0
46
8
597
582
13
1
73
23
15
9
12
13
168
167
338
318
63
55
33
39
257
222
Changeset was too big and was cut off... Show full diff
| 1 |
%%%%% Defining LEMON %%%%% |
|
| 2 |
|
|
| 3 |
@misc{lemon,
|
|
| 4 |
key = {LEMON},
|
|
| 5 |
title = {{LEMON} -- {L}ibrary for {E}fficient {M}odeling and
|
|
| 6 |
{O}ptimization in {N}etworks},
|
|
| 7 |
howpublished = {\url{http://lemon.cs.elte.hu/}},
|
|
| 8 |
year = 2009 |
|
| 9 |
} |
|
| 10 |
|
|
| 11 |
@misc{egres,
|
|
| 12 |
key = {EGRES},
|
|
| 13 |
title = {{EGRES} -- {E}gerv{\'a}ry {R}esearch {G}roup on
|
|
| 14 |
{C}ombinatorial {O}ptimization},
|
|
| 15 |
url = {http://www.cs.elte.hu/egres/}
|
|
| 16 |
} |
|
| 17 |
|
|
| 18 |
@misc{coinor,
|
|
| 19 |
key = {COIN-OR},
|
|
| 20 |
title = {{COIN-OR} -- {C}omputational {I}nfrastructure for
|
|
| 21 |
{O}perations {R}esearch},
|
|
| 22 |
url = {http://www.coin-or.org/}
|
|
| 23 |
} |
|
| 24 |
|
|
| 25 |
|
|
| 26 |
%%%%% Other libraries %%%%%% |
|
| 27 |
|
|
| 28 |
@misc{boost,
|
|
| 29 |
key = {Boost},
|
|
| 30 |
title = {{B}oost {C++} {L}ibraries},
|
|
| 31 |
url = {http://www.boost.org/}
|
|
| 32 |
} |
|
| 33 |
|
|
| 34 |
@book{bglbook,
|
|
| 35 |
author = {Jeremy G. Siek and Lee-Quan Lee and Andrew
|
|
| 36 |
Lumsdaine}, |
|
| 37 |
title = {The Boost Graph Library: User Guide and Reference
|
|
| 38 |
Manual}, |
|
| 39 |
publisher = {Addison-Wesley},
|
|
| 40 |
year = 2002 |
|
| 41 |
} |
|
| 42 |
|
|
| 43 |
@misc{leda,
|
|
| 44 |
key = {LEDA},
|
|
| 45 |
title = {{LEDA} -- {L}ibrary of {E}fficient {D}ata {T}ypes and
|
|
| 46 |
{A}lgorithms},
|
|
| 47 |
url = {http://www.algorithmic-solutions.com/}
|
|
| 48 |
} |
|
| 49 |
|
|
| 50 |
@book{ledabook,
|
|
| 51 |
author = {Kurt Mehlhorn and Stefan N{\"a}her},
|
|
| 52 |
title = {{LEDA}: {A} platform for combinatorial and geometric
|
|
| 53 |
computing}, |
|
| 54 |
isbn = {0-521-56329-1},
|
|
| 55 |
publisher = {Cambridge University Press},
|
|
| 56 |
address = {New York, NY, USA},
|
|
| 57 |
year = 1999 |
|
| 58 |
} |
|
| 59 |
|
|
| 60 |
|
|
| 61 |
%%%%% Tools that LEMON depends on %%%%% |
|
| 62 |
|
|
| 63 |
@misc{cmake,
|
|
| 64 |
key = {CMake},
|
|
| 65 |
title = {{CMake} -- {C}ross {P}latform {M}ake},
|
|
| 66 |
url = {http://www.cmake.org/}
|
|
| 67 |
} |
|
| 68 |
|
|
| 69 |
@misc{doxygen,
|
|
| 70 |
key = {Doxygen},
|
|
| 71 |
title = {{Doxygen} -- {S}ource code documentation generator
|
|
| 72 |
tool}, |
|
| 73 |
url = {http://www.doxygen.org/}
|
|
| 74 |
} |
|
| 75 |
|
|
| 76 |
|
|
| 77 |
%%%%% LP/MIP libraries %%%%% |
|
| 78 |
|
|
| 79 |
@misc{glpk,
|
|
| 80 |
key = {GLPK},
|
|
| 81 |
title = {{GLPK} -- {GNU} {L}inear {P}rogramming {K}it},
|
|
| 82 |
url = {http://www.gnu.org/software/glpk/}
|
|
| 83 |
} |
|
| 84 |
|
|
| 85 |
@misc{clp,
|
|
| 86 |
key = {Clp},
|
|
| 87 |
title = {{Clp} -- {Coin-Or} {L}inear {P}rogramming},
|
|
| 88 |
url = {http://projects.coin-or.org/Clp/}
|
|
| 89 |
} |
|
| 90 |
|
|
| 91 |
@misc{cbc,
|
|
| 92 |
key = {Cbc},
|
|
| 93 |
title = {{Cbc} -- {Coin-Or} {B}ranch and {C}ut},
|
|
| 94 |
url = {http://projects.coin-or.org/Cbc/}
|
|
| 95 |
} |
|
| 96 |
|
|
| 97 |
@misc{cplex,
|
|
| 98 |
key = {CPLEX},
|
|
| 99 |
title = {{ILOG} {CPLEX}},
|
|
| 100 |
url = {http://www.ilog.com/}
|
|
| 101 |
} |
|
| 102 |
|
|
| 103 |
@misc{soplex,
|
|
| 104 |
key = {SoPlex},
|
|
| 105 |
title = {{SoPlex} -- {T}he {S}equential {O}bject-{O}riented
|
|
| 106 |
{S}implex},
|
|
| 107 |
url = {http://soplex.zib.de/}
|
|
| 108 |
} |
|
| 109 |
|
|
| 110 |
|
|
| 111 |
%%%%% General books %%%%% |
|
| 112 |
|
|
| 113 |
@book{amo93networkflows,
|
|
| 114 |
author = {Ravindra K. Ahuja and Thomas L. Magnanti and James
|
|
| 115 |
B. Orlin}, |
|
| 116 |
title = {Network Flows: Theory, Algorithms, and Applications},
|
|
| 117 |
publisher = {Prentice-Hall, Inc.},
|
|
| 118 |
year = 1993, |
|
| 119 |
month = feb, |
|
| 120 |
isbn = {978-0136175490}
|
|
| 121 |
} |
|
| 122 |
|
|
| 123 |
@book{schrijver03combinatorial,
|
|
| 124 |
author = {Alexander Schrijver},
|
|
| 125 |
title = {Combinatorial Optimization: Polyhedra and Efficiency},
|
|
| 126 |
publisher = {Springer-Verlag},
|
|
| 127 |
year = 2003, |
|
| 128 |
isbn = {978-3540443896}
|
|
| 129 |
} |
|
| 130 |
|
|
| 131 |
@book{clrs01algorithms,
|
|
| 132 |
author = {Thomas H. Cormen and Charles E. Leiserson and Ronald
|
|
| 133 |
L. Rivest and Clifford Stein}, |
|
| 134 |
title = {Introduction to Algorithms},
|
|
| 135 |
publisher = {The MIT Press},
|
|
| 136 |
year = 2001, |
|
| 137 |
edition = {2nd}
|
|
| 138 |
} |
|
| 139 |
|
|
| 140 |
@book{stroustrup00cpp,
|
|
| 141 |
author = {Bjarne Stroustrup},
|
|
| 142 |
title = {The C++ Programming Language},
|
|
| 143 |
edition = {3rd},
|
|
| 144 |
publisher = {Addison-Wesley Professional},
|
|
| 145 |
isbn = 0201700735, |
|
| 146 |
month = {February},
|
|
| 147 |
year = 2000 |
|
| 148 |
} |
|
| 149 |
|
|
| 150 |
|
|
| 151 |
%%%%% Maximum flow algorithms %%%%% |
|
| 152 |
|
|
| 153 |
@article{edmondskarp72theoretical,
|
|
| 154 |
author = {Jack Edmonds and Richard M. Karp},
|
|
| 155 |
title = {Theoretical improvements in algorithmic efficiency
|
|
| 156 |
for network flow problems}, |
|
| 157 |
journal = {Journal of the ACM},
|
|
| 158 |
year = 1972, |
|
| 159 |
volume = 19, |
|
| 160 |
number = 2, |
|
| 161 |
pages = {248-264}
|
|
| 162 |
} |
|
| 163 |
|
|
| 164 |
@article{goldberg88newapproach,
|
|
| 165 |
author = {Andrew V. Goldberg and Robert E. Tarjan},
|
|
| 166 |
title = {A new approach to the maximum flow problem},
|
|
| 167 |
journal = {Journal of the ACM},
|
|
| 168 |
year = 1988, |
|
| 169 |
volume = 35, |
|
| 170 |
number = 4, |
|
| 171 |
pages = {921-940}
|
|
| 172 |
} |
|
| 173 |
|
|
| 174 |
@article{dinic70algorithm,
|
|
| 175 |
author = {E. A. Dinic},
|
|
| 176 |
title = {Algorithm for solution of a problem of maximum flow
|
|
| 177 |
in a network with power estimation}, |
|
| 178 |
journal = {Soviet Math. Doklady},
|
|
| 179 |
year = 1970, |
|
| 180 |
volume = 11, |
|
| 181 |
pages = {1277-1280}
|
|
| 182 |
} |
|
| 183 |
|
|
| 184 |
@article{goldberg08partial,
|
|
| 185 |
author = {Andrew V. Goldberg},
|
|
| 186 |
title = {The Partial Augment-Relabel Algorithm for the
|
|
| 187 |
Maximum Flow Problem}, |
|
| 188 |
journal = {16th Annual European Symposium on Algorithms},
|
|
| 189 |
year = 2008, |
|
| 190 |
pages = {466-477}
|
|
| 191 |
} |
|
| 192 |
|
|
| 193 |
@article{sleator83dynamic,
|
|
| 194 |
author = {Daniel D. Sleator and Robert E. Tarjan},
|
|
| 195 |
title = {A data structure for dynamic trees},
|
|
| 196 |
journal = {Journal of Computer and System Sciences},
|
|
| 197 |
year = 1983, |
|
| 198 |
volume = 26, |
|
| 199 |
number = 3, |
|
| 200 |
pages = {362-391}
|
|
| 201 |
} |
|
| 202 |
|
|
| 203 |
|
|
| 204 |
%%%%% Minimum mean cycle algorithms %%%%% |
|
| 205 |
|
|
| 206 |
@article{karp78characterization,
|
|
| 207 |
author = {Richard M. Karp},
|
|
| 208 |
title = {A characterization of the minimum cycle mean in a
|
|
| 209 |
digraph}, |
|
| 210 |
journal = {Discrete Math.},
|
|
| 211 |
year = 1978, |
|
| 212 |
volume = 23, |
|
| 213 |
pages = {309-311}
|
|
| 214 |
} |
|
| 215 |
|
|
| 216 |
@article{dasdan98minmeancycle,
|
|
| 217 |
author = {Ali Dasdan and Rajesh K. Gupta},
|
|
| 218 |
title = {Faster Maximum and Minimum Mean Cycle Alogrithms for
|
|
| 219 |
System Performance Analysis}, |
|
| 220 |
journal = {IEEE Transactions on Computer-Aided Design of
|
|
| 221 |
Integrated Circuits and Systems}, |
|
| 222 |
year = 1998, |
|
| 223 |
volume = 17, |
|
| 224 |
number = 10, |
|
| 225 |
pages = {889-899}
|
|
| 226 |
} |
|
| 227 |
|
|
| 228 |
|
|
| 229 |
%%%%% Minimum cost flow algorithms %%%%% |
|
| 230 |
|
|
| 231 |
@article{klein67primal,
|
|
| 232 |
author = {Morton Klein},
|
|
| 233 |
title = {A primal method for minimal cost flows with
|
|
| 234 |
applications to the assignment and transportation |
|
| 235 |
problems}, |
|
| 236 |
journal = {Management Science},
|
|
| 237 |
year = 1967, |
|
| 238 |
volume = 14, |
|
| 239 |
pages = {205-220}
|
|
| 240 |
} |
|
| 241 |
|
|
| 242 |
@article{goldberg89cyclecanceling,
|
|
| 243 |
author = {Andrew V. Goldberg and Robert E. Tarjan},
|
|
| 244 |
title = {Finding minimum-cost circulations by canceling
|
|
| 245 |
negative cycles}, |
|
| 246 |
journal = {Journal of the ACM},
|
|
| 247 |
year = 1989, |
|
| 248 |
volume = 36, |
|
| 249 |
number = 4, |
|
| 250 |
pages = {873-886}
|
|
| 251 |
} |
|
| 252 |
|
|
| 253 |
@article{goldberg90approximation,
|
|
| 254 |
author = {Andrew V. Goldberg and Robert E. Tarjan},
|
|
| 255 |
title = {Finding Minimum-Cost Circulations by Successive
|
|
| 256 |
Approximation}, |
|
| 257 |
journal = {Mathematics of Operations Research},
|
|
| 258 |
year = 1990, |
|
| 259 |
volume = 15, |
|
| 260 |
number = 3, |
|
| 261 |
pages = {430-466}
|
|
| 262 |
} |
|
| 263 |
|
|
| 264 |
@article{goldberg97efficient,
|
|
| 265 |
author = {Andrew V. Goldberg},
|
|
| 266 |
title = {An Efficient Implementation of a Scaling
|
|
| 267 |
Minimum-Cost Flow Algorithm}, |
|
| 268 |
journal = {Journal of Algorithms},
|
|
| 269 |
year = 1997, |
|
| 270 |
volume = 22, |
|
| 271 |
number = 1, |
|
| 272 |
pages = {1-29}
|
|
| 273 |
} |
|
| 274 |
|
|
| 275 |
@article{bunnagel98efficient,
|
|
| 276 |
author = {Ursula B{\"u}nnagel and Bernhard Korte and Jens
|
|
| 277 |
Vygen}, |
|
| 278 |
title = {Efficient implementation of the {G}oldberg-{T}arjan
|
|
| 279 |
minimum-cost flow algorithm}, |
|
| 280 |
journal = {Optimization Methods and Software},
|
|
| 281 |
year = 1998, |
|
| 282 |
volume = 10, |
|
| 283 |
pages = {157-174}
|
|
| 284 |
} |
|
| 285 |
|
|
| 286 |
@book{dantzig63linearprog,
|
|
| 287 |
author = {George B. Dantzig},
|
|
| 288 |
title = {Linear Programming and Extensions},
|
|
| 289 |
publisher = {Princeton University Press},
|
|
| 290 |
year = 1963 |
|
| 291 |
} |
|
| 292 |
|
|
| 293 |
@mastersthesis{kellyoneill91netsimplex,
|
|
| 294 |
author = {Damian J. Kelly and Garrett M. O'Neill},
|
|
| 295 |
title = {The Minimum Cost Flow Problem and The Network
|
|
| 296 |
Simplex Method}, |
|
| 297 |
school = {University College},
|
|
| 298 |
address = {Dublin, Ireland},
|
|
| 299 |
year = 1991, |
|
| 300 |
month = sep, |
|
| 301 |
} |
| 1 |
/* -*- C++ -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_HARTMANN_ORLIN_H |
|
| 20 |
#define LEMON_HARTMANN_ORLIN_H |
|
| 21 |
|
|
| 22 |
/// \ingroup min_mean_cycle |
|
| 23 |
/// |
|
| 24 |
/// \file |
|
| 25 |
/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle. |
|
| 26 |
|
|
| 27 |
#include <vector> |
|
| 28 |
#include <limits> |
|
| 29 |
#include <lemon/core.h> |
|
| 30 |
#include <lemon/path.h> |
|
| 31 |
#include <lemon/tolerance.h> |
|
| 32 |
#include <lemon/connectivity.h> |
|
| 33 |
|
|
| 34 |
namespace lemon {
|
|
| 35 |
|
|
| 36 |
/// \brief Default traits class of HartmannOrlin algorithm. |
|
| 37 |
/// |
|
| 38 |
/// Default traits class of HartmannOrlin algorithm. |
|
| 39 |
/// \tparam GR The type of the digraph. |
|
| 40 |
/// \tparam LEN The type of the length map. |
|
| 41 |
/// It must conform to the \ref concepts::Rea_data "Rea_data" concept. |
|
| 42 |
#ifdef DOXYGEN |
|
| 43 |
template <typename GR, typename LEN> |
|
| 44 |
#else |
|
| 45 |
template <typename GR, typename LEN, |
|
| 46 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
|
| 47 |
#endif |
|
| 48 |
struct HartmannOrlinDefaultTraits |
|
| 49 |
{
|
|
| 50 |
/// The type of the digraph |
|
| 51 |
typedef GR Digraph; |
|
| 52 |
/// The type of the length map |
|
| 53 |
typedef LEN LengthMap; |
|
| 54 |
/// The type of the arc lengths |
|
| 55 |
typedef typename LengthMap::Value Value; |
|
| 56 |
|
|
| 57 |
/// \brief The large value type used for internal computations |
|
| 58 |
/// |
|
| 59 |
/// The large value type used for internal computations. |
|
| 60 |
/// It is \c long \c long if the \c Value type is integer, |
|
| 61 |
/// otherwise it is \c double. |
|
| 62 |
/// \c Value must be convertible to \c LargeValue. |
|
| 63 |
typedef double LargeValue; |
|
| 64 |
|
|
| 65 |
/// The tolerance type used for internal computations |
|
| 66 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
| 67 |
|
|
| 68 |
/// \brief The path type of the found cycles |
|
| 69 |
/// |
|
| 70 |
/// The path type of the found cycles. |
|
| 71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 72 |
/// and it must have an \c addFront() function. |
|
| 73 |
typedef lemon::Path<Digraph> Path; |
|
| 74 |
}; |
|
| 75 |
|
|
| 76 |
// Default traits class for integer value types |
|
| 77 |
template <typename GR, typename LEN> |
|
| 78 |
struct HartmannOrlinDefaultTraits<GR, LEN, true> |
|
| 79 |
{
|
|
| 80 |
typedef GR Digraph; |
|
| 81 |
typedef LEN LengthMap; |
|
| 82 |
typedef typename LengthMap::Value Value; |
|
| 83 |
#ifdef LEMON_HAVE_LONG_LONG |
|
| 84 |
typedef long long LargeValue; |
|
| 85 |
#else |
|
| 86 |
typedef long LargeValue; |
|
| 87 |
#endif |
|
| 88 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
| 89 |
typedef lemon::Path<Digraph> Path; |
|
| 90 |
}; |
|
| 91 |
|
|
| 92 |
|
|
| 93 |
/// \addtogroup min_mean_cycle |
|
| 94 |
/// @{
|
|
| 95 |
|
|
| 96 |
/// \brief Implementation of the Hartmann-Orlin algorithm for finding |
|
| 97 |
/// a minimum mean cycle. |
|
| 98 |
/// |
|
| 99 |
/// This class implements the Hartmann-Orlin algorithm for finding |
|
| 100 |
/// a directed cycle of minimum mean length (cost) in a digraph |
|
| 101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
|
| 102 |
/// It is an improved version of \ref Karp "Karp"'s original algorithm, |
|
| 103 |
/// it applies an efficient early termination scheme. |
|
| 104 |
/// It runs in time O(ne) and uses space O(n<sup>2</sup>+e). |
|
| 105 |
/// |
|
| 106 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
| 107 |
/// \tparam LEN The type of the length map. The default |
|
| 108 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
| 109 |
#ifdef DOXYGEN |
|
| 110 |
template <typename GR, typename LEN, typename TR> |
|
| 111 |
#else |
|
| 112 |
template < typename GR, |
|
| 113 |
typename LEN = typename GR::template ArcMap<int>, |
|
| 114 |
typename TR = HartmannOrlinDefaultTraits<GR, LEN> > |
|
| 115 |
#endif |
|
| 116 |
class HartmannOrlin |
|
| 117 |
{
|
|
| 118 |
public: |
|
| 119 |
|
|
| 120 |
/// The type of the digraph |
|
| 121 |
typedef typename TR::Digraph Digraph; |
|
| 122 |
/// The type of the length map |
|
| 123 |
typedef typename TR::LengthMap LengthMap; |
|
| 124 |
/// The type of the arc lengths |
|
| 125 |
typedef typename TR::Value Value; |
|
| 126 |
|
|
| 127 |
/// \brief The large value type |
|
| 128 |
/// |
|
| 129 |
/// The large value type used for internal computations. |
|
| 130 |
/// Using the \ref HartmannOrlinDefaultTraits "default traits class", |
|
| 131 |
/// it is \c long \c long if the \c Value type is integer, |
|
| 132 |
/// otherwise it is \c double. |
|
| 133 |
typedef typename TR::LargeValue LargeValue; |
|
| 134 |
|
|
| 135 |
/// The tolerance type |
|
| 136 |
typedef typename TR::Tolerance Tolerance; |
|
| 137 |
|
|
| 138 |
/// \brief The path type of the found cycles |
|
| 139 |
/// |
|
| 140 |
/// The path type of the found cycles. |
|
| 141 |
/// Using the \ref HartmannOrlinDefaultTraits "default traits class", |
|
| 142 |
/// it is \ref lemon::Path "Path<Digraph>". |
|
| 143 |
typedef typename TR::Path Path; |
|
| 144 |
|
|
| 145 |
/// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm |
|
| 146 |
typedef TR Traits; |
|
| 147 |
|
|
| 148 |
private: |
|
| 149 |
|
|
| 150 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
| 151 |
|
|
| 152 |
// Data sturcture for path data |
|
| 153 |
struct PathData |
|
| 154 |
{
|
|
| 155 |
LargeValue dist; |
|
| 156 |
Arc pred; |
|
| 157 |
PathData(LargeValue d, Arc p = INVALID) : |
|
| 158 |
dist(d), pred(p) {}
|
|
| 159 |
}; |
|
| 160 |
|
|
| 161 |
typedef typename Digraph::template NodeMap<std::vector<PathData> > |
|
| 162 |
PathDataNodeMap; |
|
| 163 |
|
|
| 164 |
private: |
|
| 165 |
|
|
| 166 |
// The digraph the algorithm runs on |
|
| 167 |
const Digraph &_gr; |
|
| 168 |
// The length of the arcs |
|
| 169 |
const LengthMap &_length; |
|
| 170 |
|
|
| 171 |
// Data for storing the strongly connected components |
|
| 172 |
int _comp_num; |
|
| 173 |
typename Digraph::template NodeMap<int> _comp; |
|
| 174 |
std::vector<std::vector<Node> > _comp_nodes; |
|
| 175 |
std::vector<Node>* _nodes; |
|
| 176 |
typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs; |
|
| 177 |
|
|
| 178 |
// Data for the found cycles |
|
| 179 |
bool _curr_found, _best_found; |
|
| 180 |
LargeValue _curr_length, _best_length; |
|
| 181 |
int _curr_size, _best_size; |
|
| 182 |
Node _curr_node, _best_node; |
|
| 183 |
int _curr_level, _best_level; |
|
| 184 |
|
|
| 185 |
Path *_cycle_path; |
|
| 186 |
bool _local_path; |
|
| 187 |
|
|
| 188 |
// Node map for storing path data |
|
| 189 |
PathDataNodeMap _data; |
|
| 190 |
// The processed nodes in the last round |
|
| 191 |
std::vector<Node> _process; |
|
| 192 |
|
|
| 193 |
Tolerance _tolerance; |
|
| 194 |
|
|
| 195 |
// Infinite constant |
|
| 196 |
const LargeValue INF; |
|
| 197 |
|
|
| 198 |
public: |
|
| 199 |
|
|
| 200 |
/// \name Named Template Parameters |
|
| 201 |
/// @{
|
|
| 202 |
|
|
| 203 |
template <typename T> |
|
| 204 |
struct SetLargeValueTraits : public Traits {
|
|
| 205 |
typedef T LargeValue; |
|
| 206 |
typedef lemon::Tolerance<T> Tolerance; |
|
| 207 |
}; |
|
| 208 |
|
|
| 209 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 210 |
/// \c LargeValue type. |
|
| 211 |
/// |
|
| 212 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue |
|
| 213 |
/// type. It is used for internal computations in the algorithm. |
|
| 214 |
template <typename T> |
|
| 215 |
struct SetLargeValue |
|
| 216 |
: public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
|
|
| 217 |
typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create; |
|
| 218 |
}; |
|
| 219 |
|
|
| 220 |
template <typename T> |
|
| 221 |
struct SetPathTraits : public Traits {
|
|
| 222 |
typedef T Path; |
|
| 223 |
}; |
|
| 224 |
|
|
| 225 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 226 |
/// \c %Path type. |
|
| 227 |
/// |
|
| 228 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
|
| 229 |
/// type of the found cycles. |
|
| 230 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 231 |
/// and it must have an \c addFront() function. |
|
| 232 |
template <typename T> |
|
| 233 |
struct SetPath |
|
| 234 |
: public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
|
|
| 235 |
typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create; |
|
| 236 |
}; |
|
| 237 |
|
|
| 238 |
/// @} |
|
| 239 |
|
|
| 240 |
public: |
|
| 241 |
|
|
| 242 |
/// \brief Constructor. |
|
| 243 |
/// |
|
| 244 |
/// The constructor of the class. |
|
| 245 |
/// |
|
| 246 |
/// \param digraph The digraph the algorithm runs on. |
|
| 247 |
/// \param length The lengths (costs) of the arcs. |
|
| 248 |
HartmannOrlin( const Digraph &digraph, |
|
| 249 |
const LengthMap &length ) : |
|
| 250 |
_gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph), |
|
| 251 |
_best_found(false), _best_length(0), _best_size(1), |
|
| 252 |
_cycle_path(NULL), _local_path(false), _data(digraph), |
|
| 253 |
INF(std::numeric_limits<LargeValue>::has_infinity ? |
|
| 254 |
std::numeric_limits<LargeValue>::infinity() : |
|
| 255 |
std::numeric_limits<LargeValue>::max()) |
|
| 256 |
{}
|
|
| 257 |
|
|
| 258 |
/// Destructor. |
|
| 259 |
~HartmannOrlin() {
|
|
| 260 |
if (_local_path) delete _cycle_path; |
|
| 261 |
} |
|
| 262 |
|
|
| 263 |
/// \brief Set the path structure for storing the found cycle. |
|
| 264 |
/// |
|
| 265 |
/// This function sets an external path structure for storing the |
|
| 266 |
/// found cycle. |
|
| 267 |
/// |
|
| 268 |
/// If you don't call this function before calling \ref run() or |
|
| 269 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
|
| 270 |
/// structure. The destuctor deallocates this automatically |
|
| 271 |
/// allocated object, of course. |
|
| 272 |
/// |
|
| 273 |
/// \note The algorithm calls only the \ref lemon::Path::addFront() |
|
| 274 |
/// "addFront()" function of the given path structure. |
|
| 275 |
/// |
|
| 276 |
/// \return <tt>(*this)</tt> |
|
| 277 |
HartmannOrlin& cycle(Path &path) {
|
|
| 278 |
if (_local_path) {
|
|
| 279 |
delete _cycle_path; |
|
| 280 |
_local_path = false; |
|
| 281 |
} |
|
| 282 |
_cycle_path = &path; |
|
| 283 |
return *this; |
|
| 284 |
} |
|
| 285 |
|
|
| 286 |
/// \brief Set the tolerance used by the algorithm. |
|
| 287 |
/// |
|
| 288 |
/// This function sets the tolerance object used by the algorithm. |
|
| 289 |
/// |
|
| 290 |
/// \return <tt>(*this)</tt> |
|
| 291 |
HartmannOrlin& tolerance(const Tolerance& tolerance) {
|
|
| 292 |
_tolerance = tolerance; |
|
| 293 |
return *this; |
|
| 294 |
} |
|
| 295 |
|
|
| 296 |
/// \brief Return a const reference to the tolerance. |
|
| 297 |
/// |
|
| 298 |
/// This function returns a const reference to the tolerance object |
|
| 299 |
/// used by the algorithm. |
|
| 300 |
const Tolerance& tolerance() const {
|
|
| 301 |
return _tolerance; |
|
| 302 |
} |
|
| 303 |
|
|
| 304 |
/// \name Execution control |
|
| 305 |
/// The simplest way to execute the algorithm is to call the \ref run() |
|
| 306 |
/// function.\n |
|
| 307 |
/// If you only need the minimum mean length, you may call |
|
| 308 |
/// \ref findMinMean(). |
|
| 309 |
|
|
| 310 |
/// @{
|
|
| 311 |
|
|
| 312 |
/// \brief Run the algorithm. |
|
| 313 |
/// |
|
| 314 |
/// This function runs the algorithm. |
|
| 315 |
/// It can be called more than once (e.g. if the underlying digraph |
|
| 316 |
/// and/or the arc lengths have been modified). |
|
| 317 |
/// |
|
| 318 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 319 |
/// |
|
| 320 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
|
| 321 |
/// \code |
|
| 322 |
/// return mmc.findMinMean() && mmc.findCycle(); |
|
| 323 |
/// \endcode |
|
| 324 |
bool run() {
|
|
| 325 |
return findMinMean() && findCycle(); |
|
| 326 |
} |
|
| 327 |
|
|
| 328 |
/// \brief Find the minimum cycle mean. |
|
| 329 |
/// |
|
| 330 |
/// This function finds the minimum mean length of the directed |
|
| 331 |
/// cycles in the digraph. |
|
| 332 |
/// |
|
| 333 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 334 |
bool findMinMean() {
|
|
| 335 |
// Initialization and find strongly connected components |
|
| 336 |
init(); |
|
| 337 |
findComponents(); |
|
| 338 |
|
|
| 339 |
// Find the minimum cycle mean in the components |
|
| 340 |
for (int comp = 0; comp < _comp_num; ++comp) {
|
|
| 341 |
if (!initComponent(comp)) continue; |
|
| 342 |
processRounds(); |
|
| 343 |
|
|
| 344 |
// Update the best cycle (global minimum mean cycle) |
|
| 345 |
if ( _curr_found && (!_best_found || |
|
| 346 |
_curr_length * _best_size < _best_length * _curr_size) ) {
|
|
| 347 |
_best_found = true; |
|
| 348 |
_best_length = _curr_length; |
|
| 349 |
_best_size = _curr_size; |
|
| 350 |
_best_node = _curr_node; |
|
| 351 |
_best_level = _curr_level; |
|
| 352 |
} |
|
| 353 |
} |
|
| 354 |
return _best_found; |
|
| 355 |
} |
|
| 356 |
|
|
| 357 |
/// \brief Find a minimum mean directed cycle. |
|
| 358 |
/// |
|
| 359 |
/// This function finds a directed cycle of minimum mean length |
|
| 360 |
/// in the digraph using the data computed by findMinMean(). |
|
| 361 |
/// |
|
| 362 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 363 |
/// |
|
| 364 |
/// \pre \ref findMinMean() must be called before using this function. |
|
| 365 |
bool findCycle() {
|
|
| 366 |
if (!_best_found) return false; |
|
| 367 |
IntNodeMap reached(_gr, -1); |
|
| 368 |
int r = _best_level + 1; |
|
| 369 |
Node u = _best_node; |
|
| 370 |
while (reached[u] < 0) {
|
|
| 371 |
reached[u] = --r; |
|
| 372 |
u = _gr.source(_data[u][r].pred); |
|
| 373 |
} |
|
| 374 |
r = reached[u]; |
|
| 375 |
Arc e = _data[u][r].pred; |
|
| 376 |
_cycle_path->addFront(e); |
|
| 377 |
_best_length = _length[e]; |
|
| 378 |
_best_size = 1; |
|
| 379 |
Node v; |
|
| 380 |
while ((v = _gr.source(e)) != u) {
|
|
| 381 |
e = _data[v][--r].pred; |
|
| 382 |
_cycle_path->addFront(e); |
|
| 383 |
_best_length += _length[e]; |
|
| 384 |
++_best_size; |
|
| 385 |
} |
|
| 386 |
return true; |
|
| 387 |
} |
|
| 388 |
|
|
| 389 |
/// @} |
|
| 390 |
|
|
| 391 |
/// \name Query Functions |
|
| 392 |
/// The results of the algorithm can be obtained using these |
|
| 393 |
/// functions.\n |
|
| 394 |
/// The algorithm should be executed before using them. |
|
| 395 |
|
|
| 396 |
/// @{
|
|
| 397 |
|
|
| 398 |
/// \brief Return the total length of the found cycle. |
|
| 399 |
/// |
|
| 400 |
/// This function returns the total length of the found cycle. |
|
| 401 |
/// |
|
| 402 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
| 403 |
/// using this function. |
|
| 404 |
LargeValue cycleLength() const {
|
|
| 405 |
return _best_length; |
|
| 406 |
} |
|
| 407 |
|
|
| 408 |
/// \brief Return the number of arcs on the found cycle. |
|
| 409 |
/// |
|
| 410 |
/// This function returns the number of arcs on the found cycle. |
|
| 411 |
/// |
|
| 412 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
| 413 |
/// using this function. |
|
| 414 |
int cycleArcNum() const {
|
|
| 415 |
return _best_size; |
|
| 416 |
} |
|
| 417 |
|
|
| 418 |
/// \brief Return the mean length of the found cycle. |
|
| 419 |
/// |
|
| 420 |
/// This function returns the mean length of the found cycle. |
|
| 421 |
/// |
|
| 422 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
|
| 423 |
/// following code. |
|
| 424 |
/// \code |
|
| 425 |
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum(); |
|
| 426 |
/// \endcode |
|
| 427 |
/// |
|
| 428 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
| 429 |
/// using this function. |
|
| 430 |
double cycleMean() const {
|
|
| 431 |
return static_cast<double>(_best_length) / _best_size; |
|
| 432 |
} |
|
| 433 |
|
|
| 434 |
/// \brief Return the found cycle. |
|
| 435 |
/// |
|
| 436 |
/// This function returns a const reference to the path structure |
|
| 437 |
/// storing the found cycle. |
|
| 438 |
/// |
|
| 439 |
/// \pre \ref run() or \ref findCycle() must be called before using |
|
| 440 |
/// this function. |
|
| 441 |
const Path& cycle() const {
|
|
| 442 |
return *_cycle_path; |
|
| 443 |
} |
|
| 444 |
|
|
| 445 |
///@} |
|
| 446 |
|
|
| 447 |
private: |
|
| 448 |
|
|
| 449 |
// Initialization |
|
| 450 |
void init() {
|
|
| 451 |
if (!_cycle_path) {
|
|
| 452 |
_local_path = true; |
|
| 453 |
_cycle_path = new Path; |
|
| 454 |
} |
|
| 455 |
_cycle_path->clear(); |
|
| 456 |
_best_found = false; |
|
| 457 |
_best_length = 0; |
|
| 458 |
_best_size = 1; |
|
| 459 |
_cycle_path->clear(); |
|
| 460 |
for (NodeIt u(_gr); u != INVALID; ++u) |
|
| 461 |
_data[u].clear(); |
|
| 462 |
} |
|
| 463 |
|
|
| 464 |
// Find strongly connected components and initialize _comp_nodes |
|
| 465 |
// and _out_arcs |
|
| 466 |
void findComponents() {
|
|
| 467 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
|
| 468 |
_comp_nodes.resize(_comp_num); |
|
| 469 |
if (_comp_num == 1) {
|
|
| 470 |
_comp_nodes[0].clear(); |
|
| 471 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
|
| 472 |
_comp_nodes[0].push_back(n); |
|
| 473 |
_out_arcs[n].clear(); |
|
| 474 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) {
|
|
| 475 |
_out_arcs[n].push_back(a); |
|
| 476 |
} |
|
| 477 |
} |
|
| 478 |
} else {
|
|
| 479 |
for (int i = 0; i < _comp_num; ++i) |
|
| 480 |
_comp_nodes[i].clear(); |
|
| 481 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
|
| 482 |
int k = _comp[n]; |
|
| 483 |
_comp_nodes[k].push_back(n); |
|
| 484 |
_out_arcs[n].clear(); |
|
| 485 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) {
|
|
| 486 |
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); |
|
| 487 |
} |
|
| 488 |
} |
|
| 489 |
} |
|
| 490 |
} |
|
| 491 |
|
|
| 492 |
// Initialize path data for the current component |
|
| 493 |
bool initComponent(int comp) {
|
|
| 494 |
_nodes = &(_comp_nodes[comp]); |
|
| 495 |
int n = _nodes->size(); |
|
| 496 |
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
|
|
| 497 |
return false; |
|
| 498 |
} |
|
| 499 |
for (int i = 0; i < n; ++i) {
|
|
| 500 |
_data[(*_nodes)[i]].resize(n + 1, PathData(INF)); |
|
| 501 |
} |
|
| 502 |
return true; |
|
| 503 |
} |
|
| 504 |
|
|
| 505 |
// Process all rounds of computing path data for the current component. |
|
| 506 |
// _data[v][k] is the length of a shortest directed walk from the root |
|
| 507 |
// node to node v containing exactly k arcs. |
|
| 508 |
void processRounds() {
|
|
| 509 |
Node start = (*_nodes)[0]; |
|
| 510 |
_data[start][0] = PathData(0); |
|
| 511 |
_process.clear(); |
|
| 512 |
_process.push_back(start); |
|
| 513 |
|
|
| 514 |
int k, n = _nodes->size(); |
|
| 515 |
int next_check = 4; |
|
| 516 |
bool terminate = false; |
|
| 517 |
for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
|
|
| 518 |
processNextBuildRound(k); |
|
| 519 |
if (k == next_check || k == n) {
|
|
| 520 |
terminate = checkTermination(k); |
|
| 521 |
next_check = next_check * 3 / 2; |
|
| 522 |
} |
|
| 523 |
} |
|
| 524 |
for ( ; k <= n && !terminate; ++k) {
|
|
| 525 |
processNextFullRound(k); |
|
| 526 |
if (k == next_check || k == n) {
|
|
| 527 |
terminate = checkTermination(k); |
|
| 528 |
next_check = next_check * 3 / 2; |
|
| 529 |
} |
|
| 530 |
} |
|
| 531 |
} |
|
| 532 |
|
|
| 533 |
// Process one round and rebuild _process |
|
| 534 |
void processNextBuildRound(int k) {
|
|
| 535 |
std::vector<Node> next; |
|
| 536 |
Node u, v; |
|
| 537 |
Arc e; |
|
| 538 |
LargeValue d; |
|
| 539 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 540 |
u = _process[i]; |
|
| 541 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
|
|
| 542 |
e = _out_arcs[u][j]; |
|
| 543 |
v = _gr.target(e); |
|
| 544 |
d = _data[u][k-1].dist + _length[e]; |
|
| 545 |
if (_tolerance.less(d, _data[v][k].dist)) {
|
|
| 546 |
if (_data[v][k].dist == INF) next.push_back(v); |
|
| 547 |
_data[v][k] = PathData(d, e); |
|
| 548 |
} |
|
| 549 |
} |
|
| 550 |
} |
|
| 551 |
_process.swap(next); |
|
| 552 |
} |
|
| 553 |
|
|
| 554 |
// Process one round using _nodes instead of _process |
|
| 555 |
void processNextFullRound(int k) {
|
|
| 556 |
Node u, v; |
|
| 557 |
Arc e; |
|
| 558 |
LargeValue d; |
|
| 559 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 560 |
u = (*_nodes)[i]; |
|
| 561 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
|
|
| 562 |
e = _out_arcs[u][j]; |
|
| 563 |
v = _gr.target(e); |
|
| 564 |
d = _data[u][k-1].dist + _length[e]; |
|
| 565 |
if (_tolerance.less(d, _data[v][k].dist)) {
|
|
| 566 |
_data[v][k] = PathData(d, e); |
|
| 567 |
} |
|
| 568 |
} |
|
| 569 |
} |
|
| 570 |
} |
|
| 571 |
|
|
| 572 |
// Check early termination |
|
| 573 |
bool checkTermination(int k) {
|
|
| 574 |
typedef std::pair<int, int> Pair; |
|
| 575 |
typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0)); |
|
| 576 |
typename GR::template NodeMap<LargeValue> pi(_gr); |
|
| 577 |
int n = _nodes->size(); |
|
| 578 |
LargeValue length; |
|
| 579 |
int size; |
|
| 580 |
Node u; |
|
| 581 |
|
|
| 582 |
// Search for cycles that are already found |
|
| 583 |
_curr_found = false; |
|
| 584 |
for (int i = 0; i < n; ++i) {
|
|
| 585 |
u = (*_nodes)[i]; |
|
| 586 |
if (_data[u][k].dist == INF) continue; |
|
| 587 |
for (int j = k; j >= 0; --j) {
|
|
| 588 |
if (level[u].first == i && level[u].second > 0) {
|
|
| 589 |
// A cycle is found |
|
| 590 |
length = _data[u][level[u].second].dist - _data[u][j].dist; |
|
| 591 |
size = level[u].second - j; |
|
| 592 |
if (!_curr_found || length * _curr_size < _curr_length * size) {
|
|
| 593 |
_curr_length = length; |
|
| 594 |
_curr_size = size; |
|
| 595 |
_curr_node = u; |
|
| 596 |
_curr_level = level[u].second; |
|
| 597 |
_curr_found = true; |
|
| 598 |
} |
|
| 599 |
} |
|
| 600 |
level[u] = Pair(i, j); |
|
| 601 |
u = _gr.source(_data[u][j].pred); |
|
| 602 |
} |
|
| 603 |
} |
|
| 604 |
|
|
| 605 |
// If at least one cycle is found, check the optimality condition |
|
| 606 |
LargeValue d; |
|
| 607 |
if (_curr_found && k < n) {
|
|
| 608 |
// Find node potentials |
|
| 609 |
for (int i = 0; i < n; ++i) {
|
|
| 610 |
u = (*_nodes)[i]; |
|
| 611 |
pi[u] = INF; |
|
| 612 |
for (int j = 0; j <= k; ++j) {
|
|
| 613 |
if (_data[u][j].dist < INF) {
|
|
| 614 |
d = _data[u][j].dist * _curr_size - j * _curr_length; |
|
| 615 |
if (_tolerance.less(d, pi[u])) pi[u] = d; |
|
| 616 |
} |
|
| 617 |
} |
|
| 618 |
} |
|
| 619 |
|
|
| 620 |
// Check the optimality condition for all arcs |
|
| 621 |
bool done = true; |
|
| 622 |
for (ArcIt a(_gr); a != INVALID; ++a) {
|
|
| 623 |
if (_tolerance.less(_length[a] * _curr_size - _curr_length, |
|
| 624 |
pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
|
|
| 625 |
done = false; |
|
| 626 |
break; |
|
| 627 |
} |
|
| 628 |
} |
|
| 629 |
return done; |
|
| 630 |
} |
|
| 631 |
return (k == n); |
|
| 632 |
} |
|
| 633 |
|
|
| 634 |
}; //class HartmannOrlin |
|
| 635 |
|
|
| 636 |
///@} |
|
| 637 |
|
|
| 638 |
} //namespace lemon |
|
| 639 |
|
|
| 640 |
#endif //LEMON_HARTMANN_ORLIN_H |
| 1 |
/* -*- C++ -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_HOWARD_H |
|
| 20 |
#define LEMON_HOWARD_H |
|
| 21 |
|
|
| 22 |
/// \ingroup min_mean_cycle |
|
| 23 |
/// |
|
| 24 |
/// \file |
|
| 25 |
/// \brief Howard's algorithm for finding a minimum mean cycle. |
|
| 26 |
|
|
| 27 |
#include <vector> |
|
| 28 |
#include <limits> |
|
| 29 |
#include <lemon/core.h> |
|
| 30 |
#include <lemon/path.h> |
|
| 31 |
#include <lemon/tolerance.h> |
|
| 32 |
#include <lemon/connectivity.h> |
|
| 33 |
|
|
| 34 |
namespace lemon {
|
|
| 35 |
|
|
| 36 |
/// \brief Default traits class of Howard class. |
|
| 37 |
/// |
|
| 38 |
/// Default traits class of Howard class. |
|
| 39 |
/// \tparam GR The type of the digraph. |
|
| 40 |
/// \tparam LEN The type of the length map. |
|
| 41 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 42 |
#ifdef DOXYGEN |
|
| 43 |
template <typename GR, typename LEN> |
|
| 44 |
#else |
|
| 45 |
template <typename GR, typename LEN, |
|
| 46 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
|
| 47 |
#endif |
|
| 48 |
struct HowardDefaultTraits |
|
| 49 |
{
|
|
| 50 |
/// The type of the digraph |
|
| 51 |
typedef GR Digraph; |
|
| 52 |
/// The type of the length map |
|
| 53 |
typedef LEN LengthMap; |
|
| 54 |
/// The type of the arc lengths |
|
| 55 |
typedef typename LengthMap::Value Value; |
|
| 56 |
|
|
| 57 |
/// \brief The large value type used for internal computations |
|
| 58 |
/// |
|
| 59 |
/// The large value type used for internal computations. |
|
| 60 |
/// It is \c long \c long if the \c Value type is integer, |
|
| 61 |
/// otherwise it is \c double. |
|
| 62 |
/// \c Value must be convertible to \c LargeValue. |
|
| 63 |
typedef double LargeValue; |
|
| 64 |
|
|
| 65 |
/// The tolerance type used for internal computations |
|
| 66 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
| 67 |
|
|
| 68 |
/// \brief The path type of the found cycles |
|
| 69 |
/// |
|
| 70 |
/// The path type of the found cycles. |
|
| 71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 72 |
/// and it must have an \c addBack() function. |
|
| 73 |
typedef lemon::Path<Digraph> Path; |
|
| 74 |
}; |
|
| 75 |
|
|
| 76 |
// Default traits class for integer value types |
|
| 77 |
template <typename GR, typename LEN> |
|
| 78 |
struct HowardDefaultTraits<GR, LEN, true> |
|
| 79 |
{
|
|
| 80 |
typedef GR Digraph; |
|
| 81 |
typedef LEN LengthMap; |
|
| 82 |
typedef typename LengthMap::Value Value; |
|
| 83 |
#ifdef LEMON_HAVE_LONG_LONG |
|
| 84 |
typedef long long LargeValue; |
|
| 85 |
#else |
|
| 86 |
typedef long LargeValue; |
|
| 87 |
#endif |
|
| 88 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
| 89 |
typedef lemon::Path<Digraph> Path; |
|
| 90 |
}; |
|
| 91 |
|
|
| 92 |
|
|
| 93 |
/// \addtogroup min_mean_cycle |
|
| 94 |
/// @{
|
|
| 95 |
|
|
| 96 |
/// \brief Implementation of Howard's algorithm for finding a minimum |
|
| 97 |
/// mean cycle. |
|
| 98 |
/// |
|
| 99 |
/// This class implements Howard's policy iteration algorithm for finding |
|
| 100 |
/// a directed cycle of minimum mean length (cost) in a digraph |
|
| 101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
|
| 102 |
/// This class provides the most efficient algorithm for the |
|
| 103 |
/// minimum mean cycle problem, though the best known theoretical |
|
| 104 |
/// bound on its running time is exponential. |
|
| 105 |
/// |
|
| 106 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
| 107 |
/// \tparam LEN The type of the length map. The default |
|
| 108 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
| 109 |
#ifdef DOXYGEN |
|
| 110 |
template <typename GR, typename LEN, typename TR> |
|
| 111 |
#else |
|
| 112 |
template < typename GR, |
|
| 113 |
typename LEN = typename GR::template ArcMap<int>, |
|
| 114 |
typename TR = HowardDefaultTraits<GR, LEN> > |
|
| 115 |
#endif |
|
| 116 |
class Howard |
|
| 117 |
{
|
|
| 118 |
public: |
|
| 119 |
|
|
| 120 |
/// The type of the digraph |
|
| 121 |
typedef typename TR::Digraph Digraph; |
|
| 122 |
/// The type of the length map |
|
| 123 |
typedef typename TR::LengthMap LengthMap; |
|
| 124 |
/// The type of the arc lengths |
|
| 125 |
typedef typename TR::Value Value; |
|
| 126 |
|
|
| 127 |
/// \brief The large value type |
|
| 128 |
/// |
|
| 129 |
/// The large value type used for internal computations. |
|
| 130 |
/// Using the \ref HowardDefaultTraits "default traits class", |
|
| 131 |
/// it is \c long \c long if the \c Value type is integer, |
|
| 132 |
/// otherwise it is \c double. |
|
| 133 |
typedef typename TR::LargeValue LargeValue; |
|
| 134 |
|
|
| 135 |
/// The tolerance type |
|
| 136 |
typedef typename TR::Tolerance Tolerance; |
|
| 137 |
|
|
| 138 |
/// \brief The path type of the found cycles |
|
| 139 |
/// |
|
| 140 |
/// The path type of the found cycles. |
|
| 141 |
/// Using the \ref HowardDefaultTraits "default traits class", |
|
| 142 |
/// it is \ref lemon::Path "Path<Digraph>". |
|
| 143 |
typedef typename TR::Path Path; |
|
| 144 |
|
|
| 145 |
/// The \ref HowardDefaultTraits "traits class" of the algorithm |
|
| 146 |
typedef TR Traits; |
|
| 147 |
|
|
| 148 |
private: |
|
| 149 |
|
|
| 150 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
| 151 |
|
|
| 152 |
// The digraph the algorithm runs on |
|
| 153 |
const Digraph &_gr; |
|
| 154 |
// The length of the arcs |
|
| 155 |
const LengthMap &_length; |
|
| 156 |
|
|
| 157 |
// Data for the found cycles |
|
| 158 |
bool _curr_found, _best_found; |
|
| 159 |
LargeValue _curr_length, _best_length; |
|
| 160 |
int _curr_size, _best_size; |
|
| 161 |
Node _curr_node, _best_node; |
|
| 162 |
|
|
| 163 |
Path *_cycle_path; |
|
| 164 |
bool _local_path; |
|
| 165 |
|
|
| 166 |
// Internal data used by the algorithm |
|
| 167 |
typename Digraph::template NodeMap<Arc> _policy; |
|
| 168 |
typename Digraph::template NodeMap<bool> _reached; |
|
| 169 |
typename Digraph::template NodeMap<int> _level; |
|
| 170 |
typename Digraph::template NodeMap<LargeValue> _dist; |
|
| 171 |
|
|
| 172 |
// Data for storing the strongly connected components |
|
| 173 |
int _comp_num; |
|
| 174 |
typename Digraph::template NodeMap<int> _comp; |
|
| 175 |
std::vector<std::vector<Node> > _comp_nodes; |
|
| 176 |
std::vector<Node>* _nodes; |
|
| 177 |
typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs; |
|
| 178 |
|
|
| 179 |
// Queue used for BFS search |
|
| 180 |
std::vector<Node> _queue; |
|
| 181 |
int _qfront, _qback; |
|
| 182 |
|
|
| 183 |
Tolerance _tolerance; |
|
| 184 |
|
|
| 185 |
// Infinite constant |
|
| 186 |
const LargeValue INF; |
|
| 187 |
|
|
| 188 |
public: |
|
| 189 |
|
|
| 190 |
/// \name Named Template Parameters |
|
| 191 |
/// @{
|
|
| 192 |
|
|
| 193 |
template <typename T> |
|
| 194 |
struct SetLargeValueTraits : public Traits {
|
|
| 195 |
typedef T LargeValue; |
|
| 196 |
typedef lemon::Tolerance<T> Tolerance; |
|
| 197 |
}; |
|
| 198 |
|
|
| 199 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 200 |
/// \c LargeValue type. |
|
| 201 |
/// |
|
| 202 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue |
|
| 203 |
/// type. It is used for internal computations in the algorithm. |
|
| 204 |
template <typename T> |
|
| 205 |
struct SetLargeValue |
|
| 206 |
: public Howard<GR, LEN, SetLargeValueTraits<T> > {
|
|
| 207 |
typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create; |
|
| 208 |
}; |
|
| 209 |
|
|
| 210 |
template <typename T> |
|
| 211 |
struct SetPathTraits : public Traits {
|
|
| 212 |
typedef T Path; |
|
| 213 |
}; |
|
| 214 |
|
|
| 215 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 216 |
/// \c %Path type. |
|
| 217 |
/// |
|
| 218 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
|
| 219 |
/// type of the found cycles. |
|
| 220 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 221 |
/// and it must have an \c addBack() function. |
|
| 222 |
template <typename T> |
|
| 223 |
struct SetPath |
|
| 224 |
: public Howard<GR, LEN, SetPathTraits<T> > {
|
|
| 225 |
typedef Howard<GR, LEN, SetPathTraits<T> > Create; |
|
| 226 |
}; |
|
| 227 |
|
|
| 228 |
/// @} |
|
| 229 |
|
|
| 230 |
public: |
|
| 231 |
|
|
| 232 |
/// \brief Constructor. |
|
| 233 |
/// |
|
| 234 |
/// The constructor of the class. |
|
| 235 |
/// |
|
| 236 |
/// \param digraph The digraph the algorithm runs on. |
|
| 237 |
/// \param length The lengths (costs) of the arcs. |
|
| 238 |
Howard( const Digraph &digraph, |
|
| 239 |
const LengthMap &length ) : |
|
| 240 |
_gr(digraph), _length(length), _best_found(false), |
|
| 241 |
_best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false), |
|
| 242 |
_policy(digraph), _reached(digraph), _level(digraph), _dist(digraph), |
|
| 243 |
_comp(digraph), _in_arcs(digraph), |
|
| 244 |
INF(std::numeric_limits<LargeValue>::has_infinity ? |
|
| 245 |
std::numeric_limits<LargeValue>::infinity() : |
|
| 246 |
std::numeric_limits<LargeValue>::max()) |
|
| 247 |
{}
|
|
| 248 |
|
|
| 249 |
/// Destructor. |
|
| 250 |
~Howard() {
|
|
| 251 |
if (_local_path) delete _cycle_path; |
|
| 252 |
} |
|
| 253 |
|
|
| 254 |
/// \brief Set the path structure for storing the found cycle. |
|
| 255 |
/// |
|
| 256 |
/// This function sets an external path structure for storing the |
|
| 257 |
/// found cycle. |
|
| 258 |
/// |
|
| 259 |
/// If you don't call this function before calling \ref run() or |
|
| 260 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
|
| 261 |
/// structure. The destuctor deallocates this automatically |
|
| 262 |
/// allocated object, of course. |
|
| 263 |
/// |
|
| 264 |
/// \note The algorithm calls only the \ref lemon::Path::addBack() |
|
| 265 |
/// "addBack()" function of the given path structure. |
|
| 266 |
/// |
|
| 267 |
/// \return <tt>(*this)</tt> |
|
| 268 |
Howard& cycle(Path &path) {
|
|
| 269 |
if (_local_path) {
|
|
| 270 |
delete _cycle_path; |
|
| 271 |
_local_path = false; |
|
| 272 |
} |
|
| 273 |
_cycle_path = &path; |
|
| 274 |
return *this; |
|
| 275 |
} |
|
| 276 |
|
|
| 277 |
/// \brief Set the tolerance used by the algorithm. |
|
| 278 |
/// |
|
| 279 |
/// This function sets the tolerance object used by the algorithm. |
|
| 280 |
/// |
|
| 281 |
/// \return <tt>(*this)</tt> |
|
| 282 |
Howard& tolerance(const Tolerance& tolerance) {
|
|
| 283 |
_tolerance = tolerance; |
|
| 284 |
return *this; |
|
| 285 |
} |
|
| 286 |
|
|
| 287 |
/// \brief Return a const reference to the tolerance. |
|
| 288 |
/// |
|
| 289 |
/// This function returns a const reference to the tolerance object |
|
| 290 |
/// used by the algorithm. |
|
| 291 |
const Tolerance& tolerance() const {
|
|
| 292 |
return _tolerance; |
|
| 293 |
} |
|
| 294 |
|
|
| 295 |
/// \name Execution control |
|
| 296 |
/// The simplest way to execute the algorithm is to call the \ref run() |
|
| 297 |
/// function.\n |
|
| 298 |
/// If you only need the minimum mean length, you may call |
|
| 299 |
/// \ref findMinMean(). |
|
| 300 |
|
|
| 301 |
/// @{
|
|
| 302 |
|
|
| 303 |
/// \brief Run the algorithm. |
|
| 304 |
/// |
|
| 305 |
/// This function runs the algorithm. |
|
| 306 |
/// It can be called more than once (e.g. if the underlying digraph |
|
| 307 |
/// and/or the arc lengths have been modified). |
|
| 308 |
/// |
|
| 309 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 310 |
/// |
|
| 311 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
|
| 312 |
/// \code |
|
| 313 |
/// return mmc.findMinMean() && mmc.findCycle(); |
|
| 314 |
/// \endcode |
|
| 315 |
bool run() {
|
|
| 316 |
return findMinMean() && findCycle(); |
|
| 317 |
} |
|
| 318 |
|
|
| 319 |
/// \brief Find the minimum cycle mean. |
|
| 320 |
/// |
|
| 321 |
/// This function finds the minimum mean length of the directed |
|
| 322 |
/// cycles in the digraph. |
|
| 323 |
/// |
|
| 324 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 325 |
bool findMinMean() {
|
|
| 326 |
// Initialize and find strongly connected components |
|
| 327 |
init(); |
|
| 328 |
findComponents(); |
|
| 329 |
|
|
| 330 |
// Find the minimum cycle mean in the components |
|
| 331 |
for (int comp = 0; comp < _comp_num; ++comp) {
|
|
| 332 |
// Find the minimum mean cycle in the current component |
|
| 333 |
if (!buildPolicyGraph(comp)) continue; |
|
| 334 |
while (true) {
|
|
| 335 |
findPolicyCycle(); |
|
| 336 |
if (!computeNodeDistances()) break; |
|
| 337 |
} |
|
| 338 |
// Update the best cycle (global minimum mean cycle) |
|
| 339 |
if ( _curr_found && (!_best_found || |
|
| 340 |
_curr_length * _best_size < _best_length * _curr_size) ) {
|
|
| 341 |
_best_found = true; |
|
| 342 |
_best_length = _curr_length; |
|
| 343 |
_best_size = _curr_size; |
|
| 344 |
_best_node = _curr_node; |
|
| 345 |
} |
|
| 346 |
} |
|
| 347 |
return _best_found; |
|
| 348 |
} |
|
| 349 |
|
|
| 350 |
/// \brief Find a minimum mean directed cycle. |
|
| 351 |
/// |
|
| 352 |
/// This function finds a directed cycle of minimum mean length |
|
| 353 |
/// in the digraph using the data computed by findMinMean(). |
|
| 354 |
/// |
|
| 355 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 356 |
/// |
|
| 357 |
/// \pre \ref findMinMean() must be called before using this function. |
|
| 358 |
bool findCycle() {
|
|
| 359 |
if (!_best_found) return false; |
|
| 360 |
_cycle_path->addBack(_policy[_best_node]); |
|
| 361 |
for ( Node v = _best_node; |
|
| 362 |
(v = _gr.target(_policy[v])) != _best_node; ) {
|
|
| 363 |
_cycle_path->addBack(_policy[v]); |
|
| 364 |
} |
|
| 365 |
return true; |
|
| 366 |
} |
|
| 367 |
|
|
| 368 |
/// @} |
|
| 369 |
|
|
| 370 |
/// \name Query Functions |
|
| 371 |
/// The results of the algorithm can be obtained using these |
|
| 372 |
/// functions.\n |
|
| 373 |
/// The algorithm should be executed before using them. |
|
| 374 |
|
|
| 375 |
/// @{
|
|
| 376 |
|
|
| 377 |
/// \brief Return the total length of the found cycle. |
|
| 378 |
/// |
|
| 379 |
/// This function returns the total length of the found cycle. |
|
| 380 |
/// |
|
| 381 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
| 382 |
/// using this function. |
|
| 383 |
LargeValue cycleLength() const {
|
|
| 384 |
return _best_length; |
|
| 385 |
} |
|
| 386 |
|
|
| 387 |
/// \brief Return the number of arcs on the found cycle. |
|
| 388 |
/// |
|
| 389 |
/// This function returns the number of arcs on the found cycle. |
|
| 390 |
/// |
|
| 391 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
| 392 |
/// using this function. |
|
| 393 |
int cycleArcNum() const {
|
|
| 394 |
return _best_size; |
|
| 395 |
} |
|
| 396 |
|
|
| 397 |
/// \brief Return the mean length of the found cycle. |
|
| 398 |
/// |
|
| 399 |
/// This function returns the mean length of the found cycle. |
|
| 400 |
/// |
|
| 401 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
|
| 402 |
/// following code. |
|
| 403 |
/// \code |
|
| 404 |
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum(); |
|
| 405 |
/// \endcode |
|
| 406 |
/// |
|
| 407 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
| 408 |
/// using this function. |
|
| 409 |
double cycleMean() const {
|
|
| 410 |
return static_cast<double>(_best_length) / _best_size; |
|
| 411 |
} |
|
| 412 |
|
|
| 413 |
/// \brief Return the found cycle. |
|
| 414 |
/// |
|
| 415 |
/// This function returns a const reference to the path structure |
|
| 416 |
/// storing the found cycle. |
|
| 417 |
/// |
|
| 418 |
/// \pre \ref run() or \ref findCycle() must be called before using |
|
| 419 |
/// this function. |
|
| 420 |
const Path& cycle() const {
|
|
| 421 |
return *_cycle_path; |
|
| 422 |
} |
|
| 423 |
|
|
| 424 |
///@} |
|
| 425 |
|
|
| 426 |
private: |
|
| 427 |
|
|
| 428 |
// Initialize |
|
| 429 |
void init() {
|
|
| 430 |
if (!_cycle_path) {
|
|
| 431 |
_local_path = true; |
|
| 432 |
_cycle_path = new Path; |
|
| 433 |
} |
|
| 434 |
_queue.resize(countNodes(_gr)); |
|
| 435 |
_best_found = false; |
|
| 436 |
_best_length = 0; |
|
| 437 |
_best_size = 1; |
|
| 438 |
_cycle_path->clear(); |
|
| 439 |
} |
|
| 440 |
|
|
| 441 |
// Find strongly connected components and initialize _comp_nodes |
|
| 442 |
// and _in_arcs |
|
| 443 |
void findComponents() {
|
|
| 444 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
|
| 445 |
_comp_nodes.resize(_comp_num); |
|
| 446 |
if (_comp_num == 1) {
|
|
| 447 |
_comp_nodes[0].clear(); |
|
| 448 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
|
| 449 |
_comp_nodes[0].push_back(n); |
|
| 450 |
_in_arcs[n].clear(); |
|
| 451 |
for (InArcIt a(_gr, n); a != INVALID; ++a) {
|
|
| 452 |
_in_arcs[n].push_back(a); |
|
| 453 |
} |
|
| 454 |
} |
|
| 455 |
} else {
|
|
| 456 |
for (int i = 0; i < _comp_num; ++i) |
|
| 457 |
_comp_nodes[i].clear(); |
|
| 458 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
|
| 459 |
int k = _comp[n]; |
|
| 460 |
_comp_nodes[k].push_back(n); |
|
| 461 |
_in_arcs[n].clear(); |
|
| 462 |
for (InArcIt a(_gr, n); a != INVALID; ++a) {
|
|
| 463 |
if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a); |
|
| 464 |
} |
|
| 465 |
} |
|
| 466 |
} |
|
| 467 |
} |
|
| 468 |
|
|
| 469 |
// Build the policy graph in the given strongly connected component |
|
| 470 |
// (the out-degree of every node is 1) |
|
| 471 |
bool buildPolicyGraph(int comp) {
|
|
| 472 |
_nodes = &(_comp_nodes[comp]); |
|
| 473 |
if (_nodes->size() < 1 || |
|
| 474 |
(_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
|
|
| 475 |
return false; |
|
| 476 |
} |
|
| 477 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 478 |
_dist[(*_nodes)[i]] = INF; |
|
| 479 |
} |
|
| 480 |
Node u, v; |
|
| 481 |
Arc e; |
|
| 482 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 483 |
v = (*_nodes)[i]; |
|
| 484 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
|
|
| 485 |
e = _in_arcs[v][j]; |
|
| 486 |
u = _gr.source(e); |
|
| 487 |
if (_length[e] < _dist[u]) {
|
|
| 488 |
_dist[u] = _length[e]; |
|
| 489 |
_policy[u] = e; |
|
| 490 |
} |
|
| 491 |
} |
|
| 492 |
} |
|
| 493 |
return true; |
|
| 494 |
} |
|
| 495 |
|
|
| 496 |
// Find the minimum mean cycle in the policy graph |
|
| 497 |
void findPolicyCycle() {
|
|
| 498 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 499 |
_level[(*_nodes)[i]] = -1; |
|
| 500 |
} |
|
| 501 |
LargeValue clength; |
|
| 502 |
int csize; |
|
| 503 |
Node u, v; |
|
| 504 |
_curr_found = false; |
|
| 505 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 506 |
u = (*_nodes)[i]; |
|
| 507 |
if (_level[u] >= 0) continue; |
|
| 508 |
for (; _level[u] < 0; u = _gr.target(_policy[u])) {
|
|
| 509 |
_level[u] = i; |
|
| 510 |
} |
|
| 511 |
if (_level[u] == i) {
|
|
| 512 |
// A cycle is found |
|
| 513 |
clength = _length[_policy[u]]; |
|
| 514 |
csize = 1; |
|
| 515 |
for (v = u; (v = _gr.target(_policy[v])) != u; ) {
|
|
| 516 |
clength += _length[_policy[v]]; |
|
| 517 |
++csize; |
|
| 518 |
} |
|
| 519 |
if ( !_curr_found || |
|
| 520 |
(clength * _curr_size < _curr_length * csize) ) {
|
|
| 521 |
_curr_found = true; |
|
| 522 |
_curr_length = clength; |
|
| 523 |
_curr_size = csize; |
|
| 524 |
_curr_node = u; |
|
| 525 |
} |
|
| 526 |
} |
|
| 527 |
} |
|
| 528 |
} |
|
| 529 |
|
|
| 530 |
// Contract the policy graph and compute node distances |
|
| 531 |
bool computeNodeDistances() {
|
|
| 532 |
// Find the component of the main cycle and compute node distances |
|
| 533 |
// using reverse BFS |
|
| 534 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 535 |
_reached[(*_nodes)[i]] = false; |
|
| 536 |
} |
|
| 537 |
_qfront = _qback = 0; |
|
| 538 |
_queue[0] = _curr_node; |
|
| 539 |
_reached[_curr_node] = true; |
|
| 540 |
_dist[_curr_node] = 0; |
|
| 541 |
Node u, v; |
|
| 542 |
Arc e; |
|
| 543 |
while (_qfront <= _qback) {
|
|
| 544 |
v = _queue[_qfront++]; |
|
| 545 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
|
|
| 546 |
e = _in_arcs[v][j]; |
|
| 547 |
u = _gr.source(e); |
|
| 548 |
if (_policy[u] == e && !_reached[u]) {
|
|
| 549 |
_reached[u] = true; |
|
| 550 |
_dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length; |
|
| 551 |
_queue[++_qback] = u; |
|
| 552 |
} |
|
| 553 |
} |
|
| 554 |
} |
|
| 555 |
|
|
| 556 |
// Connect all other nodes to this component and compute node |
|
| 557 |
// distances using reverse BFS |
|
| 558 |
_qfront = 0; |
|
| 559 |
while (_qback < int(_nodes->size())-1) {
|
|
| 560 |
v = _queue[_qfront++]; |
|
| 561 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
|
|
| 562 |
e = _in_arcs[v][j]; |
|
| 563 |
u = _gr.source(e); |
|
| 564 |
if (!_reached[u]) {
|
|
| 565 |
_reached[u] = true; |
|
| 566 |
_policy[u] = e; |
|
| 567 |
_dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length; |
|
| 568 |
_queue[++_qback] = u; |
|
| 569 |
} |
|
| 570 |
} |
|
| 571 |
} |
|
| 572 |
|
|
| 573 |
// Improve node distances |
|
| 574 |
bool improved = false; |
|
| 575 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 576 |
v = (*_nodes)[i]; |
|
| 577 |
for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
|
|
| 578 |
e = _in_arcs[v][j]; |
|
| 579 |
u = _gr.source(e); |
|
| 580 |
LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length; |
|
| 581 |
if (_tolerance.less(delta, _dist[u])) {
|
|
| 582 |
_dist[u] = delta; |
|
| 583 |
_policy[u] = e; |
|
| 584 |
improved = true; |
|
| 585 |
} |
|
| 586 |
} |
|
| 587 |
} |
|
| 588 |
return improved; |
|
| 589 |
} |
|
| 590 |
|
|
| 591 |
}; //class Howard |
|
| 592 |
|
|
| 593 |
///@} |
|
| 594 |
|
|
| 595 |
} //namespace lemon |
|
| 596 |
|
|
| 597 |
#endif //LEMON_HOWARD_H |
| 1 |
/* -*- C++ -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_KARP_H |
|
| 20 |
#define LEMON_KARP_H |
|
| 21 |
|
|
| 22 |
/// \ingroup min_mean_cycle |
|
| 23 |
/// |
|
| 24 |
/// \file |
|
| 25 |
/// \brief Karp's algorithm for finding a minimum mean cycle. |
|
| 26 |
|
|
| 27 |
#include <vector> |
|
| 28 |
#include <limits> |
|
| 29 |
#include <lemon/core.h> |
|
| 30 |
#include <lemon/path.h> |
|
| 31 |
#include <lemon/tolerance.h> |
|
| 32 |
#include <lemon/connectivity.h> |
|
| 33 |
|
|
| 34 |
namespace lemon {
|
|
| 35 |
|
|
| 36 |
/// \brief Default traits class of Karp algorithm. |
|
| 37 |
/// |
|
| 38 |
/// Default traits class of Karp algorithm. |
|
| 39 |
/// \tparam GR The type of the digraph. |
|
| 40 |
/// \tparam LEN The type of the length map. |
|
| 41 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 42 |
#ifdef DOXYGEN |
|
| 43 |
template <typename GR, typename LEN> |
|
| 44 |
#else |
|
| 45 |
template <typename GR, typename LEN, |
|
| 46 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
|
| 47 |
#endif |
|
| 48 |
struct KarpDefaultTraits |
|
| 49 |
{
|
|
| 50 |
/// The type of the digraph |
|
| 51 |
typedef GR Digraph; |
|
| 52 |
/// The type of the length map |
|
| 53 |
typedef LEN LengthMap; |
|
| 54 |
/// The type of the arc lengths |
|
| 55 |
typedef typename LengthMap::Value Value; |
|
| 56 |
|
|
| 57 |
/// \brief The large value type used for internal computations |
|
| 58 |
/// |
|
| 59 |
/// The large value type used for internal computations. |
|
| 60 |
/// It is \c long \c long if the \c Value type is integer, |
|
| 61 |
/// otherwise it is \c double. |
|
| 62 |
/// \c Value must be convertible to \c LargeValue. |
|
| 63 |
typedef double LargeValue; |
|
| 64 |
|
|
| 65 |
/// The tolerance type used for internal computations |
|
| 66 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
| 67 |
|
|
| 68 |
/// \brief The path type of the found cycles |
|
| 69 |
/// |
|
| 70 |
/// The path type of the found cycles. |
|
| 71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 72 |
/// and it must have an \c addFront() function. |
|
| 73 |
typedef lemon::Path<Digraph> Path; |
|
| 74 |
}; |
|
| 75 |
|
|
| 76 |
// Default traits class for integer value types |
|
| 77 |
template <typename GR, typename LEN> |
|
| 78 |
struct KarpDefaultTraits<GR, LEN, true> |
|
| 79 |
{
|
|
| 80 |
typedef GR Digraph; |
|
| 81 |
typedef LEN LengthMap; |
|
| 82 |
typedef typename LengthMap::Value Value; |
|
| 83 |
#ifdef LEMON_HAVE_LONG_LONG |
|
| 84 |
typedef long long LargeValue; |
|
| 85 |
#else |
|
| 86 |
typedef long LargeValue; |
|
| 87 |
#endif |
|
| 88 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
| 89 |
typedef lemon::Path<Digraph> Path; |
|
| 90 |
}; |
|
| 91 |
|
|
| 92 |
|
|
| 93 |
/// \addtogroup min_mean_cycle |
|
| 94 |
/// @{
|
|
| 95 |
|
|
| 96 |
/// \brief Implementation of Karp's algorithm for finding a minimum |
|
| 97 |
/// mean cycle. |
|
| 98 |
/// |
|
| 99 |
/// This class implements Karp's algorithm for finding a directed |
|
| 100 |
/// cycle of minimum mean length (cost) in a digraph |
|
| 101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
|
| 102 |
/// It runs in time O(ne) and uses space O(n<sup>2</sup>+e). |
|
| 103 |
/// |
|
| 104 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
| 105 |
/// \tparam LEN The type of the length map. The default |
|
| 106 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
| 107 |
#ifdef DOXYGEN |
|
| 108 |
template <typename GR, typename LEN, typename TR> |
|
| 109 |
#else |
|
| 110 |
template < typename GR, |
|
| 111 |
typename LEN = typename GR::template ArcMap<int>, |
|
| 112 |
typename TR = KarpDefaultTraits<GR, LEN> > |
|
| 113 |
#endif |
|
| 114 |
class Karp |
|
| 115 |
{
|
|
| 116 |
public: |
|
| 117 |
|
|
| 118 |
/// The type of the digraph |
|
| 119 |
typedef typename TR::Digraph Digraph; |
|
| 120 |
/// The type of the length map |
|
| 121 |
typedef typename TR::LengthMap LengthMap; |
|
| 122 |
/// The type of the arc lengths |
|
| 123 |
typedef typename TR::Value Value; |
|
| 124 |
|
|
| 125 |
/// \brief The large value type |
|
| 126 |
/// |
|
| 127 |
/// The large value type used for internal computations. |
|
| 128 |
/// Using the \ref KarpDefaultTraits "default traits class", |
|
| 129 |
/// it is \c long \c long if the \c Value type is integer, |
|
| 130 |
/// otherwise it is \c double. |
|
| 131 |
typedef typename TR::LargeValue LargeValue; |
|
| 132 |
|
|
| 133 |
/// The tolerance type |
|
| 134 |
typedef typename TR::Tolerance Tolerance; |
|
| 135 |
|
|
| 136 |
/// \brief The path type of the found cycles |
|
| 137 |
/// |
|
| 138 |
/// The path type of the found cycles. |
|
| 139 |
/// Using the \ref KarpDefaultTraits "default traits class", |
|
| 140 |
/// it is \ref lemon::Path "Path<Digraph>". |
|
| 141 |
typedef typename TR::Path Path; |
|
| 142 |
|
|
| 143 |
/// The \ref KarpDefaultTraits "traits class" of the algorithm |
|
| 144 |
typedef TR Traits; |
|
| 145 |
|
|
| 146 |
private: |
|
| 147 |
|
|
| 148 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
| 149 |
|
|
| 150 |
// Data sturcture for path data |
|
| 151 |
struct PathData |
|
| 152 |
{
|
|
| 153 |
LargeValue dist; |
|
| 154 |
Arc pred; |
|
| 155 |
PathData(LargeValue d, Arc p = INVALID) : |
|
| 156 |
dist(d), pred(p) {}
|
|
| 157 |
}; |
|
| 158 |
|
|
| 159 |
typedef typename Digraph::template NodeMap<std::vector<PathData> > |
|
| 160 |
PathDataNodeMap; |
|
| 161 |
|
|
| 162 |
private: |
|
| 163 |
|
|
| 164 |
// The digraph the algorithm runs on |
|
| 165 |
const Digraph &_gr; |
|
| 166 |
// The length of the arcs |
|
| 167 |
const LengthMap &_length; |
|
| 168 |
|
|
| 169 |
// Data for storing the strongly connected components |
|
| 170 |
int _comp_num; |
|
| 171 |
typename Digraph::template NodeMap<int> _comp; |
|
| 172 |
std::vector<std::vector<Node> > _comp_nodes; |
|
| 173 |
std::vector<Node>* _nodes; |
|
| 174 |
typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs; |
|
| 175 |
|
|
| 176 |
// Data for the found cycle |
|
| 177 |
LargeValue _cycle_length; |
|
| 178 |
int _cycle_size; |
|
| 179 |
Node _cycle_node; |
|
| 180 |
|
|
| 181 |
Path *_cycle_path; |
|
| 182 |
bool _local_path; |
|
| 183 |
|
|
| 184 |
// Node map for storing path data |
|
| 185 |
PathDataNodeMap _data; |
|
| 186 |
// The processed nodes in the last round |
|
| 187 |
std::vector<Node> _process; |
|
| 188 |
|
|
| 189 |
Tolerance _tolerance; |
|
| 190 |
|
|
| 191 |
// Infinite constant |
|
| 192 |
const LargeValue INF; |
|
| 193 |
|
|
| 194 |
public: |
|
| 195 |
|
|
| 196 |
/// \name Named Template Parameters |
|
| 197 |
/// @{
|
|
| 198 |
|
|
| 199 |
template <typename T> |
|
| 200 |
struct SetLargeValueTraits : public Traits {
|
|
| 201 |
typedef T LargeValue; |
|
| 202 |
typedef lemon::Tolerance<T> Tolerance; |
|
| 203 |
}; |
|
| 204 |
|
|
| 205 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 206 |
/// \c LargeValue type. |
|
| 207 |
/// |
|
| 208 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue |
|
| 209 |
/// type. It is used for internal computations in the algorithm. |
|
| 210 |
template <typename T> |
|
| 211 |
struct SetLargeValue |
|
| 212 |
: public Karp<GR, LEN, SetLargeValueTraits<T> > {
|
|
| 213 |
typedef Karp<GR, LEN, SetLargeValueTraits<T> > Create; |
|
| 214 |
}; |
|
| 215 |
|
|
| 216 |
template <typename T> |
|
| 217 |
struct SetPathTraits : public Traits {
|
|
| 218 |
typedef T Path; |
|
| 219 |
}; |
|
| 220 |
|
|
| 221 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 222 |
/// \c %Path type. |
|
| 223 |
/// |
|
| 224 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
|
| 225 |
/// type of the found cycles. |
|
| 226 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 227 |
/// and it must have an \c addFront() function. |
|
| 228 |
template <typename T> |
|
| 229 |
struct SetPath |
|
| 230 |
: public Karp<GR, LEN, SetPathTraits<T> > {
|
|
| 231 |
typedef Karp<GR, LEN, SetPathTraits<T> > Create; |
|
| 232 |
}; |
|
| 233 |
|
|
| 234 |
/// @} |
|
| 235 |
|
|
| 236 |
public: |
|
| 237 |
|
|
| 238 |
/// \brief Constructor. |
|
| 239 |
/// |
|
| 240 |
/// The constructor of the class. |
|
| 241 |
/// |
|
| 242 |
/// \param digraph The digraph the algorithm runs on. |
|
| 243 |
/// \param length The lengths (costs) of the arcs. |
|
| 244 |
Karp( const Digraph &digraph, |
|
| 245 |
const LengthMap &length ) : |
|
| 246 |
_gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph), |
|
| 247 |
_cycle_length(0), _cycle_size(1), _cycle_node(INVALID), |
|
| 248 |
_cycle_path(NULL), _local_path(false), _data(digraph), |
|
| 249 |
INF(std::numeric_limits<LargeValue>::has_infinity ? |
|
| 250 |
std::numeric_limits<LargeValue>::infinity() : |
|
| 251 |
std::numeric_limits<LargeValue>::max()) |
|
| 252 |
{}
|
|
| 253 |
|
|
| 254 |
/// Destructor. |
|
| 255 |
~Karp() {
|
|
| 256 |
if (_local_path) delete _cycle_path; |
|
| 257 |
} |
|
| 258 |
|
|
| 259 |
/// \brief Set the path structure for storing the found cycle. |
|
| 260 |
/// |
|
| 261 |
/// This function sets an external path structure for storing the |
|
| 262 |
/// found cycle. |
|
| 263 |
/// |
|
| 264 |
/// If you don't call this function before calling \ref run() or |
|
| 265 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
|
| 266 |
/// structure. The destuctor deallocates this automatically |
|
| 267 |
/// allocated object, of course. |
|
| 268 |
/// |
|
| 269 |
/// \note The algorithm calls only the \ref lemon::Path::addFront() |
|
| 270 |
/// "addFront()" function of the given path structure. |
|
| 271 |
/// |
|
| 272 |
/// \return <tt>(*this)</tt> |
|
| 273 |
Karp& cycle(Path &path) {
|
|
| 274 |
if (_local_path) {
|
|
| 275 |
delete _cycle_path; |
|
| 276 |
_local_path = false; |
|
| 277 |
} |
|
| 278 |
_cycle_path = &path; |
|
| 279 |
return *this; |
|
| 280 |
} |
|
| 281 |
|
|
| 282 |
/// \brief Set the tolerance used by the algorithm. |
|
| 283 |
/// |
|
| 284 |
/// This function sets the tolerance object used by the algorithm. |
|
| 285 |
/// |
|
| 286 |
/// \return <tt>(*this)</tt> |
|
| 287 |
Karp& tolerance(const Tolerance& tolerance) {
|
|
| 288 |
_tolerance = tolerance; |
|
| 289 |
return *this; |
|
| 290 |
} |
|
| 291 |
|
|
| 292 |
/// \brief Return a const reference to the tolerance. |
|
| 293 |
/// |
|
| 294 |
/// This function returns a const reference to the tolerance object |
|
| 295 |
/// used by the algorithm. |
|
| 296 |
const Tolerance& tolerance() const {
|
|
| 297 |
return _tolerance; |
|
| 298 |
} |
|
| 299 |
|
|
| 300 |
/// \name Execution control |
|
| 301 |
/// The simplest way to execute the algorithm is to call the \ref run() |
|
| 302 |
/// function.\n |
|
| 303 |
/// If you only need the minimum mean length, you may call |
|
| 304 |
/// \ref findMinMean(). |
|
| 305 |
|
|
| 306 |
/// @{
|
|
| 307 |
|
|
| 308 |
/// \brief Run the algorithm. |
|
| 309 |
/// |
|
| 310 |
/// This function runs the algorithm. |
|
| 311 |
/// It can be called more than once (e.g. if the underlying digraph |
|
| 312 |
/// and/or the arc lengths have been modified). |
|
| 313 |
/// |
|
| 314 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 315 |
/// |
|
| 316 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
|
| 317 |
/// \code |
|
| 318 |
/// return mmc.findMinMean() && mmc.findCycle(); |
|
| 319 |
/// \endcode |
|
| 320 |
bool run() {
|
|
| 321 |
return findMinMean() && findCycle(); |
|
| 322 |
} |
|
| 323 |
|
|
| 324 |
/// \brief Find the minimum cycle mean. |
|
| 325 |
/// |
|
| 326 |
/// This function finds the minimum mean length of the directed |
|
| 327 |
/// cycles in the digraph. |
|
| 328 |
/// |
|
| 329 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 330 |
bool findMinMean() {
|
|
| 331 |
// Initialization and find strongly connected components |
|
| 332 |
init(); |
|
| 333 |
findComponents(); |
|
| 334 |
|
|
| 335 |
// Find the minimum cycle mean in the components |
|
| 336 |
for (int comp = 0; comp < _comp_num; ++comp) {
|
|
| 337 |
if (!initComponent(comp)) continue; |
|
| 338 |
processRounds(); |
|
| 339 |
updateMinMean(); |
|
| 340 |
} |
|
| 341 |
return (_cycle_node != INVALID); |
|
| 342 |
} |
|
| 343 |
|
|
| 344 |
/// \brief Find a minimum mean directed cycle. |
|
| 345 |
/// |
|
| 346 |
/// This function finds a directed cycle of minimum mean length |
|
| 347 |
/// in the digraph using the data computed by findMinMean(). |
|
| 348 |
/// |
|
| 349 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 350 |
/// |
|
| 351 |
/// \pre \ref findMinMean() must be called before using this function. |
|
| 352 |
bool findCycle() {
|
|
| 353 |
if (_cycle_node == INVALID) return false; |
|
| 354 |
IntNodeMap reached(_gr, -1); |
|
| 355 |
int r = _data[_cycle_node].size(); |
|
| 356 |
Node u = _cycle_node; |
|
| 357 |
while (reached[u] < 0) {
|
|
| 358 |
reached[u] = --r; |
|
| 359 |
u = _gr.source(_data[u][r].pred); |
|
| 360 |
} |
|
| 361 |
r = reached[u]; |
|
| 362 |
Arc e = _data[u][r].pred; |
|
| 363 |
_cycle_path->addFront(e); |
|
| 364 |
_cycle_length = _length[e]; |
|
| 365 |
_cycle_size = 1; |
|
| 366 |
Node v; |
|
| 367 |
while ((v = _gr.source(e)) != u) {
|
|
| 368 |
e = _data[v][--r].pred; |
|
| 369 |
_cycle_path->addFront(e); |
|
| 370 |
_cycle_length += _length[e]; |
|
| 371 |
++_cycle_size; |
|
| 372 |
} |
|
| 373 |
return true; |
|
| 374 |
} |
|
| 375 |
|
|
| 376 |
/// @} |
|
| 377 |
|
|
| 378 |
/// \name Query Functions |
|
| 379 |
/// The results of the algorithm can be obtained using these |
|
| 380 |
/// functions.\n |
|
| 381 |
/// The algorithm should be executed before using them. |
|
| 382 |
|
|
| 383 |
/// @{
|
|
| 384 |
|
|
| 385 |
/// \brief Return the total length of the found cycle. |
|
| 386 |
/// |
|
| 387 |
/// This function returns the total length of the found cycle. |
|
| 388 |
/// |
|
| 389 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
| 390 |
/// using this function. |
|
| 391 |
LargeValue cycleLength() const {
|
|
| 392 |
return _cycle_length; |
|
| 393 |
} |
|
| 394 |
|
|
| 395 |
/// \brief Return the number of arcs on the found cycle. |
|
| 396 |
/// |
|
| 397 |
/// This function returns the number of arcs on the found cycle. |
|
| 398 |
/// |
|
| 399 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
| 400 |
/// using this function. |
|
| 401 |
int cycleArcNum() const {
|
|
| 402 |
return _cycle_size; |
|
| 403 |
} |
|
| 404 |
|
|
| 405 |
/// \brief Return the mean length of the found cycle. |
|
| 406 |
/// |
|
| 407 |
/// This function returns the mean length of the found cycle. |
|
| 408 |
/// |
|
| 409 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
|
| 410 |
/// following code. |
|
| 411 |
/// \code |
|
| 412 |
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum(); |
|
| 413 |
/// \endcode |
|
| 414 |
/// |
|
| 415 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
| 416 |
/// using this function. |
|
| 417 |
double cycleMean() const {
|
|
| 418 |
return static_cast<double>(_cycle_length) / _cycle_size; |
|
| 419 |
} |
|
| 420 |
|
|
| 421 |
/// \brief Return the found cycle. |
|
| 422 |
/// |
|
| 423 |
/// This function returns a const reference to the path structure |
|
| 424 |
/// storing the found cycle. |
|
| 425 |
/// |
|
| 426 |
/// \pre \ref run() or \ref findCycle() must be called before using |
|
| 427 |
/// this function. |
|
| 428 |
const Path& cycle() const {
|
|
| 429 |
return *_cycle_path; |
|
| 430 |
} |
|
| 431 |
|
|
| 432 |
///@} |
|
| 433 |
|
|
| 434 |
private: |
|
| 435 |
|
|
| 436 |
// Initialization |
|
| 437 |
void init() {
|
|
| 438 |
if (!_cycle_path) {
|
|
| 439 |
_local_path = true; |
|
| 440 |
_cycle_path = new Path; |
|
| 441 |
} |
|
| 442 |
_cycle_path->clear(); |
|
| 443 |
_cycle_length = 0; |
|
| 444 |
_cycle_size = 1; |
|
| 445 |
_cycle_node = INVALID; |
|
| 446 |
for (NodeIt u(_gr); u != INVALID; ++u) |
|
| 447 |
_data[u].clear(); |
|
| 448 |
} |
|
| 449 |
|
|
| 450 |
// Find strongly connected components and initialize _comp_nodes |
|
| 451 |
// and _out_arcs |
|
| 452 |
void findComponents() {
|
|
| 453 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
|
| 454 |
_comp_nodes.resize(_comp_num); |
|
| 455 |
if (_comp_num == 1) {
|
|
| 456 |
_comp_nodes[0].clear(); |
|
| 457 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
|
| 458 |
_comp_nodes[0].push_back(n); |
|
| 459 |
_out_arcs[n].clear(); |
|
| 460 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) {
|
|
| 461 |
_out_arcs[n].push_back(a); |
|
| 462 |
} |
|
| 463 |
} |
|
| 464 |
} else {
|
|
| 465 |
for (int i = 0; i < _comp_num; ++i) |
|
| 466 |
_comp_nodes[i].clear(); |
|
| 467 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
|
| 468 |
int k = _comp[n]; |
|
| 469 |
_comp_nodes[k].push_back(n); |
|
| 470 |
_out_arcs[n].clear(); |
|
| 471 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) {
|
|
| 472 |
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); |
|
| 473 |
} |
|
| 474 |
} |
|
| 475 |
} |
|
| 476 |
} |
|
| 477 |
|
|
| 478 |
// Initialize path data for the current component |
|
| 479 |
bool initComponent(int comp) {
|
|
| 480 |
_nodes = &(_comp_nodes[comp]); |
|
| 481 |
int n = _nodes->size(); |
|
| 482 |
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
|
|
| 483 |
return false; |
|
| 484 |
} |
|
| 485 |
for (int i = 0; i < n; ++i) {
|
|
| 486 |
_data[(*_nodes)[i]].resize(n + 1, PathData(INF)); |
|
| 487 |
} |
|
| 488 |
return true; |
|
| 489 |
} |
|
| 490 |
|
|
| 491 |
// Process all rounds of computing path data for the current component. |
|
| 492 |
// _data[v][k] is the length of a shortest directed walk from the root |
|
| 493 |
// node to node v containing exactly k arcs. |
|
| 494 |
void processRounds() {
|
|
| 495 |
Node start = (*_nodes)[0]; |
|
| 496 |
_data[start][0] = PathData(0); |
|
| 497 |
_process.clear(); |
|
| 498 |
_process.push_back(start); |
|
| 499 |
|
|
| 500 |
int k, n = _nodes->size(); |
|
| 501 |
for (k = 1; k <= n && int(_process.size()) < n; ++k) {
|
|
| 502 |
processNextBuildRound(k); |
|
| 503 |
} |
|
| 504 |
for ( ; k <= n; ++k) {
|
|
| 505 |
processNextFullRound(k); |
|
| 506 |
} |
|
| 507 |
} |
|
| 508 |
|
|
| 509 |
// Process one round and rebuild _process |
|
| 510 |
void processNextBuildRound(int k) {
|
|
| 511 |
std::vector<Node> next; |
|
| 512 |
Node u, v; |
|
| 513 |
Arc e; |
|
| 514 |
LargeValue d; |
|
| 515 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 516 |
u = _process[i]; |
|
| 517 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
|
|
| 518 |
e = _out_arcs[u][j]; |
|
| 519 |
v = _gr.target(e); |
|
| 520 |
d = _data[u][k-1].dist + _length[e]; |
|
| 521 |
if (_tolerance.less(d, _data[v][k].dist)) {
|
|
| 522 |
if (_data[v][k].dist == INF) next.push_back(v); |
|
| 523 |
_data[v][k] = PathData(d, e); |
|
| 524 |
} |
|
| 525 |
} |
|
| 526 |
} |
|
| 527 |
_process.swap(next); |
|
| 528 |
} |
|
| 529 |
|
|
| 530 |
// Process one round using _nodes instead of _process |
|
| 531 |
void processNextFullRound(int k) {
|
|
| 532 |
Node u, v; |
|
| 533 |
Arc e; |
|
| 534 |
LargeValue d; |
|
| 535 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 536 |
u = (*_nodes)[i]; |
|
| 537 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
|
|
| 538 |
e = _out_arcs[u][j]; |
|
| 539 |
v = _gr.target(e); |
|
| 540 |
d = _data[u][k-1].dist + _length[e]; |
|
| 541 |
if (_tolerance.less(d, _data[v][k].dist)) {
|
|
| 542 |
_data[v][k] = PathData(d, e); |
|
| 543 |
} |
|
| 544 |
} |
|
| 545 |
} |
|
| 546 |
} |
|
| 547 |
|
|
| 548 |
// Update the minimum cycle mean |
|
| 549 |
void updateMinMean() {
|
|
| 550 |
int n = _nodes->size(); |
|
| 551 |
for (int i = 0; i < n; ++i) {
|
|
| 552 |
Node u = (*_nodes)[i]; |
|
| 553 |
if (_data[u][n].dist == INF) continue; |
|
| 554 |
LargeValue length, max_length = 0; |
|
| 555 |
int size, max_size = 1; |
|
| 556 |
bool found_curr = false; |
|
| 557 |
for (int k = 0; k < n; ++k) {
|
|
| 558 |
if (_data[u][k].dist == INF) continue; |
|
| 559 |
length = _data[u][n].dist - _data[u][k].dist; |
|
| 560 |
size = n - k; |
|
| 561 |
if (!found_curr || length * max_size > max_length * size) {
|
|
| 562 |
found_curr = true; |
|
| 563 |
max_length = length; |
|
| 564 |
max_size = size; |
|
| 565 |
} |
|
| 566 |
} |
|
| 567 |
if ( found_curr && (_cycle_node == INVALID || |
|
| 568 |
max_length * _cycle_size < _cycle_length * max_size) ) {
|
|
| 569 |
_cycle_length = max_length; |
|
| 570 |
_cycle_size = max_size; |
|
| 571 |
_cycle_node = u; |
|
| 572 |
} |
|
| 573 |
} |
|
| 574 |
} |
|
| 575 |
|
|
| 576 |
}; //class Karp |
|
| 577 |
|
|
| 578 |
///@} |
|
| 579 |
|
|
| 580 |
} //namespace lemon |
|
| 581 |
|
|
| 582 |
#endif //LEMON_KARP_H |
| ... | ... |
@@ -14,48 +14,50 @@ |
| 14 | 14 |
OUTPUT_VARIABLE HG_REVISION |
| 15 | 15 |
ERROR_QUIET |
| 16 | 16 |
OUTPUT_STRIP_TRAILING_WHITESPACE |
| 17 | 17 |
) |
| 18 | 18 |
IF(HG_REVISION STREQUAL "") |
| 19 | 19 |
SET(HG_REVISION "hg-tip") |
| 20 | 20 |
ENDIF() |
| 21 | 21 |
SET(LEMON_VERSION ${HG_REVISION} CACHE STRING "LEMON version string.")
|
| 22 | 22 |
ENDIF() |
| 23 | 23 |
|
| 24 | 24 |
SET(PROJECT_VERSION ${LEMON_VERSION})
|
| 25 | 25 |
|
| 26 | 26 |
SET(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake)
|
| 27 | 27 |
|
| 28 | 28 |
FIND_PACKAGE(Doxygen) |
| 29 | 29 |
FIND_PACKAGE(Ghostscript) |
| 30 | 30 |
FIND_PACKAGE(GLPK 4.33) |
| 31 | 31 |
FIND_PACKAGE(CPLEX) |
| 32 | 32 |
FIND_PACKAGE(COIN) |
| 33 | 33 |
|
| 34 | 34 |
INCLUDE(CheckTypeSize) |
| 35 | 35 |
CHECK_TYPE_SIZE("long long" LONG_LONG)
|
| 36 | 36 |
SET(LEMON_HAVE_LONG_LONG ${HAVE_LONG_LONG})
|
| 37 | 37 |
|
| 38 |
INCLUDE(FindPythonInterp) |
|
| 39 |
|
|
| 38 | 40 |
ENABLE_TESTING() |
| 39 | 41 |
|
| 40 | 42 |
ADD_SUBDIRECTORY(lemon) |
| 41 | 43 |
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR})
|
| 42 | 44 |
ADD_SUBDIRECTORY(demo) |
| 43 | 45 |
ADD_SUBDIRECTORY(tools) |
| 44 | 46 |
ADD_SUBDIRECTORY(doc) |
| 45 | 47 |
ADD_SUBDIRECTORY(test) |
| 46 | 48 |
ENDIF() |
| 47 | 49 |
|
| 48 | 50 |
CONFIGURE_FILE( |
| 49 | 51 |
${PROJECT_SOURCE_DIR}/cmake/LEMONConfig.cmake.in
|
| 50 | 52 |
${PROJECT_BINARY_DIR}/cmake/LEMONConfig.cmake
|
| 51 | 53 |
@ONLY |
| 52 | 54 |
) |
| 53 | 55 |
IF(UNIX) |
| 54 | 56 |
INSTALL( |
| 55 | 57 |
FILES ${PROJECT_BINARY_DIR}/cmake/LEMONConfig.cmake
|
| 56 | 58 |
DESTINATION share/lemon/cmake |
| 57 | 59 |
) |
| 58 | 60 |
ELSEIF(WIN32) |
| 59 | 61 |
INSTALL( |
| 60 | 62 |
FILES ${PROJECT_BINARY_DIR}/cmake/LEMONConfig.cmake
|
| 61 | 63 |
DESTINATION cmake |
| 1 | 1 |
ACLOCAL_AMFLAGS = -I m4 |
| 2 | 2 |
|
| 3 | 3 |
AM_CXXFLAGS = $(WARNINGCXXFLAGS) |
| 4 | 4 |
|
| 5 | 5 |
AM_CPPFLAGS = -I$(top_srcdir) -I$(top_builddir) |
| 6 | 6 |
LDADD = $(top_builddir)/lemon/libemon.la |
| 7 | 7 |
|
| 8 | 8 |
EXTRA_DIST = \ |
| 9 | 9 |
AUTHORS \ |
| 10 | 10 |
LICENSE \ |
| 11 | 11 |
m4/lx_check_cplex.m4 \ |
| 12 | 12 |
m4/lx_check_glpk.m4 \ |
| 13 | 13 |
m4/lx_check_soplex.m4 \ |
| 14 | 14 |
m4/lx_check_coin.m4 \ |
| 15 | 15 |
CMakeLists.txt \ |
| 16 | 16 |
cmake/FindGhostscript.cmake \ |
| 17 | 17 |
cmake/FindCPLEX.cmake \ |
| 18 | 18 |
cmake/FindGLPK.cmake \ |
| 19 | 19 |
cmake/FindCOIN.cmake \ |
| 20 |
cmake/LEMONConfig.cmake.in \ |
|
| 20 | 21 |
cmake/version.cmake.in \ |
| 21 | 22 |
cmake/version.cmake \ |
| 22 | 23 |
cmake/nsis/lemon.ico \ |
| 23 | 24 |
cmake/nsis/uninstall.ico |
| 24 | 25 |
|
| 25 | 26 |
pkgconfigdir = $(libdir)/pkgconfig |
| 26 | 27 |
lemondir = $(pkgincludedir) |
| 27 | 28 |
bitsdir = $(lemondir)/bits |
| 28 | 29 |
conceptdir = $(lemondir)/concepts |
| 29 | 30 |
pkgconfig_DATA = |
| 30 | 31 |
lib_LTLIBRARIES = |
| 31 | 32 |
lemon_HEADERS = |
| 32 | 33 |
bits_HEADERS = |
| 33 | 34 |
concept_HEADERS = |
| 34 | 35 |
noinst_HEADERS = |
| 35 | 36 |
noinst_PROGRAMS = |
| 36 | 37 |
bin_PROGRAMS = |
| 37 | 38 |
check_PROGRAMS = |
| 38 | 39 |
dist_bin_SCRIPTS = |
| 39 | 40 |
TESTS = |
| 40 | 41 |
XFAIL_TESTS = |
| 41 | 42 |
|
| 42 | 43 |
include lemon/Makefile.am |
| 43 | 44 |
include test/Makefile.am |
| ... | ... |
@@ -20,48 +20,49 @@ |
| 20 | 20 |
AC_CONFIG_MACRO_DIR([m4]) |
| 21 | 21 |
AM_INIT_AUTOMAKE([-Wall -Werror foreign subdir-objects nostdinc]) |
| 22 | 22 |
AC_CONFIG_SRCDIR([lemon/list_graph.h]) |
| 23 | 23 |
AC_CONFIG_HEADERS([config.h lemon/config.h]) |
| 24 | 24 |
|
| 25 | 25 |
AC_DEFINE([LEMON_VERSION], [lemon_version()], [The version string]) |
| 26 | 26 |
|
| 27 | 27 |
dnl Do compilation tests using the C++ compiler. |
| 28 | 28 |
AC_LANG([C++]) |
| 29 | 29 |
|
| 30 | 30 |
dnl Check the existence of long long type. |
| 31 | 31 |
AC_CHECK_TYPE(long long, [long_long_found=yes], [long_long_found=no]) |
| 32 | 32 |
if test x"$long_long_found" = x"yes"; then |
| 33 | 33 |
AC_DEFINE([LEMON_HAVE_LONG_LONG], [1], [Define to 1 if you have long long.]) |
| 34 | 34 |
fi |
| 35 | 35 |
|
| 36 | 36 |
dnl Checks for programs. |
| 37 | 37 |
AC_PROG_CXX |
| 38 | 38 |
AC_PROG_CXXCPP |
| 39 | 39 |
AC_PROG_INSTALL |
| 40 | 40 |
AC_DISABLE_SHARED |
| 41 | 41 |
AC_PROG_LIBTOOL |
| 42 | 42 |
|
| 43 | 43 |
AC_CHECK_PROG([doxygen_found],[doxygen],[yes],[no]) |
| 44 |
AC_CHECK_PROG([python_found],[python],[yes],[no]) |
|
| 44 | 45 |
AC_CHECK_PROG([gs_found],[gs],[yes],[no]) |
| 45 | 46 |
|
| 46 | 47 |
dnl Detect Intel compiler. |
| 47 | 48 |
AC_MSG_CHECKING([whether we are using the Intel C++ compiler]) |
| 48 | 49 |
AC_COMPILE_IFELSE([#ifndef __INTEL_COMPILER |
| 49 | 50 |
choke me |
| 50 | 51 |
#endif], [ICC=[yes]], [ICC=[no]]) |
| 51 | 52 |
if test x"$ICC" = x"yes"; then |
| 52 | 53 |
AC_MSG_RESULT([yes]) |
| 53 | 54 |
else |
| 54 | 55 |
AC_MSG_RESULT([no]) |
| 55 | 56 |
fi |
| 56 | 57 |
|
| 57 | 58 |
dnl Set custom compiler flags when using g++. |
| 58 | 59 |
if test "$GXX" = yes -a "$ICC" = no; then |
| 59 | 60 |
WARNINGCXXFLAGS="-Wall -W -Wall -W -Wunused -Wformat=2 -Wctor-dtor-privacy -Wnon-virtual-dtor -Wno-char-subscripts -Wwrite-strings -Wno-char-subscripts -Wreturn-type -Wcast-qual -Wcast-align -Wsign-promo -Woverloaded-virtual -ansi -fno-strict-aliasing -Wold-style-cast -Wno-unknown-pragmas" |
| 60 | 61 |
fi |
| 61 | 62 |
AC_SUBST([WARNINGCXXFLAGS]) |
| 62 | 63 |
|
| 63 | 64 |
dnl Checks for libraries. |
| 64 | 65 |
LX_CHECK_GLPK |
| 65 | 66 |
LX_CHECK_CPLEX |
| 66 | 67 |
LX_CHECK_SOPLEX |
| 67 | 68 |
LX_CHECK_COIN |
| 1 | 1 |
SET(PACKAGE_NAME ${PROJECT_NAME})
|
| 2 | 2 |
SET(PACKAGE_VERSION ${PROJECT_VERSION})
|
| 3 | 3 |
SET(abs_top_srcdir ${PROJECT_SOURCE_DIR})
|
| 4 | 4 |
SET(abs_top_builddir ${PROJECT_BINARY_DIR})
|
| 5 | 5 |
|
| 6 | 6 |
CONFIGURE_FILE( |
| 7 | 7 |
${PROJECT_SOURCE_DIR}/doc/Doxyfile.in
|
| 8 | 8 |
${PROJECT_BINARY_DIR}/doc/Doxyfile
|
| 9 | 9 |
@ONLY |
| 10 | 10 |
) |
| 11 | 11 |
|
| 12 |
IF(DOXYGEN_EXECUTABLE AND GHOSTSCRIPT_EXECUTABLE) |
|
| 12 |
IF(DOXYGEN_EXECUTABLE AND PYTHONINTERP_FOUND AND GHOSTSCRIPT_EXECUTABLE) |
|
| 13 | 13 |
FILE(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/)
|
| 14 | 14 |
SET(GHOSTSCRIPT_OPTIONS -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha) |
| 15 | 15 |
ADD_CUSTOM_TARGET(html |
| 16 | 16 |
COMMAND ${CMAKE_COMMAND} -E remove_directory gen-images
|
| 17 | 17 |
COMMAND ${CMAKE_COMMAND} -E make_directory gen-images
|
| 18 | 18 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/bipartite_matching.png ${CMAKE_CURRENT_SOURCE_DIR}/images/bipartite_matching.eps
|
| 19 | 19 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/bipartite_partitions.png ${CMAKE_CURRENT_SOURCE_DIR}/images/bipartite_partitions.eps
|
| 20 | 20 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/connected_components.eps
|
| 21 | 21 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/edge_biconnected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/edge_biconnected_components.eps
|
| 22 | 22 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/grid_graph.png ${CMAKE_CURRENT_SOURCE_DIR}/images/grid_graph.eps
|
| 23 | 23 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/node_biconnected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/node_biconnected_components.eps
|
| 24 | 24 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_0.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_0.eps
|
| 25 | 25 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_1.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_1.eps
|
| 26 | 26 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_2.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_2.eps
|
| 27 | 27 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_3.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_3.eps
|
| 28 | 28 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_4.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_4.eps
|
| 29 | 29 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/strongly_connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/strongly_connected_components.eps
|
| 30 | 30 |
COMMAND ${CMAKE_COMMAND} -E remove_directory html
|
| 31 |
COMMAND ${PYTHON_EXECUTABLE} ${PROJECT_SOURCE_DIR}/scripts/bib2dox.py ${CMAKE_CURRENT_SOURCE_DIR}/references.bib >references.dox
|
|
| 31 | 32 |
COMMAND ${DOXYGEN_EXECUTABLE} Doxyfile
|
| 32 | 33 |
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
|
| 33 | 34 |
) |
| 34 | 35 |
|
| 35 | 36 |
SET_TARGET_PROPERTIES(html PROPERTIES PROJECT_LABEL BUILD_DOC) |
| 36 | 37 |
|
| 37 | 38 |
IF(UNIX) |
| 38 | 39 |
INSTALL( |
| 39 | 40 |
DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/
|
| 40 | 41 |
DESTINATION share/doc/lemon/html |
| 41 | 42 |
COMPONENT html_documentation |
| 42 | 43 |
) |
| 43 | 44 |
ELSEIF(WIN32) |
| 44 | 45 |
INSTALL( |
| 45 | 46 |
DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/
|
| 46 | 47 |
DESTINATION doc |
| 47 | 48 |
COMPONENT html_documentation |
| 48 | 49 |
) |
| 49 | 50 |
ENDIF() |
| 50 | 51 |
|
| 51 | 52 |
ENDIF() |
| 1 |
# Doxyfile 1.5. |
|
| 1 |
# Doxyfile 1.5.9 |
|
| 2 | 2 |
|
| 3 | 3 |
#--------------------------------------------------------------------------- |
| 4 | 4 |
# Project related configuration options |
| 5 | 5 |
#--------------------------------------------------------------------------- |
| 6 | 6 |
DOXYFILE_ENCODING = UTF-8 |
| 7 | 7 |
PROJECT_NAME = @PACKAGE_NAME@ |
| 8 | 8 |
PROJECT_NUMBER = @PACKAGE_VERSION@ |
| 9 | 9 |
OUTPUT_DIRECTORY = |
| 10 | 10 |
CREATE_SUBDIRS = NO |
| 11 | 11 |
OUTPUT_LANGUAGE = English |
| 12 | 12 |
BRIEF_MEMBER_DESC = YES |
| 13 | 13 |
REPEAT_BRIEF = NO |
| 14 | 14 |
ABBREVIATE_BRIEF = |
| 15 | 15 |
ALWAYS_DETAILED_SEC = NO |
| 16 | 16 |
INLINE_INHERITED_MEMB = NO |
| 17 | 17 |
FULL_PATH_NAMES = YES |
| 18 | 18 |
STRIP_FROM_PATH = "@abs_top_srcdir@" |
| 19 | 19 |
STRIP_FROM_INC_PATH = "@abs_top_srcdir@" |
| 20 | 20 |
SHORT_NAMES = YES |
| 21 | 21 |
JAVADOC_AUTOBRIEF = NO |
| 22 | 22 |
QT_AUTOBRIEF = NO |
| 23 | 23 |
MULTILINE_CPP_IS_BRIEF = NO |
| 24 |
DETAILS_AT_TOP = YES |
|
| 25 | 24 |
INHERIT_DOCS = NO |
| 26 | 25 |
SEPARATE_MEMBER_PAGES = NO |
| 27 | 26 |
TAB_SIZE = 8 |
| 28 | 27 |
ALIASES = |
| 29 | 28 |
OPTIMIZE_OUTPUT_FOR_C = NO |
| 30 | 29 |
OPTIMIZE_OUTPUT_JAVA = NO |
| 31 | 30 |
OPTIMIZE_FOR_FORTRAN = NO |
| 32 | 31 |
OPTIMIZE_OUTPUT_VHDL = NO |
| 33 | 32 |
BUILTIN_STL_SUPPORT = YES |
| 34 | 33 |
CPP_CLI_SUPPORT = NO |
| 35 | 34 |
SIP_SUPPORT = NO |
| 36 | 35 |
IDL_PROPERTY_SUPPORT = YES |
| 37 | 36 |
DISTRIBUTE_GROUP_DOC = NO |
| 38 | 37 |
SUBGROUPING = YES |
| 39 | 38 |
TYPEDEF_HIDES_STRUCT = NO |
| 40 | 39 |
SYMBOL_CACHE_SIZE = 0 |
| 41 | 40 |
#--------------------------------------------------------------------------- |
| 42 | 41 |
# Build related configuration options |
| 43 | 42 |
#--------------------------------------------------------------------------- |
| 44 | 43 |
EXTRACT_ALL = NO |
| 45 | 44 |
EXTRACT_PRIVATE = YES |
| 46 | 45 |
EXTRACT_STATIC = YES |
| 47 | 46 |
EXTRACT_LOCAL_CLASSES = NO |
| 48 | 47 |
EXTRACT_LOCAL_METHODS = NO |
| ... | ... |
@@ -70,49 +69,50 @@ |
| 70 | 69 |
SHOW_DIRECTORIES = YES |
| 71 | 70 |
SHOW_FILES = YES |
| 72 | 71 |
SHOW_NAMESPACES = YES |
| 73 | 72 |
FILE_VERSION_FILTER = |
| 74 | 73 |
LAYOUT_FILE = DoxygenLayout.xml |
| 75 | 74 |
#--------------------------------------------------------------------------- |
| 76 | 75 |
# configuration options related to warning and progress messages |
| 77 | 76 |
#--------------------------------------------------------------------------- |
| 78 | 77 |
QUIET = NO |
| 79 | 78 |
WARNINGS = YES |
| 80 | 79 |
WARN_IF_UNDOCUMENTED = YES |
| 81 | 80 |
WARN_IF_DOC_ERROR = YES |
| 82 | 81 |
WARN_NO_PARAMDOC = NO |
| 83 | 82 |
WARN_FORMAT = "$file:$line: $text" |
| 84 | 83 |
WARN_LOGFILE = doxygen.log |
| 85 | 84 |
#--------------------------------------------------------------------------- |
| 86 | 85 |
# configuration options related to the input files |
| 87 | 86 |
#--------------------------------------------------------------------------- |
| 88 | 87 |
INPUT = "@abs_top_srcdir@/doc" \ |
| 89 | 88 |
"@abs_top_srcdir@/lemon" \ |
| 90 | 89 |
"@abs_top_srcdir@/lemon/bits" \ |
| 91 | 90 |
"@abs_top_srcdir@/lemon/concepts" \ |
| 92 | 91 |
"@abs_top_srcdir@/demo" \ |
| 93 | 92 |
"@abs_top_srcdir@/tools" \ |
| 94 |
"@abs_top_srcdir@/test/test_tools.h" |
|
| 93 |
"@abs_top_srcdir@/test/test_tools.h" \ |
|
| 94 |
"@abs_top_builddir@/doc/references.dox" |
|
| 95 | 95 |
INPUT_ENCODING = UTF-8 |
| 96 | 96 |
FILE_PATTERNS = *.h \ |
| 97 | 97 |
*.cc \ |
| 98 | 98 |
*.dox |
| 99 | 99 |
RECURSIVE = NO |
| 100 | 100 |
EXCLUDE = |
| 101 | 101 |
EXCLUDE_SYMLINKS = NO |
| 102 | 102 |
EXCLUDE_PATTERNS = |
| 103 | 103 |
EXCLUDE_SYMBOLS = |
| 104 | 104 |
EXAMPLE_PATH = "@abs_top_srcdir@/demo" \ |
| 105 | 105 |
"@abs_top_srcdir@/LICENSE" \ |
| 106 | 106 |
"@abs_top_srcdir@/doc" |
| 107 | 107 |
EXAMPLE_PATTERNS = |
| 108 | 108 |
EXAMPLE_RECURSIVE = NO |
| 109 | 109 |
IMAGE_PATH = "@abs_top_srcdir@/doc/images" \ |
| 110 | 110 |
"@abs_top_builddir@/doc/gen-images" |
| 111 | 111 |
INPUT_FILTER = |
| 112 | 112 |
FILTER_PATTERNS = |
| 113 | 113 |
FILTER_SOURCE_FILES = NO |
| 114 | 114 |
#--------------------------------------------------------------------------- |
| 115 | 115 |
# configuration options related to source browsing |
| 116 | 116 |
#--------------------------------------------------------------------------- |
| 117 | 117 |
SOURCE_BROWSER = NO |
| 118 | 118 |
INLINE_SOURCES = NO |
| ... | ... |
@@ -202,49 +202,49 @@ |
| 202 | 202 |
#--------------------------------------------------------------------------- |
| 203 | 203 |
# configuration options for the AutoGen Definitions output |
| 204 | 204 |
#--------------------------------------------------------------------------- |
| 205 | 205 |
GENERATE_AUTOGEN_DEF = NO |
| 206 | 206 |
#--------------------------------------------------------------------------- |
| 207 | 207 |
# configuration options related to the Perl module output |
| 208 | 208 |
#--------------------------------------------------------------------------- |
| 209 | 209 |
GENERATE_PERLMOD = NO |
| 210 | 210 |
PERLMOD_LATEX = NO |
| 211 | 211 |
PERLMOD_PRETTY = YES |
| 212 | 212 |
PERLMOD_MAKEVAR_PREFIX = |
| 213 | 213 |
#--------------------------------------------------------------------------- |
| 214 | 214 |
# Configuration options related to the preprocessor |
| 215 | 215 |
#--------------------------------------------------------------------------- |
| 216 | 216 |
ENABLE_PREPROCESSING = YES |
| 217 | 217 |
MACRO_EXPANSION = NO |
| 218 | 218 |
EXPAND_ONLY_PREDEF = NO |
| 219 | 219 |
SEARCH_INCLUDES = YES |
| 220 | 220 |
INCLUDE_PATH = |
| 221 | 221 |
INCLUDE_FILE_PATTERNS = |
| 222 | 222 |
PREDEFINED = DOXYGEN |
| 223 | 223 |
EXPAND_AS_DEFINED = |
| 224 | 224 |
SKIP_FUNCTION_MACROS = YES |
| 225 | 225 |
#--------------------------------------------------------------------------- |
| 226 |
# |
|
| 226 |
# Options related to the search engine |
|
| 227 | 227 |
#--------------------------------------------------------------------------- |
| 228 | 228 |
TAGFILES = "@abs_top_srcdir@/doc/libstdc++.tag = http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/ " |
| 229 | 229 |
GENERATE_TAGFILE = html/lemon.tag |
| 230 | 230 |
ALLEXTERNALS = NO |
| 231 | 231 |
EXTERNAL_GROUPS = NO |
| 232 | 232 |
PERL_PATH = /usr/bin/perl |
| 233 | 233 |
#--------------------------------------------------------------------------- |
| 234 | 234 |
# Configuration options related to the dot tool |
| 235 | 235 |
#--------------------------------------------------------------------------- |
| 236 | 236 |
CLASS_DIAGRAMS = YES |
| 237 | 237 |
MSCGEN_PATH = |
| 238 | 238 |
HIDE_UNDOC_RELATIONS = YES |
| 239 | 239 |
HAVE_DOT = YES |
| 240 | 240 |
DOT_FONTNAME = FreeSans |
| 241 | 241 |
DOT_FONTSIZE = 10 |
| 242 | 242 |
DOT_FONTPATH = |
| 243 | 243 |
CLASS_GRAPH = YES |
| 244 | 244 |
COLLABORATION_GRAPH = NO |
| 245 | 245 |
GROUP_GRAPHS = NO |
| 246 | 246 |
UML_LOOK = NO |
| 247 | 247 |
TEMPLATE_RELATIONS = NO |
| 248 | 248 |
INCLUDE_GRAPH = NO |
| 249 | 249 |
INCLUDED_BY_GRAPH = NO |
| 250 | 250 |
CALL_GRAPH = NO |
| ... | ... |
@@ -45,49 +45,61 @@ |
| 45 | 45 |
GS_COMMAND=gs -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 |
| 46 | 46 |
|
| 47 | 47 |
$(DOC_EPS_IMAGES18:%.eps=doc/gen-images/%.png): doc/gen-images/%.png: doc/images/%.eps |
| 48 | 48 |
-mkdir doc/gen-images |
| 49 | 49 |
if test ${gs_found} = yes; then \
|
| 50 | 50 |
$(GS_COMMAND) -sDEVICE=pngalpha -r18 -sOutputFile=$@ $<; \ |
| 51 | 51 |
else \ |
| 52 | 52 |
echo; \ |
| 53 | 53 |
echo "Ghostscript not found."; \ |
| 54 | 54 |
echo; \ |
| 55 | 55 |
exit 1; \ |
| 56 | 56 |
fi |
| 57 | 57 |
|
| 58 | 58 |
$(DOC_EPS_IMAGES27:%.eps=doc/gen-images/%.png): doc/gen-images/%.png: doc/images/%.eps |
| 59 | 59 |
-mkdir doc/gen-images |
| 60 | 60 |
if test ${gs_found} = yes; then \
|
| 61 | 61 |
$(GS_COMMAND) -sDEVICE=pngalpha -r27 -sOutputFile=$@ $<; \ |
| 62 | 62 |
else \ |
| 63 | 63 |
echo; \ |
| 64 | 64 |
echo "Ghostscript not found."; \ |
| 65 | 65 |
echo; \ |
| 66 | 66 |
exit 1; \ |
| 67 | 67 |
fi |
| 68 | 68 |
|
| 69 |
|
|
| 69 |
references.dox: doc/references.bib |
|
| 70 |
if test ${python_found} = yes; then \
|
|
| 71 |
cd doc; \ |
|
| 72 |
python @abs_top_srcdir@/scripts/bib2dox.py @abs_top_builddir@/$< >$@; \ |
|
| 73 |
cd ..; \ |
|
| 74 |
else \ |
|
| 75 |
echo; \ |
|
| 76 |
echo "Python not found."; \ |
|
| 77 |
echo; \ |
|
| 78 |
exit 1; \ |
|
| 79 |
fi |
|
| 80 |
|
|
| 81 |
html-local: $(DOC_PNG_IMAGES) references.dox |
|
| 70 | 82 |
if test ${doxygen_found} = yes; then \
|
| 71 | 83 |
cd doc; \ |
| 72 | 84 |
doxygen Doxyfile; \ |
| 73 | 85 |
cd ..; \ |
| 74 | 86 |
else \ |
| 75 | 87 |
echo; \ |
| 76 | 88 |
echo "Doxygen not found."; \ |
| 77 | 89 |
echo; \ |
| 78 | 90 |
exit 1; \ |
| 79 | 91 |
fi |
| 80 | 92 |
|
| 81 | 93 |
clean-local: |
| 82 | 94 |
-rm -rf doc/html |
| 83 | 95 |
-rm -f doc/doxygen.log |
| 84 | 96 |
-rm -f $(DOC_PNG_IMAGES) |
| 85 | 97 |
-rm -rf doc/gen-images |
| 86 | 98 |
|
| 87 | 99 |
update-external-tags: |
| 88 | 100 |
wget -O doc/libstdc++.tag.tmp http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/libstdc++.tag && \ |
| 89 | 101 |
mv doc/libstdc++.tag.tmp doc/libstdc++.tag || \ |
| 90 | 102 |
rm doc/libstdc++.tag.tmp |
| 91 | 103 |
|
| 92 | 104 |
install-html-local: doc/html |
| 93 | 105 |
@$(NORMAL_INSTALL) |
| ... | ... |
@@ -295,175 +295,222 @@ |
| 295 | 295 |
|
| 296 | 296 |
/** |
| 297 | 297 |
@defgroup matrices Matrices |
| 298 | 298 |
@ingroup auxdat |
| 299 | 299 |
\brief Two dimensional data storages implemented in LEMON. |
| 300 | 300 |
|
| 301 | 301 |
This group contains two dimensional data storages implemented in LEMON. |
| 302 | 302 |
*/ |
| 303 | 303 |
|
| 304 | 304 |
/** |
| 305 | 305 |
@defgroup algs Algorithms |
| 306 | 306 |
\brief This group contains the several algorithms |
| 307 | 307 |
implemented in LEMON. |
| 308 | 308 |
|
| 309 | 309 |
This group contains the several algorithms |
| 310 | 310 |
implemented in LEMON. |
| 311 | 311 |
*/ |
| 312 | 312 |
|
| 313 | 313 |
/** |
| 314 | 314 |
@defgroup search Graph Search |
| 315 | 315 |
@ingroup algs |
| 316 | 316 |
\brief Common graph search algorithms. |
| 317 | 317 |
|
| 318 | 318 |
This group contains the common graph search algorithms, namely |
| 319 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS) |
|
| 319 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS) |
|
| 320 |
\ref clrs01algorithms. |
|
| 320 | 321 |
*/ |
| 321 | 322 |
|
| 322 | 323 |
/** |
| 323 | 324 |
@defgroup shortest_path Shortest Path Algorithms |
| 324 | 325 |
@ingroup algs |
| 325 | 326 |
\brief Algorithms for finding shortest paths. |
| 326 | 327 |
|
| 327 |
This group contains the algorithms for finding shortest paths in digraphs |
|
| 328 |
This group contains the algorithms for finding shortest paths in digraphs |
|
| 329 |
\ref clrs01algorithms. |
|
| 328 | 330 |
|
| 329 | 331 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
| 330 | 332 |
when all arc lengths are non-negative. |
| 331 | 333 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
| 332 | 334 |
from a source node when arc lenghts can be either positive or negative, |
| 333 | 335 |
but the digraph should not contain directed cycles with negative total |
| 334 | 336 |
length. |
| 335 | 337 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
| 336 | 338 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
| 337 | 339 |
lenghts can be either positive or negative, but the digraph should |
| 338 | 340 |
not contain directed cycles with negative total length. |
| 339 | 341 |
- \ref Suurballe A successive shortest path algorithm for finding |
| 340 | 342 |
arc-disjoint paths between two nodes having minimum total length. |
| 341 | 343 |
*/ |
| 342 | 344 |
|
| 343 | 345 |
/** |
| 344 | 346 |
@defgroup spantree Minimum Spanning Tree Algorithms |
| 345 | 347 |
@ingroup algs |
| 346 | 348 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
| 347 | 349 |
|
| 348 | 350 |
This group contains the algorithms for finding minimum cost spanning |
| 349 |
trees and arborescences. |
|
| 351 |
trees and arborescences \ref clrs01algorithms. |
|
| 350 | 352 |
*/ |
| 351 | 353 |
|
| 352 | 354 |
/** |
| 353 | 355 |
@defgroup max_flow Maximum Flow Algorithms |
| 354 | 356 |
@ingroup algs |
| 355 | 357 |
\brief Algorithms for finding maximum flows. |
| 356 | 358 |
|
| 357 | 359 |
This group contains the algorithms for finding maximum flows and |
| 358 |
feasible circulations. |
|
| 360 |
feasible circulations \ref clrs01algorithms, \ref amo93networkflows. |
|
| 359 | 361 |
|
| 360 | 362 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
| 361 | 363 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
| 362 | 364 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
|
| 363 | 365 |
\f$s, t \in V\f$ source and target nodes. |
| 364 | 366 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
|
| 365 | 367 |
following optimization problem. |
| 366 | 368 |
|
| 367 | 369 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
|
| 368 | 370 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
|
| 369 | 371 |
\quad \forall u\in V\setminus\{s,t\} \f]
|
| 370 | 372 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
| 371 | 373 |
|
| 372 | 374 |
LEMON contains several algorithms for solving maximum flow problems: |
| 373 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
|
| 374 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
|
| 375 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
|
| 376 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
|
| 375 |
- \ref EdmondsKarp Edmonds-Karp algorithm |
|
| 376 |
\ref edmondskarp72theoretical. |
|
| 377 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm |
|
| 378 |
\ref goldberg88newapproach. |
|
| 379 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees |
|
| 380 |
\ref dinic70algorithm, \ref sleator83dynamic. |
|
| 381 |
- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees |
|
| 382 |
\ref goldberg88newapproach, \ref sleator83dynamic. |
|
| 377 | 383 |
|
| 378 |
In most cases the \ref Preflow |
|
| 384 |
In most cases the \ref Preflow algorithm provides the |
|
| 379 | 385 |
fastest method for computing a maximum flow. All implementations |
| 380 | 386 |
also provide functions to query the minimum cut, which is the dual |
| 381 | 387 |
problem of maximum flow. |
| 382 | 388 |
|
| 383 | 389 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
| 384 | 390 |
for finding feasible circulations, which is a somewhat different problem, |
| 385 | 391 |
but it is strongly related to maximum flow. |
| 386 | 392 |
For more information, see \ref Circulation. |
| 387 | 393 |
*/ |
| 388 | 394 |
|
| 389 | 395 |
/** |
| 390 | 396 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
| 391 | 397 |
@ingroup algs |
| 392 | 398 |
|
| 393 | 399 |
\brief Algorithms for finding minimum cost flows and circulations. |
| 394 | 400 |
|
| 395 | 401 |
This group contains the algorithms for finding minimum cost flows and |
| 396 |
circulations. For more information about this problem and its dual |
|
| 397 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
|
| 402 |
circulations \ref amo93networkflows. For more information about this |
|
| 403 |
problem and its dual solution, see \ref min_cost_flow |
|
| 404 |
"Minimum Cost Flow Problem". |
|
| 398 | 405 |
|
| 399 | 406 |
LEMON contains several algorithms for this problem. |
| 400 | 407 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
| 401 |
pivot strategies. |
|
| 408 |
pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex. |
|
| 402 | 409 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
| 403 |
cost scaling |
|
| 410 |
cost scaling \ref goldberg90approximation, \ref goldberg97efficient, |
|
| 411 |
\ref bunnagel98efficient. |
|
| 404 | 412 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
| 405 |
capacity scaling. |
|
| 406 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
|
| 407 |
|
|
| 413 |
capacity scaling \ref edmondskarp72theoretical. |
|
| 414 |
- \ref CancelAndTighten The Cancel and Tighten algorithm |
|
| 415 |
\ref goldberg89cyclecanceling. |
|
| 416 |
- \ref CycleCanceling Cycle-Canceling algorithms |
|
| 417 |
\ref klein67primal, \ref goldberg89cyclecanceling. |
|
| 408 | 418 |
|
| 409 | 419 |
In general NetworkSimplex is the most efficient implementation, |
| 410 | 420 |
but in special cases other algorithms could be faster. |
| 411 | 421 |
For example, if the total supply and/or capacities are rather small, |
| 412 | 422 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
| 413 | 423 |
*/ |
| 414 | 424 |
|
| 415 | 425 |
/** |
| 416 | 426 |
@defgroup min_cut Minimum Cut Algorithms |
| 417 | 427 |
@ingroup algs |
| 418 | 428 |
|
| 419 | 429 |
\brief Algorithms for finding minimum cut in graphs. |
| 420 | 430 |
|
| 421 | 431 |
This group contains the algorithms for finding minimum cut in graphs. |
| 422 | 432 |
|
| 423 | 433 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
| 424 | 434 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
| 425 | 435 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
| 426 | 436 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
|
| 427 | 437 |
cut is the \f$X\f$ solution of the next optimization problem: |
| 428 | 438 |
|
| 429 | 439 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
|
| 430 | 440 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
|
| 431 | 441 |
|
| 432 | 442 |
LEMON contains several algorithms related to minimum cut problems: |
| 433 | 443 |
|
| 434 | 444 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
| 435 | 445 |
in directed graphs. |
| 436 | 446 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
| 437 | 447 |
calculating minimum cut in undirected graphs. |
| 438 | 448 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
| 439 | 449 |
all-pairs minimum cut in undirected graphs. |
| 440 | 450 |
|
| 441 | 451 |
If you want to find minimum cut just between two distinict nodes, |
| 442 | 452 |
see the \ref max_flow "maximum flow problem". |
| 443 | 453 |
*/ |
| 444 | 454 |
|
| 445 | 455 |
/** |
| 456 |
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms |
|
| 457 |
@ingroup algs |
|
| 458 |
\brief Algorithms for finding minimum mean cycles. |
|
| 459 |
|
|
| 460 |
This group contains the algorithms for finding minimum mean cycles |
|
| 461 |
\ref clrs01algorithms, \ref amo93networkflows. |
|
| 462 |
|
|
| 463 |
The \e minimum \e mean \e cycle \e problem is to find a directed cycle |
|
| 464 |
of minimum mean length (cost) in a digraph. |
|
| 465 |
The mean length of a cycle is the average length of its arcs, i.e. the |
|
| 466 |
ratio between the total length of the cycle and the number of arcs on it. |
|
| 467 |
|
|
| 468 |
This problem has an important connection to \e conservative \e length |
|
| 469 |
\e functions, too. A length function on the arcs of a digraph is called |
|
| 470 |
conservative if and only if there is no directed cycle of negative total |
|
| 471 |
length. For an arbitrary length function, the negative of the minimum |
|
| 472 |
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the |
|
| 473 |
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length |
|
| 474 |
function. |
|
| 475 |
|
|
| 476 |
LEMON contains three algorithms for solving the minimum mean cycle problem: |
|
| 477 |
- \ref Karp "Karp"'s original algorithm \ref amo93networkflows, |
|
| 478 |
\ref dasdan98minmeancycle. |
|
| 479 |
- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved |
|
| 480 |
version of Karp's algorithm \ref dasdan98minmeancycle. |
|
| 481 |
- \ref Howard "Howard"'s policy iteration algorithm |
|
| 482 |
\ref dasdan98minmeancycle. |
|
| 483 |
|
|
| 484 |
In practice, the Howard algorithm proved to be by far the most efficient |
|
| 485 |
one, though the best known theoretical bound on its running time is |
|
| 486 |
exponential. |
|
| 487 |
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space |
|
| 488 |
O(n<sup>2</sup>+e), but the latter one is typically faster due to the |
|
| 489 |
applied early termination scheme. |
|
| 490 |
*/ |
|
| 491 |
|
|
| 492 |
/** |
|
| 446 | 493 |
@defgroup matching Matching Algorithms |
| 447 | 494 |
@ingroup algs |
| 448 | 495 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
| 449 | 496 |
|
| 450 | 497 |
This group contains the algorithms for calculating |
| 451 | 498 |
matchings in graphs and bipartite graphs. The general matching problem is |
| 452 | 499 |
finding a subset of the edges for which each node has at most one incident |
| 453 | 500 |
edge. |
| 454 | 501 |
|
| 455 | 502 |
There are several different algorithms for calculate matchings in |
| 456 | 503 |
graphs. The matching problems in bipartite graphs are generally |
| 457 | 504 |
easier than in general graphs. The goal of the matching optimization |
| 458 | 505 |
can be finding maximum cardinality, maximum weight or minimum cost |
| 459 | 506 |
matching. The search can be constrained to find perfect or |
| 460 | 507 |
maximum cardinality matching. |
| 461 | 508 |
|
| 462 | 509 |
The matching algorithms implemented in LEMON: |
| 463 | 510 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
| 464 | 511 |
for calculating maximum cardinality matching in bipartite graphs. |
| 465 | 512 |
- \ref PrBipartiteMatching Push-relabel algorithm |
| 466 | 513 |
for calculating maximum cardinality matching in bipartite graphs. |
| 467 | 514 |
- \ref MaxWeightedBipartiteMatching |
| 468 | 515 |
Successive shortest path algorithm for calculating maximum weighted |
| 469 | 516 |
matching and maximum weighted bipartite matching in bipartite graphs. |
| ... | ... |
@@ -513,55 +560,58 @@ |
| 513 | 560 |
|
| 514 | 561 |
This group contains the approximation and heuristic algorithms |
| 515 | 562 |
implemented in LEMON. |
| 516 | 563 |
*/ |
| 517 | 564 |
|
| 518 | 565 |
/** |
| 519 | 566 |
@defgroup auxalg Auxiliary Algorithms |
| 520 | 567 |
@ingroup algs |
| 521 | 568 |
\brief Auxiliary algorithms implemented in LEMON. |
| 522 | 569 |
|
| 523 | 570 |
This group contains some algorithms implemented in LEMON |
| 524 | 571 |
in order to make it easier to implement complex algorithms. |
| 525 | 572 |
*/ |
| 526 | 573 |
|
| 527 | 574 |
/** |
| 528 | 575 |
@defgroup gen_opt_group General Optimization Tools |
| 529 | 576 |
\brief This group contains some general optimization frameworks |
| 530 | 577 |
implemented in LEMON. |
| 531 | 578 |
|
| 532 | 579 |
This group contains some general optimization frameworks |
| 533 | 580 |
implemented in LEMON. |
| 534 | 581 |
*/ |
| 535 | 582 |
|
| 536 | 583 |
/** |
| 537 |
@defgroup lp_group |
|
| 584 |
@defgroup lp_group LP and MIP Solvers |
|
| 538 | 585 |
@ingroup gen_opt_group |
| 539 |
\brief |
|
| 586 |
\brief LP and MIP solver interfaces for LEMON. |
|
| 540 | 587 |
|
| 541 |
This group contains Lp and Mip solver interfaces for LEMON. The |
|
| 542 |
various LP solvers could be used in the same manner with this |
|
| 543 |
|
|
| 588 |
This group contains LP and MIP solver interfaces for LEMON. |
|
| 589 |
Various LP solvers could be used in the same manner with this |
|
| 590 |
high-level interface. |
|
| 591 |
|
|
| 592 |
The currently supported solvers are \ref glpk, \ref clp, \ref cbc, |
|
| 593 |
\ref cplex, \ref soplex. |
|
| 544 | 594 |
*/ |
| 545 | 595 |
|
| 546 | 596 |
/** |
| 547 | 597 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
| 548 | 598 |
@ingroup lp_group |
| 549 | 599 |
\brief Helper tools to the Lp and Mip solvers. |
| 550 | 600 |
|
| 551 | 601 |
This group adds some helper tools to general optimization framework |
| 552 | 602 |
implemented in LEMON. |
| 553 | 603 |
*/ |
| 554 | 604 |
|
| 555 | 605 |
/** |
| 556 | 606 |
@defgroup metah Metaheuristics |
| 557 | 607 |
@ingroup gen_opt_group |
| 558 | 608 |
\brief Metaheuristics for LEMON library. |
| 559 | 609 |
|
| 560 | 610 |
This group contains some metaheuristic optimization tools. |
| 561 | 611 |
*/ |
| 562 | 612 |
|
| 563 | 613 |
/** |
| 564 | 614 |
@defgroup utils Tools and Utilities |
| 565 | 615 |
\brief Tools and utilities for programming in LEMON |
| 566 | 616 |
|
| 567 | 617 |
Tools and utilities for programming in LEMON. |
| ... | ... |
@@ -658,50 +708,50 @@ |
| 658 | 708 |
to avoid document multiplications, an implementation of a concept |
| 659 | 709 |
simply refers to the corresponding concept class. |
| 660 | 710 |
|
| 661 | 711 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
| 662 | 712 |
implementation of the %concepts should provide, however completely |
| 663 | 713 |
without implementations and real data structures behind the |
| 664 | 714 |
interface. On the other hand they should provide nothing else. All |
| 665 | 715 |
the algorithms working on a data structure meeting a certain concept |
| 666 | 716 |
should compile with these classes. (Though it will not run properly, |
| 667 | 717 |
of course.) In this way it is easily to check if an algorithm |
| 668 | 718 |
doesn't use any extra feature of a certain implementation. |
| 669 | 719 |
|
| 670 | 720 |
- The concept descriptor classes also provide a <em>checker class</em> |
| 671 | 721 |
that makes it possible to check whether a certain implementation of a |
| 672 | 722 |
concept indeed provides all the required features. |
| 673 | 723 |
|
| 674 | 724 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
| 675 | 725 |
*/ |
| 676 | 726 |
|
| 677 | 727 |
/** |
| 678 | 728 |
@defgroup graph_concepts Graph Structure Concepts |
| 679 | 729 |
@ingroup concept |
| 680 | 730 |
\brief Skeleton and concept checking classes for graph structures |
| 681 | 731 |
|
| 682 |
This group contains the skeletons and concept checking classes of LEMON's |
|
| 683 |
graph structures and helper classes used to implement these. |
|
| 732 |
This group contains the skeletons and concept checking classes of |
|
| 733 |
graph structures. |
|
| 684 | 734 |
*/ |
| 685 | 735 |
|
| 686 | 736 |
/** |
| 687 | 737 |
@defgroup map_concepts Map Concepts |
| 688 | 738 |
@ingroup concept |
| 689 | 739 |
\brief Skeleton and concept checking classes for maps |
| 690 | 740 |
|
| 691 | 741 |
This group contains the skeletons and concept checking classes of maps. |
| 692 | 742 |
*/ |
| 693 | 743 |
|
| 694 | 744 |
/** |
| 695 | 745 |
@defgroup tools Standalone Utility Applications |
| 696 | 746 |
|
| 697 | 747 |
Some utility applications are listed here. |
| 698 | 748 |
|
| 699 | 749 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
| 700 | 750 |
them, as well. |
| 701 | 751 |
*/ |
| 702 | 752 |
|
| 703 | 753 |
/** |
| 704 | 754 |
\anchor demoprograms |
| 705 | 755 |
|
| 706 | 756 |
@defgroup demos Demo Programs |
| 707 | 757 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
/** |
| 20 | 20 |
\mainpage LEMON Documentation |
| 21 | 21 |
|
| 22 | 22 |
\section intro Introduction |
| 23 | 23 |
|
| 24 |
\subsection whatis What is LEMON |
|
| 25 |
|
|
| 26 |
LEMON stands for <b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling |
|
| 27 |
and <b>O</b>ptimization in <b>N</b>etworks. |
|
| 28 |
It is a C++ template |
|
| 29 |
library aimed at combinatorial optimization tasks which |
|
| 30 |
often involve in working |
|
| 31 |
with graphs. |
|
| 24 |
<b>LEMON</b> stands for <i><b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling |
|
| 25 |
and <b>O</b>ptimization in <b>N</b>etworks</i>. |
|
| 26 |
It is a C++ template library providing efficient implementation of common |
|
| 27 |
data structures and algorithms with focus on combinatorial optimization |
|
| 28 |
problems in graphs and networks. |
|
| 32 | 29 |
|
| 33 | 30 |
<b> |
| 34 | 31 |
LEMON is an <a class="el" href="http://opensource.org/">open source</a> |
| 35 | 32 |
project. |
| 36 | 33 |
You are free to use it in your commercial or |
| 37 | 34 |
non-commercial applications under very permissive |
| 38 | 35 |
\ref license "license terms". |
| 39 | 36 |
</b> |
| 40 | 37 |
|
| 41 |
|
|
| 38 |
The project is maintained by the |
|
| 39 |
<a href="http://www.cs.elte.hu/egres/">Egerváry Research Group on |
|
| 40 |
Combinatorial Optimization</a> \ref egres |
|
| 41 |
at the Operations Research Department of the |
|
| 42 |
<a href="http://www.elte.hu/">Eötvös Loránd University, |
|
| 43 |
Budapest</a>, Hungary. |
|
| 44 |
LEMON is also a member of the <a href="http://www.coin-or.org/">COIN-OR</a> |
|
| 45 |
initiative \ref coinor. |
|
| 46 |
|
|
| 47 |
\section howtoread How to Read the Documentation |
|
| 42 | 48 |
|
| 43 | 49 |
If you would like to get to know the library, see |
| 44 | 50 |
<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>. |
| 45 | 51 |
|
| 46 | 52 |
If you know what you are looking for, then try to find it under the |
| 47 | 53 |
<a class="el" href="modules.html">Modules</a> section. |
| 48 | 54 |
|
| 49 | 55 |
If you are a user of the old (0.x) series of LEMON, please check out the |
| 50 | 56 |
\ref migration "Migration Guide" for the backward incompatibilities. |
| 51 | 57 |
*/ |
| ... | ... |
@@ -5,49 +5,49 @@ |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
namespace lemon {
|
| 20 | 20 |
|
| 21 | 21 |
/** |
| 22 | 22 |
\page min_cost_flow Minimum Cost Flow Problem |
| 23 | 23 |
|
| 24 | 24 |
\section mcf_def Definition (GEQ form) |
| 25 | 25 |
|
| 26 | 26 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
| 27 | 27 |
minimum total cost from a set of supply nodes to a set of demand nodes |
| 28 | 28 |
in a network with capacity constraints (lower and upper bounds) |
| 29 |
and arc costs. |
|
| 29 |
and arc costs \ref amo93networkflows. |
|
| 30 | 30 |
|
| 31 | 31 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
|
| 32 | 32 |
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
|
| 33 | 33 |
upper bounds for the flow values on the arcs, for which |
| 34 | 34 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
| 35 | 35 |
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow
|
| 36 | 36 |
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the
|
| 37 | 37 |
signed supply values of the nodes. |
| 38 | 38 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
| 39 | 39 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
| 40 | 40 |
\f$-sup(u)\f$ demand. |
| 41 | 41 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{R}\f$ solution
|
| 42 | 42 |
of the following optimization problem. |
| 43 | 43 |
|
| 44 | 44 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
| 45 | 45 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
| 46 | 46 |
sup(u) \quad \forall u\in V \f] |
| 47 | 47 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
| 48 | 48 |
|
| 49 | 49 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
| 50 | 50 |
zero or negative in order to have a feasible solution (since the sum |
| 51 | 51 |
of the expressions on the left-hand side of the inequalities is zero). |
| 52 | 52 |
It means that the total demand must be greater or equal to the total |
| 53 | 53 |
supply and all the supplies have to be carried out from the supply nodes, |
| ... | ... |
@@ -65,72 +65,76 @@ |
| 65 | 65 |
lemon/cbc.h \ |
| 66 | 66 |
lemon/circulation.h \ |
| 67 | 67 |
lemon/clp.h \ |
| 68 | 68 |
lemon/color.h \ |
| 69 | 69 |
lemon/concept_check.h \ |
| 70 | 70 |
lemon/connectivity.h \ |
| 71 | 71 |
lemon/counter.h \ |
| 72 | 72 |
lemon/core.h \ |
| 73 | 73 |
lemon/cplex.h \ |
| 74 | 74 |
lemon/dfs.h \ |
| 75 | 75 |
lemon/dijkstra.h \ |
| 76 | 76 |
lemon/dim2.h \ |
| 77 | 77 |
lemon/dimacs.h \ |
| 78 | 78 |
lemon/edge_set.h \ |
| 79 | 79 |
lemon/elevator.h \ |
| 80 | 80 |
lemon/error.h \ |
| 81 | 81 |
lemon/euler.h \ |
| 82 | 82 |
lemon/fib_heap.h \ |
| 83 | 83 |
lemon/fourary_heap.h \ |
| 84 | 84 |
lemon/full_graph.h \ |
| 85 | 85 |
lemon/glpk.h \ |
| 86 | 86 |
lemon/gomory_hu.h \ |
| 87 | 87 |
lemon/graph_to_eps.h \ |
| 88 | 88 |
lemon/grid_graph.h \ |
| 89 |
lemon/hartmann_orlin.h \ |
|
| 90 |
lemon/howard.h \ |
|
| 89 | 91 |
lemon/hypercube_graph.h \ |
| 92 |
lemon/karp.h \ |
|
| 90 | 93 |
lemon/kary_heap.h \ |
| 91 | 94 |
lemon/kruskal.h \ |
| 92 | 95 |
lemon/hao_orlin.h \ |
| 93 | 96 |
lemon/lgf_reader.h \ |
| 94 | 97 |
lemon/lgf_writer.h \ |
| 95 | 98 |
lemon/list_graph.h \ |
| 96 | 99 |
lemon/lp.h \ |
| 97 | 100 |
lemon/lp_base.h \ |
| 98 | 101 |
lemon/lp_skeleton.h \ |
| 99 | 102 |
lemon/maps.h \ |
| 100 | 103 |
lemon/matching.h \ |
| 101 | 104 |
lemon/math.h \ |
| 102 | 105 |
lemon/min_cost_arborescence.h \ |
| 103 | 106 |
lemon/nauty_reader.h \ |
| 104 | 107 |
lemon/network_simplex.h \ |
| 105 | 108 |
lemon/pairing_heap.h \ |
| 106 | 109 |
lemon/path.h \ |
| 107 | 110 |
lemon/preflow.h \ |
| 108 | 111 |
lemon/radix_heap.h \ |
| 109 | 112 |
lemon/radix_sort.h \ |
| 110 | 113 |
lemon/random.h \ |
| 111 | 114 |
lemon/smart_graph.h \ |
| 112 | 115 |
lemon/soplex.h \ |
| 116 |
lemon/static_graph.h \ |
|
| 113 | 117 |
lemon/suurballe.h \ |
| 114 | 118 |
lemon/time_measure.h \ |
| 115 | 119 |
lemon/tolerance.h \ |
| 116 | 120 |
lemon/unionfind.h \ |
| 117 | 121 |
lemon/bits/windows.h |
| 118 | 122 |
|
| 119 | 123 |
bits_HEADERS += \ |
| 120 | 124 |
lemon/bits/alteration_notifier.h \ |
| 121 | 125 |
lemon/bits/array_map.h \ |
| 122 | 126 |
lemon/bits/bezier.h \ |
| 123 | 127 |
lemon/bits/default_map.h \ |
| 124 | 128 |
lemon/bits/edge_set_extender.h \ |
| 125 | 129 |
lemon/bits/enable_if.h \ |
| 126 | 130 |
lemon/bits/graph_adaptor_extender.h \ |
| 127 | 131 |
lemon/bits/graph_extender.h \ |
| 128 | 132 |
lemon/bits/map_extender.h \ |
| 129 | 133 |
lemon/bits/path_dump.h \ |
| 130 | 134 |
lemon/bits/solver_bits.h \ |
| 131 | 135 |
lemon/bits/traits.h \ |
| 132 | 136 |
lemon/bits/variant.h \ |
| 133 | 137 |
lemon/bits/vector_map.h |
| 134 | 138 |
|
| 135 | 139 |
concept_HEADERS += \ |
| 136 | 140 |
lemon/concepts/digraph.h \ |
| ... | ... |
@@ -35,53 +35,53 @@ |
| 35 | 35 |
// \ingroup graphbits |
| 36 | 36 |
// |
| 37 | 37 |
// \brief Extender for the digraph implementations |
| 38 | 38 |
template <typename Base> |
| 39 | 39 |
class DigraphExtender : public Base {
|
| 40 | 40 |
typedef Base Parent; |
| 41 | 41 |
|
| 42 | 42 |
public: |
| 43 | 43 |
|
| 44 | 44 |
typedef DigraphExtender Digraph; |
| 45 | 45 |
|
| 46 | 46 |
// Base extensions |
| 47 | 47 |
|
| 48 | 48 |
typedef typename Parent::Node Node; |
| 49 | 49 |
typedef typename Parent::Arc Arc; |
| 50 | 50 |
|
| 51 | 51 |
int maxId(Node) const {
|
| 52 | 52 |
return Parent::maxNodeId(); |
| 53 | 53 |
} |
| 54 | 54 |
|
| 55 | 55 |
int maxId(Arc) const {
|
| 56 | 56 |
return Parent::maxArcId(); |
| 57 | 57 |
} |
| 58 | 58 |
|
| 59 |
Node fromId(int id, Node) |
|
| 59 |
static Node fromId(int id, Node) {
|
|
| 60 | 60 |
return Parent::nodeFromId(id); |
| 61 | 61 |
} |
| 62 | 62 |
|
| 63 |
Arc fromId(int id, Arc) |
|
| 63 |
static Arc fromId(int id, Arc) {
|
|
| 64 | 64 |
return Parent::arcFromId(id); |
| 65 | 65 |
} |
| 66 | 66 |
|
| 67 | 67 |
Node oppositeNode(const Node &node, const Arc &arc) const {
|
| 68 | 68 |
if (node == Parent::source(arc)) |
| 69 | 69 |
return Parent::target(arc); |
| 70 | 70 |
else if(node == Parent::target(arc)) |
| 71 | 71 |
return Parent::source(arc); |
| 72 | 72 |
else |
| 73 | 73 |
return INVALID; |
| 74 | 74 |
} |
| 75 | 75 |
|
| 76 | 76 |
// Alterable extension |
| 77 | 77 |
|
| 78 | 78 |
typedef AlterationNotifier<DigraphExtender, Node> NodeNotifier; |
| 79 | 79 |
typedef AlterationNotifier<DigraphExtender, Arc> ArcNotifier; |
| 80 | 80 |
|
| 81 | 81 |
|
| 82 | 82 |
protected: |
| 83 | 83 |
|
| 84 | 84 |
mutable NodeNotifier node_notifier; |
| 85 | 85 |
mutable ArcNotifier arc_notifier; |
| 86 | 86 |
|
| 87 | 87 |
public: |
| ... | ... |
@@ -334,57 +334,57 @@ |
| 334 | 334 |
public: |
| 335 | 335 |
|
| 336 | 336 |
typedef GraphExtender Graph; |
| 337 | 337 |
|
| 338 | 338 |
typedef True UndirectedTag; |
| 339 | 339 |
|
| 340 | 340 |
typedef typename Parent::Node Node; |
| 341 | 341 |
typedef typename Parent::Arc Arc; |
| 342 | 342 |
typedef typename Parent::Edge Edge; |
| 343 | 343 |
|
| 344 | 344 |
// Graph extension |
| 345 | 345 |
|
| 346 | 346 |
int maxId(Node) const {
|
| 347 | 347 |
return Parent::maxNodeId(); |
| 348 | 348 |
} |
| 349 | 349 |
|
| 350 | 350 |
int maxId(Arc) const {
|
| 351 | 351 |
return Parent::maxArcId(); |
| 352 | 352 |
} |
| 353 | 353 |
|
| 354 | 354 |
int maxId(Edge) const {
|
| 355 | 355 |
return Parent::maxEdgeId(); |
| 356 | 356 |
} |
| 357 | 357 |
|
| 358 |
Node fromId(int id, Node) |
|
| 358 |
static Node fromId(int id, Node) {
|
|
| 359 | 359 |
return Parent::nodeFromId(id); |
| 360 | 360 |
} |
| 361 | 361 |
|
| 362 |
Arc fromId(int id, Arc) |
|
| 362 |
static Arc fromId(int id, Arc) {
|
|
| 363 | 363 |
return Parent::arcFromId(id); |
| 364 | 364 |
} |
| 365 | 365 |
|
| 366 |
Edge fromId(int id, Edge) |
|
| 366 |
static Edge fromId(int id, Edge) {
|
|
| 367 | 367 |
return Parent::edgeFromId(id); |
| 368 | 368 |
} |
| 369 | 369 |
|
| 370 | 370 |
Node oppositeNode(const Node &n, const Edge &e) const {
|
| 371 | 371 |
if( n == Parent::u(e)) |
| 372 | 372 |
return Parent::v(e); |
| 373 | 373 |
else if( n == Parent::v(e)) |
| 374 | 374 |
return Parent::u(e); |
| 375 | 375 |
else |
| 376 | 376 |
return INVALID; |
| 377 | 377 |
} |
| 378 | 378 |
|
| 379 | 379 |
Arc oppositeArc(const Arc &arc) const {
|
| 380 | 380 |
return Parent::direct(arc, !Parent::direction(arc)); |
| 381 | 381 |
} |
| 382 | 382 |
|
| 383 | 383 |
using Parent::direct; |
| 384 | 384 |
Arc direct(const Edge &edge, const Node &node) const {
|
| 385 | 385 |
return Parent::direct(edge, Parent::u(edge) == node); |
| 386 | 386 |
} |
| 387 | 387 |
|
| 388 | 388 |
// Alterable extension |
| 389 | 389 |
|
| 390 | 390 |
typedef AlterationNotifier<GraphExtender, Node> NodeNotifier; |
| ... | ... |
@@ -73,48 +73,60 @@ |
| 73 | 73 |
} |
| 74 | 74 |
|
| 75 | 75 |
const char* CbcMip::_solverName() const { return "CbcMip"; }
|
| 76 | 76 |
|
| 77 | 77 |
int CbcMip::_addCol() {
|
| 78 | 78 |
_prob->addColumn(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX, 0.0, 0, false); |
| 79 | 79 |
return _prob->numberColumns() - 1; |
| 80 | 80 |
} |
| 81 | 81 |
|
| 82 | 82 |
CbcMip* CbcMip::newSolver() const {
|
| 83 | 83 |
CbcMip* newlp = new CbcMip; |
| 84 | 84 |
return newlp; |
| 85 | 85 |
} |
| 86 | 86 |
|
| 87 | 87 |
CbcMip* CbcMip::cloneSolver() const {
|
| 88 | 88 |
CbcMip* copylp = new CbcMip(*this); |
| 89 | 89 |
return copylp; |
| 90 | 90 |
} |
| 91 | 91 |
|
| 92 | 92 |
int CbcMip::_addRow() {
|
| 93 | 93 |
_prob->addRow(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX); |
| 94 | 94 |
return _prob->numberRows() - 1; |
| 95 | 95 |
} |
| 96 | 96 |
|
| 97 |
int CbcMip::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
|
|
| 98 |
std::vector<int> indexes; |
|
| 99 |
std::vector<Value> values; |
|
| 100 |
|
|
| 101 |
for(ExprIterator it = b; it != e; ++it) {
|
|
| 102 |
indexes.push_back(it->first); |
|
| 103 |
values.push_back(it->second); |
|
| 104 |
} |
|
| 105 |
|
|
| 106 |
_prob->addRow(values.size(), &indexes.front(), &values.front(), l, u); |
|
| 107 |
return _prob->numberRows() - 1; |
|
| 108 |
} |
|
| 97 | 109 |
|
| 98 | 110 |
void CbcMip::_eraseCol(int i) {
|
| 99 | 111 |
_prob->deleteColumn(i); |
| 100 | 112 |
} |
| 101 | 113 |
|
| 102 | 114 |
void CbcMip::_eraseRow(int i) {
|
| 103 | 115 |
_prob->deleteRow(i); |
| 104 | 116 |
} |
| 105 | 117 |
|
| 106 | 118 |
void CbcMip::_eraseColId(int i) {
|
| 107 | 119 |
cols.eraseIndex(i); |
| 108 | 120 |
} |
| 109 | 121 |
|
| 110 | 122 |
void CbcMip::_eraseRowId(int i) {
|
| 111 | 123 |
rows.eraseIndex(i); |
| 112 | 124 |
} |
| 113 | 125 |
|
| 114 | 126 |
void CbcMip::_getColName(int c, std::string& name) const {
|
| 115 | 127 |
name = _prob->getColumnName(c); |
| 116 | 128 |
} |
| 117 | 129 |
|
| 118 | 130 |
void CbcMip::_setColName(int c, const std::string& name) {
|
| 119 | 131 |
_prob->setColumnName(c, name.c_str()); |
| 120 | 132 |
} |
| ... | ... |
@@ -41,48 +41,49 @@ |
| 41 | 41 |
|
| 42 | 42 |
CoinModel *_prob; |
| 43 | 43 |
OsiSolverInterface *_osi_solver; |
| 44 | 44 |
CbcModel *_cbc_model; |
| 45 | 45 |
|
| 46 | 46 |
public: |
| 47 | 47 |
|
| 48 | 48 |
/// \e |
| 49 | 49 |
CbcMip(); |
| 50 | 50 |
/// \e |
| 51 | 51 |
CbcMip(const CbcMip&); |
| 52 | 52 |
/// \e |
| 53 | 53 |
~CbcMip(); |
| 54 | 54 |
/// \e |
| 55 | 55 |
virtual CbcMip* newSolver() const; |
| 56 | 56 |
/// \e |
| 57 | 57 |
virtual CbcMip* cloneSolver() const; |
| 58 | 58 |
|
| 59 | 59 |
protected: |
| 60 | 60 |
|
| 61 | 61 |
virtual const char* _solverName() const; |
| 62 | 62 |
|
| 63 | 63 |
virtual int _addCol(); |
| 64 | 64 |
virtual int _addRow(); |
| 65 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 65 | 66 |
|
| 66 | 67 |
virtual void _eraseCol(int i); |
| 67 | 68 |
virtual void _eraseRow(int i); |
| 68 | 69 |
|
| 69 | 70 |
virtual void _eraseColId(int i); |
| 70 | 71 |
virtual void _eraseRowId(int i); |
| 71 | 72 |
|
| 72 | 73 |
virtual void _getColName(int col, std::string& name) const; |
| 73 | 74 |
virtual void _setColName(int col, const std::string& name); |
| 74 | 75 |
virtual int _colByName(const std::string& name) const; |
| 75 | 76 |
|
| 76 | 77 |
virtual void _getRowName(int row, std::string& name) const; |
| 77 | 78 |
virtual void _setRowName(int row, const std::string& name); |
| 78 | 79 |
virtual int _rowByName(const std::string& name) const; |
| 79 | 80 |
|
| 80 | 81 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
| 81 | 82 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
| 82 | 83 |
|
| 83 | 84 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
| 84 | 85 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
| 85 | 86 |
|
| 86 | 87 |
virtual void _setCoeff(int row, int col, Value value); |
| 87 | 88 |
virtual Value _getCoeff(int row, int col) const; |
| 88 | 89 |
| ... | ... |
@@ -57,48 +57,61 @@ |
| 57 | 57 |
} |
| 58 | 58 |
|
| 59 | 59 |
ClpLp* ClpLp::newSolver() const {
|
| 60 | 60 |
ClpLp* newlp = new ClpLp; |
| 61 | 61 |
return newlp; |
| 62 | 62 |
} |
| 63 | 63 |
|
| 64 | 64 |
ClpLp* ClpLp::cloneSolver() const {
|
| 65 | 65 |
ClpLp* copylp = new ClpLp(*this); |
| 66 | 66 |
return copylp; |
| 67 | 67 |
} |
| 68 | 68 |
|
| 69 | 69 |
const char* ClpLp::_solverName() const { return "ClpLp"; }
|
| 70 | 70 |
|
| 71 | 71 |
int ClpLp::_addCol() {
|
| 72 | 72 |
_prob->addColumn(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX, 0.0); |
| 73 | 73 |
return _prob->numberColumns() - 1; |
| 74 | 74 |
} |
| 75 | 75 |
|
| 76 | 76 |
int ClpLp::_addRow() {
|
| 77 | 77 |
_prob->addRow(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX); |
| 78 | 78 |
return _prob->numberRows() - 1; |
| 79 | 79 |
} |
| 80 | 80 |
|
| 81 |
int ClpLp::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
|
|
| 82 |
std::vector<int> indexes; |
|
| 83 |
std::vector<Value> values; |
|
| 84 |
|
|
| 85 |
for(ExprIterator it = b; it != e; ++it) {
|
|
| 86 |
indexes.push_back(it->first); |
|
| 87 |
values.push_back(it->second); |
|
| 88 |
} |
|
| 89 |
|
|
| 90 |
_prob->addRow(values.size(), &indexes.front(), &values.front(), l, u); |
|
| 91 |
return _prob->numberRows() - 1; |
|
| 92 |
} |
|
| 93 |
|
|
| 81 | 94 |
|
| 82 | 95 |
void ClpLp::_eraseCol(int c) {
|
| 83 | 96 |
_col_names_ref.erase(_prob->getColumnName(c)); |
| 84 | 97 |
_prob->deleteColumns(1, &c); |
| 85 | 98 |
} |
| 86 | 99 |
|
| 87 | 100 |
void ClpLp::_eraseRow(int r) {
|
| 88 | 101 |
_row_names_ref.erase(_prob->getRowName(r)); |
| 89 | 102 |
_prob->deleteRows(1, &r); |
| 90 | 103 |
} |
| 91 | 104 |
|
| 92 | 105 |
void ClpLp::_eraseColId(int i) {
|
| 93 | 106 |
cols.eraseIndex(i); |
| 94 | 107 |
cols.shiftIndices(i); |
| 95 | 108 |
} |
| 96 | 109 |
|
| 97 | 110 |
void ClpLp::_eraseRowId(int i) {
|
| 98 | 111 |
rows.eraseIndex(i); |
| 99 | 112 |
rows.shiftIndices(i); |
| 100 | 113 |
} |
| 101 | 114 |
|
| 102 | 115 |
void ClpLp::_getColName(int c, std::string& name) const {
|
| 103 | 116 |
name = _prob->getColumnName(c); |
| 104 | 117 |
} |
| ... | ... |
@@ -54,48 +54,49 @@ |
| 54 | 54 |
/// \e |
| 55 | 55 |
ClpLp(const ClpLp&); |
| 56 | 56 |
/// \e |
| 57 | 57 |
~ClpLp(); |
| 58 | 58 |
|
| 59 | 59 |
/// \e |
| 60 | 60 |
virtual ClpLp* newSolver() const; |
| 61 | 61 |
/// \e |
| 62 | 62 |
virtual ClpLp* cloneSolver() const; |
| 63 | 63 |
|
| 64 | 64 |
protected: |
| 65 | 65 |
|
| 66 | 66 |
mutable double* _primal_ray; |
| 67 | 67 |
mutable double* _dual_ray; |
| 68 | 68 |
|
| 69 | 69 |
void _init_temporals(); |
| 70 | 70 |
void _clear_temporals(); |
| 71 | 71 |
|
| 72 | 72 |
protected: |
| 73 | 73 |
|
| 74 | 74 |
virtual const char* _solverName() const; |
| 75 | 75 |
|
| 76 | 76 |
virtual int _addCol(); |
| 77 | 77 |
virtual int _addRow(); |
| 78 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 78 | 79 |
|
| 79 | 80 |
virtual void _eraseCol(int i); |
| 80 | 81 |
virtual void _eraseRow(int i); |
| 81 | 82 |
|
| 82 | 83 |
virtual void _eraseColId(int i); |
| 83 | 84 |
virtual void _eraseRowId(int i); |
| 84 | 85 |
|
| 85 | 86 |
virtual void _getColName(int col, std::string& name) const; |
| 86 | 87 |
virtual void _setColName(int col, const std::string& name); |
| 87 | 88 |
virtual int _colByName(const std::string& name) const; |
| 88 | 89 |
|
| 89 | 90 |
virtual void _getRowName(int row, std::string& name) const; |
| 90 | 91 |
virtual void _setRowName(int row, const std::string& name); |
| 91 | 92 |
virtual int _rowByName(const std::string& name) const; |
| 92 | 93 |
|
| 93 | 94 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
| 94 | 95 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
| 95 | 96 |
|
| 96 | 97 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
| 97 | 98 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
| 98 | 99 |
|
| 99 | 100 |
virtual void _setCoeff(int row, int col, Value value); |
| 100 | 101 |
virtual Value _getCoeff(int row, int col) const; |
| 101 | 102 |
| ... | ... |
@@ -14,469 +14,470 @@ |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CONCEPTS_DIGRAPH_H |
| 20 | 20 |
#define LEMON_CONCEPTS_DIGRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup graph_concepts |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief The concept of directed graphs. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
#include <lemon/concept_check.h> |
| 29 | 29 |
#include <lemon/concepts/graph_components.h> |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
namespace concepts {
|
| 33 | 33 |
|
| 34 | 34 |
/// \ingroup graph_concepts |
| 35 | 35 |
/// |
| 36 | 36 |
/// \brief Class describing the concept of directed graphs. |
| 37 | 37 |
/// |
| 38 |
/// This class describes the \ref concept "concept" of the |
|
| 39 |
/// immutable directed digraphs. |
|
| 38 |
/// This class describes the common interface of all directed |
|
| 39 |
/// graphs (digraphs). |
|
| 40 | 40 |
/// |
| 41 |
/// Note that actual digraph implementation like @ref ListDigraph or |
|
| 42 |
/// @ref SmartDigraph may have several additional functionality. |
|
| 41 |
/// Like all concept classes, it only provides an interface |
|
| 42 |
/// without any sensible implementation. So any general algorithm for |
|
| 43 |
/// directed graphs should compile with this class, but it will not |
|
| 44 |
/// run properly, of course. |
|
| 45 |
/// An actual digraph implementation like \ref ListDigraph or |
|
| 46 |
/// \ref SmartDigraph may have additional functionality. |
|
| 43 | 47 |
/// |
| 44 |
/// \sa |
|
| 48 |
/// \sa Graph |
|
| 45 | 49 |
class Digraph {
|
| 46 | 50 |
private: |
| 47 |
/// |
|
| 51 |
/// Diraphs are \e not copy constructible. Use DigraphCopy instead. |
|
| 52 |
Digraph(const Digraph &) {}
|
|
| 53 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
|
| 54 |
/// Use DigraphCopy instead. |
|
| 55 |
void operator=(const Digraph &) {}
|
|
| 48 | 56 |
|
| 49 |
///Digraphs are \e not copy constructible. Use DigraphCopy() instead. |
|
| 50 |
/// |
|
| 51 |
Digraph(const Digraph &) {};
|
|
| 52 |
///\brief Assignment of \ref Digraph "Digraph"s to another ones are |
|
| 53 |
|
|
| 57 |
public: |
|
| 58 |
/// Default constructor. |
|
| 59 |
Digraph() { }
|
|
| 54 | 60 |
|
| 55 |
///Assignment of \ref Digraph "Digraph"s to another ones are |
|
| 56 |
///\e not allowed. Use DigraphCopy() instead. |
|
| 57 |
|
|
| 58 |
void operator=(const Digraph &) {}
|
|
| 59 |
public: |
|
| 60 |
///\e |
|
| 61 |
|
|
| 62 |
/// Defalult constructor. |
|
| 63 |
|
|
| 64 |
/// Defalult constructor. |
|
| 65 |
/// |
|
| 66 |
Digraph() { }
|
|
| 67 |
/// |
|
| 61 |
/// The node type of the digraph |
|
| 68 | 62 |
|
| 69 | 63 |
/// This class identifies a node of the digraph. It also serves |
| 70 | 64 |
/// as a base class of the node iterators, |
| 71 |
/// thus they |
|
| 65 |
/// thus they convert to this type. |
|
| 72 | 66 |
class Node {
|
| 73 | 67 |
public: |
| 74 | 68 |
/// Default constructor |
| 75 | 69 |
|
| 76 |
/// @warning The default constructor sets the iterator |
|
| 77 |
/// to an undefined value. |
|
| 70 |
/// Default constructor. |
|
| 71 |
/// \warning It sets the object to an undefined value. |
|
| 78 | 72 |
Node() { }
|
| 79 | 73 |
/// Copy constructor. |
| 80 | 74 |
|
| 81 | 75 |
/// Copy constructor. |
| 82 | 76 |
/// |
| 83 | 77 |
Node(const Node&) { }
|
| 84 | 78 |
|
| 85 |
/// Invalid constructor \& conversion. |
|
| 79 |
/// %Invalid constructor \& conversion. |
|
| 86 | 80 |
|
| 87 |
/// |
|
| 81 |
/// Initializes the object to be invalid. |
|
| 88 | 82 |
/// \sa Invalid for more details. |
| 89 | 83 |
Node(Invalid) { }
|
| 90 | 84 |
/// Equality operator |
| 91 | 85 |
|
| 86 |
/// Equality operator. |
|
| 87 |
/// |
|
| 92 | 88 |
/// Two iterators are equal if and only if they point to the |
| 93 |
/// same object or both are |
|
| 89 |
/// same object or both are \c INVALID. |
|
| 94 | 90 |
bool operator==(Node) const { return true; }
|
| 95 | 91 |
|
| 96 | 92 |
/// Inequality operator |
| 97 | 93 |
|
| 98 |
/// \sa operator==(Node n) |
|
| 99 |
/// |
|
| 94 |
/// Inequality operator. |
|
| 100 | 95 |
bool operator!=(Node) const { return true; }
|
| 101 | 96 |
|
| 102 | 97 |
/// Artificial ordering operator. |
| 103 | 98 |
|
| 104 |
/// To allow the use of digraph descriptors as key type in std::map or |
|
| 105 |
/// similar associative container we require this. |
|
| 99 |
/// Artificial ordering operator. |
|
| 106 | 100 |
/// |
| 107 |
/// \note This operator only have to define some strict ordering of |
|
| 108 |
/// the items; this order has nothing to do with the iteration |
|
| 109 |
/// ordering of |
|
| 101 |
/// \note This operator only has to define some strict ordering of |
|
| 102 |
/// the nodes; this order has nothing to do with the iteration |
|
| 103 |
/// ordering of the nodes. |
|
| 110 | 104 |
bool operator<(Node) const { return false; }
|
| 111 |
|
|
| 112 | 105 |
}; |
| 113 | 106 |
|
| 114 |
/// |
|
| 107 |
/// Iterator class for the nodes. |
|
| 115 | 108 |
|
| 116 |
/// This iterator goes through each node. |
|
| 109 |
/// This iterator goes through each node of the digraph. |
|
| 117 | 110 |
/// Its usage is quite simple, for example you can count the number |
| 118 |
/// of nodes in digraph \c g of type \c Digraph like this: |
|
| 111 |
/// of nodes in a digraph \c g of type \c %Digraph like this: |
|
| 119 | 112 |
///\code |
| 120 | 113 |
/// int count=0; |
| 121 | 114 |
/// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count; |
| 122 | 115 |
///\endcode |
| 123 | 116 |
class NodeIt : public Node {
|
| 124 | 117 |
public: |
| 125 | 118 |
/// Default constructor |
| 126 | 119 |
|
| 127 |
/// @warning The default constructor sets the iterator |
|
| 128 |
/// to an undefined value. |
|
| 120 |
/// Default constructor. |
|
| 121 |
/// \warning It sets the iterator to an undefined value. |
|
| 129 | 122 |
NodeIt() { }
|
| 130 | 123 |
/// Copy constructor. |
| 131 | 124 |
|
| 132 | 125 |
/// Copy constructor. |
| 133 | 126 |
/// |
| 134 | 127 |
NodeIt(const NodeIt& n) : Node(n) { }
|
| 135 |
/// Invalid constructor \& conversion. |
|
| 128 |
/// %Invalid constructor \& conversion. |
|
| 136 | 129 |
|
| 137 |
/// |
|
| 130 |
/// Initializes the iterator to be invalid. |
|
| 138 | 131 |
/// \sa Invalid for more details. |
| 139 | 132 |
NodeIt(Invalid) { }
|
| 140 | 133 |
/// Sets the iterator to the first node. |
| 141 | 134 |
|
| 142 |
/// Sets the iterator to the first node of |
|
| 135 |
/// Sets the iterator to the first node of the given digraph. |
|
| 143 | 136 |
/// |
| 144 |
NodeIt(const Digraph&) { }
|
|
| 145 |
/// Node -> NodeIt conversion. |
|
| 137 |
explicit NodeIt(const Digraph&) { }
|
|
| 138 |
/// Sets the iterator to the given node. |
|
| 146 | 139 |
|
| 147 |
/// Sets the iterator to the node of \c the digraph pointed by |
|
| 148 |
/// the trivial iterator. |
|
| 149 |
/// This feature necessitates that each time we |
|
| 150 |
/// iterate the arc-set, the iteration order is the same. |
|
| 140 |
/// Sets the iterator to the given node of the given digraph. |
|
| 141 |
/// |
|
| 151 | 142 |
NodeIt(const Digraph&, const Node&) { }
|
| 152 | 143 |
/// Next node. |
| 153 | 144 |
|
| 154 | 145 |
/// Assign the iterator to the next node. |
| 155 | 146 |
/// |
| 156 | 147 |
NodeIt& operator++() { return *this; }
|
| 157 | 148 |
}; |
| 158 | 149 |
|
| 159 | 150 |
|
| 160 |
/// |
|
| 151 |
/// The arc type of the digraph |
|
| 161 | 152 |
|
| 162 | 153 |
/// This class identifies an arc of the digraph. It also serves |
| 163 | 154 |
/// as a base class of the arc iterators, |
| 164 | 155 |
/// thus they will convert to this type. |
| 165 | 156 |
class Arc {
|
| 166 | 157 |
public: |
| 167 | 158 |
/// Default constructor |
| 168 | 159 |
|
| 169 |
/// @warning The default constructor sets the iterator |
|
| 170 |
/// to an undefined value. |
|
| 160 |
/// Default constructor. |
|
| 161 |
/// \warning It sets the object to an undefined value. |
|
| 171 | 162 |
Arc() { }
|
| 172 | 163 |
/// Copy constructor. |
| 173 | 164 |
|
| 174 | 165 |
/// Copy constructor. |
| 175 | 166 |
/// |
| 176 | 167 |
Arc(const Arc&) { }
|
| 177 |
/// |
|
| 168 |
/// %Invalid constructor \& conversion. |
|
| 178 | 169 |
|
| 179 |
/// Initialize the iterator to be invalid. |
|
| 180 |
/// |
|
| 170 |
/// Initializes the object to be invalid. |
|
| 171 |
/// \sa Invalid for more details. |
|
| 181 | 172 |
Arc(Invalid) { }
|
| 182 | 173 |
/// Equality operator |
| 183 | 174 |
|
| 175 |
/// Equality operator. |
|
| 176 |
/// |
|
| 184 | 177 |
/// Two iterators are equal if and only if they point to the |
| 185 |
/// same object or both are |
|
| 178 |
/// same object or both are \c INVALID. |
|
| 186 | 179 |
bool operator==(Arc) const { return true; }
|
| 187 | 180 |
/// Inequality operator |
| 188 | 181 |
|
| 189 |
/// \sa operator==(Arc n) |
|
| 190 |
/// |
|
| 182 |
/// Inequality operator. |
|
| 191 | 183 |
bool operator!=(Arc) const { return true; }
|
| 192 | 184 |
|
| 193 | 185 |
/// Artificial ordering operator. |
| 194 | 186 |
|
| 195 |
/// To allow the use of digraph descriptors as key type in std::map or |
|
| 196 |
/// similar associative container we require this. |
|
| 187 |
/// Artificial ordering operator. |
|
| 197 | 188 |
/// |
| 198 |
/// \note This operator only have to define some strict ordering of |
|
| 199 |
/// the items; this order has nothing to do with the iteration |
|
| 200 |
/// ordering of |
|
| 189 |
/// \note This operator only has to define some strict ordering of |
|
| 190 |
/// the arcs; this order has nothing to do with the iteration |
|
| 191 |
/// ordering of the arcs. |
|
| 201 | 192 |
bool operator<(Arc) const { return false; }
|
| 202 | 193 |
}; |
| 203 | 194 |
|
| 204 |
/// |
|
| 195 |
/// Iterator class for the outgoing arcs of a node. |
|
| 205 | 196 |
|
| 206 | 197 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
| 207 | 198 |
/// of a digraph. |
| 208 | 199 |
/// Its usage is quite simple, for example you can count the number |
| 209 | 200 |
/// of outgoing arcs of a node \c n |
| 210 |
/// in digraph \c g of type \c Digraph as follows. |
|
| 201 |
/// in a digraph \c g of type \c %Digraph as follows. |
|
| 211 | 202 |
///\code |
| 212 | 203 |
/// int count=0; |
| 213 |
/// for (Digraph::OutArcIt |
|
| 204 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
| 214 | 205 |
///\endcode |
| 215 |
|
|
| 216 | 206 |
class OutArcIt : public Arc {
|
| 217 | 207 |
public: |
| 218 | 208 |
/// Default constructor |
| 219 | 209 |
|
| 220 |
/// @warning The default constructor sets the iterator |
|
| 221 |
/// to an undefined value. |
|
| 210 |
/// Default constructor. |
|
| 211 |
/// \warning It sets the iterator to an undefined value. |
|
| 222 | 212 |
OutArcIt() { }
|
| 223 | 213 |
/// Copy constructor. |
| 224 | 214 |
|
| 225 | 215 |
/// Copy constructor. |
| 226 | 216 |
/// |
| 227 | 217 |
OutArcIt(const OutArcIt& e) : Arc(e) { }
|
| 228 |
/// |
|
| 218 |
/// %Invalid constructor \& conversion. |
|
| 229 | 219 |
|
| 230 |
/// |
|
| 220 |
/// Initializes the iterator to be invalid. |
|
| 221 |
/// \sa Invalid for more details. |
|
| 222 |
OutArcIt(Invalid) { }
|
|
| 223 |
/// Sets the iterator to the first outgoing arc. |
|
| 224 |
|
|
| 225 |
/// Sets the iterator to the first outgoing arc of the given node. |
|
| 231 | 226 |
/// |
| 232 |
OutArcIt(Invalid) { }
|
|
| 233 |
/// This constructor sets the iterator to the first outgoing arc. |
|
| 227 |
OutArcIt(const Digraph&, const Node&) { }
|
|
| 228 |
/// Sets the iterator to the given arc. |
|
| 234 | 229 |
|
| 235 |
/// This constructor sets the iterator to the first outgoing arc of |
|
| 236 |
/// the node. |
|
| 237 |
OutArcIt(const Digraph&, const Node&) { }
|
|
| 238 |
/// Arc -> OutArcIt conversion |
|
| 239 |
|
|
| 240 |
/// Sets the iterator to the value of the trivial iterator. |
|
| 241 |
/// This feature necessitates that each time we |
|
| 242 |
/// iterate the arc-set, the iteration order is the same. |
|
| 230 |
/// Sets the iterator to the given arc of the given digraph. |
|
| 231 |
/// |
|
| 243 | 232 |
OutArcIt(const Digraph&, const Arc&) { }
|
| 244 |
///Next outgoing arc |
|
| 233 |
/// Next outgoing arc |
|
| 245 | 234 |
|
| 246 | 235 |
/// Assign the iterator to the next |
| 247 | 236 |
/// outgoing arc of the corresponding node. |
| 248 | 237 |
OutArcIt& operator++() { return *this; }
|
| 249 | 238 |
}; |
| 250 | 239 |
|
| 251 |
/// |
|
| 240 |
/// Iterator class for the incoming arcs of a node. |
|
| 252 | 241 |
|
| 253 | 242 |
/// This iterator goes trough the \e incoming arcs of a certain node |
| 254 | 243 |
/// of a digraph. |
| 255 | 244 |
/// Its usage is quite simple, for example you can count the number |
| 256 |
/// of outgoing arcs of a node \c n |
|
| 257 |
/// in digraph \c g of type \c Digraph as follows. |
|
| 245 |
/// of incoming arcs of a node \c n |
|
| 246 |
/// in a digraph \c g of type \c %Digraph as follows. |
|
| 258 | 247 |
///\code |
| 259 | 248 |
/// int count=0; |
| 260 |
/// for(Digraph::InArcIt |
|
| 249 |
/// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
| 261 | 250 |
///\endcode |
| 262 |
|
|
| 263 | 251 |
class InArcIt : public Arc {
|
| 264 | 252 |
public: |
| 265 | 253 |
/// Default constructor |
| 266 | 254 |
|
| 267 |
/// @warning The default constructor sets the iterator |
|
| 268 |
/// to an undefined value. |
|
| 255 |
/// Default constructor. |
|
| 256 |
/// \warning It sets the iterator to an undefined value. |
|
| 269 | 257 |
InArcIt() { }
|
| 270 | 258 |
/// Copy constructor. |
| 271 | 259 |
|
| 272 | 260 |
/// Copy constructor. |
| 273 | 261 |
/// |
| 274 | 262 |
InArcIt(const InArcIt& e) : Arc(e) { }
|
| 275 |
/// |
|
| 263 |
/// %Invalid constructor \& conversion. |
|
| 276 | 264 |
|
| 277 |
/// |
|
| 265 |
/// Initializes the iterator to be invalid. |
|
| 266 |
/// \sa Invalid for more details. |
|
| 267 |
InArcIt(Invalid) { }
|
|
| 268 |
/// Sets the iterator to the first incoming arc. |
|
| 269 |
|
|
| 270 |
/// Sets the iterator to the first incoming arc of the given node. |
|
| 278 | 271 |
/// |
| 279 |
InArcIt(Invalid) { }
|
|
| 280 |
/// This constructor sets the iterator to first incoming arc. |
|
| 272 |
InArcIt(const Digraph&, const Node&) { }
|
|
| 273 |
/// Sets the iterator to the given arc. |
|
| 281 | 274 |
|
| 282 |
/// This constructor set the iterator to the first incoming arc of |
|
| 283 |
/// the node. |
|
| 284 |
InArcIt(const Digraph&, const Node&) { }
|
|
| 285 |
/// Arc -> InArcIt conversion |
|
| 286 |
|
|
| 287 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 288 |
/// This feature necessitates that each time we |
|
| 289 |
/// iterate the arc-set, the iteration order is the same. |
|
| 275 |
/// Sets the iterator to the given arc of the given digraph. |
|
| 276 |
/// |
|
| 290 | 277 |
InArcIt(const Digraph&, const Arc&) { }
|
| 291 | 278 |
/// Next incoming arc |
| 292 | 279 |
|
| 293 |
/// Assign the iterator to the next inarc of the corresponding node. |
|
| 294 |
/// |
|
| 280 |
/// Assign the iterator to the next |
|
| 281 |
/// incoming arc of the corresponding node. |
|
| 295 | 282 |
InArcIt& operator++() { return *this; }
|
| 296 | 283 |
}; |
| 297 |
/// This iterator goes through each arc. |
|
| 298 | 284 |
|
| 299 |
/// |
|
| 285 |
/// Iterator class for the arcs. |
|
| 286 |
|
|
| 287 |
/// This iterator goes through each arc of the digraph. |
|
| 300 | 288 |
/// Its usage is quite simple, for example you can count the number |
| 301 |
/// of arcs in a digraph \c g of type \c Digraph as follows: |
|
| 289 |
/// of arcs in a digraph \c g of type \c %Digraph as follows: |
|
| 302 | 290 |
///\code |
| 303 | 291 |
/// int count=0; |
| 304 |
/// for(Digraph::ArcIt |
|
| 292 |
/// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count; |
|
| 305 | 293 |
///\endcode |
| 306 | 294 |
class ArcIt : public Arc {
|
| 307 | 295 |
public: |
| 308 | 296 |
/// Default constructor |
| 309 | 297 |
|
| 310 |
/// @warning The default constructor sets the iterator |
|
| 311 |
/// to an undefined value. |
|
| 298 |
/// Default constructor. |
|
| 299 |
/// \warning It sets the iterator to an undefined value. |
|
| 312 | 300 |
ArcIt() { }
|
| 313 | 301 |
/// Copy constructor. |
| 314 | 302 |
|
| 315 | 303 |
/// Copy constructor. |
| 316 | 304 |
/// |
| 317 | 305 |
ArcIt(const ArcIt& e) : Arc(e) { }
|
| 318 |
/// |
|
| 306 |
/// %Invalid constructor \& conversion. |
|
| 319 | 307 |
|
| 320 |
/// |
|
| 308 |
/// Initializes the iterator to be invalid. |
|
| 309 |
/// \sa Invalid for more details. |
|
| 310 |
ArcIt(Invalid) { }
|
|
| 311 |
/// Sets the iterator to the first arc. |
|
| 312 |
|
|
| 313 |
/// Sets the iterator to the first arc of the given digraph. |
|
| 321 | 314 |
/// |
| 322 |
ArcIt(Invalid) { }
|
|
| 323 |
/// This constructor sets the iterator to the first arc. |
|
| 315 |
explicit ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
|
|
| 316 |
/// Sets the iterator to the given arc. |
|
| 324 | 317 |
|
| 325 |
/// This constructor sets the iterator to the first arc of \c g. |
|
| 326 |
///@param g the digraph |
|
| 327 |
ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
|
|
| 328 |
/// Arc -> ArcIt conversion |
|
| 329 |
|
|
| 330 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 331 |
/// This feature necessitates that each time we |
|
| 332 |
/// iterate the arc-set, the iteration order is the same. |
|
| 318 |
/// Sets the iterator to the given arc of the given digraph. |
|
| 319 |
/// |
|
| 333 | 320 |
ArcIt(const Digraph&, const Arc&) { }
|
| 334 |
///Next arc |
|
| 321 |
/// Next arc |
|
| 335 | 322 |
|
| 336 | 323 |
/// Assign the iterator to the next arc. |
| 324 |
/// |
|
| 337 | 325 |
ArcIt& operator++() { return *this; }
|
| 338 | 326 |
}; |
| 339 |
///Gives back the target node of an arc. |
|
| 340 | 327 |
|
| 341 |
/// |
|
| 328 |
/// \brief The source node of the arc. |
|
| 342 | 329 |
/// |
| 343 |
Node target(Arc) const { return INVALID; }
|
|
| 344 |
///Gives back the source node of an arc. |
|
| 345 |
|
|
| 346 |
///Gives back the source node of an arc. |
|
| 347 |
/// |
|
| 330 |
/// Returns the source node of the given arc. |
|
| 348 | 331 |
Node source(Arc) const { return INVALID; }
|
| 349 | 332 |
|
| 350 |
/// \brief |
|
| 333 |
/// \brief The target node of the arc. |
|
| 334 |
/// |
|
| 335 |
/// Returns the target node of the given arc. |
|
| 336 |
Node target(Arc) const { return INVALID; }
|
|
| 337 |
|
|
| 338 |
/// \brief The ID of the node. |
|
| 339 |
/// |
|
| 340 |
/// Returns the ID of the given node. |
|
| 351 | 341 |
int id(Node) const { return -1; }
|
| 352 | 342 |
|
| 353 |
/// \brief |
|
| 343 |
/// \brief The ID of the arc. |
|
| 344 |
/// |
|
| 345 |
/// Returns the ID of the given arc. |
|
| 354 | 346 |
int id(Arc) const { return -1; }
|
| 355 | 347 |
|
| 356 |
/// \brief |
|
| 348 |
/// \brief The node with the given ID. |
|
| 357 | 349 |
/// |
| 358 |
/// |
|
| 350 |
/// Returns the node with the given ID. |
|
| 351 |
/// \pre The argument should be a valid node ID in the digraph. |
|
| 359 | 352 |
Node nodeFromId(int) const { return INVALID; }
|
| 360 | 353 |
|
| 361 |
/// \brief |
|
| 354 |
/// \brief The arc with the given ID. |
|
| 362 | 355 |
/// |
| 363 |
/// |
|
| 356 |
/// Returns the arc with the given ID. |
|
| 357 |
/// \pre The argument should be a valid arc ID in the digraph. |
|
| 364 | 358 |
Arc arcFromId(int) const { return INVALID; }
|
| 365 | 359 |
|
| 366 |
/// \brief |
|
| 360 |
/// \brief An upper bound on the node IDs. |
|
| 361 |
/// |
|
| 362 |
/// Returns an upper bound on the node IDs. |
|
| 367 | 363 |
int maxNodeId() const { return -1; }
|
| 368 | 364 |
|
| 369 |
/// \brief |
|
| 365 |
/// \brief An upper bound on the arc IDs. |
|
| 366 |
/// |
|
| 367 |
/// Returns an upper bound on the arc IDs. |
|
| 370 | 368 |
int maxArcId() const { return -1; }
|
| 371 | 369 |
|
| 372 | 370 |
void first(Node&) const {}
|
| 373 | 371 |
void next(Node&) const {}
|
| 374 | 372 |
|
| 375 | 373 |
void first(Arc&) const {}
|
| 376 | 374 |
void next(Arc&) const {}
|
| 377 | 375 |
|
| 378 | 376 |
|
| 379 | 377 |
void firstIn(Arc&, const Node&) const {}
|
| 380 | 378 |
void nextIn(Arc&) const {}
|
| 381 | 379 |
|
| 382 | 380 |
void firstOut(Arc&, const Node&) const {}
|
| 383 | 381 |
void nextOut(Arc&) const {}
|
| 384 | 382 |
|
| 385 | 383 |
// The second parameter is dummy. |
| 386 | 384 |
Node fromId(int, Node) const { return INVALID; }
|
| 387 | 385 |
// The second parameter is dummy. |
| 388 | 386 |
Arc fromId(int, Arc) const { return INVALID; }
|
| 389 | 387 |
|
| 390 | 388 |
// Dummy parameter. |
| 391 | 389 |
int maxId(Node) const { return -1; }
|
| 392 | 390 |
// Dummy parameter. |
| 393 | 391 |
int maxId(Arc) const { return -1; }
|
| 394 | 392 |
|
| 393 |
/// \brief The opposite node on the arc. |
|
| 394 |
/// |
|
| 395 |
/// Returns the opposite node on the given arc. |
|
| 396 |
Node oppositeNode(Node, Arc) const { return INVALID; }
|
|
| 397 |
|
|
| 395 | 398 |
/// \brief The base node of the iterator. |
| 396 | 399 |
/// |
| 397 |
/// Gives back the base node of the iterator. |
|
| 398 |
/// It is always the target of the pointed arc. |
|
| 399 |
|
|
| 400 |
/// Returns the base node of the given outgoing arc iterator |
|
| 401 |
/// (i.e. the source node of the corresponding arc). |
|
| 402 |
Node baseNode(OutArcIt) const { return INVALID; }
|
|
| 400 | 403 |
|
| 401 | 404 |
/// \brief The running node of the iterator. |
| 402 | 405 |
/// |
| 403 |
/// Gives back the running node of the iterator. |
|
| 404 |
/// It is always the source of the pointed arc. |
|
| 405 |
|
|
| 406 |
/// Returns the running node of the given outgoing arc iterator |
|
| 407 |
/// (i.e. the target node of the corresponding arc). |
|
| 408 |
Node runningNode(OutArcIt) const { return INVALID; }
|
|
| 406 | 409 |
|
| 407 | 410 |
/// \brief The base node of the iterator. |
| 408 | 411 |
/// |
| 409 |
/// Gives back the base node of the iterator. |
|
| 410 |
/// It is always the source of the pointed arc. |
|
| 411 |
|
|
| 412 |
/// Returns the base node of the given incomming arc iterator |
|
| 413 |
/// (i.e. the target node of the corresponding arc). |
|
| 414 |
Node baseNode(InArcIt) const { return INVALID; }
|
|
| 412 | 415 |
|
| 413 | 416 |
/// \brief The running node of the iterator. |
| 414 | 417 |
/// |
| 415 |
/// Gives back the running node of the iterator. |
|
| 416 |
/// It is always the target of the pointed arc. |
|
| 417 |
|
|
| 418 |
/// Returns the running node of the given incomming arc iterator |
|
| 419 |
/// (i.e. the source node of the corresponding arc). |
|
| 420 |
Node runningNode(InArcIt) const { return INVALID; }
|
|
| 418 | 421 |
|
| 419 |
/// \brief |
|
| 422 |
/// \brief Standard graph map type for the nodes. |
|
| 420 | 423 |
/// |
| 421 |
/// Gives back the opposite node on the given arc. |
|
| 422 |
Node oppositeNode(const Node&, const Arc&) const { return INVALID; }
|
|
| 423 |
|
|
| 424 |
/// \brief Reference map of the nodes to type \c T. |
|
| 425 |
/// |
|
| 426 |
/// Reference map of the nodes to type \c T. |
|
| 424 |
/// Standard graph map type for the nodes. |
|
| 425 |
/// It conforms to the ReferenceMap concept. |
|
| 427 | 426 |
template<class T> |
| 428 | 427 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> {
|
| 429 | 428 |
public: |
| 430 | 429 |
|
| 431 |
///\e |
|
| 432 |
NodeMap(const Digraph&) { }
|
|
| 433 |
/// |
|
| 430 |
/// Constructor |
|
| 431 |
explicit NodeMap(const Digraph&) { }
|
|
| 432 |
/// Constructor with given initial value |
|
| 434 | 433 |
NodeMap(const Digraph&, T) { }
|
| 435 | 434 |
|
| 436 | 435 |
private: |
| 437 | 436 |
///Copy constructor |
| 438 | 437 |
NodeMap(const NodeMap& nm) : |
| 439 | 438 |
ReferenceMap<Node, T, T&, const T&>(nm) { }
|
| 440 | 439 |
///Assignment operator |
| 441 | 440 |
template <typename CMap> |
| 442 | 441 |
NodeMap& operator=(const CMap&) {
|
| 443 | 442 |
checkConcept<ReadMap<Node, T>, CMap>(); |
| 444 | 443 |
return *this; |
| 445 | 444 |
} |
| 446 | 445 |
}; |
| 447 | 446 |
|
| 448 |
/// \brief |
|
| 447 |
/// \brief Standard graph map type for the arcs. |
|
| 449 | 448 |
/// |
| 450 |
/// |
|
| 449 |
/// Standard graph map type for the arcs. |
|
| 450 |
/// It conforms to the ReferenceMap concept. |
|
| 451 | 451 |
template<class T> |
| 452 | 452 |
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> {
|
| 453 | 453 |
public: |
| 454 | 454 |
|
| 455 |
///\e |
|
| 456 |
ArcMap(const Digraph&) { }
|
|
| 457 |
/// |
|
| 455 |
/// Constructor |
|
| 456 |
explicit ArcMap(const Digraph&) { }
|
|
| 457 |
/// Constructor with given initial value |
|
| 458 | 458 |
ArcMap(const Digraph&, T) { }
|
| 459 |
|
|
| 459 | 460 |
private: |
| 460 | 461 |
///Copy constructor |
| 461 | 462 |
ArcMap(const ArcMap& em) : |
| 462 | 463 |
ReferenceMap<Arc, T, T&, const T&>(em) { }
|
| 463 | 464 |
///Assignment operator |
| 464 | 465 |
template <typename CMap> |
| 465 | 466 |
ArcMap& operator=(const CMap&) {
|
| 466 | 467 |
checkConcept<ReadMap<Arc, T>, CMap>(); |
| 467 | 468 |
return *this; |
| 468 | 469 |
} |
| 469 | 470 |
}; |
| 470 | 471 |
|
| 471 | 472 |
template <typename _Digraph> |
| 472 | 473 |
struct Constraints {
|
| 473 | 474 |
void constraints() {
|
| 474 | 475 |
checkConcept<BaseDigraphComponent, _Digraph>(); |
| 475 | 476 |
checkConcept<IterableDigraphComponent<>, _Digraph>(); |
| 476 | 477 |
checkConcept<IDableDigraphComponent<>, _Digraph>(); |
| 477 | 478 |
checkConcept<MappableDigraphComponent<>, _Digraph>(); |
| 478 | 479 |
} |
| 479 | 480 |
}; |
| 480 | 481 |
|
| 481 | 482 |
}; |
| 482 | 483 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup graph_concepts |
| 20 | 20 |
///\file |
| 21 |
///\brief The concept of |
|
| 21 |
///\brief The concept of undirected graphs. |
|
| 22 | 22 |
|
| 23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_H |
| 24 | 24 |
#define LEMON_CONCEPTS_GRAPH_H |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/concepts/graph_components.h> |
| 27 |
#include <lemon/concepts/maps.h> |
|
| 28 |
#include <lemon/concept_check.h> |
|
| 27 | 29 |
#include <lemon/core.h> |
| 28 | 30 |
|
| 29 | 31 |
namespace lemon {
|
| 30 | 32 |
namespace concepts {
|
| 31 | 33 |
|
| 32 | 34 |
/// \ingroup graph_concepts |
| 33 | 35 |
/// |
| 34 |
/// \brief Class describing the concept of |
|
| 36 |
/// \brief Class describing the concept of undirected graphs. |
|
| 35 | 37 |
/// |
| 36 |
/// This class describes the common interface of all Undirected |
|
| 37 |
/// Graphs. |
|
| 38 |
/// This class describes the common interface of all undirected |
|
| 39 |
/// graphs. |
|
| 38 | 40 |
/// |
| 39 |
/// As all concept describing classes it provides only interface |
|
| 40 |
/// without any sensible implementation. So any algorithm for |
|
| 41 |
/// |
|
| 41 |
/// Like all concept classes, it only provides an interface |
|
| 42 |
/// without any sensible implementation. So any general algorithm for |
|
| 43 |
/// undirected graphs should compile with this class, but it will not |
|
| 42 | 44 |
/// run properly, of course. |
| 45 |
/// An actual graph implementation like \ref ListGraph or |
|
| 46 |
/// \ref SmartGraph may have additional functionality. |
|
| 43 | 47 |
/// |
| 44 |
/// The LEMON undirected graphs also fulfill the concept of |
|
| 45 |
/// directed graphs (\ref lemon::concepts::Digraph "Digraph |
|
| 46 |
/// Concept"). Each edges can be seen as two opposite |
|
| 47 |
/// directed arc and consequently the undirected graph can be |
|
| 48 |
/// seen as the direceted graph of these directed arcs. The |
|
| 49 |
/// Graph has the Edge inner class for the edges and |
|
| 50 |
/// the Arc type for the directed arcs. The Arc type is |
|
| 51 |
/// convertible to Edge or inherited from it so from a directed |
|
| 52 |
/// |
|
| 48 |
/// The undirected graphs also fulfill the concept of \ref Digraph |
|
| 49 |
/// "directed graphs", since each edge can also be regarded as two |
|
| 50 |
/// oppositely directed arcs. |
|
| 51 |
/// Undirected graphs provide an Edge type for the undirected edges and |
|
| 52 |
/// an Arc type for the directed arcs. The Arc type is convertible to |
|
| 53 |
/// Edge or inherited from it, i.e. the corresponding edge can be |
|
| 54 |
/// obtained from an arc. |
|
| 55 |
/// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt |
|
| 56 |
/// and ArcMap classes can be used for the arcs (just like in digraphs). |
|
| 57 |
/// Both InArcIt and OutArcIt iterates on the same edges but with |
|
| 58 |
/// opposite direction. IncEdgeIt also iterates on the same edges |
|
| 59 |
/// as OutArcIt and InArcIt, but it is not convertible to Arc, |
|
| 60 |
/// only to Edge. |
|
| 53 | 61 |
/// |
| 54 |
/// In the sense of the LEMON each edge has a default |
|
| 55 |
/// direction (it should be in every computer implementation, |
|
| 56 |
/// because the order of edge's nodes defines an |
|
| 57 |
/// orientation). With the default orientation we can define that |
|
| 58 |
/// the directed arc is forward or backward directed. With the \c |
|
| 59 |
/// direction() and \c direct() function we can get the direction |
|
| 60 |
/// |
|
| 62 |
/// In LEMON, each undirected edge has an inherent orientation. |
|
| 63 |
/// Thus it can defined if an arc is forward or backward oriented in |
|
| 64 |
/// an undirected graph with respect to this default oriantation of |
|
| 65 |
/// the represented edge. |
|
| 66 |
/// With the direction() and direct() functions the direction |
|
| 67 |
/// of an arc can be obtained and set, respectively. |
|
| 61 | 68 |
/// |
| 62 |
/// The EdgeIt is an iterator for the edges. We can use |
|
| 63 |
/// the EdgeMap to map values for the edges. The InArcIt and |
|
| 64 |
/// OutArcIt iterates on the same edges but with opposite |
|
| 65 |
/// direction. The IncEdgeIt iterates also on the same edges |
|
| 66 |
/// as the OutArcIt and InArcIt but it is not convertible to Arc just |
|
| 67 |
/// to Edge. |
|
| 69 |
/// Only nodes and edges can be added to or removed from an undirected |
|
| 70 |
/// graph and the corresponding arcs are added or removed automatically. |
|
| 71 |
/// |
|
| 72 |
/// \sa Digraph |
|
| 68 | 73 |
class Graph {
|
| 74 |
private: |
|
| 75 |
/// Graphs are \e not copy constructible. Use DigraphCopy instead. |
|
| 76 |
Graph(const Graph&) {}
|
|
| 77 |
/// \brief Assignment of a graph to another one is \e not allowed. |
|
| 78 |
/// Use DigraphCopy instead. |
|
| 79 |
void operator=(const Graph&) {}
|
|
| 80 |
|
|
| 69 | 81 |
public: |
| 70 |
/// \brief The undirected graph should be tagged by the |
|
| 71 |
/// UndirectedTag. |
|
| 82 |
/// Default constructor. |
|
| 83 |
Graph() {}
|
|
| 84 |
|
|
| 85 |
/// \brief Undirected graphs should be tagged with \c UndirectedTag. |
|
| 72 | 86 |
/// |
| 73 |
/// The undirected graph should be tagged by the UndirectedTag. This |
|
| 74 |
/// tag helps the enable_if technics to make compile time |
|
| 87 |
/// Undirected graphs should be tagged with \c UndirectedTag. |
|
| 88 |
/// |
|
| 89 |
/// This tag helps the \c enable_if technics to make compile time |
|
| 75 | 90 |
/// specializations for undirected graphs. |
| 76 | 91 |
typedef True UndirectedTag; |
| 77 | 92 |
|
| 78 |
/// \brief The base type of node iterators, |
|
| 79 |
/// or in other words, the trivial node iterator. |
|
| 80 |
/// |
|
| 81 |
/// This is the base type of each node iterator, |
|
| 82 |
/// thus each kind of node iterator converts to this. |
|
| 83 |
/// More precisely each kind of node iterator should be inherited |
|
| 84 |
/// |
|
| 93 |
/// The node type of the graph |
|
| 94 |
|
|
| 95 |
/// This class identifies a node of the graph. It also serves |
|
| 96 |
/// as a base class of the node iterators, |
|
| 97 |
/// thus they convert to this type. |
|
| 85 | 98 |
class Node {
|
| 86 | 99 |
public: |
| 87 | 100 |
/// Default constructor |
| 88 | 101 |
|
| 89 |
/// @warning The default constructor sets the iterator |
|
| 90 |
/// to an undefined value. |
|
| 102 |
/// Default constructor. |
|
| 103 |
/// \warning It sets the object to an undefined value. |
|
| 91 | 104 |
Node() { }
|
| 92 | 105 |
/// Copy constructor. |
| 93 | 106 |
|
| 94 | 107 |
/// Copy constructor. |
| 95 | 108 |
/// |
| 96 | 109 |
Node(const Node&) { }
|
| 97 | 110 |
|
| 98 |
/// Invalid constructor \& conversion. |
|
| 111 |
/// %Invalid constructor \& conversion. |
|
| 99 | 112 |
|
| 100 |
/// |
|
| 113 |
/// Initializes the object to be invalid. |
|
| 101 | 114 |
/// \sa Invalid for more details. |
| 102 | 115 |
Node(Invalid) { }
|
| 103 | 116 |
/// Equality operator |
| 104 | 117 |
|
| 118 |
/// Equality operator. |
|
| 119 |
/// |
|
| 105 | 120 |
/// Two iterators are equal if and only if they point to the |
| 106 |
/// same object or both are |
|
| 121 |
/// same object or both are \c INVALID. |
|
| 107 | 122 |
bool operator==(Node) const { return true; }
|
| 108 | 123 |
|
| 109 | 124 |
/// Inequality operator |
| 110 | 125 |
|
| 111 |
/// \sa operator==(Node n) |
|
| 112 |
/// |
|
| 126 |
/// Inequality operator. |
|
| 113 | 127 |
bool operator!=(Node) const { return true; }
|
| 114 | 128 |
|
| 115 | 129 |
/// Artificial ordering operator. |
| 116 | 130 |
|
| 117 |
/// To allow the use of graph descriptors as key type in std::map or |
|
| 118 |
/// similar associative container we require this. |
|
| 131 |
/// Artificial ordering operator. |
|
| 119 | 132 |
/// |
| 120 |
/// \note This operator only |
|
| 133 |
/// \note This operator only has to define some strict ordering of |
|
| 121 | 134 |
/// the items; this order has nothing to do with the iteration |
| 122 | 135 |
/// ordering of the items. |
| 123 | 136 |
bool operator<(Node) const { return false; }
|
| 124 | 137 |
|
| 125 | 138 |
}; |
| 126 | 139 |
|
| 127 |
/// |
|
| 140 |
/// Iterator class for the nodes. |
|
| 128 | 141 |
|
| 129 |
/// This iterator goes through each node. |
|
| 142 |
/// This iterator goes through each node of the graph. |
|
| 130 | 143 |
/// Its usage is quite simple, for example you can count the number |
| 131 |
/// of nodes in graph \c g of type \c Graph like this: |
|
| 144 |
/// of nodes in a graph \c g of type \c %Graph like this: |
|
| 132 | 145 |
///\code |
| 133 | 146 |
/// int count=0; |
| 134 | 147 |
/// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; |
| 135 | 148 |
///\endcode |
| 136 | 149 |
class NodeIt : public Node {
|
| 137 | 150 |
public: |
| 138 | 151 |
/// Default constructor |
| 139 | 152 |
|
| 140 |
/// @warning The default constructor sets the iterator |
|
| 141 |
/// to an undefined value. |
|
| 153 |
/// Default constructor. |
|
| 154 |
/// \warning It sets the iterator to an undefined value. |
|
| 142 | 155 |
NodeIt() { }
|
| 143 | 156 |
/// Copy constructor. |
| 144 | 157 |
|
| 145 | 158 |
/// Copy constructor. |
| 146 | 159 |
/// |
| 147 | 160 |
NodeIt(const NodeIt& n) : Node(n) { }
|
| 148 |
/// Invalid constructor \& conversion. |
|
| 161 |
/// %Invalid constructor \& conversion. |
|
| 149 | 162 |
|
| 150 |
/// |
|
| 163 |
/// Initializes the iterator to be invalid. |
|
| 151 | 164 |
/// \sa Invalid for more details. |
| 152 | 165 |
NodeIt(Invalid) { }
|
| 153 | 166 |
/// Sets the iterator to the first node. |
| 154 | 167 |
|
| 155 |
/// Sets the iterator to the first node of |
|
| 168 |
/// Sets the iterator to the first node of the given digraph. |
|
| 156 | 169 |
/// |
| 157 |
NodeIt(const Graph&) { }
|
|
| 158 |
/// Node -> NodeIt conversion. |
|
| 170 |
explicit NodeIt(const Graph&) { }
|
|
| 171 |
/// Sets the iterator to the given node. |
|
| 159 | 172 |
|
| 160 |
/// Sets the iterator to the node of \c the graph pointed by |
|
| 161 |
/// the trivial iterator. |
|
| 162 |
/// This feature necessitates that each time we |
|
| 163 |
/// iterate the arc-set, the iteration order is the same. |
|
| 173 |
/// Sets the iterator to the given node of the given digraph. |
|
| 174 |
/// |
|
| 164 | 175 |
NodeIt(const Graph&, const Node&) { }
|
| 165 | 176 |
/// Next node. |
| 166 | 177 |
|
| 167 | 178 |
/// Assign the iterator to the next node. |
| 168 | 179 |
/// |
| 169 | 180 |
NodeIt& operator++() { return *this; }
|
| 170 | 181 |
}; |
| 171 | 182 |
|
| 172 | 183 |
|
| 173 |
/// The |
|
| 184 |
/// The edge type of the graph |
|
| 174 | 185 |
|
| 175 |
/// The base type of the edge iterators. |
|
| 176 |
/// |
|
| 186 |
/// This class identifies an edge of the graph. It also serves |
|
| 187 |
/// as a base class of the edge iterators, |
|
| 188 |
/// thus they will convert to this type. |
|
| 177 | 189 |
class Edge {
|
| 178 | 190 |
public: |
| 179 | 191 |
/// Default constructor |
| 180 | 192 |
|
| 181 |
/// @warning The default constructor sets the iterator |
|
| 182 |
/// to an undefined value. |
|
| 193 |
/// Default constructor. |
|
| 194 |
/// \warning It sets the object to an undefined value. |
|
| 183 | 195 |
Edge() { }
|
| 184 | 196 |
/// Copy constructor. |
| 185 | 197 |
|
| 186 | 198 |
/// Copy constructor. |
| 187 | 199 |
/// |
| 188 | 200 |
Edge(const Edge&) { }
|
| 189 |
/// |
|
| 201 |
/// %Invalid constructor \& conversion. |
|
| 190 | 202 |
|
| 191 |
/// Initialize the iterator to be invalid. |
|
| 192 |
/// |
|
| 203 |
/// Initializes the object to be invalid. |
|
| 204 |
/// \sa Invalid for more details. |
|
| 193 | 205 |
Edge(Invalid) { }
|
| 194 | 206 |
/// Equality operator |
| 195 | 207 |
|
| 208 |
/// Equality operator. |
|
| 209 |
/// |
|
| 196 | 210 |
/// Two iterators are equal if and only if they point to the |
| 197 |
/// same object or both are |
|
| 211 |
/// same object or both are \c INVALID. |
|
| 198 | 212 |
bool operator==(Edge) const { return true; }
|
| 199 | 213 |
/// Inequality operator |
| 200 | 214 |
|
| 201 |
/// \sa operator==(Edge n) |
|
| 202 |
/// |
|
| 215 |
/// Inequality operator. |
|
| 203 | 216 |
bool operator!=(Edge) const { return true; }
|
| 204 | 217 |
|
| 205 | 218 |
/// Artificial ordering operator. |
| 206 | 219 |
|
| 207 |
/// To allow the use of graph descriptors as key type in std::map or |
|
| 208 |
/// similar associative container we require this. |
|
| 220 |
/// Artificial ordering operator. |
|
| 209 | 221 |
/// |
| 210 |
/// \note This operator only have to define some strict ordering of |
|
| 211 |
/// the items; this order has nothing to do with the iteration |
|
| 212 |
/// ordering of |
|
| 222 |
/// \note This operator only has to define some strict ordering of |
|
| 223 |
/// the edges; this order has nothing to do with the iteration |
|
| 224 |
/// ordering of the edges. |
|
| 213 | 225 |
bool operator<(Edge) const { return false; }
|
| 214 | 226 |
}; |
| 215 | 227 |
|
| 216 |
/// |
|
| 228 |
/// Iterator class for the edges. |
|
| 217 | 229 |
|
| 218 |
/// This iterator goes through each edge of |
|
| 230 |
/// This iterator goes through each edge of the graph. |
|
| 219 | 231 |
/// Its usage is quite simple, for example you can count the number |
| 220 |
/// of edges in a graph \c g of type \c Graph as follows: |
|
| 232 |
/// of edges in a graph \c g of type \c %Graph as follows: |
|
| 221 | 233 |
///\code |
| 222 | 234 |
/// int count=0; |
| 223 | 235 |
/// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; |
| 224 | 236 |
///\endcode |
| 225 | 237 |
class EdgeIt : public Edge {
|
| 226 | 238 |
public: |
| 227 | 239 |
/// Default constructor |
| 228 | 240 |
|
| 229 |
/// @warning The default constructor sets the iterator |
|
| 230 |
/// to an undefined value. |
|
| 241 |
/// Default constructor. |
|
| 242 |
/// \warning It sets the iterator to an undefined value. |
|
| 231 | 243 |
EdgeIt() { }
|
| 232 | 244 |
/// Copy constructor. |
| 233 | 245 |
|
| 234 | 246 |
/// Copy constructor. |
| 235 | 247 |
/// |
| 236 | 248 |
EdgeIt(const EdgeIt& e) : Edge(e) { }
|
| 237 |
/// |
|
| 249 |
/// %Invalid constructor \& conversion. |
|
| 238 | 250 |
|
| 239 |
/// |
|
| 251 |
/// Initializes the iterator to be invalid. |
|
| 252 |
/// \sa Invalid for more details. |
|
| 253 |
EdgeIt(Invalid) { }
|
|
| 254 |
/// Sets the iterator to the first edge. |
|
| 255 |
|
|
| 256 |
/// Sets the iterator to the first edge of the given graph. |
|
| 240 | 257 |
/// |
| 241 |
EdgeIt(Invalid) { }
|
|
| 242 |
/// This constructor sets the iterator to the first edge. |
|
| 258 |
explicit EdgeIt(const Graph&) { }
|
|
| 259 |
/// Sets the iterator to the given edge. |
|
| 243 | 260 |
|
| 244 |
/// This constructor sets the iterator to the first edge. |
|
| 245 |
EdgeIt(const Graph&) { }
|
|
| 246 |
/// Edge -> EdgeIt conversion |
|
| 247 |
|
|
| 248 |
/// Sets the iterator to the value of the trivial iterator. |
|
| 249 |
/// This feature necessitates that each time we |
|
| 250 |
/// iterate the edge-set, the iteration order is the |
|
| 251 |
/// same. |
|
| 261 |
/// Sets the iterator to the given edge of the given graph. |
|
| 262 |
/// |
|
| 252 | 263 |
EdgeIt(const Graph&, const Edge&) { }
|
| 253 | 264 |
/// Next edge |
| 254 | 265 |
|
| 255 | 266 |
/// Assign the iterator to the next edge. |
| 267 |
/// |
|
| 256 | 268 |
EdgeIt& operator++() { return *this; }
|
| 257 | 269 |
}; |
| 258 | 270 |
|
| 259 |
/// \brief This iterator goes trough the incident undirected |
|
| 260 |
/// arcs of a node. |
|
| 261 |
/// |
|
| 262 |
/// This iterator goes trough the incident edges |
|
| 263 |
/// of a certain node of a graph. You should assume that the |
|
| 264 |
/// loop arcs will be iterated twice. |
|
| 265 |
/// |
|
| 271 |
/// Iterator class for the incident edges of a node. |
|
| 272 |
|
|
| 273 |
/// This iterator goes trough the incident undirected edges |
|
| 274 |
/// of a certain node of a graph. |
|
| 266 | 275 |
/// Its usage is quite simple, for example you can compute the |
| 267 |
/// degree (i.e. count the number of incident arcs of a node \c n |
|
| 268 |
/// in graph \c g of type \c Graph as follows. |
|
| 276 |
/// degree (i.e. the number of incident edges) of a node \c n |
|
| 277 |
/// in a graph \c g of type \c %Graph as follows. |
|
| 269 | 278 |
/// |
| 270 | 279 |
///\code |
| 271 | 280 |
/// int count=0; |
| 272 | 281 |
/// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
| 273 | 282 |
///\endcode |
| 283 |
/// |
|
| 284 |
/// \warning Loop edges will be iterated twice. |
|
| 274 | 285 |
class IncEdgeIt : public Edge {
|
| 275 | 286 |
public: |
| 276 | 287 |
/// Default constructor |
| 277 | 288 |
|
| 278 |
/// @warning The default constructor sets the iterator |
|
| 279 |
/// to an undefined value. |
|
| 289 |
/// Default constructor. |
|
| 290 |
/// \warning It sets the iterator to an undefined value. |
|
| 280 | 291 |
IncEdgeIt() { }
|
| 281 | 292 |
/// Copy constructor. |
| 282 | 293 |
|
| 283 | 294 |
/// Copy constructor. |
| 284 | 295 |
/// |
| 285 | 296 |
IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
|
| 286 |
/// |
|
| 297 |
/// %Invalid constructor \& conversion. |
|
| 287 | 298 |
|
| 288 |
/// |
|
| 299 |
/// Initializes the iterator to be invalid. |
|
| 300 |
/// \sa Invalid for more details. |
|
| 301 |
IncEdgeIt(Invalid) { }
|
|
| 302 |
/// Sets the iterator to the first incident edge. |
|
| 303 |
|
|
| 304 |
/// Sets the iterator to the first incident edge of the given node. |
|
| 289 | 305 |
/// |
| 290 |
IncEdgeIt(Invalid) { }
|
|
| 291 |
/// This constructor sets the iterator to first incident arc. |
|
| 306 |
IncEdgeIt(const Graph&, const Node&) { }
|
|
| 307 |
/// Sets the iterator to the given edge. |
|
| 292 | 308 |
|
| 293 |
/// This constructor set the iterator to the first incident arc of |
|
| 294 |
/// the node. |
|
| 295 |
IncEdgeIt(const Graph&, const Node&) { }
|
|
| 296 |
/// Edge -> IncEdgeIt conversion |
|
| 309 |
/// Sets the iterator to the given edge of the given graph. |
|
| 310 |
/// |
|
| 311 |
IncEdgeIt(const Graph&, const Edge&) { }
|
|
| 312 |
/// Next incident edge |
|
| 297 | 313 |
|
| 298 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 299 |
/// This feature necessitates that each time we |
|
| 300 |
/// iterate the arc-set, the iteration order is the same. |
|
| 301 |
IncEdgeIt(const Graph&, const Edge&) { }
|
|
| 302 |
/// Next incident arc |
|
| 303 |
|
|
| 304 |
/// Assign the iterator to the next incident |
|
| 314 |
/// Assign the iterator to the next incident edge |
|
| 305 | 315 |
/// of the corresponding node. |
| 306 | 316 |
IncEdgeIt& operator++() { return *this; }
|
| 307 | 317 |
}; |
| 308 | 318 |
|
| 309 |
/// The |
|
| 319 |
/// The arc type of the graph |
|
| 310 | 320 |
|
| 311 |
/// The directed arc type. It can be converted to the |
|
| 312 |
/// edge or it should be inherited from the undirected |
|
| 313 |
/// |
|
| 321 |
/// This class identifies a directed arc of the graph. It also serves |
|
| 322 |
/// as a base class of the arc iterators, |
|
| 323 |
/// thus they will convert to this type. |
|
| 314 | 324 |
class Arc {
|
| 315 | 325 |
public: |
| 316 | 326 |
/// Default constructor |
| 317 | 327 |
|
| 318 |
/// @warning The default constructor sets the iterator |
|
| 319 |
/// to an undefined value. |
|
| 328 |
/// Default constructor. |
|
| 329 |
/// \warning It sets the object to an undefined value. |
|
| 320 | 330 |
Arc() { }
|
| 321 | 331 |
/// Copy constructor. |
| 322 | 332 |
|
| 323 | 333 |
/// Copy constructor. |
| 324 | 334 |
/// |
| 325 | 335 |
Arc(const Arc&) { }
|
| 326 |
/// |
|
| 336 |
/// %Invalid constructor \& conversion. |
|
| 327 | 337 |
|
| 328 |
/// Initialize the iterator to be invalid. |
|
| 329 |
/// |
|
| 338 |
/// Initializes the object to be invalid. |
|
| 339 |
/// \sa Invalid for more details. |
|
| 330 | 340 |
Arc(Invalid) { }
|
| 331 | 341 |
/// Equality operator |
| 332 | 342 |
|
| 343 |
/// Equality operator. |
|
| 344 |
/// |
|
| 333 | 345 |
/// Two iterators are equal if and only if they point to the |
| 334 |
/// same object or both are |
|
| 346 |
/// same object or both are \c INVALID. |
|
| 335 | 347 |
bool operator==(Arc) const { return true; }
|
| 336 | 348 |
/// Inequality operator |
| 337 | 349 |
|
| 338 |
/// \sa operator==(Arc n) |
|
| 339 |
/// |
|
| 350 |
/// Inequality operator. |
|
| 340 | 351 |
bool operator!=(Arc) const { return true; }
|
| 341 | 352 |
|
| 342 | 353 |
/// Artificial ordering operator. |
| 343 | 354 |
|
| 344 |
/// To allow the use of graph descriptors as key type in std::map or |
|
| 345 |
/// similar associative container we require this. |
|
| 355 |
/// Artificial ordering operator. |
|
| 346 | 356 |
/// |
| 347 |
/// \note This operator only have to define some strict ordering of |
|
| 348 |
/// the items; this order has nothing to do with the iteration |
|
| 349 |
/// ordering of |
|
| 357 |
/// \note This operator only has to define some strict ordering of |
|
| 358 |
/// the arcs; this order has nothing to do with the iteration |
|
| 359 |
/// ordering of the arcs. |
|
| 350 | 360 |
bool operator<(Arc) const { return false; }
|
| 351 | 361 |
|
| 352 |
/// Converison to Edge |
|
| 362 |
/// Converison to \c Edge |
|
| 363 |
|
|
| 364 |
/// Converison to \c Edge. |
|
| 365 |
/// |
|
| 353 | 366 |
operator Edge() const { return Edge(); }
|
| 354 | 367 |
}; |
| 355 |
/// This iterator goes through each directed arc. |
|
| 356 | 368 |
|
| 357 |
/// |
|
| 369 |
/// Iterator class for the arcs. |
|
| 370 |
|
|
| 371 |
/// This iterator goes through each directed arc of the graph. |
|
| 358 | 372 |
/// Its usage is quite simple, for example you can count the number |
| 359 |
/// of arcs in a graph \c g of type \c Graph as follows: |
|
| 373 |
/// of arcs in a graph \c g of type \c %Graph as follows: |
|
| 360 | 374 |
///\code |
| 361 | 375 |
/// int count=0; |
| 362 |
/// for(Graph::ArcIt |
|
| 376 |
/// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count; |
|
| 363 | 377 |
///\endcode |
| 364 | 378 |
class ArcIt : public Arc {
|
| 365 | 379 |
public: |
| 366 | 380 |
/// Default constructor |
| 367 | 381 |
|
| 368 |
/// @warning The default constructor sets the iterator |
|
| 369 |
/// to an undefined value. |
|
| 382 |
/// Default constructor. |
|
| 383 |
/// \warning It sets the iterator to an undefined value. |
|
| 370 | 384 |
ArcIt() { }
|
| 371 | 385 |
/// Copy constructor. |
| 372 | 386 |
|
| 373 | 387 |
/// Copy constructor. |
| 374 | 388 |
/// |
| 375 | 389 |
ArcIt(const ArcIt& e) : Arc(e) { }
|
| 376 |
/// |
|
| 390 |
/// %Invalid constructor \& conversion. |
|
| 377 | 391 |
|
| 378 |
/// |
|
| 392 |
/// Initializes the iterator to be invalid. |
|
| 393 |
/// \sa Invalid for more details. |
|
| 394 |
ArcIt(Invalid) { }
|
|
| 395 |
/// Sets the iterator to the first arc. |
|
| 396 |
|
|
| 397 |
/// Sets the iterator to the first arc of the given graph. |
|
| 379 | 398 |
/// |
| 380 |
ArcIt(Invalid) { }
|
|
| 381 |
/// This constructor sets the iterator to the first arc. |
|
| 399 |
explicit ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
|
|
| 400 |
/// Sets the iterator to the given arc. |
|
| 382 | 401 |
|
| 383 |
/// This constructor sets the iterator to the first arc of \c g. |
|
| 384 |
///@param g the graph |
|
| 385 |
ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
|
|
| 386 |
/// Arc -> ArcIt conversion |
|
| 387 |
|
|
| 388 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 389 |
/// This feature necessitates that each time we |
|
| 390 |
/// iterate the arc-set, the iteration order is the same. |
|
| 402 |
/// Sets the iterator to the given arc of the given graph. |
|
| 403 |
/// |
|
| 391 | 404 |
ArcIt(const Graph&, const Arc&) { }
|
| 392 |
///Next arc |
|
| 405 |
/// Next arc |
|
| 393 | 406 |
|
| 394 | 407 |
/// Assign the iterator to the next arc. |
| 408 |
/// |
|
| 395 | 409 |
ArcIt& operator++() { return *this; }
|
| 396 | 410 |
}; |
| 397 | 411 |
|
| 398 |
/// |
|
| 412 |
/// Iterator class for the outgoing arcs of a node. |
|
| 399 | 413 |
|
| 400 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
|
| 401 |
/// of a graph. |
|
| 414 |
/// This iterator goes trough the \e outgoing directed arcs of a |
|
| 415 |
/// certain node of a graph. |
|
| 402 | 416 |
/// Its usage is quite simple, for example you can count the number |
| 403 | 417 |
/// of outgoing arcs of a node \c n |
| 404 |
/// in graph \c g of type \c Graph as follows. |
|
| 418 |
/// in a graph \c g of type \c %Graph as follows. |
|
| 405 | 419 |
///\code |
| 406 | 420 |
/// int count=0; |
| 407 |
/// for ( |
|
| 421 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
| 408 | 422 |
///\endcode |
| 409 |
|
|
| 410 | 423 |
class OutArcIt : public Arc {
|
| 411 | 424 |
public: |
| 412 | 425 |
/// Default constructor |
| 413 | 426 |
|
| 414 |
/// @warning The default constructor sets the iterator |
|
| 415 |
/// to an undefined value. |
|
| 427 |
/// Default constructor. |
|
| 428 |
/// \warning It sets the iterator to an undefined value. |
|
| 416 | 429 |
OutArcIt() { }
|
| 417 | 430 |
/// Copy constructor. |
| 418 | 431 |
|
| 419 | 432 |
/// Copy constructor. |
| 420 | 433 |
/// |
| 421 | 434 |
OutArcIt(const OutArcIt& e) : Arc(e) { }
|
| 422 |
/// |
|
| 435 |
/// %Invalid constructor \& conversion. |
|
| 423 | 436 |
|
| 424 |
/// |
|
| 437 |
/// Initializes the iterator to be invalid. |
|
| 438 |
/// \sa Invalid for more details. |
|
| 439 |
OutArcIt(Invalid) { }
|
|
| 440 |
/// Sets the iterator to the first outgoing arc. |
|
| 441 |
|
|
| 442 |
/// Sets the iterator to the first outgoing arc of the given node. |
|
| 425 | 443 |
/// |
| 426 |
OutArcIt(Invalid) { }
|
|
| 427 |
/// This constructor sets the iterator to the first outgoing arc. |
|
| 428 |
|
|
| 429 |
/// This constructor sets the iterator to the first outgoing arc of |
|
| 430 |
/// the node. |
|
| 431 |
///@param n the node |
|
| 432 |
///@param g the graph |
|
| 433 | 444 |
OutArcIt(const Graph& n, const Node& g) {
|
| 434 | 445 |
ignore_unused_variable_warning(n); |
| 435 | 446 |
ignore_unused_variable_warning(g); |
| 436 | 447 |
} |
| 437 |
/// |
|
| 448 |
/// Sets the iterator to the given arc. |
|
| 438 | 449 |
|
| 439 |
/// Sets the iterator to the value of the trivial iterator. |
|
| 440 |
/// This feature necessitates that each time we |
|
| 441 |
/// |
|
| 450 |
/// Sets the iterator to the given arc of the given graph. |
|
| 451 |
/// |
|
| 442 | 452 |
OutArcIt(const Graph&, const Arc&) { }
|
| 443 |
///Next outgoing arc |
|
| 453 |
/// Next outgoing arc |
|
| 444 | 454 |
|
| 445 | 455 |
/// Assign the iterator to the next |
| 446 | 456 |
/// outgoing arc of the corresponding node. |
| 447 | 457 |
OutArcIt& operator++() { return *this; }
|
| 448 | 458 |
}; |
| 449 | 459 |
|
| 450 |
/// |
|
| 460 |
/// Iterator class for the incoming arcs of a node. |
|
| 451 | 461 |
|
| 452 |
/// This iterator goes trough the \e incoming arcs of a certain node |
|
| 453 |
/// of a graph. |
|
| 462 |
/// This iterator goes trough the \e incoming directed arcs of a |
|
| 463 |
/// certain node of a graph. |
|
| 454 | 464 |
/// Its usage is quite simple, for example you can count the number |
| 455 |
/// of outgoing arcs of a node \c n |
|
| 456 |
/// in graph \c g of type \c Graph as follows. |
|
| 465 |
/// of incoming arcs of a node \c n |
|
| 466 |
/// in a graph \c g of type \c %Graph as follows. |
|
| 457 | 467 |
///\code |
| 458 | 468 |
/// int count=0; |
| 459 |
/// for( |
|
| 469 |
/// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
| 460 | 470 |
///\endcode |
| 461 |
|
|
| 462 | 471 |
class InArcIt : public Arc {
|
| 463 | 472 |
public: |
| 464 | 473 |
/// Default constructor |
| 465 | 474 |
|
| 466 |
/// @warning The default constructor sets the iterator |
|
| 467 |
/// to an undefined value. |
|
| 475 |
/// Default constructor. |
|
| 476 |
/// \warning It sets the iterator to an undefined value. |
|
| 468 | 477 |
InArcIt() { }
|
| 469 | 478 |
/// Copy constructor. |
| 470 | 479 |
|
| 471 | 480 |
/// Copy constructor. |
| 472 | 481 |
/// |
| 473 | 482 |
InArcIt(const InArcIt& e) : Arc(e) { }
|
| 474 |
/// |
|
| 483 |
/// %Invalid constructor \& conversion. |
|
| 475 | 484 |
|
| 476 |
/// |
|
| 485 |
/// Initializes the iterator to be invalid. |
|
| 486 |
/// \sa Invalid for more details. |
|
| 487 |
InArcIt(Invalid) { }
|
|
| 488 |
/// Sets the iterator to the first incoming arc. |
|
| 489 |
|
|
| 490 |
/// Sets the iterator to the first incoming arc of the given node. |
|
| 477 | 491 |
/// |
| 478 |
InArcIt(Invalid) { }
|
|
| 479 |
/// This constructor sets the iterator to first incoming arc. |
|
| 480 |
|
|
| 481 |
/// This constructor set the iterator to the first incoming arc of |
|
| 482 |
/// the node. |
|
| 483 |
///@param n the node |
|
| 484 |
///@param g the graph |
|
| 485 | 492 |
InArcIt(const Graph& g, const Node& n) {
|
| 486 | 493 |
ignore_unused_variable_warning(n); |
| 487 | 494 |
ignore_unused_variable_warning(g); |
| 488 | 495 |
} |
| 489 |
/// |
|
| 496 |
/// Sets the iterator to the given arc. |
|
| 490 | 497 |
|
| 491 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 492 |
/// This feature necessitates that each time we |
|
| 493 |
/// |
|
| 498 |
/// Sets the iterator to the given arc of the given graph. |
|
| 499 |
/// |
|
| 494 | 500 |
InArcIt(const Graph&, const Arc&) { }
|
| 495 | 501 |
/// Next incoming arc |
| 496 | 502 |
|
| 497 |
/// Assign the iterator to the next inarc of the corresponding node. |
|
| 498 |
/// |
|
| 503 |
/// Assign the iterator to the next |
|
| 504 |
/// incoming arc of the corresponding node. |
|
| 499 | 505 |
InArcIt& operator++() { return *this; }
|
| 500 | 506 |
}; |
| 501 | 507 |
|
| 502 |
/// \brief |
|
| 508 |
/// \brief Standard graph map type for the nodes. |
|
| 503 | 509 |
/// |
| 504 |
/// |
|
| 510 |
/// Standard graph map type for the nodes. |
|
| 511 |
/// It conforms to the ReferenceMap concept. |
|
| 505 | 512 |
template<class T> |
| 506 | 513 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> |
| 507 | 514 |
{
|
| 508 | 515 |
public: |
| 509 | 516 |
|
| 510 |
///\e |
|
| 511 |
NodeMap(const Graph&) { }
|
|
| 512 |
/// |
|
| 517 |
/// Constructor |
|
| 518 |
explicit NodeMap(const Graph&) { }
|
|
| 519 |
/// Constructor with given initial value |
|
| 513 | 520 |
NodeMap(const Graph&, T) { }
|
| 514 | 521 |
|
| 515 | 522 |
private: |
| 516 | 523 |
///Copy constructor |
| 517 | 524 |
NodeMap(const NodeMap& nm) : |
| 518 | 525 |
ReferenceMap<Node, T, T&, const T&>(nm) { }
|
| 519 | 526 |
///Assignment operator |
| 520 | 527 |
template <typename CMap> |
| 521 | 528 |
NodeMap& operator=(const CMap&) {
|
| 522 | 529 |
checkConcept<ReadMap<Node, T>, CMap>(); |
| 523 | 530 |
return *this; |
| 524 | 531 |
} |
| 525 | 532 |
}; |
| 526 | 533 |
|
| 527 |
/// \brief |
|
| 534 |
/// \brief Standard graph map type for the arcs. |
|
| 528 | 535 |
/// |
| 529 |
/// |
|
| 536 |
/// Standard graph map type for the arcs. |
|
| 537 |
/// It conforms to the ReferenceMap concept. |
|
| 530 | 538 |
template<class T> |
| 531 | 539 |
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> |
| 532 | 540 |
{
|
| 533 | 541 |
public: |
| 534 | 542 |
|
| 535 |
///\e |
|
| 536 |
ArcMap(const Graph&) { }
|
|
| 537 |
/// |
|
| 543 |
/// Constructor |
|
| 544 |
explicit ArcMap(const Graph&) { }
|
|
| 545 |
/// Constructor with given initial value |
|
| 538 | 546 |
ArcMap(const Graph&, T) { }
|
| 547 |
|
|
| 539 | 548 |
private: |
| 540 | 549 |
///Copy constructor |
| 541 | 550 |
ArcMap(const ArcMap& em) : |
| 542 | 551 |
ReferenceMap<Arc, T, T&, const T&>(em) { }
|
| 543 | 552 |
///Assignment operator |
| 544 | 553 |
template <typename CMap> |
| 545 | 554 |
ArcMap& operator=(const CMap&) {
|
| 546 | 555 |
checkConcept<ReadMap<Arc, T>, CMap>(); |
| 547 | 556 |
return *this; |
| 548 | 557 |
} |
| 549 | 558 |
}; |
| 550 | 559 |
|
| 551 |
/// Reference map of the edges to type \c T. |
|
| 552 |
|
|
| 553 |
/// |
|
| 560 |
/// \brief Standard graph map type for the edges. |
|
| 561 |
/// |
|
| 562 |
/// Standard graph map type for the edges. |
|
| 563 |
/// It conforms to the ReferenceMap concept. |
|
| 554 | 564 |
template<class T> |
| 555 | 565 |
class EdgeMap : public ReferenceMap<Edge, T, T&, const T&> |
| 556 | 566 |
{
|
| 557 | 567 |
public: |
| 558 | 568 |
|
| 559 |
///\e |
|
| 560 |
EdgeMap(const Graph&) { }
|
|
| 561 |
/// |
|
| 569 |
/// Constructor |
|
| 570 |
explicit EdgeMap(const Graph&) { }
|
|
| 571 |
/// Constructor with given initial value |
|
| 562 | 572 |
EdgeMap(const Graph&, T) { }
|
| 573 |
|
|
| 563 | 574 |
private: |
| 564 | 575 |
///Copy constructor |
| 565 | 576 |
EdgeMap(const EdgeMap& em) : |
| 566 | 577 |
ReferenceMap<Edge, T, T&, const T&>(em) {}
|
| 567 | 578 |
///Assignment operator |
| 568 | 579 |
template <typename CMap> |
| 569 | 580 |
EdgeMap& operator=(const CMap&) {
|
| 570 | 581 |
checkConcept<ReadMap<Edge, T>, CMap>(); |
| 571 | 582 |
return *this; |
| 572 | 583 |
} |
| 573 | 584 |
}; |
| 574 | 585 |
|
| 575 |
/// \brief |
|
| 586 |
/// \brief The first node of the edge. |
|
| 576 | 587 |
/// |
| 577 |
/// Direct the given edge. The returned arc source |
|
| 578 |
/// will be the given node. |
|
| 579 |
Arc direct(const Edge&, const Node&) const {
|
|
| 580 |
return INVALID; |
|
| 581 |
} |
|
| 582 |
|
|
| 583 |
/// |
|
| 588 |
/// Returns the first node of the given edge. |
|
| 584 | 589 |
/// |
| 585 |
/// Direct the given edge. The returned arc |
|
| 586 |
/// represents the given edge and the direction comes |
|
| 587 |
/// from the bool parameter. The source of the edge and |
|
| 588 |
/// the directed arc is the same when the given bool is true. |
|
| 589 |
Arc direct(const Edge&, bool) const {
|
|
| 590 |
return INVALID; |
|
| 591 |
} |
|
| 592 |
|
|
| 593 |
/// \brief Returns true if the arc has default orientation. |
|
| 594 |
/// |
|
| 595 |
/// Returns whether the given directed arc is same orientation as |
|
| 596 |
/// the corresponding edge's default orientation. |
|
| 597 |
bool direction(Arc) const { return true; }
|
|
| 598 |
|
|
| 599 |
/// \brief Returns the opposite directed arc. |
|
| 600 |
/// |
|
| 601 |
/// Returns the opposite directed arc. |
|
| 602 |
Arc oppositeArc(Arc) const { return INVALID; }
|
|
| 603 |
|
|
| 604 |
/// \brief Opposite node on an arc |
|
| 605 |
/// |
|
| 606 |
/// \return The opposite of the given node on the given edge. |
|
| 607 |
Node oppositeNode(Node, Edge) const { return INVALID; }
|
|
| 608 |
|
|
| 609 |
/// \brief First node of the edge. |
|
| 610 |
/// |
|
| 611 |
/// \return The first node of the given edge. |
|
| 612 |
/// |
|
| 613 |
/// Naturally edges don't have direction and thus |
|
| 614 |
/// don't have source and target node. However we use \c u() and \c v() |
|
| 615 |
/// methods to query the two nodes of the arc. The direction of the |
|
| 616 |
/// arc which arises this way is called the inherent direction of the |
|
| 617 |
/// edge, and is used to define the "default" direction |
|
| 618 |
/// of the directed versions of the arcs. |
|
| 590 |
/// Edges don't have source and target nodes, however methods |
|
| 591 |
/// u() and v() are used to query the two end-nodes of an edge. |
|
| 592 |
/// The orientation of an edge that arises this way is called |
|
| 593 |
/// the inherent direction, it is used to define the default |
|
| 594 |
/// direction for the corresponding arcs. |
|
| 619 | 595 |
/// \sa v() |
| 620 | 596 |
/// \sa direction() |
| 621 | 597 |
Node u(Edge) const { return INVALID; }
|
| 622 | 598 |
|
| 623 |
/// \brief |
|
| 599 |
/// \brief The second node of the edge. |
|
| 624 | 600 |
/// |
| 625 |
/// |
|
| 601 |
/// Returns the second node of the given edge. |
|
| 626 | 602 |
/// |
| 627 |
/// Naturally edges don't have direction and thus |
|
| 628 |
/// don't have source and target node. However we use \c u() and \c v() |
|
| 629 |
/// methods to query the two nodes of the arc. The direction of the |
|
| 630 |
/// arc which arises this way is called the inherent direction of the |
|
| 631 |
/// edge, and is used to define the "default" direction |
|
| 632 |
/// of the directed versions of the arcs. |
|
| 603 |
/// Edges don't have source and target nodes, however methods |
|
| 604 |
/// u() and v() are used to query the two end-nodes of an edge. |
|
| 605 |
/// The orientation of an edge that arises this way is called |
|
| 606 |
/// the inherent direction, it is used to define the default |
|
| 607 |
/// direction for the corresponding arcs. |
|
| 633 | 608 |
/// \sa u() |
| 634 | 609 |
/// \sa direction() |
| 635 | 610 |
Node v(Edge) const { return INVALID; }
|
| 636 | 611 |
|
| 637 |
/// \brief |
|
| 612 |
/// \brief The source node of the arc. |
|
| 613 |
/// |
|
| 614 |
/// Returns the source node of the given arc. |
|
| 638 | 615 |
Node source(Arc) const { return INVALID; }
|
| 639 | 616 |
|
| 640 |
/// \brief |
|
| 617 |
/// \brief The target node of the arc. |
|
| 618 |
/// |
|
| 619 |
/// Returns the target node of the given arc. |
|
| 641 | 620 |
Node target(Arc) const { return INVALID; }
|
| 642 | 621 |
|
| 643 |
/// \brief |
|
| 622 |
/// \brief The ID of the node. |
|
| 623 |
/// |
|
| 624 |
/// Returns the ID of the given node. |
|
| 644 | 625 |
int id(Node) const { return -1; }
|
| 645 | 626 |
|
| 646 |
/// \brief |
|
| 627 |
/// \brief The ID of the edge. |
|
| 628 |
/// |
|
| 629 |
/// Returns the ID of the given edge. |
|
| 647 | 630 |
int id(Edge) const { return -1; }
|
| 648 | 631 |
|
| 649 |
/// \brief |
|
| 632 |
/// \brief The ID of the arc. |
|
| 633 |
/// |
|
| 634 |
/// Returns the ID of the given arc. |
|
| 650 | 635 |
int id(Arc) const { return -1; }
|
| 651 | 636 |
|
| 652 |
/// \brief |
|
| 637 |
/// \brief The node with the given ID. |
|
| 653 | 638 |
/// |
| 654 |
/// |
|
| 639 |
/// Returns the node with the given ID. |
|
| 640 |
/// \pre The argument should be a valid node ID in the graph. |
|
| 655 | 641 |
Node nodeFromId(int) const { return INVALID; }
|
| 656 | 642 |
|
| 657 |
/// \brief |
|
| 643 |
/// \brief The edge with the given ID. |
|
| 658 | 644 |
/// |
| 659 |
/// |
|
| 645 |
/// Returns the edge with the given ID. |
|
| 646 |
/// \pre The argument should be a valid edge ID in the graph. |
|
| 660 | 647 |
Edge edgeFromId(int) const { return INVALID; }
|
| 661 | 648 |
|
| 662 |
/// \brief |
|
| 649 |
/// \brief The arc with the given ID. |
|
| 663 | 650 |
/// |
| 664 |
/// |
|
| 651 |
/// Returns the arc with the given ID. |
|
| 652 |
/// \pre The argument should be a valid arc ID in the graph. |
|
| 665 | 653 |
Arc arcFromId(int) const { return INVALID; }
|
| 666 | 654 |
|
| 667 |
/// \brief |
|
| 655 |
/// \brief An upper bound on the node IDs. |
|
| 656 |
/// |
|
| 657 |
/// Returns an upper bound on the node IDs. |
|
| 668 | 658 |
int maxNodeId() const { return -1; }
|
| 669 | 659 |
|
| 670 |
/// \brief |
|
| 660 |
/// \brief An upper bound on the edge IDs. |
|
| 661 |
/// |
|
| 662 |
/// Returns an upper bound on the edge IDs. |
|
| 671 | 663 |
int maxEdgeId() const { return -1; }
|
| 672 | 664 |
|
| 673 |
/// \brief |
|
| 665 |
/// \brief An upper bound on the arc IDs. |
|
| 666 |
/// |
|
| 667 |
/// Returns an upper bound on the arc IDs. |
|
| 674 | 668 |
int maxArcId() const { return -1; }
|
| 675 | 669 |
|
| 670 |
/// \brief The direction of the arc. |
|
| 671 |
/// |
|
| 672 |
/// Returns \c true if the direction of the given arc is the same as |
|
| 673 |
/// the inherent orientation of the represented edge. |
|
| 674 |
bool direction(Arc) const { return true; }
|
|
| 675 |
|
|
| 676 |
/// \brief Direct the edge. |
|
| 677 |
/// |
|
| 678 |
/// Direct the given edge. The returned arc |
|
| 679 |
/// represents the given edge and its direction comes |
|
| 680 |
/// from the bool parameter. If it is \c true, then the direction |
|
| 681 |
/// of the arc is the same as the inherent orientation of the edge. |
|
| 682 |
Arc direct(Edge, bool) const {
|
|
| 683 |
return INVALID; |
|
| 684 |
} |
|
| 685 |
|
|
| 686 |
/// \brief Direct the edge. |
|
| 687 |
/// |
|
| 688 |
/// Direct the given edge. The returned arc represents the given |
|
| 689 |
/// edge and its source node is the given node. |
|
| 690 |
Arc direct(Edge, Node) const {
|
|
| 691 |
return INVALID; |
|
| 692 |
} |
|
| 693 |
|
|
| 694 |
/// \brief The oppositely directed arc. |
|
| 695 |
/// |
|
| 696 |
/// Returns the oppositely directed arc representing the same edge. |
|
| 697 |
Arc oppositeArc(Arc) const { return INVALID; }
|
|
| 698 |
|
|
| 699 |
/// \brief The opposite node on the edge. |
|
| 700 |
/// |
|
| 701 |
/// Returns the opposite node on the given edge. |
|
| 702 |
Node oppositeNode(Node, Edge) const { return INVALID; }
|
|
| 703 |
|
|
| 676 | 704 |
void first(Node&) const {}
|
| 677 | 705 |
void next(Node&) const {}
|
| 678 | 706 |
|
| 679 | 707 |
void first(Edge&) const {}
|
| 680 | 708 |
void next(Edge&) const {}
|
| 681 | 709 |
|
| 682 | 710 |
void first(Arc&) const {}
|
| 683 | 711 |
void next(Arc&) const {}
|
| 684 | 712 |
|
| 685 | 713 |
void firstOut(Arc&, Node) const {}
|
| 686 | 714 |
void nextOut(Arc&) const {}
|
| 687 | 715 |
|
| 688 | 716 |
void firstIn(Arc&, Node) const {}
|
| 689 | 717 |
void nextIn(Arc&) const {}
|
| 690 | 718 |
|
| 691 | 719 |
void firstInc(Edge &, bool &, const Node &) const {}
|
| 692 | 720 |
void nextInc(Edge &, bool &) const {}
|
| 693 | 721 |
|
| 694 | 722 |
// The second parameter is dummy. |
| 695 | 723 |
Node fromId(int, Node) const { return INVALID; }
|
| 696 | 724 |
// The second parameter is dummy. |
| 697 | 725 |
Edge fromId(int, Edge) const { return INVALID; }
|
| 698 | 726 |
// The second parameter is dummy. |
| 699 | 727 |
Arc fromId(int, Arc) const { return INVALID; }
|
| 700 | 728 |
|
| 701 | 729 |
// Dummy parameter. |
| 702 | 730 |
int maxId(Node) const { return -1; }
|
| 703 | 731 |
// Dummy parameter. |
| 704 | 732 |
int maxId(Edge) const { return -1; }
|
| 705 | 733 |
// Dummy parameter. |
| 706 | 734 |
int maxId(Arc) const { return -1; }
|
| 707 | 735 |
|
| 708 |
/// \brief |
|
| 736 |
/// \brief The base node of the iterator. |
|
| 709 | 737 |
/// |
| 710 |
/// Returns the base node (the source in this case) of the iterator |
|
| 711 |
Node baseNode(OutArcIt e) const {
|
|
| 712 |
return source(e); |
|
| 713 |
} |
|
| 714 |
/// |
|
| 738 |
/// Returns the base node of the given incident edge iterator. |
|
| 739 |
Node baseNode(IncEdgeIt) const { return INVALID; }
|
|
| 740 |
|
|
| 741 |
/// \brief The running node of the iterator. |
|
| 715 | 742 |
/// |
| 716 |
/// Returns the running node (the target in this case) of the |
|
| 717 |
/// iterator |
|
| 718 |
Node runningNode(OutArcIt e) const {
|
|
| 719 |
return target(e); |
|
| 720 |
|
|
| 743 |
/// Returns the running node of the given incident edge iterator. |
|
| 744 |
Node runningNode(IncEdgeIt) const { return INVALID; }
|
|
| 721 | 745 |
|
| 722 |
/// \brief |
|
| 746 |
/// \brief The base node of the iterator. |
|
| 723 | 747 |
/// |
| 724 |
/// Returns the base node (the target in this case) of the iterator |
|
| 725 |
Node baseNode(InArcIt e) const {
|
|
| 726 |
return target(e); |
|
| 727 |
} |
|
| 728 |
/// |
|
| 748 |
/// Returns the base node of the given outgoing arc iterator |
|
| 749 |
/// (i.e. the source node of the corresponding arc). |
|
| 750 |
Node baseNode(OutArcIt) const { return INVALID; }
|
|
| 751 |
|
|
| 752 |
/// \brief The running node of the iterator. |
|
| 729 | 753 |
/// |
| 730 |
/// Returns the running node (the source in this case) of the |
|
| 731 |
/// iterator |
|
| 732 |
Node runningNode(InArcIt e) const {
|
|
| 733 |
return source(e); |
|
| 734 |
|
|
| 754 |
/// Returns the running node of the given outgoing arc iterator |
|
| 755 |
/// (i.e. the target node of the corresponding arc). |
|
| 756 |
Node runningNode(OutArcIt) const { return INVALID; }
|
|
| 735 | 757 |
|
| 736 |
/// \brief |
|
| 758 |
/// \brief The base node of the iterator. |
|
| 737 | 759 |
/// |
| 738 |
/// Returns the base node of the iterator |
|
| 739 |
Node baseNode(IncEdgeIt) const {
|
|
| 740 |
return INVALID; |
|
| 741 |
} |
|
| 760 |
/// Returns the base node of the given incomming arc iterator |
|
| 761 |
/// (i.e. the target node of the corresponding arc). |
|
| 762 |
Node baseNode(InArcIt) const { return INVALID; }
|
|
| 742 | 763 |
|
| 743 |
/// \brief |
|
| 764 |
/// \brief The running node of the iterator. |
|
| 744 | 765 |
/// |
| 745 |
/// Returns the running node of the iterator |
|
| 746 |
Node runningNode(IncEdgeIt) const {
|
|
| 747 |
return INVALID; |
|
| 748 |
} |
|
| 766 |
/// Returns the running node of the given incomming arc iterator |
|
| 767 |
/// (i.e. the source node of the corresponding arc). |
|
| 768 |
Node runningNode(InArcIt) const { return INVALID; }
|
|
| 749 | 769 |
|
| 750 | 770 |
template <typename _Graph> |
| 751 | 771 |
struct Constraints {
|
| 752 | 772 |
void constraints() {
|
| 753 | 773 |
checkConcept<BaseGraphComponent, _Graph>(); |
| 754 | 774 |
checkConcept<IterableGraphComponent<>, _Graph>(); |
| 755 | 775 |
checkConcept<IDableGraphComponent<>, _Graph>(); |
| 756 | 776 |
checkConcept<MappableGraphComponent<>, _Graph>(); |
| 757 | 777 |
} |
| 758 | 778 |
}; |
| 759 | 779 |
|
| 760 | 780 |
}; |
| 761 | 781 |
|
| 762 | 782 |
} |
| 763 | 783 |
|
| 764 | 784 |
} |
| 765 | 785 |
|
| 766 | 786 |
#endif |
| ... | ... |
@@ -71,49 +71,49 @@ |
| 71 | 71 |
/// Assignment operator for the item. |
| 72 | 72 |
GraphItem& operator=(const GraphItem&) { return *this; }
|
| 73 | 73 |
|
| 74 | 74 |
/// \brief Assignment operator for INVALID. |
| 75 | 75 |
/// |
| 76 | 76 |
/// This operator makes the item invalid. |
| 77 | 77 |
GraphItem& operator=(Invalid) { return *this; }
|
| 78 | 78 |
|
| 79 | 79 |
/// \brief Equality operator. |
| 80 | 80 |
/// |
| 81 | 81 |
/// Equality operator. |
| 82 | 82 |
bool operator==(const GraphItem&) const { return false; }
|
| 83 | 83 |
|
| 84 | 84 |
/// \brief Inequality operator. |
| 85 | 85 |
/// |
| 86 | 86 |
/// Inequality operator. |
| 87 | 87 |
bool operator!=(const GraphItem&) const { return false; }
|
| 88 | 88 |
|
| 89 | 89 |
/// \brief Ordering operator. |
| 90 | 90 |
/// |
| 91 | 91 |
/// This operator defines an ordering of the items. |
| 92 | 92 |
/// It makes possible to use graph item types as key types in |
| 93 | 93 |
/// associative containers (e.g. \c std::map). |
| 94 | 94 |
/// |
| 95 |
/// \note This operator only |
|
| 95 |
/// \note This operator only has to define some strict ordering of |
|
| 96 | 96 |
/// the items; this order has nothing to do with the iteration |
| 97 | 97 |
/// ordering of the items. |
| 98 | 98 |
bool operator<(const GraphItem&) const { return false; }
|
| 99 | 99 |
|
| 100 | 100 |
template<typename _GraphItem> |
| 101 | 101 |
struct Constraints {
|
| 102 | 102 |
void constraints() {
|
| 103 | 103 |
_GraphItem i1; |
| 104 | 104 |
i1=INVALID; |
| 105 | 105 |
_GraphItem i2 = i1; |
| 106 | 106 |
_GraphItem i3 = INVALID; |
| 107 | 107 |
|
| 108 | 108 |
i1 = i2 = i3; |
| 109 | 109 |
|
| 110 | 110 |
bool b; |
| 111 | 111 |
b = (ia == ib) && (ia != ib); |
| 112 | 112 |
b = (ia == INVALID) && (ib != INVALID); |
| 113 | 113 |
b = (ia < ib); |
| 114 | 114 |
} |
| 115 | 115 |
|
| 116 | 116 |
const _GraphItem &ia; |
| 117 | 117 |
const _GraphItem &ib; |
| 118 | 118 |
}; |
| 119 | 119 |
}; |
| ... | ... |
@@ -90,48 +90,81 @@ |
| 90 | 90 |
cols = cplex.cols; |
| 91 | 91 |
messageLevel(MESSAGE_NOTHING); |
| 92 | 92 |
} |
| 93 | 93 |
|
| 94 | 94 |
CplexBase::~CplexBase() {
|
| 95 | 95 |
CPXfreeprob(cplexEnv(),&_prob); |
| 96 | 96 |
} |
| 97 | 97 |
|
| 98 | 98 |
int CplexBase::_addCol() {
|
| 99 | 99 |
int i = CPXgetnumcols(cplexEnv(), _prob); |
| 100 | 100 |
double lb = -INF, ub = INF; |
| 101 | 101 |
CPXnewcols(cplexEnv(), _prob, 1, 0, &lb, &ub, 0, 0); |
| 102 | 102 |
return i; |
| 103 | 103 |
} |
| 104 | 104 |
|
| 105 | 105 |
|
| 106 | 106 |
int CplexBase::_addRow() {
|
| 107 | 107 |
int i = CPXgetnumrows(cplexEnv(), _prob); |
| 108 | 108 |
const double ub = INF; |
| 109 | 109 |
const char s = 'L'; |
| 110 | 110 |
CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0); |
| 111 | 111 |
return i; |
| 112 | 112 |
} |
| 113 | 113 |
|
| 114 |
int CplexBase::_addRow(Value lb, ExprIterator b, |
|
| 115 |
ExprIterator e, Value ub) {
|
|
| 116 |
int i = CPXgetnumrows(cplexEnv(), _prob); |
|
| 117 |
if (lb == -INF) {
|
|
| 118 |
const char s = 'L'; |
|
| 119 |
CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0); |
|
| 120 |
} else if (ub == INF) {
|
|
| 121 |
const char s = 'G'; |
|
| 122 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0); |
|
| 123 |
} else if (lb == ub){
|
|
| 124 |
const char s = 'E'; |
|
| 125 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0); |
|
| 126 |
} else {
|
|
| 127 |
const char s = 'R'; |
|
| 128 |
double len = ub - lb; |
|
| 129 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, &len, 0); |
|
| 130 |
} |
|
| 131 |
|
|
| 132 |
std::vector<int> indices; |
|
| 133 |
std::vector<int> rowlist; |
|
| 134 |
std::vector<Value> values; |
|
| 135 |
|
|
| 136 |
for(ExprIterator it=b; it!=e; ++it) {
|
|
| 137 |
indices.push_back(it->first); |
|
| 138 |
values.push_back(it->second); |
|
| 139 |
rowlist.push_back(i); |
|
| 140 |
} |
|
| 141 |
|
|
| 142 |
CPXchgcoeflist(cplexEnv(), _prob, values.size(), |
|
| 143 |
&rowlist.front(), &indices.front(), &values.front()); |
|
| 144 |
|
|
| 145 |
return i; |
|
| 146 |
} |
|
| 114 | 147 |
|
| 115 | 148 |
void CplexBase::_eraseCol(int i) {
|
| 116 | 149 |
CPXdelcols(cplexEnv(), _prob, i, i); |
| 117 | 150 |
} |
| 118 | 151 |
|
| 119 | 152 |
void CplexBase::_eraseRow(int i) {
|
| 120 | 153 |
CPXdelrows(cplexEnv(), _prob, i, i); |
| 121 | 154 |
} |
| 122 | 155 |
|
| 123 | 156 |
void CplexBase::_eraseColId(int i) {
|
| 124 | 157 |
cols.eraseIndex(i); |
| 125 | 158 |
cols.shiftIndices(i); |
| 126 | 159 |
} |
| 127 | 160 |
void CplexBase::_eraseRowId(int i) {
|
| 128 | 161 |
rows.eraseIndex(i); |
| 129 | 162 |
rows.shiftIndices(i); |
| 130 | 163 |
} |
| 131 | 164 |
|
| 132 | 165 |
void CplexBase::_getColName(int col, std::string &name) const {
|
| 133 | 166 |
int size; |
| 134 | 167 |
CPXgetcolname(cplexEnv(), _prob, 0, 0, 0, &size, col, col); |
| 135 | 168 |
if (size == 0) {
|
| 136 | 169 |
name.clear(); |
| 137 | 170 |
return; |
| ... | ... |
@@ -72,48 +72,49 @@ |
| 72 | 72 |
protected: |
| 73 | 73 |
|
| 74 | 74 |
cpxenv* cplexEnv() { return _env; }
|
| 75 | 75 |
const cpxenv* cplexEnv() const { return _env; }
|
| 76 | 76 |
}; |
| 77 | 77 |
|
| 78 | 78 |
/// \brief Base interface for the CPLEX LP and MIP solver |
| 79 | 79 |
/// |
| 80 | 80 |
/// This class implements the common interface of the CPLEX LP and |
| 81 | 81 |
/// MIP solvers. |
| 82 | 82 |
/// \ingroup lp_group |
| 83 | 83 |
class CplexBase : virtual public LpBase {
|
| 84 | 84 |
protected: |
| 85 | 85 |
|
| 86 | 86 |
CplexEnv _env; |
| 87 | 87 |
cpxlp* _prob; |
| 88 | 88 |
|
| 89 | 89 |
CplexBase(); |
| 90 | 90 |
CplexBase(const CplexEnv&); |
| 91 | 91 |
CplexBase(const CplexBase &); |
| 92 | 92 |
virtual ~CplexBase(); |
| 93 | 93 |
|
| 94 | 94 |
virtual int _addCol(); |
| 95 | 95 |
virtual int _addRow(); |
| 96 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 96 | 97 |
|
| 97 | 98 |
virtual void _eraseCol(int i); |
| 98 | 99 |
virtual void _eraseRow(int i); |
| 99 | 100 |
|
| 100 | 101 |
virtual void _eraseColId(int i); |
| 101 | 102 |
virtual void _eraseRowId(int i); |
| 102 | 103 |
|
| 103 | 104 |
virtual void _getColName(int col, std::string& name) const; |
| 104 | 105 |
virtual void _setColName(int col, const std::string& name); |
| 105 | 106 |
virtual int _colByName(const std::string& name) const; |
| 106 | 107 |
|
| 107 | 108 |
virtual void _getRowName(int row, std::string& name) const; |
| 108 | 109 |
virtual void _setRowName(int row, const std::string& name); |
| 109 | 110 |
virtual int _rowByName(const std::string& name) const; |
| 110 | 111 |
|
| 111 | 112 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
| 112 | 113 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
| 113 | 114 |
|
| 114 | 115 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
| 115 | 116 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
| 116 | 117 |
|
| 117 | 118 |
virtual void _setCoeff(int row, int col, Value value); |
| 118 | 119 |
virtual Value _getCoeff(int row, int col) const; |
| 119 | 120 |
| ... | ... |
@@ -846,49 +846,49 @@ |
| 846 | 846 |
return Arc(n); |
| 847 | 847 |
} |
| 848 | 848 |
|
| 849 | 849 |
void clear() {
|
| 850 | 850 |
Node node; |
| 851 | 851 |
for (first(node); node != INVALID; next(node)) {
|
| 852 | 852 |
(*_nodes)[node].first_in = -1; |
| 853 | 853 |
(*_nodes)[node].first_out = -1; |
| 854 | 854 |
} |
| 855 | 855 |
arcs.clear(); |
| 856 | 856 |
} |
| 857 | 857 |
|
| 858 | 858 |
void first(Node& node) const {
|
| 859 | 859 |
_graph->first(node); |
| 860 | 860 |
} |
| 861 | 861 |
|
| 862 | 862 |
void next(Node& node) const {
|
| 863 | 863 |
_graph->next(node); |
| 864 | 864 |
} |
| 865 | 865 |
|
| 866 | 866 |
void first(Arc& arc) const {
|
| 867 | 867 |
arc.id = arcs.size() - 1; |
| 868 | 868 |
} |
| 869 | 869 |
|
| 870 |
void next(Arc& arc) |
|
| 870 |
static void next(Arc& arc) {
|
|
| 871 | 871 |
--arc.id; |
| 872 | 872 |
} |
| 873 | 873 |
|
| 874 | 874 |
void firstOut(Arc& arc, const Node& node) const {
|
| 875 | 875 |
arc.id = (*_nodes)[node].first_out; |
| 876 | 876 |
} |
| 877 | 877 |
|
| 878 | 878 |
void nextOut(Arc& arc) const {
|
| 879 | 879 |
arc.id = arcs[arc.id].next_out; |
| 880 | 880 |
} |
| 881 | 881 |
|
| 882 | 882 |
void firstIn(Arc& arc, const Node& node) const {
|
| 883 | 883 |
arc.id = (*_nodes)[node].first_in; |
| 884 | 884 |
} |
| 885 | 885 |
|
| 886 | 886 |
void nextIn(Arc& arc) const {
|
| 887 | 887 |
arc.id = arcs[arc.id].next_in; |
| 888 | 888 |
} |
| 889 | 889 |
|
| 890 | 890 |
int id(const Node& node) const { return _graph->id(node); }
|
| 891 | 891 |
int id(const Arc& arc) const { return arc.id; }
|
| 892 | 892 |
|
| 893 | 893 |
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
|
| 894 | 894 |
Arc arcFromId(int ix) const { return Arc(ix); }
|
| ... | ... |
@@ -1152,57 +1152,57 @@ |
| 1152 | 1152 |
|
| 1153 | 1153 |
return Edge(n / 2); |
| 1154 | 1154 |
} |
| 1155 | 1155 |
|
| 1156 | 1156 |
void clear() {
|
| 1157 | 1157 |
Node node; |
| 1158 | 1158 |
for (first(node); node != INVALID; next(node)) {
|
| 1159 | 1159 |
(*_nodes)[node].first_out = -1; |
| 1160 | 1160 |
} |
| 1161 | 1161 |
arcs.clear(); |
| 1162 | 1162 |
} |
| 1163 | 1163 |
|
| 1164 | 1164 |
void first(Node& node) const {
|
| 1165 | 1165 |
_graph->first(node); |
| 1166 | 1166 |
} |
| 1167 | 1167 |
|
| 1168 | 1168 |
void next(Node& node) const {
|
| 1169 | 1169 |
_graph->next(node); |
| 1170 | 1170 |
} |
| 1171 | 1171 |
|
| 1172 | 1172 |
void first(Arc& arc) const {
|
| 1173 | 1173 |
arc.id = arcs.size() - 1; |
| 1174 | 1174 |
} |
| 1175 | 1175 |
|
| 1176 |
void next(Arc& arc) |
|
| 1176 |
static void next(Arc& arc) {
|
|
| 1177 | 1177 |
--arc.id; |
| 1178 | 1178 |
} |
| 1179 | 1179 |
|
| 1180 | 1180 |
void first(Edge& arc) const {
|
| 1181 | 1181 |
arc.id = arcs.size() / 2 - 1; |
| 1182 | 1182 |
} |
| 1183 | 1183 |
|
| 1184 |
void next(Edge& arc) |
|
| 1184 |
static void next(Edge& arc) {
|
|
| 1185 | 1185 |
--arc.id; |
| 1186 | 1186 |
} |
| 1187 | 1187 |
|
| 1188 | 1188 |
void firstOut(Arc& arc, const Node& node) const {
|
| 1189 | 1189 |
arc.id = (*_nodes)[node].first_out; |
| 1190 | 1190 |
} |
| 1191 | 1191 |
|
| 1192 | 1192 |
void nextOut(Arc& arc) const {
|
| 1193 | 1193 |
arc.id = arcs[arc.id].next_out; |
| 1194 | 1194 |
} |
| 1195 | 1195 |
|
| 1196 | 1196 |
void firstIn(Arc& arc, const Node& node) const {
|
| 1197 | 1197 |
arc.id = (((*_nodes)[node].first_out) ^ 1); |
| 1198 | 1198 |
if (arc.id == -2) arc.id = -1; |
| 1199 | 1199 |
} |
| 1200 | 1200 |
|
| 1201 | 1201 |
void nextIn(Arc& arc) const {
|
| 1202 | 1202 |
arc.id = ((arcs[arc.id ^ 1].next_out) ^ 1); |
| 1203 | 1203 |
if (arc.id == -2) arc.id = -1; |
| 1204 | 1204 |
} |
| 1205 | 1205 |
|
| 1206 | 1206 |
void firstInc(Edge &arc, bool& dir, const Node& node) const {
|
| 1207 | 1207 |
int de = (*_nodes)[node].first_out; |
| 1208 | 1208 |
if (de != -1 ) {
|
| ... | ... |
@@ -3,76 +3,76 @@ |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_FULL_GRAPH_H |
| 20 | 20 |
#define LEMON_FULL_GRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/bits/graph_extender.h> |
| 24 | 24 |
|
| 25 | 25 |
///\ingroup graphs |
| 26 | 26 |
///\file |
| 27 |
///\brief |
|
| 27 |
///\brief FullDigraph and FullGraph classes. |
|
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
class FullDigraphBase {
|
| 32 | 32 |
public: |
| 33 | 33 |
|
| 34 | 34 |
typedef FullDigraphBase Digraph; |
| 35 | 35 |
|
| 36 | 36 |
class Node; |
| 37 | 37 |
class Arc; |
| 38 | 38 |
|
| 39 | 39 |
protected: |
| 40 | 40 |
|
| 41 | 41 |
int _node_num; |
| 42 | 42 |
int _arc_num; |
| 43 | 43 |
|
| 44 | 44 |
FullDigraphBase() {}
|
| 45 | 45 |
|
| 46 | 46 |
void construct(int n) { _node_num = n; _arc_num = n * n; }
|
| 47 | 47 |
|
| 48 | 48 |
public: |
| 49 | 49 |
|
| 50 | 50 |
typedef True NodeNumTag; |
| 51 | 51 |
typedef True ArcNumTag; |
| 52 | 52 |
|
| 53 | 53 |
Node operator()(int ix) const { return Node(ix); }
|
| 54 |
int index(const Node& node) |
|
| 54 |
static int index(const Node& node) { return node._id; }
|
|
| 55 | 55 |
|
| 56 | 56 |
Arc arc(const Node& s, const Node& t) const {
|
| 57 | 57 |
return Arc(s._id * _node_num + t._id); |
| 58 | 58 |
} |
| 59 | 59 |
|
| 60 | 60 |
int nodeNum() const { return _node_num; }
|
| 61 | 61 |
int arcNum() const { return _arc_num; }
|
| 62 | 62 |
|
| 63 | 63 |
int maxNodeId() const { return _node_num - 1; }
|
| 64 | 64 |
int maxArcId() const { return _arc_num - 1; }
|
| 65 | 65 |
|
| 66 | 66 |
Node source(Arc arc) const { return arc._id / _node_num; }
|
| 67 | 67 |
Node target(Arc arc) const { return arc._id % _node_num; }
|
| 68 | 68 |
|
| 69 | 69 |
static int id(Node node) { return node._id; }
|
| 70 | 70 |
static int id(Arc arc) { return arc._id; }
|
| 71 | 71 |
|
| 72 | 72 |
static Node nodeFromId(int id) { return Node(id);}
|
| 73 | 73 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 74 | 74 |
|
| 75 | 75 |
typedef True FindArcTag; |
| 76 | 76 |
|
| 77 | 77 |
Arc findArc(Node s, Node t, Arc prev = INVALID) const {
|
| 78 | 78 |
return prev == INVALID ? arc(s, t) : INVALID; |
| ... | ... |
@@ -127,115 +127,119 @@ |
| 127 | 127 |
void firstOut(Arc& arc, const Node& node) const {
|
| 128 | 128 |
arc._id = (node._id + 1) * _node_num - 1; |
| 129 | 129 |
} |
| 130 | 130 |
|
| 131 | 131 |
void nextOut(Arc& arc) const {
|
| 132 | 132 |
if (arc._id % _node_num == 0) arc._id = 0; |
| 133 | 133 |
--arc._id; |
| 134 | 134 |
} |
| 135 | 135 |
|
| 136 | 136 |
void firstIn(Arc& arc, const Node& node) const {
|
| 137 | 137 |
arc._id = _arc_num + node._id - _node_num; |
| 138 | 138 |
} |
| 139 | 139 |
|
| 140 | 140 |
void nextIn(Arc& arc) const {
|
| 141 | 141 |
arc._id -= _node_num; |
| 142 | 142 |
if (arc._id < 0) arc._id = -1; |
| 143 | 143 |
} |
| 144 | 144 |
|
| 145 | 145 |
}; |
| 146 | 146 |
|
| 147 | 147 |
typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase; |
| 148 | 148 |
|
| 149 | 149 |
/// \ingroup graphs |
| 150 | 150 |
/// |
| 151 |
/// \brief A full |
|
| 151 |
/// \brief A directed full graph class. |
|
| 152 | 152 |
/// |
| 153 |
/// This is a simple and fast directed full graph implementation. |
|
| 154 |
/// From each node go arcs to each node (including the source node), |
|
| 155 |
/// therefore the number of the arcs in the digraph is the square of |
|
| 156 |
/// the node number. This digraph type is completely static, so you |
|
| 157 |
/// can neither add nor delete either arcs or nodes, and it needs |
|
| 158 |
/// constant space in memory. |
|
| 153 |
/// FullDigraph is a simple and fast implmenetation of directed full |
|
| 154 |
/// (complete) graphs. It contains an arc from each node to each node |
|
| 155 |
/// (including a loop for each node), therefore the number of arcs |
|
| 156 |
/// is the square of the number of nodes. |
|
| 157 |
/// This class is completely static and it needs constant memory space. |
|
| 158 |
/// Thus you can neither add nor delete nodes or arcs, however |
|
| 159 |
/// the structure can be resized using resize(). |
|
| 159 | 160 |
/// |
| 160 |
/// This class fully conforms to the \ref concepts::Digraph |
|
| 161 |
/// "Digraph concept". |
|
| 161 |
/// This type fully conforms to the \ref concepts::Digraph "Digraph concept". |
|
| 162 |
/// Most of its member functions and nested classes are documented |
|
| 163 |
/// only in the concept class. |
|
| 162 | 164 |
/// |
| 163 |
/// |
|
| 165 |
/// \note FullDigraph and FullGraph classes are very similar, |
|
| 164 | 166 |
/// but there are two differences. While this class conforms only |
| 165 |
/// to the \ref concepts::Digraph "Digraph" concept, the \c FullGraph |
|
| 166 |
/// class conforms to the \ref concepts::Graph "Graph" concept, |
|
| 167 |
/// moreover \c FullGraph does not contain a loop arc for each |
|
| 168 |
/// node as \c FullDigraph does. |
|
| 167 |
/// to the \ref concepts::Digraph "Digraph" concept, FullGraph |
|
| 168 |
/// conforms to the \ref concepts::Graph "Graph" concept, |
|
| 169 |
/// moreover FullGraph does not contain a loop for each |
|
| 170 |
/// node as this class does. |
|
| 169 | 171 |
/// |
| 170 | 172 |
/// \sa FullGraph |
| 171 | 173 |
class FullDigraph : public ExtendedFullDigraphBase {
|
| 172 | 174 |
typedef ExtendedFullDigraphBase Parent; |
| 173 | 175 |
|
| 174 | 176 |
public: |
| 175 | 177 |
|
| 176 |
/// \brief |
|
| 178 |
/// \brief Default constructor. |
|
| 179 |
/// |
|
| 180 |
/// Default constructor. The number of nodes and arcs will be zero. |
|
| 177 | 181 |
FullDigraph() { construct(0); }
|
| 178 | 182 |
|
| 179 | 183 |
/// \brief Constructor |
| 180 | 184 |
/// |
| 181 | 185 |
/// Constructor. |
| 182 | 186 |
/// \param n The number of the nodes. |
| 183 | 187 |
FullDigraph(int n) { construct(n); }
|
| 184 | 188 |
|
| 185 | 189 |
/// \brief Resizes the digraph |
| 186 | 190 |
/// |
| 187 |
/// Resizes the digraph. The function will fully destroy and |
|
| 188 |
/// rebuild the digraph. This cause that the maps of the digraph will |
|
| 191 |
/// This function resizes the digraph. It fully destroys and |
|
| 192 |
/// rebuilds the structure, therefore the maps of the digraph will be |
|
| 189 | 193 |
/// reallocated automatically and the previous values will be lost. |
| 190 | 194 |
void resize(int n) {
|
| 191 | 195 |
Parent::notifier(Arc()).clear(); |
| 192 | 196 |
Parent::notifier(Node()).clear(); |
| 193 | 197 |
construct(n); |
| 194 | 198 |
Parent::notifier(Node()).build(); |
| 195 | 199 |
Parent::notifier(Arc()).build(); |
| 196 | 200 |
} |
| 197 | 201 |
|
| 198 | 202 |
/// \brief Returns the node with the given index. |
| 199 | 203 |
/// |
| 200 |
/// Returns the node with the given index. Since it is a static |
|
| 201 |
/// digraph its nodes can be indexed with integers from the range |
|
| 202 |
/// |
|
| 204 |
/// Returns the node with the given index. Since this structure is |
|
| 205 |
/// completely static, the nodes can be indexed with integers from |
|
| 206 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
| 203 | 207 |
/// \sa index() |
| 204 | 208 |
Node operator()(int ix) const { return Parent::operator()(ix); }
|
| 205 | 209 |
|
| 206 | 210 |
/// \brief Returns the index of the given node. |
| 207 | 211 |
/// |
| 208 |
/// Returns the index of the given node. Since it is a static |
|
| 209 |
/// digraph its nodes can be indexed with integers from the range |
|
| 210 |
/// <tt>[0..nodeNum()-1]</tt>. |
|
| 211 |
/// \sa operator() |
|
| 212 |
|
|
| 212 |
/// Returns the index of the given node. Since this structure is |
|
| 213 |
/// completely static, the nodes can be indexed with integers from |
|
| 214 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
| 215 |
/// \sa operator()() |
|
| 216 |
static int index(const Node& node) { return Parent::index(node); }
|
|
| 213 | 217 |
|
| 214 | 218 |
/// \brief Returns the arc connecting the given nodes. |
| 215 | 219 |
/// |
| 216 | 220 |
/// Returns the arc connecting the given nodes. |
| 217 |
Arc arc( |
|
| 221 |
Arc arc(Node u, Node v) const {
|
|
| 218 | 222 |
return Parent::arc(u, v); |
| 219 | 223 |
} |
| 220 | 224 |
|
| 221 | 225 |
/// \brief Number of nodes. |
| 222 | 226 |
int nodeNum() const { return Parent::nodeNum(); }
|
| 223 | 227 |
/// \brief Number of arcs. |
| 224 | 228 |
int arcNum() const { return Parent::arcNum(); }
|
| 225 | 229 |
}; |
| 226 | 230 |
|
| 227 | 231 |
|
| 228 | 232 |
class FullGraphBase {
|
| 229 | 233 |
public: |
| 230 | 234 |
|
| 231 | 235 |
typedef FullGraphBase Graph; |
| 232 | 236 |
|
| 233 | 237 |
class Node; |
| 234 | 238 |
class Arc; |
| 235 | 239 |
class Edge; |
| 236 | 240 |
|
| 237 | 241 |
protected: |
| 238 | 242 |
|
| 239 | 243 |
int _node_num; |
| 240 | 244 |
int _edge_num; |
| 241 | 245 |
|
| ... | ... |
@@ -262,49 +266,49 @@ |
| 262 | 266 |
u = _node_num - 2 - u; |
| 263 | 267 |
v = _node_num - 1 - v; |
| 264 | 268 |
} |
| 265 | 269 |
} |
| 266 | 270 |
|
| 267 | 271 |
void _stid(int a, int& s, int& t) const {
|
| 268 | 272 |
if ((a & 1) == 1) {
|
| 269 | 273 |
_uvid(a >> 1, s, t); |
| 270 | 274 |
} else {
|
| 271 | 275 |
_uvid(a >> 1, t, s); |
| 272 | 276 |
} |
| 273 | 277 |
} |
| 274 | 278 |
|
| 275 | 279 |
int _eid(int u, int v) const {
|
| 276 | 280 |
if (u < (_node_num - 1) / 2) {
|
| 277 | 281 |
return u * _node_num + v; |
| 278 | 282 |
} else {
|
| 279 | 283 |
return (_node_num - 1 - u) * _node_num - v - 1; |
| 280 | 284 |
} |
| 281 | 285 |
} |
| 282 | 286 |
|
| 283 | 287 |
public: |
| 284 | 288 |
|
| 285 | 289 |
Node operator()(int ix) const { return Node(ix); }
|
| 286 |
int index(const Node& node) |
|
| 290 |
static int index(const Node& node) { return node._id; }
|
|
| 287 | 291 |
|
| 288 | 292 |
Edge edge(const Node& u, const Node& v) const {
|
| 289 | 293 |
if (u._id < v._id) {
|
| 290 | 294 |
return Edge(_eid(u._id, v._id)); |
| 291 | 295 |
} else if (u._id != v._id) {
|
| 292 | 296 |
return Edge(_eid(v._id, u._id)); |
| 293 | 297 |
} else {
|
| 294 | 298 |
return INVALID; |
| 295 | 299 |
} |
| 296 | 300 |
} |
| 297 | 301 |
|
| 298 | 302 |
Arc arc(const Node& s, const Node& t) const {
|
| 299 | 303 |
if (s._id < t._id) {
|
| 300 | 304 |
return Arc((_eid(s._id, t._id) << 1) | 1); |
| 301 | 305 |
} else if (s._id != t._id) {
|
| 302 | 306 |
return Arc(_eid(t._id, s._id) << 1); |
| 303 | 307 |
} else {
|
| 304 | 308 |
return INVALID; |
| 305 | 309 |
} |
| 306 | 310 |
} |
| 307 | 311 |
|
| 308 | 312 |
typedef True NodeNumTag; |
| 309 | 313 |
typedef True ArcNumTag; |
| 310 | 314 |
typedef True EdgeNumTag; |
| ... | ... |
@@ -499,114 +503,118 @@ |
| 499 | 503 |
_uvid(edge._id, u, v); |
| 500 | 504 |
--v; |
| 501 | 505 |
if (u < v) {
|
| 502 | 506 |
edge._id = _eid(u, v); |
| 503 | 507 |
} else {
|
| 504 | 508 |
--v; |
| 505 | 509 |
edge._id = (v != -1 ? _eid(v, u) : -1); |
| 506 | 510 |
dir = false; |
| 507 | 511 |
} |
| 508 | 512 |
} else {
|
| 509 | 513 |
_uvid(edge._id, v, u); |
| 510 | 514 |
--v; |
| 511 | 515 |
edge._id = (v != -1 ? _eid(v, u) : -1); |
| 512 | 516 |
} |
| 513 | 517 |
} |
| 514 | 518 |
|
| 515 | 519 |
}; |
| 516 | 520 |
|
| 517 | 521 |
typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase; |
| 518 | 522 |
|
| 519 | 523 |
/// \ingroup graphs |
| 520 | 524 |
/// |
| 521 | 525 |
/// \brief An undirected full graph class. |
| 522 | 526 |
/// |
| 523 |
/// This is a simple and fast undirected full graph |
|
| 524 |
/// implementation. From each node go edge to each other node, |
|
| 525 |
/// therefore the number of edges in the graph is \f$n(n-1)/2\f$. |
|
| 526 |
/// This graph type is completely static, so you can neither |
|
| 527 |
/// add nor delete either edges or nodes, and it needs constant |
|
| 528 |
/// space in memory. |
|
| 527 |
/// FullGraph is a simple and fast implmenetation of undirected full |
|
| 528 |
/// (complete) graphs. It contains an edge between every distinct pair |
|
| 529 |
/// of nodes, therefore the number of edges is <tt>n(n-1)/2</tt>. |
|
| 530 |
/// This class is completely static and it needs constant memory space. |
|
| 531 |
/// Thus you can neither add nor delete nodes or edges, however |
|
| 532 |
/// the structure can be resized using resize(). |
|
| 529 | 533 |
/// |
| 530 |
/// This |
|
| 534 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
|
| 535 |
/// Most of its member functions and nested classes are documented |
|
| 536 |
/// only in the concept class. |
|
| 531 | 537 |
/// |
| 532 |
/// The \c FullGraph and \c FullDigraph classes are very similar, |
|
| 533 |
/// but there are two differences. While the \c FullDigraph class |
|
| 538 |
/// \note FullDigraph and FullGraph classes are very similar, |
|
| 539 |
/// but there are two differences. While FullDigraph |
|
| 534 | 540 |
/// conforms only to the \ref concepts::Digraph "Digraph" concept, |
| 535 | 541 |
/// this class conforms to the \ref concepts::Graph "Graph" concept, |
| 536 |
/// moreover \c FullGraph does not contain a loop arc for each |
|
| 537 |
/// node as \c FullDigraph does. |
|
| 542 |
/// moreover this class does not contain a loop for each |
|
| 543 |
/// node as FullDigraph does. |
|
| 538 | 544 |
/// |
| 539 | 545 |
/// \sa FullDigraph |
| 540 | 546 |
class FullGraph : public ExtendedFullGraphBase {
|
| 541 | 547 |
typedef ExtendedFullGraphBase Parent; |
| 542 | 548 |
|
| 543 | 549 |
public: |
| 544 | 550 |
|
| 545 |
/// \brief |
|
| 551 |
/// \brief Default constructor. |
|
| 552 |
/// |
|
| 553 |
/// Default constructor. The number of nodes and edges will be zero. |
|
| 546 | 554 |
FullGraph() { construct(0); }
|
| 547 | 555 |
|
| 548 | 556 |
/// \brief Constructor |
| 549 | 557 |
/// |
| 550 | 558 |
/// Constructor. |
| 551 | 559 |
/// \param n The number of the nodes. |
| 552 | 560 |
FullGraph(int n) { construct(n); }
|
| 553 | 561 |
|
| 554 | 562 |
/// \brief Resizes the graph |
| 555 | 563 |
/// |
| 556 |
/// Resizes the graph. The function will fully destroy and |
|
| 557 |
/// rebuild the graph. This cause that the maps of the graph will |
|
| 564 |
/// This function resizes the graph. It fully destroys and |
|
| 565 |
/// rebuilds the structure, therefore the maps of the graph will be |
|
| 558 | 566 |
/// reallocated automatically and the previous values will be lost. |
| 559 | 567 |
void resize(int n) {
|
| 560 | 568 |
Parent::notifier(Arc()).clear(); |
| 561 | 569 |
Parent::notifier(Edge()).clear(); |
| 562 | 570 |
Parent::notifier(Node()).clear(); |
| 563 | 571 |
construct(n); |
| 564 | 572 |
Parent::notifier(Node()).build(); |
| 565 | 573 |
Parent::notifier(Edge()).build(); |
| 566 | 574 |
Parent::notifier(Arc()).build(); |
| 567 | 575 |
} |
| 568 | 576 |
|
| 569 | 577 |
/// \brief Returns the node with the given index. |
| 570 | 578 |
/// |
| 571 |
/// Returns the node with the given index. Since it is a static |
|
| 572 |
/// graph its nodes can be indexed with integers from the range |
|
| 573 |
/// |
|
| 579 |
/// Returns the node with the given index. Since this structure is |
|
| 580 |
/// completely static, the nodes can be indexed with integers from |
|
| 581 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
| 574 | 582 |
/// \sa index() |
| 575 | 583 |
Node operator()(int ix) const { return Parent::operator()(ix); }
|
| 576 | 584 |
|
| 577 | 585 |
/// \brief Returns the index of the given node. |
| 578 | 586 |
/// |
| 579 |
/// Returns the index of the given node. Since it is a static |
|
| 580 |
/// graph its nodes can be indexed with integers from the range |
|
| 581 |
/// <tt>[0..nodeNum()-1]</tt>. |
|
| 582 |
/// \sa operator() |
|
| 583 |
|
|
| 587 |
/// Returns the index of the given node. Since this structure is |
|
| 588 |
/// completely static, the nodes can be indexed with integers from |
|
| 589 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
| 590 |
/// \sa operator()() |
|
| 591 |
static int index(const Node& node) { return Parent::index(node); }
|
|
| 584 | 592 |
|
| 585 | 593 |
/// \brief Returns the arc connecting the given nodes. |
| 586 | 594 |
/// |
| 587 | 595 |
/// Returns the arc connecting the given nodes. |
| 588 |
Arc arc( |
|
| 596 |
Arc arc(Node s, Node t) const {
|
|
| 589 | 597 |
return Parent::arc(s, t); |
| 590 | 598 |
} |
| 591 | 599 |
|
| 592 |
/// \brief Returns the edge |
|
| 600 |
/// \brief Returns the edge connecting the given nodes. |
|
| 593 | 601 |
/// |
| 594 |
/// Returns the edge connects the given nodes. |
|
| 595 |
Edge edge(const Node& u, const Node& v) const {
|
|
| 602 |
/// Returns the edge connecting the given nodes. |
|
| 603 |
Edge edge(Node u, Node v) const {
|
|
| 596 | 604 |
return Parent::edge(u, v); |
| 597 | 605 |
} |
| 598 | 606 |
|
| 599 | 607 |
/// \brief Number of nodes. |
| 600 | 608 |
int nodeNum() const { return Parent::nodeNum(); }
|
| 601 | 609 |
/// \brief Number of arcs. |
| 602 | 610 |
int arcNum() const { return Parent::arcNum(); }
|
| 603 | 611 |
/// \brief Number of edges. |
| 604 | 612 |
int edgeNum() const { return Parent::edgeNum(); }
|
| 605 | 613 |
|
| 606 | 614 |
}; |
| 607 | 615 |
|
| 608 | 616 |
|
| 609 | 617 |
} //namespace lemon |
| 610 | 618 |
|
| 611 | 619 |
|
| 612 | 620 |
#endif //LEMON_FULL_GRAPH_H |
| ... | ... |
@@ -38,48 +38,84 @@ |
| 38 | 38 |
lp = glp_create_prob(); |
| 39 | 39 |
glp_copy_prob(lp, other.lp, GLP_ON); |
| 40 | 40 |
glp_create_index(lp); |
| 41 | 41 |
rows = other.rows; |
| 42 | 42 |
cols = other.cols; |
| 43 | 43 |
messageLevel(MESSAGE_NOTHING); |
| 44 | 44 |
} |
| 45 | 45 |
|
| 46 | 46 |
GlpkBase::~GlpkBase() {
|
| 47 | 47 |
glp_delete_prob(lp); |
| 48 | 48 |
} |
| 49 | 49 |
|
| 50 | 50 |
int GlpkBase::_addCol() {
|
| 51 | 51 |
int i = glp_add_cols(lp, 1); |
| 52 | 52 |
glp_set_col_bnds(lp, i, GLP_FR, 0.0, 0.0); |
| 53 | 53 |
return i; |
| 54 | 54 |
} |
| 55 | 55 |
|
| 56 | 56 |
int GlpkBase::_addRow() {
|
| 57 | 57 |
int i = glp_add_rows(lp, 1); |
| 58 | 58 |
glp_set_row_bnds(lp, i, GLP_FR, 0.0, 0.0); |
| 59 | 59 |
return i; |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 |
int GlpkBase::_addRow(Value lo, ExprIterator b, |
|
| 63 |
ExprIterator e, Value up) {
|
|
| 64 |
int i = glp_add_rows(lp, 1); |
|
| 65 |
|
|
| 66 |
if (lo == -INF) {
|
|
| 67 |
if (up == INF) {
|
|
| 68 |
glp_set_row_bnds(lp, i, GLP_FR, lo, up); |
|
| 69 |
} else {
|
|
| 70 |
glp_set_row_bnds(lp, i, GLP_UP, lo, up); |
|
| 71 |
} |
|
| 72 |
} else {
|
|
| 73 |
if (up == INF) {
|
|
| 74 |
glp_set_row_bnds(lp, i, GLP_LO, lo, up); |
|
| 75 |
} else if (lo != up) {
|
|
| 76 |
glp_set_row_bnds(lp, i, GLP_DB, lo, up); |
|
| 77 |
} else {
|
|
| 78 |
glp_set_row_bnds(lp, i, GLP_FX, lo, up); |
|
| 79 |
} |
|
| 80 |
} |
|
| 81 |
|
|
| 82 |
std::vector<int> indexes; |
|
| 83 |
std::vector<Value> values; |
|
| 84 |
|
|
| 85 |
indexes.push_back(0); |
|
| 86 |
values.push_back(0); |
|
| 87 |
|
|
| 88 |
for(ExprIterator it = b; it != e; ++it) {
|
|
| 89 |
indexes.push_back(it->first); |
|
| 90 |
values.push_back(it->second); |
|
| 91 |
} |
|
| 92 |
|
|
| 93 |
glp_set_mat_row(lp, i, values.size() - 1, |
|
| 94 |
&indexes.front(), &values.front()); |
|
| 95 |
return i; |
|
| 96 |
} |
|
| 97 |
|
|
| 62 | 98 |
void GlpkBase::_eraseCol(int i) {
|
| 63 | 99 |
int ca[2]; |
| 64 | 100 |
ca[1] = i; |
| 65 | 101 |
glp_del_cols(lp, 1, ca); |
| 66 | 102 |
} |
| 67 | 103 |
|
| 68 | 104 |
void GlpkBase::_eraseRow(int i) {
|
| 69 | 105 |
int ra[2]; |
| 70 | 106 |
ra[1] = i; |
| 71 | 107 |
glp_del_rows(lp, 1, ra); |
| 72 | 108 |
} |
| 73 | 109 |
|
| 74 | 110 |
void GlpkBase::_eraseColId(int i) {
|
| 75 | 111 |
cols.eraseIndex(i); |
| 76 | 112 |
cols.shiftIndices(i); |
| 77 | 113 |
} |
| 78 | 114 |
|
| 79 | 115 |
void GlpkBase::_eraseRowId(int i) {
|
| 80 | 116 |
rows.eraseIndex(i); |
| 81 | 117 |
rows.shiftIndices(i); |
| 82 | 118 |
} |
| 83 | 119 |
|
| 84 | 120 |
void GlpkBase::_getColName(int c, std::string& name) const {
|
| 85 | 121 |
const char *str = glp_get_col_name(lp, c); |
| ... | ... |
@@ -33,48 +33,49 @@ |
| 33 | 33 |
/* LP/MIP problem object */ |
| 34 | 34 |
#endif |
| 35 | 35 |
|
| 36 | 36 |
namespace lemon {
|
| 37 | 37 |
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief Base interface for the GLPK LP and MIP solver |
| 40 | 40 |
/// |
| 41 | 41 |
/// This class implements the common interface of the GLPK LP and MIP solver. |
| 42 | 42 |
/// \ingroup lp_group |
| 43 | 43 |
class GlpkBase : virtual public LpBase {
|
| 44 | 44 |
protected: |
| 45 | 45 |
|
| 46 | 46 |
typedef glp_prob LPX; |
| 47 | 47 |
glp_prob* lp; |
| 48 | 48 |
|
| 49 | 49 |
GlpkBase(); |
| 50 | 50 |
GlpkBase(const GlpkBase&); |
| 51 | 51 |
virtual ~GlpkBase(); |
| 52 | 52 |
|
| 53 | 53 |
protected: |
| 54 | 54 |
|
| 55 | 55 |
virtual int _addCol(); |
| 56 | 56 |
virtual int _addRow(); |
| 57 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 57 | 58 |
|
| 58 | 59 |
virtual void _eraseCol(int i); |
| 59 | 60 |
virtual void _eraseRow(int i); |
| 60 | 61 |
|
| 61 | 62 |
virtual void _eraseColId(int i); |
| 62 | 63 |
virtual void _eraseRowId(int i); |
| 63 | 64 |
|
| 64 | 65 |
virtual void _getColName(int col, std::string& name) const; |
| 65 | 66 |
virtual void _setColName(int col, const std::string& name); |
| 66 | 67 |
virtual int _colByName(const std::string& name) const; |
| 67 | 68 |
|
| 68 | 69 |
virtual void _getRowName(int row, std::string& name) const; |
| 69 | 70 |
virtual void _setRowName(int row, const std::string& name); |
| 70 | 71 |
virtual int _rowByName(const std::string& name) const; |
| 71 | 72 |
|
| 72 | 73 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
| 73 | 74 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
| 74 | 75 |
|
| 75 | 76 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
| 76 | 77 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
| 77 | 78 |
|
| 78 | 79 |
virtual void _setCoeff(int row, int col, Value value); |
| 79 | 80 |
virtual Value _getCoeff(int row, int col) const; |
| 80 | 81 |
| ... | ... |
@@ -449,247 +449,241 @@ |
| 449 | 449 |
} |
| 450 | 450 |
} |
| 451 | 451 |
|
| 452 | 452 |
Arc down(Node n) const {
|
| 453 | 453 |
if (n._id >= _width) {
|
| 454 | 454 |
return Arc((n._id - _width) << 1); |
| 455 | 455 |
} else {
|
| 456 | 456 |
return INVALID; |
| 457 | 457 |
} |
| 458 | 458 |
} |
| 459 | 459 |
|
| 460 | 460 |
private: |
| 461 | 461 |
int _width, _height; |
| 462 | 462 |
int _node_num, _edge_num; |
| 463 | 463 |
int _edge_limit; |
| 464 | 464 |
}; |
| 465 | 465 |
|
| 466 | 466 |
|
| 467 | 467 |
typedef GraphExtender<GridGraphBase> ExtendedGridGraphBase; |
| 468 | 468 |
|
| 469 | 469 |
/// \ingroup graphs |
| 470 | 470 |
/// |
| 471 | 471 |
/// \brief Grid graph class |
| 472 | 472 |
/// |
| 473 |
/// This class implements a special graph type. The nodes of the |
|
| 474 |
/// graph can be indexed by two integer \c (i,j) value where \c i is |
|
| 475 |
/// in the \c [0..width()-1] range and j is in the \c |
|
| 476 |
/// [0..height()-1] range. Two nodes are connected in the graph if |
|
| 477 |
/// the indexes differ exactly on one position and exactly one is |
|
| 478 |
/// the difference. The nodes of the graph can be indexed by position |
|
| 479 |
/// with the \c operator()() function. The positions of the nodes can be |
|
| 480 |
/// get with \c pos(), \c col() and \c row() members. The outgoing |
|
| 473 |
/// GridGraph implements a special graph type. The nodes of the |
|
| 474 |
/// graph can be indexed by two integer values \c (i,j) where \c i is |
|
| 475 |
/// in the range <tt>[0..width()-1]</tt> and j is in the range |
|
| 476 |
/// <tt>[0..height()-1]</tt>. Two nodes are connected in the graph if |
|
| 477 |
/// the indices differ exactly on one position and the difference is |
|
| 478 |
/// also exactly one. The nodes of the graph can be obtained by position |
|
| 479 |
/// using the \c operator()() function and the indices of the nodes can |
|
| 480 |
/// be obtained using \c pos(), \c col() and \c row() members. The outgoing |
|
| 481 | 481 |
/// arcs can be retrieved with the \c right(), \c up(), \c left() |
| 482 | 482 |
/// and \c down() functions, where the bottom-left corner is the |
| 483 | 483 |
/// origin. |
| 484 | 484 |
/// |
| 485 |
/// This class is completely static and it needs constant memory space. |
|
| 486 |
/// Thus you can neither add nor delete nodes or edges, however |
|
| 487 |
/// the structure can be resized using resize(). |
|
| 488 |
/// |
|
| 485 | 489 |
/// \image html grid_graph.png |
| 486 | 490 |
/// \image latex grid_graph.eps "Grid graph" width=\textwidth |
| 487 | 491 |
/// |
| 488 | 492 |
/// A short example about the basic usage: |
| 489 | 493 |
///\code |
| 490 | 494 |
/// GridGraph graph(rows, cols); |
| 491 | 495 |
/// GridGraph::NodeMap<int> val(graph); |
| 492 | 496 |
/// for (int i = 0; i < graph.width(); ++i) {
|
| 493 | 497 |
/// for (int j = 0; j < graph.height(); ++j) {
|
| 494 | 498 |
/// val[graph(i, j)] = i + j; |
| 495 | 499 |
/// } |
| 496 | 500 |
/// } |
| 497 | 501 |
///\endcode |
| 498 | 502 |
/// |
| 499 |
/// This graph type fully conforms to the \ref concepts::Graph |
|
| 500 |
/// "Graph concept". |
|
| 503 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
|
| 504 |
/// Most of its member functions and nested classes are documented |
|
| 505 |
/// only in the concept class. |
|
| 501 | 506 |
class GridGraph : public ExtendedGridGraphBase {
|
| 502 | 507 |
typedef ExtendedGridGraphBase Parent; |
| 503 | 508 |
|
| 504 | 509 |
public: |
| 505 | 510 |
|
| 506 |
/// \brief Map to get the indices of the nodes as dim2::Point |
|
| 511 |
/// \brief Map to get the indices of the nodes as \ref dim2::Point |
|
| 512 |
/// "dim2::Point<int>". |
|
| 507 | 513 |
/// |
| 508 |
/// Map to get the indices of the nodes as dim2::Point |
|
| 514 |
/// Map to get the indices of the nodes as \ref dim2::Point |
|
| 515 |
/// "dim2::Point<int>". |
|
| 509 | 516 |
class IndexMap {
|
| 510 | 517 |
public: |
| 511 | 518 |
/// \brief The key type of the map |
| 512 | 519 |
typedef GridGraph::Node Key; |
| 513 | 520 |
/// \brief The value type of the map |
| 514 | 521 |
typedef dim2::Point<int> Value; |
| 515 | 522 |
|
| 516 | 523 |
/// \brief Constructor |
| 517 |
/// |
|
| 518 |
/// Constructor |
|
| 519 | 524 |
IndexMap(const GridGraph& graph) : _graph(graph) {}
|
| 520 | 525 |
|
| 521 | 526 |
/// \brief The subscript operator |
| 522 |
/// |
|
| 523 |
/// The subscript operator. |
|
| 524 | 527 |
Value operator[](Key key) const {
|
| 525 | 528 |
return _graph.pos(key); |
| 526 | 529 |
} |
| 527 | 530 |
|
| 528 | 531 |
private: |
| 529 | 532 |
const GridGraph& _graph; |
| 530 | 533 |
}; |
| 531 | 534 |
|
| 532 | 535 |
/// \brief Map to get the column of the nodes. |
| 533 | 536 |
/// |
| 534 | 537 |
/// Map to get the column of the nodes. |
| 535 | 538 |
class ColMap {
|
| 536 | 539 |
public: |
| 537 | 540 |
/// \brief The key type of the map |
| 538 | 541 |
typedef GridGraph::Node Key; |
| 539 | 542 |
/// \brief The value type of the map |
| 540 | 543 |
typedef int Value; |
| 541 | 544 |
|
| 542 | 545 |
/// \brief Constructor |
| 543 |
/// |
|
| 544 |
/// Constructor |
|
| 545 | 546 |
ColMap(const GridGraph& graph) : _graph(graph) {}
|
| 546 | 547 |
|
| 547 | 548 |
/// \brief The subscript operator |
| 548 |
/// |
|
| 549 |
/// The subscript operator. |
|
| 550 | 549 |
Value operator[](Key key) const {
|
| 551 | 550 |
return _graph.col(key); |
| 552 | 551 |
} |
| 553 | 552 |
|
| 554 | 553 |
private: |
| 555 | 554 |
const GridGraph& _graph; |
| 556 | 555 |
}; |
| 557 | 556 |
|
| 558 | 557 |
/// \brief Map to get the row of the nodes. |
| 559 | 558 |
/// |
| 560 | 559 |
/// Map to get the row of the nodes. |
| 561 | 560 |
class RowMap {
|
| 562 | 561 |
public: |
| 563 | 562 |
/// \brief The key type of the map |
| 564 | 563 |
typedef GridGraph::Node Key; |
| 565 | 564 |
/// \brief The value type of the map |
| 566 | 565 |
typedef int Value; |
| 567 | 566 |
|
| 568 | 567 |
/// \brief Constructor |
| 569 |
/// |
|
| 570 |
/// Constructor |
|
| 571 | 568 |
RowMap(const GridGraph& graph) : _graph(graph) {}
|
| 572 | 569 |
|
| 573 | 570 |
/// \brief The subscript operator |
| 574 |
/// |
|
| 575 |
/// The subscript operator. |
|
| 576 | 571 |
Value operator[](Key key) const {
|
| 577 | 572 |
return _graph.row(key); |
| 578 | 573 |
} |
| 579 | 574 |
|
| 580 | 575 |
private: |
| 581 | 576 |
const GridGraph& _graph; |
| 582 | 577 |
}; |
| 583 | 578 |
|
| 584 | 579 |
/// \brief Constructor |
| 585 | 580 |
/// |
| 586 |
/// Construct a grid graph with given size. |
|
| 581 |
/// Construct a grid graph with the given size. |
|
| 587 | 582 |
GridGraph(int width, int height) { construct(width, height); }
|
| 588 | 583 |
|
| 589 |
/// \brief |
|
| 584 |
/// \brief Resizes the graph |
|
| 590 | 585 |
/// |
| 591 |
/// Resize the graph. The function will fully destroy and rebuild |
|
| 592 |
/// the graph. This cause that the maps of the graph will |
|
| 593 |
/// reallocated automatically and the previous values will be |
|
| 594 |
/// lost. |
|
| 586 |
/// This function resizes the graph. It fully destroys and |
|
| 587 |
/// rebuilds the structure, therefore the maps of the graph will be |
|
| 588 |
/// reallocated automatically and the previous values will be lost. |
|
| 595 | 589 |
void resize(int width, int height) {
|
| 596 | 590 |
Parent::notifier(Arc()).clear(); |
| 597 | 591 |
Parent::notifier(Edge()).clear(); |
| 598 | 592 |
Parent::notifier(Node()).clear(); |
| 599 | 593 |
construct(width, height); |
| 600 | 594 |
Parent::notifier(Node()).build(); |
| 601 | 595 |
Parent::notifier(Edge()).build(); |
| 602 | 596 |
Parent::notifier(Arc()).build(); |
| 603 | 597 |
} |
| 604 | 598 |
|
| 605 | 599 |
/// \brief The node on the given position. |
| 606 | 600 |
/// |
| 607 | 601 |
/// Gives back the node on the given position. |
| 608 | 602 |
Node operator()(int i, int j) const {
|
| 609 | 603 |
return Parent::operator()(i, j); |
| 610 | 604 |
} |
| 611 | 605 |
|
| 612 |
/// \brief |
|
| 606 |
/// \brief The column index of the node. |
|
| 613 | 607 |
/// |
| 614 | 608 |
/// Gives back the column index of the node. |
| 615 | 609 |
int col(Node n) const {
|
| 616 | 610 |
return Parent::col(n); |
| 617 | 611 |
} |
| 618 | 612 |
|
| 619 |
/// \brief |
|
| 613 |
/// \brief The row index of the node. |
|
| 620 | 614 |
/// |
| 621 | 615 |
/// Gives back the row index of the node. |
| 622 | 616 |
int row(Node n) const {
|
| 623 | 617 |
return Parent::row(n); |
| 624 | 618 |
} |
| 625 | 619 |
|
| 626 |
/// \brief |
|
| 620 |
/// \brief The position of the node. |
|
| 627 | 621 |
/// |
| 628 | 622 |
/// Gives back the position of the node, ie. the <tt>(col,row)</tt> pair. |
| 629 | 623 |
dim2::Point<int> pos(Node n) const {
|
| 630 | 624 |
return Parent::pos(n); |
| 631 | 625 |
} |
| 632 | 626 |
|
| 633 |
/// \brief |
|
| 627 |
/// \brief The number of the columns. |
|
| 634 | 628 |
/// |
| 635 | 629 |
/// Gives back the number of the columns. |
| 636 | 630 |
int width() const {
|
| 637 | 631 |
return Parent::width(); |
| 638 | 632 |
} |
| 639 | 633 |
|
| 640 |
/// \brief |
|
| 634 |
/// \brief The number of the rows. |
|
| 641 | 635 |
/// |
| 642 | 636 |
/// Gives back the number of the rows. |
| 643 | 637 |
int height() const {
|
| 644 | 638 |
return Parent::height(); |
| 645 | 639 |
} |
| 646 | 640 |
|
| 647 |
/// \brief |
|
| 641 |
/// \brief The arc goes right from the node. |
|
| 648 | 642 |
/// |
| 649 | 643 |
/// Gives back the arc goes right from the node. If there is not |
| 650 | 644 |
/// outgoing arc then it gives back INVALID. |
| 651 | 645 |
Arc right(Node n) const {
|
| 652 | 646 |
return Parent::right(n); |
| 653 | 647 |
} |
| 654 | 648 |
|
| 655 |
/// \brief |
|
| 649 |
/// \brief The arc goes left from the node. |
|
| 656 | 650 |
/// |
| 657 | 651 |
/// Gives back the arc goes left from the node. If there is not |
| 658 | 652 |
/// outgoing arc then it gives back INVALID. |
| 659 | 653 |
Arc left(Node n) const {
|
| 660 | 654 |
return Parent::left(n); |
| 661 | 655 |
} |
| 662 | 656 |
|
| 663 |
/// \brief |
|
| 657 |
/// \brief The arc goes up from the node. |
|
| 664 | 658 |
/// |
| 665 | 659 |
/// Gives back the arc goes up from the node. If there is not |
| 666 | 660 |
/// outgoing arc then it gives back INVALID. |
| 667 | 661 |
Arc up(Node n) const {
|
| 668 | 662 |
return Parent::up(n); |
| 669 | 663 |
} |
| 670 | 664 |
|
| 671 |
/// \brief |
|
| 665 |
/// \brief The arc goes down from the node. |
|
| 672 | 666 |
/// |
| 673 | 667 |
/// Gives back the arc goes down from the node. If there is not |
| 674 | 668 |
/// outgoing arc then it gives back INVALID. |
| 675 | 669 |
Arc down(Node n) const {
|
| 676 | 670 |
return Parent::down(n); |
| 677 | 671 |
} |
| 678 | 672 |
|
| 679 | 673 |
/// \brief Index map of the grid graph |
| 680 | 674 |
/// |
| 681 | 675 |
/// Just returns an IndexMap for the grid graph. |
| 682 | 676 |
IndexMap indexMap() const {
|
| 683 | 677 |
return IndexMap(*this); |
| 684 | 678 |
} |
| 685 | 679 |
|
| 686 | 680 |
/// \brief Row map of the grid graph |
| 687 | 681 |
/// |
| 688 | 682 |
/// Just returns a RowMap for the grid graph. |
| 689 | 683 |
RowMap rowMap() const {
|
| 690 | 684 |
return RowMap(*this); |
| 691 | 685 |
} |
| 692 | 686 |
|
| 693 | 687 |
/// \brief Column map of the grid graph |
| 694 | 688 |
/// |
| 695 | 689 |
/// Just returns a ColMap for the grid graph. |
| ... | ... |
@@ -241,124 +241,143 @@ |
| 241 | 241 |
static bool direction(Arc arc) {
|
| 242 | 242 |
return (arc._id & 1) == 1; |
| 243 | 243 |
} |
| 244 | 244 |
|
| 245 | 245 |
static Arc direct(Edge edge, bool dir) {
|
| 246 | 246 |
return Arc((edge._id << 1) | (dir ? 1 : 0)); |
| 247 | 247 |
} |
| 248 | 248 |
|
| 249 | 249 |
int dimension() const {
|
| 250 | 250 |
return _dim; |
| 251 | 251 |
} |
| 252 | 252 |
|
| 253 | 253 |
bool projection(Node node, int n) const {
|
| 254 | 254 |
return static_cast<bool>(node._id & (1 << n)); |
| 255 | 255 |
} |
| 256 | 256 |
|
| 257 | 257 |
int dimension(Edge edge) const {
|
| 258 | 258 |
return edge._id >> (_dim-1); |
| 259 | 259 |
} |
| 260 | 260 |
|
| 261 | 261 |
int dimension(Arc arc) const {
|
| 262 | 262 |
return arc._id >> _dim; |
| 263 | 263 |
} |
| 264 | 264 |
|
| 265 |
int index(Node node) |
|
| 265 |
static int index(Node node) {
|
|
| 266 | 266 |
return node._id; |
| 267 | 267 |
} |
| 268 | 268 |
|
| 269 | 269 |
Node operator()(int ix) const {
|
| 270 | 270 |
return Node(ix); |
| 271 | 271 |
} |
| 272 | 272 |
|
| 273 | 273 |
private: |
| 274 | 274 |
int _dim; |
| 275 | 275 |
int _node_num, _edge_num; |
| 276 | 276 |
}; |
| 277 | 277 |
|
| 278 | 278 |
|
| 279 | 279 |
typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase; |
| 280 | 280 |
|
| 281 | 281 |
/// \ingroup graphs |
| 282 | 282 |
/// |
| 283 | 283 |
/// \brief Hypercube graph class |
| 284 | 284 |
/// |
| 285 |
/// This class implements a special graph type. The nodes of the graph |
|
| 286 |
/// are indiced with integers with at most \c dim binary digits. |
|
| 285 |
/// HypercubeGraph implements a special graph type. The nodes of the |
|
| 286 |
/// graph are indexed with integers having at most \c dim binary digits. |
|
| 287 | 287 |
/// Two nodes are connected in the graph if and only if their indices |
| 288 | 288 |
/// differ only on one position in the binary form. |
| 289 |
/// This class is completely static and it needs constant memory space. |
|
| 290 |
/// Thus you can neither add nor delete nodes or edges, however |
|
| 291 |
/// the structure can be resized using resize(). |
|
| 292 |
/// |
|
| 293 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
|
| 294 |
/// Most of its member functions and nested classes are documented |
|
| 295 |
/// only in the concept class. |
|
| 289 | 296 |
/// |
| 290 | 297 |
/// \note The type of the indices is chosen to \c int for efficiency |
| 291 | 298 |
/// reasons. Thus the maximum dimension of this implementation is 26 |
| 292 | 299 |
/// (assuming that the size of \c int is 32 bit). |
| 293 |
/// |
|
| 294 |
/// This graph type fully conforms to the \ref concepts::Graph |
|
| 295 |
/// "Graph concept". |
|
| 296 | 300 |
class HypercubeGraph : public ExtendedHypercubeGraphBase {
|
| 297 | 301 |
typedef ExtendedHypercubeGraphBase Parent; |
| 298 | 302 |
|
| 299 | 303 |
public: |
| 300 | 304 |
|
| 301 | 305 |
/// \brief Constructs a hypercube graph with \c dim dimensions. |
| 302 | 306 |
/// |
| 303 | 307 |
/// Constructs a hypercube graph with \c dim dimensions. |
| 304 | 308 |
HypercubeGraph(int dim) { construct(dim); }
|
| 305 | 309 |
|
| 310 |
/// \brief Resizes the graph |
|
| 311 |
/// |
|
| 312 |
/// This function resizes the graph. It fully destroys and |
|
| 313 |
/// rebuilds the structure, therefore the maps of the graph will be |
|
| 314 |
/// reallocated automatically and the previous values will be lost. |
|
| 315 |
void resize(int dim) {
|
|
| 316 |
Parent::notifier(Arc()).clear(); |
|
| 317 |
Parent::notifier(Edge()).clear(); |
|
| 318 |
Parent::notifier(Node()).clear(); |
|
| 319 |
construct(dim); |
|
| 320 |
Parent::notifier(Node()).build(); |
|
| 321 |
Parent::notifier(Edge()).build(); |
|
| 322 |
Parent::notifier(Arc()).build(); |
|
| 323 |
} |
|
| 324 |
|
|
| 306 | 325 |
/// \brief The number of dimensions. |
| 307 | 326 |
/// |
| 308 | 327 |
/// Gives back the number of dimensions. |
| 309 | 328 |
int dimension() const {
|
| 310 | 329 |
return Parent::dimension(); |
| 311 | 330 |
} |
| 312 | 331 |
|
| 313 | 332 |
/// \brief Returns \c true if the n'th bit of the node is one. |
| 314 | 333 |
/// |
| 315 | 334 |
/// Returns \c true if the n'th bit of the node is one. |
| 316 | 335 |
bool projection(Node node, int n) const {
|
| 317 | 336 |
return Parent::projection(node, n); |
| 318 | 337 |
} |
| 319 | 338 |
|
| 320 | 339 |
/// \brief The dimension id of an edge. |
| 321 | 340 |
/// |
| 322 | 341 |
/// Gives back the dimension id of the given edge. |
| 323 |
/// It is in the [0..dim-1] |
|
| 342 |
/// It is in the range <tt>[0..dim-1]</tt>. |
|
| 324 | 343 |
int dimension(Edge edge) const {
|
| 325 | 344 |
return Parent::dimension(edge); |
| 326 | 345 |
} |
| 327 | 346 |
|
| 328 | 347 |
/// \brief The dimension id of an arc. |
| 329 | 348 |
/// |
| 330 | 349 |
/// Gives back the dimension id of the given arc. |
| 331 |
/// It is in the [0..dim-1] |
|
| 350 |
/// It is in the range <tt>[0..dim-1]</tt>. |
|
| 332 | 351 |
int dimension(Arc arc) const {
|
| 333 | 352 |
return Parent::dimension(arc); |
| 334 | 353 |
} |
| 335 | 354 |
|
| 336 | 355 |
/// \brief The index of a node. |
| 337 | 356 |
/// |
| 338 | 357 |
/// Gives back the index of the given node. |
| 339 | 358 |
/// The lower bits of the integer describes the node. |
| 340 |
int index(Node node) |
|
| 359 |
static int index(Node node) {
|
|
| 341 | 360 |
return Parent::index(node); |
| 342 | 361 |
} |
| 343 | 362 |
|
| 344 | 363 |
/// \brief Gives back a node by its index. |
| 345 | 364 |
/// |
| 346 | 365 |
/// Gives back a node by its index. |
| 347 | 366 |
Node operator()(int ix) const {
|
| 348 | 367 |
return Parent::operator()(ix); |
| 349 | 368 |
} |
| 350 | 369 |
|
| 351 | 370 |
/// \brief Number of nodes. |
| 352 | 371 |
int nodeNum() const { return Parent::nodeNum(); }
|
| 353 | 372 |
/// \brief Number of edges. |
| 354 | 373 |
int edgeNum() const { return Parent::edgeNum(); }
|
| 355 | 374 |
/// \brief Number of arcs. |
| 356 | 375 |
int arcNum() const { return Parent::arcNum(); }
|
| 357 | 376 |
|
| 358 | 377 |
/// \brief Linear combination map. |
| 359 | 378 |
/// |
| 360 | 379 |
/// This map makes possible to give back a linear combination |
| 361 | 380 |
/// for each node. It works like the \c std::accumulate function, |
| 362 | 381 |
/// so it accumulates the \c bf binary function with the \c fv first |
| 363 | 382 |
/// value. The map accumulates only on that positions (dimensions) |
| 364 | 383 |
/// where the index of the node is one. The values that have to be |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_LIST_GRAPH_H |
| 20 | 20 |
#define LEMON_LIST_GRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup graphs |
| 23 | 23 |
///\file |
| 24 |
///\brief ListDigraph |
|
| 24 |
///\brief ListDigraph and ListGraph classes. |
|
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/error.h> |
| 28 | 28 |
#include <lemon/bits/graph_extender.h> |
| 29 | 29 |
|
| 30 | 30 |
#include <vector> |
| 31 | 31 |
#include <list> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 |
class ListDigraph; |
|
| 36 |
|
|
| 35 | 37 |
class ListDigraphBase {
|
| 36 | 38 |
|
| 37 | 39 |
protected: |
| 38 | 40 |
struct NodeT {
|
| 39 | 41 |
int first_in, first_out; |
| 40 | 42 |
int prev, next; |
| 41 | 43 |
}; |
| 42 | 44 |
|
| 43 | 45 |
struct ArcT {
|
| 44 | 46 |
int target, source; |
| 45 | 47 |
int prev_in, prev_out; |
| 46 | 48 |
int next_in, next_out; |
| 47 | 49 |
}; |
| 48 | 50 |
|
| 49 | 51 |
std::vector<NodeT> nodes; |
| 50 | 52 |
|
| 51 | 53 |
int first_node; |
| 52 | 54 |
|
| 53 | 55 |
int first_free_node; |
| 54 | 56 |
|
| 55 | 57 |
std::vector<ArcT> arcs; |
| 56 | 58 |
|
| 57 | 59 |
int first_free_arc; |
| 58 | 60 |
|
| 59 | 61 |
public: |
| 60 | 62 |
|
| 61 | 63 |
typedef ListDigraphBase Digraph; |
| 62 | 64 |
|
| 63 | 65 |
class Node {
|
| 64 | 66 |
friend class ListDigraphBase; |
| 67 |
friend class ListDigraph; |
|
| 65 | 68 |
protected: |
| 66 | 69 |
|
| 67 | 70 |
int id; |
| 68 | 71 |
explicit Node(int pid) { id = pid;}
|
| 69 | 72 |
|
| 70 | 73 |
public: |
| 71 | 74 |
Node() {}
|
| 72 | 75 |
Node (Invalid) { id = -1; }
|
| 73 | 76 |
bool operator==(const Node& node) const {return id == node.id;}
|
| 74 | 77 |
bool operator!=(const Node& node) const {return id != node.id;}
|
| 75 | 78 |
bool operator<(const Node& node) const {return id < node.id;}
|
| 76 | 79 |
}; |
| 77 | 80 |
|
| 78 | 81 |
class Arc {
|
| 79 | 82 |
friend class ListDigraphBase; |
| 83 |
friend class ListDigraph; |
|
| 80 | 84 |
protected: |
| 81 | 85 |
|
| 82 | 86 |
int id; |
| 83 | 87 |
explicit Arc(int pid) { id = pid;}
|
| 84 | 88 |
|
| 85 | 89 |
public: |
| 86 | 90 |
Arc() {}
|
| 87 | 91 |
Arc (Invalid) { id = -1; }
|
| 88 | 92 |
bool operator==(const Arc& arc) const {return id == arc.id;}
|
| 89 | 93 |
bool operator!=(const Arc& arc) const {return id != arc.id;}
|
| 90 | 94 |
bool operator<(const Arc& arc) const {return id < arc.id;}
|
| 91 | 95 |
}; |
| 92 | 96 |
|
| 93 | 97 |
|
| 94 | 98 |
|
| 95 | 99 |
ListDigraphBase() |
| 96 | 100 |
: nodes(), first_node(-1), |
| 97 | 101 |
first_free_node(-1), arcs(), first_free_arc(-1) {}
|
| 98 | 102 |
|
| 99 | 103 |
|
| 100 | 104 |
int maxNodeId() const { return nodes.size()-1; }
|
| 101 | 105 |
int maxArcId() const { return arcs.size()-1; }
|
| 102 | 106 |
|
| 103 | 107 |
Node source(Arc e) const { return Node(arcs[e.id].source); }
|
| 104 | 108 |
Node target(Arc e) const { return Node(arcs[e.id].target); }
|
| 105 | 109 |
|
| 106 | 110 |
|
| 107 | 111 |
void first(Node& node) const {
|
| 108 | 112 |
node.id = first_node; |
| 109 | 113 |
} |
| 110 | 114 |
|
| 111 | 115 |
void next(Node& node) const {
|
| 112 | 116 |
node.id = nodes[node.id].next; |
| 113 | 117 |
} |
| 114 | 118 |
|
| 115 | 119 |
|
| 116 | 120 |
void first(Arc& arc) const {
|
| 117 | 121 |
int n; |
| 118 | 122 |
for(n = first_node; |
| 119 |
n!=-1 && nodes[n]. |
|
| 123 |
n != -1 && nodes[n].first_out == -1; |
|
| 120 | 124 |
n = nodes[n].next) {}
|
| 121 |
arc.id = (n == -1) ? -1 : nodes[n]. |
|
| 125 |
arc.id = (n == -1) ? -1 : nodes[n].first_out; |
|
| 122 | 126 |
} |
| 123 | 127 |
|
| 124 | 128 |
void next(Arc& arc) const {
|
| 125 |
if (arcs[arc.id].next_in != -1) {
|
|
| 126 |
arc.id = arcs[arc.id].next_in; |
|
| 129 |
if (arcs[arc.id].next_out != -1) {
|
|
| 130 |
arc.id = arcs[arc.id].next_out; |
|
| 127 | 131 |
} else {
|
| 128 | 132 |
int n; |
| 129 |
for(n = nodes[arcs[arc.id].target].next; |
|
| 130 |
n!=-1 && nodes[n].first_in == -1; |
|
| 133 |
for(n = nodes[arcs[arc.id].source].next; |
|
| 134 |
n != -1 && nodes[n].first_out == -1; |
|
| 131 | 135 |
n = nodes[n].next) {}
|
| 132 |
arc.id = (n == -1) ? -1 : nodes[n]. |
|
| 136 |
arc.id = (n == -1) ? -1 : nodes[n].first_out; |
|
| 133 | 137 |
} |
| 134 | 138 |
} |
| 135 | 139 |
|
| 136 | 140 |
void firstOut(Arc &e, const Node& v) const {
|
| 137 | 141 |
e.id = nodes[v.id].first_out; |
| 138 | 142 |
} |
| 139 | 143 |
void nextOut(Arc &e) const {
|
| 140 | 144 |
e.id=arcs[e.id].next_out; |
| 141 | 145 |
} |
| 142 | 146 |
|
| 143 | 147 |
void firstIn(Arc &e, const Node& v) const {
|
| 144 | 148 |
e.id = nodes[v.id].first_in; |
| 145 | 149 |
} |
| 146 | 150 |
void nextIn(Arc &e) const {
|
| 147 | 151 |
e.id=arcs[e.id].next_in; |
| 148 | 152 |
} |
| 149 | 153 |
|
| 150 | 154 |
|
| 151 | 155 |
static int id(Node v) { return v.id; }
|
| 152 | 156 |
static int id(Arc e) { return e.id; }
|
| 153 | 157 |
|
| 154 | 158 |
static Node nodeFromId(int id) { return Node(id);}
|
| 155 | 159 |
static Arc arcFromId(int id) { return Arc(id);}
|
| 156 | 160 |
|
| ... | ... |
@@ -290,277 +294,284 @@ |
| 290 | 294 |
{
|
| 291 | 295 |
if(arcs[e.id].next_out != -1) |
| 292 | 296 |
arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out; |
| 293 | 297 |
if(arcs[e.id].prev_out != -1) |
| 294 | 298 |
arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out; |
| 295 | 299 |
else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out; |
| 296 | 300 |
if (nodes[n.id].first_out != -1) {
|
| 297 | 301 |
arcs[nodes[n.id].first_out].prev_out = e.id; |
| 298 | 302 |
} |
| 299 | 303 |
arcs[e.id].source = n.id; |
| 300 | 304 |
arcs[e.id].prev_out = -1; |
| 301 | 305 |
arcs[e.id].next_out = nodes[n.id].first_out; |
| 302 | 306 |
nodes[n.id].first_out = e.id; |
| 303 | 307 |
} |
| 304 | 308 |
|
| 305 | 309 |
}; |
| 306 | 310 |
|
| 307 | 311 |
typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase; |
| 308 | 312 |
|
| 309 | 313 |
/// \addtogroup graphs |
| 310 | 314 |
/// @{
|
| 311 | 315 |
|
| 312 | 316 |
///A general directed graph structure. |
| 313 | 317 |
|
| 314 |
///\ref ListDigraph is a simple and fast <em>directed graph</em> |
|
| 315 |
///implementation based on static linked lists that are stored in |
|
| 318 |
///\ref ListDigraph is a versatile and fast directed graph |
|
| 319 |
///implementation based on linked lists that are stored in |
|
| 316 | 320 |
///\c std::vector structures. |
| 317 | 321 |
/// |
| 318 |
///It conforms to the \ref concepts::Digraph "Digraph concept" and it |
|
| 319 |
///also provides several useful additional functionalities. |
|
| 320 |
/// |
|
| 322 |
///This type fully conforms to the \ref concepts::Digraph "Digraph concept" |
|
| 323 |
///and it also provides several useful additional functionalities. |
|
| 324 |
///Most of its member functions and nested classes are documented |
|
| 321 | 325 |
///only in the concept class. |
| 322 | 326 |
/// |
| 323 | 327 |
///\sa concepts::Digraph |
| 324 |
|
|
| 328 |
///\sa ListGraph |
|
| 325 | 329 |
class ListDigraph : public ExtendedListDigraphBase {
|
| 326 | 330 |
typedef ExtendedListDigraphBase Parent; |
| 327 | 331 |
|
| 328 | 332 |
private: |
| 329 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
|
| 330 |
|
|
| 331 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
|
| 332 |
/// |
|
| 333 |
/// Digraphs are \e not copy constructible. Use DigraphCopy instead. |
|
| 333 | 334 |
ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {};
|
| 334 |
///\brief Assignment of ListDigraph to another one is \e not allowed. |
|
| 335 |
///Use copyDigraph() instead. |
|
| 336 |
|
|
| 337 |
///Assignment of ListDigraph to another one is \e not allowed. |
|
| 338 |
/// |
|
| 335 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
|
| 336 |
/// Use DigraphCopy instead. |
|
| 339 | 337 |
void operator=(const ListDigraph &) {}
|
| 340 | 338 |
public: |
| 341 | 339 |
|
| 342 | 340 |
/// Constructor |
| 343 | 341 |
|
| 344 | 342 |
/// Constructor. |
| 345 | 343 |
/// |
| 346 | 344 |
ListDigraph() {}
|
| 347 | 345 |
|
| 348 | 346 |
///Add a new node to the digraph. |
| 349 | 347 |
|
| 350 |
/// |
|
| 348 |
///This function adds a new node to the digraph. |
|
| 351 | 349 |
///\return The new node. |
| 352 | 350 |
Node addNode() { return Parent::addNode(); }
|
| 353 | 351 |
|
| 354 | 352 |
///Add a new arc to the digraph. |
| 355 | 353 |
|
| 356 |
/// |
|
| 354 |
///This function adds a new arc to the digraph with source node \c s |
|
| 357 | 355 |
///and target node \c t. |
| 358 | 356 |
///\return The new arc. |
| 359 |
Arc addArc( |
|
| 357 |
Arc addArc(Node s, Node t) {
|
|
| 360 | 358 |
return Parent::addArc(s, t); |
| 361 | 359 |
} |
| 362 | 360 |
|
| 363 | 361 |
///\brief Erase a node from the digraph. |
| 364 | 362 |
/// |
| 365 |
///Erase a node from the digraph. |
|
| 366 |
/// |
|
| 367 |
|
|
| 363 |
///This function erases the given node from the digraph. |
|
| 364 |
void erase(Node n) { Parent::erase(n); }
|
|
| 368 | 365 |
|
| 369 | 366 |
///\brief Erase an arc from the digraph. |
| 370 | 367 |
/// |
| 371 |
///Erase an arc from the digraph. |
|
| 372 |
/// |
|
| 373 |
|
|
| 368 |
///This function erases the given arc from the digraph. |
|
| 369 |
void erase(Arc a) { Parent::erase(a); }
|
|
| 374 | 370 |
|
| 375 | 371 |
/// Node validity check |
| 376 | 372 |
|
| 377 |
/// This function gives back true if the given node is valid, |
|
| 378 |
/// ie. it is a real node of the graph. |
|
| 373 |
/// This function gives back \c true if the given node is valid, |
|
| 374 |
/// i.e. it is a real node of the digraph. |
|
| 379 | 375 |
/// |
| 380 |
/// \warning A Node pointing to a removed item |
|
| 381 |
/// could become valid again later if new nodes are |
|
| 382 |
/// |
|
| 376 |
/// \warning A removed node could become valid again if new nodes are |
|
| 377 |
/// added to the digraph. |
|
| 383 | 378 |
bool valid(Node n) const { return Parent::valid(n); }
|
| 384 | 379 |
|
| 385 | 380 |
/// Arc validity check |
| 386 | 381 |
|
| 387 |
/// This function gives back true if the given arc is valid, |
|
| 388 |
/// ie. it is a real arc of the graph. |
|
| 382 |
/// This function gives back \c true if the given arc is valid, |
|
| 383 |
/// i.e. it is a real arc of the digraph. |
|
| 389 | 384 |
/// |
| 390 |
/// \warning An Arc pointing to a removed item |
|
| 391 |
/// could become valid again later if new nodes are |
|
| 392 |
/// |
|
| 385 |
/// \warning A removed arc could become valid again if new arcs are |
|
| 386 |
/// added to the digraph. |
|
| 393 | 387 |
bool valid(Arc a) const { return Parent::valid(a); }
|
| 394 | 388 |
|
| 395 |
/// Change the target of |
|
| 389 |
/// Change the target node of an arc |
|
| 396 | 390 |
|
| 397 |
/// |
|
| 391 |
/// This function changes the target node of the given arc \c a to \c n. |
|
| 398 | 392 |
/// |
| 399 |
///\note The <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s referencing |
|
| 400 |
///the changed arc remain valid. However <tt>InArcIt</tt>s are |
|
| 401 |
/// |
|
| 393 |
///\note \c ArcIt and \c OutArcIt iterators referencing the changed |
|
| 394 |
///arc remain valid, however \c InArcIt iterators are invalidated. |
|
| 402 | 395 |
/// |
| 403 | 396 |
///\warning This functionality cannot be used together with the Snapshot |
| 404 | 397 |
///feature. |
| 405 | 398 |
void changeTarget(Arc a, Node n) {
|
| 406 | 399 |
Parent::changeTarget(a,n); |
| 407 | 400 |
} |
| 408 |
/// Change the source of |
|
| 401 |
/// Change the source node of an arc |
|
| 409 | 402 |
|
| 410 |
/// |
|
| 403 |
/// This function changes the source node of the given arc \c a to \c n. |
|
| 411 | 404 |
/// |
| 412 |
///\note The <tt>InArcIt</tt>s referencing the changed arc remain |
|
| 413 |
///valid. However the <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s are |
|
| 414 |
/// |
|
| 405 |
///\note \c InArcIt iterators referencing the changed arc remain |
|
| 406 |
///valid, however \c ArcIt and \c OutArcIt iterators are invalidated. |
|
| 415 | 407 |
/// |
| 416 | 408 |
///\warning This functionality cannot be used together with the Snapshot |
| 417 | 409 |
///feature. |
| 418 | 410 |
void changeSource(Arc a, Node n) {
|
| 419 | 411 |
Parent::changeSource(a,n); |
| 420 | 412 |
} |
| 421 | 413 |
|
| 422 |
/// |
|
| 414 |
/// Reverse the direction of an arc. |
|
| 423 | 415 |
|
| 424 |
///\note The <tt>ArcIt</tt>s referencing the changed arc remain |
|
| 425 |
///valid. However <tt>OutArcIt</tt>s and <tt>InArcIt</tt>s are |
|
| 426 |
/// |
|
| 416 |
/// This function reverses the direction of the given arc. |
|
| 417 |
///\note \c ArcIt, \c OutArcIt and \c InArcIt iterators referencing |
|
| 418 |
///the changed arc are invalidated. |
|
| 427 | 419 |
/// |
| 428 | 420 |
///\warning This functionality cannot be used together with the Snapshot |
| 429 | 421 |
///feature. |
| 430 |
void reverseArc(Arc e) {
|
|
| 431 |
Node t=target(e); |
|
| 432 |
changeTarget(e,source(e)); |
|
| 433 |
changeSource(e,t); |
|
| 422 |
void reverseArc(Arc a) {
|
|
| 423 |
Node t=target(a); |
|
| 424 |
changeTarget(a,source(a)); |
|
| 425 |
changeSource(a,t); |
|
| 434 | 426 |
} |
| 435 | 427 |
|
| 436 |
/// Reserve memory for nodes. |
|
| 437 |
|
|
| 438 |
/// Using this function it is possible to avoid the superfluous memory |
|
| 439 |
/// allocation: if you know that the digraph you want to build will |
|
| 440 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
|
| 441 |
/// then it is worth reserving space for this amount before starting |
|
| 442 |
/// to build the digraph. |
|
| 443 |
/// \sa reserveArc |
|
| 444 |
void reserveNode(int n) { nodes.reserve(n); };
|
|
| 445 |
|
|
| 446 |
/// Reserve memory for arcs. |
|
| 447 |
|
|
| 448 |
/// Using this function it is possible to avoid the superfluous memory |
|
| 449 |
/// allocation: if you know that the digraph you want to build will |
|
| 450 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
|
| 451 |
/// then it is worth reserving space for this amount before starting |
|
| 452 |
/// to build the digraph. |
|
| 453 |
/// \sa reserveNode |
|
| 454 |
void reserveArc(int m) { arcs.reserve(m); };
|
|
| 455 |
|
|
| 456 | 428 |
///Contract two nodes. |
| 457 | 429 |
|
| 458 |
///This function contracts two nodes. |
|
| 459 |
///Node \p b will be removed but instead of deleting |
|
| 460 |
///incident arcs, they will be joined to \p a. |
|
| 461 |
///The last parameter \p r controls whether to remove loops. \c true |
|
| 462 |
/// |
|
| 430 |
///This function contracts the given two nodes. |
|
| 431 |
///Node \c v is removed, but instead of deleting its |
|
| 432 |
///incident arcs, they are joined to node \c u. |
|
| 433 |
///If the last parameter \c r is \c true (this is the default value), |
|
| 434 |
///then the newly created loops are removed. |
|
| 463 | 435 |
/// |
| 464 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
|
| 465 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s |
|
| 466 |
/// |
|
| 436 |
///\note The moved arcs are joined to node \c u using changeSource() |
|
| 437 |
///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are |
|
| 438 |
///invalidated for the outgoing arcs of node \c v and \c InArcIt |
|
| 439 |
///iterators are invalidated for the incomming arcs of \c v. |
|
| 440 |
///Moreover all iterators referencing node \c v or the removed |
|
| 441 |
///loops are also invalidated. Other iterators remain valid. |
|
| 467 | 442 |
/// |
| 468 | 443 |
///\warning This functionality cannot be used together with the Snapshot |
| 469 | 444 |
///feature. |
| 470 |
void contract(Node |
|
| 445 |
void contract(Node u, Node v, bool r = true) |
|
| 471 | 446 |
{
|
| 472 |
for(OutArcIt e(*this, |
|
| 447 |
for(OutArcIt e(*this,v);e!=INVALID;) {
|
|
| 473 | 448 |
OutArcIt f=e; |
| 474 | 449 |
++f; |
| 475 |
if(r && target(e)==a) erase(e); |
|
| 476 |
else changeSource(e,a); |
|
| 450 |
if(r && target(e)==u) erase(e); |
|
| 451 |
else changeSource(e,u); |
|
| 477 | 452 |
e=f; |
| 478 | 453 |
} |
| 479 |
for(InArcIt e(*this, |
|
| 454 |
for(InArcIt e(*this,v);e!=INVALID;) {
|
|
| 480 | 455 |
InArcIt f=e; |
| 481 | 456 |
++f; |
| 482 |
if(r && source(e)==a) erase(e); |
|
| 483 |
else changeTarget(e,a); |
|
| 457 |
if(r && source(e)==u) erase(e); |
|
| 458 |
else changeTarget(e,u); |
|
| 484 | 459 |
e=f; |
| 485 | 460 |
} |
| 486 |
erase( |
|
| 461 |
erase(v); |
|
| 487 | 462 |
} |
| 488 | 463 |
|
| 489 | 464 |
///Split a node. |
| 490 | 465 |
|
| 491 |
///This function splits a node. First a new node is added to the digraph, |
|
| 492 |
///then the source of each outgoing arc of \c n is moved to this new node. |
|
| 493 |
///If \c connect is \c true (this is the default value), then a new arc |
|
| 494 |
///from \c n to the newly created node is also added. |
|
| 466 |
///This function splits the given node. First, a new node is added |
|
| 467 |
///to the digraph, then the source of each outgoing arc of node \c n |
|
| 468 |
///is moved to this new node. |
|
| 469 |
///If the second parameter \c connect is \c true (this is the default |
|
| 470 |
///value), then a new arc from node \c n to the newly created node |
|
| 471 |
///is also added. |
|
| 495 | 472 |
///\return The newly created node. |
| 496 | 473 |
/// |
| 497 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
|
| 498 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s may |
|
| 499 |
/// |
|
| 474 |
///\note All iterators remain valid. |
|
| 500 | 475 |
/// |
| 501 |
///\warning This functionality cannot be used |
|
| 476 |
///\warning This functionality cannot be used together with the |
|
| 502 | 477 |
///Snapshot feature. |
| 503 | 478 |
Node split(Node n, bool connect = true) {
|
| 504 | 479 |
Node b = addNode(); |
| 505 |
for(OutArcIt e(*this,n);e!=INVALID;) {
|
|
| 506 |
OutArcIt f=e; |
|
| 507 |
++f; |
|
| 508 |
changeSource(e,b); |
|
| 509 |
|
|
| 480 |
nodes[b.id].first_out=nodes[n.id].first_out; |
|
| 481 |
nodes[n.id].first_out=-1; |
|
| 482 |
for(int i=nodes[b.id].first_out; i!=-1; i=arcs[i].next_out) {
|
|
| 483 |
arcs[i].source=b.id; |
|
| 510 | 484 |
} |
| 511 | 485 |
if (connect) addArc(n,b); |
| 512 | 486 |
return b; |
| 513 | 487 |
} |
| 514 | 488 |
|
| 515 | 489 |
///Split an arc. |
| 516 | 490 |
|
| 517 |
///This function splits an arc. First a new node \c b is added to |
|
| 518 |
///the digraph, then the original arc is re-targeted to \c |
|
| 519 |
/// |
|
| 491 |
///This function splits the given arc. First, a new node \c v is |
|
| 492 |
///added to the digraph, then the target node of the original arc |
|
| 493 |
///is set to \c v. Finally, an arc from \c v to the original target |
|
| 494 |
///is added. |
|
| 495 |
///\return The newly created node. |
|
| 520 | 496 |
/// |
| 521 |
///\ |
|
| 497 |
///\note \c InArcIt iterators referencing the original arc are |
|
| 498 |
///invalidated. Other iterators remain valid. |
|
| 522 | 499 |
/// |
| 523 | 500 |
///\warning This functionality cannot be used together with the |
| 524 | 501 |
///Snapshot feature. |
| 525 |
Node split(Arc e) {
|
|
| 526 |
Node b = addNode(); |
|
| 527 |
addArc(b,target(e)); |
|
| 528 |
changeTarget(e,b); |
|
| 529 |
|
|
| 502 |
Node split(Arc a) {
|
|
| 503 |
Node v = addNode(); |
|
| 504 |
addArc(v,target(a)); |
|
| 505 |
changeTarget(a,v); |
|
| 506 |
return v; |
|
| 530 | 507 |
} |
| 531 | 508 |
|
| 509 |
///Clear the digraph. |
|
| 510 |
|
|
| 511 |
///This function erases all nodes and arcs from the digraph. |
|
| 512 |
/// |
|
| 513 |
void clear() {
|
|
| 514 |
Parent::clear(); |
|
| 515 |
} |
|
| 516 |
|
|
| 517 |
/// Reserve memory for nodes. |
|
| 518 |
|
|
| 519 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 520 |
/// allocation: if you know that the digraph you want to build will |
|
| 521 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
|
| 522 |
/// then it is worth reserving space for this amount before starting |
|
| 523 |
/// to build the digraph. |
|
| 524 |
/// \sa reserveArc() |
|
| 525 |
void reserveNode(int n) { nodes.reserve(n); };
|
|
| 526 |
|
|
| 527 |
/// Reserve memory for arcs. |
|
| 528 |
|
|
| 529 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 530 |
/// allocation: if you know that the digraph you want to build will |
|
| 531 |
/// be large (e.g. it will contain millions of nodes and/or arcs), |
|
| 532 |
/// then it is worth reserving space for this amount before starting |
|
| 533 |
/// to build the digraph. |
|
| 534 |
/// \sa reserveNode() |
|
| 535 |
void reserveArc(int m) { arcs.reserve(m); };
|
|
| 536 |
|
|
| 532 | 537 |
/// \brief Class to make a snapshot of the digraph and restore |
| 533 | 538 |
/// it later. |
| 534 | 539 |
/// |
| 535 | 540 |
/// Class to make a snapshot of the digraph and restore it later. |
| 536 | 541 |
/// |
| 537 | 542 |
/// The newly added nodes and arcs can be removed using the |
| 538 | 543 |
/// restore() function. |
| 539 | 544 |
/// |
| 540 |
/// \warning Arc and node deletions and other modifications (e.g. |
|
| 541 |
/// contracting, splitting, reversing arcs or nodes) cannot be |
|
| 545 |
/// \note After a state is restored, you cannot restore a later state, |
|
| 546 |
/// i.e. you cannot add the removed nodes and arcs again using |
|
| 547 |
/// another Snapshot instance. |
|
| 548 |
/// |
|
| 549 |
/// \warning Node and arc deletions and other modifications (e.g. |
|
| 550 |
/// reversing, contracting, splitting arcs or nodes) cannot be |
|
| 542 | 551 |
/// restored. These events invalidate the snapshot. |
| 552 |
/// However the arcs and nodes that were added to the digraph after |
|
| 553 |
/// making the current snapshot can be removed without invalidating it. |
|
| 543 | 554 |
class Snapshot {
|
| 544 | 555 |
protected: |
| 545 | 556 |
|
| 546 | 557 |
typedef Parent::NodeNotifier NodeNotifier; |
| 547 | 558 |
|
| 548 | 559 |
class NodeObserverProxy : public NodeNotifier::ObserverBase {
|
| 549 | 560 |
public: |
| 550 | 561 |
|
| 551 | 562 |
NodeObserverProxy(Snapshot& _snapshot) |
| 552 | 563 |
: snapshot(_snapshot) {}
|
| 553 | 564 |
|
| 554 | 565 |
using NodeNotifier::ObserverBase::attach; |
| 555 | 566 |
using NodeNotifier::ObserverBase::detach; |
| 556 | 567 |
using NodeNotifier::ObserverBase::attached; |
| 557 | 568 |
|
| 558 | 569 |
protected: |
| 559 | 570 |
|
| 560 | 571 |
virtual void add(const Node& node) {
|
| 561 | 572 |
snapshot.addNode(node); |
| 562 | 573 |
} |
| 563 | 574 |
virtual void add(const std::vector<Node>& nodes) {
|
| 564 | 575 |
for (int i = nodes.size() - 1; i >= 0; ++i) {
|
| 565 | 576 |
snapshot.addNode(nodes[i]); |
| 566 | 577 |
} |
| ... | ... |
@@ -688,138 +699,135 @@ |
| 688 | 699 |
digraph = &_digraph; |
| 689 | 700 |
node_observer_proxy.attach(digraph->notifier(Node())); |
| 690 | 701 |
arc_observer_proxy.attach(digraph->notifier(Arc())); |
| 691 | 702 |
} |
| 692 | 703 |
|
| 693 | 704 |
void detach() {
|
| 694 | 705 |
node_observer_proxy.detach(); |
| 695 | 706 |
arc_observer_proxy.detach(); |
| 696 | 707 |
} |
| 697 | 708 |
|
| 698 | 709 |
bool attached() const {
|
| 699 | 710 |
return node_observer_proxy.attached(); |
| 700 | 711 |
} |
| 701 | 712 |
|
| 702 | 713 |
void clear() {
|
| 703 | 714 |
added_nodes.clear(); |
| 704 | 715 |
added_arcs.clear(); |
| 705 | 716 |
} |
| 706 | 717 |
|
| 707 | 718 |
public: |
| 708 | 719 |
|
| 709 | 720 |
/// \brief Default constructor. |
| 710 | 721 |
/// |
| 711 | 722 |
/// Default constructor. |
| 712 |
/// |
|
| 723 |
/// You have to call save() to actually make a snapshot. |
|
| 713 | 724 |
Snapshot() |
| 714 | 725 |
: digraph(0), node_observer_proxy(*this), |
| 715 | 726 |
arc_observer_proxy(*this) {}
|
| 716 | 727 |
|
| 717 | 728 |
/// \brief Constructor that immediately makes a snapshot. |
| 718 | 729 |
/// |
| 719 |
/// This constructor immediately makes a snapshot of the digraph. |
|
| 720 |
/// \param _digraph The digraph we make a snapshot of. |
|
| 721 |
|
|
| 730 |
/// This constructor immediately makes a snapshot of the given digraph. |
|
| 731 |
Snapshot(ListDigraph &gr) |
|
| 722 | 732 |
: node_observer_proxy(*this), |
| 723 | 733 |
arc_observer_proxy(*this) {
|
| 724 |
attach( |
|
| 734 |
attach(gr); |
|
| 725 | 735 |
} |
| 726 | 736 |
|
| 727 | 737 |
/// \brief Make a snapshot. |
| 728 | 738 |
/// |
| 729 |
/// Make a snapshot of the digraph. |
|
| 730 |
/// |
|
| 731 |
/// This function |
|
| 739 |
/// This function makes a snapshot of the given digraph. |
|
| 740 |
/// It can be called more than once. In case of a repeated |
|
| 732 | 741 |
/// call, the previous snapshot gets lost. |
| 733 |
/// \param _digraph The digraph we make the snapshot of. |
|
| 734 |
void save(ListDigraph &_digraph) {
|
|
| 742 |
void save(ListDigraph &gr) {
|
|
| 735 | 743 |
if (attached()) {
|
| 736 | 744 |
detach(); |
| 737 | 745 |
clear(); |
| 738 | 746 |
} |
| 739 |
attach( |
|
| 747 |
attach(gr); |
|
| 740 | 748 |
} |
| 741 | 749 |
|
| 742 | 750 |
/// \brief Undo the changes until the last snapshot. |
| 743 |
// |
|
| 744 |
/// Undo the changes until the last snapshot created by save(). |
|
| 751 |
/// |
|
| 752 |
/// This function undos the changes until the last snapshot |
|
| 753 |
/// created by save() or Snapshot(ListDigraph&). |
|
| 754 |
/// |
|
| 755 |
/// \warning This method invalidates the snapshot, i.e. repeated |
|
| 756 |
/// restoring is not supported unless you call save() again. |
|
| 745 | 757 |
void restore() {
|
| 746 | 758 |
detach(); |
| 747 | 759 |
for(std::list<Arc>::iterator it = added_arcs.begin(); |
| 748 | 760 |
it != added_arcs.end(); ++it) {
|
| 749 | 761 |
digraph->erase(*it); |
| 750 | 762 |
} |
| 751 | 763 |
for(std::list<Node>::iterator it = added_nodes.begin(); |
| 752 | 764 |
it != added_nodes.end(); ++it) {
|
| 753 | 765 |
digraph->erase(*it); |
| 754 | 766 |
} |
| 755 | 767 |
clear(); |
| 756 | 768 |
} |
| 757 | 769 |
|
| 758 |
/// \brief |
|
| 770 |
/// \brief Returns \c true if the snapshot is valid. |
|
| 759 | 771 |
/// |
| 760 |
/// |
|
| 772 |
/// This function returns \c true if the snapshot is valid. |
|
| 761 | 773 |
bool valid() const {
|
| 762 | 774 |
return attached(); |
| 763 | 775 |
} |
| 764 | 776 |
}; |
| 765 | 777 |
|
| 766 | 778 |
}; |
| 767 | 779 |
|
| 768 | 780 |
///@} |
| 769 | 781 |
|
| 770 | 782 |
class ListGraphBase {
|
| 771 | 783 |
|
| 772 | 784 |
protected: |
| 773 | 785 |
|
| 774 | 786 |
struct NodeT {
|
| 775 | 787 |
int first_out; |
| 776 | 788 |
int prev, next; |
| 777 | 789 |
}; |
| 778 | 790 |
|
| 779 | 791 |
struct ArcT {
|
| 780 | 792 |
int target; |
| 781 | 793 |
int prev_out, next_out; |
| 782 | 794 |
}; |
| 783 | 795 |
|
| 784 | 796 |
std::vector<NodeT> nodes; |
| 785 | 797 |
|
| 786 | 798 |
int first_node; |
| 787 | 799 |
|
| 788 | 800 |
int first_free_node; |
| 789 | 801 |
|
| 790 | 802 |
std::vector<ArcT> arcs; |
| 791 | 803 |
|
| 792 | 804 |
int first_free_arc; |
| 793 | 805 |
|
| 794 | 806 |
public: |
| 795 | 807 |
|
| 796 | 808 |
typedef ListGraphBase Graph; |
| 797 | 809 |
|
| 798 |
class Node; |
|
| 799 |
class Arc; |
|
| 800 |
class Edge; |
|
| 801 |
|
|
| 802 | 810 |
class Node {
|
| 803 | 811 |
friend class ListGraphBase; |
| 804 | 812 |
protected: |
| 805 | 813 |
|
| 806 | 814 |
int id; |
| 807 | 815 |
explicit Node(int pid) { id = pid;}
|
| 808 | 816 |
|
| 809 | 817 |
public: |
| 810 | 818 |
Node() {}
|
| 811 | 819 |
Node (Invalid) { id = -1; }
|
| 812 | 820 |
bool operator==(const Node& node) const {return id == node.id;}
|
| 813 | 821 |
bool operator!=(const Node& node) const {return id != node.id;}
|
| 814 | 822 |
bool operator<(const Node& node) const {return id < node.id;}
|
| 815 | 823 |
}; |
| 816 | 824 |
|
| 817 | 825 |
class Edge {
|
| 818 | 826 |
friend class ListGraphBase; |
| 819 | 827 |
protected: |
| 820 | 828 |
|
| 821 | 829 |
int id; |
| 822 | 830 |
explicit Edge(int pid) { id = pid;}
|
| 823 | 831 |
|
| 824 | 832 |
public: |
| 825 | 833 |
Edge() {}
|
| ... | ... |
@@ -827,50 +835,48 @@ |
| 827 | 835 |
bool operator==(const Edge& edge) const {return id == edge.id;}
|
| 828 | 836 |
bool operator!=(const Edge& edge) const {return id != edge.id;}
|
| 829 | 837 |
bool operator<(const Edge& edge) const {return id < edge.id;}
|
| 830 | 838 |
}; |
| 831 | 839 |
|
| 832 | 840 |
class Arc {
|
| 833 | 841 |
friend class ListGraphBase; |
| 834 | 842 |
protected: |
| 835 | 843 |
|
| 836 | 844 |
int id; |
| 837 | 845 |
explicit Arc(int pid) { id = pid;}
|
| 838 | 846 |
|
| 839 | 847 |
public: |
| 840 | 848 |
operator Edge() const {
|
| 841 | 849 |
return id != -1 ? edgeFromId(id / 2) : INVALID; |
| 842 | 850 |
} |
| 843 | 851 |
|
| 844 | 852 |
Arc() {}
|
| 845 | 853 |
Arc (Invalid) { id = -1; }
|
| 846 | 854 |
bool operator==(const Arc& arc) const {return id == arc.id;}
|
| 847 | 855 |
bool operator!=(const Arc& arc) const {return id != arc.id;}
|
| 848 | 856 |
bool operator<(const Arc& arc) const {return id < arc.id;}
|
| 849 | 857 |
}; |
| 850 | 858 |
|
| 851 |
|
|
| 852 |
|
|
| 853 | 859 |
ListGraphBase() |
| 854 | 860 |
: nodes(), first_node(-1), |
| 855 | 861 |
first_free_node(-1), arcs(), first_free_arc(-1) {}
|
| 856 | 862 |
|
| 857 | 863 |
|
| 858 | 864 |
int maxNodeId() const { return nodes.size()-1; }
|
| 859 | 865 |
int maxEdgeId() const { return arcs.size() / 2 - 1; }
|
| 860 | 866 |
int maxArcId() const { return arcs.size()-1; }
|
| 861 | 867 |
|
| 862 | 868 |
Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); }
|
| 863 | 869 |
Node target(Arc e) const { return Node(arcs[e.id].target); }
|
| 864 | 870 |
|
| 865 | 871 |
Node u(Edge e) const { return Node(arcs[2 * e.id].target); }
|
| 866 | 872 |
Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); }
|
| 867 | 873 |
|
| 868 | 874 |
static bool direction(Arc e) {
|
| 869 | 875 |
return (e.id & 1) == 1; |
| 870 | 876 |
} |
| 871 | 877 |
|
| 872 | 878 |
static Arc direct(Edge e, bool d) {
|
| 873 | 879 |
return Arc(e.id * 2 + (d ? 1 : 0)); |
| 874 | 880 |
} |
| 875 | 881 |
|
| 876 | 882 |
void first(Node& node) const {
|
| ... | ... |
@@ -1143,203 +1149,231 @@ |
| 1143 | 1149 |
} else {
|
| 1144 | 1150 |
nodes[arcs[2 * e.id].target].first_out = |
| 1145 | 1151 |
arcs[(2 * e.id) | 1].next_out; |
| 1146 | 1152 |
} |
| 1147 | 1153 |
|
| 1148 | 1154 |
if (nodes[n.id].first_out != -1) {
|
| 1149 | 1155 |
arcs[nodes[n.id].first_out].prev_out = ((2 * e.id) | 1); |
| 1150 | 1156 |
} |
| 1151 | 1157 |
arcs[2 * e.id].target = n.id; |
| 1152 | 1158 |
arcs[(2 * e.id) | 1].prev_out = -1; |
| 1153 | 1159 |
arcs[(2 * e.id) | 1].next_out = nodes[n.id].first_out; |
| 1154 | 1160 |
nodes[n.id].first_out = ((2 * e.id) | 1); |
| 1155 | 1161 |
} |
| 1156 | 1162 |
|
| 1157 | 1163 |
}; |
| 1158 | 1164 |
|
| 1159 | 1165 |
typedef GraphExtender<ListGraphBase> ExtendedListGraphBase; |
| 1160 | 1166 |
|
| 1161 | 1167 |
|
| 1162 | 1168 |
/// \addtogroup graphs |
| 1163 | 1169 |
/// @{
|
| 1164 | 1170 |
|
| 1165 | 1171 |
///A general undirected graph structure. |
| 1166 | 1172 |
|
| 1167 |
///\ref ListGraph is a simple and fast <em>undirected graph</em> |
|
| 1168 |
///implementation based on static linked lists that are stored in |
|
| 1173 |
///\ref ListGraph is a versatile and fast undirected graph |
|
| 1174 |
///implementation based on linked lists that are stored in |
|
| 1169 | 1175 |
///\c std::vector structures. |
| 1170 | 1176 |
/// |
| 1171 |
///It conforms to the \ref concepts::Graph "Graph concept" and it |
|
| 1172 |
///also provides several useful additional functionalities. |
|
| 1173 |
/// |
|
| 1177 |
///This type fully conforms to the \ref concepts::Graph "Graph concept" |
|
| 1178 |
///and it also provides several useful additional functionalities. |
|
| 1179 |
///Most of its member functions and nested classes are documented |
|
| 1174 | 1180 |
///only in the concept class. |
| 1175 | 1181 |
/// |
| 1176 | 1182 |
///\sa concepts::Graph |
| 1177 |
|
|
| 1183 |
///\sa ListDigraph |
|
| 1178 | 1184 |
class ListGraph : public ExtendedListGraphBase {
|
| 1179 | 1185 |
typedef ExtendedListGraphBase Parent; |
| 1180 | 1186 |
|
| 1181 | 1187 |
private: |
| 1182 |
///ListGraph is \e not copy constructible. Use copyGraph() instead. |
|
| 1183 |
|
|
| 1184 |
///ListGraph is \e not copy constructible. Use copyGraph() instead. |
|
| 1185 |
/// |
|
| 1188 |
/// Graphs are \e not copy constructible. Use GraphCopy instead. |
|
| 1186 | 1189 |
ListGraph(const ListGraph &) :ExtendedListGraphBase() {};
|
| 1187 |
///\brief Assignment of ListGraph to another one is \e not allowed. |
|
| 1188 |
///Use copyGraph() instead. |
|
| 1189 |
|
|
| 1190 |
///Assignment of ListGraph to another one is \e not allowed. |
|
| 1191 |
/// |
|
| 1190 |
/// \brief Assignment of a graph to another one is \e not allowed. |
|
| 1191 |
/// Use GraphCopy instead. |
|
| 1192 | 1192 |
void operator=(const ListGraph &) {}
|
| 1193 | 1193 |
public: |
| 1194 | 1194 |
/// Constructor |
| 1195 | 1195 |
|
| 1196 | 1196 |
/// Constructor. |
| 1197 | 1197 |
/// |
| 1198 | 1198 |
ListGraph() {}
|
| 1199 | 1199 |
|
| 1200 | 1200 |
typedef Parent::OutArcIt IncEdgeIt; |
| 1201 | 1201 |
|
| 1202 | 1202 |
/// \brief Add a new node to the graph. |
| 1203 | 1203 |
/// |
| 1204 |
/// |
|
| 1204 |
/// This function adds a new node to the graph. |
|
| 1205 | 1205 |
/// \return The new node. |
| 1206 | 1206 |
Node addNode() { return Parent::addNode(); }
|
| 1207 | 1207 |
|
| 1208 | 1208 |
/// \brief Add a new edge to the graph. |
| 1209 | 1209 |
/// |
| 1210 |
/// Add a new edge to the graph with source node \c s |
|
| 1211 |
/// and target node \c t. |
|
| 1210 |
/// This function adds a new edge to the graph between nodes |
|
| 1211 |
/// \c u and \c v with inherent orientation from node \c u to |
|
| 1212 |
/// node \c v. |
|
| 1212 | 1213 |
/// \return The new edge. |
| 1213 |
Edge addEdge(const Node& s, const Node& t) {
|
|
| 1214 |
return Parent::addEdge(s, t); |
|
| 1214 |
Edge addEdge(Node u, Node v) {
|
|
| 1215 |
return Parent::addEdge(u, v); |
|
| 1215 | 1216 |
} |
| 1216 | 1217 |
|
| 1217 |
/// |
|
| 1218 |
///\brief Erase a node from the graph. |
|
| 1218 | 1219 |
/// |
| 1219 |
/// |
|
| 1220 |
/// This function erases the given node from the graph. |
|
| 1221 |
void erase(Node n) { Parent::erase(n); }
|
|
| 1222 |
|
|
| 1223 |
///\brief Erase an edge from the graph. |
|
| 1220 | 1224 |
/// |
| 1221 |
void erase(const Node& n) { Parent::erase(n); }
|
|
| 1222 |
|
|
| 1223 |
/// \brief Erase an edge from the graph. |
|
| 1224 |
/// |
|
| 1225 |
/// Erase an edge from the graph. |
|
| 1226 |
/// |
|
| 1227 |
|
|
| 1225 |
/// This function erases the given edge from the graph. |
|
| 1226 |
void erase(Edge e) { Parent::erase(e); }
|
|
| 1228 | 1227 |
/// Node validity check |
| 1229 | 1228 |
|
| 1230 |
/// This function gives back true if the given node is valid, |
|
| 1231 |
/// ie. it is a real node of the graph. |
|
| 1229 |
/// This function gives back \c true if the given node is valid, |
|
| 1230 |
/// i.e. it is a real node of the graph. |
|
| 1232 | 1231 |
/// |
| 1233 |
/// \warning A Node pointing to a removed item |
|
| 1234 |
/// could become valid again later if new nodes are |
|
| 1232 |
/// \warning A removed node could become valid again if new nodes are |
|
| 1235 | 1233 |
/// added to the graph. |
| 1236 | 1234 |
bool valid(Node n) const { return Parent::valid(n); }
|
| 1235 |
/// Edge validity check |
|
| 1236 |
|
|
| 1237 |
/// This function gives back \c true if the given edge is valid, |
|
| 1238 |
/// i.e. it is a real edge of the graph. |
|
| 1239 |
/// |
|
| 1240 |
/// \warning A removed edge could become valid again if new edges are |
|
| 1241 |
/// added to the graph. |
|
| 1242 |
bool valid(Edge e) const { return Parent::valid(e); }
|
|
| 1237 | 1243 |
/// Arc validity check |
| 1238 | 1244 |
|
| 1239 |
/// This function gives back true if the given arc is valid, |
|
| 1240 |
/// ie. it is a real arc of the graph. |
|
| 1245 |
/// This function gives back \c true if the given arc is valid, |
|
| 1246 |
/// i.e. it is a real arc of the graph. |
|
| 1241 | 1247 |
/// |
| 1242 |
/// \warning An Arc pointing to a removed item |
|
| 1243 |
/// could become valid again later if new edges are |
|
| 1248 |
/// \warning A removed arc could become valid again if new edges are |
|
| 1244 | 1249 |
/// added to the graph. |
| 1245 | 1250 |
bool valid(Arc a) const { return Parent::valid(a); }
|
| 1246 |
/// Edge validity check |
|
| 1247 | 1251 |
|
| 1248 |
/// This function gives back true if the given edge is valid, |
|
| 1249 |
/// ie. it is a real arc of the graph. |
|
| 1252 |
/// \brief Change the first node of an edge. |
|
| 1250 | 1253 |
/// |
| 1251 |
/// \warning A Edge pointing to a removed item |
|
| 1252 |
/// could become valid again later if new edges are |
|
| 1253 |
/// added to the graph. |
|
| 1254 |
bool valid(Edge e) const { return Parent::valid(e); }
|
|
| 1255 |
/// |
|
| 1254 |
/// This function changes the first node of the given edge \c e to \c n. |
|
| 1256 | 1255 |
/// |
| 1257 |
/// This function changes the end \c u of \c e to node \c n. |
|
| 1258 |
/// |
|
| 1259 |
///\note The <tt>EdgeIt</tt>s and <tt>ArcIt</tt>s referencing the |
|
| 1260 |
///changed edge are invalidated and if the changed node is the |
|
| 1261 |
///base node of an iterator then this iterator is also |
|
| 1262 |
///invalidated. |
|
| 1256 |
///\note \c EdgeIt and \c ArcIt iterators referencing the |
|
| 1257 |
///changed edge are invalidated and all other iterators whose |
|
| 1258 |
///base node is the changed node are also invalidated. |
|
| 1263 | 1259 |
/// |
| 1264 | 1260 |
///\warning This functionality cannot be used together with the |
| 1265 | 1261 |
///Snapshot feature. |
| 1266 | 1262 |
void changeU(Edge e, Node n) {
|
| 1267 | 1263 |
Parent::changeU(e,n); |
| 1268 | 1264 |
} |
| 1269 |
/// \brief Change the |
|
| 1265 |
/// \brief Change the second node of an edge. |
|
| 1270 | 1266 |
/// |
| 1271 |
/// This function changes the |
|
| 1267 |
/// This function changes the second node of the given edge \c e to \c n. |
|
| 1272 | 1268 |
/// |
| 1273 |
///\note The <tt>EdgeIt</tt>s referencing the changed edge remain |
|
| 1274 |
///valid, however <tt>ArcIt</tt>s and if the changed node is the |
|
| 1275 |
/// |
|
| 1269 |
///\note \c EdgeIt iterators referencing the changed edge remain |
|
| 1270 |
///valid, however \c ArcIt iterators referencing the changed edge and |
|
| 1271 |
///all other iterators whose base node is the changed node are also |
|
| 1272 |
///invalidated. |
|
| 1276 | 1273 |
/// |
| 1277 | 1274 |
///\warning This functionality cannot be used together with the |
| 1278 | 1275 |
///Snapshot feature. |
| 1279 | 1276 |
void changeV(Edge e, Node n) {
|
| 1280 | 1277 |
Parent::changeV(e,n); |
| 1281 | 1278 |
} |
| 1279 |
|
|
| 1282 | 1280 |
/// \brief Contract two nodes. |
| 1283 | 1281 |
/// |
| 1284 |
/// This function contracts two nodes. |
|
| 1285 |
/// Node \p b will be removed but instead of deleting |
|
| 1286 |
/// its neighboring arcs, they will be joined to \p a. |
|
| 1287 |
/// The last parameter \p r controls whether to remove loops. \c true |
|
| 1288 |
/// |
|
| 1282 |
/// This function contracts the given two nodes. |
|
| 1283 |
/// Node \c b is removed, but instead of deleting |
|
| 1284 |
/// its incident edges, they are joined to node \c a. |
|
| 1285 |
/// If the last parameter \c r is \c true (this is the default value), |
|
| 1286 |
/// then the newly created loops are removed. |
|
| 1289 | 1287 |
/// |
| 1290 |
/// \note The <tt>ArcIt</tt>s referencing a moved arc remain |
|
| 1291 |
/// valid. |
|
| 1288 |
/// \note The moved edges are joined to node \c a using changeU() |
|
| 1289 |
/// or changeV(), thus all edge and arc iterators whose base node is |
|
| 1290 |
/// \c b are invalidated. |
|
| 1291 |
/// Moreover all iterators referencing node \c b or the removed |
|
| 1292 |
/// loops are also invalidated. Other iterators remain valid. |
|
| 1292 | 1293 |
/// |
| 1293 | 1294 |
///\warning This functionality cannot be used together with the |
| 1294 | 1295 |
///Snapshot feature. |
| 1295 | 1296 |
void contract(Node a, Node b, bool r = true) {
|
| 1296 | 1297 |
for(IncEdgeIt e(*this, b); e!=INVALID;) {
|
| 1297 | 1298 |
IncEdgeIt f = e; ++f; |
| 1298 | 1299 |
if (r && runningNode(e) == a) {
|
| 1299 | 1300 |
erase(e); |
| 1300 | 1301 |
} else if (u(e) == b) {
|
| 1301 | 1302 |
changeU(e, a); |
| 1302 | 1303 |
} else {
|
| 1303 | 1304 |
changeV(e, a); |
| 1304 | 1305 |
} |
| 1305 | 1306 |
e = f; |
| 1306 | 1307 |
} |
| 1307 | 1308 |
erase(b); |
| 1308 | 1309 |
} |
| 1309 | 1310 |
|
| 1311 |
///Clear the graph. |
|
| 1312 |
|
|
| 1313 |
///This function erases all nodes and arcs from the graph. |
|
| 1314 |
/// |
|
| 1315 |
void clear() {
|
|
| 1316 |
Parent::clear(); |
|
| 1317 |
} |
|
| 1318 |
|
|
| 1319 |
/// Reserve memory for nodes. |
|
| 1320 |
|
|
| 1321 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 1322 |
/// allocation: if you know that the graph you want to build will |
|
| 1323 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
|
| 1324 |
/// then it is worth reserving space for this amount before starting |
|
| 1325 |
/// to build the graph. |
|
| 1326 |
/// \sa reserveEdge() |
|
| 1327 |
void reserveNode(int n) { nodes.reserve(n); };
|
|
| 1328 |
|
|
| 1329 |
/// Reserve memory for edges. |
|
| 1330 |
|
|
| 1331 |
/// Using this function, it is possible to avoid superfluous memory |
|
| 1332 |
/// allocation: if you know that the graph you want to build will |
|
| 1333 |
/// be large (e.g. it will contain millions of nodes and/or edges), |
|
| 1334 |
/// then it is worth reserving space for this amount before starting |
|
| 1335 |
/// to build the graph. |
|
| 1336 |
/// \sa reserveNode() |
|
| 1337 |
void reserveEdge(int m) { arcs.reserve(2 * m); };
|
|
| 1310 | 1338 |
|
| 1311 | 1339 |
/// \brief Class to make a snapshot of the graph and restore |
| 1312 | 1340 |
/// it later. |
| 1313 | 1341 |
/// |
| 1314 | 1342 |
/// Class to make a snapshot of the graph and restore it later. |
| 1315 | 1343 |
/// |
| 1316 | 1344 |
/// The newly added nodes and edges can be removed |
| 1317 | 1345 |
/// using the restore() function. |
| 1318 | 1346 |
/// |
| 1319 |
/// \warning Edge and node deletions and other modifications |
|
| 1320 |
/// (e.g. changing nodes of edges, contracting nodes) cannot be |
|
| 1321 |
/// restored |
|
| 1347 |
/// \note After a state is restored, you cannot restore a later state, |
|
| 1348 |
/// i.e. you cannot add the removed nodes and edges again using |
|
| 1349 |
/// another Snapshot instance. |
|
| 1350 |
/// |
|
| 1351 |
/// \warning Node and edge deletions and other modifications |
|
| 1352 |
/// (e.g. changing the end-nodes of edges or contracting nodes) |
|
| 1353 |
/// cannot be restored. These events invalidate the snapshot. |
|
| 1354 |
/// However the edges and nodes that were added to the graph after |
|
| 1355 |
/// making the current snapshot can be removed without invalidating it. |
|
| 1322 | 1356 |
class Snapshot {
|
| 1323 | 1357 |
protected: |
| 1324 | 1358 |
|
| 1325 | 1359 |
typedef Parent::NodeNotifier NodeNotifier; |
| 1326 | 1360 |
|
| 1327 | 1361 |
class NodeObserverProxy : public NodeNotifier::ObserverBase {
|
| 1328 | 1362 |
public: |
| 1329 | 1363 |
|
| 1330 | 1364 |
NodeObserverProxy(Snapshot& _snapshot) |
| 1331 | 1365 |
: snapshot(_snapshot) {}
|
| 1332 | 1366 |
|
| 1333 | 1367 |
using NodeNotifier::ObserverBase::attach; |
| 1334 | 1368 |
using NodeNotifier::ObserverBase::detach; |
| 1335 | 1369 |
using NodeNotifier::ObserverBase::attached; |
| 1336 | 1370 |
|
| 1337 | 1371 |
protected: |
| 1338 | 1372 |
|
| 1339 | 1373 |
virtual void add(const Node& node) {
|
| 1340 | 1374 |
snapshot.addNode(node); |
| 1341 | 1375 |
} |
| 1342 | 1376 |
virtual void add(const std::vector<Node>& nodes) {
|
| 1343 | 1377 |
for (int i = nodes.size() - 1; i >= 0; ++i) {
|
| 1344 | 1378 |
snapshot.addNode(nodes[i]); |
| 1345 | 1379 |
} |
| ... | ... |
@@ -1467,84 +1501,85 @@ |
| 1467 | 1501 |
graph = &_graph; |
| 1468 | 1502 |
node_observer_proxy.attach(graph->notifier(Node())); |
| 1469 | 1503 |
edge_observer_proxy.attach(graph->notifier(Edge())); |
| 1470 | 1504 |
} |
| 1471 | 1505 |
|
| 1472 | 1506 |
void detach() {
|
| 1473 | 1507 |
node_observer_proxy.detach(); |
| 1474 | 1508 |
edge_observer_proxy.detach(); |
| 1475 | 1509 |
} |
| 1476 | 1510 |
|
| 1477 | 1511 |
bool attached() const {
|
| 1478 | 1512 |
return node_observer_proxy.attached(); |
| 1479 | 1513 |
} |
| 1480 | 1514 |
|
| 1481 | 1515 |
void clear() {
|
| 1482 | 1516 |
added_nodes.clear(); |
| 1483 | 1517 |
added_edges.clear(); |
| 1484 | 1518 |
} |
| 1485 | 1519 |
|
| 1486 | 1520 |
public: |
| 1487 | 1521 |
|
| 1488 | 1522 |
/// \brief Default constructor. |
| 1489 | 1523 |
/// |
| 1490 | 1524 |
/// Default constructor. |
| 1491 |
/// |
|
| 1525 |
/// You have to call save() to actually make a snapshot. |
|
| 1492 | 1526 |
Snapshot() |
| 1493 | 1527 |
: graph(0), node_observer_proxy(*this), |
| 1494 | 1528 |
edge_observer_proxy(*this) {}
|
| 1495 | 1529 |
|
| 1496 | 1530 |
/// \brief Constructor that immediately makes a snapshot. |
| 1497 | 1531 |
/// |
| 1498 |
/// This constructor immediately makes a snapshot of the graph. |
|
| 1499 |
/// \param _graph The graph we make a snapshot of. |
|
| 1500 |
|
|
| 1532 |
/// This constructor immediately makes a snapshot of the given graph. |
|
| 1533 |
Snapshot(ListGraph &gr) |
|
| 1501 | 1534 |
: node_observer_proxy(*this), |
| 1502 | 1535 |
edge_observer_proxy(*this) {
|
| 1503 |
attach( |
|
| 1536 |
attach(gr); |
|
| 1504 | 1537 |
} |
| 1505 | 1538 |
|
| 1506 | 1539 |
/// \brief Make a snapshot. |
| 1507 | 1540 |
/// |
| 1508 |
/// Make a snapshot of the graph. |
|
| 1509 |
/// |
|
| 1510 |
/// This function |
|
| 1541 |
/// This function makes a snapshot of the given graph. |
|
| 1542 |
/// It can be called more than once. In case of a repeated |
|
| 1511 | 1543 |
/// call, the previous snapshot gets lost. |
| 1512 |
/// \param _graph The graph we make the snapshot of. |
|
| 1513 |
void save(ListGraph &_graph) {
|
|
| 1544 |
void save(ListGraph &gr) {
|
|
| 1514 | 1545 |
if (attached()) {
|
| 1515 | 1546 |
detach(); |
| 1516 | 1547 |
clear(); |
| 1517 | 1548 |
} |
| 1518 |
attach( |
|
| 1549 |
attach(gr); |
|
| 1519 | 1550 |
} |
| 1520 | 1551 |
|
| 1521 | 1552 |
/// \brief Undo the changes until the last snapshot. |
| 1522 |
// |
|
| 1523 |
/// Undo the changes until the last snapshot created by save(). |
|
| 1553 |
/// |
|
| 1554 |
/// This function undos the changes until the last snapshot |
|
| 1555 |
/// created by save() or Snapshot(ListGraph&). |
|
| 1556 |
/// |
|
| 1557 |
/// \warning This method invalidates the snapshot, i.e. repeated |
|
| 1558 |
/// restoring is not supported unless you call save() again. |
|
| 1524 | 1559 |
void restore() {
|
| 1525 | 1560 |
detach(); |
| 1526 | 1561 |
for(std::list<Edge>::iterator it = added_edges.begin(); |
| 1527 | 1562 |
it != added_edges.end(); ++it) {
|
| 1528 | 1563 |
graph->erase(*it); |
| 1529 | 1564 |
} |
| 1530 | 1565 |
for(std::list<Node>::iterator it = added_nodes.begin(); |
| 1531 | 1566 |
it != added_nodes.end(); ++it) {
|
| 1532 | 1567 |
graph->erase(*it); |
| 1533 | 1568 |
} |
| 1534 | 1569 |
clear(); |
| 1535 | 1570 |
} |
| 1536 | 1571 |
|
| 1537 |
/// \brief |
|
| 1572 |
/// \brief Returns \c true if the snapshot is valid. |
|
| 1538 | 1573 |
/// |
| 1539 |
/// |
|
| 1574 |
/// This function returns \c true if the snapshot is valid. |
|
| 1540 | 1575 |
bool valid() const {
|
| 1541 | 1576 |
return attached(); |
| 1542 | 1577 |
} |
| 1543 | 1578 |
}; |
| 1544 | 1579 |
}; |
| 1545 | 1580 |
|
| 1546 | 1581 |
/// @} |
| 1547 | 1582 |
} //namespace lemon |
| 1548 | 1583 |
|
| 1549 | 1584 |
|
| 1550 | 1585 |
#endif |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)