0
3
0
| ... | ... |
@@ -250,97 +250,97 @@ |
| 250 | 250 |
|
| 251 | 251 |
using namespace _connectivity_bits; |
| 252 | 252 |
|
| 253 | 253 |
typedef DfsVisitor<Digraph> Visitor; |
| 254 | 254 |
Visitor visitor; |
| 255 | 255 |
|
| 256 | 256 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| 257 | 257 |
dfs.init(); |
| 258 | 258 |
dfs.addSource(source); |
| 259 | 259 |
dfs.start(); |
| 260 | 260 |
|
| 261 | 261 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 262 | 262 |
if (!dfs.reached(it)) {
|
| 263 | 263 |
return false; |
| 264 | 264 |
} |
| 265 | 265 |
} |
| 266 | 266 |
|
| 267 | 267 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 268 | 268 |
typedef typename RDigraph::NodeIt RNodeIt; |
| 269 | 269 |
RDigraph rdigraph(digraph); |
| 270 | 270 |
|
| 271 | 271 |
typedef DfsVisitor<Digraph> RVisitor; |
| 272 | 272 |
RVisitor rvisitor; |
| 273 | 273 |
|
| 274 | 274 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| 275 | 275 |
rdfs.init(); |
| 276 | 276 |
rdfs.addSource(source); |
| 277 | 277 |
rdfs.start(); |
| 278 | 278 |
|
| 279 | 279 |
for (RNodeIt it(rdigraph); it != INVALID; ++it) {
|
| 280 | 280 |
if (!rdfs.reached(it)) {
|
| 281 | 281 |
return false; |
| 282 | 282 |
} |
| 283 | 283 |
} |
| 284 | 284 |
|
| 285 | 285 |
return true; |
| 286 | 286 |
} |
| 287 | 287 |
|
| 288 | 288 |
/// \ingroup connectivity |
| 289 | 289 |
/// |
| 290 | 290 |
/// \brief Count the strongly connected components of a directed graph |
| 291 | 291 |
/// |
| 292 | 292 |
/// Count the strongly connected components of a directed graph. |
| 293 | 293 |
/// The strongly connected components are the classes of an |
| 294 | 294 |
/// equivalence relation on the nodes of the graph. Two nodes are in |
| 295 | 295 |
/// the same class if they are connected with directed paths in both |
| 296 | 296 |
/// direction. |
| 297 | 297 |
/// |
| 298 |
/// \param |
|
| 298 |
/// \param digraph The graph. |
|
| 299 | 299 |
/// \return The number of components |
| 300 | 300 |
/// \note By definition, the empty graph has zero |
| 301 | 301 |
/// strongly connected components. |
| 302 | 302 |
template <typename Digraph> |
| 303 | 303 |
int countStronglyConnectedComponents(const Digraph& digraph) {
|
| 304 | 304 |
checkConcept<concepts::Digraph, Digraph>(); |
| 305 | 305 |
|
| 306 | 306 |
using namespace _connectivity_bits; |
| 307 | 307 |
|
| 308 | 308 |
typedef typename Digraph::Node Node; |
| 309 | 309 |
typedef typename Digraph::Arc Arc; |
| 310 | 310 |
typedef typename Digraph::NodeIt NodeIt; |
| 311 | 311 |
typedef typename Digraph::ArcIt ArcIt; |
| 312 | 312 |
|
| 313 | 313 |
typedef std::vector<Node> Container; |
| 314 | 314 |
typedef typename Container::iterator Iterator; |
| 315 | 315 |
|
| 316 | 316 |
Container nodes(countNodes(digraph)); |
| 317 | 317 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
| 318 | 318 |
Visitor visitor(nodes.begin()); |
| 319 | 319 |
|
| 320 | 320 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
| 321 | 321 |
dfs.init(); |
| 322 | 322 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 323 | 323 |
if (!dfs.reached(it)) {
|
| 324 | 324 |
dfs.addSource(it); |
| 325 | 325 |
dfs.start(); |
| 326 | 326 |
} |
| 327 | 327 |
} |
| 328 | 328 |
|
| 329 | 329 |
typedef typename Container::reverse_iterator RIterator; |
| 330 | 330 |
typedef ReverseDigraph<const Digraph> RDigraph; |
| 331 | 331 |
|
| 332 | 332 |
RDigraph rdigraph(digraph); |
| 333 | 333 |
|
| 334 | 334 |
typedef DfsVisitor<Digraph> RVisitor; |
| 335 | 335 |
RVisitor rvisitor; |
| 336 | 336 |
|
| 337 | 337 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
| 338 | 338 |
|
| 339 | 339 |
int compNum = 0; |
| 340 | 340 |
|
| 341 | 341 |
rdfs.init(); |
| 342 | 342 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
| 343 | 343 |
if (!rdfs.reached(*it)) {
|
| 344 | 344 |
rdfs.addSource(*it); |
| 345 | 345 |
rdfs.start(); |
| 346 | 346 |
++compNum; |
| ... | ... |
@@ -1180,97 +1180,97 @@ |
| 1180 | 1180 |
} |
| 1181 | 1181 |
|
| 1182 | 1182 |
/// \ingroup connectivity |
| 1183 | 1183 |
/// |
| 1184 | 1184 |
/// \brief Sort the nodes of a DAG into topolgical order. |
| 1185 | 1185 |
/// |
| 1186 | 1186 |
/// Sort the nodes of a DAG into topolgical order. |
| 1187 | 1187 |
/// |
| 1188 | 1188 |
/// \param graph The graph. It must be directed and acyclic. |
| 1189 | 1189 |
/// \retval order A writable node map. The values will be set from 0 to |
| 1190 | 1190 |
/// the number of the nodes in the graph minus one. Each values of the map |
| 1191 | 1191 |
/// will be set exactly once, the values will be set descending order. |
| 1192 | 1192 |
/// |
| 1193 | 1193 |
/// \see checkedTopologicalSort |
| 1194 | 1194 |
/// \see dag |
| 1195 | 1195 |
template <typename Digraph, typename NodeMap> |
| 1196 | 1196 |
void topologicalSort(const Digraph& graph, NodeMap& order) {
|
| 1197 | 1197 |
using namespace _connectivity_bits; |
| 1198 | 1198 |
|
| 1199 | 1199 |
checkConcept<concepts::Digraph, Digraph>(); |
| 1200 | 1200 |
checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>(); |
| 1201 | 1201 |
|
| 1202 | 1202 |
typedef typename Digraph::Node Node; |
| 1203 | 1203 |
typedef typename Digraph::NodeIt NodeIt; |
| 1204 | 1204 |
typedef typename Digraph::Arc Arc; |
| 1205 | 1205 |
|
| 1206 | 1206 |
TopologicalSortVisitor<Digraph, NodeMap> |
| 1207 | 1207 |
visitor(order, countNodes(graph)); |
| 1208 | 1208 |
|
| 1209 | 1209 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
| 1210 | 1210 |
dfs(graph, visitor); |
| 1211 | 1211 |
|
| 1212 | 1212 |
dfs.init(); |
| 1213 | 1213 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1214 | 1214 |
if (!dfs.reached(it)) {
|
| 1215 | 1215 |
dfs.addSource(it); |
| 1216 | 1216 |
dfs.start(); |
| 1217 | 1217 |
} |
| 1218 | 1218 |
} |
| 1219 | 1219 |
} |
| 1220 | 1220 |
|
| 1221 | 1221 |
/// \ingroup connectivity |
| 1222 | 1222 |
/// |
| 1223 | 1223 |
/// \brief Sort the nodes of a DAG into topolgical order. |
| 1224 | 1224 |
/// |
| 1225 | 1225 |
/// Sort the nodes of a DAG into topolgical order. It also checks |
| 1226 | 1226 |
/// that the given graph is DAG. |
| 1227 | 1227 |
/// |
| 1228 |
/// \param |
|
| 1228 |
/// \param digraph The graph. It must be directed and acyclic. |
|
| 1229 | 1229 |
/// \retval order A readable - writable node map. The values will be set |
| 1230 | 1230 |
/// from 0 to the number of the nodes in the graph minus one. Each values |
| 1231 | 1231 |
/// of the map will be set exactly once, the values will be set descending |
| 1232 | 1232 |
/// order. |
| 1233 | 1233 |
/// \return %False when the graph is not DAG. |
| 1234 | 1234 |
/// |
| 1235 | 1235 |
/// \see topologicalSort |
| 1236 | 1236 |
/// \see dag |
| 1237 | 1237 |
template <typename Digraph, typename NodeMap> |
| 1238 | 1238 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
|
| 1239 | 1239 |
using namespace _connectivity_bits; |
| 1240 | 1240 |
|
| 1241 | 1241 |
checkConcept<concepts::Digraph, Digraph>(); |
| 1242 | 1242 |
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>, |
| 1243 | 1243 |
NodeMap>(); |
| 1244 | 1244 |
|
| 1245 | 1245 |
typedef typename Digraph::Node Node; |
| 1246 | 1246 |
typedef typename Digraph::NodeIt NodeIt; |
| 1247 | 1247 |
typedef typename Digraph::Arc Arc; |
| 1248 | 1248 |
|
| 1249 | 1249 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1250 | 1250 |
order.set(it, -1); |
| 1251 | 1251 |
} |
| 1252 | 1252 |
|
| 1253 | 1253 |
TopologicalSortVisitor<Digraph, NodeMap> |
| 1254 | 1254 |
visitor(order, countNodes(digraph)); |
| 1255 | 1255 |
|
| 1256 | 1256 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
| 1257 | 1257 |
dfs(digraph, visitor); |
| 1258 | 1258 |
|
| 1259 | 1259 |
dfs.init(); |
| 1260 | 1260 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1261 | 1261 |
if (!dfs.reached(it)) {
|
| 1262 | 1262 |
dfs.addSource(it); |
| 1263 | 1263 |
while (!dfs.emptyQueue()) {
|
| 1264 | 1264 |
Arc arc = dfs.nextArc(); |
| 1265 | 1265 |
Node target = digraph.target(arc); |
| 1266 | 1266 |
if (dfs.reached(target) && order[target] == -1) {
|
| 1267 | 1267 |
return false; |
| 1268 | 1268 |
} |
| 1269 | 1269 |
dfs.processNextArc(); |
| 1270 | 1270 |
} |
| 1271 | 1271 |
} |
| 1272 | 1272 |
} |
| 1273 | 1273 |
return true; |
| 1274 | 1274 |
} |
| 1275 | 1275 |
|
| 1276 | 1276 |
/// \ingroup connectivity |
| ... | ... |
@@ -371,97 +371,97 @@ |
| 371 | 371 |
while (arc != INVALID) {
|
| 372 | 372 |
odd = _graph.target(arc); |
| 373 | 373 |
arc = (*_ear)[odd]; |
| 374 | 374 |
even = _graph.target(arc); |
| 375 | 375 |
_matching->set(odd, arc); |
| 376 | 376 |
arc = (*_matching)[even]; |
| 377 | 377 |
_matching->set(even, _graph.oppositeArc((*_matching)[odd])); |
| 378 | 378 |
} |
| 379 | 379 |
|
| 380 | 380 |
for (typename TreeSet::ItemIt it(*_tree_set, tree); |
| 381 | 381 |
it != INVALID; ++it) {
|
| 382 | 382 |
if ((*_status)[it] == ODD) {
|
| 383 | 383 |
_status->set(it, MATCHED); |
| 384 | 384 |
} else {
|
| 385 | 385 |
int blossom = _blossom_set->find(it); |
| 386 | 386 |
for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom); |
| 387 | 387 |
jt != INVALID; ++jt) {
|
| 388 | 388 |
_status->set(jt, MATCHED); |
| 389 | 389 |
} |
| 390 | 390 |
_blossom_set->eraseClass(blossom); |
| 391 | 391 |
} |
| 392 | 392 |
} |
| 393 | 393 |
_tree_set->eraseClass(tree); |
| 394 | 394 |
|
| 395 | 395 |
} |
| 396 | 396 |
|
| 397 | 397 |
public: |
| 398 | 398 |
|
| 399 | 399 |
/// \brief Constructor |
| 400 | 400 |
/// |
| 401 | 401 |
/// Constructor. |
| 402 | 402 |
MaxMatching(const Graph& graph) |
| 403 | 403 |
: _graph(graph), _matching(0), _status(0), _ear(0), |
| 404 | 404 |
_blossom_set_index(0), _blossom_set(0), _blossom_rep(0), |
| 405 | 405 |
_tree_set_index(0), _tree_set(0) {}
|
| 406 | 406 |
|
| 407 | 407 |
~MaxMatching() {
|
| 408 | 408 |
destroyStructures(); |
| 409 | 409 |
} |
| 410 | 410 |
|
| 411 | 411 |
/// \name Execution control |
| 412 | 412 |
/// The simplest way to execute the algorithm is to use the |
| 413 | 413 |
/// \c run() member function. |
| 414 | 414 |
/// \n |
| 415 | 415 |
|
| 416 | 416 |
/// If you need better control on the execution, you must call |
| 417 | 417 |
/// \ref init(), \ref greedyInit() or \ref matchingInit() |
| 418 | 418 |
/// functions first, then you can start the algorithm with the \ref |
| 419 |
/// |
|
| 419 |
/// startSparse() or startDense() functions. |
|
| 420 | 420 |
|
| 421 | 421 |
///@{
|
| 422 | 422 |
|
| 423 | 423 |
/// \brief Sets the actual matching to the empty matching. |
| 424 | 424 |
/// |
| 425 | 425 |
/// Sets the actual matching to the empty matching. |
| 426 | 426 |
/// |
| 427 | 427 |
void init() {
|
| 428 | 428 |
createStructures(); |
| 429 | 429 |
for(NodeIt n(_graph); n != INVALID; ++n) {
|
| 430 | 430 |
_matching->set(n, INVALID); |
| 431 | 431 |
_status->set(n, UNMATCHED); |
| 432 | 432 |
} |
| 433 | 433 |
} |
| 434 | 434 |
|
| 435 | 435 |
///\brief Finds an initial matching in a greedy way |
| 436 | 436 |
/// |
| 437 | 437 |
///It finds an initial matching in a greedy way. |
| 438 | 438 |
void greedyInit() {
|
| 439 | 439 |
createStructures(); |
| 440 | 440 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 441 | 441 |
_matching->set(n, INVALID); |
| 442 | 442 |
_status->set(n, UNMATCHED); |
| 443 | 443 |
} |
| 444 | 444 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 445 | 445 |
if ((*_matching)[n] == INVALID) {
|
| 446 | 446 |
for (OutArcIt a(_graph, n); a != INVALID ; ++a) {
|
| 447 | 447 |
Node v = _graph.target(a); |
| 448 | 448 |
if ((*_matching)[v] == INVALID && v != n) {
|
| 449 | 449 |
_matching->set(n, a); |
| 450 | 450 |
_status->set(n, MATCHED); |
| 451 | 451 |
_matching->set(v, _graph.oppositeArc(a)); |
| 452 | 452 |
_status->set(v, MATCHED); |
| 453 | 453 |
break; |
| 454 | 454 |
} |
| 455 | 455 |
} |
| 456 | 456 |
} |
| 457 | 457 |
} |
| 458 | 458 |
} |
| 459 | 459 |
|
| 460 | 460 |
|
| 461 | 461 |
/// \brief Initialize the matching from a map containing. |
| 462 | 462 |
/// |
| 463 | 463 |
/// Initialize the matching from a \c bool valued \c Edge map. This |
| 464 | 464 |
/// map must have the property that there are no two incident edges |
| 465 | 465 |
/// with true value, ie. it contains a matching. |
| 466 | 466 |
/// \return %True if the map contains a matching. |
| 467 | 467 |
template <typename MatchingMap> |
| ... | ... |
@@ -6,97 +6,97 @@ |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_SUURBALLE_H |
| 20 | 20 |
#define LEMON_SUURBALLE_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup shortest_path |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief An algorithm for finding arc-disjoint paths between two |
| 25 | 25 |
/// nodes having minimum total length. |
| 26 | 26 |
|
| 27 | 27 |
#include <vector> |
| 28 | 28 |
#include <lemon/bin_heap.h> |
| 29 | 29 |
#include <lemon/path.h> |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
|
| 33 | 33 |
/// \addtogroup shortest_path |
| 34 | 34 |
/// @{
|
| 35 | 35 |
|
| 36 | 36 |
/// \brief Algorithm for finding arc-disjoint paths between two nodes |
| 37 | 37 |
/// having minimum total length. |
| 38 | 38 |
/// |
| 39 | 39 |
/// \ref lemon::Suurballe "Suurballe" implements an algorithm for |
| 40 | 40 |
/// finding arc-disjoint paths having minimum total length (cost) |
| 41 | 41 |
/// from a given source node to a given target node in a digraph. |
| 42 | 42 |
/// |
| 43 | 43 |
/// In fact, this implementation is the specialization of the |
| 44 | 44 |
/// \ref CapacityScaling "successive shortest path" algorithm. |
| 45 | 45 |
/// |
| 46 | 46 |
/// \tparam Digraph The digraph type the algorithm runs on. |
| 47 | 47 |
/// The default value is \c ListDigraph. |
| 48 | 48 |
/// \tparam LengthMap The type of the length (cost) map. |
| 49 | 49 |
/// The default value is <tt>Digraph::ArcMap<int></tt>. |
| 50 | 50 |
/// |
| 51 | 51 |
/// \warning Length values should be \e non-negative \e integers. |
| 52 | 52 |
/// |
| 53 | 53 |
/// \note For finding node-disjoint paths this algorithm can be used |
| 54 |
/// with \ref |
|
| 54 |
/// with \ref SplitNodes. |
|
| 55 | 55 |
#ifdef DOXYGEN |
| 56 | 56 |
template <typename Digraph, typename LengthMap> |
| 57 | 57 |
#else |
| 58 | 58 |
template < typename Digraph = ListDigraph, |
| 59 | 59 |
typename LengthMap = typename Digraph::template ArcMap<int> > |
| 60 | 60 |
#endif |
| 61 | 61 |
class Suurballe |
| 62 | 62 |
{
|
| 63 | 63 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 64 | 64 |
|
| 65 | 65 |
typedef typename LengthMap::Value Length; |
| 66 | 66 |
typedef ConstMap<Arc, int> ConstArcMap; |
| 67 | 67 |
typedef typename Digraph::template NodeMap<Arc> PredMap; |
| 68 | 68 |
|
| 69 | 69 |
public: |
| 70 | 70 |
|
| 71 | 71 |
/// The type of the flow map. |
| 72 | 72 |
typedef typename Digraph::template ArcMap<int> FlowMap; |
| 73 | 73 |
/// The type of the potential map. |
| 74 | 74 |
typedef typename Digraph::template NodeMap<Length> PotentialMap; |
| 75 | 75 |
/// The type of the path structures. |
| 76 | 76 |
typedef SimplePath<Digraph> Path; |
| 77 | 77 |
|
| 78 | 78 |
private: |
| 79 | 79 |
|
| 80 | 80 |
/// \brief Special implementation of the Dijkstra algorithm |
| 81 | 81 |
/// for finding shortest paths in the residual network. |
| 82 | 82 |
/// |
| 83 | 83 |
/// \ref ResidualDijkstra is a special implementation of the |
| 84 | 84 |
/// \ref Dijkstra algorithm for finding shortest paths in the |
| 85 | 85 |
/// residual network of the digraph with respect to the reduced arc |
| 86 | 86 |
/// lengths and modifying the node potentials according to the |
| 87 | 87 |
/// distance of the nodes. |
| 88 | 88 |
class ResidualDijkstra |
| 89 | 89 |
{
|
| 90 | 90 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 91 | 91 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
| 92 | 92 |
|
| 93 | 93 |
private: |
| 94 | 94 |
|
| 95 | 95 |
// The digraph the algorithm runs on |
| 96 | 96 |
const Digraph &_graph; |
| 97 | 97 |
|
| 98 | 98 |
// The main maps |
| 99 | 99 |
const FlowMap &_flow; |
| 100 | 100 |
const LengthMap &_length; |
| 101 | 101 |
PotentialMap &_potential; |
| 102 | 102 |
|
0 comments (0 inline)