gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge
0 1 0
merge default
0 files changed with 12 insertions and 9 deletions:
↑ Collapse diff ↑
Ignore white space 384 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2007
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_MAPS_H
20 20
#define LEMON_MAPS_H
21 21

	
22 22
#include <iterator>
23 23
#include <functional>
24 24
#include <vector>
25 25

	
26 26
#include <lemon/bits/utility.h>
27 27
// #include <lemon/bits/traits.h>
28 28

	
29 29
///\file
30 30
///\ingroup maps
31 31
///\brief Miscellaneous property maps
32 32
///
33 33
#include <map>
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  /// \addtogroup maps
38 38
  /// @{
39 39

	
40 40
  /// Base class of maps.
41 41

	
42 42
  /// Base class of maps.
43 43
  /// It provides the necessary <tt>typedef</tt>s required by the map concept.
44 44
  template<typename K, typename T>
45 45
  class MapBase {
46 46
  public:
47
    ///\e
47
    /// The key type of the map.
48 48
    typedef K Key;
49
    ///\e
49
    /// The value type of the map. (The type of objects associated with the keys).
50 50
    typedef T Value;
51 51
  };
52 52

	
53 53
  /// Null map. (a.k.a. DoNothingMap)
54 54

	
55 55
  /// This map can be used if you have to provide a map only for
56 56
  /// its type definitions, or if you have to provide a writable map, 
57 57
  /// but data written to it is not required (i.e. it will be sent to 
58 58
  /// <tt>/dev/null</tt>).
59 59
  template<typename K, typename T>
60 60
  class NullMap : public MapBase<K, T> {
61 61
  public:
62 62
    typedef MapBase<K, T> Parent;
63 63
    typedef typename Parent::Key Key;
64 64
    typedef typename Parent::Value Value;
65 65
    
66 66
    /// Gives back a default constructed element.
67 67
    T operator[](const K&) const { return T(); }
68 68
    /// Absorbs the value.
69 69
    void set(const K&, const T&) {}
70 70
  };
71 71

	
72 72
  ///Returns a \c NullMap class
73 73

	
74 74
  ///This function just returns a \c NullMap class.
75 75
  ///\relates NullMap
76 76
  template <typename K, typename V> 
77 77
  NullMap<K, V> nullMap() {
78 78
    return NullMap<K, V>();
79 79
  }
80 80

	
81 81

	
82 82
  /// Constant map.
83 83

	
84 84
  /// This is a readable map which assigns a specified value to each key.
85 85
  /// In other aspects it is equivalent to the \c NullMap.
86 86
  template<typename K, typename T>
87 87
  class ConstMap : public MapBase<K, T> {
88 88
  private:
89 89
    T v;
90 90
  public:
91 91

	
92 92
    typedef MapBase<K, T> Parent;
93 93
    typedef typename Parent::Key Key;
94 94
    typedef typename Parent::Value Value;
95 95

	
96 96
    /// Default constructor
97 97

	
98 98
    /// Default constructor.
99 99
    /// The value of the map will be uninitialized. 
100 100
    /// (More exactly it will be default constructed.)
101 101
    ConstMap() {}
102 102
    
103 103
    /// Constructor with specified initial value
104 104

	
105 105
    /// Constructor with specified initial value.
106 106
    /// \param _v is the initial value of the map.
107 107
    ConstMap(const T &_v) : v(_v) {}
108 108
    
109 109
    ///\e
110 110
    T operator[](const K&) const { return v; }
111 111

	
112 112
    ///\e
113 113
    void setAll(const T &t) {
114 114
      v = t;
115 115
    }    
116 116

	
117 117
    template<typename T1>
118 118
    struct rebind {
119 119
      typedef ConstMap<K, T1> other;
120 120
    };
121 121

	
122 122
    template<typename T1>
123 123
    ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {}
124 124
  };
125 125

	
126 126
  ///Returns a \c ConstMap class
127 127

	
128 128
  ///This function just returns a \c ConstMap class.
129 129
  ///\relates ConstMap
130 130
  template<typename K, typename V> 
131 131
  inline ConstMap<K, V> constMap(const V &v) {
132 132
    return ConstMap<K, V>(v);
133 133
  }
134 134

	
135 135

	
136 136
  template<typename T, T v>
137 137
  struct Const { };
138 138

	
139 139
  /// Constant map with inlined constant value.
140 140

	
141 141
  /// This is a readable map which assigns a specified value to each key.
142 142
  /// In other aspects it is equivalent to the \c NullMap.
143 143
  template<typename K, typename V, V v>
144 144
  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
145 145
  public:
146 146
    typedef MapBase<K, V> Parent;
147 147
    typedef typename Parent::Key Key;
148 148
    typedef typename Parent::Value Value;
149 149

	
150 150
    ConstMap() { }
151 151
    ///\e
152 152
    V operator[](const K&) const { return v; }
153 153
    ///\e
154 154
    void set(const K&, const V&) { }
155 155
  };
156 156

	
157 157
  ///Returns a \c ConstMap class
158 158

	
159 159
  ///This function just returns a \c ConstMap class with inlined value.
160 160
  ///\relates ConstMap
161 161
  template<typename K, typename V, V v> 
162 162
  inline ConstMap<K, Const<V, v> > constMap() {
163 163
    return ConstMap<K, Const<V, v> >();
164 164
  }
165 165

	
166 166
  ///Map based on std::map
167 167

	
168 168
  ///This is essentially a wrapper for \c std::map with addition that
169 169
  ///you can specify a default value different from \c Value().
170 170
  template <typename K, typename T, typename Compare = std::less<K> >
171 171
  class StdMap {
172 172
    template <typename K1, typename T1, typename C1>
173 173
    friend class StdMap;
174 174
  public:
175 175

	
176 176
    typedef True ReferenceMapTag;
177 177
    ///\e
178 178
    typedef K Key;
179 179
    ///\e
180 180
    typedef T Value;
181 181
    ///\e
182 182
    typedef T& Reference;
183 183
    ///\e
184 184
    typedef const T& ConstReference;
185 185

	
186 186
  private:
187 187
    
188 188
    typedef std::map<K, T, Compare> Map;
189 189
    Value _value;
190 190
    Map _map;
191 191

	
192 192
  public:
193 193

	
194 194
    /// Constructor with specified default value
195 195
    StdMap(const T& value = T()) : _value(value) {}
196 196
    /// \brief Constructs the map from an appropriate std::map, and explicitly
197 197
    /// specifies a default value.
198 198
    template <typename T1, typename Comp1>
199 199
    StdMap(const std::map<Key, T1, Comp1> &map, const T& value = T()) 
200 200
      : _map(map.begin(), map.end()), _value(value) {}
201 201
    
202 202
    /// \brief Constructs a map from an other StdMap.
203 203
    template<typename T1, typename Comp1>
204 204
    StdMap(const StdMap<Key, T1, Comp1> &c) 
205 205
      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
206 206

	
207 207
  private:
208 208

	
209 209
    StdMap& operator=(const StdMap&);
210 210

	
211 211
  public:
212 212

	
213 213
    ///\e
214 214
    Reference operator[](const Key &k) {
215 215
      typename Map::iterator it = _map.lower_bound(k);
216 216
      if (it != _map.end() && !_map.key_comp()(k, it->first))
217 217
	return it->second;
218 218
      else
219 219
	return _map.insert(it, std::make_pair(k, _value))->second;
220 220
    }
221 221

	
222 222
    /// \e 
223 223
    ConstReference operator[](const Key &k) const {
224 224
      typename Map::const_iterator it = _map.find(k);
225 225
      if (it != _map.end())
226 226
	return it->second;
227 227
      else
228 228
	return _value;
229 229
    }
230 230

	
231 231
    /// \e 
232 232
    void set(const Key &k, const T &t) {
233 233
      typename Map::iterator it = _map.lower_bound(k);
234 234
      if (it != _map.end() && !_map.key_comp()(k, it->first))
235 235
	it->second = t;
236 236
      else
237 237
	_map.insert(it, std::make_pair(k, t));
238 238
    }
239 239

	
240 240
    /// \e
241 241
    void setAll(const T &t) {
242 242
      _value = t;
243 243
      _map.clear();
244 244
    }    
245 245

	
246 246
    template <typename T1, typename C1 = std::less<T1> >
247 247
    struct rebind {
248 248
      typedef StdMap<Key, T1, C1> other;
249 249
    };
250 250
  };
251 251

	
252
  /// \brief Map for storing values for the range \c [0..size-1] range keys
252
  /// \brief Map for storing values for keys from the range <tt>[0..size-1]</tt>
253 253
  ///
254
  /// The current map has the \c [0..size-1] keyset and the values
254
  /// The current map has the <tt>[0..size-1]</tt> keyset and the values
255 255
  /// are stored in a \c std::vector<T>  container. It can be used with
256 256
  /// some data structures, for example \c UnionFind, \c BinHeap, when 
257 257
  /// the used items are small integer numbers. 
258 258
  ///
259 259
  /// \todo Revise its name
260 260
  template <typename T>
261 261
  class IntegerMap {
262 262

	
263 263
    template <typename T1>
264 264
    friend class IntegerMap;
265 265

	
266 266
  public:
267 267

	
268 268
    typedef True ReferenceMapTag;
269 269
    ///\e
270 270
    typedef int Key;
271 271
    ///\e
272 272
    typedef T Value;
273 273
    ///\e
274 274
    typedef T& Reference;
275 275
    ///\e
276 276
    typedef const T& ConstReference;
277 277

	
278 278
  private:
279 279
    
280 280
    typedef std::vector<T> Vector;
281 281
    Vector _vector;
282 282

	
283 283
  public:
284 284

	
285 285
    /// Constructor with specified default value
286 286
    IntegerMap(int size = 0, const T& value = T()) : _vector(size, value) {}
287 287

	
288 288
    /// \brief Constructs the map from an appropriate std::vector.
289 289
    template <typename T1>
290 290
    IntegerMap(const std::vector<T1>& vector) 
291 291
      : _vector(vector.begin(), vector.end()) {}
292 292
    
293 293
    /// \brief Constructs a map from an other IntegerMap.
294 294
    template <typename T1>
295 295
    IntegerMap(const IntegerMap<T1> &c) 
296 296
      : _vector(c._vector.begin(), c._vector.end()) {}
297 297

	
298 298
    /// \brief Resize the container
299 299
    void resize(int size, const T& value = T()) {
300 300
      _vector.resize(size, value);
301 301
    }
302 302

	
303 303
  private:
304 304

	
305 305
    IntegerMap& operator=(const IntegerMap&);
306 306

	
307 307
  public:
308 308

	
309 309
    ///\e
310 310
    Reference operator[](Key k) {
311 311
      return _vector[k];
312 312
    }
313 313

	
314 314
    /// \e 
315 315
    ConstReference operator[](Key k) const {
316 316
      return _vector[k];
317 317
    }
318 318

	
319 319
    /// \e 
320 320
    void set(const Key &k, const T& t) {
321 321
      _vector[k] = t;
322 322
    }
323 323

	
324 324
  };
325 325

	
326 326
  /// @}
327 327

	
328 328
  /// \addtogroup map_adaptors
329 329
  /// @{
330 330

	
331 331
  /// \brief Identity map.
332 332
  ///
333 333
  /// This map gives back the given key as value without any
334 334
  /// modification. 
335 335
  template <typename T>
336 336
  class IdentityMap : public MapBase<T, T> {
337 337
  public:
338 338
    typedef MapBase<T, T> Parent;
339 339
    typedef typename Parent::Key Key;
340 340
    typedef typename Parent::Value Value;
341 341

	
342 342
    /// \e
343 343
    const T& operator[](const T& t) const {
344 344
      return t;
345 345
    }
346 346
  };
347 347

	
348 348
  ///Returns an \c IdentityMap class
349 349

	
350 350
  ///This function just returns an \c IdentityMap class.
351 351
  ///\relates IdentityMap
352 352
  template<typename T>
353 353
  inline IdentityMap<T> identityMap() {
354 354
    return IdentityMap<T>();
355 355
  }
356 356
  
357 357

	
358 358
  ///\brief Convert the \c Value of a map to another type using
359 359
  ///the default conversion.
360 360
  ///
361 361
  ///This \c concepts::ReadMap "read only map"
362 362
  ///converts the \c Value of a map to type \c T.
363 363
  ///Its \c Key is inherited from \c M.
364 364
  template <typename M, typename T> 
365 365
  class ConvertMap : public MapBase<typename M::Key, T> {
366 366
    const M& m;
367 367
  public:
368 368
    typedef MapBase<typename M::Key, T> Parent;
369 369
    typedef typename Parent::Key Key;
370 370
    typedef typename Parent::Value Value;
371 371

	
372 372
    ///Constructor
373 373

	
374 374
    ///Constructor.
375 375
    ///\param _m is the underlying map.
376 376
    ConvertMap(const M &_m) : m(_m) {};
377 377

	
378 378
    /// \brief The subscript operator.
379 379
    ///
380 380
    /// The subscript operator.
381 381
    Value operator[](const Key& k) const {return m[k];}
382 382
  };
383 383
  
384 384
  ///Returns a \c ConvertMap class
385 385

	
386 386
  ///This function just returns a \c ConvertMap class.
387 387
  ///\relates ConvertMap
388 388
  template<typename T, typename M>
389 389
  inline ConvertMap<M, T> convertMap(const M &m) {
390 390
    return ConvertMap<M, T>(m);
391 391
  }
392 392

	
393 393
  ///Simple wrapping of a map
394 394

	
395 395
  ///This \c concepts::ReadMap "read only map" returns the simple
396 396
  ///wrapping of the given map. Sometimes the reference maps cannot be
397 397
  ///combined with simple read maps. This map adaptor wraps the given
398 398
  ///map to simple read map.
399 399
  ///
400 400
  ///\sa SimpleWriteMap
401 401
  ///
402 402
  /// \todo Revise the misleading name 
403 403
  template<typename M> 
404 404
  class SimpleMap : public MapBase<typename M::Key, typename M::Value> {
405 405
    const M& m;
406 406

	
407 407
  public:
408 408
    typedef MapBase<typename M::Key, typename M::Value> Parent;
409 409
    typedef typename Parent::Key Key;
410 410
    typedef typename Parent::Value Value;
411 411

	
412 412
    ///Constructor
413 413
    SimpleMap(const M &_m) : m(_m) {};
414 414
    ///\e
415 415
    Value operator[](Key k) const {return m[k];}
416 416
  };
417 417

	
418 418
  ///Simple writable wrapping of the map
419 419

	
420 420
  ///This \c concepts::WriteMap "write map" returns the simple
421 421
  ///wrapping of the given map. Sometimes the reference maps cannot be
422 422
  ///combined with simple read-write maps. This map adaptor wraps the
423 423
  ///given map to simple read-write map.
424 424
  ///
425 425
  ///\sa SimpleMap
426 426
  ///
427 427
  /// \todo Revise the misleading name
428 428
  template<typename M> 
429 429
  class SimpleWriteMap : public MapBase<typename M::Key, typename M::Value> {
430 430
    M& m;
431 431

	
432 432
  public:
433 433
    typedef MapBase<typename M::Key, typename M::Value> Parent;
434 434
    typedef typename Parent::Key Key;
435 435
    typedef typename Parent::Value Value;
436 436

	
437 437
    ///Constructor
438 438
    SimpleWriteMap(M &_m) : m(_m) {};
439 439
    ///\e
440 440
    Value operator[](Key k) const {return m[k];}
441 441
    ///\e
442 442
    void set(Key k, const Value& c) { m.set(k, c); }
443 443
  };
444 444

	
445 445
  ///Sum of two maps
446 446

	
... ...
@@ -640,896 +640,899 @@
640 640
  template<typename M, typename C = typename M::Value> 
641 641
  class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
642 642
    const M& m;
643 643
    C v;
644 644
  public:
645 645
    typedef MapBase<typename M::Key, typename M::Value> Parent;
646 646
    typedef typename Parent::Key Key;
647 647
    typedef typename Parent::Value Value;
648 648

	
649 649
    ///Constructor
650 650

	
651 651
    ///Constructor.
652 652
    ///\param _m is the undelying map.
653 653
    ///\param _v is the scaling value.
654 654
    ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
655 655
    /// \e
656 656
    Value operator[](Key k) const {return v * m[k];}
657 657
  };
658 658

	
659 659
  ///Scales a map with a constant (ReadWrite version).
660 660

	
661 661
  ///This \c concepts::ReadWriteMap "read-write map" returns the value of the
662 662
  ///given map multiplied from the left side with a constant value. It can
663 663
  ///also be used as write map if the \c / operator is defined between
664 664
  ///\c Value and \c C and the given multiplier is not zero.
665 665
  ///Its \c Key and \c Value are inherited from \c M.
666 666
  ///
667 667
  ///\sa ScaleMap
668 668
  template<typename M, typename C = typename M::Value> 
669 669
  class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
670 670
    M& m;
671 671
    C v;
672 672
  public:
673 673
    typedef MapBase<typename M::Key, typename M::Value> Parent;
674 674
    typedef typename Parent::Key Key;
675 675
    typedef typename Parent::Value Value;
676 676

	
677 677
    ///Constructor
678 678

	
679 679
    ///Constructor.
680 680
    ///\param _m is the undelying map.
681 681
    ///\param _v is the scaling value.
682 682
    ScaleWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
683 683
    /// \e
684 684
    Value operator[](Key k) const {return v * m[k];}
685 685
    /// \e
686 686
    void set(Key k, const Value& c) { m.set(k, c / v);}
687 687
  };
688 688
  
689 689
  ///Returns a \c ScaleMap class
690 690

	
691 691
  ///This function just returns a \c ScaleMap class.
692 692
  ///\relates ScaleMap
693 693
  template<typename M, typename C> 
694 694
  inline ScaleMap<M, C> scaleMap(const M &m,const C &v) {
695 695
    return ScaleMap<M, C>(m,v);
696 696
  }
697 697

	
698 698
  ///Returns a \c ScaleWriteMap class
699 699

	
700 700
  ///This function just returns a \c ScaleWriteMap class.
701 701
  ///\relates ScaleWriteMap
702 702
  template<typename M, typename C> 
703 703
  inline ScaleWriteMap<M, C> scaleMap(M &m,const C &v) {
704 704
    return ScaleWriteMap<M, C>(m,v);
705 705
  }
706 706

	
707 707
  ///Quotient of two maps
708 708

	
709 709
  ///This \c concepts::ReadMap "read only map" returns the quotient of the
710 710
  ///values of the two given maps.
711 711
  ///Its \c Key and \c Value are inherited from \c M1.
712 712
  ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
713 713
  template<typename M1, typename M2> 
714 714
  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
715 715
    const M1& m1;
716 716
    const M2& m2;
717 717
  public:
718 718
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
719 719
    typedef typename Parent::Key Key;
720 720
    typedef typename Parent::Value Value;
721 721

	
722 722
    ///Constructor
723 723
    DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
724 724
    /// \e
725 725
    Value operator[](Key k) const {return m1[k]/m2[k];}
726 726
  };
727 727
  
728 728
  ///Returns a \c DivMap class
729 729

	
730 730
  ///This function just returns a \c DivMap class.
731 731
  ///\relates DivMap
732 732
  template<typename M1, typename M2> 
733 733
  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
734 734
    return DivMap<M1, M2>(m1,m2);
735 735
  }
736 736
  
737 737
  ///Composition of two maps
738 738

	
739 739
  ///This \c concepts::ReadMap "read only map" returns the composition of
740 740
  ///two given maps.
741 741
  ///That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2,
742 742
  ///then for
743 743
  ///\code
744 744
  ///  ComposeMap<M1, M2> cm(m1,m2);
745 745
  ///\endcode
746 746
  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
747 747
  ///
748 748
  ///Its \c Key is inherited from \c M2 and its \c Value is from \c M1.
749 749
  ///\c M2::Value must be convertible to \c M1::Key.
750 750
  ///
751 751
  ///\sa CombineMap
752 752
  ///
753 753
  ///\todo Check the requirements.
754 754
  template <typename M1, typename M2> 
755 755
  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
756 756
    const M1& m1;
757 757
    const M2& m2;
758 758
  public:
759 759
    typedef MapBase<typename M2::Key, typename M1::Value> Parent;
760 760
    typedef typename Parent::Key Key;
761 761
    typedef typename Parent::Value Value;
762 762

	
763 763
    ///Constructor
764 764
    ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
765 765
    
766 766
    /// \e
767 767

	
768 768

	
769 769
    /// \todo Use the  MapTraits once it is ported.
770 770
    ///
771 771

	
772 772
    //typename MapTraits<M1>::ConstReturnValue
773 773
    typename M1::Value
774 774
    operator[](Key k) const {return m1[m2[k]];}
775 775
  };
776 776

	
777 777
  ///Returns a \c ComposeMap class
778 778

	
779 779
  ///This function just returns a \c ComposeMap class.
780 780
  ///\relates ComposeMap
781 781
  template <typename M1, typename M2> 
782 782
  inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) {
783 783
    return ComposeMap<M1, M2>(m1,m2);
784 784
  }
785 785
  
786 786
  ///Combine of two maps using an STL (binary) functor.
787 787

	
788 788
  ///Combine of two maps using an STL (binary) functor.
789 789
  ///
790 790
  ///This \c concepts::ReadMap "read only map" takes two maps and a
791 791
  ///binary functor and returns the composition of the two
792 792
  ///given maps unsing the functor. 
793 793
  ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
794 794
  ///and \c f is of \c F, then for
795 795
  ///\code
796 796
  ///  CombineMap<M1,M2,F,V> cm(m1,m2,f);
797 797
  ///\endcode
798 798
  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
799 799
  ///
800 800
  ///Its \c Key is inherited from \c M1 and its \c Value is \c V.
801 801
  ///\c M2::Value and \c M1::Value must be convertible to the corresponding
802 802
  ///input parameter of \c F and the return type of \c F must be convertible
803 803
  ///to \c V.
804 804
  ///
805 805
  ///\sa ComposeMap
806 806
  ///
807 807
  ///\todo Check the requirements.
808 808
  template<typename M1, typename M2, typename F,
809 809
	   typename V = typename F::result_type> 
810 810
  class CombineMap : public MapBase<typename M1::Key, V> {
811 811
    const M1& m1;
812 812
    const M2& m2;
813 813
    F f;
814 814
  public:
815 815
    typedef MapBase<typename M1::Key, V> Parent;
816 816
    typedef typename Parent::Key Key;
817 817
    typedef typename Parent::Value Value;
818 818

	
819 819
    ///Constructor
820 820
    CombineMap(const M1 &_m1,const M2 &_m2,const F &_f = F())
821 821
      : m1(_m1), m2(_m2), f(_f) {};
822 822
    /// \e
823 823
    Value operator[](Key k) const {return f(m1[k],m2[k]);}
824 824
  };
825 825
  
826 826
  ///Returns a \c CombineMap class
827 827

	
828 828
  ///This function just returns a \c CombineMap class.
829 829
  ///
830 830
  ///For example if \c m1 and \c m2 are both \c double valued maps, then 
831 831
  ///\code
832
  ///combineMap<double>(m1,m2,std::plus<double>())
832
  ///combineMap(m1,m2,std::plus<double>())
833 833
  ///\endcode
834 834
  ///is equivalent to
835 835
  ///\code
836 836
  ///addMap(m1,m2)
837 837
  ///\endcode
838 838
  ///
839 839
  ///This function is specialized for adaptable binary function
840 840
  ///classes and C++ functions.
841 841
  ///
842 842
  ///\relates CombineMap
843 843
  template<typename M1, typename M2, typename F, typename V> 
844 844
  inline CombineMap<M1, M2, F, V> 
845 845
  combineMap(const M1& m1,const M2& m2, const F& f) {
846 846
    return CombineMap<M1, M2, F, V>(m1,m2,f);
847 847
  }
848 848

	
849 849
  template<typename M1, typename M2, typename F> 
850 850
  inline CombineMap<M1, M2, F, typename F::result_type> 
851 851
  combineMap(const M1& m1, const M2& m2, const F& f) {
852 852
    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
853 853
  }
854 854

	
855 855
  template<typename M1, typename M2, typename K1, typename K2, typename V> 
856 856
  inline CombineMap<M1, M2, V (*)(K1, K2), V> 
857 857
  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
858 858
    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
859 859
  }
860 860

	
861 861
  ///Negative value of a map
862 862

	
863 863
  ///This \c concepts::ReadMap "read only map" returns the negative
864 864
  ///value of the value returned by the given map.
865 865
  ///Its \c Key and \c Value are inherited from \c M.
866 866
  ///The unary \c - operator must be defined for \c Value, of course.
867 867
  ///
868 868
  ///\sa NegWriteMap
869 869
  template<typename M> 
870 870
  class NegMap : public MapBase<typename M::Key, typename M::Value> {
871 871
    const M& m;
872 872
  public:
873 873
    typedef MapBase<typename M::Key, typename M::Value> Parent;
874 874
    typedef typename Parent::Key Key;
875 875
    typedef typename Parent::Value Value;
876 876

	
877 877
    ///Constructor
878 878
    NegMap(const M &_m) : m(_m) {};
879 879
    /// \e
880 880
    Value operator[](Key k) const {return -m[k];}
881 881
  };
882 882
  
883 883
  ///Negative value of a map (ReadWrite version)
884 884

	
885 885
  ///This \c concepts::ReadWriteMap "read-write map" returns the negative
886 886
  ///value of the value returned by the given map.
887 887
  ///Its \c Key and \c Value are inherited from \c M.
888 888
  ///The unary \c - operator must be defined for \c Value, of course.
889 889
  ///
890 890
  /// \sa NegMap
891 891
  template<typename M> 
892 892
  class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
893 893
    M& m;
894 894
  public:
895 895
    typedef MapBase<typename M::Key, typename M::Value> Parent;
896 896
    typedef typename Parent::Key Key;
897 897
    typedef typename Parent::Value Value;
898 898

	
899 899
    ///Constructor
900 900
    NegWriteMap(M &_m) : m(_m) {};
901 901
    /// \e
902 902
    Value operator[](Key k) const {return -m[k];}
903 903
    /// \e
904 904
    void set(Key k, const Value& v) { m.set(k, -v); }
905 905
  };
906 906

	
907 907
  ///Returns a \c NegMap class
908 908

	
909 909
  ///This function just returns a \c NegMap class.
910 910
  ///\relates NegMap
911 911
  template <typename M> 
912 912
  inline NegMap<M> negMap(const M &m) {
913 913
    return NegMap<M>(m);
914 914
  }
915 915

	
916 916
  ///Returns a \c NegWriteMap class
917 917

	
918 918
  ///This function just returns a \c NegWriteMap class.
919 919
  ///\relates NegWriteMap
920 920
  template <typename M> 
921 921
  inline NegWriteMap<M> negMap(M &m) {
922 922
    return NegWriteMap<M>(m);
923 923
  }
924 924

	
925 925
  ///Absolute value of a map
926 926

	
927 927
  ///This \c concepts::ReadMap "read only map" returns the absolute value
928 928
  ///of the value returned by the given map.
929 929
  ///Its \c Key and \c Value are inherited from \c M. 
930 930
  ///\c Value must be comparable to \c 0 and the unary \c -
931 931
  ///operator must be defined for it, of course.
932 932
  template<typename M> 
933 933
  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
934 934
    const M& m;
935 935
  public:
936 936
    typedef MapBase<typename M::Key, typename M::Value> Parent;
937 937
    typedef typename Parent::Key Key;
938 938
    typedef typename Parent::Value Value;
939 939

	
940 940
    ///Constructor
941 941
    AbsMap(const M &_m) : m(_m) {};
942 942
    /// \e
943 943
    Value operator[](Key k) const {
944 944
      Value tmp = m[k]; 
945 945
      return tmp >= 0 ? tmp : -tmp;
946 946
    }
947 947

	
948 948
  };
949 949
  
950 950
  ///Returns an \c AbsMap class
951 951

	
952 952
  ///This function just returns an \c AbsMap class.
953 953
  ///\relates AbsMap
954 954
  template<typename M> 
955 955
  inline AbsMap<M> absMap(const M &m) {
956 956
    return AbsMap<M>(m);
957 957
  }
958 958

	
959 959
  ///Converts an STL style functor to a map
960 960

	
961 961
  ///This \c concepts::ReadMap "read only map" returns the value
962 962
  ///of a given functor.
963 963
  ///
964 964
  ///Template parameters \c K and \c V will become its
965
  ///\c Key and \c Value. They must be given explicitly
966
  ///because a functor does not provide such typedefs.
965
  ///\c Key and \c Value. 
966
  ///In most cases they have to be given explicitly because a 
967
  ///functor typically does not provide such typedefs.
967 968
  ///
968 969
  ///Parameter \c F is the type of the used functor.
969 970
  ///
970 971
  ///\sa MapFunctor
971 972
  template<typename F, 
972 973
	   typename K = typename F::argument_type, 
973 974
	   typename V = typename F::result_type> 
974 975
  class FunctorMap : public MapBase<K, V> {
975 976
    F f;
976 977
  public:
977 978
    typedef MapBase<K, V> Parent;
978 979
    typedef typename Parent::Key Key;
979 980
    typedef typename Parent::Value Value;
980 981

	
981 982
    ///Constructor
982 983
    FunctorMap(const F &_f = F()) : f(_f) {}
983 984
    /// \e
984 985
    Value operator[](Key k) const { return f(k);}
985 986
  };
986 987
  
987 988
  ///Returns a \c FunctorMap class
988 989

	
989 990
  ///This function just returns a \c FunctorMap class.
990 991
  ///
991 992
  ///It is specialized for adaptable function classes and
992 993
  ///C++ functions.
993 994
  ///\relates FunctorMap
994 995
  template<typename K, typename V, typename F> inline 
995 996
  FunctorMap<F, K, V> functorMap(const F &f) {
996 997
    return FunctorMap<F, K, V>(f);
997 998
  }
998 999

	
999 1000
  template <typename F> inline 
1000 1001
  FunctorMap<F, typename F::argument_type, typename F::result_type> 
1001 1002
  functorMap(const F &f) {
1002 1003
    return FunctorMap<F, typename F::argument_type, 
1003 1004
      typename F::result_type>(f);
1004 1005
  }
1005 1006

	
1006 1007
  template <typename K, typename V> inline 
1007 1008
  FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) {
1008 1009
    return FunctorMap<V (*)(K), K, V>(f);
1009 1010
  }
1010 1011

	
1011 1012

	
1012 1013
  ///Converts a map to an STL style (unary) functor
1013 1014

	
1014 1015
  ///This class Converts a map to an STL style (unary) functor.
1015 1016
  ///that is it provides an <tt>operator()</tt> to read its values.
1016 1017
  ///
1017 1018
  ///For the sake of convenience it also works as
1018 1019
  ///a ususal \c concepts::ReadMap "readable map",
1019 1020
  ///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
1020 1021
  ///
1021 1022
  ///\sa FunctorMap
1022 1023
  template <typename M> 
1023 1024
  class MapFunctor : public MapBase<typename M::Key, typename M::Value> {
1024 1025
    const M& m;
1025 1026
  public:
1026 1027
    typedef MapBase<typename M::Key, typename M::Value> Parent;
1027 1028
    typedef typename Parent::Key Key;
1028 1029
    typedef typename Parent::Value Value;
1029 1030

	
1030 1031
    typedef typename M::Key argument_type;
1031 1032
    typedef typename M::Value result_type;
1032 1033

	
1033 1034
    ///Constructor
1034 1035
    MapFunctor(const M &_m) : m(_m) {};
1035 1036
    ///\e
1036 1037
    Value operator()(Key k) const {return m[k];}
1037 1038
    ///\e
1038 1039
    Value operator[](Key k) const {return m[k];}
1039 1040
  };
1040 1041
  
1041 1042
  ///Returns a \c MapFunctor class
1042 1043

	
1043 1044
  ///This function just returns a \c MapFunctor class.
1044 1045
  ///\relates MapFunctor
1045 1046
  template<typename M> 
1046 1047
  inline MapFunctor<M> mapFunctor(const M &m) {
1047 1048
    return MapFunctor<M>(m);
1048 1049
  }
1049 1050

	
1050 1051
  ///Applies all map setting operations to two maps
1051 1052

	
1052 1053
  ///This map has two \c concepts::ReadMap "readable map"
1053 1054
  ///parameters and each read request will be passed just to the
1054 1055
  ///first map. This class is the just readable map type of the ForkWriteMap.
1055 1056
  ///
1056 1057
  ///The \c Key and \c Value are inherited from \c M1.
1057 1058
  ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
1058 1059
  ///
1059 1060
  ///\sa ForkWriteMap
1060 1061
  ///
1061 1062
  /// \todo Why is it needed?
1062 1063
  template<typename  M1, typename M2> 
1063 1064
  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
1064 1065
    const M1& m1;
1065 1066
    const M2& m2;
1066 1067
  public:
1067 1068
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1068 1069
    typedef typename Parent::Key Key;
1069 1070
    typedef typename Parent::Value Value;
1070 1071

	
1071 1072
    ///Constructor
1072 1073
    ForkMap(const M1 &_m1, const M2 &_m2) : m1(_m1), m2(_m2) {};
1073 1074
    /// \e
1074 1075
    Value operator[](Key k) const {return m1[k];}
1075 1076
  };
1076 1077

	
1077 1078

	
1078 1079
  ///Applies all map setting operations to two maps
1079 1080

	
1080 1081
  ///This map has two \c concepts::WriteMap "writable map"
1081 1082
  ///parameters and each write request will be passed to both of them.
1082 1083
  ///If \c M1 is also \c concepts::ReadMap "readable",
1083 1084
  ///then the read operations will return the
1084 1085
  ///corresponding values of \c M1.
1085 1086
  ///
1086 1087
  ///The \c Key and \c Value are inherited from \c M1.
1087 1088
  ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
1088 1089
  ///
1089 1090
  ///\sa ForkMap
1090 1091
  template<typename  M1, typename M2> 
1091 1092
  class ForkWriteMap : public MapBase<typename M1::Key, typename M1::Value> {
1092 1093
    M1& m1;
1093 1094
    M2& m2;
1094 1095
  public:
1095 1096
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
1096 1097
    typedef typename Parent::Key Key;
1097 1098
    typedef typename Parent::Value Value;
1098 1099

	
1099 1100
    ///Constructor
1100 1101
    ForkWriteMap(M1 &_m1, M2 &_m2) : m1(_m1), m2(_m2) {};
1101 1102
    ///\e
1102 1103
    Value operator[](Key k) const {return m1[k];}
1103 1104
    ///\e
1104 1105
    void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);}
1105 1106
  };
1106 1107
  
1107 1108
  ///Returns a \c ForkMap class
1108 1109

	
1109 1110
  ///This function just returns a \c ForkMap class.
1110 1111
  ///\relates ForkMap
1111 1112
  template <typename M1, typename M2> 
1112 1113
  inline ForkMap<M1, M2> forkMap(const M1 &m1, const M2 &m2) {
1113 1114
    return ForkMap<M1, M2>(m1,m2);
1114 1115
  }
1115 1116

	
1116 1117
  ///Returns a \c ForkWriteMap class
1117 1118

	
1118 1119
  ///This function just returns a \c ForkWriteMap class.
1119 1120
  ///\relates ForkWriteMap
1120 1121
  template <typename M1, typename M2> 
1121 1122
  inline ForkWriteMap<M1, M2> forkMap(M1 &m1, M2 &m2) {
1122 1123
    return ForkWriteMap<M1, M2>(m1,m2);
1123 1124
  }
1124 1125

	
1125 1126

	
1126 1127
  
1127 1128
  /* ************* BOOL MAPS ******************* */
1128 1129
  
1129 1130
  ///Logical 'not' of a map
1130 1131
  
1131 1132
  ///This bool \c concepts::ReadMap "read only map" returns the 
1132 1133
  ///logical negation of the value returned by the given map.
1133 1134
  ///Its \c Key is inherited from \c M, its Value is \c bool.
1134 1135
  ///
1135 1136
  ///\sa NotWriteMap
1136 1137
  template <typename M> 
1137 1138
  class NotMap : public MapBase<typename M::Key, bool> {
1138 1139
    const M& m;
1139 1140
  public:
1140 1141
    typedef MapBase<typename M::Key, bool> Parent;
1141 1142
    typedef typename Parent::Key Key;
1142 1143
    typedef typename Parent::Value Value;
1143 1144

	
1144 1145
    /// Constructor
1145 1146
    NotMap(const M &_m) : m(_m) {};
1146 1147
    ///\e
1147 1148
    Value operator[](Key k) const {return !m[k];}
1148 1149
  };
1149 1150

	
1150 1151
  ///Logical 'not' of a map (ReadWrie version)
1151 1152
  
1152 1153
  ///This bool \c concepts::ReadWriteMap "read-write map" returns the 
1153 1154
  ///logical negation of the value returned by the given map. When it is set,
1154 1155
  ///the opposite value is set to the original map.
1155 1156
  ///Its \c Key is inherited from \c M, its Value is \c bool.
1156 1157
  ///
1157 1158
  ///\sa NotMap
1158 1159
  template <typename M> 
1159 1160
  class NotWriteMap : public MapBase<typename M::Key, bool> {
1160 1161
    M& m;
1161 1162
  public:
1162 1163
    typedef MapBase<typename M::Key, bool> Parent;
1163 1164
    typedef typename Parent::Key Key;
1164 1165
    typedef typename Parent::Value Value;
1165 1166

	
1166 1167
    /// Constructor
1167 1168
    NotWriteMap(M &_m) : m(_m) {};
1168 1169
    ///\e
1169 1170
    Value operator[](Key k) const {return !m[k];}
1170 1171
    ///\e
1171 1172
    void set(Key k, bool v) { m.set(k, !v); }
1172 1173
  };
1173 1174
  
1174 1175
  ///Returns a \c NotMap class
1175 1176
  
1176 1177
  ///This function just returns a \c NotMap class.
1177 1178
  ///\relates NotMap
1178 1179
  template <typename M> 
1179 1180
  inline NotMap<M> notMap(const M &m) {
1180 1181
    return NotMap<M>(m);
1181 1182
  }
1182 1183
  
1183 1184
  ///Returns a \c NotWriteMap class
1184 1185
  
1185 1186
  ///This function just returns a \c NotWriteMap class.
1186 1187
  ///\relates NotWriteMap
1187 1188
  template <typename M> 
1188 1189
  inline NotWriteMap<M> notMap(M &m) {
1189 1190
    return NotWriteMap<M>(m);
1190 1191
  }
1191 1192

	
1192 1193
  namespace _maps_bits {
1193 1194

	
1194 1195
    template <typename Value>
1195 1196
    struct Identity {
1196 1197
      typedef Value argument_type;
1197 1198
      typedef Value result_type;
1198 1199
      Value operator()(const Value& val) const {
1199 1200
	return val;
1200 1201
      }
1201 1202
    };
1202 1203

	
1203 1204
    template <typename _Iterator, typename Enable = void>
1204 1205
    struct IteratorTraits {
1205 1206
      typedef typename std::iterator_traits<_Iterator>::value_type Value;
1206 1207
    };
1207 1208

	
1208 1209
    template <typename _Iterator>
1209 1210
    struct IteratorTraits<_Iterator,
1210 1211
      typename exists<typename _Iterator::container_type>::type> 
1211 1212
    {
1212 1213
      typedef typename _Iterator::container_type::value_type Value;
1213 1214
    };
1214 1215

	
1215 1216
  }
1216 1217
  
1217 1218

	
1218 1219
  /// \brief Writable bool map for logging each \c true assigned element
1219 1220
  ///
1220 1221
  /// Writable bool map for logging each \c true assigned element, i.e it
1221 1222
  /// copies all the keys set to \c true to the given iterator.
1222 1223
  ///
1223 1224
  /// \note The container of the iterator should contain space 
1224 1225
  /// for each element.
1225 1226
  ///
1226 1227
  /// The following example shows how you can write the edges found by the Prim
1227 1228
  /// algorithm directly
1228 1229
  /// to the standard output.
1229 1230
  ///\code
1230 1231
  /// typedef IdMap<Graph, Edge> EdgeIdMap;
1231 1232
  /// EdgeIdMap edgeId(graph);
1232 1233
  ///
1233 1234
  /// typedef MapFunctor<EdgeIdMap> EdgeIdFunctor;
1234 1235
  /// EdgeIdFunctor edgeIdFunctor(edgeId);
1235 1236
  ///
1236 1237
  /// StoreBoolMap<ostream_iterator<int>, EdgeIdFunctor> 
1237 1238
  ///   writerMap(ostream_iterator<int>(cout, " "), edgeIdFunctor);
1238 1239
  ///
1239 1240
  /// prim(graph, cost, writerMap);
1240 1241
  ///\endcode
1241 1242
  ///
1242 1243
  ///\sa BackInserterBoolMap 
1244
  ///\sa FrontInserterBoolMap 
1245
  ///\sa InserterBoolMap 
1243 1246
  ///
1244 1247
  ///\todo Revise the name of this class and the related ones.
1245 1248
  template <typename _Iterator, 
1246 1249
            typename _Functor =
1247 1250
            _maps_bits::Identity<typename _maps_bits::
1248 1251
                                 IteratorTraits<_Iterator>::Value> >
1249 1252
  class StoreBoolMap {
1250 1253
  public:
1251 1254
    typedef _Iterator Iterator;
1252 1255

	
1253 1256
    typedef typename _Functor::argument_type Key;
1254 1257
    typedef bool Value;
1255 1258

	
1256 1259
    typedef _Functor Functor;
1257 1260

	
1258 1261
    /// Constructor
1259 1262
    StoreBoolMap(Iterator it, const Functor& functor = Functor()) 
1260 1263
      : _begin(it), _end(it), _functor(functor) {}
1261 1264

	
1262 1265
    /// Gives back the given iterator set for the first key
1263 1266
    Iterator begin() const {
1264 1267
      return _begin;
1265 1268
    }
1266 1269
 
1267 1270
    /// Gives back the the 'after the last' iterator
1268 1271
    Iterator end() const {
1269 1272
      return _end;
1270 1273
    }
1271 1274

	
1272 1275
    /// The \c set function of the map
1273 1276
    void set(const Key& key, Value value) const {
1274 1277
      if (value) {
1275 1278
	*_end++ = _functor(key);
1276 1279
      }
1277 1280
    }
1278 1281
    
1279 1282
  private:
1280 1283
    Iterator _begin;
1281 1284
    mutable Iterator _end;
1282 1285
    Functor _functor;
1283 1286
  };
1284 1287

	
1285 1288
  /// \brief Writable bool map for logging each \c true assigned element in 
1286 1289
  /// a back insertable container.
1287 1290
  ///
1288 1291
  /// Writable bool map for logging each \c true assigned element by pushing
1289 1292
  /// them into a back insertable container.
1290 1293
  /// It can be used to retrieve the items into a standard
1291 1294
  /// container. The next example shows how you can store the
1292 1295
  /// edges found by the Prim algorithm in a vector.
1293 1296
  ///
1294 1297
  ///\code
1295 1298
  /// vector<Edge> span_tree_edges;
1296 1299
  /// BackInserterBoolMap<vector<Edge> > inserter_map(span_tree_edges);
1297 1300
  /// prim(graph, cost, inserter_map);
1298 1301
  ///\endcode
1299 1302
  ///
1300 1303
  ///\sa StoreBoolMap
1301 1304
  ///\sa FrontInserterBoolMap
1302 1305
  ///\sa InserterBoolMap
1303 1306
  template <typename Container,
1304 1307
            typename Functor =
1305 1308
            _maps_bits::Identity<typename Container::value_type> >
1306 1309
  class BackInserterBoolMap {
1307 1310
  public:
1308
    typedef typename Container::value_type Key;
1311
    typedef typename Functor::argument_type Key;
1309 1312
    typedef bool Value;
1310 1313

	
1311 1314
    /// Constructor
1312 1315
    BackInserterBoolMap(Container& _container, 
1313 1316
                        const Functor& _functor = Functor()) 
1314 1317
      : container(_container), functor(_functor) {}
1315 1318

	
1316 1319
    /// The \c set function of the map
1317 1320
    void set(const Key& key, Value value) {
1318 1321
      if (value) {
1319 1322
	container.push_back(functor(key));
1320 1323
      }
1321 1324
    }
1322 1325
    
1323 1326
  private:
1324 1327
    Container& container;
1325 1328
    Functor functor;
1326 1329
  };
1327 1330

	
1328 1331
  /// \brief Writable bool map for logging each \c true assigned element in 
1329 1332
  /// a front insertable container.
1330 1333
  ///
1331 1334
  /// Writable bool map for logging each \c true assigned element by pushing
1332 1335
  /// them into a front insertable container.
1333 1336
  /// It can be used to retrieve the items into a standard
1334 1337
  /// container. For example see \ref BackInserterBoolMap.
1335 1338
  ///
1336 1339
  ///\sa BackInserterBoolMap
1337 1340
  ///\sa InserterBoolMap
1338 1341
  template <typename Container,
1339 1342
            typename Functor =
1340 1343
            _maps_bits::Identity<typename Container::value_type> >
1341 1344
  class FrontInserterBoolMap {
1342 1345
  public:
1343
    typedef typename Container::value_type Key;
1346
    typedef typename Functor::argument_type Key;
1344 1347
    typedef bool Value;
1345 1348

	
1346 1349
    /// Constructor
1347 1350
    FrontInserterBoolMap(Container& _container,
1348 1351
                         const Functor& _functor = Functor()) 
1349 1352
      : container(_container), functor(_functor) {}
1350 1353

	
1351 1354
    /// The \c set function of the map
1352 1355
    void set(const Key& key, Value value) {
1353 1356
      if (value) {
1354 1357
	container.push_front(functor(key));
1355 1358
      }
1356 1359
    }
1357 1360
    
1358 1361
  private:
1359 1362
    Container& container;    
1360 1363
    Functor functor;
1361 1364
  };
1362 1365

	
1363 1366
  /// \brief Writable bool map for storing each \c true assigned element in 
1364 1367
  /// an insertable container.
1365 1368
  ///
1366 1369
  /// Writable bool map for storing each \c true assigned element in an 
1367 1370
  /// insertable container. It will insert all the keys set to \c true into
1368 1371
  /// the container.
1369 1372
  ///
1370 1373
  /// For example, if you want to store the cut arcs of the strongly
1371 1374
  /// connected components in a set you can use the next code:
1372 1375
  ///
1373 1376
  ///\code
1374 1377
  /// set<Arc> cut_arcs;
1375 1378
  /// InserterBoolMap<set<Arc> > inserter_map(cut_arcs);
1376 1379
  /// stronglyConnectedCutArcs(digraph, cost, inserter_map);
1377 1380
  ///\endcode
1378 1381
  ///
1379 1382
  ///\sa BackInserterBoolMap
1380 1383
  ///\sa FrontInserterBoolMap
1381 1384
  template <typename Container,
1382 1385
            typename Functor =
1383 1386
            _maps_bits::Identity<typename Container::value_type> >
1384 1387
  class InserterBoolMap {
1385 1388
  public:
1386 1389
    typedef typename Container::value_type Key;
1387 1390
    typedef bool Value;
1388 1391

	
1389 1392
    /// Constructor with specified iterator
1390 1393
    
1391 1394
    /// Constructor with specified iterator.
1392 1395
    /// \param _container The container for storing the elements.
1393 1396
    /// \param _it The elements will be inserted before this iterator.
1394 1397
    /// \param _functor The functor that is used when an element is stored.
1395 1398
    InserterBoolMap(Container& _container, typename Container::iterator _it,
1396 1399
                    const Functor& _functor = Functor()) 
1397 1400
      : container(_container), it(_it), functor(_functor) {}
1398 1401

	
1399 1402
    /// Constructor
1400 1403

	
1401 1404
    /// Constructor without specified iterator.
1402 1405
    /// The elements will be inserted before <tt>_container.end()</tt>.
1403 1406
    /// \param _container The container for storing the elements.
1404 1407
    /// \param _functor The functor that is used when an element is stored.
1405 1408
    InserterBoolMap(Container& _container, const Functor& _functor = Functor())
1406 1409
      : container(_container), it(_container.end()), functor(_functor) {}
1407 1410

	
1408 1411
    /// The \c set function of the map
1409 1412
    void set(const Key& key, Value value) {
1410 1413
      if (value) {
1411 1414
	it = container.insert(it, functor(key));
1412 1415
        ++it;
1413 1416
      }
1414 1417
    }
1415 1418
    
1416 1419
  private:
1417 1420
    Container& container;
1418 1421
    typename Container::iterator it;
1419 1422
    Functor functor;
1420 1423
  };
1421 1424

	
1422 1425
  /// \brief Writable bool map for filling each \c true assigned element with a 
1423 1426
  /// given value.
1424 1427
  ///
1425 1428
  /// Writable bool map for filling each \c true assigned element with a 
1426 1429
  /// given value. The value can set the container.
1427 1430
  ///
1428 1431
  /// The following code finds the connected components of a graph
1429 1432
  /// and stores it in the \c comp map:
1430 1433
  ///\code
1431 1434
  /// typedef Graph::NodeMap<int> ComponentMap;
1432 1435
  /// ComponentMap comp(graph);
1433 1436
  /// typedef FillBoolMap<Graph::NodeMap<int> > ComponentFillerMap;
1434 1437
  /// ComponentFillerMap filler(comp, 0);
1435 1438
  ///
1436 1439
  /// Dfs<Graph>::DefProcessedMap<ComponentFillerMap>::Create dfs(graph);
1437 1440
  /// dfs.processedMap(filler);
1438 1441
  /// dfs.init();
1439 1442
  /// for (NodeIt it(graph); it != INVALID; ++it) {
1440 1443
  ///   if (!dfs.reached(it)) {
1441 1444
  ///     dfs.addSource(it);
1442 1445
  ///     dfs.start();
1443 1446
  ///     ++filler.fillValue();
1444 1447
  ///   }
1445 1448
  /// }
1446 1449
  ///\endcode
1447 1450
  template <typename Map>
1448 1451
  class FillBoolMap {
1449 1452
  public:
1450 1453
    typedef typename Map::Key Key;
1451 1454
    typedef bool Value;
1452 1455

	
1453 1456
    /// Constructor
1454 1457
    FillBoolMap(Map& _map, const typename Map::Value& _fill) 
1455 1458
      : map(_map), fill(_fill) {}
1456 1459

	
1457 1460
    /// Constructor
1458 1461
    FillBoolMap(Map& _map) 
1459 1462
      : map(_map), fill() {}
1460 1463

	
1461 1464
    /// Gives back the current fill value
1462 1465
    const typename Map::Value& fillValue() const {
1463 1466
      return fill;
1464 1467
    } 
1465 1468

	
1466 1469
    /// Gives back the current fill value
1467 1470
    typename Map::Value& fillValue() {
1468 1471
      return fill;
1469 1472
    } 
1470 1473

	
1471 1474
    /// Sets the current fill value
1472 1475
    void fillValue(const typename Map::Value& _fill) {
1473 1476
      fill = _fill;
1474 1477
    } 
1475 1478

	
1476 1479
    /// The \c set function of the map
1477 1480
    void set(const Key& key, Value value) {
1478 1481
      if (value) {
1479 1482
	map.set(key, fill);
1480 1483
      }
1481 1484
    }
1482 1485
    
1483 1486
  private:
1484 1487
    Map& map;
1485 1488
    typename Map::Value fill;
1486 1489
  };
1487 1490

	
1488 1491

	
1489 1492
  /// \brief Writable bool map for storing the sequence number of 
1490 1493
  /// \c true assignments.  
1491 1494
  /// 
1492 1495
  /// Writable bool map that stores for each \c true assigned elements  
1493 1496
  /// the sequence number of this setting.
1494 1497
  /// It makes it easy to calculate the leaving
1495 1498
  /// order of the nodes in the \c Dfs algorithm.
1496 1499
  ///
1497 1500
  ///\code
1498 1501
  /// typedef Digraph::NodeMap<int> OrderMap;
1499 1502
  /// OrderMap order(digraph);
1500 1503
  /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
1501 1504
  /// OrderSetterMap setter(order);
1502 1505
  /// Dfs<Digraph>::DefProcessedMap<OrderSetterMap>::Create dfs(digraph);
1503 1506
  /// dfs.processedMap(setter);
1504 1507
  /// dfs.init();
1505 1508
  /// for (NodeIt it(digraph); it != INVALID; ++it) {
1506 1509
  ///   if (!dfs.reached(it)) {
1507 1510
  ///     dfs.addSource(it);
1508 1511
  ///     dfs.start();
1509 1512
  ///   }
1510 1513
  /// }
1511 1514
  ///\endcode
1512 1515
  ///
1513 1516
  /// The storing of the discovering order is more difficult because the
1514 1517
  /// ReachedMap should be readable in the dfs algorithm but the setting
1515 1518
  /// order map is not readable. Thus we must use the fork map:
1516 1519
  ///
1517 1520
  ///\code
1518 1521
  /// typedef Digraph::NodeMap<int> OrderMap;
1519 1522
  /// OrderMap order(digraph);
1520 1523
  /// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap;
1521 1524
  /// OrderSetterMap setter(order);
1522 1525
  /// typedef Digraph::NodeMap<bool> StoreMap;
1523 1526
  /// StoreMap store(digraph);
1524 1527
  ///
1525 1528
  /// typedef ForkWriteMap<StoreMap, OrderSetterMap> ReachedMap;
1526 1529
  /// ReachedMap reached(store, setter);
1527 1530
  ///
1528 1531
  /// Dfs<Digraph>::DefReachedMap<ReachedMap>::Create dfs(digraph);
1529 1532
  /// dfs.reachedMap(reached);
1530 1533
  /// dfs.init();
1531 1534
  /// for (NodeIt it(digraph); it != INVALID; ++it) {
1532 1535
  ///   if (!dfs.reached(it)) {
1533 1536
  ///     dfs.addSource(it);
1534 1537
  ///     dfs.start();
1535 1538
  ///   }
0 comments (0 inline)