0
2
0
313
57
... | ... |
@@ -18,12 +18,13 @@ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_GOMORY_HU_TREE_H |
20 | 20 |
#define LEMON_GOMORY_HU_TREE_H |
21 | 21 |
|
22 | 22 |
#include <limits> |
23 | 23 |
|
24 |
#include <lemon/core.h> |
|
24 | 25 |
#include <lemon/preflow.h> |
25 | 26 |
#include <lemon/concept_check.h> |
26 | 27 |
#include <lemon/concepts/maps.h> |
27 | 28 |
|
28 | 29 |
/// \ingroup min_cut |
29 | 30 |
/// \file |
... | ... |
@@ -32,37 +33,46 @@ |
32 | 33 |
namespace lemon { |
33 | 34 |
|
34 | 35 |
/// \ingroup min_cut |
35 | 36 |
/// |
36 | 37 |
/// \brief Gomory-Hu cut tree algorithm |
37 | 38 |
/// |
38 |
/// The Gomory-Hu tree is a tree on the nodeset of the digraph, but it |
|
39 |
/// may contain arcs which are not in the original digraph. It helps |
|
40 |
/// to calculate the minimum cut between all pairs of nodes, because |
|
41 |
/// the minimum capacity arc on the tree path between two nodes has |
|
42 |
/// the same weight as the minimum cut in the digraph between these |
|
43 |
/// nodes. Moreover this arc separates the nodes to two parts which |
|
44 |
/// |
|
39 |
/// The Gomory-Hu tree is a tree on the node set of the graph, but it |
|
40 |
/// may contain edges which are not in the original digraph. It has the |
|
41 |
/// property that the minimum capacity edge of the path between two nodes |
|
42 |
/// in this tree has the same weight as the minimum cut in the digraph |
|
43 |
/// between these nodes. Moreover the components obtained by removing |
|
44 |
/// this edge from the tree determine the corresponding minimum cut. |
|
45 |
/// |
|
46 |
/// Therefore once this tree is computed, the minimum cut between any pair |
|
47 |
/// of nodes can easily be obtained. |
|
45 | 48 |
/// |
46 |
/// The algorithm calculates \e n-1 distinict minimum cuts with |
|
47 |
/// preflow algorithm, therefore the algorithm has |
|
49 |
/// The algorithm calculates \e n-1 distinct minimum cuts (currently with |
|
50 |
/// the \ref Preflow algorithm), therefore the algorithm has |
|
48 | 51 |
/// \f$(O(n^3\sqrt{e})\f$ overall time complexity. It calculates a |
49 |
/// rooted Gomory-Hu tree, the structure of the tree and the weights |
|
50 |
/// can be obtained with \c predNode() and \c predValue() |
|
51 |
/// |
|
52 |
/// rooted Gomory-Hu tree, its structure and the weights can be obtained |
|
53 |
/// by \c predNode(), \c predValue() and \c rootDist(). |
|
54 |
/// |
|
55 |
/// The members \c minCutMap() and \c minCutValue() calculate |
|
52 | 56 |
/// the minimum cut and the minimum cut value between any two node |
53 |
/// in the digraph. |
|
54 |
template <typename _Graph, |
|
55 |
|
|
57 |
/// in the digraph. You can also list (iterate on) the nodes and the |
|
58 |
/// edges of the cuts using MinCutNodeIt and MinCutEdgeIt. |
|
59 |
/// |
|
60 |
/// \tparam GR The undirected graph data structure the algorithm will run on |
|
61 |
/// \tparam CAP type of the EdgeMap describing the Edge capacities. |
|
62 |
/// it is typename GR::template EdgeMap<int> by default. |
|
63 |
template <typename GR, |
|
64 |
typename CAP = typename GR::template EdgeMap<int> |
|
65 |
> |
|
56 | 66 |
class GomoryHuTree { |
57 | 67 |
public: |
58 | 68 |
|
59 | 69 |
/// The graph type |
60 |
typedef _Graph Graph; |
|
61 |
/// The capacity on edges |
|
62 |
typedef |
|
70 |
typedef GR Graph; |
|
71 |
/// The type if the edge capacity map |
|
72 |
typedef CAP Capacity; |
|
63 | 73 |
/// The value type of capacities |
64 | 74 |
typedef typename Capacity::Value Value; |
65 | 75 |
|
66 | 76 |
private: |
67 | 77 |
|
68 | 78 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
... | ... |
@@ -101,13 +111,13 @@ |
101 | 111 |
|
102 | 112 |
public: |
103 | 113 |
|
104 | 114 |
/// \brief Constructor |
105 | 115 |
/// |
106 | 116 |
/// Constructor |
107 |
/// \param graph The graph |
|
117 |
/// \param graph The graph the algorithm will run on. |
|
108 | 118 |
/// \param capacity The capacity map. |
109 | 119 |
GomoryHuTree(const Graph& graph, const Capacity& capacity) |
110 | 120 |
: _graph(graph), _capacity(capacity), |
111 | 121 |
_pred(0), _weight(0), _order(0) |
112 | 122 |
{ |
113 | 123 |
checkConcept<concepts::ReadMap<Edge, Value>, Capacity>(); |
... | ... |
@@ -118,16 +128,16 @@ |
118 | 128 |
/// |
119 | 129 |
/// Destructor |
120 | 130 |
~GomoryHuTree() { |
121 | 131 |
destroyStructures(); |
122 | 132 |
} |
123 | 133 |
|
124 |
/// \brief Initializes the internal data structures. |
|
125 |
/// |
|
126 |
/// Initializes the internal data structures. |
|
127 |
/// |
|
134 |
// \brief Initialize the internal data structures. |
|
135 |
// |
|
136 |
// This function initializes the internal data structures. |
|
137 |
// |
|
128 | 138 |
void init() { |
129 | 139 |
createStructures(); |
130 | 140 |
|
131 | 141 |
_root = NodeIt(_graph); |
132 | 142 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
133 | 143 |
_pred->set(n, _root); |
... | ... |
@@ -135,15 +145,18 @@ |
135 | 145 |
} |
136 | 146 |
_pred->set(_root, INVALID); |
137 | 147 |
_weight->set(_root, std::numeric_limits<Value>::max()); |
138 | 148 |
} |
139 | 149 |
|
140 | 150 |
|
141 |
/// \brief Starts the algorithm |
|
142 |
/// |
|
143 |
// |
|
151 |
// \brief Start the algorithm |
|
152 |
// |
|
153 |
// This function starts the algorithm. |
|
154 |
// |
|
155 |
// \pre \ref init() must be called before using this function. |
|
156 |
// |
|
144 | 157 |
void start() { |
145 | 158 |
Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID); |
146 | 159 |
|
147 | 160 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
148 | 161 |
if (n == _root) continue; |
149 | 162 |
|
... | ... |
@@ -182,105 +195,134 @@ |
182 | 195 |
_order->set(st.back(), index++); |
183 | 196 |
st.pop_back(); |
184 | 197 |
} |
185 | 198 |
} |
186 | 199 |
} |
187 | 200 |
|
188 |
/// |
|
201 |
///\name Execution Control |
|
202 |
|
|
203 |
///@{ |
|
204 |
|
|
205 |
/// \brief Run the Gomory-Hu algorithm. |
|
189 | 206 |
/// |
190 |
/// Runs the Gomory-Hu algorithm. |
|
191 |
/// \note gh.run() is just a shortcut of the following code. |
|
192 |
/// \code |
|
193 |
/// ght.init(); |
|
194 |
/// ght.start(); |
|
195 |
/// \endcode |
|
207 |
/// This function runs the Gomory-Hu algorithm. |
|
196 | 208 |
void run() { |
197 | 209 |
init(); |
198 | 210 |
start(); |
199 | 211 |
} |
212 |
|
|
213 |
/// @} |
|
200 | 214 |
|
201 |
/// |
|
215 |
///\name Query Functions |
|
216 |
///The results of the algorithm can be obtained using these |
|
217 |
///functions.\n |
|
218 |
///The \ref run() "run()" should be called before using them.\n |
|
219 |
///See also MinCutNodeIt and MinCutEdgeIt |
|
220 |
|
|
221 |
///@{ |
|
222 |
|
|
223 |
/// \brief Return the predecessor node in the Gomory-Hu tree. |
|
202 | 224 |
/// |
203 |
/// |
|
225 |
/// This function returns the predecessor node in the Gomory-Hu tree. |
|
226 |
/// If the node is |
|
204 | 227 |
/// the root of the Gomory-Hu tree, then it returns \c INVALID. |
205 | 228 |
Node predNode(const Node& node) { |
206 | 229 |
return (*_pred)[node]; |
207 | 230 |
} |
208 | 231 |
|
209 |
/// \brief |
|
232 |
/// \brief Return the distance from the root node in the Gomory-Hu tree. |
|
233 |
/// |
|
234 |
/// This function returns the distance of \c node from the root node |
|
235 |
/// in the Gomory-Hu tree. |
|
236 |
int rootDist(const Node& node) { |
|
237 |
return (*_order)[node]; |
|
238 |
} |
|
239 |
|
|
240 |
/// \brief Return the weight of the predecessor edge in the |
|
210 | 241 |
/// Gomory-Hu tree. |
211 | 242 |
/// |
212 |
/// Returns the weight of the predecessor arc in the Gomory-Hu |
|
213 |
/// tree. If the node is the root of the Gomory-Hu tree, the |
|
214 |
/// |
|
243 |
/// This function returns the weight of the predecessor edge in the |
|
244 |
/// Gomory-Hu tree. If the node is the root, the result is undefined. |
|
215 | 245 |
Value predValue(const Node& node) { |
216 | 246 |
return (*_weight)[node]; |
217 | 247 |
} |
218 | 248 |
|
219 |
/// \brief |
|
249 |
/// \brief Return the minimum cut value between two nodes |
|
220 | 250 |
/// |
221 |
/// |
|
251 |
/// This function returns the minimum cut value between two nodes. The |
|
222 | 252 |
/// algorithm finds the nearest common ancestor in the Gomory-Hu |
223 | 253 |
/// tree and calculates the minimum weight arc on the paths to |
224 | 254 |
/// the ancestor. |
225 | 255 |
Value minCutValue(const Node& s, const Node& t) const { |
226 | 256 |
Node sn = s, tn = t; |
227 | 257 |
Value value = std::numeric_limits<Value>::max(); |
228 | 258 |
|
229 | 259 |
while (sn != tn) { |
230 | 260 |
if ((*_order)[sn] < (*_order)[tn]) { |
231 |
if ((*_weight)[tn] < value) value = (*_weight)[tn]; |
|
261 |
if ((*_weight)[tn] <= value) value = (*_weight)[tn]; |
|
232 | 262 |
tn = (*_pred)[tn]; |
233 | 263 |
} else { |
234 |
if ((*_weight)[sn] < value) value = (*_weight)[sn]; |
|
264 |
if ((*_weight)[sn] <= value) value = (*_weight)[sn]; |
|
235 | 265 |
sn = (*_pred)[sn]; |
236 | 266 |
} |
237 | 267 |
} |
238 | 268 |
return value; |
239 | 269 |
} |
240 | 270 |
|
241 |
/// \brief |
|
271 |
/// \brief Return the minimum cut between two nodes |
|
242 | 272 |
/// |
243 |
/// Returns the minimum cut value between two nodes. The |
|
244 |
/// algorithm finds the nearest common ancestor in the Gomory-Hu |
|
245 |
/// tree and calculates the minimum weight arc on the paths to |
|
246 |
/// the ancestor. Then it sets all nodes to the cut determined by |
|
247 |
/// |
|
273 |
/// This function returns the minimum cut between the nodes \c s and \c t |
|
274 |
/// the \r cutMap parameter by setting the nodes in the component of |
|
275 |
/// \c \s to true and the other nodes to false. |
|
276 |
/// |
|
277 |
/// The \c cutMap should be \ref concepts::ReadWriteMap |
|
248 | 278 |
/// "ReadWriteMap". |
279 |
/// |
|
280 |
/// For higher level interfaces, see MinCutNodeIt and MinCutEdgeIt |
|
249 | 281 |
template <typename CutMap> |
250 |
Value minCutMap(const Node& s, |
|
282 |
Value minCutMap(const Node& s, ///< Base node |
|
283 |
const Node& t, |
|
284 |
///< The node you want to separate from Node s. |
|
285 |
CutMap& cutMap |
|
286 |
///< The cut will be return in this map. |
|
287 |
/// It must be a \c bool \ref concepts::ReadWriteMap |
|
288 |
/// "ReadWriteMap" on the graph nodes. |
|
289 |
) const { |
|
251 | 290 |
Node sn = s, tn = t; |
252 |
|
|
291 |
bool s_root=false; |
|
253 | 292 |
Node rn = INVALID; |
254 | 293 |
Value value = std::numeric_limits<Value>::max(); |
255 | 294 |
|
256 | 295 |
while (sn != tn) { |
257 | 296 |
if ((*_order)[sn] < (*_order)[tn]) { |
258 |
if ((*_weight)[tn] < value) { |
|
297 |
if ((*_weight)[tn] <= value) { |
|
259 | 298 |
rn = tn; |
299 |
s_root = false; |
|
260 | 300 |
value = (*_weight)[tn]; |
261 | 301 |
} |
262 | 302 |
tn = (*_pred)[tn]; |
263 | 303 |
} else { |
264 |
if ((*_weight)[sn] < value) { |
|
304 |
if ((*_weight)[sn] <= value) { |
|
265 | 305 |
rn = sn; |
306 |
s_root = true; |
|
266 | 307 |
value = (*_weight)[sn]; |
267 | 308 |
} |
268 | 309 |
sn = (*_pred)[sn]; |
269 | 310 |
} |
270 | 311 |
} |
271 | 312 |
|
272 | 313 |
typename Graph::template NodeMap<bool> reached(_graph, false); |
273 | 314 |
reached.set(_root, true); |
274 |
cutMap.set(_root, |
|
315 |
cutMap.set(_root, !s_root); |
|
275 | 316 |
reached.set(rn, true); |
276 |
cutMap.set(rn, |
|
317 |
cutMap.set(rn, s_root); |
|
277 | 318 |
|
319 |
std::vector<Node> st; |
|
278 | 320 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
279 |
std::vector<Node> st; |
|
280 |
Node nn = n; |
|
321 |
st.clear(); |
|
322 |
Node nn = n; |
|
281 | 323 |
while (!reached[nn]) { |
282 | 324 |
st.push_back(nn); |
283 | 325 |
nn = (*_pred)[nn]; |
284 | 326 |
} |
285 | 327 |
while (!st.empty()) { |
286 | 328 |
cutMap.set(st.back(), cutMap[nn]); |
... | ... |
@@ -288,11 +330,225 @@ |
288 | 330 |
} |
289 | 331 |
} |
290 | 332 |
|
291 | 333 |
return value; |
292 | 334 |
} |
293 | 335 |
|
336 |
///@} |
|
337 |
|
|
338 |
friend class MinCutNodeIt; |
|
339 |
|
|
340 |
/// Iterate on the nodes of a minimum cut |
|
341 |
|
|
342 |
/// This iterator class lists the nodes of a minimum cut found by |
|
343 |
/// GomoryHuTree. Before using it, you must allocate a GomoryHuTree class, |
|
344 |
/// and call its \ref GomoryHuTree::run() "run()" method. |
|
345 |
/// |
|
346 |
/// This example counts the nodes in the minimum cut separating \c s from |
|
347 |
/// \c t. |
|
348 |
/// \code |
|
349 |
/// GomoruHuTree<Graph> gom(g, capacities); |
|
350 |
/// gom.run(); |
|
351 |
/// int sum=0; |
|
352 |
/// for(GomoruHuTree<Graph>::MinCutNodeIt n(gom,s,t);n!=INVALID;++n) ++sum; |
|
353 |
/// \endcode |
|
354 |
class MinCutNodeIt |
|
355 |
{ |
|
356 |
bool _side; |
|
357 |
typename Graph::NodeIt _node_it; |
|
358 |
typename Graph::template NodeMap<bool> _cut; |
|
359 |
public: |
|
360 |
/// Constructor |
|
361 |
|
|
362 |
/// Constructor |
|
363 |
/// |
|
364 |
MinCutNodeIt(GomoryHuTree const &gomory, |
|
365 |
///< The GomoryHuTree class. You must call its |
|
366 |
/// run() method |
|
367 |
/// before initializing this iterator |
|
368 |
const Node& s, ///< Base node |
|
369 |
const Node& t, |
|
370 |
///< The node you want to separate from Node s. |
|
371 |
bool side=true |
|
372 |
///< If it is \c true (default) then the iterator lists |
|
373 |
/// the nodes of the component containing \c s, |
|
374 |
/// otherwise it lists the other component. |
|
375 |
/// \note As the minimum cut is not always unique, |
|
376 |
/// \code |
|
377 |
/// MinCutNodeIt(gomory, s, t, true); |
|
378 |
/// \endcode |
|
379 |
/// and |
|
380 |
/// \code |
|
381 |
/// MinCutNodeIt(gomory, t, s, false); |
|
382 |
/// \endcode |
|
383 |
/// does not necessarily give the same set of nodes. |
|
384 |
/// However it is ensured that |
|
385 |
/// \code |
|
386 |
/// MinCutNodeIt(gomory, s, t, true); |
|
387 |
/// \endcode |
|
388 |
/// and |
|
389 |
/// \code |
|
390 |
/// MinCutNodeIt(gomory, s, t, false); |
|
391 |
/// \endcode |
|
392 |
/// together list each node exactly once. |
|
393 |
) |
|
394 |
: _side(side), _cut(gomory._graph) |
|
395 |
{ |
|
396 |
gomory.minCutMap(s,t,_cut); |
|
397 |
for(_node_it=typename Graph::NodeIt(gomory._graph); |
|
398 |
_node_it!=INVALID && _cut[_node_it]!=_side; |
|
399 |
++_node_it) {} |
|
400 |
} |
|
401 |
/// Conversion to Node |
|
402 |
|
|
403 |
/// Conversion to Node |
|
404 |
/// |
|
405 |
operator typename Graph::Node() const |
|
406 |
{ |
|
407 |
return _node_it; |
|
408 |
} |
|
409 |
bool operator==(Invalid) { return _node_it==INVALID; } |
|
410 |
bool operator!=(Invalid) { return _node_it!=INVALID; } |
|
411 |
/// Next node |
|
412 |
|
|
413 |
/// Next node |
|
414 |
/// |
|
415 |
MinCutNodeIt &operator++() |
|
416 |
{ |
|
417 |
for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {} |
|
418 |
return *this; |
|
419 |
} |
|
420 |
/// Postfix incrementation |
|
421 |
|
|
422 |
/// Postfix incrementation |
|
423 |
/// |
|
424 |
/// \warning This incrementation |
|
425 |
/// returns a \c Node, not a \ref MinCutNodeIt, as one may |
|
426 |
/// expect. |
|
427 |
typename Graph::Node operator++(int) |
|
428 |
{ |
|
429 |
typename Graph::Node n=*this; |
|
430 |
++(*this); |
|
431 |
return n; |
|
432 |
} |
|
433 |
}; |
|
434 |
|
|
435 |
friend class MinCutEdgeIt; |
|
436 |
|
|
437 |
/// Iterate on the edges of a minimum cut |
|
438 |
|
|
439 |
/// This iterator class lists the edges of a minimum cut found by |
|
440 |
/// GomoryHuTree. Before using it, you must allocate a GomoryHuTree class, |
|
441 |
/// and call its \ref GomoryHuTree::run() "run()" method. |
|
442 |
/// |
|
443 |
/// This example computes the value of the minimum cut separating \c s from |
|
444 |
/// \c t. |
|
445 |
/// \code |
|
446 |
/// GomoruHuTree<Graph> gom(g, capacities); |
|
447 |
/// gom.run(); |
|
448 |
/// int value=0; |
|
449 |
/// for(GomoruHuTree<Graph>::MinCutEdgeIt e(gom,s,t);e!=INVALID;++e) |
|
450 |
/// value+=capacities[e]; |
|
451 |
/// \endcode |
|
452 |
/// the result will be the same as it is returned by |
|
453 |
/// \ref GomoryHuTree::minCostValue() "gom.minCostValue(s,t)" |
|
454 |
class MinCutEdgeIt |
|
455 |
{ |
|
456 |
bool _side; |
|
457 |
const Graph &_graph; |
|
458 |
typename Graph::NodeIt _node_it; |
|
459 |
typename Graph::OutArcIt _arc_it; |
|
460 |
typename Graph::template NodeMap<bool> _cut; |
|
461 |
void step() |
|
462 |
{ |
|
463 |
++_arc_it; |
|
464 |
while(_node_it!=INVALID && _arc_it==INVALID) |
|
465 |
{ |
|
466 |
for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {} |
|
467 |
if(_node_it!=INVALID) |
|
468 |
_arc_it=typename Graph::OutArcIt(_graph,_node_it); |
|
469 |
} |
|
470 |
} |
|
471 |
|
|
472 |
public: |
|
473 |
MinCutEdgeIt(GomoryHuTree const &gomory, |
|
474 |
///< The GomoryHuTree class. You must call its |
|
475 |
/// run() method |
|
476 |
/// before initializing this iterator |
|
477 |
const Node& s, ///< Base node |
|
478 |
const Node& t, |
|
479 |
///< The node you want to separate from Node s. |
|
480 |
bool side=true |
|
481 |
///< If it is \c true (default) then the listed arcs |
|
482 |
/// will be oriented from the |
|
483 |
/// the nodes of the component containing \c s, |
|
484 |
/// otherwise they will be oriented in the opposite |
|
485 |
/// direction. |
|
486 |
) |
|
487 |
: _graph(gomory._graph), _cut(_graph) |
|
488 |
{ |
|
489 |
gomory.minCutMap(s,t,_cut); |
|
490 |
if(!side) |
|
491 |
for(typename Graph::NodeIt n(_graph);n!=INVALID;++n) |
|
492 |
_cut[n]=!_cut[n]; |
|
493 |
|
|
494 |
for(_node_it=typename Graph::NodeIt(_graph); |
|
495 |
_node_it!=INVALID && !_cut[_node_it]; |
|
496 |
++_node_it) {} |
|
497 |
_arc_it = _node_it!=INVALID ? |
|
498 |
typename Graph::OutArcIt(_graph,_node_it) : INVALID; |
|
499 |
while(_node_it!=INVALID && _arc_it == INVALID) |
|
500 |
{ |
|
501 |
for(++_node_it; _node_it!=INVALID&&!_cut[_node_it]; ++_node_it) {} |
|
502 |
if(_node_it!=INVALID) |
|
503 |
_arc_it= typename Graph::OutArcIt(_graph,_node_it); |
|
504 |
} |
|
505 |
while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step(); |
|
506 |
} |
|
507 |
/// Conversion to Arc |
|
508 |
|
|
509 |
/// Conversion to Arc |
|
510 |
/// |
|
511 |
operator typename Graph::Arc() const |
|
512 |
{ |
|
513 |
return _arc_it; |
|
514 |
} |
|
515 |
/// Conversion to Edge |
|
516 |
|
|
517 |
/// Conversion to Edge |
|
518 |
/// |
|
519 |
operator typename Graph::Edge() const |
|
520 |
{ |
|
521 |
return _arc_it; |
|
522 |
} |
|
523 |
bool operator==(Invalid) { return _node_it==INVALID; } |
|
524 |
bool operator!=(Invalid) { return _node_it!=INVALID; } |
|
525 |
/// Next edge |
|
526 |
|
|
527 |
/// Next edge |
|
528 |
/// |
|
529 |
MinCutEdgeIt &operator++() |
|
530 |
{ |
|
531 |
step(); |
|
532 |
while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step(); |
|
533 |
return *this; |
|
534 |
} |
|
535 |
/// Postfix incrementation |
|
536 |
|
|
537 |
/// Postfix incrementation |
|
538 |
/// |
|
539 |
/// \warning This incrementation |
|
540 |
/// returns a \c Arc, not a \ref MinCutEdgeIt, as one may |
|
541 |
/// expect. |
|
542 |
typename Graph::Arc operator++(int) |
|
543 |
{ |
|
544 |
typename Graph::Arc e=*this; |
|
545 |
++(*this); |
|
546 |
return e; |
|
547 |
} |
|
548 |
}; |
|
549 |
|
|
294 | 550 |
}; |
295 | 551 |
|
296 | 552 |
} |
297 | 553 |
|
298 | 554 |
#endif |
1 | 1 |
#include <iostream> |
2 | 2 |
|
3 | 3 |
#include "test_tools.h" |
4 | 4 |
#include <lemon/smart_graph.h> |
5 |
#include <lemon/adaptors.h> |
|
6 | 5 |
#include <lemon/lgf_reader.h> |
7 |
#include <lemon/lgf_writer.h> |
|
8 |
#include <lemon/dimacs.h> |
|
9 |
#include <lemon/time_measure.h> |
|
10 | 6 |
#include <lemon/gomory_hu_tree.h> |
11 | 7 |
#include <cstdlib> |
12 | 8 |
|
13 | 9 |
using namespace std; |
14 | 10 |
using namespace lemon; |
15 | 11 |
|
... | ... |
@@ -74,12 +70,24 @@ |
74 | 70 |
pf.runMinCut(); |
75 | 71 |
BoolNodeMap cm(graph); |
76 | 72 |
ght.minCutMap(u, v, cm); |
77 | 73 |
check(pf.flowValue() == ght.minCutValue(u, v), "Wrong cut 1"); |
78 | 74 |
check(cm[u] != cm[v], "Wrong cut 3"); |
79 | 75 |
check(pf.flowValue() == cutValue(graph, cm, capacity), "Wrong cut 2"); |
76 |
|
|
77 |
int sum=0; |
|
78 |
for(GomoryHuTree<Graph>::MinCutEdgeIt a(ght, u, v);a!=INVALID;++a) |
|
79 |
sum+=capacity[a]; |
|
80 |
check(sum == ght.minCutValue(u, v), "Problem with MinCutEdgeIt"); |
|
81 |
|
|
82 |
sum=0; |
|
83 |
for(GomoryHuTree<Graph>::MinCutNodeIt n(ght, u, v,true);n!=INVALID;++n) |
|
84 |
sum++; |
|
85 |
for(GomoryHuTree<Graph>::MinCutNodeIt n(ght, u, v,false);n!=INVALID;++n) |
|
86 |
sum++; |
|
87 |
check(sum == countNodes(graph), "Problem with MinCutNodeIt"); |
|
80 | 88 |
|
81 | 89 |
} |
82 | 90 |
} |
83 | 91 |
|
84 | 92 |
return 0; |
85 | 93 |
} |
0 comments (0 inline)