0
2
0
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BELLMAN_FORD_H |
20 | 20 |
#define LEMON_BELLMAN_FORD_H |
21 | 21 |
|
22 | 22 |
/// \ingroup shortest_path |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Bellman-Ford algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 |
#include <lemon/tolerance.h> |
|
32 | 31 |
#include <lemon/path.h> |
33 | 32 |
|
34 | 33 |
#include <limits> |
35 | 34 |
|
36 | 35 |
namespace lemon { |
37 | 36 |
|
38 |
/// \brief Default |
|
37 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
|
39 | 38 |
/// |
40 | 39 |
/// This operation traits class defines all computational operations |
41 | 40 |
/// and constants that are used in the Bellman-Ford algorithm. |
42 | 41 |
/// The default implementation is based on the \c numeric_limits class. |
43 | 42 |
/// If the numeric type does not have infinity value, then the maximum |
44 | 43 |
/// value is used as extremal infinity value. |
45 |
/// |
|
46 |
/// \see BellmanFordToleranceOperationTraits |
|
47 | 44 |
template < |
48 | 45 |
typename V, |
49 | 46 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
50 | 47 |
struct BellmanFordDefaultOperationTraits { |
51 |
/// \ |
|
48 |
/// \e |
|
52 | 49 |
typedef V Value; |
53 | 50 |
/// \brief Gives back the zero value of the type. |
54 | 51 |
static Value zero() { |
55 | 52 |
return static_cast<Value>(0); |
56 | 53 |
} |
57 | 54 |
/// \brief Gives back the positive infinity value of the type. |
58 | 55 |
static Value infinity() { |
59 | 56 |
return std::numeric_limits<Value>::infinity(); |
60 | 57 |
} |
61 | 58 |
/// \brief Gives back the sum of the given two elements. |
62 | 59 |
static Value plus(const Value& left, const Value& right) { |
63 | 60 |
return left + right; |
64 | 61 |
} |
65 | 62 |
/// \brief Gives back \c true only if the first value is less than |
66 | 63 |
/// the second. |
67 | 64 |
static bool less(const Value& left, const Value& right) { |
68 | 65 |
return left < right; |
69 | 66 |
} |
70 | 67 |
}; |
71 | 68 |
|
72 | 69 |
template <typename V> |
73 | 70 |
struct BellmanFordDefaultOperationTraits<V, false> { |
74 | 71 |
typedef V Value; |
75 | 72 |
static Value zero() { |
76 | 73 |
return static_cast<Value>(0); |
77 | 74 |
} |
78 | 75 |
static Value infinity() { |
79 | 76 |
return std::numeric_limits<Value>::max(); |
80 | 77 |
} |
81 | 78 |
static Value plus(const Value& left, const Value& right) { |
82 | 79 |
if (left == infinity() || right == infinity()) return infinity(); |
83 | 80 |
return left + right; |
84 | 81 |
} |
85 | 82 |
static bool less(const Value& left, const Value& right) { |
86 | 83 |
return left < right; |
87 | 84 |
} |
88 | 85 |
}; |
89 | 86 |
|
90 |
/// \brief Operation traits for the BellmanFord algorithm class |
|
91 |
/// using tolerance. |
|
92 |
/// |
|
93 |
/// This operation traits class defines all computational operations |
|
94 |
/// and constants that are used in the Bellman-Ford algorithm. |
|
95 |
/// The only difference between this implementation and |
|
96 |
/// \ref BellmanFordDefaultOperationTraits is that this class uses |
|
97 |
/// the \ref Tolerance "tolerance technique" in its \ref less() |
|
98 |
/// function. |
|
99 |
/// |
|
100 |
/// \tparam V The value type. |
|
101 |
/// \tparam eps The epsilon value for the \ref less() function. |
|
102 |
/// By default, it is the epsilon value used by \ref Tolerance |
|
103 |
/// "Tolerance<V>". |
|
104 |
/// |
|
105 |
/// \see BellmanFordDefaultOperationTraits |
|
106 |
#ifdef DOXYGEN |
|
107 |
template <typename V, V eps> |
|
108 |
#else |
|
109 |
template < |
|
110 |
typename V, |
|
111 |
V eps = Tolerance<V>::def_epsilon> |
|
112 |
#endif |
|
113 |
struct BellmanFordToleranceOperationTraits { |
|
114 |
/// \brief Value type for the algorithm. |
|
115 |
typedef V Value; |
|
116 |
/// \brief Gives back the zero value of the type. |
|
117 |
static Value zero() { |
|
118 |
return static_cast<Value>(0); |
|
119 |
} |
|
120 |
/// \brief Gives back the positive infinity value of the type. |
|
121 |
static Value infinity() { |
|
122 |
return std::numeric_limits<Value>::infinity(); |
|
123 |
} |
|
124 |
/// \brief Gives back the sum of the given two elements. |
|
125 |
static Value plus(const Value& left, const Value& right) { |
|
126 |
return left + right; |
|
127 |
} |
|
128 |
/// \brief Gives back \c true only if the first value is less than |
|
129 |
/// the second. |
|
130 |
static bool less(const Value& left, const Value& right) { |
|
131 |
return left + eps < right; |
|
132 |
} |
|
133 |
}; |
|
134 |
|
|
135 | 87 |
/// \brief Default traits class of BellmanFord class. |
136 | 88 |
/// |
137 | 89 |
/// Default traits class of BellmanFord class. |
138 | 90 |
/// \param GR The type of the digraph. |
139 | 91 |
/// \param LEN The type of the length map. |
140 | 92 |
template<typename GR, typename LEN> |
141 | 93 |
struct BellmanFordDefaultTraits { |
142 | 94 |
/// The type of the digraph the algorithm runs on. |
143 | 95 |
typedef GR Digraph; |
144 | 96 |
|
145 | 97 |
/// \brief The type of the map that stores the arc lengths. |
146 | 98 |
/// |
147 | 99 |
/// The type of the map that stores the arc lengths. |
148 | 100 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
149 | 101 |
typedef LEN LengthMap; |
150 | 102 |
|
151 | 103 |
/// The type of the arc lengths. |
152 | 104 |
typedef typename LEN::Value Value; |
153 | 105 |
|
154 | 106 |
/// \brief Operation traits for Bellman-Ford algorithm. |
155 | 107 |
/// |
156 | 108 |
/// It defines the used operations and the infinity value for the |
157 | 109 |
/// given \c Value type. |
158 |
/// \see BellmanFordDefaultOperationTraits, |
|
159 |
/// BellmanFordToleranceOperationTraits |
|
110 |
/// \see BellmanFordDefaultOperationTraits |
|
160 | 111 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
161 | 112 |
|
162 | 113 |
/// \brief The type of the map that stores the last arcs of the |
163 | 114 |
/// shortest paths. |
164 | 115 |
/// |
165 | 116 |
/// The type of the map that stores the last |
166 | 117 |
/// arcs of the shortest paths. |
167 | 118 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
168 | 119 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
169 | 120 |
|
170 | 121 |
/// \brief Instantiates a \c PredMap. |
171 | 122 |
/// |
172 | 123 |
/// This function instantiates a \ref PredMap. |
173 | 124 |
/// \param g is the digraph to which we would like to define the |
174 | 125 |
/// \ref PredMap. |
175 | 126 |
static PredMap *createPredMap(const GR& g) { |
176 | 127 |
return new PredMap(g); |
177 | 128 |
} |
178 | 129 |
|
179 | 130 |
/// \brief The type of the map that stores the distances of the nodes. |
180 | 131 |
/// |
181 | 132 |
/// The type of the map that stores the distances of the nodes. |
182 | 133 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
183 | 134 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
184 | 135 |
|
185 | 136 |
/// \brief Instantiates a \c DistMap. |
186 | 137 |
/// |
187 | 138 |
/// This function instantiates a \ref DistMap. |
188 | 139 |
/// \param g is the digraph to which we would like to define the |
189 | 140 |
/// \ref DistMap. |
190 | 141 |
static DistMap *createDistMap(const GR& g) { |
191 | 142 |
return new DistMap(g); |
192 | 143 |
} |
193 | 144 |
|
194 | 145 |
}; |
195 | 146 |
|
196 | 147 |
/// \brief %BellmanFord algorithm class. |
197 | 148 |
/// |
198 | 149 |
/// \ingroup shortest_path |
199 | 150 |
/// This class provides an efficient implementation of the Bellman-Ford |
200 | 151 |
/// algorithm. The maximum time complexity of the algorithm is |
201 | 152 |
/// <tt>O(ne)</tt>. |
202 | 153 |
/// |
203 | 154 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
204 | 155 |
/// problem when the arcs can have negative lengths, but the digraph |
205 | 156 |
/// should not contain directed cycles with negative total length. |
206 | 157 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
207 | 158 |
/// algorithm instead, since it is more efficient. |
208 | 159 |
/// |
209 | 160 |
/// The arc lengths are passed to the algorithm using a |
210 | 161 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
211 | 162 |
/// kind of length. The type of the length values is determined by the |
212 | 163 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
213 | 164 |
/// |
214 | 165 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
215 | 166 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
216 | 167 |
/// it can be used easier. |
217 | 168 |
/// |
218 | 169 |
/// \tparam GR The type of the digraph the algorithm runs on. |
219 | 170 |
/// The default type is \ref ListDigraph. |
220 | 171 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
221 | 172 |
/// the lengths of the arcs. The default map type is |
222 | 173 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
223 | 174 |
/// \tparam TR The traits class that defines various types used by the |
... | ... |
@@ -825,130 +776,129 @@ |
825 | 776 |
/// |
826 | 777 |
/// Returns \c true if \c v is reached from the root(s). |
827 | 778 |
/// |
828 | 779 |
/// \pre Either \ref run() or \ref init() must be called before |
829 | 780 |
/// using this function. |
830 | 781 |
bool reached(Node v) const { |
831 | 782 |
return (*_dist)[v] != OperationTraits::infinity(); |
832 | 783 |
} |
833 | 784 |
|
834 | 785 |
/// \brief Gives back a negative cycle. |
835 | 786 |
/// |
836 | 787 |
/// This function gives back a directed cycle with negative total |
837 | 788 |
/// length if the algorithm has already found one. |
838 | 789 |
/// Otherwise it gives back an empty path. |
839 | 790 |
lemon::Path<Digraph> negativeCycle() const { |
840 | 791 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
841 | 792 |
lemon::Path<Digraph> cycle; |
842 | 793 |
for (int i = 0; i < int(_process.size()); ++i) { |
843 | 794 |
if (state[_process[i]] != -1) continue; |
844 | 795 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
845 | 796 |
v = _gr->source((*_pred)[v])) { |
846 | 797 |
if (state[v] == i) { |
847 | 798 |
cycle.addFront((*_pred)[v]); |
848 | 799 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
849 | 800 |
u = _gr->source((*_pred)[u])) { |
850 | 801 |
cycle.addFront((*_pred)[u]); |
851 | 802 |
} |
852 | 803 |
return cycle; |
853 | 804 |
} |
854 | 805 |
else if (state[v] >= 0) { |
855 | 806 |
break; |
856 | 807 |
} |
857 | 808 |
state[v] = i; |
858 | 809 |
} |
859 | 810 |
} |
860 | 811 |
return cycle; |
861 | 812 |
} |
862 | 813 |
|
863 | 814 |
///@} |
864 | 815 |
}; |
865 | 816 |
|
866 | 817 |
/// \brief Default traits class of bellmanFord() function. |
867 | 818 |
/// |
868 | 819 |
/// Default traits class of bellmanFord() function. |
869 | 820 |
/// \tparam GR The type of the digraph. |
870 | 821 |
/// \tparam LEN The type of the length map. |
871 | 822 |
template <typename GR, typename LEN> |
872 | 823 |
struct BellmanFordWizardDefaultTraits { |
873 | 824 |
/// The type of the digraph the algorithm runs on. |
874 | 825 |
typedef GR Digraph; |
875 | 826 |
|
876 | 827 |
/// \brief The type of the map that stores the arc lengths. |
877 | 828 |
/// |
878 | 829 |
/// The type of the map that stores the arc lengths. |
879 | 830 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
880 | 831 |
typedef LEN LengthMap; |
881 | 832 |
|
882 | 833 |
/// The type of the arc lengths. |
883 | 834 |
typedef typename LEN::Value Value; |
884 | 835 |
|
885 | 836 |
/// \brief Operation traits for Bellman-Ford algorithm. |
886 | 837 |
/// |
887 | 838 |
/// It defines the used operations and the infinity value for the |
888 | 839 |
/// given \c Value type. |
889 |
/// \see BellmanFordDefaultOperationTraits, |
|
890 |
/// BellmanFordToleranceOperationTraits |
|
840 |
/// \see BellmanFordDefaultOperationTraits |
|
891 | 841 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
892 | 842 |
|
893 | 843 |
/// \brief The type of the map that stores the last |
894 | 844 |
/// arcs of the shortest paths. |
895 | 845 |
/// |
896 | 846 |
/// The type of the map that stores the last arcs of the shortest paths. |
897 | 847 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
898 | 848 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
899 | 849 |
|
900 | 850 |
/// \brief Instantiates a \c PredMap. |
901 | 851 |
/// |
902 | 852 |
/// This function instantiates a \ref PredMap. |
903 | 853 |
/// \param g is the digraph to which we would like to define the |
904 | 854 |
/// \ref PredMap. |
905 | 855 |
static PredMap *createPredMap(const GR &g) { |
906 | 856 |
return new PredMap(g); |
907 | 857 |
} |
908 | 858 |
|
909 | 859 |
/// \brief The type of the map that stores the distances of the nodes. |
910 | 860 |
/// |
911 | 861 |
/// The type of the map that stores the distances of the nodes. |
912 | 862 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
913 | 863 |
typedef typename GR::template NodeMap<Value> DistMap; |
914 | 864 |
|
915 | 865 |
/// \brief Instantiates a \c DistMap. |
916 | 866 |
/// |
917 | 867 |
/// This function instantiates a \ref DistMap. |
918 | 868 |
/// \param g is the digraph to which we would like to define the |
919 | 869 |
/// \ref DistMap. |
920 | 870 |
static DistMap *createDistMap(const GR &g) { |
921 | 871 |
return new DistMap(g); |
922 | 872 |
} |
923 | 873 |
|
924 | 874 |
///The type of the shortest paths. |
925 | 875 |
|
926 | 876 |
///The type of the shortest paths. |
927 | 877 |
///It must meet the \ref concepts::Path "Path" concept. |
928 | 878 |
typedef lemon::Path<Digraph> Path; |
929 | 879 |
}; |
930 | 880 |
|
931 | 881 |
/// \brief Default traits class used by BellmanFordWizard. |
932 | 882 |
/// |
933 | 883 |
/// Default traits class used by BellmanFordWizard. |
934 | 884 |
/// \tparam GR The type of the digraph. |
935 | 885 |
/// \tparam LEN The type of the length map. |
936 | 886 |
template <typename GR, typename LEN> |
937 | 887 |
class BellmanFordWizardBase |
938 | 888 |
: public BellmanFordWizardDefaultTraits<GR, LEN> { |
939 | 889 |
|
940 | 890 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
941 | 891 |
protected: |
942 | 892 |
// Type of the nodes in the digraph. |
943 | 893 |
typedef typename Base::Digraph::Node Node; |
944 | 894 |
|
945 | 895 |
// Pointer to the underlying digraph. |
946 | 896 |
void *_graph; |
947 | 897 |
// Pointer to the length map |
948 | 898 |
void *_length; |
949 | 899 |
// Pointer to the map of predecessors arcs. |
950 | 900 |
void *_pred; |
951 | 901 |
// Pointer to the map of distances. |
952 | 902 |
void *_dist; |
953 | 903 |
//Pointer to the shortest path to the target node. |
954 | 904 |
void *_path; |
... | ... |
@@ -43,129 +43,128 @@ |
43 | 43 |
"1 2 -5\n" |
44 | 44 |
"1 3 -2\n" |
45 | 45 |
"0 2 -1\n" |
46 | 46 |
"1 2 -4\n" |
47 | 47 |
"0 3 2\n" |
48 | 48 |
"4 2 -5\n" |
49 | 49 |
"2 3 1\n" |
50 | 50 |
"@attributes\n" |
51 | 51 |
"source 0\n" |
52 | 52 |
"target 3\n"; |
53 | 53 |
|
54 | 54 |
|
55 | 55 |
void checkBellmanFordCompile() |
56 | 56 |
{ |
57 | 57 |
typedef int Value; |
58 | 58 |
typedef concepts::Digraph Digraph; |
59 | 59 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
60 | 60 |
typedef BellmanFord<Digraph, LengthMap> BF; |
61 | 61 |
typedef Digraph::Node Node; |
62 | 62 |
typedef Digraph::Arc Arc; |
63 | 63 |
|
64 | 64 |
Digraph gr; |
65 | 65 |
Node s, t, n; |
66 | 66 |
Arc e; |
67 | 67 |
Value l; |
68 | 68 |
int k=3; |
69 | 69 |
bool b; |
70 | 70 |
BF::DistMap d(gr); |
71 | 71 |
BF::PredMap p(gr); |
72 | 72 |
LengthMap length; |
73 | 73 |
concepts::Path<Digraph> pp; |
74 | 74 |
|
75 | 75 |
{ |
76 | 76 |
BF bf_test(gr,length); |
77 | 77 |
const BF& const_bf_test = bf_test; |
78 | 78 |
|
79 | 79 |
bf_test.run(s); |
80 | 80 |
bf_test.run(s,k); |
81 | 81 |
|
82 | 82 |
bf_test.init(); |
83 | 83 |
bf_test.addSource(s); |
84 | 84 |
bf_test.addSource(s, 1); |
85 | 85 |
b = bf_test.processNextRound(); |
86 | 86 |
b = bf_test.processNextWeakRound(); |
87 | 87 |
|
88 | 88 |
bf_test.start(); |
89 | 89 |
bf_test.checkedStart(); |
90 | 90 |
bf_test.limitedStart(k); |
91 | 91 |
|
92 | 92 |
l = const_bf_test.dist(t); |
93 | 93 |
e = const_bf_test.predArc(t); |
94 | 94 |
s = const_bf_test.predNode(t); |
95 | 95 |
b = const_bf_test.reached(t); |
96 | 96 |
d = const_bf_test.distMap(); |
97 | 97 |
p = const_bf_test.predMap(); |
98 | 98 |
pp = const_bf_test.path(t); |
99 | 99 |
pp = const_bf_test.negativeCycle(); |
100 | 100 |
|
101 | 101 |
for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {} |
102 | 102 |
} |
103 | 103 |
{ |
104 | 104 |
BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
105 | 105 |
::SetDistMap<concepts::ReadWriteMap<Node,Value> > |
106 | 106 |
::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> > |
107 |
::SetOperationTraits<BellmanFordToleranceOperationTraits<Value, 0> > |
|
108 | 107 |
::Create bf_test(gr,length); |
109 | 108 |
|
110 | 109 |
LengthMap length_map; |
111 | 110 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
112 | 111 |
concepts::ReadWriteMap<Node,Value> dist_map; |
113 | 112 |
|
114 | 113 |
bf_test |
115 | 114 |
.lengthMap(length_map) |
116 | 115 |
.predMap(pred_map) |
117 | 116 |
.distMap(dist_map); |
118 | 117 |
|
119 | 118 |
bf_test.run(s); |
120 | 119 |
bf_test.run(s,k); |
121 | 120 |
|
122 | 121 |
bf_test.init(); |
123 | 122 |
bf_test.addSource(s); |
124 | 123 |
bf_test.addSource(s, 1); |
125 | 124 |
b = bf_test.processNextRound(); |
126 | 125 |
b = bf_test.processNextWeakRound(); |
127 | 126 |
|
128 | 127 |
bf_test.start(); |
129 | 128 |
bf_test.checkedStart(); |
130 | 129 |
bf_test.limitedStart(k); |
131 | 130 |
|
132 | 131 |
l = bf_test.dist(t); |
133 | 132 |
e = bf_test.predArc(t); |
134 | 133 |
s = bf_test.predNode(t); |
135 | 134 |
b = bf_test.reached(t); |
136 | 135 |
pp = bf_test.path(t); |
137 | 136 |
pp = bf_test.negativeCycle(); |
138 | 137 |
} |
139 | 138 |
} |
140 | 139 |
|
141 | 140 |
void checkBellmanFordFunctionCompile() |
142 | 141 |
{ |
143 | 142 |
typedef int Value; |
144 | 143 |
typedef concepts::Digraph Digraph; |
145 | 144 |
typedef Digraph::Arc Arc; |
146 | 145 |
typedef Digraph::Node Node; |
147 | 146 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
148 | 147 |
|
149 | 148 |
Digraph g; |
150 | 149 |
bool b; |
151 | 150 |
bellmanFord(g,LengthMap()).run(Node()); |
152 | 151 |
b = bellmanFord(g,LengthMap()).run(Node(),Node()); |
153 | 152 |
bellmanFord(g,LengthMap()) |
154 | 153 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
155 | 154 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
156 | 155 |
.run(Node()); |
157 | 156 |
b=bellmanFord(g,LengthMap()) |
158 | 157 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
159 | 158 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
160 | 159 |
.path(concepts::Path<Digraph>()) |
161 | 160 |
.dist(Value()) |
162 | 161 |
.run(Node(),Node()); |
163 | 162 |
} |
164 | 163 |
|
165 | 164 |
|
166 | 165 |
template <typename Digraph, typename Value> |
167 | 166 |
void checkBellmanFord() { |
168 | 167 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
169 | 168 |
typedef typename Digraph::template ArcMap<Value> LengthMap; |
170 | 169 |
|
171 | 170 |
Digraph gr; |
0 comments (0 inline)