gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Replace figure at matching doc #348 The original bibartite_matching.eps is kept for future use.
0 3 1
default
4 files changed with 134 insertions and 2 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
1
%!PS-Adobe-2.0 EPSF-2.0
2
%%Creator: LEMON, graphToEps()
3
%%CreationDate: Sun Mar 14 09:08:34 2010
4
%%BoundingBox: -353 -264 559 292
5
%%EndComments
6
/lb { setlinewidth setrgbcolor newpath moveto
7
      4 2 roll 1 index 1 index curveto stroke } bind def
8
/l { setlinewidth setrgbcolor newpath moveto lineto stroke } bind def
9
/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath } bind def
10
/sq { newpath 2 index 1 index add 2 index 2 index add moveto
11
      2 index 1 index sub 2 index 2 index add lineto
12
      2 index 1 index sub 2 index 2 index sub lineto
13
      2 index 1 index add 2 index 2 index sub lineto
14
      closepath pop pop pop} bind def
15
/di { newpath 2 index 1 index add 2 index moveto
16
      2 index             2 index 2 index add lineto
17
      2 index 1 index sub 2 index             lineto
18
      2 index             2 index 2 index sub lineto
19
      closepath pop pop pop} bind def
20
/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill
21
     setrgbcolor 1.1 div c fill
22
   } bind def
23
/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill
24
     setrgbcolor 1.1 div sq fill
25
   } bind def
26
/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill
27
     setrgbcolor 1.1 div di fill
28
   } bind def
29
/nfemale { 0 0 0 setrgbcolor 3 index 0.0909091 1.5 mul mul setlinewidth
30
  newpath 5 index 5 index moveto 5 index 5 index 5 index 3.01 mul sub
31
  lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub moveto
32
  5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto stroke
33
  5 index 5 index 5 index c fill
34
  setrgbcolor 1.1 div c fill
35
  } bind def
36
/nmale {
37
  0 0 0 setrgbcolor 3 index 0.0909091 1.5 mul mul setlinewidth
38
  newpath 5 index 5 index moveto
39
  5 index 4 index 1 mul 1.5 mul add
40
  5 index 5 index 3 sqrt 1.5 mul mul add
41
  1 index 1 index lineto
42
  1 index 1 index 7 index sub moveto
43
  1 index 1 index lineto
44
  exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub lineto
45
  stroke
46
  5 index 5 index 5 index c fill
47
  setrgbcolor 1.1 div c fill
48
  } bind def
49
/arrl 1 def
50
/arrw 0.3 def
51
/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def
52
/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx exch def
53
       /w exch def /len exch def
54
       newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto
55
       len w sub arrl sub dx dy lrl
56
       arrw dy dx neg lrl
57
       dx arrl w add mul dy w 2 div arrw add mul sub
58
       dy arrl w add mul dx w 2 div arrw add mul add rlineto
59
       dx arrl w add mul neg dy w 2 div arrw add mul sub
60
       dy arrl w add mul neg dx w 2 div arrw add mul add rlineto
61
       arrw dy dx neg lrl
62
       len w sub arrl sub neg dx dy lrl
63
       closepath fill } bind def
64
/cshow { 2 index 2 index moveto dup stringwidth pop
65
         neg 2 div fosi .35 mul neg rmoveto show pop pop} def
66

	
67
gsave
68
%Arcs:
69
gsave
70
140.321 266.249 -327.729 150.06 0 0 0 4.99223 l
71
82.1207 -238.726 -245.288 -110.743 0 0 0 4.99223 l
72
336.635 -229.036 533.603 13.109 0 0 0 4.99223 l
73
53.8598 -45.8071 -245.288 -110.743 0 0 0 4.99223 l
74
-75.5617 118.579 -327.729 150.06 0 0 0 4.99223 l
75
-327.729 150.06 -245.288 -110.743 1 0 0 11.9813 l
76
533.603 13.109 218.184 -84.2955 0 0 0 4.99223 l
77
39.87 175.035 141.163 67.2575 0 0 0 4.99223 l
78
53.8598 -45.8071 -75.5617 118.579 0 0 0 4.99223 l
79
-102.406 -141.267 82.1207 -238.726 0 0 0 4.99223 l
80
399.144 166.894 533.603 13.109 1 0 0 11.9813 l
81
39.87 175.035 140.321 266.249 1 0 0 11.9813 l
82
399.144 166.894 140.321 266.249 0 0 0 4.99223 l
83
399.144 166.894 141.163 67.2575 0 0 0 4.99223 l
84
53.8598 -45.8071 204.765 -173.77 0 0 0 4.99223 l
85
82.1207 -238.726 204.765 -173.77 0 0 0 4.99223 l
86
258.227 61.658 399.144 166.894 0 0 0 4.99223 l
87
53.8598 -45.8071 -102.406 -141.267 1 0 0 11.9813 l
88
175.073 -37.4477 141.163 67.2575 0 0 0 4.99223 l
89
258.227 61.658 380 0 0 0 0 4.99223 l
90
34.6739 40.8267 -75.5617 118.579 1 0 0 11.9813 l
91
380 0 533.603 13.109 0 0 0 4.99223 l
92
175.073 -37.4477 380 0 0 0 0 4.99223 l
93
218.184 -84.2955 204.765 -173.77 0 0 0 4.99223 l
94
53.8598 -45.8071 34.6739 40.8267 0 0 0 4.99223 l
95
167.905 -213.988 82.1207 -238.726 1 0 0 11.9813 l
96
336.635 -229.036 204.765 -173.77 1 0 0 11.9813 l
97
336.635 -229.036 167.905 -213.988 0 0 0 4.99223 l
98
329.08 -26.3098 218.184 -84.2955 0 0 0 4.99223 l
99
39.87 175.035 -75.5617 118.579 0 0 0 4.99223 l
100
53.8598 -45.8071 175.073 -37.4477 0 0 0 4.99223 l
101
34.6739 40.8267 141.163 67.2575 0 0 0 4.99223 l
102
258.227 61.658 141.163 67.2575 1 0 0 11.9813 l
103
175.073 -37.4477 218.184 -84.2955 1 0 0 11.9813 l
104
380 0 329.08 -26.3098 1 0 0 11.9813 l
105
grestore
106
%Nodes:
107
gsave
108
-245.288 -110.743 14.9767 1 1 1 nc
109
204.765 -173.77 14.9767 1 1 1 nc
110
-327.729 150.06 14.9767 1 1 1 nc
111
-75.5617 118.579 14.9767 1 1 1 nc
112
218.184 -84.2955 14.9767 1 1 1 nc
113
140.321 266.249 14.9767 1 1 1 nc
114
141.163 67.2575 14.9767 1 1 1 nc
115
82.1207 -238.726 14.9767 1 1 1 nc
116
329.08 -26.3098 14.9767 1 1 1 nc
117
-102.406 -141.267 14.9767 1 1 1 nc
118
533.603 13.109 14.9767 1 1 1 nc
119
167.905 -213.988 14.9767 1 1 1 nc
120
336.635 -229.036 14.9767 1 1 1 nc
121
380 0 14.9767 1 1 1 nc
122
399.144 166.894 14.9767 1 1 1 nc
123
34.6739 40.8267 14.9767 1 1 1 nc
124
39.87 175.035 14.9767 1 1 1 nc
125
175.073 -37.4477 14.9767 1 1 1 nc
126
53.8598 -45.8071 14.9767 1 1 1 nc
127
258.227 61.658 14.9767 1 1 1 nc
128
grestore
129
grestore
130
showpage
Ignore white space 3072 line context
1 1
SET(PACKAGE_NAME ${PROJECT_NAME})
2 2
SET(PACKAGE_VERSION ${PROJECT_VERSION})
3 3
SET(abs_top_srcdir ${PROJECT_SOURCE_DIR})
4 4
SET(abs_top_builddir ${PROJECT_BINARY_DIR})
5 5

	
6 6
CONFIGURE_FILE(
7 7
  ${PROJECT_SOURCE_DIR}/doc/Doxyfile.in
8 8
  ${PROJECT_BINARY_DIR}/doc/Doxyfile
9 9
  @ONLY
10 10
)
11 11

	
12 12
IF(DOXYGEN_EXECUTABLE AND PYTHONINTERP_FOUND AND GHOSTSCRIPT_EXECUTABLE)
13 13
  FILE(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/)
14 14
  SET(GHOSTSCRIPT_OPTIONS -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha)
15 15
  ADD_CUSTOM_TARGET(html
16 16
    COMMAND ${CMAKE_COMMAND} -E remove_directory gen-images
17 17
    COMMAND ${CMAKE_COMMAND} -E make_directory gen-images
18 18
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/bipartite_matching.png ${CMAKE_CURRENT_SOURCE_DIR}/images/bipartite_matching.eps
19 19
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/bipartite_partitions.png ${CMAKE_CURRENT_SOURCE_DIR}/images/bipartite_partitions.eps
20 20
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/connected_components.eps
21 21
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/edge_biconnected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/edge_biconnected_components.eps
22 22
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/grid_graph.png ${CMAKE_CURRENT_SOURCE_DIR}/images/grid_graph.eps
23
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/matching.png ${CMAKE_CURRENT_SOURCE_DIR}/images/matching.eps
23 24
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/node_biconnected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/node_biconnected_components.eps
24 25
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_0.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_0.eps
25 26
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_1.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_1.eps
26 27
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_2.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_2.eps
27 28
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_3.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_3.eps
28 29
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_4.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_4.eps
29 30
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/planar.png ${CMAKE_CURRENT_SOURCE_DIR}/images/planar.eps
30 31
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/strongly_connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/strongly_connected_components.eps
31 32
    COMMAND ${CMAKE_COMMAND} -E remove_directory html
32 33
    COMMAND ${PYTHON_EXECUTABLE} ${PROJECT_SOURCE_DIR}/scripts/bib2dox.py ${CMAKE_CURRENT_SOURCE_DIR}/references.bib >references.dox
33 34
    COMMAND ${DOXYGEN_EXECUTABLE} Doxyfile
34 35
    WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
35 36
  )
36 37

	
37 38
  SET_TARGET_PROPERTIES(html PROPERTIES PROJECT_LABEL BUILD_DOC)
38 39

	
39 40
  IF(UNIX)
40 41
    INSTALL(
41 42
      DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/
42 43
      DESTINATION share/doc/lemon/html
43 44
      COMPONENT html_documentation
44 45
    )
45 46
  ELSEIF(WIN32)
46 47
    INSTALL(
47 48
      DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/
48 49
      DESTINATION doc
49 50
      COMPONENT html_documentation
50 51
    )
51 52
  ENDIF()
52 53

	
53 54
ENDIF()
Ignore white space 6 line context
1 1
EXTRA_DIST += \
2 2
	doc/Doxyfile.in \
3 3
	doc/DoxygenLayout.xml \
4 4
	doc/coding_style.dox \
5 5
	doc/dirs.dox \
6 6
	doc/groups.dox \
7 7
	doc/lgf.dox \
8 8
	doc/license.dox \
9 9
	doc/mainpage.dox \
10 10
	doc/migration.dox \
11 11
	doc/min_cost_flow.dox \
12 12
	doc/named-param.dox \
13 13
	doc/namespaces.dox \
14 14
	doc/html \
15 15
	doc/CMakeLists.txt
16 16

	
17 17
DOC_EPS_IMAGES18 = \
18 18
	grid_graph.eps \
19 19
	nodeshape_0.eps \
20 20
	nodeshape_1.eps \
21 21
	nodeshape_2.eps \
22 22
	nodeshape_3.eps \
23 23
	nodeshape_4.eps
24 24

	
25 25
DOC_EPS_IMAGES27 = \
26 26
	bipartite_matching.eps \
27 27
	bipartite_partitions.eps \
28 28
	connected_components.eps \
29 29
	edge_biconnected_components.eps \
30
	matching.eps \
30 31
	node_biconnected_components.eps \
31 32
	planar.eps \
32 33
	strongly_connected_components.eps
33 34

	
34 35
DOC_EPS_IMAGES = \
35 36
	$(DOC_EPS_IMAGES18) \
36 37
	$(DOC_EPS_IMAGES27)
37 38

	
38 39
DOC_PNG_IMAGES = \
39 40
	$(DOC_EPS_IMAGES:%.eps=doc/gen-images/%.png)
40 41

	
41 42
EXTRA_DIST += $(DOC_EPS_IMAGES:%=doc/images/%)
42 43

	
43 44
doc/html:
44 45
	$(MAKE) $(AM_MAKEFLAGS) html
45 46

	
46 47
GS_COMMAND=gs -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4
47 48

	
48 49
$(DOC_EPS_IMAGES18:%.eps=doc/gen-images/%.png): doc/gen-images/%.png: doc/images/%.eps
49 50
	-mkdir doc/gen-images
50 51
	if test ${gs_found} = yes; then \
51 52
	  $(GS_COMMAND) -sDEVICE=pngalpha -r18 -sOutputFile=$@ $<; \
52 53
	else \
53 54
	  echo; \
54 55
	  echo "Ghostscript not found."; \
55 56
	  echo; \
56 57
	  exit 1; \
57 58
	fi
58 59

	
59 60
$(DOC_EPS_IMAGES27:%.eps=doc/gen-images/%.png): doc/gen-images/%.png: doc/images/%.eps
60 61
	-mkdir doc/gen-images
61 62
	if test ${gs_found} = yes; then \
62 63
	  $(GS_COMMAND) -sDEVICE=pngalpha -r27 -sOutputFile=$@ $<; \
63 64
	else \
64 65
	  echo; \
65 66
	  echo "Ghostscript not found."; \
66 67
	  echo; \
67 68
	  exit 1; \
68 69
	fi
69 70

	
70 71
references.dox: doc/references.bib
71 72
	if test ${python_found} = yes; then \
72 73
	  cd doc; \
73 74
	  python @abs_top_srcdir@/scripts/bib2dox.py @abs_top_builddir@/$< >$@; \
74 75
	  cd ..; \
75 76
	else \
76 77
	  echo; \
77 78
	  echo "Python not found."; \
78 79
	  echo; \
79 80
	  exit 1; \
80 81
	fi
81 82

	
82 83
html-local: $(DOC_PNG_IMAGES) references.dox
83 84
	if test ${doxygen_found} = yes; then \
84 85
	  cd doc; \
85 86
	  doxygen Doxyfile; \
86 87
	  cd ..; \
87 88
	else \
88 89
	  echo; \
89 90
	  echo "Doxygen not found."; \
90 91
	  echo; \
91 92
	  exit 1; \
92 93
	fi
93 94

	
94 95
clean-local:
95 96
	-rm -rf doc/html
96 97
	-rm -f doc/doxygen.log
97 98
	-rm -f $(DOC_PNG_IMAGES)
98 99
	-rm -rf doc/gen-images
99 100

	
100 101
update-external-tags:
101 102
	wget -O doc/libstdc++.tag.tmp http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/libstdc++.tag && \
102 103
	mv doc/libstdc++.tag.tmp doc/libstdc++.tag || \
103 104
	rm doc/libstdc++.tag.tmp
104 105

	
105 106
install-html-local: doc/html
106 107
	@$(NORMAL_INSTALL)
107 108
	$(mkinstalldirs) $(DESTDIR)$(htmldir)/html
108 109
	for p in doc/html/*.{html,css,png,map,gif,tag} ; do \
109 110
	  f="`echo $$p | sed -e 's|^.*/||'`"; \
110 111
	  echo " $(INSTALL_DATA) $$p $(DESTDIR)$(htmldir)/html/$$f"; \
111 112
	  $(INSTALL_DATA) $$p $(DESTDIR)$(htmldir)/html/$$f; \
112 113
	done
113 114

	
114 115
uninstall-local:
115 116
	@$(NORMAL_UNINSTALL)
116 117
	for p in doc/html/*.{html,css,png,map,gif,tag} ; do \
117 118
	  f="`echo $$p | sed -e 's|^.*/||'`"; \
118 119
	  echo " rm -f $(DESTDIR)$(htmldir)/html/$$f"; \
119 120
	  rm -f $(DESTDIR)$(htmldir)/html/$$f; \
120 121
	done
121 122

	
122 123
.PHONY: update-external-tags
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
namespace lemon {
20 20

	
21 21
/**
22 22
@defgroup datas Data Structures
23 23
This group contains the several data structures implemented in LEMON.
24 24
*/
25 25

	
26 26
/**
27 27
@defgroup graphs Graph Structures
28 28
@ingroup datas
29 29
\brief Graph structures implemented in LEMON.
30 30

	
31 31
The implementation of combinatorial algorithms heavily relies on
32 32
efficient graph implementations. LEMON offers data structures which are
33 33
planned to be easily used in an experimental phase of implementation studies,
34 34
and thereafter the program code can be made efficient by small modifications.
35 35

	
36 36
The most efficient implementation of diverse applications require the
37 37
usage of different physical graph implementations. These differences
38 38
appear in the size of graph we require to handle, memory or time usage
39 39
limitations or in the set of operations through which the graph can be
40 40
accessed.  LEMON provides several physical graph structures to meet
41 41
the diverging requirements of the possible users.  In order to save on
42 42
running time or on memory usage, some structures may fail to provide
43 43
some graph features like arc/edge or node deletion.
44 44

	
45 45
Alteration of standard containers need a very limited number of
46 46
operations, these together satisfy the everyday requirements.
47 47
In the case of graph structures, different operations are needed which do
48 48
not alter the physical graph, but gives another view. If some nodes or
49 49
arcs have to be hidden or the reverse oriented graph have to be used, then
50 50
this is the case. It also may happen that in a flow implementation
51 51
the residual graph can be accessed by another algorithm, or a node-set
52 52
is to be shrunk for another algorithm.
53 53
LEMON also provides a variety of graphs for these requirements called
54 54
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only
55 55
in conjunction with other graph representations.
56 56

	
57 57
You are free to use the graph structure that fit your requirements
58 58
the best, most graph algorithms and auxiliary data structures can be used
59 59
with any graph structure.
60 60

	
61 61
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
62 62
*/
63 63

	
64 64
/**
65 65
@defgroup graph_adaptors Adaptor Classes for Graphs
66 66
@ingroup graphs
67 67
\brief Adaptor classes for digraphs and graphs
68 68

	
69 69
This group contains several useful adaptor classes for digraphs and graphs.
70 70

	
71 71
The main parts of LEMON are the different graph structures, generic
72 72
graph algorithms, graph concepts, which couple them, and graph
73 73
adaptors. While the previous notions are more or less clear, the
74 74
latter one needs further explanation. Graph adaptors are graph classes
75 75
which serve for considering graph structures in different ways.
76 76

	
77 77
A short example makes this much clearer.  Suppose that we have an
78 78
instance \c g of a directed graph type, say ListDigraph and an algorithm
79 79
\code
80 80
template <typename Digraph>
81 81
int algorithm(const Digraph&);
82 82
\endcode
83 83
is needed to run on the reverse oriented graph.  It may be expensive
84 84
(in time or in memory usage) to copy \c g with the reversed
85 85
arcs.  In this case, an adaptor class is used, which (according
86 86
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph.
87 87
The adaptor uses the original digraph structure and digraph operations when
88 88
methods of the reversed oriented graph are called.  This means that the adaptor
89 89
have minor memory usage, and do not perform sophisticated algorithmic
90 90
actions.  The purpose of it is to give a tool for the cases when a
91 91
graph have to be used in a specific alteration.  If this alteration is
92 92
obtained by a usual construction like filtering the node or the arc set or
93 93
considering a new orientation, then an adaptor is worthwhile to use.
94 94
To come back to the reverse oriented graph, in this situation
95 95
\code
96 96
template<typename Digraph> class ReverseDigraph;
97 97
\endcode
98 98
template class can be used. The code looks as follows
99 99
\code
100 100
ListDigraph g;
101 101
ReverseDigraph<ListDigraph> rg(g);
102 102
int result = algorithm(rg);
103 103
\endcode
104 104
During running the algorithm, the original digraph \c g is untouched.
105 105
This techniques give rise to an elegant code, and based on stable
106 106
graph adaptors, complex algorithms can be implemented easily.
107 107

	
108 108
In flow, circulation and matching problems, the residual
109 109
graph is of particular importance. Combining an adaptor implementing
110 110
this with shortest path algorithms or minimum mean cycle algorithms,
111 111
a range of weighted and cardinality optimization algorithms can be
112 112
obtained. For other examples, the interested user is referred to the
113 113
detailed documentation of particular adaptors.
114 114

	
115 115
The behavior of graph adaptors can be very different. Some of them keep
116 116
capabilities of the original graph while in other cases this would be
117 117
meaningless. This means that the concepts that they meet depend
118 118
on the graph adaptor, and the wrapped graph.
119 119
For example, if an arc of a reversed digraph is deleted, this is carried
120 120
out by deleting the corresponding arc of the original digraph, thus the
121 121
adaptor modifies the original digraph.
122 122
However in case of a residual digraph, this operation has no sense.
123 123

	
124 124
Let us stand one more example here to simplify your work.
125 125
ReverseDigraph has constructor
126 126
\code
127 127
ReverseDigraph(Digraph& digraph);
128 128
\endcode
129 129
This means that in a situation, when a <tt>const %ListDigraph&</tt>
130 130
reference to a graph is given, then it have to be instantiated with
131 131
<tt>Digraph=const %ListDigraph</tt>.
132 132
\code
133 133
int algorithm1(const ListDigraph& g) {
134 134
  ReverseDigraph<const ListDigraph> rg(g);
135 135
  return algorithm2(rg);
136 136
}
137 137
\endcode
138 138
*/
139 139

	
140 140
/**
141 141
@defgroup maps Maps
142 142
@ingroup datas
143 143
\brief Map structures implemented in LEMON.
144 144

	
145 145
This group contains the map structures implemented in LEMON.
146 146

	
147 147
LEMON provides several special purpose maps and map adaptors that e.g. combine
148 148
new maps from existing ones.
149 149

	
150 150
<b>See also:</b> \ref map_concepts "Map Concepts".
151 151
*/
152 152

	
153 153
/**
154 154
@defgroup graph_maps Graph Maps
155 155
@ingroup maps
156 156
\brief Special graph-related maps.
157 157

	
158 158
This group contains maps that are specifically designed to assign
159 159
values to the nodes and arcs/edges of graphs.
160 160

	
161 161
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap,
162 162
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts".
163 163
*/
164 164

	
165 165
/**
166 166
\defgroup map_adaptors Map Adaptors
167 167
\ingroup maps
168 168
\brief Tools to create new maps from existing ones
169 169

	
170 170
This group contains map adaptors that are used to create "implicit"
171 171
maps from other maps.
172 172

	
173 173
Most of them are \ref concepts::ReadMap "read-only maps".
174 174
They can make arithmetic and logical operations between one or two maps
175 175
(negation, shifting, addition, multiplication, logical 'and', 'or',
176 176
'not' etc.) or e.g. convert a map to another one of different Value type.
177 177

	
178 178
The typical usage of this classes is passing implicit maps to
179 179
algorithms.  If a function type algorithm is called then the function
180 180
type map adaptors can be used comfortable. For example let's see the
181 181
usage of map adaptors with the \c graphToEps() function.
182 182
\code
183 183
  Color nodeColor(int deg) {
184 184
    if (deg >= 2) {
185 185
      return Color(0.5, 0.0, 0.5);
186 186
    } else if (deg == 1) {
187 187
      return Color(1.0, 0.5, 1.0);
188 188
    } else {
189 189
      return Color(0.0, 0.0, 0.0);
190 190
    }
191 191
  }
192 192

	
193 193
  Digraph::NodeMap<int> degree_map(graph);
194 194

	
195 195
  graphToEps(graph, "graph.eps")
196 196
    .coords(coords).scaleToA4().undirected()
197 197
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
198 198
    .run();
199 199
\endcode
200 200
The \c functorToMap() function makes an \c int to \c Color map from the
201 201
\c nodeColor() function. The \c composeMap() compose the \c degree_map
202 202
and the previously created map. The composed map is a proper function to
203 203
get the color of each node.
204 204

	
205 205
The usage with class type algorithms is little bit harder. In this
206 206
case the function type map adaptors can not be used, because the
207 207
function map adaptors give back temporary objects.
208 208
\code
209 209
  Digraph graph;
210 210

	
211 211
  typedef Digraph::ArcMap<double> DoubleArcMap;
212 212
  DoubleArcMap length(graph);
213 213
  DoubleArcMap speed(graph);
214 214

	
215 215
  typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
216 216
  TimeMap time(length, speed);
217 217

	
218 218
  Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
219 219
  dijkstra.run(source, target);
220 220
\endcode
221 221
We have a length map and a maximum speed map on the arcs of a digraph.
222 222
The minimum time to pass the arc can be calculated as the division of
223 223
the two maps which can be done implicitly with the \c DivMap template
224 224
class. We use the implicit minimum time map as the length map of the
225 225
\c Dijkstra algorithm.
226 226
*/
227 227

	
228 228
/**
229 229
@defgroup paths Path Structures
230 230
@ingroup datas
231 231
\brief %Path structures implemented in LEMON.
232 232

	
233 233
This group contains the path structures implemented in LEMON.
234 234

	
235 235
LEMON provides flexible data structures to work with paths.
236 236
All of them have similar interfaces and they can be copied easily with
237 237
assignment operators and copy constructors. This makes it easy and
238 238
efficient to have e.g. the Dijkstra algorithm to store its result in
239 239
any kind of path structure.
240 240

	
241 241
\sa \ref concepts::Path "Path concept"
242 242
*/
243 243

	
244 244
/**
245 245
@defgroup heaps Heap Structures
246 246
@ingroup datas
247 247
\brief %Heap structures implemented in LEMON.
248 248

	
249 249
This group contains the heap structures implemented in LEMON.
250 250

	
251 251
LEMON provides several heap classes. They are efficient implementations
252 252
of the abstract data type \e priority \e queue. They store items with
253 253
specified values called \e priorities in such a way that finding and
254 254
removing the item with minimum priority are efficient.
255 255
The basic operations are adding and erasing items, changing the priority
256 256
of an item, etc.
257 257

	
258 258
Heaps are crucial in several algorithms, such as Dijkstra and Prim.
259 259
The heap implementations have the same interface, thus any of them can be
260 260
used easily in such algorithms.
261 261

	
262 262
\sa \ref concepts::Heap "Heap concept"
263 263
*/
264 264

	
265 265
/**
266 266
@defgroup matrices Matrices
267 267
@ingroup datas
268 268
\brief Two dimensional data storages implemented in LEMON.
269 269

	
270 270
This group contains two dimensional data storages implemented in LEMON.
271 271
*/
272 272

	
273 273
/**
274 274
@defgroup auxdat Auxiliary Data Structures
275 275
@ingroup datas
276 276
\brief Auxiliary data structures implemented in LEMON.
277 277

	
278 278
This group contains some data structures implemented in LEMON in
279 279
order to make it easier to implement combinatorial algorithms.
280 280
*/
281 281

	
282 282
/**
283 283
@defgroup geomdat Geometric Data Structures
284 284
@ingroup auxdat
285 285
\brief Geometric data structures implemented in LEMON.
286 286

	
287 287
This group contains geometric data structures implemented in LEMON.
288 288

	
289 289
 - \ref lemon::dim2::Point "dim2::Point" implements a two dimensional
290 290
   vector with the usual operations.
291 291
 - \ref lemon::dim2::Box "dim2::Box" can be used to determine the
292 292
   rectangular bounding box of a set of \ref lemon::dim2::Point
293 293
   "dim2::Point"'s.
294 294
*/
295 295

	
296 296
/**
297 297
@defgroup matrices Matrices
298 298
@ingroup auxdat
299 299
\brief Two dimensional data storages implemented in LEMON.
300 300

	
301 301
This group contains two dimensional data storages implemented in LEMON.
302 302
*/
303 303

	
304 304
/**
305 305
@defgroup algs Algorithms
306 306
\brief This group contains the several algorithms
307 307
implemented in LEMON.
308 308

	
309 309
This group contains the several algorithms
310 310
implemented in LEMON.
311 311
*/
312 312

	
313 313
/**
314 314
@defgroup search Graph Search
315 315
@ingroup algs
316 316
\brief Common graph search algorithms.
317 317

	
318 318
This group contains the common graph search algorithms, namely
319 319
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS)
320 320
\ref clrs01algorithms.
321 321
*/
322 322

	
323 323
/**
324 324
@defgroup shortest_path Shortest Path Algorithms
325 325
@ingroup algs
326 326
\brief Algorithms for finding shortest paths.
327 327

	
328 328
This group contains the algorithms for finding shortest paths in digraphs
329 329
\ref clrs01algorithms.
330 330

	
331 331
 - \ref Dijkstra algorithm for finding shortest paths from a source node
332 332
   when all arc lengths are non-negative.
333 333
 - \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths
334 334
   from a source node when arc lenghts can be either positive or negative,
335 335
   but the digraph should not contain directed cycles with negative total
336 336
   length.
337 337
 - \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms
338 338
   for solving the \e all-pairs \e shortest \e paths \e problem when arc
339 339
   lenghts can be either positive or negative, but the digraph should
340 340
   not contain directed cycles with negative total length.
341 341
 - \ref Suurballe A successive shortest path algorithm for finding
342 342
   arc-disjoint paths between two nodes having minimum total length.
343 343
*/
344 344

	
345 345
/**
346 346
@defgroup spantree Minimum Spanning Tree Algorithms
347 347
@ingroup algs
348 348
\brief Algorithms for finding minimum cost spanning trees and arborescences.
349 349

	
350 350
This group contains the algorithms for finding minimum cost spanning
351 351
trees and arborescences \ref clrs01algorithms.
352 352
*/
353 353

	
354 354
/**
355 355
@defgroup max_flow Maximum Flow Algorithms
356 356
@ingroup algs
357 357
\brief Algorithms for finding maximum flows.
358 358

	
359 359
This group contains the algorithms for finding maximum flows and
360 360
feasible circulations \ref clrs01algorithms, \ref amo93networkflows.
361 361

	
362 362
The \e maximum \e flow \e problem is to find a flow of maximum value between
363 363
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
364 364
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
365 365
\f$s, t \in V\f$ source and target nodes.
366 366
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
367 367
following optimization problem.
368 368

	
369 369
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
370 370
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
371 371
    \quad \forall u\in V\setminus\{s,t\} \f]
372 372
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f]
373 373

	
374 374
LEMON contains several algorithms for solving maximum flow problems:
375 375
- \ref EdmondsKarp Edmonds-Karp algorithm
376 376
  \ref edmondskarp72theoretical.
377 377
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm
378 378
  \ref goldberg88newapproach.
379 379
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees
380 380
  \ref dinic70algorithm, \ref sleator83dynamic.
381 381
- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees
382 382
  \ref goldberg88newapproach, \ref sleator83dynamic.
383 383

	
384 384
In most cases the \ref Preflow algorithm provides the
385 385
fastest method for computing a maximum flow. All implementations
386 386
also provide functions to query the minimum cut, which is the dual
387 387
problem of maximum flow.
388 388

	
389 389
\ref Circulation is a preflow push-relabel algorithm implemented directly 
390 390
for finding feasible circulations, which is a somewhat different problem,
391 391
but it is strongly related to maximum flow.
392 392
For more information, see \ref Circulation.
393 393
*/
394 394

	
395 395
/**
396 396
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms
397 397
@ingroup algs
398 398

	
399 399
\brief Algorithms for finding minimum cost flows and circulations.
400 400

	
401 401
This group contains the algorithms for finding minimum cost flows and
402 402
circulations \ref amo93networkflows. For more information about this
403 403
problem and its dual solution, see \ref min_cost_flow
404 404
"Minimum Cost Flow Problem".
405 405

	
406 406
LEMON contains several algorithms for this problem.
407 407
 - \ref NetworkSimplex Primal Network Simplex algorithm with various
408 408
   pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex.
409 409
 - \ref CostScaling Cost Scaling algorithm based on push/augment and
410 410
   relabel operations \ref goldberg90approximation, \ref goldberg97efficient,
411 411
   \ref bunnagel98efficient.
412 412
 - \ref CapacityScaling Capacity Scaling algorithm based on the successive
413 413
   shortest path method \ref edmondskarp72theoretical.
414 414
 - \ref CycleCanceling Cycle-Canceling algorithms, two of which are
415 415
   strongly polynomial \ref klein67primal, \ref goldberg89cyclecanceling.
416 416

	
417 417
In general NetworkSimplex is the most efficient implementation,
418 418
but in special cases other algorithms could be faster.
419 419
For example, if the total supply and/or capacities are rather small,
420 420
CapacityScaling is usually the fastest algorithm (without effective scaling).
421 421
*/
422 422

	
423 423
/**
424 424
@defgroup min_cut Minimum Cut Algorithms
425 425
@ingroup algs
426 426

	
427 427
\brief Algorithms for finding minimum cut in graphs.
428 428

	
429 429
This group contains the algorithms for finding minimum cut in graphs.
430 430

	
431 431
The \e minimum \e cut \e problem is to find a non-empty and non-complete
432 432
\f$X\f$ subset of the nodes with minimum overall capacity on
433 433
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
434 434
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
435 435
cut is the \f$X\f$ solution of the next optimization problem:
436 436

	
437 437
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
438 438
    \sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
439 439

	
440 440
LEMON contains several algorithms related to minimum cut problems:
441 441

	
442 442
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
443 443
  in directed graphs.
444 444
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
445 445
  calculating minimum cut in undirected graphs.
446 446
- \ref GomoryHu "Gomory-Hu tree computation" for calculating
447 447
  all-pairs minimum cut in undirected graphs.
448 448

	
449 449
If you want to find minimum cut just between two distinict nodes,
450 450
see the \ref max_flow "maximum flow problem".
451 451
*/
452 452

	
453 453
/**
454 454
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms
455 455
@ingroup algs
456 456
\brief Algorithms for finding minimum mean cycles.
457 457

	
458 458
This group contains the algorithms for finding minimum mean cycles
459 459
\ref clrs01algorithms, \ref amo93networkflows.
460 460

	
461 461
The \e minimum \e mean \e cycle \e problem is to find a directed cycle
462 462
of minimum mean length (cost) in a digraph.
463 463
The mean length of a cycle is the average length of its arcs, i.e. the
464 464
ratio between the total length of the cycle and the number of arcs on it.
465 465

	
466 466
This problem has an important connection to \e conservative \e length
467 467
\e functions, too. A length function on the arcs of a digraph is called
468 468
conservative if and only if there is no directed cycle of negative total
469 469
length. For an arbitrary length function, the negative of the minimum
470 470
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the
471 471
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length
472 472
function.
473 473

	
474 474
LEMON contains three algorithms for solving the minimum mean cycle problem:
475 475
- \ref Karp "Karp"'s original algorithm \ref amo93networkflows,
476 476
  \ref dasdan98minmeancycle.
477 477
- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved
478 478
  version of Karp's algorithm \ref dasdan98minmeancycle.
479 479
- \ref Howard "Howard"'s policy iteration algorithm
480 480
  \ref dasdan98minmeancycle.
481 481

	
482 482
In practice, the Howard algorithm proved to be by far the most efficient
483 483
one, though the best known theoretical bound on its running time is
484 484
exponential.
485 485
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space
486 486
O(n<sup>2</sup>+e), but the latter one is typically faster due to the
487 487
applied early termination scheme.
488 488
*/
489 489

	
490 490
/**
491 491
@defgroup matching Matching Algorithms
492 492
@ingroup algs
493 493
\brief Algorithms for finding matchings in graphs and bipartite graphs.
494 494

	
495 495
This group contains the algorithms for calculating
496 496
matchings in graphs and bipartite graphs. The general matching problem is
497 497
finding a subset of the edges for which each node has at most one incident
498 498
edge.
499 499

	
500 500
There are several different algorithms for calculate matchings in
501 501
graphs.  The matching problems in bipartite graphs are generally
502 502
easier than in general graphs. The goal of the matching optimization
503 503
can be finding maximum cardinality, maximum weight or minimum cost
504 504
matching. The search can be constrained to find perfect or
505 505
maximum cardinality matching.
506 506

	
507 507
The matching algorithms implemented in LEMON:
508 508
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
509 509
  for calculating maximum cardinality matching in bipartite graphs.
510 510
- \ref PrBipartiteMatching Push-relabel algorithm
511 511
  for calculating maximum cardinality matching in bipartite graphs.
512 512
- \ref MaxWeightedBipartiteMatching
513 513
  Successive shortest path algorithm for calculating maximum weighted
514 514
  matching and maximum weighted bipartite matching in bipartite graphs.
515 515
- \ref MinCostMaxBipartiteMatching
516 516
  Successive shortest path algorithm for calculating minimum cost maximum
517 517
  matching in bipartite graphs.
518 518
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
519 519
  maximum cardinality matching in general graphs.
520 520
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
521 521
  maximum weighted matching in general graphs.
522 522
- \ref MaxWeightedPerfectMatching
523 523
  Edmond's blossom shrinking algorithm for calculating maximum weighted
524 524
  perfect matching in general graphs.
525 525

	
526
\image html bipartite_matching.png
527
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
526
\image html matching.png
527
\image latex matching.eps "Bipartite Matching" width=\textwidth
528 528
*/
529 529

	
530 530
/**
531 531
@defgroup graph_properties Connectivity and Other Graph Properties
532 532
@ingroup algs
533 533
\brief Algorithms for discovering the graph properties
534 534

	
535 535
This group contains the algorithms for discovering the graph properties
536 536
like connectivity, bipartiteness, euler property, simplicity etc.
537 537

	
538 538
\image html connected_components.png
539 539
\image latex connected_components.eps "Connected components" width=\textwidth
540 540
*/
541 541

	
542 542
/**
543 543
@defgroup planar Planarity Embedding and Drawing
544 544
@ingroup algs
545 545
\brief Algorithms for planarity checking, embedding and drawing
546 546

	
547 547
This group contains the algorithms for planarity checking,
548 548
embedding and drawing.
549 549

	
550 550
\image html planar.png
551 551
\image latex planar.eps "Plane graph" width=\textwidth
552 552
*/
553 553

	
554 554
/**
555 555
@defgroup approx Approximation Algorithms
556 556
@ingroup algs
557 557
\brief Approximation algorithms.
558 558

	
559 559
This group contains the approximation and heuristic algorithms
560 560
implemented in LEMON.
561 561
*/
562 562

	
563 563
/**
564 564
@defgroup auxalg Auxiliary Algorithms
565 565
@ingroup algs
566 566
\brief Auxiliary algorithms implemented in LEMON.
567 567

	
568 568
This group contains some algorithms implemented in LEMON
569 569
in order to make it easier to implement complex algorithms.
570 570
*/
571 571

	
572 572
/**
573 573
@defgroup gen_opt_group General Optimization Tools
574 574
\brief This group contains some general optimization frameworks
575 575
implemented in LEMON.
576 576

	
577 577
This group contains some general optimization frameworks
578 578
implemented in LEMON.
579 579
*/
580 580

	
581 581
/**
582 582
@defgroup lp_group LP and MIP Solvers
583 583
@ingroup gen_opt_group
584 584
\brief LP and MIP solver interfaces for LEMON.
585 585

	
586 586
This group contains LP and MIP solver interfaces for LEMON.
587 587
Various LP solvers could be used in the same manner with this
588 588
high-level interface.
589 589

	
590 590
The currently supported solvers are \ref glpk, \ref clp, \ref cbc,
591 591
\ref cplex, \ref soplex.
592 592
*/
593 593

	
594 594
/**
595 595
@defgroup lp_utils Tools for Lp and Mip Solvers
596 596
@ingroup lp_group
597 597
\brief Helper tools to the Lp and Mip solvers.
598 598

	
599 599
This group adds some helper tools to general optimization framework
600 600
implemented in LEMON.
601 601
*/
602 602

	
603 603
/**
604 604
@defgroup metah Metaheuristics
605 605
@ingroup gen_opt_group
606 606
\brief Metaheuristics for LEMON library.
607 607

	
608 608
This group contains some metaheuristic optimization tools.
609 609
*/
610 610

	
611 611
/**
612 612
@defgroup utils Tools and Utilities
613 613
\brief Tools and utilities for programming in LEMON
614 614

	
615 615
Tools and utilities for programming in LEMON.
616 616
*/
617 617

	
618 618
/**
619 619
@defgroup gutils Basic Graph Utilities
620 620
@ingroup utils
621 621
\brief Simple basic graph utilities.
622 622

	
623 623
This group contains some simple basic graph utilities.
624 624
*/
625 625

	
626 626
/**
627 627
@defgroup misc Miscellaneous Tools
628 628
@ingroup utils
629 629
\brief Tools for development, debugging and testing.
630 630

	
631 631
This group contains several useful tools for development,
632 632
debugging and testing.
633 633
*/
634 634

	
635 635
/**
636 636
@defgroup timecount Time Measuring and Counting
637 637
@ingroup misc
638 638
\brief Simple tools for measuring the performance of algorithms.
639 639

	
640 640
This group contains simple tools for measuring the performance
641 641
of algorithms.
642 642
*/
643 643

	
644 644
/**
645 645
@defgroup exceptions Exceptions
646 646
@ingroup utils
647 647
\brief Exceptions defined in LEMON.
648 648

	
649 649
This group contains the exceptions defined in LEMON.
650 650
*/
651 651

	
652 652
/**
653 653
@defgroup io_group Input-Output
654 654
\brief Graph Input-Output methods
655 655

	
656 656
This group contains the tools for importing and exporting graphs
657 657
and graph related data. Now it supports the \ref lgf-format
658 658
"LEMON Graph Format", the \c DIMACS format and the encapsulated
659 659
postscript (EPS) format.
660 660
*/
661 661

	
662 662
/**
663 663
@defgroup lemon_io LEMON Graph Format
664 664
@ingroup io_group
665 665
\brief Reading and writing LEMON Graph Format.
666 666

	
667 667
This group contains methods for reading and writing
668 668
\ref lgf-format "LEMON Graph Format".
669 669
*/
670 670

	
671 671
/**
672 672
@defgroup eps_io Postscript Exporting
673 673
@ingroup io_group
674 674
\brief General \c EPS drawer and graph exporter
675 675

	
676 676
This group contains general \c EPS drawing methods and special
677 677
graph exporting tools.
678 678
*/
679 679

	
680 680
/**
681 681
@defgroup dimacs_group DIMACS Format
682 682
@ingroup io_group
683 683
\brief Read and write files in DIMACS format
684 684

	
685 685
Tools to read a digraph from or write it to a file in DIMACS format data.
686 686
*/
687 687

	
688 688
/**
689 689
@defgroup nauty_group NAUTY Format
690 690
@ingroup io_group
691 691
\brief Read \e Nauty format
692 692

	
693 693
Tool to read graphs from \e Nauty format data.
694 694
*/
695 695

	
696 696
/**
697 697
@defgroup concept Concepts
698 698
\brief Skeleton classes and concept checking classes
699 699

	
700 700
This group contains the data/algorithm skeletons and concept checking
701 701
classes implemented in LEMON.
702 702

	
703 703
The purpose of the classes in this group is fourfold.
704 704

	
705 705
- These classes contain the documentations of the %concepts. In order
706 706
  to avoid document multiplications, an implementation of a concept
707 707
  simply refers to the corresponding concept class.
708 708

	
709 709
- These classes declare every functions, <tt>typedef</tt>s etc. an
710 710
  implementation of the %concepts should provide, however completely
711 711
  without implementations and real data structures behind the
712 712
  interface. On the other hand they should provide nothing else. All
713 713
  the algorithms working on a data structure meeting a certain concept
714 714
  should compile with these classes. (Though it will not run properly,
715 715
  of course.) In this way it is easily to check if an algorithm
716 716
  doesn't use any extra feature of a certain implementation.
717 717

	
718 718
- The concept descriptor classes also provide a <em>checker class</em>
719 719
  that makes it possible to check whether a certain implementation of a
720 720
  concept indeed provides all the required features.
721 721

	
722 722
- Finally, They can serve as a skeleton of a new implementation of a concept.
723 723
*/
724 724

	
725 725
/**
726 726
@defgroup graph_concepts Graph Structure Concepts
727 727
@ingroup concept
728 728
\brief Skeleton and concept checking classes for graph structures
729 729

	
730 730
This group contains the skeletons and concept checking classes of
731 731
graph structures.
732 732
*/
733 733

	
734 734
/**
735 735
@defgroup map_concepts Map Concepts
736 736
@ingroup concept
737 737
\brief Skeleton and concept checking classes for maps
738 738

	
739 739
This group contains the skeletons and concept checking classes of maps.
740 740
*/
741 741

	
742 742
/**
743 743
@defgroup tools Standalone Utility Applications
744 744

	
745 745
Some utility applications are listed here.
746 746

	
747 747
The standard compilation procedure (<tt>./configure;make</tt>) will compile
748 748
them, as well.
749 749
*/
750 750

	
751 751
/**
752 752
\anchor demoprograms
753 753

	
754 754
@defgroup demos Demo Programs
755 755

	
756 756
Some demo programs are listed here. Their full source codes can be found in
757 757
the \c demo subdirectory of the source tree.
758 758

	
759 759
In order to compile them, use the <tt>make demo</tt> or the
760 760
<tt>make check</tt> commands.
761 761
*/
762 762

	
763 763
}
0 comments (0 inline)