on the nodes of the graph. Two nodes are in |
| 359 | 359 |
/// relationship when there are directed paths between them in both |
| 360 | 360 |
/// direction. In addition, the numbering of components will satisfy |
| 361 | 361 |
/// that there is no arc going from a higher numbered component to |
| 362 | 362 |
/// a lower. |
| 363 | 363 |
/// |
| 364 | 364 |
/// \param digraph The digraph. |
| 365 | 365 |
/// \retval compMap A writable node map. The values will be set from 0 to |
| 366 | 366 |
/// the number of the strongly connected components minus one. Each value |
| 367 | 367 |
/// of the map will be set exactly once, the values of a certain component |
| 368 | 368 |
/// will be set continuously. |
| 369 | 369 |
/// \return The number of components |
| 370 | 370 |
/// |
| 371 | 371 |
template <typename Digraph, typename NodeMap> |
| 372 | 372 |
int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
|
| 373 | 373 |
checkConcept<concepts::Digraph, Digraph>(); |
| 374 | 374 |
typedef typename Digraph::Node Node; |
| 375 | 375 |
typedef typename Digraph::NodeIt NodeIt; |
| 376 | 376 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| 377 | 377 |
|
| 378 | 378 |
using namespace _connectivity_bits; |
| 379 | 379 |
|
| 380 | 380 |
typedef std::vector<Node> Container; |
| 381 | 381 |
typedef typename Container::iterator Iterator; |
| 382 | 382 |
|
| 383 | 383 |
Container nodes(countNodes(digraph)); |
| 384 | 384 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| 385 | 385 |
Visitor visitor(nodes.begin()); |
| 386 | 386 |
|
| 387 | 387 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| 388 | 388 |
dfs.init(); |
| 389 | 389 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 390 | 390 |
if (!dfs.reached(it)) {
|
| 391 | 391 |
dfs.addSource(it); |
| 392 | 392 |
dfs.start(); |
| 393 | 393 |
} |
| 394 | 394 |
} |
| 395 | 395 |
|
| 396 | 396 |
typedef typename Container::reverse_iterator RIterator; |
| 397 | 397 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 398 | 398 |
|
| 399 | 399 |
RDigraph rdigraph(digraph); |
| 400 | 400 |
|
| 401 | 401 |
int compNum = 0; |
| 402 | 402 |
|
| 403 | 403 |
typedef FillMapVisitor<RDigraph, NodeMap> RVisitor; |
| 404 | 404 |
RVisitor rvisitor(compMap, compNum); |
| 405 | 405 |
|
| 406 | 406 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| 407 | 407 |
|
| 408 | 408 |
rdfs.init(); |
| 409 | 409 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
| 410 | 410 |
if (!rdfs.reached(*it)) {
|
| 411 | 411 |
rdfs.addSource(*it); |
| 412 | 412 |
rdfs.start(); |
| 413 | 413 |
++compNum; |
| 414 | 414 |
} |
| 415 | 415 |
} |
| 416 | 416 |
return compNum; |
| 417 | 417 |
} |
| 418 | 418 |
|
| 419 | 419 |
/// \ingroup connectivity |
| 420 | 420 |
/// |
| 421 | 421 |
/// \brief Find the cut arcs of the strongly connected components. |
| 422 | 422 |
/// |
| 423 | 423 |
/// Find the cut arcs of the strongly connected components. |
| 424 | 424 |
/// The strongly connected components are the classes of an equivalence |
| 425 | 425 |
/// relation on the nodes of the graph. Two nodes are in relationship |
| 426 | 426 |
/// when there are directed paths between them in both direction. |
| 427 | 427 |
/// The strongly connected components are separated by the cut arcs. |
| 428 | 428 |
/// |
| 429 | 429 |
/// \param graph The graph. |
| 430 | 430 |
/// \retval cutMap A writable node map. The values will be set true when the |
| 431 | 431 |
/// arc is a cut arc. |
| 432 | 432 |
/// |
| 433 | 433 |
/// \return The number of cut arcs |
| 434 | 434 |
template <typename Digraph, typename ArcMap> |
| 435 | 435 |
int stronglyConnectedCutArcs(const Digraph& graph, ArcMap& cutMap) {
|
| 436 | 436 |
checkConcept<concepts::Digraph, Digraph>(); |
| 437 | 437 |
typedef typename Digraph::Node Node; |
| 438 | 438 |
typedef typename Digraph::Arc Arc; |
| 439 | 439 |
typedef typename Digraph::NodeIt NodeIt; |
| 440 | 440 |
checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>(); |
| 441 | 441 |
|
| 442 | 442 |
using namespace _connectivity_bits; |
| 443 | 443 |
|
| 444 | 444 |
typedef std::vector<Node> Container; |
| 445 | 445 |
typedef typename Container::iterator Iterator; |
| 446 | 446 |
|
| 447 | 447 |
Container nodes(countNodes(graph)); |
| 448 | 448 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| 449 | 449 |
Visitor visitor(nodes.begin()); |
| 450 | 450 |
|
| 451 | 451 |
DfsVisit<Digraph, Visitor> dfs(graph, visitor); |
| 452 | 452 |
dfs.init(); |
| 453 | 453 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 454 | 454 |
if (!dfs.reached(it)) {
|
| 455 | 455 |
dfs.addSource(it); |
| 456 | 456 |
dfs.start(); |
| 457 | 457 |
} |
| 458 | 458 |
} |
| 459 | 459 |
|
| 460 | 460 |
typedef typename Container::reverse_iterator RIterator; |
| 461 | 461 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 462 | 462 |
|
| 463 | 463 |
RDigraph rgraph(graph); |
| 464 | 464 |
|
| 465 | 465 |
int cutNum = 0; |
| 466 | 466 |
|
| 467 | 467 |
typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor; |
| 468 | 468 |
RVisitor rvisitor(rgraph, cutMap, cutNum); |
| 469 | 469 |
|
| 470 | 470 |
DfsVisit<RDigraph, RVisitor> rdfs(rgraph, rvisitor); |
| 471 | 471 |
|
| 472 | 472 |
rdfs.init(); |
| 473 | 473 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
| 474 | 474 |
if (!rdfs.reached(*it)) {
|
| 475 | 475 |
rdfs.addSource(*it); |
| 476 | 476 |
rdfs.start(); |
| 477 | 477 |
} |
| 478 | 478 |
} |
| 479 | 479 |
return cutNum; |
| 480 | 480 |
} |
| 481 | 481 |
|
| 482 | 482 |
namespace _connectivity_bits {
|
| 483 | 483 |
|
| 484 | 484 |
template <typename Digraph> |
| 485 | 485 |
class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
| 486 | 486 |
public: |
| 487 | 487 |
typedef typename Digraph::Node Node; |
| 488 | 488 |
typedef typename Digraph::Arc Arc; |
| 489 | 489 |
typedef typename Digraph::Edge Edge; |
| 490 | 490 |
|
| ... | ... |
@@ -1036,385 +1036,385 @@ |
| 1036 | 1036 |
template <typename Graph> |
| 1037 | 1037 |
bool biEdgeConnected(const Graph& graph) {
|
| 1038 | 1038 |
return countBiEdgeConnectedComponents(graph) <= 1; |
| 1039 | 1039 |
} |
| 1040 | 1040 |
|
| 1041 | 1041 |
/// \ingroup connectivity |
| 1042 | 1042 |
/// |
| 1043 | 1043 |
/// \brief Count the bi-edge-connected components. |
| 1044 | 1044 |
/// |
| 1045 | 1045 |
/// This function count the bi-edge-connected components in an undirected |
| 1046 | 1046 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
| 1047 | 1047 |
/// relation on the nodes. Two nodes are in relationship when they are |
| 1048 | 1048 |
/// connected with at least two edge-disjoint paths. |
| 1049 | 1049 |
/// |
| 1050 | 1050 |
/// \param graph The undirected graph. |
| 1051 | 1051 |
/// \return The number of components. |
| 1052 | 1052 |
template <typename Graph> |
| 1053 | 1053 |
int countBiEdgeConnectedComponents(const Graph& graph) {
|
| 1054 | 1054 |
checkConcept<concepts::Graph, Graph>(); |
| 1055 | 1055 |
typedef typename Graph::NodeIt NodeIt; |
| 1056 | 1056 |
|
| 1057 | 1057 |
using namespace _connectivity_bits; |
| 1058 | 1058 |
|
| 1059 | 1059 |
typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor; |
| 1060 | 1060 |
|
| 1061 | 1061 |
int compNum = 0; |
| 1062 | 1062 |
Visitor visitor(graph, compNum); |
| 1063 | 1063 |
|
| 1064 | 1064 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 1065 | 1065 |
dfs.init(); |
| 1066 | 1066 |
|
| 1067 | 1067 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1068 | 1068 |
if (!dfs.reached(it)) {
|
| 1069 | 1069 |
dfs.addSource(it); |
| 1070 | 1070 |
dfs.start(); |
| 1071 | 1071 |
} |
| 1072 | 1072 |
} |
| 1073 | 1073 |
return compNum; |
| 1074 | 1074 |
} |
| 1075 | 1075 |
|
| 1076 | 1076 |
/// \ingroup connectivity |
| 1077 | 1077 |
/// |
| 1078 | 1078 |
/// \brief Find the bi-edge-connected components. |
| 1079 | 1079 |
/// |
| 1080 | 1080 |
/// This function finds the bi-edge-connected components in an undirected |
| 1081 | 1081 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
| 1082 | 1082 |
/// relation on the nodes. Two nodes are in relationship when they are |
| 1083 | 1083 |
/// connected at least two edge-disjoint paths. |
| 1084 | 1084 |
/// |
| 1085 | 1085 |
/// \param graph The graph. |
| 1086 | 1086 |
/// \retval compMap A writable node map. The values will be set from 0 to |
| 1087 | 1087 |
/// the number of the biconnected components minus one. Each values |
| 1088 | 1088 |
/// of the map will be set exactly once, the values of a certain component |
| 1089 | 1089 |
/// will be set continuously. |
| 1090 | 1090 |
/// \return The number of components. |
| 1091 | 1091 |
/// |
| 1092 | 1092 |
template <typename Graph, typename NodeMap> |
| 1093 | 1093 |
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
|
| 1094 | 1094 |
checkConcept<concepts::Graph, Graph>(); |
| 1095 | 1095 |
typedef typename Graph::NodeIt NodeIt; |
| 1096 | 1096 |
typedef typename Graph::Node Node; |
| 1097 | 1097 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
| 1098 | 1098 |
|
| 1099 | 1099 |
using namespace _connectivity_bits; |
| 1100 | 1100 |
|
| 1101 | 1101 |
typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor; |
| 1102 | 1102 |
|
| 1103 | 1103 |
int compNum = 0; |
| 1104 | 1104 |
Visitor visitor(graph, compMap, compNum); |
| 1105 | 1105 |
|
| 1106 | 1106 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 1107 | 1107 |
dfs.init(); |
| 1108 | 1108 |
|
| 1109 | 1109 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1110 | 1110 |
if (!dfs.reached(it)) {
|
| 1111 | 1111 |
dfs.addSource(it); |
| 1112 | 1112 |
dfs.start(); |
| 1113 | 1113 |
} |
| 1114 | 1114 |
} |
| 1115 | 1115 |
return compNum; |
| 1116 | 1116 |
} |
| 1117 | 1117 |
|
| 1118 | 1118 |
/// \ingroup connectivity |
| 1119 | 1119 |
/// |
| 1120 | 1120 |
/// \brief Find the bi-edge-connected cut edges. |
| 1121 | 1121 |
/// |
| 1122 | 1122 |
/// This function finds the bi-edge-connected components in an undirected |
| 1123 | 1123 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
| 1124 | 1124 |
/// relation on the nodes. Two nodes are in relationship when they are |
| 1125 | 1125 |
/// connected with at least two edge-disjoint paths. The bi-edge-connected |
| 1126 | 1126 |
/// components are separted by edges which are the cut edges of the |
| 1127 | 1127 |
/// components. |
| 1128 | 1128 |
/// |
| 1129 | 1129 |
/// \param graph The graph. |
| 1130 | 1130 |
/// \retval cutMap A writable node map. The values will be set true when the |
| 1131 | 1131 |
/// edge is a cut edge. |
| 1132 | 1132 |
/// \return The number of cut edges. |
| 1133 | 1133 |
template <typename Graph, typename EdgeMap> |
| 1134 | 1134 |
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
|
| 1135 | 1135 |
checkConcept<concepts::Graph, Graph>(); |
| 1136 | 1136 |
typedef typename Graph::NodeIt NodeIt; |
| 1137 | 1137 |
typedef typename Graph::Edge Edge; |
| 1138 | 1138 |
checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>(); |
| 1139 | 1139 |
|
| 1140 | 1140 |
using namespace _connectivity_bits; |
| 1141 | 1141 |
|
| 1142 | 1142 |
typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor; |
| 1143 | 1143 |
|
| 1144 | 1144 |
int cutNum = 0; |
| 1145 | 1145 |
Visitor visitor(graph, cutMap, cutNum); |
| 1146 | 1146 |
|
| 1147 | 1147 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
| 1148 | 1148 |
dfs.init(); |
| 1149 | 1149 |
|
| 1150 | 1150 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1151 | 1151 |
if (!dfs.reached(it)) {
|
| 1152 | 1152 |
dfs.addSource(it); |
| 1153 | 1153 |
dfs.start(); |
| 1154 | 1154 |
} |
| 1155 | 1155 |
} |
| 1156 | 1156 |
return cutNum; |
| 1157 | 1157 |
} |
| 1158 | 1158 |
|
| 1159 | 1159 |
|
| 1160 | 1160 |
namespace _connectivity_bits {
|
| 1161 | 1161 |
|
| 1162 | 1162 |
template <typename Digraph, typename IntNodeMap> |
| 1163 | 1163 |
class TopologicalSortVisitor : public DfsVisitor<Digraph> {
|
| 1164 | 1164 |
public: |
| 1165 | 1165 |
typedef typename Digraph::Node Node; |
| 1166 | 1166 |
typedef typename Digraph::Arc edge; |
| 1167 | 1167 |
|
| 1168 | 1168 |
TopologicalSortVisitor(IntNodeMap& order, int num) |
| 1169 | 1169 |
: _order(order), _num(num) {}
|
| 1170 | 1170 |
|
| 1171 | 1171 |
void leave(const Node& node) {
|
| 1172 | 1172 |
_order.set(node, --_num); |
| 1173 | 1173 |
} |
| 1174 | 1174 |
|
| 1175 | 1175 |
private: |
| 1176 | 1176 |
IntNodeMap& _order; |
| 1177 | 1177 |
int _num; |
| 1178 | 1178 |
}; |
| 1179 | 1179 |
|
| 1180 | 1180 |
} |
| 1181 | 1181 |
|
| 1182 | 1182 |
/// \ingroup connectivity |
| 1183 | 1183 |
/// |
| 1184 | 1184 |
/// \brief Sort the nodes of a DAG into topolgical order. |
| 1185 | 1185 |
/// |
| 1186 | 1186 |
/// Sort the nodes of a DAG into topolgical order. |
| 1187 | 1187 |
/// |
| 1188 | 1188 |
/// \param graph The graph. It must be directed and acyclic. |
| 1189 | 1189 |
/// \retval order A writable node map. The values will be set from 0 to |
| 1190 | 1190 |
/// the number of the nodes in the graph minus one. Each values of the map |
| 1191 | 1191 |
/// will be set exactly once, the values will be set descending order. |
| 1192 | 1192 |
/// |
| 1193 | 1193 |
/// \see checkedTopologicalSort |
| 1194 | 1194 |
/// \see dag |
| 1195 | 1195 |
template <typename Digraph, typename NodeMap> |
| 1196 | 1196 |
void topologicalSort(const Digraph& graph, NodeMap& order) {
|
| 1197 | 1197 |
using namespace _connectivity_bits; |
| 1198 | 1198 |
|
| 1199 | 1199 |
checkConcept<concepts::Digraph, Digraph>(); |
| 1200 | 1200 |
checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>(); |
| 1201 | 1201 |
|
| 1202 | 1202 |
typedef typename Digraph::Node Node; |
| 1203 | 1203 |
typedef typename Digraph::NodeIt NodeIt; |
| 1204 | 1204 |
typedef typename Digraph::Arc Arc; |
| 1205 | 1205 |
|
| 1206 | 1206 |
TopologicalSortVisitor<Digraph, NodeMap> |
| 1207 | 1207 |
visitor(order, countNodes(graph)); |
| 1208 | 1208 |
|
| 1209 | 1209 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
| 1210 | 1210 |
dfs(graph, visitor); |
| 1211 | 1211 |
|
| 1212 | 1212 |
dfs.init(); |
| 1213 | 1213 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1214 | 1214 |
if (!dfs.reached(it)) {
|
| 1215 | 1215 |
dfs.addSource(it); |
| 1216 | 1216 |
dfs.start(); |
| 1217 | 1217 |
} |
| 1218 | 1218 |
} |
| 1219 | 1219 |
} |
| 1220 | 1220 |
|
| 1221 | 1221 |
/// \ingroup connectivity |
| 1222 | 1222 |
/// |
| 1223 | 1223 |
/// \brief Sort the nodes of a DAG into topolgical order. |
| 1224 | 1224 |
/// |
| 1225 | 1225 |
/// Sort the nodes of a DAG into topolgical order. It also checks |
| 1226 | 1226 |
/// that the given graph is DAG. |
| 1227 | 1227 |
/// |
| 1228 |
/// \param |
|
| 1228 |
/// \param digraph The graph. It must be directed and acyclic. |
|
| 1229 | 1229 |
/// \retval order A readable - writable node map. The values will be set |
| 1230 | 1230 |
/// from 0 to the number of the nodes in the graph minus one. Each values |
| 1231 | 1231 |
/// of the map will be set exactly once, the values will be set descending |
| 1232 | 1232 |
/// order. |
| 1233 | 1233 |
/// \return %False when the graph is not DAG. |
| 1234 | 1234 |
/// |
| 1235 | 1235 |
/// \see topologicalSort |
| 1236 | 1236 |
/// \see dag |
| 1237 | 1237 |
template <typename Digraph, typename NodeMap> |
| 1238 | 1238 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
|
| 1239 | 1239 |
using namespace _connectivity_bits; |
| 1240 | 1240 |
|
| 1241 | 1241 |
checkConcept<concepts::Digraph, Digraph>(); |
| 1242 | 1242 |
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>, |
| 1243 | 1243 |
NodeMap>(); |
| 1244 | 1244 |
|
| 1245 | 1245 |
typedef typename Digraph::Node Node; |
| 1246 | 1246 |
typedef typename Digraph::NodeIt NodeIt; |
| 1247 | 1247 |
typedef typename Digraph::Arc Arc; |
| 1248 | 1248 |
|
| 1249 | 1249 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1250 | 1250 |
order.set(it, -1); |
| 1251 | 1251 |
} |
| 1252 | 1252 |
|
| 1253 | 1253 |
TopologicalSortVisitor<Digraph, NodeMap> |
| 1254 | 1254 |
visitor(order, countNodes(digraph)); |
| 1255 | 1255 |
|
| 1256 | 1256 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
| 1257 | 1257 |
dfs(digraph, visitor); |
| 1258 | 1258 |
|
| 1259 | 1259 |
dfs.init(); |
| 1260 | 1260 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1261 | 1261 |
if (!dfs.reached(it)) {
|
| 1262 | 1262 |
dfs.addSource(it); |
| 1263 | 1263 |
while (!dfs.emptyQueue()) {
|
| 1264 | 1264 |
Arc arc = dfs.nextArc(); |
| 1265 | 1265 |
Node target = digraph.target(arc); |
| 1266 | 1266 |
if (dfs.reached(target) && order[target] == -1) {
|
| 1267 | 1267 |
return false; |
| 1268 | 1268 |
} |
| 1269 | 1269 |
dfs.processNextArc(); |
| 1270 | 1270 |
} |
| 1271 | 1271 |
} |
| 1272 | 1272 |
} |
| 1273 | 1273 |
return true; |
| 1274 | 1274 |
} |
| 1275 | 1275 |
|
| 1276 | 1276 |
/// \ingroup connectivity |
| 1277 | 1277 |
/// |
| 1278 | 1278 |
/// \brief Check that the given directed graph is a DAG. |
| 1279 | 1279 |
/// |
| 1280 | 1280 |
/// Check that the given directed graph is a DAG. The DAG is |
| 1281 | 1281 |
/// an Directed Acyclic Digraph. |
| 1282 | 1282 |
/// \return %False when the graph is not DAG. |
| 1283 | 1283 |
/// \see acyclic |
| 1284 | 1284 |
template <typename Digraph> |
| 1285 | 1285 |
bool dag(const Digraph& digraph) {
|
| 1286 | 1286 |
|
| 1287 | 1287 |
checkConcept<concepts::Digraph, Digraph>(); |
| 1288 | 1288 |
|
| 1289 | 1289 |
typedef typename Digraph::Node Node; |
| 1290 | 1290 |
typedef typename Digraph::NodeIt NodeIt; |
| 1291 | 1291 |
typedef typename Digraph::Arc Arc; |
| 1292 | 1292 |
|
| 1293 | 1293 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 1294 | 1294 |
|
| 1295 | 1295 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
| 1296 | 1296 |
Create dfs(digraph); |
| 1297 | 1297 |
|
| 1298 | 1298 |
ProcessedMap processed(digraph); |
| 1299 | 1299 |
dfs.processedMap(processed); |
| 1300 | 1300 |
|
| 1301 | 1301 |
dfs.init(); |
| 1302 | 1302 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1303 | 1303 |
if (!dfs.reached(it)) {
|
| 1304 | 1304 |
dfs.addSource(it); |
| 1305 | 1305 |
while (!dfs.emptyQueue()) {
|
| 1306 | 1306 |
Arc edge = dfs.nextArc(); |
| 1307 | 1307 |
Node target = digraph.target(edge); |
| 1308 | 1308 |
if (dfs.reached(target) && !processed[target]) {
|
| 1309 | 1309 |
return false; |
| 1310 | 1310 |
} |
| 1311 | 1311 |
dfs.processNextArc(); |
| 1312 | 1312 |
} |
| 1313 | 1313 |
} |
| 1314 | 1314 |
} |
| 1315 | 1315 |
return true; |
| 1316 | 1316 |
} |
| 1317 | 1317 |
|
| 1318 | 1318 |
/// \ingroup connectivity |
| 1319 | 1319 |
/// |
| 1320 | 1320 |
/// \brief Check that the given undirected graph is acyclic. |
| 1321 | 1321 |
/// |
| 1322 | 1322 |
/// Check that the given undirected graph acyclic. |
| 1323 | 1323 |
/// \param graph The undirected graph. |
| 1324 | 1324 |
/// \return %True when there is no circle in the graph. |
| 1325 | 1325 |
/// \see dag |
| 1326 | 1326 |
template <typename Graph> |
| 1327 | 1327 |
bool acyclic(const Graph& graph) {
|
| 1328 | 1328 |
checkConcept<concepts::Graph, Graph>(); |
| 1329 | 1329 |
typedef typename Graph::Node Node; |
| 1330 | 1330 |
typedef typename Graph::NodeIt NodeIt; |
| 1331 | 1331 |
typedef typename Graph::Arc Arc; |
| 1332 | 1332 |
Dfs<Graph> dfs(graph); |
| 1333 | 1333 |
dfs.init(); |
| 1334 | 1334 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1335 | 1335 |
if (!dfs.reached(it)) {
|
| 1336 | 1336 |
dfs.addSource(it); |
| 1337 | 1337 |
while (!dfs.emptyQueue()) {
|
| 1338 | 1338 |
Arc edge = dfs.nextArc(); |
| 1339 | 1339 |
Node source = graph.source(edge); |
| 1340 | 1340 |
Node target = graph.target(edge); |
| 1341 | 1341 |
if (dfs.reached(target) && |
| 1342 | 1342 |
dfs.predArc(source) != graph.oppositeArc(edge)) {
|
| 1343 | 1343 |
return false; |
| 1344 | 1344 |
} |
| 1345 | 1345 |
dfs.processNextArc(); |
| 1346 | 1346 |
} |
| 1347 | 1347 |
} |
| 1348 | 1348 |
} |
| 1349 | 1349 |
return true; |
| 1350 | 1350 |
} |
| 1351 | 1351 |
|
| 1352 | 1352 |
/// \ingroup connectivity |
| 1353 | 1353 |
/// |
| 1354 | 1354 |
/// \brief Check that the given undirected graph is tree. |
| 1355 | 1355 |
/// |
| 1356 | 1356 |
/// Check that the given undirected graph is tree. |
| 1357 | 1357 |
/// \param graph The undirected graph. |
| 1358 | 1358 |
/// \return %True when the graph is acyclic and connected. |
| 1359 | 1359 |
template <typename Graph> |
| 1360 | 1360 |
bool tree(const Graph& graph) {
|
| 1361 | 1361 |
checkConcept<concepts::Graph, Graph>(); |
| 1362 | 1362 |
typedef typename Graph::Node Node; |
| 1363 | 1363 |
typedef typename Graph::NodeIt NodeIt; |
| 1364 | 1364 |
typedef typename Graph::Arc Arc; |
| 1365 | 1365 |
Dfs<Graph> dfs(graph); |
| 1366 | 1366 |
dfs.init(); |
| 1367 | 1367 |
dfs.addSource(NodeIt(graph)); |
| 1368 | 1368 |
while (!dfs.emptyQueue()) {
|
| 1369 | 1369 |
Arc edge = dfs.nextArc(); |
| 1370 | 1370 |
Node source = graph.source(edge); |
| 1371 | 1371 |
Node target = graph.target(edge); |
| 1372 | 1372 |
if (dfs.reached(target) && |
| 1373 | 1373 |
dfs.predArc(source) != graph.oppositeArc(edge)) {
|
| 1374 | 1374 |
return false; |
| 1375 | 1375 |
} |
| 1376 | 1376 |
dfs.processNextArc(); |
| 1377 | 1377 |
} |
| 1378 | 1378 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1379 | 1379 |
if (!dfs.reached(it)) {
|
| 1380 | 1380 |
return false; |
| 1381 | 1381 |
} |
| 1382 | 1382 |
} |
| 1383 | 1383 |
return true; |
| 1384 | 1384 |
} |
| 1385 | 1385 |
|
| 1386 | 1386 |
namespace _connectivity_bits {
|
| 1387 | 1387 |
|
| 1388 | 1388 |
template <typename Digraph> |
| 1389 | 1389 |
class BipartiteVisitor : public BfsVisitor<Digraph> {
|
| 1390 | 1390 |
public: |
| 1391 | 1391 |
typedef typename Digraph::Arc Arc; |
| 1392 | 1392 |
typedef typename Digraph::Node Node; |
| 1393 | 1393 |
|
| 1394 | 1394 |
BipartiteVisitor(const Digraph& graph, bool& bipartite) |
| 1395 | 1395 |
: _graph(graph), _part(graph), _bipartite(bipartite) {}
|
| 1396 | 1396 |
|
| 1397 | 1397 |
void start(const Node& node) {
|
| 1398 | 1398 |
_part[node] = true; |
| 1399 | 1399 |
} |
| 1400 | 1400 |
void discover(const Arc& edge) {
|
| 1401 | 1401 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
| 1402 | 1402 |
} |
| 1403 | 1403 |
void examine(const Arc& edge) {
|
| 1404 | 1404 |
_bipartite = _bipartite && |
| 1405 | 1405 |
_part[_graph.target(edge)] != _part[_graph.source(edge)]; |
| 1406 | 1406 |
} |
| 1407 | 1407 |
|
| 1408 | 1408 |
private: |
| 1409 | 1409 |
|
| 1410 | 1410 |
const Digraph& _graph; |
| 1411 | 1411 |
typename Digraph::template NodeMap<bool> _part; |
| 1412 | 1412 |
bool& _bipartite; |
| 1413 | 1413 |
}; |
| 1414 | 1414 |
|
| 1415 | 1415 |
template <typename Digraph, typename PartMap> |
| 1416 | 1416 |
class BipartitePartitionsVisitor : public BfsVisitor<Digraph> {
|
| 1417 | 1417 |
public: |
| 1418 | 1418 |
typedef typename Digraph::Arc Arc; |
| 1419 | 1419 |
typedef typename Digraph::Node Node; |
| 1420 | 1420 |
| ... | ... |
@@ -227,385 +227,385 @@ |
| 227 | 227 |
|
| 228 | 228 |
{
|
| 229 | 229 |
std::set<Node> left_set, right_set; |
| 230 | 230 |
|
| 231 | 231 |
Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))]; |
| 232 | 232 |
left_set.insert(left); |
| 233 | 233 |
|
| 234 | 234 |
Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))]; |
| 235 | 235 |
right_set.insert(right); |
| 236 | 236 |
|
| 237 | 237 |
while (true) {
|
| 238 | 238 |
if ((*_matching)[left] == INVALID) break; |
| 239 | 239 |
left = _graph.target((*_matching)[left]); |
| 240 | 240 |
left = (*_blossom_rep)[_blossom_set-> |
| 241 | 241 |
find(_graph.target((*_ear)[left]))]; |
| 242 | 242 |
if (right_set.find(left) != right_set.end()) {
|
| 243 | 243 |
nca = left; |
| 244 | 244 |
break; |
| 245 | 245 |
} |
| 246 | 246 |
left_set.insert(left); |
| 247 | 247 |
|
| 248 | 248 |
if ((*_matching)[right] == INVALID) break; |
| 249 | 249 |
right = _graph.target((*_matching)[right]); |
| 250 | 250 |
right = (*_blossom_rep)[_blossom_set-> |
| 251 | 251 |
find(_graph.target((*_ear)[right]))]; |
| 252 | 252 |
if (left_set.find(right) != left_set.end()) {
|
| 253 | 253 |
nca = right; |
| 254 | 254 |
break; |
| 255 | 255 |
} |
| 256 | 256 |
right_set.insert(right); |
| 257 | 257 |
} |
| 258 | 258 |
|
| 259 | 259 |
if (nca == INVALID) {
|
| 260 | 260 |
if ((*_matching)[left] == INVALID) {
|
| 261 | 261 |
nca = right; |
| 262 | 262 |
while (left_set.find(nca) == left_set.end()) {
|
| 263 | 263 |
nca = _graph.target((*_matching)[nca]); |
| 264 | 264 |
nca =(*_blossom_rep)[_blossom_set-> |
| 265 | 265 |
find(_graph.target((*_ear)[nca]))]; |
| 266 | 266 |
} |
| 267 | 267 |
} else {
|
| 268 | 268 |
nca = left; |
| 269 | 269 |
while (right_set.find(nca) == right_set.end()) {
|
| 270 | 270 |
nca = _graph.target((*_matching)[nca]); |
| 271 | 271 |
nca = (*_blossom_rep)[_blossom_set-> |
| 272 | 272 |
find(_graph.target((*_ear)[nca]))]; |
| 273 | 273 |
} |
| 274 | 274 |
} |
| 275 | 275 |
} |
| 276 | 276 |
} |
| 277 | 277 |
|
| 278 | 278 |
{
|
| 279 | 279 |
|
| 280 | 280 |
Node node = _graph.u(e); |
| 281 | 281 |
Arc arc = _graph.direct(e, true); |
| 282 | 282 |
Node base = (*_blossom_rep)[_blossom_set->find(node)]; |
| 283 | 283 |
|
| 284 | 284 |
while (base != nca) {
|
| 285 | 285 |
_ear->set(node, arc); |
| 286 | 286 |
|
| 287 | 287 |
Node n = node; |
| 288 | 288 |
while (n != base) {
|
| 289 | 289 |
n = _graph.target((*_matching)[n]); |
| 290 | 290 |
Arc a = (*_ear)[n]; |
| 291 | 291 |
n = _graph.target(a); |
| 292 | 292 |
_ear->set(n, _graph.oppositeArc(a)); |
| 293 | 293 |
} |
| 294 | 294 |
node = _graph.target((*_matching)[base]); |
| 295 | 295 |
_tree_set->erase(base); |
| 296 | 296 |
_tree_set->erase(node); |
| 297 | 297 |
_blossom_set->insert(node, _blossom_set->find(base)); |
| 298 | 298 |
_status->set(node, EVEN); |
| 299 | 299 |
_node_queue[_last++] = node; |
| 300 | 300 |
arc = _graph.oppositeArc((*_ear)[node]); |
| 301 | 301 |
node = _graph.target((*_ear)[node]); |
| 302 | 302 |
base = (*_blossom_rep)[_blossom_set->find(node)]; |
| 303 | 303 |
_blossom_set->join(_graph.target(arc), base); |
| 304 | 304 |
} |
| 305 | 305 |
} |
| 306 | 306 |
|
| 307 | 307 |
_blossom_rep->set(_blossom_set->find(nca), nca); |
| 308 | 308 |
|
| 309 | 309 |
{
|
| 310 | 310 |
|
| 311 | 311 |
Node node = _graph.v(e); |
| 312 | 312 |
Arc arc = _graph.direct(e, false); |
| 313 | 313 |
Node base = (*_blossom_rep)[_blossom_set->find(node)]; |
| 314 | 314 |
|
| 315 | 315 |
while (base != nca) {
|
| 316 | 316 |
_ear->set(node, arc); |
| 317 | 317 |
|
| 318 | 318 |
Node n = node; |
| 319 | 319 |
while (n != base) {
|
| 320 | 320 |
n = _graph.target((*_matching)[n]); |
| 321 | 321 |
Arc a = (*_ear)[n]; |
| 322 | 322 |
n = _graph.target(a); |
| 323 | 323 |
_ear->set(n, _graph.oppositeArc(a)); |
| 324 | 324 |
} |
| 325 | 325 |
node = _graph.target((*_matching)[base]); |
| 326 | 326 |
_tree_set->erase(base); |
| 327 | 327 |
_tree_set->erase(node); |
| 328 | 328 |
_blossom_set->insert(node, _blossom_set->find(base)); |
| 329 | 329 |
_status->set(node, EVEN); |
| 330 | 330 |
_node_queue[_last++] = node; |
| 331 | 331 |
arc = _graph.oppositeArc((*_ear)[node]); |
| 332 | 332 |
node = _graph.target((*_ear)[node]); |
| 333 | 333 |
base = (*_blossom_rep)[_blossom_set->find(node)]; |
| 334 | 334 |
_blossom_set->join(_graph.target(arc), base); |
| 335 | 335 |
} |
| 336 | 336 |
} |
| 337 | 337 |
|
| 338 | 338 |
_blossom_rep->set(_blossom_set->find(nca), nca); |
| 339 | 339 |
} |
| 340 | 340 |
|
| 341 | 341 |
|
| 342 | 342 |
|
| 343 | 343 |
void extendOnArc(const Arc& a) {
|
| 344 | 344 |
Node base = _graph.source(a); |
| 345 | 345 |
Node odd = _graph.target(a); |
| 346 | 346 |
|
| 347 | 347 |
_ear->set(odd, _graph.oppositeArc(a)); |
| 348 | 348 |
Node even = _graph.target((*_matching)[odd]); |
| 349 | 349 |
_blossom_rep->set(_blossom_set->insert(even), even); |
| 350 | 350 |
_status->set(odd, ODD); |
| 351 | 351 |
_status->set(even, EVEN); |
| 352 | 352 |
int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]); |
| 353 | 353 |
_tree_set->insert(odd, tree); |
| 354 | 354 |
_tree_set->insert(even, tree); |
| 355 | 355 |
_node_queue[_last++] = even; |
| 356 | 356 |
|
| 357 | 357 |
} |
| 358 | 358 |
|
| 359 | 359 |
void augmentOnArc(const Arc& a) {
|
| 360 | 360 |
Node even = _graph.source(a); |
| 361 | 361 |
Node odd = _graph.target(a); |
| 362 | 362 |
|
| 363 | 363 |
int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]); |
| 364 | 364 |
|
| 365 | 365 |
_matching->set(odd, _graph.oppositeArc(a)); |
| 366 | 366 |
_status->set(odd, MATCHED); |
| 367 | 367 |
|
| 368 | 368 |
Arc arc = (*_matching)[even]; |
| 369 | 369 |
_matching->set(even, a); |
| 370 | 370 |
|
| 371 | 371 |
while (arc != INVALID) {
|
| 372 | 372 |
odd = _graph.target(arc); |
| 373 | 373 |
arc = (*_ear)[odd]; |
| 374 | 374 |
even = _graph.target(arc); |
| 375 | 375 |
_matching->set(odd, arc); |
| 376 | 376 |
arc = (*_matching)[even]; |
| 377 | 377 |
_matching->set(even, _graph.oppositeArc((*_matching)[odd])); |
| 378 | 378 |
} |
| 379 | 379 |
|
| 380 | 380 |
for (typename TreeSet::ItemIt it(*_tree_set, tree); |
| 381 | 381 |
it != INVALID; ++it) {
|
| 382 | 382 |
if ((*_status)[it] == ODD) {
|
| 383 | 383 |
_status->set(it, MATCHED); |
| 384 | 384 |
} else {
|
| 385 | 385 |
int blossom = _blossom_set->find(it); |
| 386 | 386 |
for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom); |
| 387 | 387 |
jt != INVALID; ++jt) {
|
| 388 | 388 |
_status->set(jt, MATCHED); |
| 389 | 389 |
} |
| 390 | 390 |
_blossom_set->eraseClass(blossom); |
| 391 | 391 |
} |
| 392 | 392 |
} |
| 393 | 393 |
_tree_set->eraseClass(tree); |
| 394 | 394 |
|
| 395 | 395 |
} |
| 396 | 396 |
|
| 397 | 397 |
public: |
| 398 | 398 |
|
| 399 | 399 |
/// \brief Constructor |
| 400 | 400 |
/// |
| 401 | 401 |
/// Constructor. |
| 402 | 402 |
MaxMatching(const Graph& graph) |
| 403 | 403 |
: _graph(graph), _matching(0), _status(0), _ear(0), |
| 404 | 404 |
_blossom_set_index(0), _blossom_set(0), _blossom_rep(0), |
| 405 | 405 |
_tree_set_index(0), _tree_set(0) {}
|
| 406 | 406 |
|
| 407 | 407 |
~MaxMatching() {
|
| 408 | 408 |
destroyStructures(); |
| 409 | 409 |
} |
| 410 | 410 |
|
| 411 | 411 |
/// \name Execution control |
| 412 | 412 |
/// The simplest way to execute the algorithm is to use the |
| 413 | 413 |
/// \c run() member function. |
| 414 | 414 |
/// \n |
| 415 | 415 |
|
| 416 | 416 |
/// If you need better control on the execution, you must call |
| 417 | 417 |
/// \ref init(), \ref greedyInit() or \ref matchingInit() |
| 418 | 418 |
/// functions first, then you can start the algorithm with the \ref |
| 419 |
/// |
|
| 419 |
/// startSparse() or startDense() functions. |
|
| 420 | 420 |
|
| 421 | 421 |
///@{
|
| 422 | 422 |
|
| 423 | 423 |
/// \brief Sets the actual matching to the empty matching. |
| 424 | 424 |
/// |
| 425 | 425 |
/// Sets the actual matching to the empty matching. |
| 426 | 426 |
/// |
| 427 | 427 |
void init() {
|
| 428 | 428 |
createStructures(); |
| 429 | 429 |
for(NodeIt n(_graph); n != INVALID; ++n) {
|
| 430 | 430 |
_matching->set(n, INVALID); |
| 431 | 431 |
_status->set(n, UNMATCHED); |
| 432 | 432 |
} |
| 433 | 433 |
} |
| 434 | 434 |
|
| 435 | 435 |
///\brief Finds an initial matching in a greedy way |
| 436 | 436 |
/// |
| 437 | 437 |
///It finds an initial matching in a greedy way. |
| 438 | 438 |
void greedyInit() {
|
| 439 | 439 |
createStructures(); |
| 440 | 440 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 441 | 441 |
_matching->set(n, INVALID); |
| 442 | 442 |
_status->set(n, UNMATCHED); |
| 443 | 443 |
} |
| 444 | 444 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 445 | 445 |
if ((*_matching)[n] == INVALID) {
|
| 446 | 446 |
for (OutArcIt a(_graph, n); a != INVALID ; ++a) {
|
| 447 | 447 |
Node v = _graph.target(a); |
| 448 | 448 |
if ((*_matching)[v] == INVALID && v != n) {
|
| 449 | 449 |
_matching->set(n, a); |
| 450 | 450 |
_status->set(n, MATCHED); |
| 451 | 451 |
_matching->set(v, _graph.oppositeArc(a)); |
| 452 | 452 |
_status->set(v, MATCHED); |
| 453 | 453 |
break; |
| 454 | 454 |
} |
| 455 | 455 |
} |
| 456 | 456 |
} |
| 457 | 457 |
} |
| 458 | 458 |
} |
| 459 | 459 |
|
| 460 | 460 |
|
| 461 | 461 |
/// \brief Initialize the matching from a map containing. |
| 462 | 462 |
/// |
| 463 | 463 |
/// Initialize the matching from a \c bool valued \c Edge map. This |
| 464 | 464 |
/// map must have the property that there are no two incident edges |
| 465 | 465 |
/// with true value, ie. it contains a matching. |
| 466 | 466 |
/// \return %True if the map contains a matching. |
| 467 | 467 |
template <typename MatchingMap> |
| 468 | 468 |
bool matchingInit(const MatchingMap& matching) {
|
| 469 | 469 |
createStructures(); |
| 470 | 470 |
|
| 471 | 471 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 472 | 472 |
_matching->set(n, INVALID); |
| 473 | 473 |
_status->set(n, UNMATCHED); |
| 474 | 474 |
} |
| 475 | 475 |
for(EdgeIt e(_graph); e!=INVALID; ++e) {
|
| 476 | 476 |
if (matching[e]) {
|
| 477 | 477 |
|
| 478 | 478 |
Node u = _graph.u(e); |
| 479 | 479 |
if ((*_matching)[u] != INVALID) return false; |
| 480 | 480 |
_matching->set(u, _graph.direct(e, true)); |
| 481 | 481 |
_status->set(u, MATCHED); |
| 482 | 482 |
|
| 483 | 483 |
Node v = _graph.v(e); |
| 484 | 484 |
if ((*_matching)[v] != INVALID) return false; |
| 485 | 485 |
_matching->set(v, _graph.direct(e, false)); |
| 486 | 486 |
_status->set(v, MATCHED); |
| 487 | 487 |
} |
| 488 | 488 |
} |
| 489 | 489 |
return true; |
| 490 | 490 |
} |
| 491 | 491 |
|
| 492 | 492 |
/// \brief Starts Edmonds' algorithm |
| 493 | 493 |
/// |
| 494 | 494 |
/// If runs the original Edmonds' algorithm. |
| 495 | 495 |
void startSparse() {
|
| 496 | 496 |
for(NodeIt n(_graph); n != INVALID; ++n) {
|
| 497 | 497 |
if ((*_status)[n] == UNMATCHED) {
|
| 498 | 498 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
| 499 | 499 |
_tree_set->insert(n); |
| 500 | 500 |
_status->set(n, EVEN); |
| 501 | 501 |
processSparse(n); |
| 502 | 502 |
} |
| 503 | 503 |
} |
| 504 | 504 |
} |
| 505 | 505 |
|
| 506 | 506 |
/// \brief Starts Edmonds' algorithm. |
| 507 | 507 |
/// |
| 508 | 508 |
/// It runs Edmonds' algorithm with a heuristic of postponing |
| 509 | 509 |
/// shrinks, therefore resulting in a faster algorithm for dense graphs. |
| 510 | 510 |
void startDense() {
|
| 511 | 511 |
for(NodeIt n(_graph); n != INVALID; ++n) {
|
| 512 | 512 |
if ((*_status)[n] == UNMATCHED) {
|
| 513 | 513 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
| 514 | 514 |
_tree_set->insert(n); |
| 515 | 515 |
_status->set(n, EVEN); |
| 516 | 516 |
processDense(n); |
| 517 | 517 |
} |
| 518 | 518 |
} |
| 519 | 519 |
} |
| 520 | 520 |
|
| 521 | 521 |
|
| 522 | 522 |
/// \brief Runs Edmonds' algorithm |
| 523 | 523 |
/// |
| 524 | 524 |
/// Runs Edmonds' algorithm for sparse graphs (<tt>m<2*n</tt>) |
| 525 | 525 |
/// or Edmonds' algorithm with a heuristic of |
| 526 | 526 |
/// postponing shrinks for dense graphs. |
| 527 | 527 |
void run() {
|
| 528 | 528 |
if (countEdges(_graph) < 2 * countNodes(_graph)) {
|
| 529 | 529 |
greedyInit(); |
| 530 | 530 |
startSparse(); |
| 531 | 531 |
} else {
|
| 532 | 532 |
init(); |
| 533 | 533 |
startDense(); |
| 534 | 534 |
} |
| 535 | 535 |
} |
| 536 | 536 |
|
| 537 | 537 |
/// @} |
| 538 | 538 |
|
| 539 | 539 |
/// \name Primal solution |
| 540 | 540 |
/// Functions to get the primal solution, ie. the matching. |
| 541 | 541 |
|
| 542 | 542 |
/// @{
|
| 543 | 543 |
|
| 544 | 544 |
///\brief Returns the size of the current matching. |
| 545 | 545 |
/// |
| 546 | 546 |
///Returns the size of the current matching. After \ref |
| 547 | 547 |
///run() it returns the size of the maximum matching in the graph. |
| 548 | 548 |
int matchingSize() const {
|
| 549 | 549 |
int size = 0; |
| 550 | 550 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 551 | 551 |
if ((*_matching)[n] != INVALID) {
|
| 552 | 552 |
++size; |
| 553 | 553 |
} |
| 554 | 554 |
} |
| 555 | 555 |
return size / 2; |
| 556 | 556 |
} |
| 557 | 557 |
|
| 558 | 558 |
/// \brief Returns true when the edge is in the matching. |
| 559 | 559 |
/// |
| 560 | 560 |
/// Returns true when the edge is in the matching. |
| 561 | 561 |
bool matching(const Edge& edge) const {
|
| 562 | 562 |
return edge == (*_matching)[_graph.u(edge)]; |
| 563 | 563 |
} |
| 564 | 564 |
|
| 565 | 565 |
/// \brief Returns the matching edge incident to the given node. |
| 566 | 566 |
/// |
| 567 | 567 |
/// Returns the matching edge of a \c node in the actual matching or |
| 568 | 568 |
/// INVALID if the \c node is not covered by the actual matching. |
| 569 | 569 |
Arc matching(const Node& n) const {
|
| 570 | 570 |
return (*_matching)[n]; |
| 571 | 571 |
} |
| 572 | 572 |
|
| 573 | 573 |
///\brief Returns the mate of a node in the actual matching. |
| 574 | 574 |
/// |
| 575 | 575 |
///Returns the mate of a \c node in the actual matching or |
| 576 | 576 |
///INVALID if the \c node is not covered by the actual matching. |
| 577 | 577 |
Node mate(const Node& n) const {
|
| 578 | 578 |
return (*_matching)[n] != INVALID ? |
| 579 | 579 |
_graph.target((*_matching)[n]) : INVALID; |
| 580 | 580 |
} |
| 581 | 581 |
|
| 582 | 582 |
/// @} |
| 583 | 583 |
|
| 584 | 584 |
/// \name Dual solution |
| 585 | 585 |
/// Functions to get the dual solution, ie. the decomposition. |
| 586 | 586 |
|
| 587 | 587 |
/// @{
|
| 588 | 588 |
|
| 589 | 589 |
/// \brief Returns the class of the node in the Edmonds-Gallai |
| 590 | 590 |
/// decomposition. |
| 591 | 591 |
/// |
| 592 | 592 |
/// Returns the class of the node in the Edmonds-Gallai |
| 593 | 593 |
/// decomposition. |
| 594 | 594 |
Status decomposition(const Node& n) const {
|
| 595 | 595 |
return (*_status)[n]; |
| 596 | 596 |
} |
| 597 | 597 |
|
| 598 | 598 |
/// \brief Returns true when the node is in the barrier. |
| 599 | 599 |
/// |
| 600 | 600 |
/// Returns true when the node is in the barrier. |
| 601 | 601 |
bool barrier(const Node& n) const {
|
| 602 | 602 |
return (*_status)[n] == ODD; |
| 603 | 603 |
} |
| 604 | 604 |
|
| 605 | 605 |
/// @} |
| 606 | 606 |
|
| 607 | 607 |
}; |
| 608 | 608 |
|
| 609 | 609 |
/// \ingroup matching |
| 610 | 610 |
/// |
| 611 | 611 |
/// \brief Weighted matching in general graphs |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_SUURBALLE_H |
| 20 | 20 |
#define LEMON_SUURBALLE_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup shortest_path |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief An algorithm for finding arc-disjoint paths between two |
| 25 | 25 |
/// nodes having minimum total length. |
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <lemon/bin_heap.h> |
| 29 | 29 |
#include <lemon/path.h> |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
|
| 33 | 33 |
/// \addtogroup shortest_path |
| 34 | 34 |
/// @{
|
| 35 | 35 |
|
| 36 | 36 |
/// \brief Algorithm for finding arc-disjoint paths between two nodes |
| 37 | 37 |
/// having minimum total length. |
| 38 | 38 |
/// |
| 39 | 39 |
/// \ref lemon::Suurballe "Suurballe" implements an algorithm for |
| 40 | 40 |
/// finding arc-disjoint paths having minimum total length (cost) |
| 41 | 41 |
/// from a given source node to a given target node in a digraph. |
| 42 | 42 |
/// |
| 43 | 43 |
/// In fact, this implementation is the specialization of the |
| 44 | 44 |
/// \ref CapacityScaling "successive shortest path" algorithm. |
| 45 | 45 |
/// |
| 46 | 46 |
/// \tparam Digraph The digraph type the algorithm runs on. |
| 47 | 47 |
/// The default value is \c ListDigraph. |
| 48 | 48 |
/// \tparam LengthMap The type of the length (cost) map. |
| 49 | 49 |
/// The default value is <tt>Digraph::ArcMap<int></tt>. |
| 50 | 50 |
/// |
| 51 | 51 |
/// \warning Length values should be \e non-negative \e integers. |
| 52 | 52 |
/// |
| 53 | 53 |
/// \note For finding node-disjoint paths this algorithm can be used |
| 54 |
/// with \ref |
|
| 54 |
/// with \ref SplitNodes. |
|
| 55 | 55 |
#ifdef DOXYGEN |
| 56 | 56 |
template <typename Digraph, typename LengthMap> |
| 57 | 57 |
#else |
| 58 | 58 |
template < typename Digraph = ListDigraph, |
| 59 | 59 |
typename LengthMap = typename Digraph::template ArcMap<int> > |
| 60 | 60 |
#endif |
| 61 | 61 |
class Suurballe |
| 62 | 62 |
{
|
| 63 | 63 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 64 | 64 |
|
| 65 | 65 |
typedef typename LengthMap::Value Length; |
| 66 | 66 |
typedef ConstMap<Arc, int> ConstArcMap; |
| 67 | 67 |
typedef typename Digraph::template NodeMap<Arc> PredMap; |
| 68 | 68 |
|
| 69 | 69 |
public: |
| 70 | 70 |
|
| 71 | 71 |
/// The type of the flow map. |
| 72 | 72 |
typedef typename Digraph::template ArcMap<int> FlowMap; |
| 73 | 73 |
/// The type of the potential map. |
| 74 | 74 |
typedef typename Digraph::template NodeMap<Length> PotentialMap; |
| 75 | 75 |
/// The type of the path structures. |
| 76 | 76 |
typedef SimplePath<Digraph> Path; |
| 77 | 77 |
|
| 78 | 78 |
private: |
| 79 | 79 |
|
| 80 | 80 |
/// \brief Special implementation of the Dijkstra algorithm |
| 81 | 81 |
/// for finding shortest paths in the residual network. |
| 82 | 82 |
/// |
| 83 | 83 |
/// \ref ResidualDijkstra is a special implementation of the |
| 84 | 84 |
/// \ref Dijkstra algorithm for finding shortest paths in the |
| 85 | 85 |
/// residual network of the digraph with respect to the reduced arc |
| 86 | 86 |
/// lengths and modifying the node potentials according to the |
| 87 | 87 |
/// distance of the nodes. |
| 88 | 88 |
class ResidualDijkstra |
| 89 | 89 |
{
|
| 90 | 90 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 91 | 91 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
| 92 | 92 |
|
| 93 | 93 |
private: |
| 94 | 94 |
|
| 95 | 95 |
// The digraph the algorithm runs on |
| 96 | 96 |
const Digraph &_graph; |
| 97 | 97 |
|
| 98 | 98 |
// The main maps |
| 99 | 99 |
const FlowMap &_flow; |
| 100 | 100 |
const LengthMap &_length; |
| 101 | 101 |
PotentialMap &_potential; |
| 102 | 102 |
|
| 103 | 103 |
// The distance map |
| 104 | 104 |
PotentialMap _dist; |
| 105 | 105 |
// The pred arc map |
| 106 | 106 |
PredMap &_pred; |
| 107 | 107 |
// The processed (i.e. permanently labeled) nodes |
| 108 | 108 |
std::vector<Node> _proc_nodes; |
| 109 | 109 |
|
| 110 | 110 |
Node _s; |
| 111 | 111 |
Node _t; |
| 112 | 112 |
|
| 113 | 113 |
public: |
| 114 | 114 |
|
| 115 | 115 |
/// Constructor. |
| 116 | 116 |
ResidualDijkstra( const Digraph &digraph, |
| 117 | 117 |
const FlowMap &flow, |
| 118 | 118 |
const LengthMap &length, |
| 119 | 119 |
PotentialMap &potential, |
| 120 | 120 |
PredMap &pred, |
| 121 | 121 |
Node s, Node t ) : |
| 122 | 122 |
_graph(digraph), _flow(flow), _length(length), _potential(potential), |
| 123 | 123 |
_dist(digraph), _pred(pred), _s(s), _t(t) {}
|
| 124 | 124 |
|
| 125 | 125 |
/// \brief Run the algorithm. It returns \c true if a path is found |
| 126 | 126 |
/// from the source node to the target node. |
| 127 | 127 |
bool run() {
|
| 128 | 128 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
| 129 | 129 |
Heap heap(heap_cross_ref); |
| 130 | 130 |
heap.push(_s, 0); |
| 131 | 131 |
_pred[_s] = INVALID; |
| 132 | 132 |
_proc_nodes.clear(); |
| 133 | 133 |
|
| 134 | 134 |
// Process nodes |
| 135 | 135 |
while (!heap.empty() && heap.top() != _t) {
|
| 136 | 136 |
Node u = heap.top(), v; |
| 137 | 137 |
Length d = heap.prio() + _potential[u], nd; |
| 138 | 138 |
_dist[u] = heap.prio(); |
| 139 | 139 |
heap.pop(); |
| 140 | 140 |
_proc_nodes.push_back(u); |
| 141 | 141 |
|
| 142 | 142 |
// Traverse outgoing arcs |
| 143 | 143 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) {
|
| 144 | 144 |
if (_flow[e] == 0) {
|
| 145 | 145 |
v = _graph.target(e); |
| 146 | 146 |
switch(heap.state(v)) {
|
| 147 | 147 |
case Heap::PRE_HEAP: |
| 148 | 148 |
heap.push(v, d + _length[e] - _potential[v]); |
| 149 | 149 |
_pred[v] = e; |
| 150 | 150 |
break; |
| 151 | 151 |
case Heap::IN_HEAP: |
| 152 | 152 |
nd = d + _length[e] - _potential[v]; |
| 153 | 153 |
if (nd < heap[v]) {
|
| 154 | 154 |
heap.decrease(v, nd); |
| 155 | 155 |
_pred[v] = e; |
| 156 | 156 |
} |
| 157 | 157 |
break; |
| 158 | 158 |
case Heap::POST_HEAP: |
| 159 | 159 |
break; |
| 160 | 160 |
} |
| 161 | 161 |
} |
| 162 | 162 |
} |
| 163 | 163 |
|
| 164 | 164 |
// Traverse incoming arcs |
| 165 | 165 |
for (InArcIt e(_graph, u); e != INVALID; ++e) {
|
| 166 | 166 |
if (_flow[e] == 1) {
|
| 167 | 167 |
v = _graph.source(e); |
| 168 | 168 |
switch(heap.state(v)) {
|
| 169 | 169 |
case Heap::PRE_HEAP: |
| 170 | 170 |
heap.push(v, d - _length[e] - _potential[v]); |
| 171 | 171 |
_pred[v] = e; |
| 172 | 172 |
break; |
| 173 | 173 |
case Heap::IN_HEAP: |
| 174 | 174 |
nd = d - _length[e] - _potential[v]; |
| 175 | 175 |
if (nd < heap[v]) {
|
| 176 | 176 |
heap.decrease(v, nd); |
| 177 | 177 |
_pred[v] = e; |
| 178 | 178 |
} |
| 179 | 179 |
break; |
| 180 | 180 |
case Heap::POST_HEAP: |
| 181 | 181 |
break; |
| 182 | 182 |
} |
| 183 | 183 |
} |
| 184 | 184 |
} |
| 185 | 185 |
} |
| 186 | 186 |
if (heap.empty()) return false; |
| 187 | 187 |
|
| 188 | 188 |
// Update potentials of processed nodes |
| 189 | 189 |
Length t_dist = heap.prio(); |
| 190 | 190 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
| 191 | 191 |
_potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; |
| 192 | 192 |
return true; |
| 193 | 193 |
} |
| 194 | 194 |
|
| 195 | 195 |
}; //class ResidualDijkstra |
| 196 | 196 |
|
| 197 | 197 |
private: |
| 198 | 198 |
|
| 199 | 199 |
// The digraph the algorithm runs on |
| 200 | 200 |
const Digraph &_graph; |
| 201 | 201 |
// The length map |
| 202 | 202 |
const LengthMap &_length; |
| 203 | 203 |
|
| 204 | 204 |
// Arc map of the current flow |
| 205 | 205 |
FlowMap *_flow; |
| 206 | 206 |
bool _local_flow; |
| 207 | 207 |
// Node map of the current potentials |
| 208 | 208 |
PotentialMap *_potential; |
| 209 | 209 |
bool _local_potential; |
| 210 | 210 |
|
| 211 | 211 |
// The source node |
| 212 | 212 |
Node _source; |
| 213 | 213 |
// The target node |
| 214 | 214 |
Node _target; |
| 215 | 215 |
|
| 216 | 216 |
// Container to store the found paths |
| 217 | 217 |
std::vector< SimplePath<Digraph> > paths; |
| 218 | 218 |
int _path_num; |
| 219 | 219 |
|
| 220 | 220 |
// The pred arc map |
| 221 | 221 |
PredMap _pred; |
| 222 | 222 |
// Implementation of the Dijkstra algorithm for finding augmenting |
| 223 | 223 |
// shortest paths in the residual network |
| 224 | 224 |
ResidualDijkstra *_dijkstra; |
| 225 | 225 |
|
| 226 | 226 |
public: |
| 227 | 227 |
|
| 228 | 228 |
/// \brief Constructor. |
| 229 | 229 |
/// |
| 230 | 230 |
/// Constructor. |
| 231 | 231 |
/// |
| 232 | 232 |
/// \param digraph The digraph the algorithm runs on. |
| 233 | 233 |
/// \param length The length (cost) values of the arcs. |
| 234 | 234 |
/// \param s The source node. |
| 235 | 235 |
/// \param t The target node. |
| 236 | 236 |
Suurballe( const Digraph &digraph, |
| 237 | 237 |
const LengthMap &length, |
| 238 | 238 |
Node s, Node t ) : |
| 239 | 239 |
_graph(digraph), _length(length), _flow(0), _local_flow(false), |
| 240 | 240 |
_potential(0), _local_potential(false), _source(s), _target(t), |
| 241 | 241 |
_pred(digraph) {}
|
| 242 | 242 |
|
| 243 | 243 |
/// Destructor. |
| 244 | 244 |
~Suurballe() {
|
| 245 | 245 |
if (_local_flow) delete _flow; |
| 246 | 246 |
if (_local_potential) delete _potential; |
0 comments (0 inline)