1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2007 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MAPS_H |
20 | 20 |
#define LEMON_MAPS_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
#include <functional> |
24 | 24 |
#include <vector> |
25 | 25 |
|
26 | 26 |
#include <lemon/bits/utility.h> |
27 | 27 |
// #include <lemon/bits/traits.h> |
28 | 28 |
|
29 | 29 |
///\file |
30 | 30 |
///\ingroup maps |
31 | 31 |
///\brief Miscellaneous property maps |
32 | 32 |
/// |
33 | 33 |
#include <map> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \addtogroup maps |
38 | 38 |
/// @{ |
39 | 39 |
|
40 | 40 |
/// Base class of maps. |
41 | 41 |
|
42 | 42 |
/// Base class of maps. |
43 | 43 |
/// It provides the necessary <tt>typedef</tt>s required by the map concept. |
44 | 44 |
template<typename K, typename T> |
45 | 45 |
class MapBase { |
46 | 46 |
public: |
47 |
/// |
|
47 |
/// The key type of the map. |
|
48 | 48 |
typedef K Key; |
49 |
/// |
|
49 |
/// The value type of the map. (The type of objects associated with the keys). |
|
50 | 50 |
typedef T Value; |
51 | 51 |
}; |
52 | 52 |
|
53 | 53 |
/// Null map. (a.k.a. DoNothingMap) |
54 | 54 |
|
55 | 55 |
/// This map can be used if you have to provide a map only for |
56 | 56 |
/// its type definitions, or if you have to provide a writable map, |
57 | 57 |
/// but data written to it is not required (i.e. it will be sent to |
58 | 58 |
/// <tt>/dev/null</tt>). |
59 | 59 |
template<typename K, typename T> |
60 | 60 |
class NullMap : public MapBase<K, T> { |
61 | 61 |
public: |
62 | 62 |
typedef MapBase<K, T> Parent; |
63 | 63 |
typedef typename Parent::Key Key; |
64 | 64 |
typedef typename Parent::Value Value; |
65 | 65 |
|
66 | 66 |
/// Gives back a default constructed element. |
67 | 67 |
T operator[](const K&) const { return T(); } |
68 | 68 |
/// Absorbs the value. |
69 | 69 |
void set(const K&, const T&) {} |
70 | 70 |
}; |
71 | 71 |
|
72 | 72 |
///Returns a \c NullMap class |
73 | 73 |
|
74 | 74 |
///This function just returns a \c NullMap class. |
75 | 75 |
///\relates NullMap |
76 | 76 |
template <typename K, typename V> |
77 | 77 |
NullMap<K, V> nullMap() { |
78 | 78 |
return NullMap<K, V>(); |
79 | 79 |
} |
80 | 80 |
|
81 | 81 |
|
82 | 82 |
/// Constant map. |
83 | 83 |
|
84 | 84 |
/// This is a readable map which assigns a specified value to each key. |
85 | 85 |
/// In other aspects it is equivalent to the \c NullMap. |
86 | 86 |
template<typename K, typename T> |
87 | 87 |
class ConstMap : public MapBase<K, T> { |
88 | 88 |
private: |
89 | 89 |
T v; |
90 | 90 |
public: |
91 | 91 |
|
92 | 92 |
typedef MapBase<K, T> Parent; |
93 | 93 |
typedef typename Parent::Key Key; |
94 | 94 |
typedef typename Parent::Value Value; |
95 | 95 |
|
96 | 96 |
/// Default constructor |
97 | 97 |
|
... | ... |
@@ -204,99 +204,99 @@ |
204 | 204 |
StdMap(const StdMap<Key, T1, Comp1> &c) |
205 | 205 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {} |
206 | 206 |
|
207 | 207 |
private: |
208 | 208 |
|
209 | 209 |
StdMap& operator=(const StdMap&); |
210 | 210 |
|
211 | 211 |
public: |
212 | 212 |
|
213 | 213 |
///\e |
214 | 214 |
Reference operator[](const Key &k) { |
215 | 215 |
typename Map::iterator it = _map.lower_bound(k); |
216 | 216 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
217 | 217 |
return it->second; |
218 | 218 |
else |
219 | 219 |
return _map.insert(it, std::make_pair(k, _value))->second; |
220 | 220 |
} |
221 | 221 |
|
222 | 222 |
/// \e |
223 | 223 |
ConstReference operator[](const Key &k) const { |
224 | 224 |
typename Map::const_iterator it = _map.find(k); |
225 | 225 |
if (it != _map.end()) |
226 | 226 |
return it->second; |
227 | 227 |
else |
228 | 228 |
return _value; |
229 | 229 |
} |
230 | 230 |
|
231 | 231 |
/// \e |
232 | 232 |
void set(const Key &k, const T &t) { |
233 | 233 |
typename Map::iterator it = _map.lower_bound(k); |
234 | 234 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
235 | 235 |
it->second = t; |
236 | 236 |
else |
237 | 237 |
_map.insert(it, std::make_pair(k, t)); |
238 | 238 |
} |
239 | 239 |
|
240 | 240 |
/// \e |
241 | 241 |
void setAll(const T &t) { |
242 | 242 |
_value = t; |
243 | 243 |
_map.clear(); |
244 | 244 |
} |
245 | 245 |
|
246 | 246 |
template <typename T1, typename C1 = std::less<T1> > |
247 | 247 |
struct rebind { |
248 | 248 |
typedef StdMap<Key, T1, C1> other; |
249 | 249 |
}; |
250 | 250 |
}; |
251 | 251 |
|
252 |
/// \brief Map for storing values for the range |
|
252 |
/// \brief Map for storing values for keys from the range <tt>[0..size-1]</tt> |
|
253 | 253 |
/// |
254 |
/// The current map has the |
|
254 |
/// The current map has the <tt>[0..size-1]</tt> keyset and the values |
|
255 | 255 |
/// are stored in a \c std::vector<T> container. It can be used with |
256 | 256 |
/// some data structures, for example \c UnionFind, \c BinHeap, when |
257 | 257 |
/// the used items are small integer numbers. |
258 | 258 |
/// |
259 | 259 |
/// \todo Revise its name |
260 | 260 |
template <typename T> |
261 | 261 |
class IntegerMap { |
262 | 262 |
|
263 | 263 |
template <typename T1> |
264 | 264 |
friend class IntegerMap; |
265 | 265 |
|
266 | 266 |
public: |
267 | 267 |
|
268 | 268 |
typedef True ReferenceMapTag; |
269 | 269 |
///\e |
270 | 270 |
typedef int Key; |
271 | 271 |
///\e |
272 | 272 |
typedef T Value; |
273 | 273 |
///\e |
274 | 274 |
typedef T& Reference; |
275 | 275 |
///\e |
276 | 276 |
typedef const T& ConstReference; |
277 | 277 |
|
278 | 278 |
private: |
279 | 279 |
|
280 | 280 |
typedef std::vector<T> Vector; |
281 | 281 |
Vector _vector; |
282 | 282 |
|
283 | 283 |
public: |
284 | 284 |
|
285 | 285 |
/// Constructor with specified default value |
286 | 286 |
IntegerMap(int size = 0, const T& value = T()) : _vector(size, value) {} |
287 | 287 |
|
288 | 288 |
/// \brief Constructs the map from an appropriate std::vector. |
289 | 289 |
template <typename T1> |
290 | 290 |
IntegerMap(const std::vector<T1>& vector) |
291 | 291 |
: _vector(vector.begin(), vector.end()) {} |
292 | 292 |
|
293 | 293 |
/// \brief Constructs a map from an other IntegerMap. |
294 | 294 |
template <typename T1> |
295 | 295 |
IntegerMap(const IntegerMap<T1> &c) |
296 | 296 |
: _vector(c._vector.begin(), c._vector.end()) {} |
297 | 297 |
|
298 | 298 |
/// \brief Resize the container |
299 | 299 |
void resize(int size, const T& value = T()) { |
300 | 300 |
_vector.resize(size, value); |
301 | 301 |
} |
302 | 302 |
|
... | ... |
@@ -784,97 +784,97 @@ |
784 | 784 |
} |
785 | 785 |
|
786 | 786 |
///Combine of two maps using an STL (binary) functor. |
787 | 787 |
|
788 | 788 |
///Combine of two maps using an STL (binary) functor. |
789 | 789 |
/// |
790 | 790 |
///This \c concepts::ReadMap "read only map" takes two maps and a |
791 | 791 |
///binary functor and returns the composition of the two |
792 | 792 |
///given maps unsing the functor. |
793 | 793 |
///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2 |
794 | 794 |
///and \c f is of \c F, then for |
795 | 795 |
///\code |
796 | 796 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
797 | 797 |
///\endcode |
798 | 798 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt> |
799 | 799 |
/// |
800 | 800 |
///Its \c Key is inherited from \c M1 and its \c Value is \c V. |
801 | 801 |
///\c M2::Value and \c M1::Value must be convertible to the corresponding |
802 | 802 |
///input parameter of \c F and the return type of \c F must be convertible |
803 | 803 |
///to \c V. |
804 | 804 |
/// |
805 | 805 |
///\sa ComposeMap |
806 | 806 |
/// |
807 | 807 |
///\todo Check the requirements. |
808 | 808 |
template<typename M1, typename M2, typename F, |
809 | 809 |
typename V = typename F::result_type> |
810 | 810 |
class CombineMap : public MapBase<typename M1::Key, V> { |
811 | 811 |
const M1& m1; |
812 | 812 |
const M2& m2; |
813 | 813 |
F f; |
814 | 814 |
public: |
815 | 815 |
typedef MapBase<typename M1::Key, V> Parent; |
816 | 816 |
typedef typename Parent::Key Key; |
817 | 817 |
typedef typename Parent::Value Value; |
818 | 818 |
|
819 | 819 |
///Constructor |
820 | 820 |
CombineMap(const M1 &_m1,const M2 &_m2,const F &_f = F()) |
821 | 821 |
: m1(_m1), m2(_m2), f(_f) {}; |
822 | 822 |
/// \e |
823 | 823 |
Value operator[](Key k) const {return f(m1[k],m2[k]);} |
824 | 824 |
}; |
825 | 825 |
|
826 | 826 |
///Returns a \c CombineMap class |
827 | 827 |
|
828 | 828 |
///This function just returns a \c CombineMap class. |
829 | 829 |
/// |
830 | 830 |
///For example if \c m1 and \c m2 are both \c double valued maps, then |
831 | 831 |
///\code |
832 |
///combineMap |
|
832 |
///combineMap(m1,m2,std::plus<double>()) |
|
833 | 833 |
///\endcode |
834 | 834 |
///is equivalent to |
835 | 835 |
///\code |
836 | 836 |
///addMap(m1,m2) |
837 | 837 |
///\endcode |
838 | 838 |
/// |
839 | 839 |
///This function is specialized for adaptable binary function |
840 | 840 |
///classes and C++ functions. |
841 | 841 |
/// |
842 | 842 |
///\relates CombineMap |
843 | 843 |
template<typename M1, typename M2, typename F, typename V> |
844 | 844 |
inline CombineMap<M1, M2, F, V> |
845 | 845 |
combineMap(const M1& m1,const M2& m2, const F& f) { |
846 | 846 |
return CombineMap<M1, M2, F, V>(m1,m2,f); |
847 | 847 |
} |
848 | 848 |
|
849 | 849 |
template<typename M1, typename M2, typename F> |
850 | 850 |
inline CombineMap<M1, M2, F, typename F::result_type> |
851 | 851 |
combineMap(const M1& m1, const M2& m2, const F& f) { |
852 | 852 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
853 | 853 |
} |
854 | 854 |
|
855 | 855 |
template<typename M1, typename M2, typename K1, typename K2, typename V> |
856 | 856 |
inline CombineMap<M1, M2, V (*)(K1, K2), V> |
857 | 857 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
858 | 858 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
859 | 859 |
} |
860 | 860 |
|
861 | 861 |
///Negative value of a map |
862 | 862 |
|
863 | 863 |
///This \c concepts::ReadMap "read only map" returns the negative |
864 | 864 |
///value of the value returned by the given map. |
865 | 865 |
///Its \c Key and \c Value are inherited from \c M. |
866 | 866 |
///The unary \c - operator must be defined for \c Value, of course. |
867 | 867 |
/// |
868 | 868 |
///\sa NegWriteMap |
869 | 869 |
template<typename M> |
870 | 870 |
class NegMap : public MapBase<typename M::Key, typename M::Value> { |
871 | 871 |
const M& m; |
872 | 872 |
public: |
873 | 873 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
874 | 874 |
typedef typename Parent::Key Key; |
875 | 875 |
typedef typename Parent::Value Value; |
876 | 876 |
|
877 | 877 |
///Constructor |
878 | 878 |
NegMap(const M &_m) : m(_m) {}; |
879 | 879 |
/// \e |
880 | 880 |
Value operator[](Key k) const {return -m[k];} |
... | ... |
@@ -917,98 +917,99 @@ |
917 | 917 |
|
918 | 918 |
///This function just returns a \c NegWriteMap class. |
919 | 919 |
///\relates NegWriteMap |
920 | 920 |
template <typename M> |
921 | 921 |
inline NegWriteMap<M> negMap(M &m) { |
922 | 922 |
return NegWriteMap<M>(m); |
923 | 923 |
} |
924 | 924 |
|
925 | 925 |
///Absolute value of a map |
926 | 926 |
|
927 | 927 |
///This \c concepts::ReadMap "read only map" returns the absolute value |
928 | 928 |
///of the value returned by the given map. |
929 | 929 |
///Its \c Key and \c Value are inherited from \c M. |
930 | 930 |
///\c Value must be comparable to \c 0 and the unary \c - |
931 | 931 |
///operator must be defined for it, of course. |
932 | 932 |
template<typename M> |
933 | 933 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> { |
934 | 934 |
const M& m; |
935 | 935 |
public: |
936 | 936 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
937 | 937 |
typedef typename Parent::Key Key; |
938 | 938 |
typedef typename Parent::Value Value; |
939 | 939 |
|
940 | 940 |
///Constructor |
941 | 941 |
AbsMap(const M &_m) : m(_m) {}; |
942 | 942 |
/// \e |
943 | 943 |
Value operator[](Key k) const { |
944 | 944 |
Value tmp = m[k]; |
945 | 945 |
return tmp >= 0 ? tmp : -tmp; |
946 | 946 |
} |
947 | 947 |
|
948 | 948 |
}; |
949 | 949 |
|
950 | 950 |
///Returns an \c AbsMap class |
951 | 951 |
|
952 | 952 |
///This function just returns an \c AbsMap class. |
953 | 953 |
///\relates AbsMap |
954 | 954 |
template<typename M> |
955 | 955 |
inline AbsMap<M> absMap(const M &m) { |
956 | 956 |
return AbsMap<M>(m); |
957 | 957 |
} |
958 | 958 |
|
959 | 959 |
///Converts an STL style functor to a map |
960 | 960 |
|
961 | 961 |
///This \c concepts::ReadMap "read only map" returns the value |
962 | 962 |
///of a given functor. |
963 | 963 |
/// |
964 | 964 |
///Template parameters \c K and \c V will become its |
965 |
///\c Key and \c Value. They must be given explicitly |
|
966 |
///because a functor does not provide such typedefs. |
|
965 |
///\c Key and \c Value. |
|
966 |
///In most cases they have to be given explicitly because a |
|
967 |
///functor typically does not provide such typedefs. |
|
967 | 968 |
/// |
968 | 969 |
///Parameter \c F is the type of the used functor. |
969 | 970 |
/// |
970 | 971 |
///\sa MapFunctor |
971 | 972 |
template<typename F, |
972 | 973 |
typename K = typename F::argument_type, |
973 | 974 |
typename V = typename F::result_type> |
974 | 975 |
class FunctorMap : public MapBase<K, V> { |
975 | 976 |
F f; |
976 | 977 |
public: |
977 | 978 |
typedef MapBase<K, V> Parent; |
978 | 979 |
typedef typename Parent::Key Key; |
979 | 980 |
typedef typename Parent::Value Value; |
980 | 981 |
|
981 | 982 |
///Constructor |
982 | 983 |
FunctorMap(const F &_f = F()) : f(_f) {} |
983 | 984 |
/// \e |
984 | 985 |
Value operator[](Key k) const { return f(k);} |
985 | 986 |
}; |
986 | 987 |
|
987 | 988 |
///Returns a \c FunctorMap class |
988 | 989 |
|
989 | 990 |
///This function just returns a \c FunctorMap class. |
990 | 991 |
/// |
991 | 992 |
///It is specialized for adaptable function classes and |
992 | 993 |
///C++ functions. |
993 | 994 |
///\relates FunctorMap |
994 | 995 |
template<typename K, typename V, typename F> inline |
995 | 996 |
FunctorMap<F, K, V> functorMap(const F &f) { |
996 | 997 |
return FunctorMap<F, K, V>(f); |
997 | 998 |
} |
998 | 999 |
|
999 | 1000 |
template <typename F> inline |
1000 | 1001 |
FunctorMap<F, typename F::argument_type, typename F::result_type> |
1001 | 1002 |
functorMap(const F &f) { |
1002 | 1003 |
return FunctorMap<F, typename F::argument_type, |
1003 | 1004 |
typename F::result_type>(f); |
1004 | 1005 |
} |
1005 | 1006 |
|
1006 | 1007 |
template <typename K, typename V> inline |
1007 | 1008 |
FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) { |
1008 | 1009 |
return FunctorMap<V (*)(K), K, V>(f); |
1009 | 1010 |
} |
1010 | 1011 |
|
1011 | 1012 |
|
1012 | 1013 |
///Converts a map to an STL style (unary) functor |
1013 | 1014 |
|
1014 | 1015 |
///This class Converts a map to an STL style (unary) functor. |
... | ... |
@@ -1195,197 +1196,199 @@ |
1195 | 1196 |
struct Identity { |
1196 | 1197 |
typedef Value argument_type; |
1197 | 1198 |
typedef Value result_type; |
1198 | 1199 |
Value operator()(const Value& val) const { |
1199 | 1200 |
return val; |
1200 | 1201 |
} |
1201 | 1202 |
}; |
1202 | 1203 |
|
1203 | 1204 |
template <typename _Iterator, typename Enable = void> |
1204 | 1205 |
struct IteratorTraits { |
1205 | 1206 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
1206 | 1207 |
}; |
1207 | 1208 |
|
1208 | 1209 |
template <typename _Iterator> |
1209 | 1210 |
struct IteratorTraits<_Iterator, |
1210 | 1211 |
typename exists<typename _Iterator::container_type>::type> |
1211 | 1212 |
{ |
1212 | 1213 |
typedef typename _Iterator::container_type::value_type Value; |
1213 | 1214 |
}; |
1214 | 1215 |
|
1215 | 1216 |
} |
1216 | 1217 |
|
1217 | 1218 |
|
1218 | 1219 |
/// \brief Writable bool map for logging each \c true assigned element |
1219 | 1220 |
/// |
1220 | 1221 |
/// Writable bool map for logging each \c true assigned element, i.e it |
1221 | 1222 |
/// copies all the keys set to \c true to the given iterator. |
1222 | 1223 |
/// |
1223 | 1224 |
/// \note The container of the iterator should contain space |
1224 | 1225 |
/// for each element. |
1225 | 1226 |
/// |
1226 | 1227 |
/// The following example shows how you can write the edges found by the Prim |
1227 | 1228 |
/// algorithm directly |
1228 | 1229 |
/// to the standard output. |
1229 | 1230 |
///\code |
1230 | 1231 |
/// typedef IdMap<Graph, Edge> EdgeIdMap; |
1231 | 1232 |
/// EdgeIdMap edgeId(graph); |
1232 | 1233 |
/// |
1233 | 1234 |
/// typedef MapFunctor<EdgeIdMap> EdgeIdFunctor; |
1234 | 1235 |
/// EdgeIdFunctor edgeIdFunctor(edgeId); |
1235 | 1236 |
/// |
1236 | 1237 |
/// StoreBoolMap<ostream_iterator<int>, EdgeIdFunctor> |
1237 | 1238 |
/// writerMap(ostream_iterator<int>(cout, " "), edgeIdFunctor); |
1238 | 1239 |
/// |
1239 | 1240 |
/// prim(graph, cost, writerMap); |
1240 | 1241 |
///\endcode |
1241 | 1242 |
/// |
1242 | 1243 |
///\sa BackInserterBoolMap |
1244 |
///\sa FrontInserterBoolMap |
|
1245 |
///\sa InserterBoolMap |
|
1243 | 1246 |
/// |
1244 | 1247 |
///\todo Revise the name of this class and the related ones. |
1245 | 1248 |
template <typename _Iterator, |
1246 | 1249 |
typename _Functor = |
1247 | 1250 |
_maps_bits::Identity<typename _maps_bits:: |
1248 | 1251 |
IteratorTraits<_Iterator>::Value> > |
1249 | 1252 |
class StoreBoolMap { |
1250 | 1253 |
public: |
1251 | 1254 |
typedef _Iterator Iterator; |
1252 | 1255 |
|
1253 | 1256 |
typedef typename _Functor::argument_type Key; |
1254 | 1257 |
typedef bool Value; |
1255 | 1258 |
|
1256 | 1259 |
typedef _Functor Functor; |
1257 | 1260 |
|
1258 | 1261 |
/// Constructor |
1259 | 1262 |
StoreBoolMap(Iterator it, const Functor& functor = Functor()) |
1260 | 1263 |
: _begin(it), _end(it), _functor(functor) {} |
1261 | 1264 |
|
1262 | 1265 |
/// Gives back the given iterator set for the first key |
1263 | 1266 |
Iterator begin() const { |
1264 | 1267 |
return _begin; |
1265 | 1268 |
} |
1266 | 1269 |
|
1267 | 1270 |
/// Gives back the the 'after the last' iterator |
1268 | 1271 |
Iterator end() const { |
1269 | 1272 |
return _end; |
1270 | 1273 |
} |
1271 | 1274 |
|
1272 | 1275 |
/// The \c set function of the map |
1273 | 1276 |
void set(const Key& key, Value value) const { |
1274 | 1277 |
if (value) { |
1275 | 1278 |
*_end++ = _functor(key); |
1276 | 1279 |
} |
1277 | 1280 |
} |
1278 | 1281 |
|
1279 | 1282 |
private: |
1280 | 1283 |
Iterator _begin; |
1281 | 1284 |
mutable Iterator _end; |
1282 | 1285 |
Functor _functor; |
1283 | 1286 |
}; |
1284 | 1287 |
|
1285 | 1288 |
/// \brief Writable bool map for logging each \c true assigned element in |
1286 | 1289 |
/// a back insertable container. |
1287 | 1290 |
/// |
1288 | 1291 |
/// Writable bool map for logging each \c true assigned element by pushing |
1289 | 1292 |
/// them into a back insertable container. |
1290 | 1293 |
/// It can be used to retrieve the items into a standard |
1291 | 1294 |
/// container. The next example shows how you can store the |
1292 | 1295 |
/// edges found by the Prim algorithm in a vector. |
1293 | 1296 |
/// |
1294 | 1297 |
///\code |
1295 | 1298 |
/// vector<Edge> span_tree_edges; |
1296 | 1299 |
/// BackInserterBoolMap<vector<Edge> > inserter_map(span_tree_edges); |
1297 | 1300 |
/// prim(graph, cost, inserter_map); |
1298 | 1301 |
///\endcode |
1299 | 1302 |
/// |
1300 | 1303 |
///\sa StoreBoolMap |
1301 | 1304 |
///\sa FrontInserterBoolMap |
1302 | 1305 |
///\sa InserterBoolMap |
1303 | 1306 |
template <typename Container, |
1304 | 1307 |
typename Functor = |
1305 | 1308 |
_maps_bits::Identity<typename Container::value_type> > |
1306 | 1309 |
class BackInserterBoolMap { |
1307 | 1310 |
public: |
1308 |
typedef typename |
|
1311 |
typedef typename Functor::argument_type Key; |
|
1309 | 1312 |
typedef bool Value; |
1310 | 1313 |
|
1311 | 1314 |
/// Constructor |
1312 | 1315 |
BackInserterBoolMap(Container& _container, |
1313 | 1316 |
const Functor& _functor = Functor()) |
1314 | 1317 |
: container(_container), functor(_functor) {} |
1315 | 1318 |
|
1316 | 1319 |
/// The \c set function of the map |
1317 | 1320 |
void set(const Key& key, Value value) { |
1318 | 1321 |
if (value) { |
1319 | 1322 |
container.push_back(functor(key)); |
1320 | 1323 |
} |
1321 | 1324 |
} |
1322 | 1325 |
|
1323 | 1326 |
private: |
1324 | 1327 |
Container& container; |
1325 | 1328 |
Functor functor; |
1326 | 1329 |
}; |
1327 | 1330 |
|
1328 | 1331 |
/// \brief Writable bool map for logging each \c true assigned element in |
1329 | 1332 |
/// a front insertable container. |
1330 | 1333 |
/// |
1331 | 1334 |
/// Writable bool map for logging each \c true assigned element by pushing |
1332 | 1335 |
/// them into a front insertable container. |
1333 | 1336 |
/// It can be used to retrieve the items into a standard |
1334 | 1337 |
/// container. For example see \ref BackInserterBoolMap. |
1335 | 1338 |
/// |
1336 | 1339 |
///\sa BackInserterBoolMap |
1337 | 1340 |
///\sa InserterBoolMap |
1338 | 1341 |
template <typename Container, |
1339 | 1342 |
typename Functor = |
1340 | 1343 |
_maps_bits::Identity<typename Container::value_type> > |
1341 | 1344 |
class FrontInserterBoolMap { |
1342 | 1345 |
public: |
1343 |
typedef typename |
|
1346 |
typedef typename Functor::argument_type Key; |
|
1344 | 1347 |
typedef bool Value; |
1345 | 1348 |
|
1346 | 1349 |
/// Constructor |
1347 | 1350 |
FrontInserterBoolMap(Container& _container, |
1348 | 1351 |
const Functor& _functor = Functor()) |
1349 | 1352 |
: container(_container), functor(_functor) {} |
1350 | 1353 |
|
1351 | 1354 |
/// The \c set function of the map |
1352 | 1355 |
void set(const Key& key, Value value) { |
1353 | 1356 |
if (value) { |
1354 | 1357 |
container.push_front(functor(key)); |
1355 | 1358 |
} |
1356 | 1359 |
} |
1357 | 1360 |
|
1358 | 1361 |
private: |
1359 | 1362 |
Container& container; |
1360 | 1363 |
Functor functor; |
1361 | 1364 |
}; |
1362 | 1365 |
|
1363 | 1366 |
/// \brief Writable bool map for storing each \c true assigned element in |
1364 | 1367 |
/// an insertable container. |
1365 | 1368 |
/// |
1366 | 1369 |
/// Writable bool map for storing each \c true assigned element in an |
1367 | 1370 |
/// insertable container. It will insert all the keys set to \c true into |
1368 | 1371 |
/// the container. |
1369 | 1372 |
/// |
1370 | 1373 |
/// For example, if you want to store the cut arcs of the strongly |
1371 | 1374 |
/// connected components in a set you can use the next code: |
1372 | 1375 |
/// |
1373 | 1376 |
///\code |
1374 | 1377 |
/// set<Arc> cut_arcs; |
1375 | 1378 |
/// InserterBoolMap<set<Arc> > inserter_map(cut_arcs); |
1376 | 1379 |
/// stronglyConnectedCutArcs(digraph, cost, inserter_map); |
1377 | 1380 |
///\endcode |
1378 | 1381 |
/// |
1379 | 1382 |
///\sa BackInserterBoolMap |
1380 | 1383 |
///\sa FrontInserterBoolMap |
1381 | 1384 |
template <typename Container, |
1382 | 1385 |
typename Functor = |
1383 | 1386 |
_maps_bits::Identity<typename Container::value_type> > |
1384 | 1387 |
class InserterBoolMap { |
1385 | 1388 |
public: |
1386 | 1389 |
typedef typename Container::value_type Key; |
1387 | 1390 |
typedef bool Value; |
1388 | 1391 |
|
1389 | 1392 |
/// Constructor with specified iterator |
1390 | 1393 |
|
1391 | 1394 |
/// Constructor with specified iterator. |
0 comments (0 inline)