0
3
0
... | ... |
@@ -136,193 +136,193 @@ |
136 | 136 |
}; |
137 | 137 |
|
138 | 138 |
template <typename Out> |
139 | 139 |
struct SequenceOutputIndicator<Out, |
140 | 140 |
typename exists<typename Out::value_type>::type> { |
141 | 141 |
static const bool value = true; |
142 | 142 |
}; |
143 | 143 |
|
144 | 144 |
template <typename Out, typename Enable = void> |
145 | 145 |
struct MapOutputIndicator { |
146 | 146 |
static const bool value = false; |
147 | 147 |
}; |
148 | 148 |
|
149 | 149 |
template <typename Out> |
150 | 150 |
struct MapOutputIndicator<Out, |
151 | 151 |
typename exists<typename Out::Value>::type> { |
152 | 152 |
static const bool value = true; |
153 | 153 |
}; |
154 | 154 |
|
155 | 155 |
template <typename In, typename InEnable = void> |
156 | 156 |
struct KruskalValueSelector {}; |
157 | 157 |
|
158 | 158 |
template <typename In> |
159 | 159 |
struct KruskalValueSelector<In, |
160 | 160 |
typename enable_if<SequenceInputIndicator<In>, void>::type> |
161 | 161 |
{ |
162 | 162 |
typedef typename In::value_type::second_type Value; |
163 | 163 |
}; |
164 | 164 |
|
165 | 165 |
template <typename In> |
166 | 166 |
struct KruskalValueSelector<In, |
167 | 167 |
typename enable_if<MapInputIndicator<In>, void>::type> |
168 | 168 |
{ |
169 | 169 |
typedef typename In::Value Value; |
170 | 170 |
}; |
171 | 171 |
|
172 | 172 |
template <typename Graph, typename In, typename Out, |
173 | 173 |
typename InEnable = void> |
174 | 174 |
struct KruskalInputSelector {}; |
175 | 175 |
|
176 | 176 |
template <typename Graph, typename In, typename Out, |
177 | 177 |
typename InEnable = void> |
178 | 178 |
struct KruskalOutputSelector {}; |
179 | 179 |
|
180 | 180 |
template <typename Graph, typename In, typename Out> |
181 | 181 |
struct KruskalInputSelector<Graph, In, Out, |
182 | 182 |
typename enable_if<SequenceInputIndicator<In>, void>::type > |
183 | 183 |
{ |
184 | 184 |
typedef typename In::value_type::second_type Value; |
185 | 185 |
|
186 | 186 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
187 | 187 |
return KruskalOutputSelector<Graph, In, Out>:: |
188 | 188 |
kruskal(graph, in, out); |
189 | 189 |
} |
190 | 190 |
|
191 | 191 |
}; |
192 | 192 |
|
193 | 193 |
template <typename Graph, typename In, typename Out> |
194 | 194 |
struct KruskalInputSelector<Graph, In, Out, |
195 | 195 |
typename enable_if<MapInputIndicator<In>, void>::type > |
196 | 196 |
{ |
197 | 197 |
typedef typename In::Value Value; |
198 | 198 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
199 | 199 |
typedef typename In::Key MapArc; |
200 | 200 |
typedef typename In::Value Value; |
201 | 201 |
typedef typename ItemSetTraits<Graph, MapArc>::ItemIt MapArcIt; |
202 | 202 |
typedef std::vector<std::pair<MapArc, Value> > Sequence; |
203 | 203 |
Sequence seq; |
204 | 204 |
|
205 | 205 |
for (MapArcIt it(graph); it != INVALID; ++it) { |
206 | 206 |
seq.push_back(std::make_pair(it, in[it])); |
207 | 207 |
} |
208 | 208 |
|
209 | 209 |
std::sort(seq.begin(), seq.end(), PairComp<Sequence>()); |
210 | 210 |
return KruskalOutputSelector<Graph, Sequence, Out>:: |
211 | 211 |
kruskal(graph, seq, out); |
212 | 212 |
} |
213 | 213 |
}; |
214 | 214 |
|
215 | 215 |
template <typename T> |
216 | 216 |
struct RemoveConst { |
217 | 217 |
typedef T type; |
218 | 218 |
}; |
219 | 219 |
|
220 | 220 |
template <typename T> |
221 | 221 |
struct RemoveConst<const T> { |
222 | 222 |
typedef T type; |
223 | 223 |
}; |
224 | 224 |
|
225 | 225 |
template <typename Graph, typename In, typename Out> |
226 | 226 |
struct KruskalOutputSelector<Graph, In, Out, |
227 | 227 |
typename enable_if<SequenceOutputIndicator<Out>, void>::type > |
228 | 228 |
{ |
229 | 229 |
typedef typename In::value_type::second_type Value; |
230 | 230 |
|
231 | 231 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
232 |
typedef |
|
232 |
typedef LoggerBoolMap<typename RemoveConst<Out>::type> Map; |
|
233 | 233 |
Map map(out); |
234 | 234 |
return _kruskal_bits::kruskal(graph, in, map); |
235 | 235 |
} |
236 | 236 |
|
237 | 237 |
}; |
238 | 238 |
|
239 | 239 |
template <typename Graph, typename In, typename Out> |
240 | 240 |
struct KruskalOutputSelector<Graph, In, Out, |
241 | 241 |
typename enable_if<MapOutputIndicator<Out>, void>::type > |
242 | 242 |
{ |
243 | 243 |
typedef typename In::value_type::second_type Value; |
244 | 244 |
|
245 | 245 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
246 | 246 |
return _kruskal_bits::kruskal(graph, in, out); |
247 | 247 |
} |
248 | 248 |
}; |
249 | 249 |
|
250 | 250 |
} |
251 | 251 |
|
252 | 252 |
/// \ingroup spantree |
253 | 253 |
/// |
254 | 254 |
/// \brief Kruskal's algorithm to find a minimum cost tree of a graph. |
255 | 255 |
/// |
256 | 256 |
/// This function runs Kruskal's algorithm to find a minimum cost tree. |
257 | 257 |
/// Due to some C++ hacking, it accepts various input and output types. |
258 | 258 |
/// |
259 | 259 |
/// \param g The graph the algorithm runs on. |
260 | 260 |
/// It can be either \ref concepts::Digraph "directed" or |
261 | 261 |
/// \ref concepts::Graph "undirected". |
262 | 262 |
/// If the graph is directed, the algorithm consider it to be |
263 | 263 |
/// undirected by disregarding the direction of the arcs. |
264 | 264 |
/// |
265 | 265 |
/// \param in This object is used to describe the arc costs. It can be one |
266 | 266 |
/// of the following choices. |
267 | 267 |
/// - An STL compatible 'Forward Container' with |
268 | 268 |
/// <tt>std::pair<GR::Edge,X></tt> or |
269 | 269 |
/// <tt>std::pair<GR::Arc,X></tt> as its <tt>value_type</tt>, where |
270 | 270 |
/// \c X is the type of the costs. The pairs indicates the arcs |
271 | 271 |
/// along with the assigned cost. <em>They must be in a |
272 | 272 |
/// cost-ascending order.</em> |
273 | 273 |
/// - Any readable Arc map. The values of the map indicate the arc costs. |
274 | 274 |
/// |
275 | 275 |
/// \retval out Here we also have a choise. |
276 | 276 |
/// - It can be a writable \c bool arc map. After running the |
277 | 277 |
/// algorithm this will contain the found minimum cost spanning |
278 | 278 |
/// tree: the value of an arc will be set to \c true if it belongs |
279 | 279 |
/// to the tree, otherwise it will be set to \c false. The value of |
280 | 280 |
/// each arc will be set exactly once. |
281 | 281 |
/// - It can also be an iteraror of an STL Container with |
282 | 282 |
/// <tt>GR::Edge</tt> or <tt>GR::Arc</tt> as its |
283 | 283 |
/// <tt>value_type</tt>. The algorithm copies the elements of the |
284 | 284 |
/// found tree into this sequence. For example, if we know that the |
285 | 285 |
/// spanning tree of the graph \c g has say 53 arcs, then we can |
286 | 286 |
/// put its arcs into an STL vector \c tree with a code like this. |
287 | 287 |
///\code |
288 | 288 |
/// std::vector<Arc> tree(53); |
289 | 289 |
/// kruskal(g,cost,tree.begin()); |
290 | 290 |
///\endcode |
291 | 291 |
/// Or if we don't know in advance the size of the tree, we can |
292 | 292 |
/// write this. |
293 | 293 |
///\code std::vector<Arc> tree; |
294 | 294 |
/// kruskal(g,cost,std::back_inserter(tree)); |
295 | 295 |
///\endcode |
296 | 296 |
/// |
297 | 297 |
/// \return The total cost of the found tree. |
298 | 298 |
/// |
299 | 299 |
/// \warning If kruskal runs on an be consistent of using the same |
300 | 300 |
/// Arc type for input and output. |
301 | 301 |
/// |
302 | 302 |
|
303 | 303 |
#ifdef DOXYGEN |
304 | 304 |
template <class Graph, class In, class Out> |
305 | 305 |
Value kruskal(GR const& g, const In& in, Out& out) |
306 | 306 |
#else |
307 | 307 |
template <class Graph, class In, class Out> |
308 | 308 |
inline typename _kruskal_bits::KruskalValueSelector<In>::Value |
309 | 309 |
kruskal(const Graph& graph, const In& in, Out& out) |
310 | 310 |
#endif |
311 | 311 |
{ |
312 | 312 |
return _kruskal_bits::KruskalInputSelector<Graph, In, Out>:: |
313 | 313 |
kruskal(graph, in, out); |
314 | 314 |
} |
315 | 315 |
|
316 | 316 |
|
317 | 317 |
|
318 | 318 |
|
319 | 319 |
template <class Graph, class In, class Out> |
320 | 320 |
inline typename _kruskal_bits::KruskalValueSelector<In>::Value |
321 | 321 |
kruskal(const Graph& graph, const In& in, const Out& out) |
322 | 322 |
{ |
323 | 323 |
return _kruskal_bits::KruskalInputSelector<Graph, In, const Out>:: |
324 | 324 |
kruskal(graph, in, out); |
325 | 325 |
} |
326 | 326 |
|
327 | 327 |
} //namespace lemon |
328 | 328 |
... | ... |
@@ -1607,180 +1607,180 @@ |
1607 | 1607 |
/// Constructor |
1608 | 1608 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1609 | 1609 |
/// \e |
1610 | 1610 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
1611 | 1611 |
}; |
1612 | 1612 |
|
1613 | 1613 |
/// Returns an \ref EqualMap class |
1614 | 1614 |
|
1615 | 1615 |
/// This function just returns an \ref EqualMap class. |
1616 | 1616 |
/// |
1617 | 1617 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1618 | 1618 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
1619 | 1619 |
/// <tt>m1[x]==m2[x]</tt>. |
1620 | 1620 |
/// |
1621 | 1621 |
/// \relates EqualMap |
1622 | 1622 |
template<typename M1, typename M2> |
1623 | 1623 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
1624 | 1624 |
return EqualMap<M1, M2>(m1,m2); |
1625 | 1625 |
} |
1626 | 1626 |
|
1627 | 1627 |
|
1628 | 1628 |
/// Combination of two maps using the \c < operator |
1629 | 1629 |
|
1630 | 1630 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1631 | 1631 |
/// the keys for which the corresponding value of the first map is |
1632 | 1632 |
/// less then the value of the second map. |
1633 | 1633 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1634 | 1634 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1635 | 1635 |
/// |
1636 | 1636 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1637 | 1637 |
/// \code |
1638 | 1638 |
/// LessMap<M1,M2> lm(m1,m2); |
1639 | 1639 |
/// \endcode |
1640 | 1640 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
1641 | 1641 |
/// |
1642 | 1642 |
/// The simplest way of using this map is through the lessMap() |
1643 | 1643 |
/// function. |
1644 | 1644 |
/// |
1645 | 1645 |
/// \sa EqualMap |
1646 | 1646 |
template<typename M1, typename M2> |
1647 | 1647 |
class LessMap : public MapBase<typename M1::Key, bool> { |
1648 | 1648 |
const M1 &_m1; |
1649 | 1649 |
const M2 &_m2; |
1650 | 1650 |
public: |
1651 | 1651 |
typedef MapBase<typename M1::Key, bool> Parent; |
1652 | 1652 |
typedef typename Parent::Key Key; |
1653 | 1653 |
typedef typename Parent::Value Value; |
1654 | 1654 |
|
1655 | 1655 |
/// Constructor |
1656 | 1656 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1657 | 1657 |
/// \e |
1658 | 1658 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
1659 | 1659 |
}; |
1660 | 1660 |
|
1661 | 1661 |
/// Returns an \ref LessMap class |
1662 | 1662 |
|
1663 | 1663 |
/// This function just returns an \ref LessMap class. |
1664 | 1664 |
/// |
1665 | 1665 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1666 | 1666 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
1667 | 1667 |
/// <tt>m1[x]<m2[x]</tt>. |
1668 | 1668 |
/// |
1669 | 1669 |
/// \relates LessMap |
1670 | 1670 |
template<typename M1, typename M2> |
1671 | 1671 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
1672 | 1672 |
return LessMap<M1, M2>(m1,m2); |
1673 | 1673 |
} |
1674 | 1674 |
|
1675 | 1675 |
namespace _maps_bits { |
1676 | 1676 |
|
1677 | 1677 |
template <typename _Iterator, typename Enable = void> |
1678 | 1678 |
struct IteratorTraits { |
1679 | 1679 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
1680 | 1680 |
}; |
1681 | 1681 |
|
1682 | 1682 |
template <typename _Iterator> |
1683 | 1683 |
struct IteratorTraits<_Iterator, |
1684 | 1684 |
typename exists<typename _Iterator::container_type>::type> |
1685 | 1685 |
{ |
1686 | 1686 |
typedef typename _Iterator::container_type::value_type Value; |
1687 | 1687 |
}; |
1688 | 1688 |
|
1689 | 1689 |
} |
1690 | 1690 |
|
1691 | 1691 |
/// \brief Writable bool map for logging each \c true assigned element |
1692 | 1692 |
/// |
1693 | 1693 |
/// A \ref concepts::WriteMap "writable" bool map for logging |
1694 | 1694 |
/// each \c true assigned element, i.e it copies subsequently each |
1695 | 1695 |
/// keys set to \c true to the given iterator. |
1696 | 1696 |
/// The most important usage of it is storing certain nodes or arcs |
1697 | 1697 |
/// that were marked \c true by an algorithm. |
1698 | 1698 |
/// |
1699 | 1699 |
/// There are several algorithms that provide solutions through bool |
1700 | 1700 |
/// maps and most of them assign \c true at most once for each key. |
1701 | 1701 |
/// In these cases it is a natural request to store each \c true |
1702 | 1702 |
/// assigned elements (in order of the assignment), which can be |
1703 |
/// easily done with |
|
1703 |
/// easily done with LoggerBoolMap. |
|
1704 | 1704 |
/// |
1705 |
/// The simplest way of using this map is through the |
|
1705 |
/// The simplest way of using this map is through the loggerBoolMap() |
|
1706 | 1706 |
/// function. |
1707 | 1707 |
/// |
1708 | 1708 |
/// \tparam It The type of the iterator. |
1709 | 1709 |
/// \tparam Ke The key type of the map. The default value set |
1710 | 1710 |
/// according to the iterator type should work in most cases. |
1711 | 1711 |
/// |
1712 | 1712 |
/// \note The container of the iterator must contain enough space |
1713 | 1713 |
/// for the elements or the iterator should be an inserter iterator. |
1714 | 1714 |
#ifdef DOXYGEN |
1715 | 1715 |
template <typename It, typename Ke> |
1716 | 1716 |
#else |
1717 | 1717 |
template <typename It, |
1718 | 1718 |
typename Ke=typename _maps_bits::IteratorTraits<It>::Value> |
1719 | 1719 |
#endif |
1720 |
class |
|
1720 |
class LoggerBoolMap { |
|
1721 | 1721 |
public: |
1722 | 1722 |
typedef It Iterator; |
1723 | 1723 |
|
1724 | 1724 |
typedef Ke Key; |
1725 | 1725 |
typedef bool Value; |
1726 | 1726 |
|
1727 | 1727 |
/// Constructor |
1728 |
|
|
1728 |
LoggerBoolMap(Iterator it) |
|
1729 | 1729 |
: _begin(it), _end(it) {} |
1730 | 1730 |
|
1731 | 1731 |
/// Gives back the given iterator set for the first key |
1732 | 1732 |
Iterator begin() const { |
1733 | 1733 |
return _begin; |
1734 | 1734 |
} |
1735 | 1735 |
|
1736 | 1736 |
/// Gives back the the 'after the last' iterator |
1737 | 1737 |
Iterator end() const { |
1738 | 1738 |
return _end; |
1739 | 1739 |
} |
1740 | 1740 |
|
1741 | 1741 |
/// The set function of the map |
1742 | 1742 |
void set(const Key& key, Value value) { |
1743 | 1743 |
if (value) { |
1744 | 1744 |
*_end++ = key; |
1745 | 1745 |
} |
1746 | 1746 |
} |
1747 | 1747 |
|
1748 | 1748 |
private: |
1749 | 1749 |
Iterator _begin; |
1750 | 1750 |
Iterator _end; |
1751 | 1751 |
}; |
1752 | 1752 |
|
1753 |
/// Returns a \ref |
|
1753 |
/// Returns a \ref LoggerBoolMap class |
|
1754 | 1754 |
|
1755 |
/// This function just returns a \ref |
|
1755 |
/// This function just returns a \ref LoggerBoolMap class. |
|
1756 | 1756 |
/// |
1757 | 1757 |
/// The most important usage of it is storing certain nodes or arcs |
1758 | 1758 |
/// that were marked \c true by an algorithm. |
1759 | 1759 |
/// For example it makes easier to store the nodes in the processing |
1760 | 1760 |
/// order of Dfs algorithm, as the following examples show. |
1761 | 1761 |
/// \code |
1762 | 1762 |
/// std::vector<Node> v; |
1763 |
/// dfs(g,s).processedMap( |
|
1763 |
/// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
|
1764 | 1764 |
/// \endcode |
1765 | 1765 |
/// \code |
1766 | 1766 |
/// std::vector<Node> v(countNodes(g)); |
1767 |
/// dfs(g,s).processedMap( |
|
1767 |
/// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run(); |
|
1768 | 1768 |
/// \endcode |
1769 | 1769 |
/// |
1770 | 1770 |
/// \note The container of the iterator must contain enough space |
1771 | 1771 |
/// for the elements or the iterator should be an inserter iterator. |
1772 | 1772 |
/// |
1773 |
/// \note |
|
1773 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
|
1774 | 1774 |
/// it cannot be used when a readable map is needed, for example as |
1775 |
/// \c ReachedMap for Bfs, Dfs and Dijkstra algorithms. |
|
1775 |
/// \c ReachedMap for \ref Bfs, \ref Dfs and \ref Dijkstra algorithms. |
|
1776 | 1776 |
/// |
1777 |
/// \relates |
|
1777 |
/// \relates LoggerBoolMap |
|
1778 | 1778 |
template<typename Iterator> |
1779 |
inline StoreBoolMap<Iterator> storeBoolMap(Iterator it) { |
|
1780 |
return StoreBoolMap<Iterator>(it); |
|
1779 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
|
1780 |
return LoggerBoolMap<Iterator>(it); |
|
1781 | 1781 |
} |
1782 | 1782 |
|
1783 | 1783 |
/// @} |
1784 | 1784 |
} |
1785 | 1785 |
|
1786 | 1786 |
#endif // LEMON_MAPS_H |
... | ... |
@@ -212,120 +212,120 @@ |
212 | 212 |
} |
213 | 213 |
|
214 | 214 |
// ForkMap |
215 | 215 |
{ |
216 | 216 |
checkConcept<DoubleWriteMap, ForkMap<DoubleWriteMap, DoubleWriteMap> >(); |
217 | 217 |
|
218 | 218 |
typedef RangeMap<double> RM; |
219 | 219 |
typedef SparseMap<int, double> SM; |
220 | 220 |
RM m1(10, -1); |
221 | 221 |
SM m2(-1); |
222 | 222 |
checkConcept<ReadWriteMap<int, double>, ForkMap<RM, SM> >(); |
223 | 223 |
checkConcept<ReadWriteMap<int, double>, ForkMap<SM, RM> >(); |
224 | 224 |
ForkMap<RM, SM> map1(m1,m2); |
225 | 225 |
ForkMap<SM, RM> map2 = forkMap(m2,m1); |
226 | 226 |
map2.set(5, 10); |
227 | 227 |
check(m1[1] == -1 && m1[5] == 10 && m2[1] == -1 && m2[5] == 10 && map2[1] == -1 && map2[5] == 10, |
228 | 228 |
"Something is wrong with ForkMap"); |
229 | 229 |
} |
230 | 230 |
|
231 | 231 |
// Arithmetic maps: |
232 | 232 |
// - AddMap, SubMap, MulMap, DivMap |
233 | 233 |
// - ShiftMap, ShiftWriteMap, ScaleMap, ScaleWriteMap |
234 | 234 |
// - NegMap, NegWriteMap, AbsMap |
235 | 235 |
{ |
236 | 236 |
checkConcept<DoubleMap, AddMap<DoubleMap,DoubleMap> >(); |
237 | 237 |
checkConcept<DoubleMap, SubMap<DoubleMap,DoubleMap> >(); |
238 | 238 |
checkConcept<DoubleMap, MulMap<DoubleMap,DoubleMap> >(); |
239 | 239 |
checkConcept<DoubleMap, DivMap<DoubleMap,DoubleMap> >(); |
240 | 240 |
|
241 | 241 |
ConstMap<int, double> c1(1.0), c2(3.14); |
242 | 242 |
IdentityMap<int> im; |
243 | 243 |
ConvertMap<IdentityMap<int>, double> id(im); |
244 | 244 |
check(addMap(c1,id)[0] == 1.0 && addMap(c1,id)[10] == 11.0, "Something is wrong with AddMap"); |
245 | 245 |
check(subMap(id,c1)[0] == -1.0 && subMap(id,c1)[10] == 9.0, "Something is wrong with SubMap"); |
246 | 246 |
check(mulMap(id,c2)[0] == 0 && mulMap(id,c2)[2] == 6.28, "Something is wrong with MulMap"); |
247 | 247 |
check(divMap(c2,id)[1] == 3.14 && divMap(c2,id)[2] == 1.57, "Something is wrong with DivMap"); |
248 | 248 |
|
249 | 249 |
checkConcept<DoubleMap, ShiftMap<DoubleMap> >(); |
250 | 250 |
checkConcept<DoubleWriteMap, ShiftWriteMap<DoubleWriteMap> >(); |
251 | 251 |
checkConcept<DoubleMap, ScaleMap<DoubleMap> >(); |
252 | 252 |
checkConcept<DoubleWriteMap, ScaleWriteMap<DoubleWriteMap> >(); |
253 | 253 |
checkConcept<DoubleMap, NegMap<DoubleMap> >(); |
254 | 254 |
checkConcept<DoubleWriteMap, NegWriteMap<DoubleWriteMap> >(); |
255 | 255 |
checkConcept<DoubleMap, AbsMap<DoubleMap> >(); |
256 | 256 |
|
257 | 257 |
check(shiftMap(id, 2.0)[1] == 3.0 && shiftMap(id, 2.0)[10] == 12.0, |
258 | 258 |
"Something is wrong with ShiftMap"); |
259 | 259 |
check(shiftWriteMap(id, 2.0)[1] == 3.0 && shiftWriteMap(id, 2.0)[10] == 12.0, |
260 | 260 |
"Something is wrong with ShiftWriteMap"); |
261 | 261 |
check(scaleMap(id, 2.0)[1] == 2.0 && scaleMap(id, 2.0)[10] == 20.0, |
262 | 262 |
"Something is wrong with ScaleMap"); |
263 | 263 |
check(scaleWriteMap(id, 2.0)[1] == 2.0 && scaleWriteMap(id, 2.0)[10] == 20.0, |
264 | 264 |
"Something is wrong with ScaleWriteMap"); |
265 | 265 |
check(negMap(id)[1] == -1.0 && negMap(id)[-10] == 10.0, |
266 | 266 |
"Something is wrong with NegMap"); |
267 | 267 |
check(negWriteMap(id)[1] == -1.0 && negWriteMap(id)[-10] == 10.0, |
268 | 268 |
"Something is wrong with NegWriteMap"); |
269 | 269 |
check(absMap(id)[1] == 1.0 && absMap(id)[-10] == 10.0, |
270 | 270 |
"Something is wrong with AbsMap"); |
271 | 271 |
} |
272 | 272 |
|
273 | 273 |
// Logical maps: |
274 | 274 |
// - TrueMap, FalseMap |
275 | 275 |
// - AndMap, OrMap |
276 | 276 |
// - NotMap, NotWriteMap |
277 | 277 |
// - EqualMap, LessMap |
278 | 278 |
{ |
279 | 279 |
checkConcept<BoolMap, TrueMap<A> >(); |
280 | 280 |
checkConcept<BoolMap, FalseMap<A> >(); |
281 | 281 |
checkConcept<BoolMap, AndMap<BoolMap,BoolMap> >(); |
282 | 282 |
checkConcept<BoolMap, OrMap<BoolMap,BoolMap> >(); |
283 | 283 |
checkConcept<BoolMap, NotMap<BoolMap> >(); |
284 | 284 |
checkConcept<BoolWriteMap, NotWriteMap<BoolWriteMap> >(); |
285 | 285 |
checkConcept<BoolMap, EqualMap<DoubleMap,DoubleMap> >(); |
286 | 286 |
checkConcept<BoolMap, LessMap<DoubleMap,DoubleMap> >(); |
287 | 287 |
|
288 | 288 |
TrueMap<int> tm; |
289 | 289 |
FalseMap<int> fm; |
290 | 290 |
RangeMap<bool> rm(2); |
291 | 291 |
rm[0] = true; rm[1] = false; |
292 | 292 |
check(andMap(tm,rm)[0] && !andMap(tm,rm)[1] && !andMap(fm,rm)[0] && !andMap(fm,rm)[1], |
293 | 293 |
"Something is wrong with AndMap"); |
294 | 294 |
check(orMap(tm,rm)[0] && orMap(tm,rm)[1] && orMap(fm,rm)[0] && !orMap(fm,rm)[1], |
295 | 295 |
"Something is wrong with OrMap"); |
296 | 296 |
check(!notMap(rm)[0] && notMap(rm)[1], "Something is wrong with NotMap"); |
297 | 297 |
check(!notWriteMap(rm)[0] && notWriteMap(rm)[1], "Something is wrong with NotWriteMap"); |
298 | 298 |
|
299 | 299 |
ConstMap<int, double> cm(2.0); |
300 | 300 |
IdentityMap<int> im; |
301 | 301 |
ConvertMap<IdentityMap<int>, double> id(im); |
302 | 302 |
check(lessMap(id,cm)[1] && !lessMap(id,cm)[2] && !lessMap(id,cm)[3], |
303 | 303 |
"Something is wrong with LessMap"); |
304 | 304 |
check(!equalMap(id,cm)[1] && equalMap(id,cm)[2] && !equalMap(id,cm)[3], |
305 | 305 |
"Something is wrong with EqualMap"); |
306 | 306 |
} |
307 | 307 |
|
308 |
// |
|
308 |
// LoggerBoolMap |
|
309 | 309 |
{ |
310 | 310 |
typedef std::vector<int> vec; |
311 | 311 |
vec v1; |
312 | 312 |
vec v2(10); |
313 |
StoreBoolMap<std::back_insert_iterator<vec> > map1(std::back_inserter(v1)); |
|
314 |
StoreBoolMap<vec::iterator> map2(v2.begin()); |
|
313 |
LoggerBoolMap<std::back_insert_iterator<vec> > map1(std::back_inserter(v1)); |
|
314 |
LoggerBoolMap<vec::iterator> map2(v2.begin()); |
|
315 | 315 |
map1.set(10, false); |
316 | 316 |
map1.set(20, true); map2.set(20, true); |
317 | 317 |
map1.set(30, false); map2.set(40, false); |
318 | 318 |
map1.set(50, true); map2.set(50, true); |
319 | 319 |
map1.set(60, true); map2.set(60, true); |
320 | 320 |
check(v1.size() == 3 && v2.size() == 10 && |
321 | 321 |
v1[0]==20 && v1[1]==50 && v1[2]==60 && v2[0]==20 && v2[1]==50 && v2[2]==60, |
322 |
"Something is wrong with |
|
322 |
"Something is wrong with LoggerBoolMap"); |
|
323 | 323 |
|
324 | 324 |
int i = 0; |
325 |
for ( |
|
325 |
for ( LoggerBoolMap<vec::iterator>::Iterator it = map2.begin(); |
|
326 | 326 |
it != map2.end(); ++it ) |
327 |
check(v1[i++] == *it, "Something is wrong with |
|
327 |
check(v1[i++] == *it, "Something is wrong with LoggerBoolMap"); |
|
328 | 328 |
} |
329 | 329 |
|
330 | 330 |
return 0; |
331 | 331 |
} |
0 comments (0 inline)