gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Rename min mean cycle classes and their members (#179) with respect to the possible introduction of min ratio cycle algorithms in the future. The renamed classes: - Karp --> KarpMmc - HartmannOrlin --> HartmannOrlinMmc - Howard --> HowardMmc The renamed members: - cycleLength() --> cycleCost() - cycleArcNum() --> cycleSize() - findMinMean() --> findCycleMean() - Value --> Cost - LargeValue --> LargeCost - SetLargeValue --> SetLargeCost
3 3 3
default
9 files changed with 386 insertions and 386 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
... ...
@@ -86,16 +86,16 @@
86 86
	lemon/fib_heap.h \
87 87
	lemon/full_graph.h \
88 88
	lemon/glpk.h \
89 89
	lemon/gomory_hu.h \
90 90
	lemon/graph_to_eps.h \
91 91
	lemon/grid_graph.h \
92
	lemon/hartmann_orlin.h \
93
	lemon/howard.h \
92
	lemon/hartmann_orlin_mmc.h \
93
	lemon/howard_mmc.h \
94 94
	lemon/hypercube_graph.h \
95
	lemon/karp.h \
95
	lemon/karp_mmc.h \
96 96
	lemon/kruskal.h \
97 97
	lemon/hao_orlin.h \
98 98
	lemon/lgf_reader.h \
99 99
	lemon/lgf_writer.h \
100 100
	lemon/list_graph.h \
101 101
	lemon/lp.h \
Ignore white space 6 line context
... ...
@@ -31,13 +31,13 @@
31 31
#include <lemon/path.h>
32 32
#include <lemon/math.h>
33 33
#include <lemon/static_graph.h>
34 34
#include <lemon/adaptors.h>
35 35
#include <lemon/circulation.h>
36 36
#include <lemon/bellman_ford.h>
37
#include <lemon/howard.h>
37
#include <lemon/howard_mmc.h>
38 38

	
39 39
namespace lemon {
40 40

	
41 41
  /// \addtogroup min_cost_flow_algs
42 42
  /// @{
43 43

	
... ...
@@ -921,20 +921,20 @@
921 921
    }
922 922

	
923 923
    // Execute the "Minimum Mean Cycle Canceling" method
924 924
    void startMinMeanCycleCanceling() {
925 925
      typedef SimplePath<StaticDigraph> SPath;
926 926
      typedef typename SPath::ArcIt SPathArcIt;
927
      typedef typename Howard<StaticDigraph, CostArcMap>
927
      typedef typename HowardMmc<StaticDigraph, CostArcMap>
928 928
        ::template SetPath<SPath>::Create MMC;
929 929
      
930 930
      SPath cycle;
931 931
      MMC mmc(_sgr, _cost_map);
932 932
      mmc.cycle(cycle);
933 933
      buildResidualNetwork();
934
      while (mmc.findMinMean() && mmc.cycleLength() < 0) {
934
      while (mmc.findCycleMean() && mmc.cycleCost() < 0) {
935 935
        // Find the cycle
936 936
        mmc.findCycle();
937 937

	
938 938
        // Compute delta value
939 939
        Value delta = INF;
940 940
        for (SPathArcIt a(cycle); a != INVALID; ++a) {
... ...
@@ -1129,23 +1129,23 @@
1129 1129
              if (_res_cap[a] == 0) continue;
1130 1130
              curr = _cost[a] + pu - pi[_target[a]];
1131 1131
              if (-curr > epsilon) epsilon = -curr;
1132 1132
            }
1133 1133
          }
1134 1134
        } else {
1135
          typedef Howard<StaticDigraph, CostArcMap> MMC;
1135
          typedef HowardMmc<StaticDigraph, CostArcMap> MMC;
1136 1136
          typedef typename BellmanFord<StaticDigraph, CostArcMap>
1137 1137
            ::template SetDistMap<CostNodeMap>::Create BF;
1138 1138

	
1139 1139
          // Set epsilon to the minimum cycle mean
1140 1140
          buildResidualNetwork();
1141 1141
          MMC mmc(_sgr, _cost_map);
1142
          mmc.findMinMean();
1142
          mmc.findCycleMean();
1143 1143
          epsilon = -mmc.cycleMean();
1144
          Cost cycle_cost = mmc.cycleLength();
1145
          int cycle_size = mmc.cycleArcNum();
1144
          Cost cycle_cost = mmc.cycleCost();
1145
          int cycle_size = mmc.cycleSize();
1146 1146
          
1147 1147
          // Compute feasible potentials for the current epsilon
1148 1148
          for (int i = 0; i != int(_cost_vec.size()); ++i) {
1149 1149
            _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
1150 1150
          }
1151 1151
          BF bf(_sgr, _cost_map);
Ignore white space 6 line context
... ...
@@ -13,14 +13,14 @@
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19
#ifndef LEMON_HARTMANN_ORLIN_H
20
#define LEMON_HARTMANN_ORLIN_H
19
#ifndef LEMON_HARTMANN_ORLIN_MMC_H
20
#define LEMON_HARTMANN_ORLIN_MMC_H
21 21

	
22 22
/// \ingroup min_mean_cycle
23 23
///
24 24
/// \file
25 25
/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle.
26 26

	
... ...
@@ -30,161 +30,161 @@
30 30
#include <lemon/path.h>
31 31
#include <lemon/tolerance.h>
32 32
#include <lemon/connectivity.h>
33 33

	
34 34
namespace lemon {
35 35

	
36
  /// \brief Default traits class of HartmannOrlin algorithm.
36
  /// \brief Default traits class of HartmannOrlinMmc class.
37 37
  ///
38
  /// Default traits class of HartmannOrlin algorithm.
38
  /// Default traits class of HartmannOrlinMmc class.
39 39
  /// \tparam GR The type of the digraph.
40
  /// \tparam LEN The type of the length map.
40
  /// \tparam CM The type of the cost map.
41 41
  /// It must conform to the \ref concepts::Rea_data "Rea_data" concept.
42 42
#ifdef DOXYGEN
43
  template <typename GR, typename LEN>
43
  template <typename GR, typename CM>
44 44
#else
45
  template <typename GR, typename LEN,
46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
45
  template <typename GR, typename CM,
46
    bool integer = std::numeric_limits<typename CM::Value>::is_integer>
47 47
#endif
48
  struct HartmannOrlinDefaultTraits
48
  struct HartmannOrlinMmcDefaultTraits
49 49
  {
50 50
    /// The type of the digraph
51 51
    typedef GR Digraph;
52
    /// The type of the length map
53
    typedef LEN LengthMap;
54
    /// The type of the arc lengths
55
    typedef typename LengthMap::Value Value;
52
    /// The type of the cost map
53
    typedef CM CostMap;
54
    /// The type of the arc costs
55
    typedef typename CostMap::Value Cost;
56 56

	
57
    /// \brief The large value type used for internal computations
57
    /// \brief The large cost type used for internal computations
58 58
    ///
59
    /// The large value type used for internal computations.
60
    /// It is \c long \c long if the \c Value type is integer,
59
    /// The large cost type used for internal computations.
60
    /// It is \c long \c long if the \c Cost type is integer,
61 61
    /// otherwise it is \c double.
62
    /// \c Value must be convertible to \c LargeValue.
63
    typedef double LargeValue;
62
    /// \c Cost must be convertible to \c LargeCost.
63
    typedef double LargeCost;
64 64

	
65 65
    /// The tolerance type used for internal computations
66
    typedef lemon::Tolerance<LargeValue> Tolerance;
66
    typedef lemon::Tolerance<LargeCost> Tolerance;
67 67

	
68 68
    /// \brief The path type of the found cycles
69 69
    ///
70 70
    /// The path type of the found cycles.
71 71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 72
    /// and it must have an \c addFront() function.
73 73
    typedef lemon::Path<Digraph> Path;
74 74
  };
75 75

	
76
  // Default traits class for integer value types
77
  template <typename GR, typename LEN>
78
  struct HartmannOrlinDefaultTraits<GR, LEN, true>
76
  // Default traits class for integer cost types
77
  template <typename GR, typename CM>
78
  struct HartmannOrlinMmcDefaultTraits<GR, CM, true>
79 79
  {
80 80
    typedef GR Digraph;
81
    typedef LEN LengthMap;
82
    typedef typename LengthMap::Value Value;
81
    typedef CM CostMap;
82
    typedef typename CostMap::Value Cost;
83 83
#ifdef LEMON_HAVE_LONG_LONG
84
    typedef long long LargeValue;
84
    typedef long long LargeCost;
85 85
#else
86
    typedef long LargeValue;
86
    typedef long LargeCost;
87 87
#endif
88
    typedef lemon::Tolerance<LargeValue> Tolerance;
88
    typedef lemon::Tolerance<LargeCost> Tolerance;
89 89
    typedef lemon::Path<Digraph> Path;
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup min_mean_cycle
94 94
  /// @{
95 95

	
96 96
  /// \brief Implementation of the Hartmann-Orlin algorithm for finding
97 97
  /// a minimum mean cycle.
98 98
  ///
99 99
  /// This class implements the Hartmann-Orlin algorithm for finding
100
  /// a directed cycle of minimum mean length (cost) in a digraph
100
  /// a directed cycle of minimum mean cost in a digraph
101 101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
102 102
  /// It is an improved version of \ref Karp "Karp"'s original algorithm,
103 103
  /// it applies an efficient early termination scheme.
104 104
  /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
105 105
  ///
106 106
  /// \tparam GR The type of the digraph the algorithm runs on.
107
  /// \tparam LEN The type of the length map. The default
107
  /// \tparam CM The type of the cost map. The default
108 108
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
109 109
  /// \tparam TR The traits class that defines various types used by the
110
  /// algorithm. By default, it is \ref HartmannOrlinDefaultTraits
111
  /// "HartmannOrlinDefaultTraits<GR, LEN>".
110
  /// algorithm. By default, it is \ref HartmannOrlinMmcDefaultTraits
111
  /// "HartmannOrlinMmcDefaultTraits<GR, CM>".
112 112
  /// In most cases, this parameter should not be set directly,
113 113
  /// consider to use the named template parameters instead.
114 114
#ifdef DOXYGEN
115
  template <typename GR, typename LEN, typename TR>
115
  template <typename GR, typename CM, typename TR>
116 116
#else
117 117
  template < typename GR,
118
             typename LEN = typename GR::template ArcMap<int>,
119
             typename TR = HartmannOrlinDefaultTraits<GR, LEN> >
118
             typename CM = typename GR::template ArcMap<int>,
119
             typename TR = HartmannOrlinMmcDefaultTraits<GR, CM> >
120 120
#endif
121
  class HartmannOrlin
121
  class HartmannOrlinMmc
122 122
  {
123 123
  public:
124 124

	
125 125
    /// The type of the digraph
126 126
    typedef typename TR::Digraph Digraph;
127
    /// The type of the length map
128
    typedef typename TR::LengthMap LengthMap;
129
    /// The type of the arc lengths
130
    typedef typename TR::Value Value;
127
    /// The type of the cost map
128
    typedef typename TR::CostMap CostMap;
129
    /// The type of the arc costs
130
    typedef typename TR::Cost Cost;
131 131

	
132
    /// \brief The large value type
132
    /// \brief The large cost type
133 133
    ///
134
    /// The large value type used for internal computations.
135
    /// By default, it is \c long \c long if the \c Value type is integer,
134
    /// The large cost type used for internal computations.
135
    /// By default, it is \c long \c long if the \c Cost type is integer,
136 136
    /// otherwise it is \c double.
137
    typedef typename TR::LargeValue LargeValue;
137
    typedef typename TR::LargeCost LargeCost;
138 138

	
139 139
    /// The tolerance type
140 140
    typedef typename TR::Tolerance Tolerance;
141 141

	
142 142
    /// \brief The path type of the found cycles
143 143
    ///
144 144
    /// The path type of the found cycles.
145
    /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
145
    /// Using the \ref HartmannOrlinMmcDefaultTraits "default traits class",
146 146
    /// it is \ref lemon::Path "Path<Digraph>".
147 147
    typedef typename TR::Path Path;
148 148

	
149
    /// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm
149
    /// The \ref HartmannOrlinMmcDefaultTraits "traits class" of the algorithm
150 150
    typedef TR Traits;
151 151

	
152 152
  private:
153 153

	
154 154
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
155 155

	
156 156
    // Data sturcture for path data
157 157
    struct PathData
158 158
    {
159
      LargeValue dist;
159
      LargeCost dist;
160 160
      Arc pred;
161
      PathData(LargeValue d, Arc p = INVALID) :
161
      PathData(LargeCost d, Arc p = INVALID) :
162 162
        dist(d), pred(p) {}
163 163
    };
164 164

	
165 165
    typedef typename Digraph::template NodeMap<std::vector<PathData> >
166 166
      PathDataNodeMap;
167 167

	
168 168
  private:
169 169

	
170 170
    // The digraph the algorithm runs on
171 171
    const Digraph &_gr;
172
    // The length of the arcs
173
    const LengthMap &_length;
172
    // The cost of the arcs
173
    const CostMap &_cost;
174 174

	
175 175
    // Data for storing the strongly connected components
176 176
    int _comp_num;
177 177
    typename Digraph::template NodeMap<int> _comp;
178 178
    std::vector<std::vector<Node> > _comp_nodes;
179 179
    std::vector<Node>* _nodes;
180 180
    typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
181 181

	
182 182
    // Data for the found cycles
183 183
    bool _curr_found, _best_found;
184
    LargeValue _curr_length, _best_length;
184
    LargeCost _curr_cost, _best_cost;
185 185
    int _curr_size, _best_size;
186 186
    Node _curr_node, _best_node;
187 187
    int _curr_level, _best_level;
188 188

	
189 189
    Path *_cycle_path;
190 190
    bool _local_path;
... ...
@@ -194,34 +194,34 @@
194 194
    // The processed nodes in the last round
195 195
    std::vector<Node> _process;
196 196

	
197 197
    Tolerance _tolerance;
198 198

	
199 199
    // Infinite constant
200
    const LargeValue INF;
200
    const LargeCost INF;
201 201

	
202 202
  public:
203 203

	
204 204
    /// \name Named Template Parameters
205 205
    /// @{
206 206

	
207 207
    template <typename T>
208
    struct SetLargeValueTraits : public Traits {
209
      typedef T LargeValue;
208
    struct SetLargeCostTraits : public Traits {
209
      typedef T LargeCost;
210 210
      typedef lemon::Tolerance<T> Tolerance;
211 211
    };
212 212

	
213 213
    /// \brief \ref named-templ-param "Named parameter" for setting
214
    /// \c LargeValue type.
214
    /// \c LargeCost type.
215 215
    ///
216
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
216
    /// \ref named-templ-param "Named parameter" for setting \c LargeCost
217 217
    /// type. It is used for internal computations in the algorithm.
218 218
    template <typename T>
219
    struct SetLargeValue
220
      : public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
221
      typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create;
219
    struct SetLargeCost
220
      : public HartmannOrlinMmc<GR, CM, SetLargeCostTraits<T> > {
221
      typedef HartmannOrlinMmc<GR, CM, SetLargeCostTraits<T> > Create;
222 222
    };
223 223

	
224 224
    template <typename T>
225 225
    struct SetPathTraits : public Traits {
226 226
      typedef T Path;
227 227
    };
... ...
@@ -232,60 +232,60 @@
232 232
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
233 233
    /// type of the found cycles.
234 234
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
235 235
    /// and it must have an \c addFront() function.
236 236
    template <typename T>
237 237
    struct SetPath
238
      : public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
239
      typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create;
238
      : public HartmannOrlinMmc<GR, CM, SetPathTraits<T> > {
239
      typedef HartmannOrlinMmc<GR, CM, SetPathTraits<T> > Create;
240 240
    };
241 241

	
242 242
    /// @}
243 243

	
244 244
  protected:
245 245

	
246
    HartmannOrlin() {}
246
    HartmannOrlinMmc() {}
247 247

	
248 248
  public:
249 249

	
250 250
    /// \brief Constructor.
251 251
    ///
252 252
    /// The constructor of the class.
253 253
    ///
254 254
    /// \param digraph The digraph the algorithm runs on.
255
    /// \param length The lengths (costs) of the arcs.
256
    HartmannOrlin( const Digraph &digraph,
257
                   const LengthMap &length ) :
258
      _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
259
      _best_found(false), _best_length(0), _best_size(1),
255
    /// \param cost The costs of the arcs.
256
    HartmannOrlinMmc( const Digraph &digraph,
257
                      const CostMap &cost ) :
258
      _gr(digraph), _cost(cost), _comp(digraph), _out_arcs(digraph),
259
      _best_found(false), _best_cost(0), _best_size(1),
260 260
      _cycle_path(NULL), _local_path(false), _data(digraph),
261
      INF(std::numeric_limits<LargeValue>::has_infinity ?
262
          std::numeric_limits<LargeValue>::infinity() :
263
          std::numeric_limits<LargeValue>::max())
261
      INF(std::numeric_limits<LargeCost>::has_infinity ?
262
          std::numeric_limits<LargeCost>::infinity() :
263
          std::numeric_limits<LargeCost>::max())
264 264
    {}
265 265

	
266 266
    /// Destructor.
267
    ~HartmannOrlin() {
267
    ~HartmannOrlinMmc() {
268 268
      if (_local_path) delete _cycle_path;
269 269
    }
270 270

	
271 271
    /// \brief Set the path structure for storing the found cycle.
272 272
    ///
273 273
    /// This function sets an external path structure for storing the
274 274
    /// found cycle.
275 275
    ///
276 276
    /// If you don't call this function before calling \ref run() or
277
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
277
    /// \ref findCycleMean(), it will allocate a local \ref Path "path"
278 278
    /// structure. The destuctor deallocates this automatically
279 279
    /// allocated object, of course.
280 280
    ///
281 281
    /// \note The algorithm calls only the \ref lemon::Path::addFront()
282 282
    /// "addFront()" function of the given path structure.
283 283
    ///
284 284
    /// \return <tt>(*this)</tt>
285
    HartmannOrlin& cycle(Path &path) {
285
    HartmannOrlinMmc& cycle(Path &path) {
286 286
      if (_local_path) {
287 287
        delete _cycle_path;
288 288
        _local_path = false;
289 289
      }
290 290
      _cycle_path = &path;
291 291
      return *this;
... ...
@@ -293,13 +293,13 @@
293 293

	
294 294
    /// \brief Set the tolerance used by the algorithm.
295 295
    ///
296 296
    /// This function sets the tolerance object used by the algorithm.
297 297
    ///
298 298
    /// \return <tt>(*this)</tt>
299
    HartmannOrlin& tolerance(const Tolerance& tolerance) {
299
    HartmannOrlinMmc& tolerance(const Tolerance& tolerance) {
300 300
      _tolerance = tolerance;
301 301
      return *this;
302 302
    }
303 303

	
304 304
    /// \brief Return a const reference to the tolerance.
305 305
    ///
... ...
@@ -309,89 +309,89 @@
309 309
      return _tolerance;
310 310
    }
311 311

	
312 312
    /// \name Execution control
313 313
    /// The simplest way to execute the algorithm is to call the \ref run()
314 314
    /// function.\n
315
    /// If you only need the minimum mean length, you may call
316
    /// \ref findMinMean().
315
    /// If you only need the minimum mean cost, you may call
316
    /// \ref findCycleMean().
317 317

	
318 318
    /// @{
319 319

	
320 320
    /// \brief Run the algorithm.
321 321
    ///
322 322
    /// This function runs the algorithm.
323 323
    /// It can be called more than once (e.g. if the underlying digraph
324
    /// and/or the arc lengths have been modified).
324
    /// and/or the arc costs have been modified).
325 325
    ///
326 326
    /// \return \c true if a directed cycle exists in the digraph.
327 327
    ///
328 328
    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
329 329
    /// \code
330
    ///   return mmc.findMinMean() && mmc.findCycle();
330
    ///   return mmc.findCycleMean() && mmc.findCycle();
331 331
    /// \endcode
332 332
    bool run() {
333
      return findMinMean() && findCycle();
333
      return findCycleMean() && findCycle();
334 334
    }
335 335

	
336 336
    /// \brief Find the minimum cycle mean.
337 337
    ///
338
    /// This function finds the minimum mean length of the directed
338
    /// This function finds the minimum mean cost of the directed
339 339
    /// cycles in the digraph.
340 340
    ///
341 341
    /// \return \c true if a directed cycle exists in the digraph.
342
    bool findMinMean() {
342
    bool findCycleMean() {
343 343
      // Initialization and find strongly connected components
344 344
      init();
345 345
      findComponents();
346 346
      
347 347
      // Find the minimum cycle mean in the components
348 348
      for (int comp = 0; comp < _comp_num; ++comp) {
349 349
        if (!initComponent(comp)) continue;
350 350
        processRounds();
351 351
        
352 352
        // Update the best cycle (global minimum mean cycle)
353 353
        if ( _curr_found && (!_best_found || 
354
             _curr_length * _best_size < _best_length * _curr_size) ) {
354
             _curr_cost * _best_size < _best_cost * _curr_size) ) {
355 355
          _best_found = true;
356
          _best_length = _curr_length;
356
          _best_cost = _curr_cost;
357 357
          _best_size = _curr_size;
358 358
          _best_node = _curr_node;
359 359
          _best_level = _curr_level;
360 360
        }
361 361
      }
362 362
      return _best_found;
363 363
    }
364 364

	
365 365
    /// \brief Find a minimum mean directed cycle.
366 366
    ///
367
    /// This function finds a directed cycle of minimum mean length
368
    /// in the digraph using the data computed by findMinMean().
367
    /// This function finds a directed cycle of minimum mean cost
368
    /// in the digraph using the data computed by findCycleMean().
369 369
    ///
370 370
    /// \return \c true if a directed cycle exists in the digraph.
371 371
    ///
372
    /// \pre \ref findMinMean() must be called before using this function.
372
    /// \pre \ref findCycleMean() must be called before using this function.
373 373
    bool findCycle() {
374 374
      if (!_best_found) return false;
375 375
      IntNodeMap reached(_gr, -1);
376 376
      int r = _best_level + 1;
377 377
      Node u = _best_node;
378 378
      while (reached[u] < 0) {
379 379
        reached[u] = --r;
380 380
        u = _gr.source(_data[u][r].pred);
381 381
      }
382 382
      r = reached[u];
383 383
      Arc e = _data[u][r].pred;
384 384
      _cycle_path->addFront(e);
385
      _best_length = _length[e];
385
      _best_cost = _cost[e];
386 386
      _best_size = 1;
387 387
      Node v;
388 388
      while ((v = _gr.source(e)) != u) {
389 389
        e = _data[v][--r].pred;
390 390
        _cycle_path->addFront(e);
391
        _best_length += _length[e];
391
        _best_cost += _cost[e];
392 392
        ++_best_size;
393 393
      }
394 394
      return true;
395 395
    }
396 396

	
397 397
    /// @}
... ...
@@ -400,46 +400,46 @@
400 400
    /// The results of the algorithm can be obtained using these
401 401
    /// functions.\n
402 402
    /// The algorithm should be executed before using them.
403 403

	
404 404
    /// @{
405 405

	
406
    /// \brief Return the total length of the found cycle.
406
    /// \brief Return the total cost of the found cycle.
407 407
    ///
408
    /// This function returns the total length of the found cycle.
408
    /// This function returns the total cost of the found cycle.
409 409
    ///
410
    /// \pre \ref run() or \ref findMinMean() must be called before
410
    /// \pre \ref run() or \ref findCycleMean() must be called before
411 411
    /// using this function.
412
    Value cycleLength() const {
413
      return static_cast<Value>(_best_length);
412
    Cost cycleCost() const {
413
      return static_cast<Cost>(_best_cost);
414 414
    }
415 415

	
416 416
    /// \brief Return the number of arcs on the found cycle.
417 417
    ///
418 418
    /// This function returns the number of arcs on the found cycle.
419 419
    ///
420
    /// \pre \ref run() or \ref findMinMean() must be called before
420
    /// \pre \ref run() or \ref findCycleMean() must be called before
421 421
    /// using this function.
422
    int cycleArcNum() const {
422
    int cycleSize() const {
423 423
      return _best_size;
424 424
    }
425 425

	
426
    /// \brief Return the mean length of the found cycle.
426
    /// \brief Return the mean cost of the found cycle.
427 427
    ///
428
    /// This function returns the mean length of the found cycle.
428
    /// This function returns the mean cost of the found cycle.
429 429
    ///
430 430
    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
431 431
    /// following code.
432 432
    /// \code
433
    ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
433
    ///   return static_cast<double>(alg.cycleCost()) / alg.cycleSize();
434 434
    /// \endcode
435 435
    ///
436
    /// \pre \ref run() or \ref findMinMean() must be called before
436
    /// \pre \ref run() or \ref findCycleMean() must be called before
437 437
    /// using this function.
438 438
    double cycleMean() const {
439
      return static_cast<double>(_best_length) / _best_size;
439
      return static_cast<double>(_best_cost) / _best_size;
440 440
    }
441 441

	
442 442
    /// \brief Return the found cycle.
443 443
    ///
444 444
    /// This function returns a const reference to the path structure
445 445
    /// storing the found cycle.
... ...
@@ -459,13 +459,13 @@
459 459
      if (!_cycle_path) {
460 460
        _local_path = true;
461 461
        _cycle_path = new Path;
462 462
      }
463 463
      _cycle_path->clear();
464 464
      _best_found = false;
465
      _best_length = 0;
465
      _best_cost = 0;
466 466
      _best_size = 1;
467 467
      _cycle_path->clear();
468 468
      for (NodeIt u(_gr); u != INVALID; ++u)
469 469
        _data[u].clear();
470 470
    }
471 471

	
... ...
@@ -508,13 +508,13 @@
508 508
        _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
509 509
      }
510 510
      return true;
511 511
    }
512 512

	
513 513
    // Process all rounds of computing path data for the current component.
514
    // _data[v][k] is the length of a shortest directed walk from the root
514
    // _data[v][k] is the cost of a shortest directed walk from the root
515 515
    // node to node v containing exactly k arcs.
516 516
    void processRounds() {
517 517
      Node start = (*_nodes)[0];
518 518
      _data[start][0] = PathData(0);
519 519
      _process.clear();
520 520
      _process.push_back(start);
... ...
@@ -540,19 +540,19 @@
540 540

	
541 541
    // Process one round and rebuild _process
542 542
    void processNextBuildRound(int k) {
543 543
      std::vector<Node> next;
544 544
      Node u, v;
545 545
      Arc e;
546
      LargeValue d;
546
      LargeCost d;
547 547
      for (int i = 0; i < int(_process.size()); ++i) {
548 548
        u = _process[i];
549 549
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
550 550
          e = _out_arcs[u][j];
551 551
          v = _gr.target(e);
552
          d = _data[u][k-1].dist + _length[e];
552
          d = _data[u][k-1].dist + _cost[e];
553 553
          if (_tolerance.less(d, _data[v][k].dist)) {
554 554
            if (_data[v][k].dist == INF) next.push_back(v);
555 555
            _data[v][k] = PathData(d, e);
556 556
          }
557 557
        }
558 558
      }
... ...
@@ -560,48 +560,48 @@
560 560
    }
561 561

	
562 562
    // Process one round using _nodes instead of _process
563 563
    void processNextFullRound(int k) {
564 564
      Node u, v;
565 565
      Arc e;
566
      LargeValue d;
566
      LargeCost d;
567 567
      for (int i = 0; i < int(_nodes->size()); ++i) {
568 568
        u = (*_nodes)[i];
569 569
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
570 570
          e = _out_arcs[u][j];
571 571
          v = _gr.target(e);
572
          d = _data[u][k-1].dist + _length[e];
572
          d = _data[u][k-1].dist + _cost[e];
573 573
          if (_tolerance.less(d, _data[v][k].dist)) {
574 574
            _data[v][k] = PathData(d, e);
575 575
          }
576 576
        }
577 577
      }
578 578
    }
579 579
    
580 580
    // Check early termination
581 581
    bool checkTermination(int k) {
582 582
      typedef std::pair<int, int> Pair;
583 583
      typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0));
584
      typename GR::template NodeMap<LargeValue> pi(_gr);
584
      typename GR::template NodeMap<LargeCost> pi(_gr);
585 585
      int n = _nodes->size();
586
      LargeValue length;
586
      LargeCost cost;
587 587
      int size;
588 588
      Node u;
589 589
      
590 590
      // Search for cycles that are already found
591 591
      _curr_found = false;
592 592
      for (int i = 0; i < n; ++i) {
593 593
        u = (*_nodes)[i];
594 594
        if (_data[u][k].dist == INF) continue;
595 595
        for (int j = k; j >= 0; --j) {
596 596
          if (level[u].first == i && level[u].second > 0) {
597 597
            // A cycle is found
598
            length = _data[u][level[u].second].dist - _data[u][j].dist;
598
            cost = _data[u][level[u].second].dist - _data[u][j].dist;
599 599
            size = level[u].second - j;
600
            if (!_curr_found || length * _curr_size < _curr_length * size) {
601
              _curr_length = length;
600
            if (!_curr_found || cost * _curr_size < _curr_cost * size) {
601
              _curr_cost = cost;
602 602
              _curr_size = size;
603 603
              _curr_node = u;
604 604
              _curr_level = level[u].second;
605 605
              _curr_found = true;
606 606
            }
607 607
          }
... ...
@@ -610,41 +610,41 @@
610 610
	    u = _gr.source(_data[u][j].pred);
611 611
	  }
612 612
        }
613 613
      }
614 614

	
615 615
      // If at least one cycle is found, check the optimality condition
616
      LargeValue d;
616
      LargeCost d;
617 617
      if (_curr_found && k < n) {
618 618
        // Find node potentials
619 619
        for (int i = 0; i < n; ++i) {
620 620
          u = (*_nodes)[i];
621 621
          pi[u] = INF;
622 622
          for (int j = 0; j <= k; ++j) {
623 623
            if (_data[u][j].dist < INF) {
624
              d = _data[u][j].dist * _curr_size - j * _curr_length;
624
              d = _data[u][j].dist * _curr_size - j * _curr_cost;
625 625
              if (_tolerance.less(d, pi[u])) pi[u] = d;
626 626
            }
627 627
          }
628 628
        }
629 629

	
630 630
        // Check the optimality condition for all arcs
631 631
        bool done = true;
632 632
        for (ArcIt a(_gr); a != INVALID; ++a) {
633
          if (_tolerance.less(_length[a] * _curr_size - _curr_length,
633
          if (_tolerance.less(_cost[a] * _curr_size - _curr_cost,
634 634
                              pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
635 635
            done = false;
636 636
            break;
637 637
          }
638 638
        }
639 639
        return done;
640 640
      }
641 641
      return (k == n);
642 642
    }
643 643

	
644
  }; //class HartmannOrlin
644
  }; //class HartmannOrlinMmc
645 645

	
646 646
  ///@}
647 647

	
648 648
} //namespace lemon
649 649

	
650
#endif //LEMON_HARTMANN_ORLIN_H
650
#endif //LEMON_HARTMANN_ORLIN_MMC_H
Ignore white space 6 line context
... ...
@@ -13,14 +13,14 @@
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19
#ifndef LEMON_HOWARD_H
20
#define LEMON_HOWARD_H
19
#ifndef LEMON_HOWARD_MMC_H
20
#define LEMON_HOWARD_MMC_H
21 21

	
22 22
/// \ingroup min_mean_cycle
23 23
///
24 24
/// \file
25 25
/// \brief Howard's algorithm for finding a minimum mean cycle.
26 26

	
... ...
@@ -30,151 +30,151 @@
30 30
#include <lemon/path.h>
31 31
#include <lemon/tolerance.h>
32 32
#include <lemon/connectivity.h>
33 33

	
34 34
namespace lemon {
35 35

	
36
  /// \brief Default traits class of Howard class.
36
  /// \brief Default traits class of HowardMmc class.
37 37
  ///
38
  /// Default traits class of Howard class.
38
  /// Default traits class of HowardMmc class.
39 39
  /// \tparam GR The type of the digraph.
40
  /// \tparam LEN The type of the length map.
40
  /// \tparam CM The type of the cost map.
41 41
  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
42 42
#ifdef DOXYGEN
43
  template <typename GR, typename LEN>
43
  template <typename GR, typename CM>
44 44
#else
45
  template <typename GR, typename LEN,
46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
45
  template <typename GR, typename CM,
46
    bool integer = std::numeric_limits<typename CM::Value>::is_integer>
47 47
#endif
48
  struct HowardDefaultTraits
48
  struct HowardMmcDefaultTraits
49 49
  {
50 50
    /// The type of the digraph
51 51
    typedef GR Digraph;
52
    /// The type of the length map
53
    typedef LEN LengthMap;
54
    /// The type of the arc lengths
55
    typedef typename LengthMap::Value Value;
52
    /// The type of the cost map
53
    typedef CM CostMap;
54
    /// The type of the arc costs
55
    typedef typename CostMap::Value Cost;
56 56

	
57
    /// \brief The large value type used for internal computations
57
    /// \brief The large cost type used for internal computations
58 58
    ///
59
    /// The large value type used for internal computations.
60
    /// It is \c long \c long if the \c Value type is integer,
59
    /// The large cost type used for internal computations.
60
    /// It is \c long \c long if the \c Cost type is integer,
61 61
    /// otherwise it is \c double.
62
    /// \c Value must be convertible to \c LargeValue.
63
    typedef double LargeValue;
62
    /// \c Cost must be convertible to \c LargeCost.
63
    typedef double LargeCost;
64 64

	
65 65
    /// The tolerance type used for internal computations
66
    typedef lemon::Tolerance<LargeValue> Tolerance;
66
    typedef lemon::Tolerance<LargeCost> Tolerance;
67 67

	
68 68
    /// \brief The path type of the found cycles
69 69
    ///
70 70
    /// The path type of the found cycles.
71 71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 72
    /// and it must have an \c addBack() function.
73 73
    typedef lemon::Path<Digraph> Path;
74 74
  };
75 75

	
76
  // Default traits class for integer value types
77
  template <typename GR, typename LEN>
78
  struct HowardDefaultTraits<GR, LEN, true>
76
  // Default traits class for integer cost types
77
  template <typename GR, typename CM>
78
  struct HowardMmcDefaultTraits<GR, CM, true>
79 79
  {
80 80
    typedef GR Digraph;
81
    typedef LEN LengthMap;
82
    typedef typename LengthMap::Value Value;
81
    typedef CM CostMap;
82
    typedef typename CostMap::Value Cost;
83 83
#ifdef LEMON_HAVE_LONG_LONG
84
    typedef long long LargeValue;
84
    typedef long long LargeCost;
85 85
#else
86
    typedef long LargeValue;
86
    typedef long LargeCost;
87 87
#endif
88
    typedef lemon::Tolerance<LargeValue> Tolerance;
88
    typedef lemon::Tolerance<LargeCost> Tolerance;
89 89
    typedef lemon::Path<Digraph> Path;
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup min_mean_cycle
94 94
  /// @{
95 95

	
96 96
  /// \brief Implementation of Howard's algorithm for finding a minimum
97 97
  /// mean cycle.
98 98
  ///
99 99
  /// This class implements Howard's policy iteration algorithm for finding
100
  /// a directed cycle of minimum mean length (cost) in a digraph
100
  /// a directed cycle of minimum mean cost in a digraph
101 101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
102 102
  /// This class provides the most efficient algorithm for the
103 103
  /// minimum mean cycle problem, though the best known theoretical
104 104
  /// bound on its running time is exponential.
105 105
  ///
106 106
  /// \tparam GR The type of the digraph the algorithm runs on.
107
  /// \tparam LEN The type of the length map. The default
107
  /// \tparam CM The type of the cost map. The default
108 108
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
109 109
  /// \tparam TR The traits class that defines various types used by the
110
  /// algorithm. By default, it is \ref HowardDefaultTraits
111
  /// "HowardDefaultTraits<GR, LEN>".
110
  /// algorithm. By default, it is \ref HowardMmcDefaultTraits
111
  /// "HowardMmcDefaultTraits<GR, CM>".
112 112
  /// In most cases, this parameter should not be set directly,
113 113
  /// consider to use the named template parameters instead.
114 114
#ifdef DOXYGEN
115
  template <typename GR, typename LEN, typename TR>
115
  template <typename GR, typename CM, typename TR>
116 116
#else
117 117
  template < typename GR,
118
             typename LEN = typename GR::template ArcMap<int>,
119
             typename TR = HowardDefaultTraits<GR, LEN> >
118
             typename CM = typename GR::template ArcMap<int>,
119
             typename TR = HowardMmcDefaultTraits<GR, CM> >
120 120
#endif
121
  class Howard
121
  class HowardMmc
122 122
  {
123 123
  public:
124 124
  
125 125
    /// The type of the digraph
126 126
    typedef typename TR::Digraph Digraph;
127
    /// The type of the length map
128
    typedef typename TR::LengthMap LengthMap;
129
    /// The type of the arc lengths
130
    typedef typename TR::Value Value;
127
    /// The type of the cost map
128
    typedef typename TR::CostMap CostMap;
129
    /// The type of the arc costs
130
    typedef typename TR::Cost Cost;
131 131

	
132
    /// \brief The large value type
132
    /// \brief The large cost type
133 133
    ///
134
    /// The large value type used for internal computations.
135
    /// By default, it is \c long \c long if the \c Value type is integer,
134
    /// The large cost type used for internal computations.
135
    /// By default, it is \c long \c long if the \c Cost type is integer,
136 136
    /// otherwise it is \c double.
137
    typedef typename TR::LargeValue LargeValue;
137
    typedef typename TR::LargeCost LargeCost;
138 138

	
139 139
    /// The tolerance type
140 140
    typedef typename TR::Tolerance Tolerance;
141 141

	
142 142
    /// \brief The path type of the found cycles
143 143
    ///
144 144
    /// The path type of the found cycles.
145
    /// Using the \ref HowardDefaultTraits "default traits class",
145
    /// Using the \ref HowardMmcDefaultTraits "default traits class",
146 146
    /// it is \ref lemon::Path "Path<Digraph>".
147 147
    typedef typename TR::Path Path;
148 148

	
149
    /// The \ref HowardDefaultTraits "traits class" of the algorithm
149
    /// The \ref HowardMmcDefaultTraits "traits class" of the algorithm
150 150
    typedef TR Traits;
151 151

	
152 152
  private:
153 153

	
154 154
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
155 155
  
156 156
    // The digraph the algorithm runs on
157 157
    const Digraph &_gr;
158
    // The length of the arcs
159
    const LengthMap &_length;
158
    // The cost of the arcs
159
    const CostMap &_cost;
160 160

	
161 161
    // Data for the found cycles
162 162
    bool _curr_found, _best_found;
163
    LargeValue _curr_length, _best_length;
163
    LargeCost _curr_cost, _best_cost;
164 164
    int _curr_size, _best_size;
165 165
    Node _curr_node, _best_node;
166 166

	
167 167
    Path *_cycle_path;
168 168
    bool _local_path;
169 169

	
170 170
    // Internal data used by the algorithm
171 171
    typename Digraph::template NodeMap<Arc> _policy;
172 172
    typename Digraph::template NodeMap<bool> _reached;
173 173
    typename Digraph::template NodeMap<int> _level;
174
    typename Digraph::template NodeMap<LargeValue> _dist;
174
    typename Digraph::template NodeMap<LargeCost> _dist;
175 175

	
176 176
    // Data for storing the strongly connected components
177 177
    int _comp_num;
178 178
    typename Digraph::template NodeMap<int> _comp;
179 179
    std::vector<std::vector<Node> > _comp_nodes;
180 180
    std::vector<Node>* _nodes;
... ...
@@ -184,34 +184,34 @@
184 184
    std::vector<Node> _queue;
185 185
    int _qfront, _qback;
186 186

	
187 187
    Tolerance _tolerance;
188 188
  
189 189
    // Infinite constant
190
    const LargeValue INF;
190
    const LargeCost INF;
191 191

	
192 192
  public:
193 193
  
194 194
    /// \name Named Template Parameters
195 195
    /// @{
196 196

	
197 197
    template <typename T>
198
    struct SetLargeValueTraits : public Traits {
199
      typedef T LargeValue;
198
    struct SetLargeCostTraits : public Traits {
199
      typedef T LargeCost;
200 200
      typedef lemon::Tolerance<T> Tolerance;
201 201
    };
202 202

	
203 203
    /// \brief \ref named-templ-param "Named parameter" for setting
204
    /// \c LargeValue type.
204
    /// \c LargeCost type.
205 205
    ///
206
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
206
    /// \ref named-templ-param "Named parameter" for setting \c LargeCost
207 207
    /// type. It is used for internal computations in the algorithm.
208 208
    template <typename T>
209
    struct SetLargeValue
210
      : public Howard<GR, LEN, SetLargeValueTraits<T> > {
211
      typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create;
209
    struct SetLargeCost
210
      : public HowardMmc<GR, CM, SetLargeCostTraits<T> > {
211
      typedef HowardMmc<GR, CM, SetLargeCostTraits<T> > Create;
212 212
    };
213 213

	
214 214
    template <typename T>
215 215
    struct SetPathTraits : public Traits {
216 216
      typedef T Path;
217 217
    };
... ...
@@ -222,61 +222,61 @@
222 222
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
223 223
    /// type of the found cycles.
224 224
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
225 225
    /// and it must have an \c addBack() function.
226 226
    template <typename T>
227 227
    struct SetPath
228
      : public Howard<GR, LEN, SetPathTraits<T> > {
229
      typedef Howard<GR, LEN, SetPathTraits<T> > Create;
228
      : public HowardMmc<GR, CM, SetPathTraits<T> > {
229
      typedef HowardMmc<GR, CM, SetPathTraits<T> > Create;
230 230
    };
231 231
    
232 232
    /// @}
233 233

	
234 234
  protected:
235 235

	
236
    Howard() {}
236
    HowardMmc() {}
237 237

	
238 238
  public:
239 239

	
240 240
    /// \brief Constructor.
241 241
    ///
242 242
    /// The constructor of the class.
243 243
    ///
244 244
    /// \param digraph The digraph the algorithm runs on.
245
    /// \param length The lengths (costs) of the arcs.
246
    Howard( const Digraph &digraph,
247
            const LengthMap &length ) :
248
      _gr(digraph), _length(length), _best_found(false),
249
      _best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false),
245
    /// \param cost The costs of the arcs.
246
    HowardMmc( const Digraph &digraph,
247
               const CostMap &cost ) :
248
      _gr(digraph), _cost(cost), _best_found(false),
249
      _best_cost(0), _best_size(1), _cycle_path(NULL), _local_path(false),
250 250
      _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
251 251
      _comp(digraph), _in_arcs(digraph),
252
      INF(std::numeric_limits<LargeValue>::has_infinity ?
253
          std::numeric_limits<LargeValue>::infinity() :
254
          std::numeric_limits<LargeValue>::max())
252
      INF(std::numeric_limits<LargeCost>::has_infinity ?
253
          std::numeric_limits<LargeCost>::infinity() :
254
          std::numeric_limits<LargeCost>::max())
255 255
    {}
256 256

	
257 257
    /// Destructor.
258
    ~Howard() {
258
    ~HowardMmc() {
259 259
      if (_local_path) delete _cycle_path;
260 260
    }
261 261

	
262 262
    /// \brief Set the path structure for storing the found cycle.
263 263
    ///
264 264
    /// This function sets an external path structure for storing the
265 265
    /// found cycle.
266 266
    ///
267 267
    /// If you don't call this function before calling \ref run() or
268
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
268
    /// \ref findCycleMean(), it will allocate a local \ref Path "path"
269 269
    /// structure. The destuctor deallocates this automatically
270 270
    /// allocated object, of course.
271 271
    ///
272 272
    /// \note The algorithm calls only the \ref lemon::Path::addBack()
273 273
    /// "addBack()" function of the given path structure.
274 274
    ///
275 275
    /// \return <tt>(*this)</tt>
276
    Howard& cycle(Path &path) {
276
    HowardMmc& cycle(Path &path) {
277 277
      if (_local_path) {
278 278
        delete _cycle_path;
279 279
        _local_path = false;
280 280
      }
281 281
      _cycle_path = &path;
282 282
      return *this;
... ...
@@ -284,13 +284,13 @@
284 284

	
285 285
    /// \brief Set the tolerance used by the algorithm.
286 286
    ///
287 287
    /// This function sets the tolerance object used by the algorithm.
288 288
    ///
289 289
    /// \return <tt>(*this)</tt>
290
    Howard& tolerance(const Tolerance& tolerance) {
290
    HowardMmc& tolerance(const Tolerance& tolerance) {
291 291
      _tolerance = tolerance;
292 292
      return *this;
293 293
    }
294 294

	
295 295
    /// \brief Return a const reference to the tolerance.
296 296
    ///
... ...
@@ -300,40 +300,40 @@
300 300
      return _tolerance;
301 301
    }
302 302

	
303 303
    /// \name Execution control
304 304
    /// The simplest way to execute the algorithm is to call the \ref run()
305 305
    /// function.\n
306
    /// If you only need the minimum mean length, you may call
307
    /// \ref findMinMean().
306
    /// If you only need the minimum mean cost, you may call
307
    /// \ref findCycleMean().
308 308

	
309 309
    /// @{
310 310

	
311 311
    /// \brief Run the algorithm.
312 312
    ///
313 313
    /// This function runs the algorithm.
314 314
    /// It can be called more than once (e.g. if the underlying digraph
315
    /// and/or the arc lengths have been modified).
315
    /// and/or the arc costs have been modified).
316 316
    ///
317 317
    /// \return \c true if a directed cycle exists in the digraph.
318 318
    ///
319 319
    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
320 320
    /// \code
321
    ///   return mmc.findMinMean() && mmc.findCycle();
321
    ///   return mmc.findCycleMean() && mmc.findCycle();
322 322
    /// \endcode
323 323
    bool run() {
324
      return findMinMean() && findCycle();
324
      return findCycleMean() && findCycle();
325 325
    }
326 326

	
327 327
    /// \brief Find the minimum cycle mean.
328 328
    ///
329
    /// This function finds the minimum mean length of the directed
329
    /// This function finds the minimum mean cost of the directed
330 330
    /// cycles in the digraph.
331 331
    ///
332 332
    /// \return \c true if a directed cycle exists in the digraph.
333
    bool findMinMean() {
333
    bool findCycleMean() {
334 334
      // Initialize and find strongly connected components
335 335
      init();
336 336
      findComponents();
337 337
      
338 338
      // Find the minimum cycle mean in the components
339 339
      for (int comp = 0; comp < _comp_num; ++comp) {
... ...
@@ -342,30 +342,30 @@
342 342
        while (true) {
343 343
          findPolicyCycle();
344 344
          if (!computeNodeDistances()) break;
345 345
        }
346 346
        // Update the best cycle (global minimum mean cycle)
347 347
        if ( _curr_found && (!_best_found ||
348
             _curr_length * _best_size < _best_length * _curr_size) ) {
348
             _curr_cost * _best_size < _best_cost * _curr_size) ) {
349 349
          _best_found = true;
350
          _best_length = _curr_length;
350
          _best_cost = _curr_cost;
351 351
          _best_size = _curr_size;
352 352
          _best_node = _curr_node;
353 353
        }
354 354
      }
355 355
      return _best_found;
356 356
    }
357 357

	
358 358
    /// \brief Find a minimum mean directed cycle.
359 359
    ///
360
    /// This function finds a directed cycle of minimum mean length
361
    /// in the digraph using the data computed by findMinMean().
360
    /// This function finds a directed cycle of minimum mean cost
361
    /// in the digraph using the data computed by findCycleMean().
362 362
    ///
363 363
    /// \return \c true if a directed cycle exists in the digraph.
364 364
    ///
365
    /// \pre \ref findMinMean() must be called before using this function.
365
    /// \pre \ref findCycleMean() must be called before using this function.
366 366
    bool findCycle() {
367 367
      if (!_best_found) return false;
368 368
      _cycle_path->addBack(_policy[_best_node]);
369 369
      for ( Node v = _best_node;
370 370
            (v = _gr.target(_policy[v])) != _best_node; ) {
371 371
        _cycle_path->addBack(_policy[v]);
... ...
@@ -379,46 +379,46 @@
379 379
    /// The results of the algorithm can be obtained using these
380 380
    /// functions.\n
381 381
    /// The algorithm should be executed before using them.
382 382

	
383 383
    /// @{
384 384

	
385
    /// \brief Return the total length of the found cycle.
385
    /// \brief Return the total cost of the found cycle.
386 386
    ///
387
    /// This function returns the total length of the found cycle.
387
    /// This function returns the total cost of the found cycle.
388 388
    ///
389
    /// \pre \ref run() or \ref findMinMean() must be called before
389
    /// \pre \ref run() or \ref findCycleMean() must be called before
390 390
    /// using this function.
391
    Value cycleLength() const {
392
      return static_cast<Value>(_best_length);
391
    Cost cycleCost() const {
392
      return static_cast<Cost>(_best_cost);
393 393
    }
394 394

	
395 395
    /// \brief Return the number of arcs on the found cycle.
396 396
    ///
397 397
    /// This function returns the number of arcs on the found cycle.
398 398
    ///
399
    /// \pre \ref run() or \ref findMinMean() must be called before
399
    /// \pre \ref run() or \ref findCycleMean() must be called before
400 400
    /// using this function.
401
    int cycleArcNum() const {
401
    int cycleSize() const {
402 402
      return _best_size;
403 403
    }
404 404

	
405
    /// \brief Return the mean length of the found cycle.
405
    /// \brief Return the mean cost of the found cycle.
406 406
    ///
407
    /// This function returns the mean length of the found cycle.
407
    /// This function returns the mean cost of the found cycle.
408 408
    ///
409 409
    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
410 410
    /// following code.
411 411
    /// \code
412
    ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
412
    ///   return static_cast<double>(alg.cycleCost()) / alg.cycleSize();
413 413
    /// \endcode
414 414
    ///
415
    /// \pre \ref run() or \ref findMinMean() must be called before
415
    /// \pre \ref run() or \ref findCycleMean() must be called before
416 416
    /// using this function.
417 417
    double cycleMean() const {
418
      return static_cast<double>(_best_length) / _best_size;
418
      return static_cast<double>(_best_cost) / _best_size;
419 419
    }
420 420

	
421 421
    /// \brief Return the found cycle.
422 422
    ///
423 423
    /// This function returns a const reference to the path structure
424 424
    /// storing the found cycle.
... ...
@@ -438,13 +438,13 @@
438 438
      if (!_cycle_path) {
439 439
        _local_path = true;
440 440
        _cycle_path = new Path;
441 441
      }
442 442
      _queue.resize(countNodes(_gr));
443 443
      _best_found = false;
444
      _best_length = 0;
444
      _best_cost = 0;
445 445
      _best_size = 1;
446 446
      _cycle_path->clear();
447 447
    }
448 448
    
449 449
    // Find strongly connected components and initialize _comp_nodes
450 450
    // and _in_arcs
... ...
@@ -489,48 +489,48 @@
489 489
      Arc e;
490 490
      for (int i = 0; i < int(_nodes->size()); ++i) {
491 491
        v = (*_nodes)[i];
492 492
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
493 493
          e = _in_arcs[v][j];
494 494
          u = _gr.source(e);
495
          if (_length[e] < _dist[u]) {
496
            _dist[u] = _length[e];
495
          if (_cost[e] < _dist[u]) {
496
            _dist[u] = _cost[e];
497 497
            _policy[u] = e;
498 498
          }
499 499
        }
500 500
      }
501 501
      return true;
502 502
    }
503 503

	
504 504
    // Find the minimum mean cycle in the policy graph
505 505
    void findPolicyCycle() {
506 506
      for (int i = 0; i < int(_nodes->size()); ++i) {
507 507
        _level[(*_nodes)[i]] = -1;
508 508
      }
509
      LargeValue clength;
509
      LargeCost ccost;
510 510
      int csize;
511 511
      Node u, v;
512 512
      _curr_found = false;
513 513
      for (int i = 0; i < int(_nodes->size()); ++i) {
514 514
        u = (*_nodes)[i];
515 515
        if (_level[u] >= 0) continue;
516 516
        for (; _level[u] < 0; u = _gr.target(_policy[u])) {
517 517
          _level[u] = i;
518 518
        }
519 519
        if (_level[u] == i) {
520 520
          // A cycle is found
521
          clength = _length[_policy[u]];
521
          ccost = _cost[_policy[u]];
522 522
          csize = 1;
523 523
          for (v = u; (v = _gr.target(_policy[v])) != u; ) {
524
            clength += _length[_policy[v]];
524
            ccost += _cost[_policy[v]];
525 525
            ++csize;
526 526
          }
527 527
          if ( !_curr_found ||
528
               (clength * _curr_size < _curr_length * csize) ) {
528
               (ccost * _curr_size < _curr_cost * csize) ) {
529 529
            _curr_found = true;
530
            _curr_length = clength;
530
            _curr_cost = ccost;
531 531
            _curr_size = csize;
532 532
            _curr_node = u;
533 533
          }
534 534
        }
535 535
      }
536 536
    }
... ...
@@ -552,13 +552,13 @@
552 552
        v = _queue[_qfront++];
553 553
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
554 554
          e = _in_arcs[v][j];
555 555
          u = _gr.source(e);
556 556
          if (_policy[u] == e && !_reached[u]) {
557 557
            _reached[u] = true;
558
            _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
558
            _dist[u] = _dist[v] + _cost[e] * _curr_size - _curr_cost;
559 559
            _queue[++_qback] = u;
560 560
          }
561 561
        }
562 562
      }
563 563

	
564 564
      // Connect all other nodes to this component and compute node
... ...
@@ -569,37 +569,37 @@
569 569
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
570 570
          e = _in_arcs[v][j];
571 571
          u = _gr.source(e);
572 572
          if (!_reached[u]) {
573 573
            _reached[u] = true;
574 574
            _policy[u] = e;
575
            _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
575
            _dist[u] = _dist[v] + _cost[e] * _curr_size - _curr_cost;
576 576
            _queue[++_qback] = u;
577 577
          }
578 578
        }
579 579
      }
580 580

	
581 581
      // Improve node distances
582 582
      bool improved = false;
583 583
      for (int i = 0; i < int(_nodes->size()); ++i) {
584 584
        v = (*_nodes)[i];
585 585
        for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
586 586
          e = _in_arcs[v][j];
587 587
          u = _gr.source(e);
588
          LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length;
588
          LargeCost delta = _dist[v] + _cost[e] * _curr_size - _curr_cost;
589 589
          if (_tolerance.less(delta, _dist[u])) {
590 590
            _dist[u] = delta;
591 591
            _policy[u] = e;
592 592
            improved = true;
593 593
          }
594 594
        }
595 595
      }
596 596
      return improved;
597 597
    }
598 598

	
599
  }; //class Howard
599
  }; //class HowardMmc
600 600

	
601 601
  ///@}
602 602

	
603 603
} //namespace lemon
604 604

	
605
#endif //LEMON_HOWARD_H
605
#endif //LEMON_HOWARD_MMC_H
Ignore white space 12 line context
... ...
@@ -13,14 +13,14 @@
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19
#ifndef LEMON_KARP_H
20
#define LEMON_KARP_H
19
#ifndef LEMON_KARP_MMC_H
20
#define LEMON_KARP_MMC_H
21 21

	
22 22
/// \ingroup min_mean_cycle
23 23
///
24 24
/// \file
25 25
/// \brief Karp's algorithm for finding a minimum mean cycle.
26 26

	
... ...
@@ -30,158 +30,158 @@
30 30
#include <lemon/path.h>
31 31
#include <lemon/tolerance.h>
32 32
#include <lemon/connectivity.h>
33 33

	
34 34
namespace lemon {
35 35

	
36
  /// \brief Default traits class of Karp algorithm.
36
  /// \brief Default traits class of KarpMmc class.
37 37
  ///
38
  /// Default traits class of Karp algorithm.
38
  /// Default traits class of KarpMmc class.
39 39
  /// \tparam GR The type of the digraph.
40
  /// \tparam LEN The type of the length map.
40
  /// \tparam CM The type of the cost map.
41 41
  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
42 42
#ifdef DOXYGEN
43
  template <typename GR, typename LEN>
43
  template <typename GR, typename CM>
44 44
#else
45
  template <typename GR, typename LEN,
46
    bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
45
  template <typename GR, typename CM,
46
    bool integer = std::numeric_limits<typename CM::Value>::is_integer>
47 47
#endif
48
  struct KarpDefaultTraits
48
  struct KarpMmcDefaultTraits
49 49
  {
50 50
    /// The type of the digraph
51 51
    typedef GR Digraph;
52
    /// The type of the length map
53
    typedef LEN LengthMap;
54
    /// The type of the arc lengths
55
    typedef typename LengthMap::Value Value;
52
    /// The type of the cost map
53
    typedef CM CostMap;
54
    /// The type of the arc costs
55
    typedef typename CostMap::Value Cost;
56 56

	
57
    /// \brief The large value type used for internal computations
57
    /// \brief The large cost type used for internal computations
58 58
    ///
59
    /// The large value type used for internal computations.
60
    /// It is \c long \c long if the \c Value type is integer,
59
    /// The large cost type used for internal computations.
60
    /// It is \c long \c long if the \c Cost type is integer,
61 61
    /// otherwise it is \c double.
62
    /// \c Value must be convertible to \c LargeValue.
63
    typedef double LargeValue;
62
    /// \c Cost must be convertible to \c LargeCost.
63
    typedef double LargeCost;
64 64

	
65 65
    /// The tolerance type used for internal computations
66
    typedef lemon::Tolerance<LargeValue> Tolerance;
66
    typedef lemon::Tolerance<LargeCost> Tolerance;
67 67

	
68 68
    /// \brief The path type of the found cycles
69 69
    ///
70 70
    /// The path type of the found cycles.
71 71
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 72
    /// and it must have an \c addFront() function.
73 73
    typedef lemon::Path<Digraph> Path;
74 74
  };
75 75

	
76
  // Default traits class for integer value types
77
  template <typename GR, typename LEN>
78
  struct KarpDefaultTraits<GR, LEN, true>
76
  // Default traits class for integer cost types
77
  template <typename GR, typename CM>
78
  struct KarpMmcDefaultTraits<GR, CM, true>
79 79
  {
80 80
    typedef GR Digraph;
81
    typedef LEN LengthMap;
82
    typedef typename LengthMap::Value Value;
81
    typedef CM CostMap;
82
    typedef typename CostMap::Value Cost;
83 83
#ifdef LEMON_HAVE_LONG_LONG
84
    typedef long long LargeValue;
84
    typedef long long LargeCost;
85 85
#else
86
    typedef long LargeValue;
86
    typedef long LargeCost;
87 87
#endif
88
    typedef lemon::Tolerance<LargeValue> Tolerance;
88
    typedef lemon::Tolerance<LargeCost> Tolerance;
89 89
    typedef lemon::Path<Digraph> Path;
90 90
  };
91 91

	
92 92

	
93 93
  /// \addtogroup min_mean_cycle
94 94
  /// @{
95 95

	
96 96
  /// \brief Implementation of Karp's algorithm for finding a minimum
97 97
  /// mean cycle.
98 98
  ///
99 99
  /// This class implements Karp's algorithm for finding a directed
100
  /// cycle of minimum mean length (cost) in a digraph
100
  /// cycle of minimum mean cost in a digraph
101 101
  /// \ref amo93networkflows, \ref dasdan98minmeancycle.
102 102
  /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
103 103
  ///
104 104
  /// \tparam GR The type of the digraph the algorithm runs on.
105
  /// \tparam LEN The type of the length map. The default
105
  /// \tparam CM The type of the cost map. The default
106 106
  /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
107 107
  /// \tparam TR The traits class that defines various types used by the
108
  /// algorithm. By default, it is \ref KarpDefaultTraits
109
  /// "KarpDefaultTraits<GR, LEN>".
108
  /// algorithm. By default, it is \ref KarpMmcDefaultTraits
109
  /// "KarpMmcDefaultTraits<GR, CM>".
110 110
  /// In most cases, this parameter should not be set directly,
111 111
  /// consider to use the named template parameters instead.
112 112
#ifdef DOXYGEN
113
  template <typename GR, typename LEN, typename TR>
113
  template <typename GR, typename CM, typename TR>
114 114
#else
115 115
  template < typename GR,
116
             typename LEN = typename GR::template ArcMap<int>,
117
             typename TR = KarpDefaultTraits<GR, LEN> >
116
             typename CM = typename GR::template ArcMap<int>,
117
             typename TR = KarpMmcDefaultTraits<GR, CM> >
118 118
#endif
119
  class Karp
119
  class KarpMmc
120 120
  {
121 121
  public:
122 122

	
123 123
    /// The type of the digraph
124 124
    typedef typename TR::Digraph Digraph;
125
    /// The type of the length map
126
    typedef typename TR::LengthMap LengthMap;
127
    /// The type of the arc lengths
128
    typedef typename TR::Value Value;
125
    /// The type of the cost map
126
    typedef typename TR::CostMap CostMap;
127
    /// The type of the arc costs
128
    typedef typename TR::Cost Cost;
129 129

	
130
    /// \brief The large value type
130
    /// \brief The large cost type
131 131
    ///
132
    /// The large value type used for internal computations.
133
    /// By default, it is \c long \c long if the \c Value type is integer,
132
    /// The large cost type used for internal computations.
133
    /// By default, it is \c long \c long if the \c Cost type is integer,
134 134
    /// otherwise it is \c double.
135
    typedef typename TR::LargeValue LargeValue;
135
    typedef typename TR::LargeCost LargeCost;
136 136

	
137 137
    /// The tolerance type
138 138
    typedef typename TR::Tolerance Tolerance;
139 139

	
140 140
    /// \brief The path type of the found cycles
141 141
    ///
142 142
    /// The path type of the found cycles.
143
    /// Using the \ref KarpDefaultTraits "default traits class",
143
    /// Using the \ref KarpMmcDefaultTraits "default traits class",
144 144
    /// it is \ref lemon::Path "Path<Digraph>".
145 145
    typedef typename TR::Path Path;
146 146

	
147
    /// The \ref KarpDefaultTraits "traits class" of the algorithm
147
    /// The \ref KarpMmcDefaultTraits "traits class" of the algorithm
148 148
    typedef TR Traits;
149 149

	
150 150
  private:
151 151

	
152 152
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
153 153

	
154 154
    // Data sturcture for path data
155 155
    struct PathData
156 156
    {
157
      LargeValue dist;
157
      LargeCost dist;
158 158
      Arc pred;
159
      PathData(LargeValue d, Arc p = INVALID) :
159
      PathData(LargeCost d, Arc p = INVALID) :
160 160
        dist(d), pred(p) {}
161 161
    };
162 162

	
163 163
    typedef typename Digraph::template NodeMap<std::vector<PathData> >
164 164
      PathDataNodeMap;
165 165

	
166 166
  private:
167 167

	
168 168
    // The digraph the algorithm runs on
169 169
    const Digraph &_gr;
170
    // The length of the arcs
171
    const LengthMap &_length;
170
    // The cost of the arcs
171
    const CostMap &_cost;
172 172

	
173 173
    // Data for storing the strongly connected components
174 174
    int _comp_num;
175 175
    typename Digraph::template NodeMap<int> _comp;
176 176
    std::vector<std::vector<Node> > _comp_nodes;
177 177
    std::vector<Node>* _nodes;
178 178
    typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
179 179

	
180 180
    // Data for the found cycle
181
    LargeValue _cycle_length;
181
    LargeCost _cycle_cost;
182 182
    int _cycle_size;
183 183
    Node _cycle_node;
184 184

	
185 185
    Path *_cycle_path;
186 186
    bool _local_path;
187 187

	
... ...
@@ -190,34 +190,34 @@
190 190
    // The processed nodes in the last round
191 191
    std::vector<Node> _process;
192 192

	
193 193
    Tolerance _tolerance;
194 194
    
195 195
    // Infinite constant
196
    const LargeValue INF;
196
    const LargeCost INF;
197 197

	
198 198
  public:
199 199

	
200 200
    /// \name Named Template Parameters
201 201
    /// @{
202 202

	
203 203
    template <typename T>
204
    struct SetLargeValueTraits : public Traits {
205
      typedef T LargeValue;
204
    struct SetLargeCostTraits : public Traits {
205
      typedef T LargeCost;
206 206
      typedef lemon::Tolerance<T> Tolerance;
207 207
    };
208 208

	
209 209
    /// \brief \ref named-templ-param "Named parameter" for setting
210
    /// \c LargeValue type.
210
    /// \c LargeCost type.
211 211
    ///
212
    /// \ref named-templ-param "Named parameter" for setting \c LargeValue
212
    /// \ref named-templ-param "Named parameter" for setting \c LargeCost
213 213
    /// type. It is used for internal computations in the algorithm.
214 214
    template <typename T>
215
    struct SetLargeValue
216
      : public Karp<GR, LEN, SetLargeValueTraits<T> > {
217
      typedef Karp<GR, LEN, SetLargeValueTraits<T> > Create;
215
    struct SetLargeCost
216
      : public KarpMmc<GR, CM, SetLargeCostTraits<T> > {
217
      typedef KarpMmc<GR, CM, SetLargeCostTraits<T> > Create;
218 218
    };
219 219

	
220 220
    template <typename T>
221 221
    struct SetPathTraits : public Traits {
222 222
      typedef T Path;
223 223
    };
... ...
@@ -228,60 +228,60 @@
228 228
    /// \ref named-templ-param "Named parameter" for setting the \c %Path
229 229
    /// type of the found cycles.
230 230
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
231 231
    /// and it must have an \c addFront() function.
232 232
    template <typename T>
233 233
    struct SetPath
234
      : public Karp<GR, LEN, SetPathTraits<T> > {
235
      typedef Karp<GR, LEN, SetPathTraits<T> > Create;
234
      : public KarpMmc<GR, CM, SetPathTraits<T> > {
235
      typedef KarpMmc<GR, CM, SetPathTraits<T> > Create;
236 236
    };
237 237

	
238 238
    /// @}
239 239

	
240 240
  protected:
241 241

	
242
    Karp() {}
242
    KarpMmc() {}
243 243

	
244 244
  public:
245 245

	
246 246
    /// \brief Constructor.
247 247
    ///
248 248
    /// The constructor of the class.
249 249
    ///
250 250
    /// \param digraph The digraph the algorithm runs on.
251
    /// \param length The lengths (costs) of the arcs.
252
    Karp( const Digraph &digraph,
253
          const LengthMap &length ) :
254
      _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
255
      _cycle_length(0), _cycle_size(1), _cycle_node(INVALID),
251
    /// \param cost The costs of the arcs.
252
    KarpMmc( const Digraph &digraph,
253
             const CostMap &cost ) :
254
      _gr(digraph), _cost(cost), _comp(digraph), _out_arcs(digraph),
255
      _cycle_cost(0), _cycle_size(1), _cycle_node(INVALID),
256 256
      _cycle_path(NULL), _local_path(false), _data(digraph),
257
      INF(std::numeric_limits<LargeValue>::has_infinity ?
258
          std::numeric_limits<LargeValue>::infinity() :
259
          std::numeric_limits<LargeValue>::max())
257
      INF(std::numeric_limits<LargeCost>::has_infinity ?
258
          std::numeric_limits<LargeCost>::infinity() :
259
          std::numeric_limits<LargeCost>::max())
260 260
    {}
261 261

	
262 262
    /// Destructor.
263
    ~Karp() {
263
    ~KarpMmc() {
264 264
      if (_local_path) delete _cycle_path;
265 265
    }
266 266

	
267 267
    /// \brief Set the path structure for storing the found cycle.
268 268
    ///
269 269
    /// This function sets an external path structure for storing the
270 270
    /// found cycle.
271 271
    ///
272 272
    /// If you don't call this function before calling \ref run() or
273
    /// \ref findMinMean(), it will allocate a local \ref Path "path"
273
    /// \ref findCycleMean(), it will allocate a local \ref Path "path"
274 274
    /// structure. The destuctor deallocates this automatically
275 275
    /// allocated object, of course.
276 276
    ///
277 277
    /// \note The algorithm calls only the \ref lemon::Path::addFront()
278 278
    /// "addFront()" function of the given path structure.
279 279
    ///
280 280
    /// \return <tt>(*this)</tt>
281
    Karp& cycle(Path &path) {
281
    KarpMmc& cycle(Path &path) {
282 282
      if (_local_path) {
283 283
        delete _cycle_path;
284 284
        _local_path = false;
285 285
      }
286 286
      _cycle_path = &path;
287 287
      return *this;
... ...
@@ -289,13 +289,13 @@
289 289

	
290 290
    /// \brief Set the tolerance used by the algorithm.
291 291
    ///
292 292
    /// This function sets the tolerance object used by the algorithm.
293 293
    ///
294 294
    /// \return <tt>(*this)</tt>
295
    Karp& tolerance(const Tolerance& tolerance) {
295
    KarpMmc& tolerance(const Tolerance& tolerance) {
296 296
      _tolerance = tolerance;
297 297
      return *this;
298 298
    }
299 299

	
300 300
    /// \brief Return a const reference to the tolerance.
301 301
    ///
... ...
@@ -305,40 +305,40 @@
305 305
      return _tolerance;
306 306
    }
307 307

	
308 308
    /// \name Execution control
309 309
    /// The simplest way to execute the algorithm is to call the \ref run()
310 310
    /// function.\n
311
    /// If you only need the minimum mean length, you may call
312
    /// \ref findMinMean().
311
    /// If you only need the minimum mean cost, you may call
312
    /// \ref findCycleMean().
313 313

	
314 314
    /// @{
315 315

	
316 316
    /// \brief Run the algorithm.
317 317
    ///
318 318
    /// This function runs the algorithm.
319 319
    /// It can be called more than once (e.g. if the underlying digraph
320
    /// and/or the arc lengths have been modified).
320
    /// and/or the arc costs have been modified).
321 321
    ///
322 322
    /// \return \c true if a directed cycle exists in the digraph.
323 323
    ///
324 324
    /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
325 325
    /// \code
326
    ///   return mmc.findMinMean() && mmc.findCycle();
326
    ///   return mmc.findCycleMean() && mmc.findCycle();
327 327
    /// \endcode
328 328
    bool run() {
329
      return findMinMean() && findCycle();
329
      return findCycleMean() && findCycle();
330 330
    }
331 331

	
332 332
    /// \brief Find the minimum cycle mean.
333 333
    ///
334
    /// This function finds the minimum mean length of the directed
334
    /// This function finds the minimum mean cost of the directed
335 335
    /// cycles in the digraph.
336 336
    ///
337 337
    /// \return \c true if a directed cycle exists in the digraph.
338
    bool findMinMean() {
338
    bool findCycleMean() {
339 339
      // Initialization and find strongly connected components
340 340
      init();
341 341
      findComponents();
342 342
      
343 343
      // Find the minimum cycle mean in the components
344 344
      for (int comp = 0; comp < _comp_num; ++comp) {
... ...
@@ -348,37 +348,37 @@
348 348
      }
349 349
      return (_cycle_node != INVALID);
350 350
    }
351 351

	
352 352
    /// \brief Find a minimum mean directed cycle.
353 353
    ///
354
    /// This function finds a directed cycle of minimum mean length
355
    /// in the digraph using the data computed by findMinMean().
354
    /// This function finds a directed cycle of minimum mean cost
355
    /// in the digraph using the data computed by findCycleMean().
356 356
    ///
357 357
    /// \return \c true if a directed cycle exists in the digraph.
358 358
    ///
359
    /// \pre \ref findMinMean() must be called before using this function.
359
    /// \pre \ref findCycleMean() must be called before using this function.
360 360
    bool findCycle() {
361 361
      if (_cycle_node == INVALID) return false;
362 362
      IntNodeMap reached(_gr, -1);
363 363
      int r = _data[_cycle_node].size();
364 364
      Node u = _cycle_node;
365 365
      while (reached[u] < 0) {
366 366
        reached[u] = --r;
367 367
        u = _gr.source(_data[u][r].pred);
368 368
      }
369 369
      r = reached[u];
370 370
      Arc e = _data[u][r].pred;
371 371
      _cycle_path->addFront(e);
372
      _cycle_length = _length[e];
372
      _cycle_cost = _cost[e];
373 373
      _cycle_size = 1;
374 374
      Node v;
375 375
      while ((v = _gr.source(e)) != u) {
376 376
        e = _data[v][--r].pred;
377 377
        _cycle_path->addFront(e);
378
        _cycle_length += _length[e];
378
        _cycle_cost += _cost[e];
379 379
        ++_cycle_size;
380 380
      }
381 381
      return true;
382 382
    }
383 383

	
384 384
    /// @}
... ...
@@ -387,46 +387,46 @@
387 387
    /// The results of the algorithm can be obtained using these
388 388
    /// functions.\n
389 389
    /// The algorithm should be executed before using them.
390 390

	
391 391
    /// @{
392 392

	
393
    /// \brief Return the total length of the found cycle.
393
    /// \brief Return the total cost of the found cycle.
394 394
    ///
395
    /// This function returns the total length of the found cycle.
395
    /// This function returns the total cost of the found cycle.
396 396
    ///
397
    /// \pre \ref run() or \ref findMinMean() must be called before
397
    /// \pre \ref run() or \ref findCycleMean() must be called before
398 398
    /// using this function.
399
    Value cycleLength() const {
400
      return static_cast<Value>(_cycle_length);
399
    Cost cycleCost() const {
400
      return static_cast<Cost>(_cycle_cost);
401 401
    }
402 402

	
403 403
    /// \brief Return the number of arcs on the found cycle.
404 404
    ///
405 405
    /// This function returns the number of arcs on the found cycle.
406 406
    ///
407
    /// \pre \ref run() or \ref findMinMean() must be called before
407
    /// \pre \ref run() or \ref findCycleMean() must be called before
408 408
    /// using this function.
409
    int cycleArcNum() const {
409
    int cycleSize() const {
410 410
      return _cycle_size;
411 411
    }
412 412

	
413
    /// \brief Return the mean length of the found cycle.
413
    /// \brief Return the mean cost of the found cycle.
414 414
    ///
415
    /// This function returns the mean length of the found cycle.
415
    /// This function returns the mean cost of the found cycle.
416 416
    ///
417 417
    /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
418 418
    /// following code.
419 419
    /// \code
420
    ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
420
    ///   return static_cast<double>(alg.cycleCost()) / alg.cycleSize();
421 421
    /// \endcode
422 422
    ///
423
    /// \pre \ref run() or \ref findMinMean() must be called before
423
    /// \pre \ref run() or \ref findCycleMean() must be called before
424 424
    /// using this function.
425 425
    double cycleMean() const {
426
      return static_cast<double>(_cycle_length) / _cycle_size;
426
      return static_cast<double>(_cycle_cost) / _cycle_size;
427 427
    }
428 428

	
429 429
    /// \brief Return the found cycle.
430 430
    ///
431 431
    /// This function returns a const reference to the path structure
432 432
    /// storing the found cycle.
... ...
@@ -445,13 +445,13 @@
445 445
    void init() {
446 446
      if (!_cycle_path) {
447 447
        _local_path = true;
448 448
        _cycle_path = new Path;
449 449
      }
450 450
      _cycle_path->clear();
451
      _cycle_length = 0;
451
      _cycle_cost = 0;
452 452
      _cycle_size = 1;
453 453
      _cycle_node = INVALID;
454 454
      for (NodeIt u(_gr); u != INVALID; ++u)
455 455
        _data[u].clear();
456 456
    }
457 457

	
... ...
@@ -494,13 +494,13 @@
494 494
        _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
495 495
      }
496 496
      return true;
497 497
    }
498 498

	
499 499
    // Process all rounds of computing path data for the current component.
500
    // _data[v][k] is the length of a shortest directed walk from the root
500
    // _data[v][k] is the cost of a shortest directed walk from the root
501 501
    // node to node v containing exactly k arcs.
502 502
    void processRounds() {
503 503
      Node start = (*_nodes)[0];
504 504
      _data[start][0] = PathData(0);
505 505
      _process.clear();
506 506
      _process.push_back(start);
... ...
@@ -516,19 +516,19 @@
516 516

	
517 517
    // Process one round and rebuild _process
518 518
    void processNextBuildRound(int k) {
519 519
      std::vector<Node> next;
520 520
      Node u, v;
521 521
      Arc e;
522
      LargeValue d;
522
      LargeCost d;
523 523
      for (int i = 0; i < int(_process.size()); ++i) {
524 524
        u = _process[i];
525 525
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
526 526
          e = _out_arcs[u][j];
527 527
          v = _gr.target(e);
528
          d = _data[u][k-1].dist + _length[e];
528
          d = _data[u][k-1].dist + _cost[e];
529 529
          if (_tolerance.less(d, _data[v][k].dist)) {
530 530
            if (_data[v][k].dist == INF) next.push_back(v);
531 531
            _data[v][k] = PathData(d, e);
532 532
          }
533 533
        }
534 534
      }
... ...
@@ -536,19 +536,19 @@
536 536
    }
537 537

	
538 538
    // Process one round using _nodes instead of _process
539 539
    void processNextFullRound(int k) {
540 540
      Node u, v;
541 541
      Arc e;
542
      LargeValue d;
542
      LargeCost d;
543 543
      for (int i = 0; i < int(_nodes->size()); ++i) {
544 544
        u = (*_nodes)[i];
545 545
        for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
546 546
          e = _out_arcs[u][j];
547 547
          v = _gr.target(e);
548
          d = _data[u][k-1].dist + _length[e];
548
          d = _data[u][k-1].dist + _cost[e];
549 549
          if (_tolerance.less(d, _data[v][k].dist)) {
550 550
            _data[v][k] = PathData(d, e);
551 551
          }
552 552
        }
553 553
      }
554 554
    }
... ...
@@ -556,35 +556,35 @@
556 556
    // Update the minimum cycle mean
557 557
    void updateMinMean() {
558 558
      int n = _nodes->size();
559 559
      for (int i = 0; i < n; ++i) {
560 560
        Node u = (*_nodes)[i];
561 561
        if (_data[u][n].dist == INF) continue;
562
        LargeValue length, max_length = 0;
562
        LargeCost cost, max_cost = 0;
563 563
        int size, max_size = 1;
564 564
        bool found_curr = false;
565 565
        for (int k = 0; k < n; ++k) {
566 566
          if (_data[u][k].dist == INF) continue;
567
          length = _data[u][n].dist - _data[u][k].dist;
567
          cost = _data[u][n].dist - _data[u][k].dist;
568 568
          size = n - k;
569
          if (!found_curr || length * max_size > max_length * size) {
569
          if (!found_curr || cost * max_size > max_cost * size) {
570 570
            found_curr = true;
571
            max_length = length;
571
            max_cost = cost;
572 572
            max_size = size;
573 573
          }
574 574
        }
575 575
        if ( found_curr && (_cycle_node == INVALID ||
576
             max_length * _cycle_size < _cycle_length * max_size) ) {
577
          _cycle_length = max_length;
576
             max_cost * _cycle_size < _cycle_cost * max_size) ) {
577
          _cycle_cost = max_cost;
578 578
          _cycle_size = max_size;
579 579
          _cycle_node = u;
580 580
        }
581 581
      }
582 582
    }
583 583

	
584
  }; //class Karp
584
  }; //class KarpMmc
585 585

	
586 586
  ///@}
587 587

	
588 588
} //namespace lemon
589 589

	
590
#endif //LEMON_KARP_H
590
#endif //LEMON_KARP_MMC_H
Ignore white space 6 line context
... ...
@@ -22,15 +22,15 @@
22 22
#include <lemon/smart_graph.h>
23 23
#include <lemon/lgf_reader.h>
24 24
#include <lemon/path.h>
25 25
#include <lemon/concepts/digraph.h>
26 26
#include <lemon/concept_check.h>
27 27

	
28
#include <lemon/karp.h>
29
#include <lemon/hartmann_orlin.h>
30
#include <lemon/howard.h>
28
#include <lemon/karp_mmc.h>
29
#include <lemon/hartmann_orlin_mmc.h>
30
#include <lemon/howard_mmc.h>
31 31

	
32 32
#include "test_tools.h"
33 33

	
34 34
using namespace lemon;
35 35

	
36 36
char test_lgf[] =
... ...
@@ -60,64 +60,64 @@
60 60
  "6 4   -1   -1   -1   -1   0  0  0  0\n"
61 61
  "6 7    1    1    1    1   0  0  0  0\n"
62 62
  "7 7    4    4    4   -1   0  0  0  1\n";
63 63

	
64 64
                        
65 65
// Check the interface of an MMC algorithm
66
template <typename GR, typename Value>
66
template <typename GR, typename Cost>
67 67
struct MmcClassConcept
68 68
{
69 69
  template <typename MMC>
70 70
  struct Constraints {
71 71
    void constraints() {
72 72
      const Constraints& me = *this;
73 73

	
74 74
      typedef typename MMC
75 75
        ::template SetPath<ListPath<GR> >
76
        ::template SetLargeValue<Value>
76
        ::template SetLargeCost<Cost>
77 77
        ::Create MmcAlg;
78
      MmcAlg mmc(me.g, me.length);
78
      MmcAlg mmc(me.g, me.cost);
79 79
      const MmcAlg& const_mmc = mmc;
80 80
      
81 81
      typename MmcAlg::Tolerance tol = const_mmc.tolerance();
82 82
      mmc.tolerance(tol);
83 83
      
84 84
      b = mmc.cycle(p).run();
85
      b = mmc.findMinMean();
85
      b = mmc.findCycleMean();
86 86
      b = mmc.findCycle();
87 87

	
88
      v = const_mmc.cycleLength();
89
      i = const_mmc.cycleArcNum();
88
      v = const_mmc.cycleCost();
89
      i = const_mmc.cycleSize();
90 90
      d = const_mmc.cycleMean();
91 91
      p = const_mmc.cycle();
92 92
    }
93 93

	
94
    typedef concepts::ReadMap<typename GR::Arc, Value> LM;
94
    typedef concepts::ReadMap<typename GR::Arc, Cost> CM;
95 95
  
96 96
    GR g;
97
    LM length;
97
    CM cost;
98 98
    ListPath<GR> p;
99
    Value v;
99
    Cost v;
100 100
    int i;
101 101
    double d;
102 102
    bool b;
103 103
  };
104 104
};
105 105

	
106 106
// Perform a test with the given parameters
107 107
template <typename MMC>
108 108
void checkMmcAlg(const SmartDigraph& gr,
109 109
                 const SmartDigraph::ArcMap<int>& lm,
110 110
                 const SmartDigraph::ArcMap<int>& cm,
111
                 int length, int size) {
111
                 int cost, int size) {
112 112
  MMC alg(gr, lm);
113
  alg.findMinMean();
114
  check(alg.cycleMean() == static_cast<double>(length) / size,
113
  alg.findCycleMean();
114
  check(alg.cycleMean() == static_cast<double>(cost) / size,
115 115
        "Wrong cycle mean");
116 116
  alg.findCycle();
117
  check(alg.cycleLength() == length && alg.cycleArcNum() == size,
117
  check(alg.cycleCost() == cost && alg.cycleSize() == size,
118 118
        "Wrong path");
119 119
  SmartDigraph::ArcMap<int> cycle(gr, 0);
120 120
  for (typename MMC::Path::ArcIt a(alg.cycle()); a != INVALID; ++a) {
121 121
    ++cycle[a];
122 122
  }
123 123
  for (SmartDigraph::ArcIt a(gr); a != INVALID; ++a) {
... ...
@@ -145,34 +145,34 @@
145 145
  #endif
146 146

	
147 147
  // Check the interface
148 148
  {
149 149
    typedef concepts::Digraph GR;
150 150

	
151
    // Karp
151
    // KarpMmc
152 152
    checkConcept< MmcClassConcept<GR, int>,
153
                  Karp<GR, concepts::ReadMap<GR::Arc, int> > >();
153
                  KarpMmc<GR, concepts::ReadMap<GR::Arc, int> > >();
154 154
    checkConcept< MmcClassConcept<GR, float>,
155
                  Karp<GR, concepts::ReadMap<GR::Arc, float> > >();
155
                  KarpMmc<GR, concepts::ReadMap<GR::Arc, float> > >();
156 156
    
157
    // HartmannOrlin
157
    // HartmannOrlinMmc
158 158
    checkConcept< MmcClassConcept<GR, int>,
159
                  HartmannOrlin<GR, concepts::ReadMap<GR::Arc, int> > >();
159
                  HartmannOrlinMmc<GR, concepts::ReadMap<GR::Arc, int> > >();
160 160
    checkConcept< MmcClassConcept<GR, float>,
161
                  HartmannOrlin<GR, concepts::ReadMap<GR::Arc, float> > >();
161
                  HartmannOrlinMmc<GR, concepts::ReadMap<GR::Arc, float> > >();
162 162
    
163
    // Howard
163
    // HowardMmc
164 164
    checkConcept< MmcClassConcept<GR, int>,
165
                  Howard<GR, concepts::ReadMap<GR::Arc, int> > >();
165
                  HowardMmc<GR, concepts::ReadMap<GR::Arc, int> > >();
166 166
    checkConcept< MmcClassConcept<GR, float>,
167
                  Howard<GR, concepts::ReadMap<GR::Arc, float> > >();
167
                  HowardMmc<GR, concepts::ReadMap<GR::Arc, float> > >();
168 168

	
169
    if (IsSameType<Howard<GR, concepts::ReadMap<GR::Arc, int> >::LargeValue,
170
          long_int>::result == 0) check(false, "Wrong LargeValue type");
171
    if (IsSameType<Howard<GR, concepts::ReadMap<GR::Arc, float> >::LargeValue,
172
          double>::result == 0) check(false, "Wrong LargeValue type");
169
    check((IsSameType<HowardMmc<GR, concepts::ReadMap<GR::Arc, int> >
170
           ::LargeCost, long_int>::result == 1), "Wrong LargeCost type");
171
    check((IsSameType<HowardMmc<GR, concepts::ReadMap<GR::Arc, float> >
172
           ::LargeCost, double>::result == 1), "Wrong LargeCost type");
173 173
  }
174 174

	
175 175
  // Run various tests
176 176
  {
177 177
    typedef SmartDigraph GR;
178 178
    DIGRAPH_TYPEDEFS(GR);
... ...
@@ -191,26 +191,26 @@
191 191
      arcMap("c2", c2).
192 192
      arcMap("c3", c3).
193 193
      arcMap("c4", c4).
194 194
      run();
195 195

	
196 196
    // Karp
197
    checkMmcAlg<Karp<GR, IntArcMap> >(gr, l1, c1,  6, 3);
198
    checkMmcAlg<Karp<GR, IntArcMap> >(gr, l2, c2,  5, 2);
199
    checkMmcAlg<Karp<GR, IntArcMap> >(gr, l3, c3,  0, 1);
200
    checkMmcAlg<Karp<GR, IntArcMap> >(gr, l4, c4, -1, 1);
197
    checkMmcAlg<KarpMmc<GR, IntArcMap> >(gr, l1, c1,  6, 3);
198
    checkMmcAlg<KarpMmc<GR, IntArcMap> >(gr, l2, c2,  5, 2);
199
    checkMmcAlg<KarpMmc<GR, IntArcMap> >(gr, l3, c3,  0, 1);
200
    checkMmcAlg<KarpMmc<GR, IntArcMap> >(gr, l4, c4, -1, 1);
201 201

	
202 202
    // HartmannOrlin
203
    checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l1, c1,  6, 3);
204
    checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l2, c2,  5, 2);
205
    checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l3, c3,  0, 1);
206
    checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l4, c4, -1, 1);
203
    checkMmcAlg<HartmannOrlinMmc<GR, IntArcMap> >(gr, l1, c1,  6, 3);
204
    checkMmcAlg<HartmannOrlinMmc<GR, IntArcMap> >(gr, l2, c2,  5, 2);
205
    checkMmcAlg<HartmannOrlinMmc<GR, IntArcMap> >(gr, l3, c3,  0, 1);
206
    checkMmcAlg<HartmannOrlinMmc<GR, IntArcMap> >(gr, l4, c4, -1, 1);
207 207

	
208 208
    // Howard
209
    checkMmcAlg<Howard<GR, IntArcMap> >(gr, l1, c1,  6, 3);
210
    checkMmcAlg<Howard<GR, IntArcMap> >(gr, l2, c2,  5, 2);
211
    checkMmcAlg<Howard<GR, IntArcMap> >(gr, l3, c3,  0, 1);
212
    checkMmcAlg<Howard<GR, IntArcMap> >(gr, l4, c4, -1, 1);
209
    checkMmcAlg<HowardMmc<GR, IntArcMap> >(gr, l1, c1,  6, 3);
210
    checkMmcAlg<HowardMmc<GR, IntArcMap> >(gr, l2, c2,  5, 2);
211
    checkMmcAlg<HowardMmc<GR, IntArcMap> >(gr, l3, c3,  0, 1);
212
    checkMmcAlg<HowardMmc<GR, IntArcMap> >(gr, l4, c4, -1, 1);
213 213
  }
214 214

	
215 215
  return 0;
216 216
}
0 comments (0 inline)