gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Replace figure at matching doc #348 The original bibartite_matching.eps is kept for future use.
0 3 1
default
4 files changed with 134 insertions and 2 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
1
%!PS-Adobe-2.0 EPSF-2.0
2
%%Creator: LEMON, graphToEps()
3
%%CreationDate: Sun Mar 14 09:08:34 2010
4
%%BoundingBox: -353 -264 559 292
5
%%EndComments
6
/lb { setlinewidth setrgbcolor newpath moveto
7
      4 2 roll 1 index 1 index curveto stroke } bind def
8
/l { setlinewidth setrgbcolor newpath moveto lineto stroke } bind def
9
/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath } bind def
10
/sq { newpath 2 index 1 index add 2 index 2 index add moveto
11
      2 index 1 index sub 2 index 2 index add lineto
12
      2 index 1 index sub 2 index 2 index sub lineto
13
      2 index 1 index add 2 index 2 index sub lineto
14
      closepath pop pop pop} bind def
15
/di { newpath 2 index 1 index add 2 index moveto
16
      2 index             2 index 2 index add lineto
17
      2 index 1 index sub 2 index             lineto
18
      2 index             2 index 2 index sub lineto
19
      closepath pop pop pop} bind def
20
/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill
21
     setrgbcolor 1.1 div c fill
22
   } bind def
23
/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill
24
     setrgbcolor 1.1 div sq fill
25
   } bind def
26
/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill
27
     setrgbcolor 1.1 div di fill
28
   } bind def
29
/nfemale { 0 0 0 setrgbcolor 3 index 0.0909091 1.5 mul mul setlinewidth
30
  newpath 5 index 5 index moveto 5 index 5 index 5 index 3.01 mul sub
31
  lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub moveto
32
  5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto stroke
33
  5 index 5 index 5 index c fill
34
  setrgbcolor 1.1 div c fill
35
  } bind def
36
/nmale {
37
  0 0 0 setrgbcolor 3 index 0.0909091 1.5 mul mul setlinewidth
38
  newpath 5 index 5 index moveto
39
  5 index 4 index 1 mul 1.5 mul add
40
  5 index 5 index 3 sqrt 1.5 mul mul add
41
  1 index 1 index lineto
42
  1 index 1 index 7 index sub moveto
43
  1 index 1 index lineto
44
  exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub lineto
45
  stroke
46
  5 index 5 index 5 index c fill
47
  setrgbcolor 1.1 div c fill
48
  } bind def
49
/arrl 1 def
50
/arrw 0.3 def
51
/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def
52
/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx exch def
53
       /w exch def /len exch def
54
       newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto
55
       len w sub arrl sub dx dy lrl
56
       arrw dy dx neg lrl
57
       dx arrl w add mul dy w 2 div arrw add mul sub
58
       dy arrl w add mul dx w 2 div arrw add mul add rlineto
59
       dx arrl w add mul neg dy w 2 div arrw add mul sub
60
       dy arrl w add mul neg dx w 2 div arrw add mul add rlineto
61
       arrw dy dx neg lrl
62
       len w sub arrl sub neg dx dy lrl
63
       closepath fill } bind def
64
/cshow { 2 index 2 index moveto dup stringwidth pop
65
         neg 2 div fosi .35 mul neg rmoveto show pop pop} def
66

	
67
gsave
68
%Arcs:
69
gsave
70
140.321 266.249 -327.729 150.06 0 0 0 4.99223 l
71
82.1207 -238.726 -245.288 -110.743 0 0 0 4.99223 l
72
336.635 -229.036 533.603 13.109 0 0 0 4.99223 l
73
53.8598 -45.8071 -245.288 -110.743 0 0 0 4.99223 l
74
-75.5617 118.579 -327.729 150.06 0 0 0 4.99223 l
75
-327.729 150.06 -245.288 -110.743 1 0 0 11.9813 l
76
533.603 13.109 218.184 -84.2955 0 0 0 4.99223 l
77
39.87 175.035 141.163 67.2575 0 0 0 4.99223 l
78
53.8598 -45.8071 -75.5617 118.579 0 0 0 4.99223 l
79
-102.406 -141.267 82.1207 -238.726 0 0 0 4.99223 l
80
399.144 166.894 533.603 13.109 1 0 0 11.9813 l
81
39.87 175.035 140.321 266.249 1 0 0 11.9813 l
82
399.144 166.894 140.321 266.249 0 0 0 4.99223 l
83
399.144 166.894 141.163 67.2575 0 0 0 4.99223 l
84
53.8598 -45.8071 204.765 -173.77 0 0 0 4.99223 l
85
82.1207 -238.726 204.765 -173.77 0 0 0 4.99223 l
86
258.227 61.658 399.144 166.894 0 0 0 4.99223 l
87
53.8598 -45.8071 -102.406 -141.267 1 0 0 11.9813 l
88
175.073 -37.4477 141.163 67.2575 0 0 0 4.99223 l
89
258.227 61.658 380 0 0 0 0 4.99223 l
90
34.6739 40.8267 -75.5617 118.579 1 0 0 11.9813 l
91
380 0 533.603 13.109 0 0 0 4.99223 l
92
175.073 -37.4477 380 0 0 0 0 4.99223 l
93
218.184 -84.2955 204.765 -173.77 0 0 0 4.99223 l
94
53.8598 -45.8071 34.6739 40.8267 0 0 0 4.99223 l
95
167.905 -213.988 82.1207 -238.726 1 0 0 11.9813 l
96
336.635 -229.036 204.765 -173.77 1 0 0 11.9813 l
97
336.635 -229.036 167.905 -213.988 0 0 0 4.99223 l
98
329.08 -26.3098 218.184 -84.2955 0 0 0 4.99223 l
99
39.87 175.035 -75.5617 118.579 0 0 0 4.99223 l
100
53.8598 -45.8071 175.073 -37.4477 0 0 0 4.99223 l
101
34.6739 40.8267 141.163 67.2575 0 0 0 4.99223 l
102
258.227 61.658 141.163 67.2575 1 0 0 11.9813 l
103
175.073 -37.4477 218.184 -84.2955 1 0 0 11.9813 l
104
380 0 329.08 -26.3098 1 0 0 11.9813 l
105
grestore
106
%Nodes:
107
gsave
108
-245.288 -110.743 14.9767 1 1 1 nc
109
204.765 -173.77 14.9767 1 1 1 nc
110
-327.729 150.06 14.9767 1 1 1 nc
111
-75.5617 118.579 14.9767 1 1 1 nc
112
218.184 -84.2955 14.9767 1 1 1 nc
113
140.321 266.249 14.9767 1 1 1 nc
114
141.163 67.2575 14.9767 1 1 1 nc
115
82.1207 -238.726 14.9767 1 1 1 nc
116
329.08 -26.3098 14.9767 1 1 1 nc
117
-102.406 -141.267 14.9767 1 1 1 nc
118
533.603 13.109 14.9767 1 1 1 nc
119
167.905 -213.988 14.9767 1 1 1 nc
120
336.635 -229.036 14.9767 1 1 1 nc
121
380 0 14.9767 1 1 1 nc
122
399.144 166.894 14.9767 1 1 1 nc
123
34.6739 40.8267 14.9767 1 1 1 nc
124
39.87 175.035 14.9767 1 1 1 nc
125
175.073 -37.4477 14.9767 1 1 1 nc
126
53.8598 -45.8071 14.9767 1 1 1 nc
127
258.227 61.658 14.9767 1 1 1 nc
128
grestore
129
grestore
130
showpage
Ignore white space 192 line context
1 1
SET(PACKAGE_NAME ${PROJECT_NAME})
2 2
SET(PACKAGE_VERSION ${PROJECT_VERSION})
3 3
SET(abs_top_srcdir ${PROJECT_SOURCE_DIR})
4 4
SET(abs_top_builddir ${PROJECT_BINARY_DIR})
5 5

	
6 6
CONFIGURE_FILE(
7 7
  ${PROJECT_SOURCE_DIR}/doc/Doxyfile.in
8 8
  ${PROJECT_BINARY_DIR}/doc/Doxyfile
9 9
  @ONLY
10 10
)
11 11

	
12 12
IF(DOXYGEN_EXECUTABLE AND PYTHONINTERP_FOUND AND GHOSTSCRIPT_EXECUTABLE)
13 13
  FILE(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/)
14 14
  SET(GHOSTSCRIPT_OPTIONS -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha)
15 15
  ADD_CUSTOM_TARGET(html
16 16
    COMMAND ${CMAKE_COMMAND} -E remove_directory gen-images
17 17
    COMMAND ${CMAKE_COMMAND} -E make_directory gen-images
18 18
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/bipartite_matching.png ${CMAKE_CURRENT_SOURCE_DIR}/images/bipartite_matching.eps
19 19
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/bipartite_partitions.png ${CMAKE_CURRENT_SOURCE_DIR}/images/bipartite_partitions.eps
20 20
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/connected_components.eps
21 21
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/edge_biconnected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/edge_biconnected_components.eps
22 22
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/grid_graph.png ${CMAKE_CURRENT_SOURCE_DIR}/images/grid_graph.eps
23
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/matching.png ${CMAKE_CURRENT_SOURCE_DIR}/images/matching.eps
23 24
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/node_biconnected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/node_biconnected_components.eps
24 25
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_0.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_0.eps
25 26
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_1.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_1.eps
26 27
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_2.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_2.eps
27 28
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_3.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_3.eps
28 29
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_4.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_4.eps
29 30
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/planar.png ${CMAKE_CURRENT_SOURCE_DIR}/images/planar.eps
30 31
    COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/strongly_connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/strongly_connected_components.eps
31 32
    COMMAND ${CMAKE_COMMAND} -E remove_directory html
32 33
    COMMAND ${PYTHON_EXECUTABLE} ${PROJECT_SOURCE_DIR}/scripts/bib2dox.py ${CMAKE_CURRENT_SOURCE_DIR}/references.bib >references.dox
33 34
    COMMAND ${DOXYGEN_EXECUTABLE} Doxyfile
34 35
    WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
35 36
  )
36 37

	
37 38
  SET_TARGET_PROPERTIES(html PROPERTIES PROJECT_LABEL BUILD_DOC)
38 39

	
39 40
  IF(UNIX)
40 41
    INSTALL(
41 42
      DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/
42 43
      DESTINATION share/doc/lemon/html
43 44
      COMPONENT html_documentation
44 45
    )
45 46
  ELSEIF(WIN32)
46 47
    INSTALL(
47 48
      DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/
48 49
      DESTINATION doc
49 50
      COMPONENT html_documentation
50 51
    )
51 52
  ENDIF()
52 53

	
53 54
ENDIF()
Ignore white space 6 line context
1 1
EXTRA_DIST += \
2 2
	doc/Doxyfile.in \
3 3
	doc/DoxygenLayout.xml \
4 4
	doc/coding_style.dox \
5 5
	doc/dirs.dox \
6 6
	doc/groups.dox \
7 7
	doc/lgf.dox \
8 8
	doc/license.dox \
9 9
	doc/mainpage.dox \
10 10
	doc/migration.dox \
11 11
	doc/min_cost_flow.dox \
12 12
	doc/named-param.dox \
13 13
	doc/namespaces.dox \
14 14
	doc/html \
15 15
	doc/CMakeLists.txt
16 16

	
17 17
DOC_EPS_IMAGES18 = \
18 18
	grid_graph.eps \
19 19
	nodeshape_0.eps \
20 20
	nodeshape_1.eps \
21 21
	nodeshape_2.eps \
22 22
	nodeshape_3.eps \
23 23
	nodeshape_4.eps
24 24

	
25 25
DOC_EPS_IMAGES27 = \
26 26
	bipartite_matching.eps \
27 27
	bipartite_partitions.eps \
28 28
	connected_components.eps \
29 29
	edge_biconnected_components.eps \
30
	matching.eps \
30 31
	node_biconnected_components.eps \
31 32
	planar.eps \
32 33
	strongly_connected_components.eps
33 34

	
34 35
DOC_EPS_IMAGES = \
35 36
	$(DOC_EPS_IMAGES18) \
36 37
	$(DOC_EPS_IMAGES27)
37 38

	
38 39
DOC_PNG_IMAGES = \
39 40
	$(DOC_EPS_IMAGES:%.eps=doc/gen-images/%.png)
40 41

	
41 42
EXTRA_DIST += $(DOC_EPS_IMAGES:%=doc/images/%)
42 43

	
43 44
doc/html:
44 45
	$(MAKE) $(AM_MAKEFLAGS) html
45 46

	
46 47
GS_COMMAND=gs -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4
47 48

	
48 49
$(DOC_EPS_IMAGES18:%.eps=doc/gen-images/%.png): doc/gen-images/%.png: doc/images/%.eps
49 50
	-mkdir doc/gen-images
50 51
	if test ${gs_found} = yes; then \
51 52
	  $(GS_COMMAND) -sDEVICE=pngalpha -r18 -sOutputFile=$@ $<; \
52 53
	else \
53 54
	  echo; \
54 55
	  echo "Ghostscript not found."; \
55 56
	  echo; \
56 57
	  exit 1; \
57 58
	fi
58 59

	
59 60
$(DOC_EPS_IMAGES27:%.eps=doc/gen-images/%.png): doc/gen-images/%.png: doc/images/%.eps
60 61
	-mkdir doc/gen-images
61 62
	if test ${gs_found} = yes; then \
62 63
	  $(GS_COMMAND) -sDEVICE=pngalpha -r27 -sOutputFile=$@ $<; \
63 64
	else \
64 65
	  echo; \
65 66
	  echo "Ghostscript not found."; \
66 67
	  echo; \
67 68
	  exit 1; \
68 69
	fi
69 70

	
70 71
references.dox: doc/references.bib
71 72
	if test ${python_found} = yes; then \
72 73
	  cd doc; \
73 74
	  python @abs_top_srcdir@/scripts/bib2dox.py @abs_top_builddir@/$< >$@; \
74 75
	  cd ..; \
75 76
	else \
76 77
	  echo; \
77 78
	  echo "Python not found."; \
78 79
	  echo; \
79 80
	  exit 1; \
80 81
	fi
81 82

	
82 83
html-local: $(DOC_PNG_IMAGES) references.dox
83 84
	if test ${doxygen_found} = yes; then \
84 85
	  cd doc; \
85 86
	  doxygen Doxyfile; \
86 87
	  cd ..; \
87 88
	else \
88 89
	  echo; \
89 90
	  echo "Doxygen not found."; \
90 91
	  echo; \
91 92
	  exit 1; \
92 93
	fi
93 94

	
94 95
clean-local:
95 96
	-rm -rf doc/html
96 97
	-rm -f doc/doxygen.log
97 98
	-rm -f $(DOC_PNG_IMAGES)
98 99
	-rm -rf doc/gen-images
99 100

	
100 101
update-external-tags:
101 102
	wget -O doc/libstdc++.tag.tmp http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/libstdc++.tag && \
102 103
	mv doc/libstdc++.tag.tmp doc/libstdc++.tag || \
103 104
	rm doc/libstdc++.tag.tmp
104 105

	
105 106
install-html-local: doc/html
106 107
	@$(NORMAL_INSTALL)
107 108
	$(mkinstalldirs) $(DESTDIR)$(htmldir)/html
108 109
	for p in doc/html/*.{html,css,png,map,gif,tag} ; do \
109 110
	  f="`echo $$p | sed -e 's|^.*/||'`"; \
110 111
	  echo " $(INSTALL_DATA) $$p $(DESTDIR)$(htmldir)/html/$$f"; \
111 112
	  $(INSTALL_DATA) $$p $(DESTDIR)$(htmldir)/html/$$f; \
112 113
	done
113 114

	
114 115
uninstall-local:
115 116
	@$(NORMAL_UNINSTALL)
116 117
	for p in doc/html/*.{html,css,png,map,gif,tag} ; do \
117 118
	  f="`echo $$p | sed -e 's|^.*/||'`"; \
118 119
	  echo " rm -f $(DESTDIR)$(htmldir)/html/$$f"; \
119 120
	  rm -f $(DESTDIR)$(htmldir)/html/$$f; \
120 121
	done
121 122

	
122 123
.PHONY: update-external-tags
Ignore white space 6 line context
... ...
@@ -430,194 +430,194 @@
430 430

	
431 431
The \e minimum \e cut \e problem is to find a non-empty and non-complete
432 432
\f$X\f$ subset of the nodes with minimum overall capacity on
433 433
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
434 434
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
435 435
cut is the \f$X\f$ solution of the next optimization problem:
436 436

	
437 437
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
438 438
    \sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
439 439

	
440 440
LEMON contains several algorithms related to minimum cut problems:
441 441

	
442 442
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
443 443
  in directed graphs.
444 444
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
445 445
  calculating minimum cut in undirected graphs.
446 446
- \ref GomoryHu "Gomory-Hu tree computation" for calculating
447 447
  all-pairs minimum cut in undirected graphs.
448 448

	
449 449
If you want to find minimum cut just between two distinict nodes,
450 450
see the \ref max_flow "maximum flow problem".
451 451
*/
452 452

	
453 453
/**
454 454
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms
455 455
@ingroup algs
456 456
\brief Algorithms for finding minimum mean cycles.
457 457

	
458 458
This group contains the algorithms for finding minimum mean cycles
459 459
\ref clrs01algorithms, \ref amo93networkflows.
460 460

	
461 461
The \e minimum \e mean \e cycle \e problem is to find a directed cycle
462 462
of minimum mean length (cost) in a digraph.
463 463
The mean length of a cycle is the average length of its arcs, i.e. the
464 464
ratio between the total length of the cycle and the number of arcs on it.
465 465

	
466 466
This problem has an important connection to \e conservative \e length
467 467
\e functions, too. A length function on the arcs of a digraph is called
468 468
conservative if and only if there is no directed cycle of negative total
469 469
length. For an arbitrary length function, the negative of the minimum
470 470
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the
471 471
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length
472 472
function.
473 473

	
474 474
LEMON contains three algorithms for solving the minimum mean cycle problem:
475 475
- \ref Karp "Karp"'s original algorithm \ref amo93networkflows,
476 476
  \ref dasdan98minmeancycle.
477 477
- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved
478 478
  version of Karp's algorithm \ref dasdan98minmeancycle.
479 479
- \ref Howard "Howard"'s policy iteration algorithm
480 480
  \ref dasdan98minmeancycle.
481 481

	
482 482
In practice, the Howard algorithm proved to be by far the most efficient
483 483
one, though the best known theoretical bound on its running time is
484 484
exponential.
485 485
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space
486 486
O(n<sup>2</sup>+e), but the latter one is typically faster due to the
487 487
applied early termination scheme.
488 488
*/
489 489

	
490 490
/**
491 491
@defgroup matching Matching Algorithms
492 492
@ingroup algs
493 493
\brief Algorithms for finding matchings in graphs and bipartite graphs.
494 494

	
495 495
This group contains the algorithms for calculating
496 496
matchings in graphs and bipartite graphs. The general matching problem is
497 497
finding a subset of the edges for which each node has at most one incident
498 498
edge.
499 499

	
500 500
There are several different algorithms for calculate matchings in
501 501
graphs.  The matching problems in bipartite graphs are generally
502 502
easier than in general graphs. The goal of the matching optimization
503 503
can be finding maximum cardinality, maximum weight or minimum cost
504 504
matching. The search can be constrained to find perfect or
505 505
maximum cardinality matching.
506 506

	
507 507
The matching algorithms implemented in LEMON:
508 508
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
509 509
  for calculating maximum cardinality matching in bipartite graphs.
510 510
- \ref PrBipartiteMatching Push-relabel algorithm
511 511
  for calculating maximum cardinality matching in bipartite graphs.
512 512
- \ref MaxWeightedBipartiteMatching
513 513
  Successive shortest path algorithm for calculating maximum weighted
514 514
  matching and maximum weighted bipartite matching in bipartite graphs.
515 515
- \ref MinCostMaxBipartiteMatching
516 516
  Successive shortest path algorithm for calculating minimum cost maximum
517 517
  matching in bipartite graphs.
518 518
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
519 519
  maximum cardinality matching in general graphs.
520 520
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
521 521
  maximum weighted matching in general graphs.
522 522
- \ref MaxWeightedPerfectMatching
523 523
  Edmond's blossom shrinking algorithm for calculating maximum weighted
524 524
  perfect matching in general graphs.
525 525

	
526
\image html bipartite_matching.png
527
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
526
\image html matching.png
527
\image latex matching.eps "Bipartite Matching" width=\textwidth
528 528
*/
529 529

	
530 530
/**
531 531
@defgroup graph_properties Connectivity and Other Graph Properties
532 532
@ingroup algs
533 533
\brief Algorithms for discovering the graph properties
534 534

	
535 535
This group contains the algorithms for discovering the graph properties
536 536
like connectivity, bipartiteness, euler property, simplicity etc.
537 537

	
538 538
\image html connected_components.png
539 539
\image latex connected_components.eps "Connected components" width=\textwidth
540 540
*/
541 541

	
542 542
/**
543 543
@defgroup planar Planarity Embedding and Drawing
544 544
@ingroup algs
545 545
\brief Algorithms for planarity checking, embedding and drawing
546 546

	
547 547
This group contains the algorithms for planarity checking,
548 548
embedding and drawing.
549 549

	
550 550
\image html planar.png
551 551
\image latex planar.eps "Plane graph" width=\textwidth
552 552
*/
553 553

	
554 554
/**
555 555
@defgroup approx Approximation Algorithms
556 556
@ingroup algs
557 557
\brief Approximation algorithms.
558 558

	
559 559
This group contains the approximation and heuristic algorithms
560 560
implemented in LEMON.
561 561
*/
562 562

	
563 563
/**
564 564
@defgroup auxalg Auxiliary Algorithms
565 565
@ingroup algs
566 566
\brief Auxiliary algorithms implemented in LEMON.
567 567

	
568 568
This group contains some algorithms implemented in LEMON
569 569
in order to make it easier to implement complex algorithms.
570 570
*/
571 571

	
572 572
/**
573 573
@defgroup gen_opt_group General Optimization Tools
574 574
\brief This group contains some general optimization frameworks
575 575
implemented in LEMON.
576 576

	
577 577
This group contains some general optimization frameworks
578 578
implemented in LEMON.
579 579
*/
580 580

	
581 581
/**
582 582
@defgroup lp_group LP and MIP Solvers
583 583
@ingroup gen_opt_group
584 584
\brief LP and MIP solver interfaces for LEMON.
585 585

	
586 586
This group contains LP and MIP solver interfaces for LEMON.
587 587
Various LP solvers could be used in the same manner with this
588 588
high-level interface.
589 589

	
590 590
The currently supported solvers are \ref glpk, \ref clp, \ref cbc,
591 591
\ref cplex, \ref soplex.
592 592
*/
593 593

	
594 594
/**
595 595
@defgroup lp_utils Tools for Lp and Mip Solvers
596 596
@ingroup lp_group
597 597
\brief Helper tools to the Lp and Mip solvers.
598 598

	
599 599
This group adds some helper tools to general optimization framework
600 600
implemented in LEMON.
601 601
*/
602 602

	
603 603
/**
604 604
@defgroup metah Metaheuristics
605 605
@ingroup gen_opt_group
606 606
\brief Metaheuristics for LEMON library.
607 607

	
608 608
This group contains some metaheuristic optimization tools.
609 609
*/
610 610

	
611 611
/**
612 612
@defgroup utils Tools and Utilities
613 613
\brief Tools and utilities for programming in LEMON
614 614

	
615 615
Tools and utilities for programming in LEMON.
616 616
*/
617 617

	
618 618
/**
619 619
@defgroup gutils Basic Graph Utilities
620 620
@ingroup utils
621 621
\brief Simple basic graph utilities.
622 622

	
623 623
This group contains some simple basic graph utilities.
0 comments (0 inline)