0
6
2
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_FRACTIONAL_MATCHING_H |
|
20 |
#define LEMON_FRACTIONAL_MATCHING_H |
|
21 |
|
|
22 |
#include <vector> |
|
23 |
#include <queue> |
|
24 |
#include <set> |
|
25 |
#include <limits> |
|
26 |
|
|
27 |
#include <lemon/core.h> |
|
28 |
#include <lemon/unionfind.h> |
|
29 |
#include <lemon/bin_heap.h> |
|
30 |
#include <lemon/maps.h> |
|
31 |
#include <lemon/assert.h> |
|
32 |
#include <lemon/elevator.h> |
|
33 |
|
|
34 |
///\ingroup matching |
|
35 |
///\file |
|
36 |
///\brief Fractional matching algorithms in general graphs. |
|
37 |
|
|
38 |
namespace lemon { |
|
39 |
|
|
40 |
/// \brief Default traits class of MaxFractionalMatching class. |
|
41 |
/// |
|
42 |
/// Default traits class of MaxFractionalMatching class. |
|
43 |
/// \tparam GR Graph type. |
|
44 |
template <typename GR> |
|
45 |
struct MaxFractionalMatchingDefaultTraits { |
|
46 |
|
|
47 |
/// \brief The type of the graph the algorithm runs on. |
|
48 |
typedef GR Graph; |
|
49 |
|
|
50 |
/// \brief The type of the map that stores the matching. |
|
51 |
/// |
|
52 |
/// The type of the map that stores the matching arcs. |
|
53 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
54 |
typedef typename Graph::template NodeMap<typename GR::Arc> MatchingMap; |
|
55 |
|
|
56 |
/// \brief Instantiates a MatchingMap. |
|
57 |
/// |
|
58 |
/// This function instantiates a \ref MatchingMap. |
|
59 |
/// \param graph The graph for which we would like to define |
|
60 |
/// the matching map. |
|
61 |
static MatchingMap* createMatchingMap(const Graph& graph) { |
|
62 |
return new MatchingMap(graph); |
|
63 |
} |
|
64 |
|
|
65 |
/// \brief The elevator type used by MaxFractionalMatching algorithm. |
|
66 |
/// |
|
67 |
/// The elevator type used by MaxFractionalMatching algorithm. |
|
68 |
/// |
|
69 |
/// \sa Elevator |
|
70 |
/// \sa LinkedElevator |
|
71 |
typedef LinkedElevator<Graph, typename Graph::Node> Elevator; |
|
72 |
|
|
73 |
/// \brief Instantiates an Elevator. |
|
74 |
/// |
|
75 |
/// This function instantiates an \ref Elevator. |
|
76 |
/// \param graph The graph for which we would like to define |
|
77 |
/// the elevator. |
|
78 |
/// \param max_level The maximum level of the elevator. |
|
79 |
static Elevator* createElevator(const Graph& graph, int max_level) { |
|
80 |
return new Elevator(graph, max_level); |
|
81 |
} |
|
82 |
}; |
|
83 |
|
|
84 |
/// \ingroup matching |
|
85 |
/// |
|
86 |
/// \brief Max cardinality fractional matching |
|
87 |
/// |
|
88 |
/// This class provides an implementation of fractional matching |
|
89 |
/// algorithm based on push-relabel principle. |
|
90 |
/// |
|
91 |
/// The maximum cardinality fractional matching is a relaxation of the |
|
92 |
/// maximum cardinality matching problem where the odd set constraints |
|
93 |
/// are omitted. |
|
94 |
/// It can be formulated with the following linear program. |
|
95 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f] |
|
96 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
|
97 |
/// \f[\max \sum_{e\in E}x_e\f] |
|
98 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
|
99 |
/// \f$X\f$. The result can be represented as the union of a |
|
100 |
/// matching with one value edges and a set of odd length cycles |
|
101 |
/// with half value edges. |
|
102 |
/// |
|
103 |
/// The algorithm calculates an optimal fractional matching and a |
|
104 |
/// barrier. The number of adjacents of any node set minus the size |
|
105 |
/// of node set is a lower bound on the uncovered nodes in the |
|
106 |
/// graph. For maximum matching a barrier is computed which |
|
107 |
/// maximizes this difference. |
|
108 |
/// |
|
109 |
/// The algorithm can be executed with the run() function. After it |
|
110 |
/// the matching (the primal solution) and the barrier (the dual |
|
111 |
/// solution) can be obtained using the query functions. |
|
112 |
/// |
|
113 |
/// The primal solution is multiplied by |
|
114 |
/// \ref MaxFractionalMatching::primalScale "2". |
|
115 |
/// |
|
116 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
117 |
#ifdef DOXYGEN |
|
118 |
template <typename GR, typename TR> |
|
119 |
#else |
|
120 |
template <typename GR, |
|
121 |
typename TR = MaxFractionalMatchingDefaultTraits<GR> > |
|
122 |
#endif |
|
123 |
class MaxFractionalMatching { |
|
124 |
public: |
|
125 |
|
|
126 |
/// \brief The \ref MaxFractionalMatchingDefaultTraits "traits |
|
127 |
/// class" of the algorithm. |
|
128 |
typedef TR Traits; |
|
129 |
/// The type of the graph the algorithm runs on. |
|
130 |
typedef typename TR::Graph Graph; |
|
131 |
/// The type of the matching map. |
|
132 |
typedef typename TR::MatchingMap MatchingMap; |
|
133 |
/// The type of the elevator. |
|
134 |
typedef typename TR::Elevator Elevator; |
|
135 |
|
|
136 |
/// \brief Scaling factor for primal solution |
|
137 |
/// |
|
138 |
/// Scaling factor for primal solution. |
|
139 |
static const int primalScale = 2; |
|
140 |
|
|
141 |
private: |
|
142 |
|
|
143 |
const Graph &_graph; |
|
144 |
int _node_num; |
|
145 |
bool _allow_loops; |
|
146 |
int _empty_level; |
|
147 |
|
|
148 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
149 |
|
|
150 |
bool _local_matching; |
|
151 |
MatchingMap *_matching; |
|
152 |
|
|
153 |
bool _local_level; |
|
154 |
Elevator *_level; |
|
155 |
|
|
156 |
typedef typename Graph::template NodeMap<int> InDegMap; |
|
157 |
InDegMap *_indeg; |
|
158 |
|
|
159 |
void createStructures() { |
|
160 |
_node_num = countNodes(_graph); |
|
161 |
|
|
162 |
if (!_matching) { |
|
163 |
_local_matching = true; |
|
164 |
_matching = Traits::createMatchingMap(_graph); |
|
165 |
} |
|
166 |
if (!_level) { |
|
167 |
_local_level = true; |
|
168 |
_level = Traits::createElevator(_graph, _node_num); |
|
169 |
} |
|
170 |
if (!_indeg) { |
|
171 |
_indeg = new InDegMap(_graph); |
|
172 |
} |
|
173 |
} |
|
174 |
|
|
175 |
void destroyStructures() { |
|
176 |
if (_local_matching) { |
|
177 |
delete _matching; |
|
178 |
} |
|
179 |
if (_local_level) { |
|
180 |
delete _level; |
|
181 |
} |
|
182 |
if (_indeg) { |
|
183 |
delete _indeg; |
|
184 |
} |
|
185 |
} |
|
186 |
|
|
187 |
void postprocessing() { |
|
188 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
189 |
if ((*_indeg)[n] != 0) continue; |
|
190 |
_indeg->set(n, -1); |
|
191 |
Node u = n; |
|
192 |
while ((*_matching)[u] != INVALID) { |
|
193 |
Node v = _graph.target((*_matching)[u]); |
|
194 |
_indeg->set(v, -1); |
|
195 |
Arc a = _graph.oppositeArc((*_matching)[u]); |
|
196 |
u = _graph.target((*_matching)[v]); |
|
197 |
_indeg->set(u, -1); |
|
198 |
_matching->set(v, a); |
|
199 |
} |
|
200 |
} |
|
201 |
|
|
202 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
203 |
if ((*_indeg)[n] != 1) continue; |
|
204 |
_indeg->set(n, -1); |
|
205 |
|
|
206 |
int num = 1; |
|
207 |
Node u = _graph.target((*_matching)[n]); |
|
208 |
while (u != n) { |
|
209 |
_indeg->set(u, -1); |
|
210 |
u = _graph.target((*_matching)[u]); |
|
211 |
++num; |
|
212 |
} |
|
213 |
if (num % 2 == 0 && num > 2) { |
|
214 |
Arc prev = _graph.oppositeArc((*_matching)[n]); |
|
215 |
Node v = _graph.target((*_matching)[n]); |
|
216 |
u = _graph.target((*_matching)[v]); |
|
217 |
_matching->set(v, prev); |
|
218 |
while (u != n) { |
|
219 |
prev = _graph.oppositeArc((*_matching)[u]); |
|
220 |
v = _graph.target((*_matching)[u]); |
|
221 |
u = _graph.target((*_matching)[v]); |
|
222 |
_matching->set(v, prev); |
|
223 |
} |
|
224 |
} |
|
225 |
} |
|
226 |
} |
|
227 |
|
|
228 |
public: |
|
229 |
|
|
230 |
typedef MaxFractionalMatching Create; |
|
231 |
|
|
232 |
///\name Named Template Parameters |
|
233 |
|
|
234 |
///@{ |
|
235 |
|
|
236 |
template <typename T> |
|
237 |
struct SetMatchingMapTraits : public Traits { |
|
238 |
typedef T MatchingMap; |
|
239 |
static MatchingMap *createMatchingMap(const Graph&) { |
|
240 |
LEMON_ASSERT(false, "MatchingMap is not initialized"); |
|
241 |
return 0; // ignore warnings |
|
242 |
} |
|
243 |
}; |
|
244 |
|
|
245 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
246 |
/// MatchingMap type |
|
247 |
/// |
|
248 |
/// \ref named-templ-param "Named parameter" for setting MatchingMap |
|
249 |
/// type. |
|
250 |
template <typename T> |
|
251 |
struct SetMatchingMap |
|
252 |
: public MaxFractionalMatching<Graph, SetMatchingMapTraits<T> > { |
|
253 |
typedef MaxFractionalMatching<Graph, SetMatchingMapTraits<T> > Create; |
|
254 |
}; |
|
255 |
|
|
256 |
template <typename T> |
|
257 |
struct SetElevatorTraits : public Traits { |
|
258 |
typedef T Elevator; |
|
259 |
static Elevator *createElevator(const Graph&, int) { |
|
260 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
|
261 |
return 0; // ignore warnings |
|
262 |
} |
|
263 |
}; |
|
264 |
|
|
265 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
266 |
/// Elevator type |
|
267 |
/// |
|
268 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
|
269 |
/// type. If this named parameter is used, then an external |
|
270 |
/// elevator object must be passed to the algorithm using the |
|
271 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
|
272 |
/// \ref run() or \ref init(). |
|
273 |
/// \sa SetStandardElevator |
|
274 |
template <typename T> |
|
275 |
struct SetElevator |
|
276 |
: public MaxFractionalMatching<Graph, SetElevatorTraits<T> > { |
|
277 |
typedef MaxFractionalMatching<Graph, SetElevatorTraits<T> > Create; |
|
278 |
}; |
|
279 |
|
|
280 |
template <typename T> |
|
281 |
struct SetStandardElevatorTraits : public Traits { |
|
282 |
typedef T Elevator; |
|
283 |
static Elevator *createElevator(const Graph& graph, int max_level) { |
|
284 |
return new Elevator(graph, max_level); |
|
285 |
} |
|
286 |
}; |
|
287 |
|
|
288 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
289 |
/// Elevator type with automatic allocation |
|
290 |
/// |
|
291 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
|
292 |
/// type with automatic allocation. |
|
293 |
/// The Elevator should have standard constructor interface to be |
|
294 |
/// able to automatically created by the algorithm (i.e. the |
|
295 |
/// graph and the maximum level should be passed to it). |
|
296 |
/// However an external elevator object could also be passed to the |
|
297 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
|
298 |
/// before calling \ref run() or \ref init(). |
|
299 |
/// \sa SetElevator |
|
300 |
template <typename T> |
|
301 |
struct SetStandardElevator |
|
302 |
: public MaxFractionalMatching<Graph, SetStandardElevatorTraits<T> > { |
|
303 |
typedef MaxFractionalMatching<Graph, |
|
304 |
SetStandardElevatorTraits<T> > Create; |
|
305 |
}; |
|
306 |
|
|
307 |
/// @} |
|
308 |
|
|
309 |
protected: |
|
310 |
|
|
311 |
MaxFractionalMatching() {} |
|
312 |
|
|
313 |
public: |
|
314 |
|
|
315 |
/// \brief Constructor |
|
316 |
/// |
|
317 |
/// Constructor. |
|
318 |
/// |
|
319 |
MaxFractionalMatching(const Graph &graph, bool allow_loops = true) |
|
320 |
: _graph(graph), _allow_loops(allow_loops), |
|
321 |
_local_matching(false), _matching(0), |
|
322 |
_local_level(false), _level(0), _indeg(0) |
|
323 |
{} |
|
324 |
|
|
325 |
~MaxFractionalMatching() { |
|
326 |
destroyStructures(); |
|
327 |
} |
|
328 |
|
|
329 |
/// \brief Sets the matching map. |
|
330 |
/// |
|
331 |
/// Sets the matching map. |
|
332 |
/// If you don't use this function before calling \ref run() or |
|
333 |
/// \ref init(), an instance will be allocated automatically. |
|
334 |
/// The destructor deallocates this automatically allocated map, |
|
335 |
/// of course. |
|
336 |
/// \return <tt>(*this)</tt> |
|
337 |
MaxFractionalMatching& matchingMap(MatchingMap& map) { |
|
338 |
if (_local_matching) { |
|
339 |
delete _matching; |
|
340 |
_local_matching = false; |
|
341 |
} |
|
342 |
_matching = ↦ |
|
343 |
return *this; |
|
344 |
} |
|
345 |
|
|
346 |
/// \brief Sets the elevator used by algorithm. |
|
347 |
/// |
|
348 |
/// Sets the elevator used by algorithm. |
|
349 |
/// If you don't use this function before calling \ref run() or |
|
350 |
/// \ref init(), an instance will be allocated automatically. |
|
351 |
/// The destructor deallocates this automatically allocated elevator, |
|
352 |
/// of course. |
|
353 |
/// \return <tt>(*this)</tt> |
|
354 |
MaxFractionalMatching& elevator(Elevator& elevator) { |
|
355 |
if (_local_level) { |
|
356 |
delete _level; |
|
357 |
_local_level = false; |
|
358 |
} |
|
359 |
_level = &elevator; |
|
360 |
return *this; |
|
361 |
} |
|
362 |
|
|
363 |
/// \brief Returns a const reference to the elevator. |
|
364 |
/// |
|
365 |
/// Returns a const reference to the elevator. |
|
366 |
/// |
|
367 |
/// \pre Either \ref run() or \ref init() must be called before |
|
368 |
/// using this function. |
|
369 |
const Elevator& elevator() const { |
|
370 |
return *_level; |
|
371 |
} |
|
372 |
|
|
373 |
/// \name Execution control |
|
374 |
/// The simplest way to execute the algorithm is to use one of the |
|
375 |
/// member functions called \c run(). \n |
|
376 |
/// If you need more control on the execution, first |
|
377 |
/// you must call \ref init() and then one variant of the start() |
|
378 |
/// member. |
|
379 |
|
|
380 |
/// @{ |
|
381 |
|
|
382 |
/// \brief Initializes the internal data structures. |
|
383 |
/// |
|
384 |
/// Initializes the internal data structures and sets the initial |
|
385 |
/// matching. |
|
386 |
void init() { |
|
387 |
createStructures(); |
|
388 |
|
|
389 |
_level->initStart(); |
|
390 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
391 |
_indeg->set(n, 0); |
|
392 |
_matching->set(n, INVALID); |
|
393 |
_level->initAddItem(n); |
|
394 |
} |
|
395 |
_level->initFinish(); |
|
396 |
|
|
397 |
_empty_level = _node_num; |
|
398 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
399 |
for (OutArcIt a(_graph, n); a != INVALID; ++a) { |
|
400 |
if (_graph.target(a) == n && !_allow_loops) continue; |
|
401 |
_matching->set(n, a); |
|
402 |
Node v = _graph.target((*_matching)[n]); |
|
403 |
_indeg->set(v, (*_indeg)[v] + 1); |
|
404 |
break; |
|
405 |
} |
|
406 |
} |
|
407 |
|
|
408 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
409 |
if ((*_indeg)[n] == 0) { |
|
410 |
_level->activate(n); |
|
411 |
} |
|
412 |
} |
|
413 |
} |
|
414 |
|
|
415 |
/// \brief Starts the algorithm and computes a fractional matching |
|
416 |
/// |
|
417 |
/// The algorithm computes a maximum fractional matching. |
|
418 |
/// |
|
419 |
/// \param postprocess The algorithm computes first a matching |
|
420 |
/// which is a union of a matching with one value edges, cycles |
|
421 |
/// with half value edges and even length paths with half value |
|
422 |
/// edges. If the parameter is true, then after the push-relabel |
|
423 |
/// algorithm it postprocesses the matching to contain only |
|
424 |
/// matching edges and half value odd cycles. |
|
425 |
void start(bool postprocess = true) { |
|
426 |
Node n; |
|
427 |
while ((n = _level->highestActive()) != INVALID) { |
|
428 |
int level = _level->highestActiveLevel(); |
|
429 |
int new_level = _level->maxLevel(); |
|
430 |
for (InArcIt a(_graph, n); a != INVALID; ++a) { |
|
431 |
Node u = _graph.source(a); |
|
432 |
if (n == u && !_allow_loops) continue; |
|
433 |
Node v = _graph.target((*_matching)[u]); |
|
434 |
if ((*_level)[v] < level) { |
|
435 |
_indeg->set(v, (*_indeg)[v] - 1); |
|
436 |
if ((*_indeg)[v] == 0) { |
|
437 |
_level->activate(v); |
|
438 |
} |
|
439 |
_matching->set(u, a); |
|
440 |
_indeg->set(n, (*_indeg)[n] + 1); |
|
441 |
_level->deactivate(n); |
|
442 |
goto no_more_push; |
|
443 |
} else if (new_level > (*_level)[v]) { |
|
444 |
new_level = (*_level)[v]; |
|
445 |
} |
|
446 |
} |
|
447 |
|
|
448 |
if (new_level + 1 < _level->maxLevel()) { |
|
449 |
_level->liftHighestActive(new_level + 1); |
|
450 |
} else { |
|
451 |
_level->liftHighestActiveToTop(); |
|
452 |
} |
|
453 |
if (_level->emptyLevel(level)) { |
|
454 |
_level->liftToTop(level); |
|
455 |
} |
|
456 |
no_more_push: |
|
457 |
; |
|
458 |
} |
|
459 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
460 |
if ((*_matching)[n] == INVALID) continue; |
|
461 |
Node u = _graph.target((*_matching)[n]); |
|
462 |
if ((*_indeg)[u] > 1) { |
|
463 |
_indeg->set(u, (*_indeg)[u] - 1); |
|
464 |
_matching->set(n, INVALID); |
|
465 |
} |
|
466 |
} |
|
467 |
if (postprocess) { |
|
468 |
postprocessing(); |
|
469 |
} |
|
470 |
} |
|
471 |
|
|
472 |
/// \brief Starts the algorithm and computes a perfect fractional |
|
473 |
/// matching |
|
474 |
/// |
|
475 |
/// The algorithm computes a perfect fractional matching. If it |
|
476 |
/// does not exists, then the algorithm returns false and the |
|
477 |
/// matching is undefined and the barrier. |
|
478 |
/// |
|
479 |
/// \param postprocess The algorithm computes first a matching |
|
480 |
/// which is a union of a matching with one value edges, cycles |
|
481 |
/// with half value edges and even length paths with half value |
|
482 |
/// edges. If the parameter is true, then after the push-relabel |
|
483 |
/// algorithm it postprocesses the matching to contain only |
|
484 |
/// matching edges and half value odd cycles. |
|
485 |
bool startPerfect(bool postprocess = true) { |
|
486 |
Node n; |
|
487 |
while ((n = _level->highestActive()) != INVALID) { |
|
488 |
int level = _level->highestActiveLevel(); |
|
489 |
int new_level = _level->maxLevel(); |
|
490 |
for (InArcIt a(_graph, n); a != INVALID; ++a) { |
|
491 |
Node u = _graph.source(a); |
|
492 |
if (n == u && !_allow_loops) continue; |
|
493 |
Node v = _graph.target((*_matching)[u]); |
|
494 |
if ((*_level)[v] < level) { |
|
495 |
_indeg->set(v, (*_indeg)[v] - 1); |
|
496 |
if ((*_indeg)[v] == 0) { |
|
497 |
_level->activate(v); |
|
498 |
} |
|
499 |
_matching->set(u, a); |
|
500 |
_indeg->set(n, (*_indeg)[n] + 1); |
|
501 |
_level->deactivate(n); |
|
502 |
goto no_more_push; |
|
503 |
} else if (new_level > (*_level)[v]) { |
|
504 |
new_level = (*_level)[v]; |
|
505 |
} |
|
506 |
} |
|
507 |
|
|
508 |
if (new_level + 1 < _level->maxLevel()) { |
|
509 |
_level->liftHighestActive(new_level + 1); |
|
510 |
} else { |
|
511 |
_level->liftHighestActiveToTop(); |
|
512 |
_empty_level = _level->maxLevel() - 1; |
|
513 |
return false; |
|
514 |
} |
|
515 |
if (_level->emptyLevel(level)) { |
|
516 |
_level->liftToTop(level); |
|
517 |
_empty_level = level; |
|
518 |
return false; |
|
519 |
} |
|
520 |
no_more_push: |
|
521 |
; |
|
522 |
} |
|
523 |
if (postprocess) { |
|
524 |
postprocessing(); |
|
525 |
} |
|
526 |
return true; |
|
527 |
} |
|
528 |
|
|
529 |
/// \brief Runs the algorithm |
|
530 |
/// |
|
531 |
/// Just a shortcut for the next code: |
|
532 |
///\code |
|
533 |
/// init(); |
|
534 |
/// start(); |
|
535 |
///\endcode |
|
536 |
void run(bool postprocess = true) { |
|
537 |
init(); |
|
538 |
start(postprocess); |
|
539 |
} |
|
540 |
|
|
541 |
/// \brief Runs the algorithm to find a perfect fractional matching |
|
542 |
/// |
|
543 |
/// Just a shortcut for the next code: |
|
544 |
///\code |
|
545 |
/// init(); |
|
546 |
/// startPerfect(); |
|
547 |
///\endcode |
|
548 |
bool runPerfect(bool postprocess = true) { |
|
549 |
init(); |
|
550 |
return startPerfect(postprocess); |
|
551 |
} |
|
552 |
|
|
553 |
///@} |
|
554 |
|
|
555 |
/// \name Query Functions |
|
556 |
/// The result of the %Matching algorithm can be obtained using these |
|
557 |
/// functions.\n |
|
558 |
/// Before the use of these functions, |
|
559 |
/// either run() or start() must be called. |
|
560 |
///@{ |
|
561 |
|
|
562 |
|
|
563 |
/// \brief Return the number of covered nodes in the matching. |
|
564 |
/// |
|
565 |
/// This function returns the number of covered nodes in the matching. |
|
566 |
/// |
|
567 |
/// \pre Either run() or start() must be called before using this function. |
|
568 |
int matchingSize() const { |
|
569 |
int num = 0; |
|
570 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
571 |
if ((*_matching)[n] != INVALID) { |
|
572 |
++num; |
|
573 |
} |
|
574 |
} |
|
575 |
return num; |
|
576 |
} |
|
577 |
|
|
578 |
/// \brief Returns a const reference to the matching map. |
|
579 |
/// |
|
580 |
/// Returns a const reference to the node map storing the found |
|
581 |
/// fractional matching. This method can be called after |
|
582 |
/// running the algorithm. |
|
583 |
/// |
|
584 |
/// \pre Either \ref run() or \ref init() must be called before |
|
585 |
/// using this function. |
|
586 |
const MatchingMap& matchingMap() const { |
|
587 |
return *_matching; |
|
588 |
} |
|
589 |
|
|
590 |
/// \brief Return \c true if the given edge is in the matching. |
|
591 |
/// |
|
592 |
/// This function returns \c true if the given edge is in the |
|
593 |
/// found matching. The result is scaled by \ref primalScale |
|
594 |
/// "primal scale". |
|
595 |
/// |
|
596 |
/// \pre Either run() or start() must be called before using this function. |
|
597 |
int matching(const Edge& edge) const { |
|
598 |
return (edge == (*_matching)[_graph.u(edge)] ? 1 : 0) + |
|
599 |
(edge == (*_matching)[_graph.v(edge)] ? 1 : 0); |
|
600 |
} |
|
601 |
|
|
602 |
/// \brief Return the fractional matching arc (or edge) incident |
|
603 |
/// to the given node. |
|
604 |
/// |
|
605 |
/// This function returns one of the fractional matching arc (or |
|
606 |
/// edge) incident to the given node in the found matching or \c |
|
607 |
/// INVALID if the node is not covered by the matching or if the |
|
608 |
/// node is on an odd length cycle then it is the successor edge |
|
609 |
/// on the cycle. |
|
610 |
/// |
|
611 |
/// \pre Either run() or start() must be called before using this function. |
|
612 |
Arc matching(const Node& node) const { |
|
613 |
return (*_matching)[node]; |
|
614 |
} |
|
615 |
|
|
616 |
/// \brief Returns true if the node is in the barrier |
|
617 |
/// |
|
618 |
/// The barrier is a subset of the nodes. If the nodes in the |
|
619 |
/// barrier have less adjacent nodes than the size of the barrier, |
|
620 |
/// then at least as much nodes cannot be covered as the |
|
621 |
/// difference of the two subsets. |
|
622 |
bool barrier(const Node& node) const { |
|
623 |
return (*_level)[node] >= _empty_level; |
|
624 |
} |
|
625 |
|
|
626 |
/// @} |
|
627 |
|
|
628 |
}; |
|
629 |
|
|
630 |
/// \ingroup matching |
|
631 |
/// |
|
632 |
/// \brief Weighted fractional matching in general graphs |
|
633 |
/// |
|
634 |
/// This class provides an efficient implementation of fractional |
|
635 |
/// matching algorithm. The implementation uses priority queues and |
|
636 |
/// provides \f$O(nm\log n)\f$ time complexity. |
|
637 |
/// |
|
638 |
/// The maximum weighted fractional matching is a relaxation of the |
|
639 |
/// maximum weighted matching problem where the odd set constraints |
|
640 |
/// are omitted. |
|
641 |
/// It can be formulated with the following linear program. |
|
642 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f] |
|
643 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
|
644 |
/// \f[\max \sum_{e\in E}x_ew_e\f] |
|
645 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
|
646 |
/// \f$X\f$. The result must be the union of a matching with one |
|
647 |
/// value edges and a set of odd length cycles with half value edges. |
|
648 |
/// |
|
649 |
/// The algorithm calculates an optimal fractional matching and a |
|
650 |
/// proof of the optimality. The solution of the dual problem can be |
|
651 |
/// used to check the result of the algorithm. The dual linear |
|
652 |
/// problem is the following. |
|
653 |
/// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f] |
|
654 |
/// \f[y_u \ge 0 \quad \forall u \in V\f] |
|
655 |
/// \f[\min \sum_{u \in V}y_u \f] |
|
656 |
/// |
|
657 |
/// The algorithm can be executed with the run() function. |
|
658 |
/// After it the matching (the primal solution) and the dual solution |
|
659 |
/// can be obtained using the query functions. |
|
660 |
/// |
|
661 |
/// The primal solution is multiplied by |
|
662 |
/// \ref MaxWeightedFractionalMatching::primalScale "2". |
|
663 |
/// If the value type is integer, then the dual |
|
664 |
/// solution is scaled by |
|
665 |
/// \ref MaxWeightedFractionalMatching::dualScale "4". |
|
666 |
/// |
|
667 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
668 |
/// \tparam WM The type edge weight map. The default type is |
|
669 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
|
670 |
#ifdef DOXYGEN |
|
671 |
template <typename GR, typename WM> |
|
672 |
#else |
|
673 |
template <typename GR, |
|
674 |
typename WM = typename GR::template EdgeMap<int> > |
|
675 |
#endif |
|
676 |
class MaxWeightedFractionalMatching { |
|
677 |
public: |
|
678 |
|
|
679 |
/// The graph type of the algorithm |
|
680 |
typedef GR Graph; |
|
681 |
/// The type of the edge weight map |
|
682 |
typedef WM WeightMap; |
|
683 |
/// The value type of the edge weights |
|
684 |
typedef typename WeightMap::Value Value; |
|
685 |
|
|
686 |
/// The type of the matching map |
|
687 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
|
688 |
MatchingMap; |
|
689 |
|
|
690 |
/// \brief Scaling factor for primal solution |
|
691 |
/// |
|
692 |
/// Scaling factor for primal solution. |
|
693 |
static const int primalScale = 2; |
|
694 |
|
|
695 |
/// \brief Scaling factor for dual solution |
|
696 |
/// |
|
697 |
/// Scaling factor for dual solution. It is equal to 4 or 1 |
|
698 |
/// according to the value type. |
|
699 |
static const int dualScale = |
|
700 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
|
701 |
|
|
702 |
private: |
|
703 |
|
|
704 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
705 |
|
|
706 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
|
707 |
|
|
708 |
const Graph& _graph; |
|
709 |
const WeightMap& _weight; |
|
710 |
|
|
711 |
MatchingMap* _matching; |
|
712 |
NodePotential* _node_potential; |
|
713 |
|
|
714 |
int _node_num; |
|
715 |
bool _allow_loops; |
|
716 |
|
|
717 |
enum Status { |
|
718 |
EVEN = -1, MATCHED = 0, ODD = 1 |
|
719 |
}; |
|
720 |
|
|
721 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
|
722 |
StatusMap* _status; |
|
723 |
|
|
724 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
|
725 |
PredMap* _pred; |
|
726 |
|
|
727 |
typedef ExtendFindEnum<IntNodeMap> TreeSet; |
|
728 |
|
|
729 |
IntNodeMap *_tree_set_index; |
|
730 |
TreeSet *_tree_set; |
|
731 |
|
|
732 |
IntNodeMap *_delta1_index; |
|
733 |
BinHeap<Value, IntNodeMap> *_delta1; |
|
734 |
|
|
735 |
IntNodeMap *_delta2_index; |
|
736 |
BinHeap<Value, IntNodeMap> *_delta2; |
|
737 |
|
|
738 |
IntEdgeMap *_delta3_index; |
|
739 |
BinHeap<Value, IntEdgeMap> *_delta3; |
|
740 |
|
|
741 |
Value _delta_sum; |
|
742 |
|
|
743 |
void createStructures() { |
|
744 |
_node_num = countNodes(_graph); |
|
745 |
|
|
746 |
if (!_matching) { |
|
747 |
_matching = new MatchingMap(_graph); |
|
748 |
} |
|
749 |
if (!_node_potential) { |
|
750 |
_node_potential = new NodePotential(_graph); |
|
751 |
} |
|
752 |
if (!_status) { |
|
753 |
_status = new StatusMap(_graph); |
|
754 |
} |
|
755 |
if (!_pred) { |
|
756 |
_pred = new PredMap(_graph); |
|
757 |
} |
|
758 |
if (!_tree_set) { |
|
759 |
_tree_set_index = new IntNodeMap(_graph); |
|
760 |
_tree_set = new TreeSet(*_tree_set_index); |
|
761 |
} |
|
762 |
if (!_delta1) { |
|
763 |
_delta1_index = new IntNodeMap(_graph); |
|
764 |
_delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index); |
|
765 |
} |
|
766 |
if (!_delta2) { |
|
767 |
_delta2_index = new IntNodeMap(_graph); |
|
768 |
_delta2 = new BinHeap<Value, IntNodeMap>(*_delta2_index); |
|
769 |
} |
|
770 |
if (!_delta3) { |
|
771 |
_delta3_index = new IntEdgeMap(_graph); |
|
772 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
|
773 |
} |
|
774 |
} |
|
775 |
|
|
776 |
void destroyStructures() { |
|
777 |
if (_matching) { |
|
778 |
delete _matching; |
|
779 |
} |
|
780 |
if (_node_potential) { |
|
781 |
delete _node_potential; |
|
782 |
} |
|
783 |
if (_status) { |
|
784 |
delete _status; |
|
785 |
} |
|
786 |
if (_pred) { |
|
787 |
delete _pred; |
|
788 |
} |
|
789 |
if (_tree_set) { |
|
790 |
delete _tree_set_index; |
|
791 |
delete _tree_set; |
|
792 |
} |
|
793 |
if (_delta1) { |
|
794 |
delete _delta1_index; |
|
795 |
delete _delta1; |
|
796 |
} |
|
797 |
if (_delta2) { |
|
798 |
delete _delta2_index; |
|
799 |
delete _delta2; |
|
800 |
} |
|
801 |
if (_delta3) { |
|
802 |
delete _delta3_index; |
|
803 |
delete _delta3; |
|
804 |
} |
|
805 |
} |
|
806 |
|
|
807 |
void matchedToEven(Node node, int tree) { |
|
808 |
_tree_set->insert(node, tree); |
|
809 |
_node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
|
810 |
_delta1->push(node, (*_node_potential)[node]); |
|
811 |
|
|
812 |
if (_delta2->state(node) == _delta2->IN_HEAP) { |
|
813 |
_delta2->erase(node); |
|
814 |
} |
|
815 |
|
|
816 |
for (InArcIt a(_graph, node); a != INVALID; ++a) { |
|
817 |
Node v = _graph.source(a); |
|
818 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
819 |
dualScale * _weight[a]; |
|
820 |
if (node == v) { |
|
821 |
if (_allow_loops && _graph.direction(a)) { |
|
822 |
_delta3->push(a, rw / 2); |
|
823 |
} |
|
824 |
} else if ((*_status)[v] == EVEN) { |
|
825 |
_delta3->push(a, rw / 2); |
|
826 |
} else if ((*_status)[v] == MATCHED) { |
|
827 |
if (_delta2->state(v) != _delta2->IN_HEAP) { |
|
828 |
_pred->set(v, a); |
|
829 |
_delta2->push(v, rw); |
|
830 |
} else if ((*_delta2)[v] > rw) { |
|
831 |
_pred->set(v, a); |
|
832 |
_delta2->decrease(v, rw); |
|
833 |
} |
|
834 |
} |
|
835 |
} |
|
836 |
} |
|
837 |
|
|
838 |
void matchedToOdd(Node node, int tree) { |
|
839 |
_tree_set->insert(node, tree); |
|
840 |
_node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
|
841 |
|
|
842 |
if (_delta2->state(node) == _delta2->IN_HEAP) { |
|
843 |
_delta2->erase(node); |
|
844 |
} |
|
845 |
} |
|
846 |
|
|
847 |
void evenToMatched(Node node, int tree) { |
|
848 |
_delta1->erase(node); |
|
849 |
_node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
|
850 |
Arc min = INVALID; |
|
851 |
Value minrw = std::numeric_limits<Value>::max(); |
|
852 |
for (InArcIt a(_graph, node); a != INVALID; ++a) { |
|
853 |
Node v = _graph.source(a); |
|
854 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
855 |
dualScale * _weight[a]; |
|
856 |
|
|
857 |
if (node == v) { |
|
858 |
if (_allow_loops && _graph.direction(a)) { |
|
859 |
_delta3->erase(a); |
|
860 |
} |
|
861 |
} else if ((*_status)[v] == EVEN) { |
|
862 |
_delta3->erase(a); |
|
863 |
if (minrw > rw) { |
|
864 |
min = _graph.oppositeArc(a); |
|
865 |
minrw = rw; |
|
866 |
} |
|
867 |
} else if ((*_status)[v] == MATCHED) { |
|
868 |
if ((*_pred)[v] == a) { |
|
869 |
Arc mina = INVALID; |
|
870 |
Value minrwa = std::numeric_limits<Value>::max(); |
|
871 |
for (OutArcIt aa(_graph, v); aa != INVALID; ++aa) { |
|
872 |
Node va = _graph.target(aa); |
|
873 |
if ((*_status)[va] != EVEN || |
|
874 |
_tree_set->find(va) == tree) continue; |
|
875 |
Value rwa = (*_node_potential)[v] + (*_node_potential)[va] - |
|
876 |
dualScale * _weight[aa]; |
|
877 |
if (minrwa > rwa) { |
|
878 |
minrwa = rwa; |
|
879 |
mina = aa; |
|
880 |
} |
|
881 |
} |
|
882 |
if (mina != INVALID) { |
|
883 |
_pred->set(v, mina); |
|
884 |
_delta2->increase(v, minrwa); |
|
885 |
} else { |
|
886 |
_pred->set(v, INVALID); |
|
887 |
_delta2->erase(v); |
|
888 |
} |
|
889 |
} |
|
890 |
} |
|
891 |
} |
|
892 |
if (min != INVALID) { |
|
893 |
_pred->set(node, min); |
|
894 |
_delta2->push(node, minrw); |
|
895 |
} else { |
|
896 |
_pred->set(node, INVALID); |
|
897 |
} |
|
898 |
} |
|
899 |
|
|
900 |
void oddToMatched(Node node) { |
|
901 |
_node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
|
902 |
Arc min = INVALID; |
|
903 |
Value minrw = std::numeric_limits<Value>::max(); |
|
904 |
for (InArcIt a(_graph, node); a != INVALID; ++a) { |
|
905 |
Node v = _graph.source(a); |
|
906 |
if ((*_status)[v] != EVEN) continue; |
|
907 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
908 |
dualScale * _weight[a]; |
|
909 |
|
|
910 |
if (minrw > rw) { |
|
911 |
min = _graph.oppositeArc(a); |
|
912 |
minrw = rw; |
|
913 |
} |
|
914 |
} |
|
915 |
if (min != INVALID) { |
|
916 |
_pred->set(node, min); |
|
917 |
_delta2->push(node, minrw); |
|
918 |
} else { |
|
919 |
_pred->set(node, INVALID); |
|
920 |
} |
|
921 |
} |
|
922 |
|
|
923 |
void alternatePath(Node even, int tree) { |
|
924 |
Node odd; |
|
925 |
|
|
926 |
_status->set(even, MATCHED); |
|
927 |
evenToMatched(even, tree); |
|
928 |
|
|
929 |
Arc prev = (*_matching)[even]; |
|
930 |
while (prev != INVALID) { |
|
931 |
odd = _graph.target(prev); |
|
932 |
even = _graph.target((*_pred)[odd]); |
|
933 |
_matching->set(odd, (*_pred)[odd]); |
|
934 |
_status->set(odd, MATCHED); |
|
935 |
oddToMatched(odd); |
|
936 |
|
|
937 |
prev = (*_matching)[even]; |
|
938 |
_status->set(even, MATCHED); |
|
939 |
_matching->set(even, _graph.oppositeArc((*_matching)[odd])); |
|
940 |
evenToMatched(even, tree); |
|
941 |
} |
|
942 |
} |
|
943 |
|
|
944 |
void destroyTree(int tree) { |
|
945 |
for (typename TreeSet::ItemIt n(*_tree_set, tree); n != INVALID; ++n) { |
|
946 |
if ((*_status)[n] == EVEN) { |
|
947 |
_status->set(n, MATCHED); |
|
948 |
evenToMatched(n, tree); |
|
949 |
} else if ((*_status)[n] == ODD) { |
|
950 |
_status->set(n, MATCHED); |
|
951 |
oddToMatched(n); |
|
952 |
} |
|
953 |
} |
|
954 |
_tree_set->eraseClass(tree); |
|
955 |
} |
|
956 |
|
|
957 |
|
|
958 |
void unmatchNode(const Node& node) { |
|
959 |
int tree = _tree_set->find(node); |
|
960 |
|
|
961 |
alternatePath(node, tree); |
|
962 |
destroyTree(tree); |
|
963 |
|
|
964 |
_matching->set(node, INVALID); |
|
965 |
} |
|
966 |
|
|
967 |
|
|
968 |
void augmentOnEdge(const Edge& edge) { |
|
969 |
Node left = _graph.u(edge); |
|
970 |
int left_tree = _tree_set->find(left); |
|
971 |
|
|
972 |
alternatePath(left, left_tree); |
|
973 |
destroyTree(left_tree); |
|
974 |
_matching->set(left, _graph.direct(edge, true)); |
|
975 |
|
|
976 |
Node right = _graph.v(edge); |
|
977 |
int right_tree = _tree_set->find(right); |
|
978 |
|
|
979 |
alternatePath(right, right_tree); |
|
980 |
destroyTree(right_tree); |
|
981 |
_matching->set(right, _graph.direct(edge, false)); |
|
982 |
} |
|
983 |
|
|
984 |
void augmentOnArc(const Arc& arc) { |
|
985 |
Node left = _graph.source(arc); |
|
986 |
_status->set(left, MATCHED); |
|
987 |
_matching->set(left, arc); |
|
988 |
_pred->set(left, arc); |
|
989 |
|
|
990 |
Node right = _graph.target(arc); |
|
991 |
int right_tree = _tree_set->find(right); |
|
992 |
|
|
993 |
alternatePath(right, right_tree); |
|
994 |
destroyTree(right_tree); |
|
995 |
_matching->set(right, _graph.oppositeArc(arc)); |
|
996 |
} |
|
997 |
|
|
998 |
void extendOnArc(const Arc& arc) { |
|
999 |
Node base = _graph.target(arc); |
|
1000 |
int tree = _tree_set->find(base); |
|
1001 |
|
|
1002 |
Node odd = _graph.source(arc); |
|
1003 |
_tree_set->insert(odd, tree); |
|
1004 |
_status->set(odd, ODD); |
|
1005 |
matchedToOdd(odd, tree); |
|
1006 |
_pred->set(odd, arc); |
|
1007 |
|
|
1008 |
Node even = _graph.target((*_matching)[odd]); |
|
1009 |
_tree_set->insert(even, tree); |
|
1010 |
_status->set(even, EVEN); |
|
1011 |
matchedToEven(even, tree); |
|
1012 |
} |
|
1013 |
|
|
1014 |
void cycleOnEdge(const Edge& edge, int tree) { |
|
1015 |
Node nca = INVALID; |
|
1016 |
std::vector<Node> left_path, right_path; |
|
1017 |
|
|
1018 |
{ |
|
1019 |
std::set<Node> left_set, right_set; |
|
1020 |
Node left = _graph.u(edge); |
|
1021 |
left_path.push_back(left); |
|
1022 |
left_set.insert(left); |
|
1023 |
|
|
1024 |
Node right = _graph.v(edge); |
|
1025 |
right_path.push_back(right); |
|
1026 |
right_set.insert(right); |
|
1027 |
|
|
1028 |
while (true) { |
|
1029 |
|
|
1030 |
if (left_set.find(right) != left_set.end()) { |
|
1031 |
nca = right; |
|
1032 |
break; |
|
1033 |
} |
|
1034 |
|
|
1035 |
if ((*_matching)[left] == INVALID) break; |
|
1036 |
|
|
1037 |
left = _graph.target((*_matching)[left]); |
|
1038 |
left_path.push_back(left); |
|
1039 |
left = _graph.target((*_pred)[left]); |
|
1040 |
left_path.push_back(left); |
|
1041 |
|
|
1042 |
left_set.insert(left); |
|
1043 |
|
|
1044 |
if (right_set.find(left) != right_set.end()) { |
|
1045 |
nca = left; |
|
1046 |
break; |
|
1047 |
} |
|
1048 |
|
|
1049 |
if ((*_matching)[right] == INVALID) break; |
|
1050 |
|
|
1051 |
right = _graph.target((*_matching)[right]); |
|
1052 |
right_path.push_back(right); |
|
1053 |
right = _graph.target((*_pred)[right]); |
|
1054 |
right_path.push_back(right); |
|
1055 |
|
|
1056 |
right_set.insert(right); |
|
1057 |
|
|
1058 |
} |
|
1059 |
|
|
1060 |
if (nca == INVALID) { |
|
1061 |
if ((*_matching)[left] == INVALID) { |
|
1062 |
nca = right; |
|
1063 |
while (left_set.find(nca) == left_set.end()) { |
|
1064 |
nca = _graph.target((*_matching)[nca]); |
|
1065 |
right_path.push_back(nca); |
|
1066 |
nca = _graph.target((*_pred)[nca]); |
|
1067 |
right_path.push_back(nca); |
|
1068 |
} |
|
1069 |
} else { |
|
1070 |
nca = left; |
|
1071 |
while (right_set.find(nca) == right_set.end()) { |
|
1072 |
nca = _graph.target((*_matching)[nca]); |
|
1073 |
left_path.push_back(nca); |
|
1074 |
nca = _graph.target((*_pred)[nca]); |
|
1075 |
left_path.push_back(nca); |
|
1076 |
} |
|
1077 |
} |
|
1078 |
} |
|
1079 |
} |
|
1080 |
|
|
1081 |
alternatePath(nca, tree); |
|
1082 |
Arc prev; |
|
1083 |
|
|
1084 |
prev = _graph.direct(edge, true); |
|
1085 |
for (int i = 0; left_path[i] != nca; i += 2) { |
|
1086 |
_matching->set(left_path[i], prev); |
|
1087 |
_status->set(left_path[i], MATCHED); |
|
1088 |
evenToMatched(left_path[i], tree); |
|
1089 |
|
|
1090 |
prev = _graph.oppositeArc((*_pred)[left_path[i + 1]]); |
|
1091 |
_status->set(left_path[i + 1], MATCHED); |
|
1092 |
oddToMatched(left_path[i + 1]); |
|
1093 |
} |
|
1094 |
_matching->set(nca, prev); |
|
1095 |
|
|
1096 |
for (int i = 0; right_path[i] != nca; i += 2) { |
|
1097 |
_status->set(right_path[i], MATCHED); |
|
1098 |
evenToMatched(right_path[i], tree); |
|
1099 |
|
|
1100 |
_matching->set(right_path[i + 1], (*_pred)[right_path[i + 1]]); |
|
1101 |
_status->set(right_path[i + 1], MATCHED); |
|
1102 |
oddToMatched(right_path[i + 1]); |
|
1103 |
} |
|
1104 |
|
|
1105 |
destroyTree(tree); |
|
1106 |
} |
|
1107 |
|
|
1108 |
void extractCycle(const Arc &arc) { |
|
1109 |
Node left = _graph.source(arc); |
|
1110 |
Node odd = _graph.target((*_matching)[left]); |
|
1111 |
Arc prev; |
|
1112 |
while (odd != left) { |
|
1113 |
Node even = _graph.target((*_matching)[odd]); |
|
1114 |
prev = (*_matching)[odd]; |
|
1115 |
odd = _graph.target((*_matching)[even]); |
|
1116 |
_matching->set(even, _graph.oppositeArc(prev)); |
|
1117 |
} |
|
1118 |
_matching->set(left, arc); |
|
1119 |
|
|
1120 |
Node right = _graph.target(arc); |
|
1121 |
int right_tree = _tree_set->find(right); |
|
1122 |
alternatePath(right, right_tree); |
|
1123 |
destroyTree(right_tree); |
|
1124 |
_matching->set(right, _graph.oppositeArc(arc)); |
|
1125 |
} |
|
1126 |
|
|
1127 |
public: |
|
1128 |
|
|
1129 |
/// \brief Constructor |
|
1130 |
/// |
|
1131 |
/// Constructor. |
|
1132 |
MaxWeightedFractionalMatching(const Graph& graph, const WeightMap& weight, |
|
1133 |
bool allow_loops = true) |
|
1134 |
: _graph(graph), _weight(weight), _matching(0), |
|
1135 |
_node_potential(0), _node_num(0), _allow_loops(allow_loops), |
|
1136 |
_status(0), _pred(0), |
|
1137 |
_tree_set_index(0), _tree_set(0), |
|
1138 |
|
|
1139 |
_delta1_index(0), _delta1(0), |
|
1140 |
_delta2_index(0), _delta2(0), |
|
1141 |
_delta3_index(0), _delta3(0), |
|
1142 |
|
|
1143 |
_delta_sum() {} |
|
1144 |
|
|
1145 |
~MaxWeightedFractionalMatching() { |
|
1146 |
destroyStructures(); |
|
1147 |
} |
|
1148 |
|
|
1149 |
/// \name Execution Control |
|
1150 |
/// The simplest way to execute the algorithm is to use the |
|
1151 |
/// \ref run() member function. |
|
1152 |
|
|
1153 |
///@{ |
|
1154 |
|
|
1155 |
/// \brief Initialize the algorithm |
|
1156 |
/// |
|
1157 |
/// This function initializes the algorithm. |
|
1158 |
void init() { |
|
1159 |
createStructures(); |
|
1160 |
|
|
1161 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1162 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
|
1163 |
(*_delta2_index)[n] = _delta2->PRE_HEAP; |
|
1164 |
} |
|
1165 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1166 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
1167 |
} |
|
1168 |
|
|
1169 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1170 |
Value max = 0; |
|
1171 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
1172 |
if (_graph.target(e) == n && !_allow_loops) continue; |
|
1173 |
if ((dualScale * _weight[e]) / 2 > max) { |
|
1174 |
max = (dualScale * _weight[e]) / 2; |
|
1175 |
} |
|
1176 |
} |
|
1177 |
_node_potential->set(n, max); |
|
1178 |
_delta1->push(n, max); |
|
1179 |
|
|
1180 |
_tree_set->insert(n); |
|
1181 |
|
|
1182 |
_matching->set(n, INVALID); |
|
1183 |
_status->set(n, EVEN); |
|
1184 |
} |
|
1185 |
|
|
1186 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1187 |
Node left = _graph.u(e); |
|
1188 |
Node right = _graph.v(e); |
|
1189 |
if (left == right && !_allow_loops) continue; |
|
1190 |
_delta3->push(e, ((*_node_potential)[left] + |
|
1191 |
(*_node_potential)[right] - |
|
1192 |
dualScale * _weight[e]) / 2); |
|
1193 |
} |
|
1194 |
} |
|
1195 |
|
|
1196 |
/// \brief Start the algorithm |
|
1197 |
/// |
|
1198 |
/// This function starts the algorithm. |
|
1199 |
/// |
|
1200 |
/// \pre \ref init() must be called before using this function. |
|
1201 |
void start() { |
|
1202 |
enum OpType { |
|
1203 |
D1, D2, D3 |
|
1204 |
}; |
|
1205 |
|
|
1206 |
int unmatched = _node_num; |
|
1207 |
while (unmatched > 0) { |
|
1208 |
Value d1 = !_delta1->empty() ? |
|
1209 |
_delta1->prio() : std::numeric_limits<Value>::max(); |
|
1210 |
|
|
1211 |
Value d2 = !_delta2->empty() ? |
|
1212 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
|
1213 |
|
|
1214 |
Value d3 = !_delta3->empty() ? |
|
1215 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
|
1216 |
|
|
1217 |
_delta_sum = d3; OpType ot = D3; |
|
1218 |
if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; } |
|
1219 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
|
1220 |
|
|
1221 |
switch (ot) { |
|
1222 |
case D1: |
|
1223 |
{ |
|
1224 |
Node n = _delta1->top(); |
|
1225 |
unmatchNode(n); |
|
1226 |
--unmatched; |
|
1227 |
} |
|
1228 |
break; |
|
1229 |
case D2: |
|
1230 |
{ |
|
1231 |
Node n = _delta2->top(); |
|
1232 |
Arc a = (*_pred)[n]; |
|
1233 |
if ((*_matching)[n] == INVALID) { |
|
1234 |
augmentOnArc(a); |
|
1235 |
--unmatched; |
|
1236 |
} else { |
|
1237 |
Node v = _graph.target((*_matching)[n]); |
|
1238 |
if ((*_matching)[n] != |
|
1239 |
_graph.oppositeArc((*_matching)[v])) { |
|
1240 |
extractCycle(a); |
|
1241 |
--unmatched; |
|
1242 |
} else { |
|
1243 |
extendOnArc(a); |
|
1244 |
} |
|
1245 |
} |
|
1246 |
} break; |
|
1247 |
case D3: |
|
1248 |
{ |
|
1249 |
Edge e = _delta3->top(); |
|
1250 |
|
|
1251 |
Node left = _graph.u(e); |
|
1252 |
Node right = _graph.v(e); |
|
1253 |
|
|
1254 |
int left_tree = _tree_set->find(left); |
|
1255 |
int right_tree = _tree_set->find(right); |
|
1256 |
|
|
1257 |
if (left_tree == right_tree) { |
|
1258 |
cycleOnEdge(e, left_tree); |
|
1259 |
--unmatched; |
|
1260 |
} else { |
|
1261 |
augmentOnEdge(e); |
|
1262 |
unmatched -= 2; |
|
1263 |
} |
|
1264 |
} break; |
|
1265 |
} |
|
1266 |
} |
|
1267 |
} |
|
1268 |
|
|
1269 |
/// \brief Run the algorithm. |
|
1270 |
/// |
|
1271 |
/// This method runs the \c %MaxWeightedFractionalMatching algorithm. |
|
1272 |
/// |
|
1273 |
/// \note mwfm.run() is just a shortcut of the following code. |
|
1274 |
/// \code |
|
1275 |
/// mwfm.init(); |
|
1276 |
/// mwfm.start(); |
|
1277 |
/// \endcode |
|
1278 |
void run() { |
|
1279 |
init(); |
|
1280 |
start(); |
|
1281 |
} |
|
1282 |
|
|
1283 |
/// @} |
|
1284 |
|
|
1285 |
/// \name Primal Solution |
|
1286 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
1287 |
/// matching.\n |
|
1288 |
/// Either \ref run() or \ref start() function should be called before |
|
1289 |
/// using them. |
|
1290 |
|
|
1291 |
/// @{ |
|
1292 |
|
|
1293 |
/// \brief Return the weight of the matching. |
|
1294 |
/// |
|
1295 |
/// This function returns the weight of the found matching. This |
|
1296 |
/// value is scaled by \ref primalScale "primal scale". |
|
1297 |
/// |
|
1298 |
/// \pre Either run() or start() must be called before using this function. |
|
1299 |
Value matchingWeight() const { |
|
1300 |
Value sum = 0; |
|
1301 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1302 |
if ((*_matching)[n] != INVALID) { |
|
1303 |
sum += _weight[(*_matching)[n]]; |
|
1304 |
} |
|
1305 |
} |
|
1306 |
return sum * primalScale / 2; |
|
1307 |
} |
|
1308 |
|
|
1309 |
/// \brief Return the number of covered nodes in the matching. |
|
1310 |
/// |
|
1311 |
/// This function returns the number of covered nodes in the matching. |
|
1312 |
/// |
|
1313 |
/// \pre Either run() or start() must be called before using this function. |
|
1314 |
int matchingSize() const { |
|
1315 |
int num = 0; |
|
1316 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1317 |
if ((*_matching)[n] != INVALID) { |
|
1318 |
++num; |
|
1319 |
} |
|
1320 |
} |
|
1321 |
return num; |
|
1322 |
} |
|
1323 |
|
|
1324 |
/// \brief Return \c true if the given edge is in the matching. |
|
1325 |
/// |
|
1326 |
/// This function returns \c true if the given edge is in the |
|
1327 |
/// found matching. The result is scaled by \ref primalScale |
|
1328 |
/// "primal scale". |
|
1329 |
/// |
|
1330 |
/// \pre Either run() or start() must be called before using this function. |
|
1331 |
int matching(const Edge& edge) const { |
|
1332 |
return (edge == (*_matching)[_graph.u(edge)] ? 1 : 0) |
|
1333 |
+ (edge == (*_matching)[_graph.v(edge)] ? 1 : 0); |
|
1334 |
} |
|
1335 |
|
|
1336 |
/// \brief Return the fractional matching arc (or edge) incident |
|
1337 |
/// to the given node. |
|
1338 |
/// |
|
1339 |
/// This function returns one of the fractional matching arc (or |
|
1340 |
/// edge) incident to the given node in the found matching or \c |
|
1341 |
/// INVALID if the node is not covered by the matching or if the |
|
1342 |
/// node is on an odd length cycle then it is the successor edge |
|
1343 |
/// on the cycle. |
|
1344 |
/// |
|
1345 |
/// \pre Either run() or start() must be called before using this function. |
|
1346 |
Arc matching(const Node& node) const { |
|
1347 |
return (*_matching)[node]; |
|
1348 |
} |
|
1349 |
|
|
1350 |
/// \brief Return a const reference to the matching map. |
|
1351 |
/// |
|
1352 |
/// This function returns a const reference to a node map that stores |
|
1353 |
/// the matching arc (or edge) incident to each node. |
|
1354 |
const MatchingMap& matchingMap() const { |
|
1355 |
return *_matching; |
|
1356 |
} |
|
1357 |
|
|
1358 |
/// @} |
|
1359 |
|
|
1360 |
/// \name Dual Solution |
|
1361 |
/// Functions to get the dual solution.\n |
|
1362 |
/// Either \ref run() or \ref start() function should be called before |
|
1363 |
/// using them. |
|
1364 |
|
|
1365 |
/// @{ |
|
1366 |
|
|
1367 |
/// \brief Return the value of the dual solution. |
|
1368 |
/// |
|
1369 |
/// This function returns the value of the dual solution. |
|
1370 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
1371 |
/// "dual scale". |
|
1372 |
/// |
|
1373 |
/// \pre Either run() or start() must be called before using this function. |
|
1374 |
Value dualValue() const { |
|
1375 |
Value sum = 0; |
|
1376 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1377 |
sum += nodeValue(n); |
|
1378 |
} |
|
1379 |
return sum; |
|
1380 |
} |
|
1381 |
|
|
1382 |
/// \brief Return the dual value (potential) of the given node. |
|
1383 |
/// |
|
1384 |
/// This function returns the dual value (potential) of the given node. |
|
1385 |
/// |
|
1386 |
/// \pre Either run() or start() must be called before using this function. |
|
1387 |
Value nodeValue(const Node& n) const { |
|
1388 |
return (*_node_potential)[n]; |
|
1389 |
} |
|
1390 |
|
|
1391 |
/// @} |
|
1392 |
|
|
1393 |
}; |
|
1394 |
|
|
1395 |
/// \ingroup matching |
|
1396 |
/// |
|
1397 |
/// \brief Weighted fractional perfect matching in general graphs |
|
1398 |
/// |
|
1399 |
/// This class provides an efficient implementation of fractional |
|
1400 |
/// matching algorithm. The implementation uses priority queues and |
|
1401 |
/// provides \f$O(nm\log n)\f$ time complexity. |
|
1402 |
/// |
|
1403 |
/// The maximum weighted fractional perfect matching is a relaxation |
|
1404 |
/// of the maximum weighted perfect matching problem where the odd |
|
1405 |
/// set constraints are omitted. |
|
1406 |
/// It can be formulated with the following linear program. |
|
1407 |
/// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f] |
|
1408 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
|
1409 |
/// \f[\max \sum_{e\in E}x_ew_e\f] |
|
1410 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
|
1411 |
/// \f$X\f$. The result must be the union of a matching with one |
|
1412 |
/// value edges and a set of odd length cycles with half value edges. |
|
1413 |
/// |
|
1414 |
/// The algorithm calculates an optimal fractional matching and a |
|
1415 |
/// proof of the optimality. The solution of the dual problem can be |
|
1416 |
/// used to check the result of the algorithm. The dual linear |
|
1417 |
/// problem is the following. |
|
1418 |
/// \f[ y_u + y_v \ge w_{uv} \quad \forall uv\in E\f] |
|
1419 |
/// \f[\min \sum_{u \in V}y_u \f] |
|
1420 |
/// |
|
1421 |
/// The algorithm can be executed with the run() function. |
|
1422 |
/// After it the matching (the primal solution) and the dual solution |
|
1423 |
/// can be obtained using the query functions. |
|
1424 |
/// |
|
1425 |
/// The primal solution is multiplied by |
|
1426 |
/// \ref MaxWeightedPerfectFractionalMatching::primalScale "2". |
|
1427 |
/// If the value type is integer, then the dual |
|
1428 |
/// solution is scaled by |
|
1429 |
/// \ref MaxWeightedPerfectFractionalMatching::dualScale "4". |
|
1430 |
/// |
|
1431 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
1432 |
/// \tparam WM The type edge weight map. The default type is |
|
1433 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
|
1434 |
#ifdef DOXYGEN |
|
1435 |
template <typename GR, typename WM> |
|
1436 |
#else |
|
1437 |
template <typename GR, |
|
1438 |
typename WM = typename GR::template EdgeMap<int> > |
|
1439 |
#endif |
|
1440 |
class MaxWeightedPerfectFractionalMatching { |
|
1441 |
public: |
|
1442 |
|
|
1443 |
/// The graph type of the algorithm |
|
1444 |
typedef GR Graph; |
|
1445 |
/// The type of the edge weight map |
|
1446 |
typedef WM WeightMap; |
|
1447 |
/// The value type of the edge weights |
|
1448 |
typedef typename WeightMap::Value Value; |
|
1449 |
|
|
1450 |
/// The type of the matching map |
|
1451 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
|
1452 |
MatchingMap; |
|
1453 |
|
|
1454 |
/// \brief Scaling factor for primal solution |
|
1455 |
/// |
|
1456 |
/// Scaling factor for primal solution. |
|
1457 |
static const int primalScale = 2; |
|
1458 |
|
|
1459 |
/// \brief Scaling factor for dual solution |
|
1460 |
/// |
|
1461 |
/// Scaling factor for dual solution. It is equal to 4 or 1 |
|
1462 |
/// according to the value type. |
|
1463 |
static const int dualScale = |
|
1464 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
|
1465 |
|
|
1466 |
private: |
|
1467 |
|
|
1468 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
1469 |
|
|
1470 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
|
1471 |
|
|
1472 |
const Graph& _graph; |
|
1473 |
const WeightMap& _weight; |
|
1474 |
|
|
1475 |
MatchingMap* _matching; |
|
1476 |
NodePotential* _node_potential; |
|
1477 |
|
|
1478 |
int _node_num; |
|
1479 |
bool _allow_loops; |
|
1480 |
|
|
1481 |
enum Status { |
|
1482 |
EVEN = -1, MATCHED = 0, ODD = 1 |
|
1483 |
}; |
|
1484 |
|
|
1485 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
|
1486 |
StatusMap* _status; |
|
1487 |
|
|
1488 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
|
1489 |
PredMap* _pred; |
|
1490 |
|
|
1491 |
typedef ExtendFindEnum<IntNodeMap> TreeSet; |
|
1492 |
|
|
1493 |
IntNodeMap *_tree_set_index; |
|
1494 |
TreeSet *_tree_set; |
|
1495 |
|
|
1496 |
IntNodeMap *_delta2_index; |
|
1497 |
BinHeap<Value, IntNodeMap> *_delta2; |
|
1498 |
|
|
1499 |
IntEdgeMap *_delta3_index; |
|
1500 |
BinHeap<Value, IntEdgeMap> *_delta3; |
|
1501 |
|
|
1502 |
Value _delta_sum; |
|
1503 |
|
|
1504 |
void createStructures() { |
|
1505 |
_node_num = countNodes(_graph); |
|
1506 |
|
|
1507 |
if (!_matching) { |
|
1508 |
_matching = new MatchingMap(_graph); |
|
1509 |
} |
|
1510 |
if (!_node_potential) { |
|
1511 |
_node_potential = new NodePotential(_graph); |
|
1512 |
} |
|
1513 |
if (!_status) { |
|
1514 |
_status = new StatusMap(_graph); |
|
1515 |
} |
|
1516 |
if (!_pred) { |
|
1517 |
_pred = new PredMap(_graph); |
|
1518 |
} |
|
1519 |
if (!_tree_set) { |
|
1520 |
_tree_set_index = new IntNodeMap(_graph); |
|
1521 |
_tree_set = new TreeSet(*_tree_set_index); |
|
1522 |
} |
|
1523 |
if (!_delta2) { |
|
1524 |
_delta2_index = new IntNodeMap(_graph); |
|
1525 |
_delta2 = new BinHeap<Value, IntNodeMap>(*_delta2_index); |
|
1526 |
} |
|
1527 |
if (!_delta3) { |
|
1528 |
_delta3_index = new IntEdgeMap(_graph); |
|
1529 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
|
1530 |
} |
|
1531 |
} |
|
1532 |
|
|
1533 |
void destroyStructures() { |
|
1534 |
if (_matching) { |
|
1535 |
delete _matching; |
|
1536 |
} |
|
1537 |
if (_node_potential) { |
|
1538 |
delete _node_potential; |
|
1539 |
} |
|
1540 |
if (_status) { |
|
1541 |
delete _status; |
|
1542 |
} |
|
1543 |
if (_pred) { |
|
1544 |
delete _pred; |
|
1545 |
} |
|
1546 |
if (_tree_set) { |
|
1547 |
delete _tree_set_index; |
|
1548 |
delete _tree_set; |
|
1549 |
} |
|
1550 |
if (_delta2) { |
|
1551 |
delete _delta2_index; |
|
1552 |
delete _delta2; |
|
1553 |
} |
|
1554 |
if (_delta3) { |
|
1555 |
delete _delta3_index; |
|
1556 |
delete _delta3; |
|
1557 |
} |
|
1558 |
} |
|
1559 |
|
|
1560 |
void matchedToEven(Node node, int tree) { |
|
1561 |
_tree_set->insert(node, tree); |
|
1562 |
_node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
|
1563 |
|
|
1564 |
if (_delta2->state(node) == _delta2->IN_HEAP) { |
|
1565 |
_delta2->erase(node); |
|
1566 |
} |
|
1567 |
|
|
1568 |
for (InArcIt a(_graph, node); a != INVALID; ++a) { |
|
1569 |
Node v = _graph.source(a); |
|
1570 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
1571 |
dualScale * _weight[a]; |
|
1572 |
if (node == v) { |
|
1573 |
if (_allow_loops && _graph.direction(a)) { |
|
1574 |
_delta3->push(a, rw / 2); |
|
1575 |
} |
|
1576 |
} else if ((*_status)[v] == EVEN) { |
|
1577 |
_delta3->push(a, rw / 2); |
|
1578 |
} else if ((*_status)[v] == MATCHED) { |
|
1579 |
if (_delta2->state(v) != _delta2->IN_HEAP) { |
|
1580 |
_pred->set(v, a); |
|
1581 |
_delta2->push(v, rw); |
|
1582 |
} else if ((*_delta2)[v] > rw) { |
|
1583 |
_pred->set(v, a); |
|
1584 |
_delta2->decrease(v, rw); |
|
1585 |
} |
|
1586 |
} |
|
1587 |
} |
|
1588 |
} |
|
1589 |
|
|
1590 |
void matchedToOdd(Node node, int tree) { |
|
1591 |
_tree_set->insert(node, tree); |
|
1592 |
_node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
|
1593 |
|
|
1594 |
if (_delta2->state(node) == _delta2->IN_HEAP) { |
|
1595 |
_delta2->erase(node); |
|
1596 |
} |
|
1597 |
} |
|
1598 |
|
|
1599 |
void evenToMatched(Node node, int tree) { |
|
1600 |
_node_potential->set(node, (*_node_potential)[node] - _delta_sum); |
|
1601 |
Arc min = INVALID; |
|
1602 |
Value minrw = std::numeric_limits<Value>::max(); |
|
1603 |
for (InArcIt a(_graph, node); a != INVALID; ++a) { |
|
1604 |
Node v = _graph.source(a); |
|
1605 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
1606 |
dualScale * _weight[a]; |
|
1607 |
|
|
1608 |
if (node == v) { |
|
1609 |
if (_allow_loops && _graph.direction(a)) { |
|
1610 |
_delta3->erase(a); |
|
1611 |
} |
|
1612 |
} else if ((*_status)[v] == EVEN) { |
|
1613 |
_delta3->erase(a); |
|
1614 |
if (minrw > rw) { |
|
1615 |
min = _graph.oppositeArc(a); |
|
1616 |
minrw = rw; |
|
1617 |
} |
|
1618 |
} else if ((*_status)[v] == MATCHED) { |
|
1619 |
if ((*_pred)[v] == a) { |
|
1620 |
Arc mina = INVALID; |
|
1621 |
Value minrwa = std::numeric_limits<Value>::max(); |
|
1622 |
for (OutArcIt aa(_graph, v); aa != INVALID; ++aa) { |
|
1623 |
Node va = _graph.target(aa); |
|
1624 |
if ((*_status)[va] != EVEN || |
|
1625 |
_tree_set->find(va) == tree) continue; |
|
1626 |
Value rwa = (*_node_potential)[v] + (*_node_potential)[va] - |
|
1627 |
dualScale * _weight[aa]; |
|
1628 |
if (minrwa > rwa) { |
|
1629 |
minrwa = rwa; |
|
1630 |
mina = aa; |
|
1631 |
} |
|
1632 |
} |
|
1633 |
if (mina != INVALID) { |
|
1634 |
_pred->set(v, mina); |
|
1635 |
_delta2->increase(v, minrwa); |
|
1636 |
} else { |
|
1637 |
_pred->set(v, INVALID); |
|
1638 |
_delta2->erase(v); |
|
1639 |
} |
|
1640 |
} |
|
1641 |
} |
|
1642 |
} |
|
1643 |
if (min != INVALID) { |
|
1644 |
_pred->set(node, min); |
|
1645 |
_delta2->push(node, minrw); |
|
1646 |
} else { |
|
1647 |
_pred->set(node, INVALID); |
|
1648 |
} |
|
1649 |
} |
|
1650 |
|
|
1651 |
void oddToMatched(Node node) { |
|
1652 |
_node_potential->set(node, (*_node_potential)[node] + _delta_sum); |
|
1653 |
Arc min = INVALID; |
|
1654 |
Value minrw = std::numeric_limits<Value>::max(); |
|
1655 |
for (InArcIt a(_graph, node); a != INVALID; ++a) { |
|
1656 |
Node v = _graph.source(a); |
|
1657 |
if ((*_status)[v] != EVEN) continue; |
|
1658 |
Value rw = (*_node_potential)[node] + (*_node_potential)[v] - |
|
1659 |
dualScale * _weight[a]; |
|
1660 |
|
|
1661 |
if (minrw > rw) { |
|
1662 |
min = _graph.oppositeArc(a); |
|
1663 |
minrw = rw; |
|
1664 |
} |
|
1665 |
} |
|
1666 |
if (min != INVALID) { |
|
1667 |
_pred->set(node, min); |
|
1668 |
_delta2->push(node, minrw); |
|
1669 |
} else { |
|
1670 |
_pred->set(node, INVALID); |
|
1671 |
} |
|
1672 |
} |
|
1673 |
|
|
1674 |
void alternatePath(Node even, int tree) { |
|
1675 |
Node odd; |
|
1676 |
|
|
1677 |
_status->set(even, MATCHED); |
|
1678 |
evenToMatched(even, tree); |
|
1679 |
|
|
1680 |
Arc prev = (*_matching)[even]; |
|
1681 |
while (prev != INVALID) { |
|
1682 |
odd = _graph.target(prev); |
|
1683 |
even = _graph.target((*_pred)[odd]); |
|
1684 |
_matching->set(odd, (*_pred)[odd]); |
|
1685 |
_status->set(odd, MATCHED); |
|
1686 |
oddToMatched(odd); |
|
1687 |
|
|
1688 |
prev = (*_matching)[even]; |
|
1689 |
_status->set(even, MATCHED); |
|
1690 |
_matching->set(even, _graph.oppositeArc((*_matching)[odd])); |
|
1691 |
evenToMatched(even, tree); |
|
1692 |
} |
|
1693 |
} |
|
1694 |
|
|
1695 |
void destroyTree(int tree) { |
|
1696 |
for (typename TreeSet::ItemIt n(*_tree_set, tree); n != INVALID; ++n) { |
|
1697 |
if ((*_status)[n] == EVEN) { |
|
1698 |
_status->set(n, MATCHED); |
|
1699 |
evenToMatched(n, tree); |
|
1700 |
} else if ((*_status)[n] == ODD) { |
|
1701 |
_status->set(n, MATCHED); |
|
1702 |
oddToMatched(n); |
|
1703 |
} |
|
1704 |
} |
|
1705 |
_tree_set->eraseClass(tree); |
|
1706 |
} |
|
1707 |
|
|
1708 |
void augmentOnEdge(const Edge& edge) { |
|
1709 |
Node left = _graph.u(edge); |
|
1710 |
int left_tree = _tree_set->find(left); |
|
1711 |
|
|
1712 |
alternatePath(left, left_tree); |
|
1713 |
destroyTree(left_tree); |
|
1714 |
_matching->set(left, _graph.direct(edge, true)); |
|
1715 |
|
|
1716 |
Node right = _graph.v(edge); |
|
1717 |
int right_tree = _tree_set->find(right); |
|
1718 |
|
|
1719 |
alternatePath(right, right_tree); |
|
1720 |
destroyTree(right_tree); |
|
1721 |
_matching->set(right, _graph.direct(edge, false)); |
|
1722 |
} |
|
1723 |
|
|
1724 |
void augmentOnArc(const Arc& arc) { |
|
1725 |
Node left = _graph.source(arc); |
|
1726 |
_status->set(left, MATCHED); |
|
1727 |
_matching->set(left, arc); |
|
1728 |
_pred->set(left, arc); |
|
1729 |
|
|
1730 |
Node right = _graph.target(arc); |
|
1731 |
int right_tree = _tree_set->find(right); |
|
1732 |
|
|
1733 |
alternatePath(right, right_tree); |
|
1734 |
destroyTree(right_tree); |
|
1735 |
_matching->set(right, _graph.oppositeArc(arc)); |
|
1736 |
} |
|
1737 |
|
|
1738 |
void extendOnArc(const Arc& arc) { |
|
1739 |
Node base = _graph.target(arc); |
|
1740 |
int tree = _tree_set->find(base); |
|
1741 |
|
|
1742 |
Node odd = _graph.source(arc); |
|
1743 |
_tree_set->insert(odd, tree); |
|
1744 |
_status->set(odd, ODD); |
|
1745 |
matchedToOdd(odd, tree); |
|
1746 |
_pred->set(odd, arc); |
|
1747 |
|
|
1748 |
Node even = _graph.target((*_matching)[odd]); |
|
1749 |
_tree_set->insert(even, tree); |
|
1750 |
_status->set(even, EVEN); |
|
1751 |
matchedToEven(even, tree); |
|
1752 |
} |
|
1753 |
|
|
1754 |
void cycleOnEdge(const Edge& edge, int tree) { |
|
1755 |
Node nca = INVALID; |
|
1756 |
std::vector<Node> left_path, right_path; |
|
1757 |
|
|
1758 |
{ |
|
1759 |
std::set<Node> left_set, right_set; |
|
1760 |
Node left = _graph.u(edge); |
|
1761 |
left_path.push_back(left); |
|
1762 |
left_set.insert(left); |
|
1763 |
|
|
1764 |
Node right = _graph.v(edge); |
|
1765 |
right_path.push_back(right); |
|
1766 |
right_set.insert(right); |
|
1767 |
|
|
1768 |
while (true) { |
|
1769 |
|
|
1770 |
if (left_set.find(right) != left_set.end()) { |
|
1771 |
nca = right; |
|
1772 |
break; |
|
1773 |
} |
|
1774 |
|
|
1775 |
if ((*_matching)[left] == INVALID) break; |
|
1776 |
|
|
1777 |
left = _graph.target((*_matching)[left]); |
|
1778 |
left_path.push_back(left); |
|
1779 |
left = _graph.target((*_pred)[left]); |
|
1780 |
left_path.push_back(left); |
|
1781 |
|
|
1782 |
left_set.insert(left); |
|
1783 |
|
|
1784 |
if (right_set.find(left) != right_set.end()) { |
|
1785 |
nca = left; |
|
1786 |
break; |
|
1787 |
} |
|
1788 |
|
|
1789 |
if ((*_matching)[right] == INVALID) break; |
|
1790 |
|
|
1791 |
right = _graph.target((*_matching)[right]); |
|
1792 |
right_path.push_back(right); |
|
1793 |
right = _graph.target((*_pred)[right]); |
|
1794 |
right_path.push_back(right); |
|
1795 |
|
|
1796 |
right_set.insert(right); |
|
1797 |
|
|
1798 |
} |
|
1799 |
|
|
1800 |
if (nca == INVALID) { |
|
1801 |
if ((*_matching)[left] == INVALID) { |
|
1802 |
nca = right; |
|
1803 |
while (left_set.find(nca) == left_set.end()) { |
|
1804 |
nca = _graph.target((*_matching)[nca]); |
|
1805 |
right_path.push_back(nca); |
|
1806 |
nca = _graph.target((*_pred)[nca]); |
|
1807 |
right_path.push_back(nca); |
|
1808 |
} |
|
1809 |
} else { |
|
1810 |
nca = left; |
|
1811 |
while (right_set.find(nca) == right_set.end()) { |
|
1812 |
nca = _graph.target((*_matching)[nca]); |
|
1813 |
left_path.push_back(nca); |
|
1814 |
nca = _graph.target((*_pred)[nca]); |
|
1815 |
left_path.push_back(nca); |
|
1816 |
} |
|
1817 |
} |
|
1818 |
} |
|
1819 |
} |
|
1820 |
|
|
1821 |
alternatePath(nca, tree); |
|
1822 |
Arc prev; |
|
1823 |
|
|
1824 |
prev = _graph.direct(edge, true); |
|
1825 |
for (int i = 0; left_path[i] != nca; i += 2) { |
|
1826 |
_matching->set(left_path[i], prev); |
|
1827 |
_status->set(left_path[i], MATCHED); |
|
1828 |
evenToMatched(left_path[i], tree); |
|
1829 |
|
|
1830 |
prev = _graph.oppositeArc((*_pred)[left_path[i + 1]]); |
|
1831 |
_status->set(left_path[i + 1], MATCHED); |
|
1832 |
oddToMatched(left_path[i + 1]); |
|
1833 |
} |
|
1834 |
_matching->set(nca, prev); |
|
1835 |
|
|
1836 |
for (int i = 0; right_path[i] != nca; i += 2) { |
|
1837 |
_status->set(right_path[i], MATCHED); |
|
1838 |
evenToMatched(right_path[i], tree); |
|
1839 |
|
|
1840 |
_matching->set(right_path[i + 1], (*_pred)[right_path[i + 1]]); |
|
1841 |
_status->set(right_path[i + 1], MATCHED); |
|
1842 |
oddToMatched(right_path[i + 1]); |
|
1843 |
} |
|
1844 |
|
|
1845 |
destroyTree(tree); |
|
1846 |
} |
|
1847 |
|
|
1848 |
void extractCycle(const Arc &arc) { |
|
1849 |
Node left = _graph.source(arc); |
|
1850 |
Node odd = _graph.target((*_matching)[left]); |
|
1851 |
Arc prev; |
|
1852 |
while (odd != left) { |
|
1853 |
Node even = _graph.target((*_matching)[odd]); |
|
1854 |
prev = (*_matching)[odd]; |
|
1855 |
odd = _graph.target((*_matching)[even]); |
|
1856 |
_matching->set(even, _graph.oppositeArc(prev)); |
|
1857 |
} |
|
1858 |
_matching->set(left, arc); |
|
1859 |
|
|
1860 |
Node right = _graph.target(arc); |
|
1861 |
int right_tree = _tree_set->find(right); |
|
1862 |
alternatePath(right, right_tree); |
|
1863 |
destroyTree(right_tree); |
|
1864 |
_matching->set(right, _graph.oppositeArc(arc)); |
|
1865 |
} |
|
1866 |
|
|
1867 |
public: |
|
1868 |
|
|
1869 |
/// \brief Constructor |
|
1870 |
/// |
|
1871 |
/// Constructor. |
|
1872 |
MaxWeightedPerfectFractionalMatching(const Graph& graph, |
|
1873 |
const WeightMap& weight, |
|
1874 |
bool allow_loops = true) |
|
1875 |
: _graph(graph), _weight(weight), _matching(0), |
|
1876 |
_node_potential(0), _node_num(0), _allow_loops(allow_loops), |
|
1877 |
_status(0), _pred(0), |
|
1878 |
_tree_set_index(0), _tree_set(0), |
|
1879 |
|
|
1880 |
_delta2_index(0), _delta2(0), |
|
1881 |
_delta3_index(0), _delta3(0), |
|
1882 |
|
|
1883 |
_delta_sum() {} |
|
1884 |
|
|
1885 |
~MaxWeightedPerfectFractionalMatching() { |
|
1886 |
destroyStructures(); |
|
1887 |
} |
|
1888 |
|
|
1889 |
/// \name Execution Control |
|
1890 |
/// The simplest way to execute the algorithm is to use the |
|
1891 |
/// \ref run() member function. |
|
1892 |
|
|
1893 |
///@{ |
|
1894 |
|
|
1895 |
/// \brief Initialize the algorithm |
|
1896 |
/// |
|
1897 |
/// This function initializes the algorithm. |
|
1898 |
void init() { |
|
1899 |
createStructures(); |
|
1900 |
|
|
1901 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1902 |
(*_delta2_index)[n] = _delta2->PRE_HEAP; |
|
1903 |
} |
|
1904 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1905 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
1906 |
} |
|
1907 |
|
|
1908 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1909 |
Value max = - std::numeric_limits<Value>::max(); |
|
1910 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
1911 |
if (_graph.target(e) == n && !_allow_loops) continue; |
|
1912 |
if ((dualScale * _weight[e]) / 2 > max) { |
|
1913 |
max = (dualScale * _weight[e]) / 2; |
|
1914 |
} |
|
1915 |
} |
|
1916 |
_node_potential->set(n, max); |
|
1917 |
|
|
1918 |
_tree_set->insert(n); |
|
1919 |
|
|
1920 |
_matching->set(n, INVALID); |
|
1921 |
_status->set(n, EVEN); |
|
1922 |
} |
|
1923 |
|
|
1924 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1925 |
Node left = _graph.u(e); |
|
1926 |
Node right = _graph.v(e); |
|
1927 |
if (left == right && !_allow_loops) continue; |
|
1928 |
_delta3->push(e, ((*_node_potential)[left] + |
|
1929 |
(*_node_potential)[right] - |
|
1930 |
dualScale * _weight[e]) / 2); |
|
1931 |
} |
|
1932 |
} |
|
1933 |
|
|
1934 |
/// \brief Start the algorithm |
|
1935 |
/// |
|
1936 |
/// This function starts the algorithm. |
|
1937 |
/// |
|
1938 |
/// \pre \ref init() must be called before using this function. |
|
1939 |
bool start() { |
|
1940 |
enum OpType { |
|
1941 |
D2, D3 |
|
1942 |
}; |
|
1943 |
|
|
1944 |
int unmatched = _node_num; |
|
1945 |
while (unmatched > 0) { |
|
1946 |
Value d2 = !_delta2->empty() ? |
|
1947 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
|
1948 |
|
|
1949 |
Value d3 = !_delta3->empty() ? |
|
1950 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
|
1951 |
|
|
1952 |
_delta_sum = d3; OpType ot = D3; |
|
1953 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
|
1954 |
|
|
1955 |
if (_delta_sum == std::numeric_limits<Value>::max()) { |
|
1956 |
return false; |
|
1957 |
} |
|
1958 |
|
|
1959 |
switch (ot) { |
|
1960 |
case D2: |
|
1961 |
{ |
|
1962 |
Node n = _delta2->top(); |
|
1963 |
Arc a = (*_pred)[n]; |
|
1964 |
if ((*_matching)[n] == INVALID) { |
|
1965 |
augmentOnArc(a); |
|
1966 |
--unmatched; |
|
1967 |
} else { |
|
1968 |
Node v = _graph.target((*_matching)[n]); |
|
1969 |
if ((*_matching)[n] != |
|
1970 |
_graph.oppositeArc((*_matching)[v])) { |
|
1971 |
extractCycle(a); |
|
1972 |
--unmatched; |
|
1973 |
} else { |
|
1974 |
extendOnArc(a); |
|
1975 |
} |
|
1976 |
} |
|
1977 |
} break; |
|
1978 |
case D3: |
|
1979 |
{ |
|
1980 |
Edge e = _delta3->top(); |
|
1981 |
|
|
1982 |
Node left = _graph.u(e); |
|
1983 |
Node right = _graph.v(e); |
|
1984 |
|
|
1985 |
int left_tree = _tree_set->find(left); |
|
1986 |
int right_tree = _tree_set->find(right); |
|
1987 |
|
|
1988 |
if (left_tree == right_tree) { |
|
1989 |
cycleOnEdge(e, left_tree); |
|
1990 |
--unmatched; |
|
1991 |
} else { |
|
1992 |
augmentOnEdge(e); |
|
1993 |
unmatched -= 2; |
|
1994 |
} |
|
1995 |
} break; |
|
1996 |
} |
|
1997 |
} |
|
1998 |
return true; |
|
1999 |
} |
|
2000 |
|
|
2001 |
/// \brief Run the algorithm. |
|
2002 |
/// |
|
2003 |
/// This method runs the \c %MaxWeightedPerfectFractionalMatching |
|
2004 |
/// algorithm. |
|
2005 |
/// |
|
2006 |
/// \note mwfm.run() is just a shortcut of the following code. |
|
2007 |
/// \code |
|
2008 |
/// mwpfm.init(); |
|
2009 |
/// mwpfm.start(); |
|
2010 |
/// \endcode |
|
2011 |
bool run() { |
|
2012 |
init(); |
|
2013 |
return start(); |
|
2014 |
} |
|
2015 |
|
|
2016 |
/// @} |
|
2017 |
|
|
2018 |
/// \name Primal Solution |
|
2019 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
2020 |
/// matching.\n |
|
2021 |
/// Either \ref run() or \ref start() function should be called before |
|
2022 |
/// using them. |
|
2023 |
|
|
2024 |
/// @{ |
|
2025 |
|
|
2026 |
/// \brief Return the weight of the matching. |
|
2027 |
/// |
|
2028 |
/// This function returns the weight of the found matching. This |
|
2029 |
/// value is scaled by \ref primalScale "primal scale". |
|
2030 |
/// |
|
2031 |
/// \pre Either run() or start() must be called before using this function. |
|
2032 |
Value matchingWeight() const { |
|
2033 |
Value sum = 0; |
|
2034 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
2035 |
if ((*_matching)[n] != INVALID) { |
|
2036 |
sum += _weight[(*_matching)[n]]; |
|
2037 |
} |
|
2038 |
} |
|
2039 |
return sum * primalScale / 2; |
|
2040 |
} |
|
2041 |
|
|
2042 |
/// \brief Return the number of covered nodes in the matching. |
|
2043 |
/// |
|
2044 |
/// This function returns the number of covered nodes in the matching. |
|
2045 |
/// |
|
2046 |
/// \pre Either run() or start() must be called before using this function. |
|
2047 |
int matchingSize() const { |
|
2048 |
int num = 0; |
|
2049 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
2050 |
if ((*_matching)[n] != INVALID) { |
|
2051 |
++num; |
|
2052 |
} |
|
2053 |
} |
|
2054 |
return num; |
|
2055 |
} |
|
2056 |
|
|
2057 |
/// \brief Return \c true if the given edge is in the matching. |
|
2058 |
/// |
|
2059 |
/// This function returns \c true if the given edge is in the |
|
2060 |
/// found matching. The result is scaled by \ref primalScale |
|
2061 |
/// "primal scale". |
|
2062 |
/// |
|
2063 |
/// \pre Either run() or start() must be called before using this function. |
|
2064 |
int matching(const Edge& edge) const { |
|
2065 |
return (edge == (*_matching)[_graph.u(edge)] ? 1 : 0) |
|
2066 |
+ (edge == (*_matching)[_graph.v(edge)] ? 1 : 0); |
|
2067 |
} |
|
2068 |
|
|
2069 |
/// \brief Return the fractional matching arc (or edge) incident |
|
2070 |
/// to the given node. |
|
2071 |
/// |
|
2072 |
/// This function returns one of the fractional matching arc (or |
|
2073 |
/// edge) incident to the given node in the found matching or \c |
|
2074 |
/// INVALID if the node is not covered by the matching or if the |
|
2075 |
/// node is on an odd length cycle then it is the successor edge |
|
2076 |
/// on the cycle. |
|
2077 |
/// |
|
2078 |
/// \pre Either run() or start() must be called before using this function. |
|
2079 |
Arc matching(const Node& node) const { |
|
2080 |
return (*_matching)[node]; |
|
2081 |
} |
|
2082 |
|
|
2083 |
/// \brief Return a const reference to the matching map. |
|
2084 |
/// |
|
2085 |
/// This function returns a const reference to a node map that stores |
|
2086 |
/// the matching arc (or edge) incident to each node. |
|
2087 |
const MatchingMap& matchingMap() const { |
|
2088 |
return *_matching; |
|
2089 |
} |
|
2090 |
|
|
2091 |
/// @} |
|
2092 |
|
|
2093 |
/// \name Dual Solution |
|
2094 |
/// Functions to get the dual solution.\n |
|
2095 |
/// Either \ref run() or \ref start() function should be called before |
|
2096 |
/// using them. |
|
2097 |
|
|
2098 |
/// @{ |
|
2099 |
|
|
2100 |
/// \brief Return the value of the dual solution. |
|
2101 |
/// |
|
2102 |
/// This function returns the value of the dual solution. |
|
2103 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
2104 |
/// "dual scale". |
|
2105 |
/// |
|
2106 |
/// \pre Either run() or start() must be called before using this function. |
|
2107 |
Value dualValue() const { |
|
2108 |
Value sum = 0; |
|
2109 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
2110 |
sum += nodeValue(n); |
|
2111 |
} |
|
2112 |
return sum; |
|
2113 |
} |
|
2114 |
|
|
2115 |
/// \brief Return the dual value (potential) of the given node. |
|
2116 |
/// |
|
2117 |
/// This function returns the dual value (potential) of the given node. |
|
2118 |
/// |
|
2119 |
/// \pre Either run() or start() must be called before using this function. |
|
2120 |
Value nodeValue(const Node& n) const { |
|
2121 |
return (*_node_potential)[n]; |
|
2122 |
} |
|
2123 |
|
|
2124 |
/// @} |
|
2125 |
|
|
2126 |
}; |
|
2127 |
|
|
2128 |
} //END OF NAMESPACE LEMON |
|
2129 |
|
|
2130 |
#endif //LEMON_FRACTIONAL_MATCHING_H |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#include <iostream> |
|
20 |
#include <sstream> |
|
21 |
#include <vector> |
|
22 |
#include <queue> |
|
23 |
#include <cstdlib> |
|
24 |
|
|
25 |
#include <lemon/fractional_matching.h> |
|
26 |
#include <lemon/smart_graph.h> |
|
27 |
#include <lemon/concepts/graph.h> |
|
28 |
#include <lemon/concepts/maps.h> |
|
29 |
#include <lemon/lgf_reader.h> |
|
30 |
#include <lemon/math.h> |
|
31 |
|
|
32 |
#include "test_tools.h" |
|
33 |
|
|
34 |
using namespace std; |
|
35 |
using namespace lemon; |
|
36 |
|
|
37 |
GRAPH_TYPEDEFS(SmartGraph); |
|
38 |
|
|
39 |
|
|
40 |
const int lgfn = 4; |
|
41 |
const std::string lgf[lgfn] = { |
|
42 |
"@nodes\n" |
|
43 |
"label\n" |
|
44 |
"0\n" |
|
45 |
"1\n" |
|
46 |
"2\n" |
|
47 |
"3\n" |
|
48 |
"4\n" |
|
49 |
"5\n" |
|
50 |
"6\n" |
|
51 |
"7\n" |
|
52 |
"@edges\n" |
|
53 |
" label weight\n" |
|
54 |
"7 4 0 984\n" |
|
55 |
"0 7 1 73\n" |
|
56 |
"7 1 2 204\n" |
|
57 |
"2 3 3 583\n" |
|
58 |
"2 7 4 565\n" |
|
59 |
"2 1 5 582\n" |
|
60 |
"0 4 6 551\n" |
|
61 |
"2 5 7 385\n" |
|
62 |
"1 5 8 561\n" |
|
63 |
"5 3 9 484\n" |
|
64 |
"7 5 10 904\n" |
|
65 |
"3 6 11 47\n" |
|
66 |
"7 6 12 888\n" |
|
67 |
"3 0 13 747\n" |
|
68 |
"6 1 14 310\n", |
|
69 |
|
|
70 |
"@nodes\n" |
|
71 |
"label\n" |
|
72 |
"0\n" |
|
73 |
"1\n" |
|
74 |
"2\n" |
|
75 |
"3\n" |
|
76 |
"4\n" |
|
77 |
"5\n" |
|
78 |
"6\n" |
|
79 |
"7\n" |
|
80 |
"@edges\n" |
|
81 |
" label weight\n" |
|
82 |
"2 5 0 710\n" |
|
83 |
"0 5 1 241\n" |
|
84 |
"2 4 2 856\n" |
|
85 |
"2 6 3 762\n" |
|
86 |
"4 1 4 747\n" |
|
87 |
"6 1 5 962\n" |
|
88 |
"4 7 6 723\n" |
|
89 |
"1 7 7 661\n" |
|
90 |
"2 3 8 376\n" |
|
91 |
"1 0 9 416\n" |
|
92 |
"6 7 10 391\n", |
|
93 |
|
|
94 |
"@nodes\n" |
|
95 |
"label\n" |
|
96 |
"0\n" |
|
97 |
"1\n" |
|
98 |
"2\n" |
|
99 |
"3\n" |
|
100 |
"4\n" |
|
101 |
"5\n" |
|
102 |
"6\n" |
|
103 |
"7\n" |
|
104 |
"@edges\n" |
|
105 |
" label weight\n" |
|
106 |
"6 2 0 553\n" |
|
107 |
"0 7 1 653\n" |
|
108 |
"6 3 2 22\n" |
|
109 |
"4 7 3 846\n" |
|
110 |
"7 2 4 981\n" |
|
111 |
"7 6 5 250\n" |
|
112 |
"5 2 6 539\n", |
|
113 |
|
|
114 |
"@nodes\n" |
|
115 |
"label\n" |
|
116 |
"0\n" |
|
117 |
"@edges\n" |
|
118 |
" label weight\n" |
|
119 |
"0 0 0 100\n" |
|
120 |
}; |
|
121 |
|
|
122 |
void checkMaxFractionalMatchingCompile() |
|
123 |
{ |
|
124 |
typedef concepts::Graph Graph; |
|
125 |
typedef Graph::Node Node; |
|
126 |
typedef Graph::Edge Edge; |
|
127 |
|
|
128 |
Graph g; |
|
129 |
Node n; |
|
130 |
Edge e; |
|
131 |
|
|
132 |
MaxFractionalMatching<Graph> mat_test(g); |
|
133 |
const MaxFractionalMatching<Graph>& |
|
134 |
const_mat_test = mat_test; |
|
135 |
|
|
136 |
mat_test.init(); |
|
137 |
mat_test.start(); |
|
138 |
mat_test.start(true); |
|
139 |
mat_test.startPerfect(); |
|
140 |
mat_test.startPerfect(true); |
|
141 |
mat_test.run(); |
|
142 |
mat_test.run(true); |
|
143 |
mat_test.runPerfect(); |
|
144 |
mat_test.runPerfect(true); |
|
145 |
|
|
146 |
const_mat_test.matchingSize(); |
|
147 |
const_mat_test.matching(e); |
|
148 |
const_mat_test.matching(n); |
|
149 |
const MaxFractionalMatching<Graph>::MatchingMap& mmap = |
|
150 |
const_mat_test.matchingMap(); |
|
151 |
e = mmap[n]; |
|
152 |
|
|
153 |
const_mat_test.barrier(n); |
|
154 |
} |
|
155 |
|
|
156 |
void checkMaxWeightedFractionalMatchingCompile() |
|
157 |
{ |
|
158 |
typedef concepts::Graph Graph; |
|
159 |
typedef Graph::Node Node; |
|
160 |
typedef Graph::Edge Edge; |
|
161 |
typedef Graph::EdgeMap<int> WeightMap; |
|
162 |
|
|
163 |
Graph g; |
|
164 |
Node n; |
|
165 |
Edge e; |
|
166 |
WeightMap w(g); |
|
167 |
|
|
168 |
MaxWeightedFractionalMatching<Graph> mat_test(g, w); |
|
169 |
const MaxWeightedFractionalMatching<Graph>& |
|
170 |
const_mat_test = mat_test; |
|
171 |
|
|
172 |
mat_test.init(); |
|
173 |
mat_test.start(); |
|
174 |
mat_test.run(); |
|
175 |
|
|
176 |
const_mat_test.matchingWeight(); |
|
177 |
const_mat_test.matchingSize(); |
|
178 |
const_mat_test.matching(e); |
|
179 |
const_mat_test.matching(n); |
|
180 |
const MaxWeightedFractionalMatching<Graph>::MatchingMap& mmap = |
|
181 |
const_mat_test.matchingMap(); |
|
182 |
e = mmap[n]; |
|
183 |
|
|
184 |
const_mat_test.dualValue(); |
|
185 |
const_mat_test.nodeValue(n); |
|
186 |
} |
|
187 |
|
|
188 |
void checkMaxWeightedPerfectFractionalMatchingCompile() |
|
189 |
{ |
|
190 |
typedef concepts::Graph Graph; |
|
191 |
typedef Graph::Node Node; |
|
192 |
typedef Graph::Edge Edge; |
|
193 |
typedef Graph::EdgeMap<int> WeightMap; |
|
194 |
|
|
195 |
Graph g; |
|
196 |
Node n; |
|
197 |
Edge e; |
|
198 |
WeightMap w(g); |
|
199 |
|
|
200 |
MaxWeightedPerfectFractionalMatching<Graph> mat_test(g, w); |
|
201 |
const MaxWeightedPerfectFractionalMatching<Graph>& |
|
202 |
const_mat_test = mat_test; |
|
203 |
|
|
204 |
mat_test.init(); |
|
205 |
mat_test.start(); |
|
206 |
mat_test.run(); |
|
207 |
|
|
208 |
const_mat_test.matchingWeight(); |
|
209 |
const_mat_test.matching(e); |
|
210 |
const_mat_test.matching(n); |
|
211 |
const MaxWeightedPerfectFractionalMatching<Graph>::MatchingMap& mmap = |
|
212 |
const_mat_test.matchingMap(); |
|
213 |
e = mmap[n]; |
|
214 |
|
|
215 |
const_mat_test.dualValue(); |
|
216 |
const_mat_test.nodeValue(n); |
|
217 |
} |
|
218 |
|
|
219 |
void checkFractionalMatching(const SmartGraph& graph, |
|
220 |
const MaxFractionalMatching<SmartGraph>& mfm, |
|
221 |
bool allow_loops = true) { |
|
222 |
int pv = 0; |
|
223 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
224 |
int indeg = 0; |
|
225 |
for (InArcIt a(graph, n); a != INVALID; ++a) { |
|
226 |
if (mfm.matching(graph.source(a)) == a) { |
|
227 |
++indeg; |
|
228 |
} |
|
229 |
} |
|
230 |
if (mfm.matching(n) != INVALID) { |
|
231 |
check(indeg == 1, "Invalid matching"); |
|
232 |
++pv; |
|
233 |
} else { |
|
234 |
check(indeg == 0, "Invalid matching"); |
|
235 |
} |
|
236 |
} |
|
237 |
check(pv == mfm.matchingSize(), "Wrong matching size"); |
|
238 |
|
|
239 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) { |
|
240 |
check((e == mfm.matching(graph.u(e)) ? 1 : 0) + |
|
241 |
(e == mfm.matching(graph.v(e)) ? 1 : 0) == |
|
242 |
mfm.matching(e), "Invalid matching"); |
|
243 |
} |
|
244 |
|
|
245 |
SmartGraph::NodeMap<bool> processed(graph, false); |
|
246 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
247 |
if (processed[n]) continue; |
|
248 |
processed[n] = true; |
|
249 |
if (mfm.matching(n) == INVALID) continue; |
|
250 |
int num = 1; |
|
251 |
Node v = graph.target(mfm.matching(n)); |
|
252 |
while (v != n) { |
|
253 |
processed[v] = true; |
|
254 |
++num; |
|
255 |
v = graph.target(mfm.matching(v)); |
|
256 |
} |
|
257 |
check(num == 2 || num % 2 == 1, "Wrong cycle size"); |
|
258 |
check(allow_loops || num != 1, "Wrong cycle size"); |
|
259 |
} |
|
260 |
|
|
261 |
int anum = 0, bnum = 0; |
|
262 |
SmartGraph::NodeMap<bool> neighbours(graph, false); |
|
263 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
264 |
if (!mfm.barrier(n)) continue; |
|
265 |
++anum; |
|
266 |
for (SmartGraph::InArcIt a(graph, n); a != INVALID; ++a) { |
|
267 |
Node u = graph.source(a); |
|
268 |
if (!allow_loops && u == n) continue; |
|
269 |
if (!neighbours[u]) { |
|
270 |
neighbours[u] = true; |
|
271 |
++bnum; |
|
272 |
} |
|
273 |
} |
|
274 |
} |
|
275 |
check(anum - bnum + mfm.matchingSize() == countNodes(graph), |
|
276 |
"Wrong barrier"); |
|
277 |
} |
|
278 |
|
|
279 |
void checkPerfectFractionalMatching(const SmartGraph& graph, |
|
280 |
const MaxFractionalMatching<SmartGraph>& mfm, |
|
281 |
bool perfect, bool allow_loops = true) { |
|
282 |
if (perfect) { |
|
283 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
284 |
int indeg = 0; |
|
285 |
for (InArcIt a(graph, n); a != INVALID; ++a) { |
|
286 |
if (mfm.matching(graph.source(a)) == a) { |
|
287 |
++indeg; |
|
288 |
} |
|
289 |
} |
|
290 |
check(mfm.matching(n) != INVALID, "Invalid matching"); |
|
291 |
check(indeg == 1, "Invalid matching"); |
|
292 |
} |
|
293 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) { |
|
294 |
check((e == mfm.matching(graph.u(e)) ? 1 : 0) + |
|
295 |
(e == mfm.matching(graph.v(e)) ? 1 : 0) == |
|
296 |
mfm.matching(e), "Invalid matching"); |
|
297 |
} |
|
298 |
} else { |
|
299 |
int anum = 0, bnum = 0; |
|
300 |
SmartGraph::NodeMap<bool> neighbours(graph, false); |
|
301 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
302 |
if (!mfm.barrier(n)) continue; |
|
303 |
++anum; |
|
304 |
for (SmartGraph::InArcIt a(graph, n); a != INVALID; ++a) { |
|
305 |
Node u = graph.source(a); |
|
306 |
if (!allow_loops && u == n) continue; |
|
307 |
if (!neighbours[u]) { |
|
308 |
neighbours[u] = true; |
|
309 |
++bnum; |
|
310 |
} |
|
311 |
} |
|
312 |
} |
|
313 |
check(anum - bnum > 0, "Wrong barrier"); |
|
314 |
} |
|
315 |
} |
|
316 |
|
|
317 |
void checkWeightedFractionalMatching(const SmartGraph& graph, |
|
318 |
const SmartGraph::EdgeMap<int>& weight, |
|
319 |
const MaxWeightedFractionalMatching<SmartGraph>& mwfm, |
|
320 |
bool allow_loops = true) { |
|
321 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) { |
|
322 |
if (graph.u(e) == graph.v(e) && !allow_loops) continue; |
|
323 |
int rw = mwfm.nodeValue(graph.u(e)) + mwfm.nodeValue(graph.v(e)) |
|
324 |
- weight[e] * mwfm.dualScale; |
|
325 |
|
|
326 |
check(rw >= 0, "Negative reduced weight"); |
|
327 |
check(rw == 0 || !mwfm.matching(e), |
|
328 |
"Non-zero reduced weight on matching edge"); |
|
329 |
} |
|
330 |
|
|
331 |
int pv = 0; |
|
332 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
333 |
int indeg = 0; |
|
334 |
for (InArcIt a(graph, n); a != INVALID; ++a) { |
|
335 |
if (mwfm.matching(graph.source(a)) == a) { |
|
336 |
++indeg; |
|
337 |
} |
|
338 |
} |
|
339 |
check(indeg <= 1, "Invalid matching"); |
|
340 |
if (mwfm.matching(n) != INVALID) { |
|
341 |
check(mwfm.nodeValue(n) >= 0, "Invalid node value"); |
|
342 |
check(indeg == 1, "Invalid matching"); |
|
343 |
pv += weight[mwfm.matching(n)]; |
|
344 |
SmartGraph::Node o = graph.target(mwfm.matching(n)); |
|
345 |
} else { |
|
346 |
check(mwfm.nodeValue(n) == 0, "Invalid matching"); |
|
347 |
check(indeg == 0, "Invalid matching"); |
|
348 |
} |
|
349 |
} |
|
350 |
|
|
351 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) { |
|
352 |
check((e == mwfm.matching(graph.u(e)) ? 1 : 0) + |
|
353 |
(e == mwfm.matching(graph.v(e)) ? 1 : 0) == |
|
354 |
mwfm.matching(e), "Invalid matching"); |
|
355 |
} |
|
356 |
|
|
357 |
int dv = 0; |
|
358 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
359 |
dv += mwfm.nodeValue(n); |
|
360 |
} |
|
361 |
|
|
362 |
check(pv * mwfm.dualScale == dv * 2, "Wrong duality"); |
|
363 |
|
|
364 |
SmartGraph::NodeMap<bool> processed(graph, false); |
|
365 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
366 |
if (processed[n]) continue; |
|
367 |
processed[n] = true; |
|
368 |
if (mwfm.matching(n) == INVALID) continue; |
|
369 |
int num = 1; |
|
370 |
Node v = graph.target(mwfm.matching(n)); |
|
371 |
while (v != n) { |
|
372 |
processed[v] = true; |
|
373 |
++num; |
|
374 |
v = graph.target(mwfm.matching(v)); |
|
375 |
} |
|
376 |
check(num == 2 || num % 2 == 1, "Wrong cycle size"); |
|
377 |
check(allow_loops || num != 1, "Wrong cycle size"); |
|
378 |
} |
|
379 |
|
|
380 |
return; |
|
381 |
} |
|
382 |
|
|
383 |
void checkWeightedPerfectFractionalMatching(const SmartGraph& graph, |
|
384 |
const SmartGraph::EdgeMap<int>& weight, |
|
385 |
const MaxWeightedPerfectFractionalMatching<SmartGraph>& mwpfm, |
|
386 |
bool allow_loops = true) { |
|
387 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) { |
|
388 |
if (graph.u(e) == graph.v(e) && !allow_loops) continue; |
|
389 |
int rw = mwpfm.nodeValue(graph.u(e)) + mwpfm.nodeValue(graph.v(e)) |
|
390 |
- weight[e] * mwpfm.dualScale; |
|
391 |
|
|
392 |
check(rw >= 0, "Negative reduced weight"); |
|
393 |
check(rw == 0 || !mwpfm.matching(e), |
|
394 |
"Non-zero reduced weight on matching edge"); |
|
395 |
} |
|
396 |
|
|
397 |
int pv = 0; |
|
398 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
399 |
int indeg = 0; |
|
400 |
for (InArcIt a(graph, n); a != INVALID; ++a) { |
|
401 |
if (mwpfm.matching(graph.source(a)) == a) { |
|
402 |
++indeg; |
|
403 |
} |
|
404 |
} |
|
405 |
check(mwpfm.matching(n) != INVALID, "Invalid perfect matching"); |
|
406 |
check(indeg == 1, "Invalid perfect matching"); |
|
407 |
pv += weight[mwpfm.matching(n)]; |
|
408 |
SmartGraph::Node o = graph.target(mwpfm.matching(n)); |
|
409 |
} |
|
410 |
|
|
411 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) { |
|
412 |
check((e == mwpfm.matching(graph.u(e)) ? 1 : 0) + |
|
413 |
(e == mwpfm.matching(graph.v(e)) ? 1 : 0) == |
|
414 |
mwpfm.matching(e), "Invalid matching"); |
|
415 |
} |
|
416 |
|
|
417 |
int dv = 0; |
|
418 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
419 |
dv += mwpfm.nodeValue(n); |
|
420 |
} |
|
421 |
|
|
422 |
check(pv * mwpfm.dualScale == dv * 2, "Wrong duality"); |
|
423 |
|
|
424 |
SmartGraph::NodeMap<bool> processed(graph, false); |
|
425 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
|
426 |
if (processed[n]) continue; |
|
427 |
processed[n] = true; |
|
428 |
if (mwpfm.matching(n) == INVALID) continue; |
|
429 |
int num = 1; |
|
430 |
Node v = graph.target(mwpfm.matching(n)); |
|
431 |
while (v != n) { |
|
432 |
processed[v] = true; |
|
433 |
++num; |
|
434 |
v = graph.target(mwpfm.matching(v)); |
|
435 |
} |
|
436 |
check(num == 2 || num % 2 == 1, "Wrong cycle size"); |
|
437 |
check(allow_loops || num != 1, "Wrong cycle size"); |
|
438 |
} |
|
439 |
|
|
440 |
return; |
|
441 |
} |
|
442 |
|
|
443 |
|
|
444 |
int main() { |
|
445 |
|
|
446 |
for (int i = 0; i < lgfn; ++i) { |
|
447 |
SmartGraph graph; |
|
448 |
SmartGraph::EdgeMap<int> weight(graph); |
|
449 |
|
|
450 |
istringstream lgfs(lgf[i]); |
|
451 |
graphReader(graph, lgfs). |
|
452 |
edgeMap("weight", weight).run(); |
|
453 |
|
|
454 |
bool perfect_with_loops; |
|
455 |
{ |
|
456 |
MaxFractionalMatching<SmartGraph> mfm(graph, true); |
|
457 |
mfm.run(); |
|
458 |
checkFractionalMatching(graph, mfm, true); |
|
459 |
perfect_with_loops = mfm.matchingSize() == countNodes(graph); |
|
460 |
} |
|
461 |
|
|
462 |
bool perfect_without_loops; |
|
463 |
{ |
|
464 |
MaxFractionalMatching<SmartGraph> mfm(graph, false); |
|
465 |
mfm.run(); |
|
466 |
checkFractionalMatching(graph, mfm, false); |
|
467 |
perfect_without_loops = mfm.matchingSize() == countNodes(graph); |
|
468 |
} |
|
469 |
|
|
470 |
{ |
|
471 |
MaxFractionalMatching<SmartGraph> mfm(graph, true); |
|
472 |
bool result = mfm.runPerfect(); |
|
473 |
checkPerfectFractionalMatching(graph, mfm, result, true); |
|
474 |
check(result == perfect_with_loops, "Wrong perfect matching"); |
|
475 |
} |
|
476 |
|
|
477 |
{ |
|
478 |
MaxFractionalMatching<SmartGraph> mfm(graph, false); |
|
479 |
bool result = mfm.runPerfect(); |
|
480 |
checkPerfectFractionalMatching(graph, mfm, result, false); |
|
481 |
check(result == perfect_without_loops, "Wrong perfect matching"); |
|
482 |
} |
|
483 |
|
|
484 |
{ |
|
485 |
MaxWeightedFractionalMatching<SmartGraph> mwfm(graph, weight, true); |
|
486 |
mwfm.run(); |
|
487 |
checkWeightedFractionalMatching(graph, weight, mwfm, true); |
|
488 |
} |
|
489 |
|
|
490 |
{ |
|
491 |
MaxWeightedFractionalMatching<SmartGraph> mwfm(graph, weight, false); |
|
492 |
mwfm.run(); |
|
493 |
checkWeightedFractionalMatching(graph, weight, mwfm, false); |
|
494 |
} |
|
495 |
|
|
496 |
{ |
|
497 |
MaxWeightedPerfectFractionalMatching<SmartGraph> mwpfm(graph, weight, |
|
498 |
true); |
|
499 |
bool perfect = mwpfm.run(); |
|
500 |
check(perfect == (mwpfm.matchingSize() == countNodes(graph)), |
|
501 |
"Perfect matching found"); |
|
502 |
check(perfect == perfect_with_loops, "Wrong perfect matching"); |
|
503 |
|
|
504 |
if (perfect) { |
|
505 |
checkWeightedPerfectFractionalMatching(graph, weight, mwpfm, true); |
|
506 |
} |
|
507 |
} |
|
508 |
|
|
509 |
{ |
|
510 |
MaxWeightedPerfectFractionalMatching<SmartGraph> mwpfm(graph, weight, |
|
511 |
false); |
|
512 |
bool perfect = mwpfm.run(); |
|
513 |
check(perfect == (mwpfm.matchingSize() == countNodes(graph)), |
|
514 |
"Perfect matching found"); |
|
515 |
check(perfect == perfect_without_loops, "Wrong perfect matching"); |
|
516 |
|
|
517 |
if (perfect) { |
|
518 |
checkWeightedPerfectFractionalMatching(graph, weight, mwpfm, false); |
|
519 |
} |
|
520 |
} |
|
521 |
|
|
522 |
} |
|
523 |
|
|
524 |
return 0; |
|
525 |
} |
... | ... |
@@ -197,520 +197,527 @@ |
197 | 197 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
198 | 198 |
.run(); |
199 | 199 |
\endcode |
200 | 200 |
The \c functorToMap() function makes an \c int to \c Color map from the |
201 | 201 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
202 | 202 |
and the previously created map. The composed map is a proper function to |
203 | 203 |
get the color of each node. |
204 | 204 |
|
205 | 205 |
The usage with class type algorithms is little bit harder. In this |
206 | 206 |
case the function type map adaptors can not be used, because the |
207 | 207 |
function map adaptors give back temporary objects. |
208 | 208 |
\code |
209 | 209 |
Digraph graph; |
210 | 210 |
|
211 | 211 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
212 | 212 |
DoubleArcMap length(graph); |
213 | 213 |
DoubleArcMap speed(graph); |
214 | 214 |
|
215 | 215 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
216 | 216 |
TimeMap time(length, speed); |
217 | 217 |
|
218 | 218 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
219 | 219 |
dijkstra.run(source, target); |
220 | 220 |
\endcode |
221 | 221 |
We have a length map and a maximum speed map on the arcs of a digraph. |
222 | 222 |
The minimum time to pass the arc can be calculated as the division of |
223 | 223 |
the two maps which can be done implicitly with the \c DivMap template |
224 | 224 |
class. We use the implicit minimum time map as the length map of the |
225 | 225 |
\c Dijkstra algorithm. |
226 | 226 |
*/ |
227 | 227 |
|
228 | 228 |
/** |
229 | 229 |
@defgroup paths Path Structures |
230 | 230 |
@ingroup datas |
231 | 231 |
\brief %Path structures implemented in LEMON. |
232 | 232 |
|
233 | 233 |
This group contains the path structures implemented in LEMON. |
234 | 234 |
|
235 | 235 |
LEMON provides flexible data structures to work with paths. |
236 | 236 |
All of them have similar interfaces and they can be copied easily with |
237 | 237 |
assignment operators and copy constructors. This makes it easy and |
238 | 238 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
239 | 239 |
any kind of path structure. |
240 | 240 |
|
241 | 241 |
\sa \ref concepts::Path "Path concept" |
242 | 242 |
*/ |
243 | 243 |
|
244 | 244 |
/** |
245 | 245 |
@defgroup heaps Heap Structures |
246 | 246 |
@ingroup datas |
247 | 247 |
\brief %Heap structures implemented in LEMON. |
248 | 248 |
|
249 | 249 |
This group contains the heap structures implemented in LEMON. |
250 | 250 |
|
251 | 251 |
LEMON provides several heap classes. They are efficient implementations |
252 | 252 |
of the abstract data type \e priority \e queue. They store items with |
253 | 253 |
specified values called \e priorities in such a way that finding and |
254 | 254 |
removing the item with minimum priority are efficient. |
255 | 255 |
The basic operations are adding and erasing items, changing the priority |
256 | 256 |
of an item, etc. |
257 | 257 |
|
258 | 258 |
Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
259 | 259 |
The heap implementations have the same interface, thus any of them can be |
260 | 260 |
used easily in such algorithms. |
261 | 261 |
|
262 | 262 |
\sa \ref concepts::Heap "Heap concept" |
263 | 263 |
*/ |
264 | 264 |
|
265 | 265 |
/** |
266 | 266 |
@defgroup matrices Matrices |
267 | 267 |
@ingroup datas |
268 | 268 |
\brief Two dimensional data storages implemented in LEMON. |
269 | 269 |
|
270 | 270 |
This group contains two dimensional data storages implemented in LEMON. |
271 | 271 |
*/ |
272 | 272 |
|
273 | 273 |
/** |
274 | 274 |
@defgroup auxdat Auxiliary Data Structures |
275 | 275 |
@ingroup datas |
276 | 276 |
\brief Auxiliary data structures implemented in LEMON. |
277 | 277 |
|
278 | 278 |
This group contains some data structures implemented in LEMON in |
279 | 279 |
order to make it easier to implement combinatorial algorithms. |
280 | 280 |
*/ |
281 | 281 |
|
282 | 282 |
/** |
283 | 283 |
@defgroup geomdat Geometric Data Structures |
284 | 284 |
@ingroup auxdat |
285 | 285 |
\brief Geometric data structures implemented in LEMON. |
286 | 286 |
|
287 | 287 |
This group contains geometric data structures implemented in LEMON. |
288 | 288 |
|
289 | 289 |
- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional |
290 | 290 |
vector with the usual operations. |
291 | 291 |
- \ref lemon::dim2::Box "dim2::Box" can be used to determine the |
292 | 292 |
rectangular bounding box of a set of \ref lemon::dim2::Point |
293 | 293 |
"dim2::Point"'s. |
294 | 294 |
*/ |
295 | 295 |
|
296 | 296 |
/** |
297 | 297 |
@defgroup matrices Matrices |
298 | 298 |
@ingroup auxdat |
299 | 299 |
\brief Two dimensional data storages implemented in LEMON. |
300 | 300 |
|
301 | 301 |
This group contains two dimensional data storages implemented in LEMON. |
302 | 302 |
*/ |
303 | 303 |
|
304 | 304 |
/** |
305 | 305 |
@defgroup algs Algorithms |
306 | 306 |
\brief This group contains the several algorithms |
307 | 307 |
implemented in LEMON. |
308 | 308 |
|
309 | 309 |
This group contains the several algorithms |
310 | 310 |
implemented in LEMON. |
311 | 311 |
*/ |
312 | 312 |
|
313 | 313 |
/** |
314 | 314 |
@defgroup search Graph Search |
315 | 315 |
@ingroup algs |
316 | 316 |
\brief Common graph search algorithms. |
317 | 317 |
|
318 | 318 |
This group contains the common graph search algorithms, namely |
319 | 319 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS) |
320 | 320 |
\ref clrs01algorithms. |
321 | 321 |
*/ |
322 | 322 |
|
323 | 323 |
/** |
324 | 324 |
@defgroup shortest_path Shortest Path Algorithms |
325 | 325 |
@ingroup algs |
326 | 326 |
\brief Algorithms for finding shortest paths. |
327 | 327 |
|
328 | 328 |
This group contains the algorithms for finding shortest paths in digraphs |
329 | 329 |
\ref clrs01algorithms. |
330 | 330 |
|
331 | 331 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
332 | 332 |
when all arc lengths are non-negative. |
333 | 333 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
334 | 334 |
from a source node when arc lenghts can be either positive or negative, |
335 | 335 |
but the digraph should not contain directed cycles with negative total |
336 | 336 |
length. |
337 | 337 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
338 | 338 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
339 | 339 |
lenghts can be either positive or negative, but the digraph should |
340 | 340 |
not contain directed cycles with negative total length. |
341 | 341 |
- \ref Suurballe A successive shortest path algorithm for finding |
342 | 342 |
arc-disjoint paths between two nodes having minimum total length. |
343 | 343 |
*/ |
344 | 344 |
|
345 | 345 |
/** |
346 | 346 |
@defgroup spantree Minimum Spanning Tree Algorithms |
347 | 347 |
@ingroup algs |
348 | 348 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
349 | 349 |
|
350 | 350 |
This group contains the algorithms for finding minimum cost spanning |
351 | 351 |
trees and arborescences \ref clrs01algorithms. |
352 | 352 |
*/ |
353 | 353 |
|
354 | 354 |
/** |
355 | 355 |
@defgroup max_flow Maximum Flow Algorithms |
356 | 356 |
@ingroup algs |
357 | 357 |
\brief Algorithms for finding maximum flows. |
358 | 358 |
|
359 | 359 |
This group contains the algorithms for finding maximum flows and |
360 | 360 |
feasible circulations \ref clrs01algorithms, \ref amo93networkflows. |
361 | 361 |
|
362 | 362 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
363 | 363 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
364 | 364 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
365 | 365 |
\f$s, t \in V\f$ source and target nodes. |
366 | 366 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
367 | 367 |
following optimization problem. |
368 | 368 |
|
369 | 369 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
370 | 370 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
371 | 371 |
\quad \forall u\in V\setminus\{s,t\} \f] |
372 | 372 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
373 | 373 |
|
374 | 374 |
LEMON contains several algorithms for solving maximum flow problems: |
375 | 375 |
- \ref EdmondsKarp Edmonds-Karp algorithm |
376 | 376 |
\ref edmondskarp72theoretical. |
377 | 377 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm |
378 | 378 |
\ref goldberg88newapproach. |
379 | 379 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees |
380 | 380 |
\ref dinic70algorithm, \ref sleator83dynamic. |
381 | 381 |
- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees |
382 | 382 |
\ref goldberg88newapproach, \ref sleator83dynamic. |
383 | 383 |
|
384 | 384 |
In most cases the \ref Preflow algorithm provides the |
385 | 385 |
fastest method for computing a maximum flow. All implementations |
386 | 386 |
also provide functions to query the minimum cut, which is the dual |
387 | 387 |
problem of maximum flow. |
388 | 388 |
|
389 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
|
389 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
|
390 | 390 |
for finding feasible circulations, which is a somewhat different problem, |
391 | 391 |
but it is strongly related to maximum flow. |
392 | 392 |
For more information, see \ref Circulation. |
393 | 393 |
*/ |
394 | 394 |
|
395 | 395 |
/** |
396 | 396 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
397 | 397 |
@ingroup algs |
398 | 398 |
|
399 | 399 |
\brief Algorithms for finding minimum cost flows and circulations. |
400 | 400 |
|
401 | 401 |
This group contains the algorithms for finding minimum cost flows and |
402 | 402 |
circulations \ref amo93networkflows. For more information about this |
403 | 403 |
problem and its dual solution, see \ref min_cost_flow |
404 | 404 |
"Minimum Cost Flow Problem". |
405 | 405 |
|
406 | 406 |
LEMON contains several algorithms for this problem. |
407 | 407 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
408 | 408 |
pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex. |
409 | 409 |
- \ref CostScaling Cost Scaling algorithm based on push/augment and |
410 | 410 |
relabel operations \ref goldberg90approximation, \ref goldberg97efficient, |
411 | 411 |
\ref bunnagel98efficient. |
412 | 412 |
- \ref CapacityScaling Capacity Scaling algorithm based on the successive |
413 | 413 |
shortest path method \ref edmondskarp72theoretical. |
414 | 414 |
- \ref CycleCanceling Cycle-Canceling algorithms, two of which are |
415 | 415 |
strongly polynomial \ref klein67primal, \ref goldberg89cyclecanceling. |
416 | 416 |
|
417 | 417 |
In general NetworkSimplex is the most efficient implementation, |
418 | 418 |
but in special cases other algorithms could be faster. |
419 | 419 |
For example, if the total supply and/or capacities are rather small, |
420 | 420 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
421 | 421 |
*/ |
422 | 422 |
|
423 | 423 |
/** |
424 | 424 |
@defgroup min_cut Minimum Cut Algorithms |
425 | 425 |
@ingroup algs |
426 | 426 |
|
427 | 427 |
\brief Algorithms for finding minimum cut in graphs. |
428 | 428 |
|
429 | 429 |
This group contains the algorithms for finding minimum cut in graphs. |
430 | 430 |
|
431 | 431 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
432 | 432 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
433 | 433 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
434 | 434 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
435 | 435 |
cut is the \f$X\f$ solution of the next optimization problem: |
436 | 436 |
|
437 | 437 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
438 | 438 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f] |
439 | 439 |
|
440 | 440 |
LEMON contains several algorithms related to minimum cut problems: |
441 | 441 |
|
442 | 442 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
443 | 443 |
in directed graphs. |
444 | 444 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
445 | 445 |
calculating minimum cut in undirected graphs. |
446 | 446 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
447 | 447 |
all-pairs minimum cut in undirected graphs. |
448 | 448 |
|
449 | 449 |
If you want to find minimum cut just between two distinict nodes, |
450 | 450 |
see the \ref max_flow "maximum flow problem". |
451 | 451 |
*/ |
452 | 452 |
|
453 | 453 |
/** |
454 | 454 |
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms |
455 | 455 |
@ingroup algs |
456 | 456 |
\brief Algorithms for finding minimum mean cycles. |
457 | 457 |
|
458 | 458 |
This group contains the algorithms for finding minimum mean cycles |
459 | 459 |
\ref clrs01algorithms, \ref amo93networkflows. |
460 | 460 |
|
461 | 461 |
The \e minimum \e mean \e cycle \e problem is to find a directed cycle |
462 | 462 |
of minimum mean length (cost) in a digraph. |
463 | 463 |
The mean length of a cycle is the average length of its arcs, i.e. the |
464 | 464 |
ratio between the total length of the cycle and the number of arcs on it. |
465 | 465 |
|
466 | 466 |
This problem has an important connection to \e conservative \e length |
467 | 467 |
\e functions, too. A length function on the arcs of a digraph is called |
468 | 468 |
conservative if and only if there is no directed cycle of negative total |
469 | 469 |
length. For an arbitrary length function, the negative of the minimum |
470 | 470 |
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the |
471 | 471 |
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length |
472 | 472 |
function. |
473 | 473 |
|
474 | 474 |
LEMON contains three algorithms for solving the minimum mean cycle problem: |
475 | 475 |
- \ref Karp "Karp"'s original algorithm \ref amo93networkflows, |
476 | 476 |
\ref dasdan98minmeancycle. |
477 | 477 |
- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved |
478 | 478 |
version of Karp's algorithm \ref dasdan98minmeancycle. |
479 | 479 |
- \ref Howard "Howard"'s policy iteration algorithm |
480 | 480 |
\ref dasdan98minmeancycle. |
481 | 481 |
|
482 | 482 |
In practice, the Howard algorithm proved to be by far the most efficient |
483 | 483 |
one, though the best known theoretical bound on its running time is |
484 | 484 |
exponential. |
485 | 485 |
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space |
486 | 486 |
O(n<sup>2</sup>+e), but the latter one is typically faster due to the |
487 | 487 |
applied early termination scheme. |
488 | 488 |
*/ |
489 | 489 |
|
490 | 490 |
/** |
491 | 491 |
@defgroup matching Matching Algorithms |
492 | 492 |
@ingroup algs |
493 | 493 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
494 | 494 |
|
495 | 495 |
This group contains the algorithms for calculating |
496 | 496 |
matchings in graphs and bipartite graphs. The general matching problem is |
497 | 497 |
finding a subset of the edges for which each node has at most one incident |
498 | 498 |
edge. |
499 | 499 |
|
500 | 500 |
There are several different algorithms for calculate matchings in |
501 | 501 |
graphs. The matching problems in bipartite graphs are generally |
502 | 502 |
easier than in general graphs. The goal of the matching optimization |
503 | 503 |
can be finding maximum cardinality, maximum weight or minimum cost |
504 | 504 |
matching. The search can be constrained to find perfect or |
505 | 505 |
maximum cardinality matching. |
506 | 506 |
|
507 | 507 |
The matching algorithms implemented in LEMON: |
508 | 508 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
509 | 509 |
for calculating maximum cardinality matching in bipartite graphs. |
510 | 510 |
- \ref PrBipartiteMatching Push-relabel algorithm |
511 | 511 |
for calculating maximum cardinality matching in bipartite graphs. |
512 | 512 |
- \ref MaxWeightedBipartiteMatching |
513 | 513 |
Successive shortest path algorithm for calculating maximum weighted |
514 | 514 |
matching and maximum weighted bipartite matching in bipartite graphs. |
515 | 515 |
- \ref MinCostMaxBipartiteMatching |
516 | 516 |
Successive shortest path algorithm for calculating minimum cost maximum |
517 | 517 |
matching in bipartite graphs. |
518 | 518 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
519 | 519 |
maximum cardinality matching in general graphs. |
520 | 520 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
521 | 521 |
maximum weighted matching in general graphs. |
522 | 522 |
- \ref MaxWeightedPerfectMatching |
523 | 523 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
524 | 524 |
perfect matching in general graphs. |
525 |
- \ref MaxFractionalMatching Push-relabel algorithm for calculating |
|
526 |
maximum cardinality fractional matching in general graphs. |
|
527 |
- \ref MaxWeightedFractionalMatching Augmenting path algorithm for calculating |
|
528 |
maximum weighted fractional matching in general graphs. |
|
529 |
- \ref MaxWeightedPerfectFractionalMatching |
|
530 |
Augmenting path algorithm for calculating maximum weighted |
|
531 |
perfect fractional matching in general graphs. |
|
525 | 532 |
|
526 | 533 |
\image html matching.png |
527 | 534 |
\image latex matching.eps "Min Cost Perfect Matching" width=\textwidth |
528 | 535 |
*/ |
529 | 536 |
|
530 | 537 |
/** |
531 | 538 |
@defgroup graph_properties Connectivity and Other Graph Properties |
532 | 539 |
@ingroup algs |
533 | 540 |
\brief Algorithms for discovering the graph properties |
534 | 541 |
|
535 | 542 |
This group contains the algorithms for discovering the graph properties |
536 | 543 |
like connectivity, bipartiteness, euler property, simplicity etc. |
537 | 544 |
|
538 | 545 |
\image html connected_components.png |
539 | 546 |
\image latex connected_components.eps "Connected components" width=\textwidth |
540 | 547 |
*/ |
541 | 548 |
|
542 | 549 |
/** |
543 | 550 |
@defgroup planar Planarity Embedding and Drawing |
544 | 551 |
@ingroup algs |
545 | 552 |
\brief Algorithms for planarity checking, embedding and drawing |
546 | 553 |
|
547 | 554 |
This group contains the algorithms for planarity checking, |
548 | 555 |
embedding and drawing. |
549 | 556 |
|
550 | 557 |
\image html planar.png |
551 | 558 |
\image latex planar.eps "Plane graph" width=\textwidth |
552 | 559 |
*/ |
553 | 560 |
|
554 | 561 |
/** |
555 | 562 |
@defgroup approx Approximation Algorithms |
556 | 563 |
@ingroup algs |
557 | 564 |
\brief Approximation algorithms. |
558 | 565 |
|
559 | 566 |
This group contains the approximation and heuristic algorithms |
560 | 567 |
implemented in LEMON. |
561 | 568 |
*/ |
562 | 569 |
|
563 | 570 |
/** |
564 | 571 |
@defgroup auxalg Auxiliary Algorithms |
565 | 572 |
@ingroup algs |
566 | 573 |
\brief Auxiliary algorithms implemented in LEMON. |
567 | 574 |
|
568 | 575 |
This group contains some algorithms implemented in LEMON |
569 | 576 |
in order to make it easier to implement complex algorithms. |
570 | 577 |
*/ |
571 | 578 |
|
572 | 579 |
/** |
573 | 580 |
@defgroup gen_opt_group General Optimization Tools |
574 | 581 |
\brief This group contains some general optimization frameworks |
575 | 582 |
implemented in LEMON. |
576 | 583 |
|
577 | 584 |
This group contains some general optimization frameworks |
578 | 585 |
implemented in LEMON. |
579 | 586 |
*/ |
580 | 587 |
|
581 | 588 |
/** |
582 | 589 |
@defgroup lp_group LP and MIP Solvers |
583 | 590 |
@ingroup gen_opt_group |
584 | 591 |
\brief LP and MIP solver interfaces for LEMON. |
585 | 592 |
|
586 | 593 |
This group contains LP and MIP solver interfaces for LEMON. |
587 | 594 |
Various LP solvers could be used in the same manner with this |
588 | 595 |
high-level interface. |
589 | 596 |
|
590 | 597 |
The currently supported solvers are \ref glpk, \ref clp, \ref cbc, |
591 | 598 |
\ref cplex, \ref soplex. |
592 | 599 |
*/ |
593 | 600 |
|
594 | 601 |
/** |
595 | 602 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
596 | 603 |
@ingroup lp_group |
597 | 604 |
\brief Helper tools to the Lp and Mip solvers. |
598 | 605 |
|
599 | 606 |
This group adds some helper tools to general optimization framework |
600 | 607 |
implemented in LEMON. |
601 | 608 |
*/ |
602 | 609 |
|
603 | 610 |
/** |
604 | 611 |
@defgroup metah Metaheuristics |
605 | 612 |
@ingroup gen_opt_group |
606 | 613 |
\brief Metaheuristics for LEMON library. |
607 | 614 |
|
608 | 615 |
This group contains some metaheuristic optimization tools. |
609 | 616 |
*/ |
610 | 617 |
|
611 | 618 |
/** |
612 | 619 |
@defgroup utils Tools and Utilities |
613 | 620 |
\brief Tools and utilities for programming in LEMON |
614 | 621 |
|
615 | 622 |
Tools and utilities for programming in LEMON. |
616 | 623 |
*/ |
617 | 624 |
|
618 | 625 |
/** |
619 | 626 |
@defgroup gutils Basic Graph Utilities |
620 | 627 |
@ingroup utils |
621 | 628 |
\brief Simple basic graph utilities. |
622 | 629 |
|
623 | 630 |
This group contains some simple basic graph utilities. |
624 | 631 |
*/ |
625 | 632 |
|
626 | 633 |
/** |
627 | 634 |
@defgroup misc Miscellaneous Tools |
628 | 635 |
@ingroup utils |
629 | 636 |
\brief Tools for development, debugging and testing. |
630 | 637 |
|
631 | 638 |
This group contains several useful tools for development, |
632 | 639 |
debugging and testing. |
633 | 640 |
*/ |
634 | 641 |
|
635 | 642 |
/** |
636 | 643 |
@defgroup timecount Time Measuring and Counting |
637 | 644 |
@ingroup misc |
638 | 645 |
\brief Simple tools for measuring the performance of algorithms. |
639 | 646 |
|
640 | 647 |
This group contains simple tools for measuring the performance |
641 | 648 |
of algorithms. |
642 | 649 |
*/ |
643 | 650 |
|
644 | 651 |
/** |
645 | 652 |
@defgroup exceptions Exceptions |
646 | 653 |
@ingroup utils |
647 | 654 |
\brief Exceptions defined in LEMON. |
648 | 655 |
|
649 | 656 |
This group contains the exceptions defined in LEMON. |
650 | 657 |
*/ |
651 | 658 |
|
652 | 659 |
/** |
653 | 660 |
@defgroup io_group Input-Output |
654 | 661 |
\brief Graph Input-Output methods |
655 | 662 |
|
656 | 663 |
This group contains the tools for importing and exporting graphs |
657 | 664 |
and graph related data. Now it supports the \ref lgf-format |
658 | 665 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
659 | 666 |
postscript (EPS) format. |
660 | 667 |
*/ |
661 | 668 |
|
662 | 669 |
/** |
663 | 670 |
@defgroup lemon_io LEMON Graph Format |
664 | 671 |
@ingroup io_group |
665 | 672 |
\brief Reading and writing LEMON Graph Format. |
666 | 673 |
|
667 | 674 |
This group contains methods for reading and writing |
668 | 675 |
\ref lgf-format "LEMON Graph Format". |
669 | 676 |
*/ |
670 | 677 |
|
671 | 678 |
/** |
672 | 679 |
@defgroup eps_io Postscript Exporting |
673 | 680 |
@ingroup io_group |
674 | 681 |
\brief General \c EPS drawer and graph exporter |
675 | 682 |
|
676 | 683 |
This group contains general \c EPS drawing methods and special |
677 | 684 |
graph exporting tools. |
678 | 685 |
*/ |
679 | 686 |
|
680 | 687 |
/** |
681 | 688 |
@defgroup dimacs_group DIMACS Format |
682 | 689 |
@ingroup io_group |
683 | 690 |
\brief Read and write files in DIMACS format |
684 | 691 |
|
685 | 692 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
686 | 693 |
*/ |
687 | 694 |
|
688 | 695 |
/** |
689 | 696 |
@defgroup nauty_group NAUTY Format |
690 | 697 |
@ingroup io_group |
691 | 698 |
\brief Read \e Nauty format |
692 | 699 |
|
693 | 700 |
Tool to read graphs from \e Nauty format data. |
694 | 701 |
*/ |
695 | 702 |
|
696 | 703 |
/** |
697 | 704 |
@defgroup concept Concepts |
698 | 705 |
\brief Skeleton classes and concept checking classes |
699 | 706 |
|
700 | 707 |
This group contains the data/algorithm skeletons and concept checking |
701 | 708 |
classes implemented in LEMON. |
702 | 709 |
|
703 | 710 |
The purpose of the classes in this group is fourfold. |
704 | 711 |
|
705 | 712 |
- These classes contain the documentations of the %concepts. In order |
706 | 713 |
to avoid document multiplications, an implementation of a concept |
707 | 714 |
simply refers to the corresponding concept class. |
708 | 715 |
|
709 | 716 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
710 | 717 |
implementation of the %concepts should provide, however completely |
711 | 718 |
without implementations and real data structures behind the |
712 | 719 |
interface. On the other hand they should provide nothing else. All |
713 | 720 |
the algorithms working on a data structure meeting a certain concept |
714 | 721 |
should compile with these classes. (Though it will not run properly, |
715 | 722 |
of course.) In this way it is easily to check if an algorithm |
716 | 723 |
doesn't use any extra feature of a certain implementation. |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
lemon/lemon.pc.in \ |
3 | 3 |
lemon/CMakeLists.txt \ |
4 | 4 |
lemon/config.h.cmake |
5 | 5 |
|
6 | 6 |
pkgconfig_DATA += lemon/lemon.pc |
7 | 7 |
|
8 | 8 |
lib_LTLIBRARIES += lemon/libemon.la |
9 | 9 |
|
10 | 10 |
lemon_libemon_la_SOURCES = \ |
11 | 11 |
lemon/arg_parser.cc \ |
12 | 12 |
lemon/base.cc \ |
13 | 13 |
lemon/color.cc \ |
14 | 14 |
lemon/lp_base.cc \ |
15 | 15 |
lemon/lp_skeleton.cc \ |
16 | 16 |
lemon/random.cc \ |
17 | 17 |
lemon/bits/windows.cc |
18 | 18 |
|
19 | 19 |
nodist_lemon_HEADERS = lemon/config.h |
20 | 20 |
|
21 | 21 |
lemon_libemon_la_CXXFLAGS = \ |
22 | 22 |
$(AM_CXXFLAGS) \ |
23 | 23 |
$(GLPK_CFLAGS) \ |
24 | 24 |
$(CPLEX_CFLAGS) \ |
25 | 25 |
$(SOPLEX_CXXFLAGS) \ |
26 | 26 |
$(CLP_CXXFLAGS) \ |
27 | 27 |
$(CBC_CXXFLAGS) |
28 | 28 |
|
29 | 29 |
lemon_libemon_la_LDFLAGS = \ |
30 | 30 |
$(GLPK_LIBS) \ |
31 | 31 |
$(CPLEX_LIBS) \ |
32 | 32 |
$(SOPLEX_LIBS) \ |
33 | 33 |
$(CLP_LIBS) \ |
34 | 34 |
$(CBC_LIBS) |
35 | 35 |
|
36 | 36 |
if HAVE_GLPK |
37 | 37 |
lemon_libemon_la_SOURCES += lemon/glpk.cc |
38 | 38 |
endif |
39 | 39 |
|
40 | 40 |
if HAVE_CPLEX |
41 | 41 |
lemon_libemon_la_SOURCES += lemon/cplex.cc |
42 | 42 |
endif |
43 | 43 |
|
44 | 44 |
if HAVE_SOPLEX |
45 | 45 |
lemon_libemon_la_SOURCES += lemon/soplex.cc |
46 | 46 |
endif |
47 | 47 |
|
48 | 48 |
if HAVE_CLP |
49 | 49 |
lemon_libemon_la_SOURCES += lemon/clp.cc |
50 | 50 |
endif |
51 | 51 |
|
52 | 52 |
if HAVE_CBC |
53 | 53 |
lemon_libemon_la_SOURCES += lemon/cbc.cc |
54 | 54 |
endif |
55 | 55 |
|
56 | 56 |
lemon_HEADERS += \ |
57 | 57 |
lemon/adaptors.h \ |
58 | 58 |
lemon/arg_parser.h \ |
59 | 59 |
lemon/assert.h \ |
60 | 60 |
lemon/bellman_ford.h \ |
61 | 61 |
lemon/bfs.h \ |
62 | 62 |
lemon/bin_heap.h \ |
63 | 63 |
lemon/binomial_heap.h \ |
64 | 64 |
lemon/bucket_heap.h \ |
65 | 65 |
lemon/capacity_scaling.h \ |
66 | 66 |
lemon/cbc.h \ |
67 | 67 |
lemon/circulation.h \ |
68 | 68 |
lemon/clp.h \ |
69 | 69 |
lemon/color.h \ |
70 | 70 |
lemon/concept_check.h \ |
71 | 71 |
lemon/connectivity.h \ |
72 | 72 |
lemon/core.h \ |
73 | 73 |
lemon/cost_scaling.h \ |
74 | 74 |
lemon/counter.h \ |
75 | 75 |
lemon/cplex.h \ |
76 | 76 |
lemon/cycle_canceling.h \ |
77 | 77 |
lemon/dfs.h \ |
78 | 78 |
lemon/dheap.h \ |
79 | 79 |
lemon/dijkstra.h \ |
80 | 80 |
lemon/dim2.h \ |
81 | 81 |
lemon/dimacs.h \ |
82 | 82 |
lemon/edge_set.h \ |
83 | 83 |
lemon/elevator.h \ |
84 | 84 |
lemon/error.h \ |
85 | 85 |
lemon/euler.h \ |
86 | 86 |
lemon/fib_heap.h \ |
87 |
lemon/fractional_matching.h \ |
|
87 | 88 |
lemon/full_graph.h \ |
88 | 89 |
lemon/glpk.h \ |
89 | 90 |
lemon/gomory_hu.h \ |
90 | 91 |
lemon/graph_to_eps.h \ |
91 | 92 |
lemon/grid_graph.h \ |
92 | 93 |
lemon/hartmann_orlin_mmc.h \ |
93 | 94 |
lemon/howard_mmc.h \ |
94 | 95 |
lemon/hypercube_graph.h \ |
95 | 96 |
lemon/karp_mmc.h \ |
96 | 97 |
lemon/kruskal.h \ |
97 | 98 |
lemon/hao_orlin.h \ |
98 | 99 |
lemon/lgf_reader.h \ |
99 | 100 |
lemon/lgf_writer.h \ |
100 | 101 |
lemon/list_graph.h \ |
101 | 102 |
lemon/lp.h \ |
102 | 103 |
lemon/lp_base.h \ |
103 | 104 |
lemon/lp_skeleton.h \ |
104 | 105 |
lemon/maps.h \ |
105 | 106 |
lemon/matching.h \ |
106 | 107 |
lemon/math.h \ |
107 | 108 |
lemon/min_cost_arborescence.h \ |
108 | 109 |
lemon/nauty_reader.h \ |
109 | 110 |
lemon/network_simplex.h \ |
110 | 111 |
lemon/pairing_heap.h \ |
111 | 112 |
lemon/path.h \ |
112 | 113 |
lemon/planarity.h \ |
113 | 114 |
lemon/preflow.h \ |
114 | 115 |
lemon/quad_heap.h \ |
115 | 116 |
lemon/radix_heap.h \ |
116 | 117 |
lemon/radix_sort.h \ |
117 | 118 |
lemon/random.h \ |
118 | 119 |
lemon/smart_graph.h \ |
119 | 120 |
lemon/soplex.h \ |
120 | 121 |
lemon/static_graph.h \ |
121 | 122 |
lemon/suurballe.h \ |
122 | 123 |
lemon/time_measure.h \ |
123 | 124 |
lemon/tolerance.h \ |
124 | 125 |
lemon/unionfind.h \ |
125 | 126 |
lemon/bits/windows.h |
126 | 127 |
|
127 | 128 |
bits_HEADERS += \ |
128 | 129 |
lemon/bits/alteration_notifier.h \ |
129 | 130 |
lemon/bits/array_map.h \ |
130 | 131 |
lemon/bits/bezier.h \ |
131 | 132 |
lemon/bits/default_map.h \ |
132 | 133 |
lemon/bits/edge_set_extender.h \ |
133 | 134 |
lemon/bits/enable_if.h \ |
134 | 135 |
lemon/bits/graph_adaptor_extender.h \ |
135 | 136 |
lemon/bits/graph_extender.h \ |
136 | 137 |
lemon/bits/map_extender.h \ |
137 | 138 |
lemon/bits/path_dump.h \ |
138 | 139 |
lemon/bits/solver_bits.h \ |
139 | 140 |
lemon/bits/traits.h \ |
140 | 141 |
lemon/bits/variant.h \ |
141 | 142 |
lemon/bits/vector_map.h |
142 | 143 |
|
143 | 144 |
concept_HEADERS += \ |
144 | 145 |
lemon/concepts/digraph.h \ |
145 | 146 |
lemon/concepts/graph.h \ |
146 | 147 |
lemon/concepts/graph_components.h \ |
147 | 148 |
lemon/concepts/heap.h \ |
148 | 149 |
lemon/concepts/maps.h \ |
149 | 150 |
lemon/concepts/path.h |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 |
#ifndef LEMON_MAX_MATCHING_H |
|
20 |
#define LEMON_MAX_MATCHING_H |
|
19 |
#ifndef LEMON_MATCHING_H |
|
20 |
#define LEMON_MATCHING_H |
|
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <queue> |
24 | 24 |
#include <set> |
25 | 25 |
#include <limits> |
26 | 26 |
|
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
#include <lemon/unionfind.h> |
29 | 29 |
#include <lemon/bin_heap.h> |
30 | 30 |
#include <lemon/maps.h> |
31 |
#include <lemon/fractional_matching.h> |
|
31 | 32 |
|
32 | 33 |
///\ingroup matching |
33 | 34 |
///\file |
34 | 35 |
///\brief Maximum matching algorithms in general graphs. |
35 | 36 |
|
36 | 37 |
namespace lemon { |
37 | 38 |
|
38 | 39 |
/// \ingroup matching |
39 | 40 |
/// |
40 | 41 |
/// \brief Maximum cardinality matching in general graphs |
41 | 42 |
/// |
42 | 43 |
/// This class implements Edmonds' alternating forest matching algorithm |
43 | 44 |
/// for finding a maximum cardinality matching in a general undirected graph. |
44 |
/// It can be started from an arbitrary initial matching |
|
45 |
/// It can be started from an arbitrary initial matching |
|
45 | 46 |
/// (the default is the empty one). |
46 | 47 |
/// |
47 | 48 |
/// The dual solution of the problem is a map of the nodes to |
48 | 49 |
/// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D), |
49 | 50 |
/// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds |
50 | 51 |
/// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph |
51 | 52 |
/// with factor-critical components, the nodes in \c ODD/A form the |
52 | 53 |
/// canonical barrier, and the nodes in \c MATCHED/C induce a graph having |
53 | 54 |
/// a perfect matching. The number of the factor-critical components |
54 | 55 |
/// minus the number of barrier nodes is a lower bound on the |
55 | 56 |
/// unmatched nodes, and the matching is optimal if and only if this bound is |
56 | 57 |
/// tight. This decomposition can be obtained using \ref status() or |
57 | 58 |
/// \ref statusMap() after running the algorithm. |
58 | 59 |
/// |
59 | 60 |
/// \tparam GR The undirected graph type the algorithm runs on. |
60 | 61 |
template <typename GR> |
61 | 62 |
class MaxMatching { |
62 | 63 |
public: |
63 | 64 |
|
64 | 65 |
/// The graph type of the algorithm |
65 | 66 |
typedef GR Graph; |
66 | 67 |
/// The type of the matching map |
67 | 68 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
68 | 69 |
MatchingMap; |
69 | 70 |
|
70 | 71 |
///\brief Status constants for Gallai-Edmonds decomposition. |
71 | 72 |
/// |
72 |
///These constants are used for indicating the Gallai-Edmonds |
|
73 |
///These constants are used for indicating the Gallai-Edmonds |
|
73 | 74 |
///decomposition of a graph. The nodes with status \c EVEN (or \c D) |
74 | 75 |
///induce a subgraph with factor-critical components, the nodes with |
75 | 76 |
///status \c ODD (or \c A) form the canonical barrier, and the nodes |
76 |
///with status \c MATCHED (or \c C) induce a subgraph having a |
|
77 |
///with status \c MATCHED (or \c C) induce a subgraph having a |
|
77 | 78 |
///perfect matching. |
78 | 79 |
enum Status { |
79 | 80 |
EVEN = 1, ///< = 1. (\c D is an alias for \c EVEN.) |
80 | 81 |
D = 1, |
81 | 82 |
MATCHED = 0, ///< = 0. (\c C is an alias for \c MATCHED.) |
82 | 83 |
C = 0, |
83 | 84 |
ODD = -1, ///< = -1. (\c A is an alias for \c ODD.) |
84 | 85 |
A = -1, |
85 | 86 |
UNMATCHED = -2 ///< = -2. |
86 | 87 |
}; |
87 | 88 |
|
88 | 89 |
/// The type of the status map |
89 | 90 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
90 | 91 |
|
91 | 92 |
private: |
92 | 93 |
|
93 | 94 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
94 | 95 |
|
95 | 96 |
typedef UnionFindEnum<IntNodeMap> BlossomSet; |
96 | 97 |
typedef ExtendFindEnum<IntNodeMap> TreeSet; |
97 | 98 |
typedef RangeMap<Node> NodeIntMap; |
98 | 99 |
typedef MatchingMap EarMap; |
99 | 100 |
typedef std::vector<Node> NodeQueue; |
100 | 101 |
|
101 | 102 |
const Graph& _graph; |
102 | 103 |
MatchingMap* _matching; |
103 | 104 |
StatusMap* _status; |
104 | 105 |
|
105 | 106 |
EarMap* _ear; |
106 | 107 |
|
107 | 108 |
IntNodeMap* _blossom_set_index; |
108 | 109 |
BlossomSet* _blossom_set; |
109 | 110 |
NodeIntMap* _blossom_rep; |
110 | 111 |
|
111 | 112 |
IntNodeMap* _tree_set_index; |
112 | 113 |
TreeSet* _tree_set; |
113 | 114 |
|
114 | 115 |
NodeQueue _node_queue; |
115 | 116 |
int _process, _postpone, _last; |
116 | 117 |
|
117 | 118 |
int _node_num; |
118 | 119 |
|
119 | 120 |
private: |
120 | 121 |
|
121 | 122 |
void createStructures() { |
122 | 123 |
_node_num = countNodes(_graph); |
123 | 124 |
if (!_matching) { |
124 | 125 |
_matching = new MatchingMap(_graph); |
125 | 126 |
} |
126 | 127 |
if (!_status) { |
127 | 128 |
_status = new StatusMap(_graph); |
128 | 129 |
} |
129 | 130 |
if (!_ear) { |
130 | 131 |
_ear = new EarMap(_graph); |
131 | 132 |
} |
132 | 133 |
if (!_blossom_set) { |
133 | 134 |
_blossom_set_index = new IntNodeMap(_graph); |
134 | 135 |
_blossom_set = new BlossomSet(*_blossom_set_index); |
135 | 136 |
} |
136 | 137 |
if (!_blossom_rep) { |
137 | 138 |
_blossom_rep = new NodeIntMap(_node_num); |
138 | 139 |
} |
139 | 140 |
if (!_tree_set) { |
140 | 141 |
_tree_set_index = new IntNodeMap(_graph); |
141 | 142 |
_tree_set = new TreeSet(*_tree_set_index); |
142 | 143 |
} |
143 | 144 |
_node_queue.resize(_node_num); |
144 | 145 |
} |
145 | 146 |
|
146 | 147 |
void destroyStructures() { |
147 | 148 |
if (_matching) { |
148 | 149 |
delete _matching; |
149 | 150 |
} |
150 | 151 |
if (_status) { |
151 | 152 |
delete _status; |
152 | 153 |
} |
153 | 154 |
if (_ear) { |
154 | 155 |
delete _ear; |
155 | 156 |
} |
156 | 157 |
if (_blossom_set) { |
157 | 158 |
delete _blossom_set; |
158 | 159 |
delete _blossom_set_index; |
159 | 160 |
} |
160 | 161 |
if (_blossom_rep) { |
161 | 162 |
delete _blossom_rep; |
162 | 163 |
} |
163 | 164 |
if (_tree_set) { |
164 | 165 |
delete _tree_set_index; |
165 | 166 |
delete _tree_set; |
166 | 167 |
} |
167 | 168 |
} |
168 | 169 |
|
169 | 170 |
void processDense(const Node& n) { |
170 | 171 |
_process = _postpone = _last = 0; |
171 | 172 |
_node_queue[_last++] = n; |
172 | 173 |
|
173 | 174 |
while (_process != _last) { |
174 | 175 |
Node u = _node_queue[_process++]; |
175 | 176 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) { |
176 | 177 |
Node v = _graph.target(a); |
177 | 178 |
if ((*_status)[v] == MATCHED) { |
178 | 179 |
extendOnArc(a); |
179 | 180 |
} else if ((*_status)[v] == UNMATCHED) { |
180 | 181 |
augmentOnArc(a); |
181 | 182 |
return; |
182 | 183 |
} |
183 | 184 |
} |
184 | 185 |
} |
185 | 186 |
|
186 | 187 |
while (_postpone != _last) { |
187 | 188 |
Node u = _node_queue[_postpone++]; |
188 | 189 |
|
189 | 190 |
for (OutArcIt a(_graph, u); a != INVALID ; ++a) { |
190 | 191 |
Node v = _graph.target(a); |
191 | 192 |
|
192 | 193 |
if ((*_status)[v] == EVEN) { |
193 | 194 |
if (_blossom_set->find(u) != _blossom_set->find(v)) { |
194 | 195 |
shrinkOnEdge(a); |
195 | 196 |
} |
196 | 197 |
} |
197 | 198 |
|
198 | 199 |
while (_process != _last) { |
199 | 200 |
Node w = _node_queue[_process++]; |
200 | 201 |
for (OutArcIt b(_graph, w); b != INVALID; ++b) { |
201 | 202 |
Node x = _graph.target(b); |
202 | 203 |
if ((*_status)[x] == MATCHED) { |
203 | 204 |
extendOnArc(b); |
204 | 205 |
} else if ((*_status)[x] == UNMATCHED) { |
205 | 206 |
augmentOnArc(b); |
206 | 207 |
return; |
207 | 208 |
} |
208 | 209 |
} |
209 | 210 |
} |
210 | 211 |
} |
211 | 212 |
} |
212 | 213 |
} |
213 | 214 |
|
214 | 215 |
void processSparse(const Node& n) { |
215 | 216 |
_process = _last = 0; |
216 | 217 |
_node_queue[_last++] = n; |
217 | 218 |
while (_process != _last) { |
218 | 219 |
Node u = _node_queue[_process++]; |
219 | 220 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) { |
220 | 221 |
Node v = _graph.target(a); |
221 | 222 |
|
222 | 223 |
if ((*_status)[v] == EVEN) { |
223 | 224 |
if (_blossom_set->find(u) != _blossom_set->find(v)) { |
224 | 225 |
shrinkOnEdge(a); |
225 | 226 |
} |
226 | 227 |
} else if ((*_status)[v] == MATCHED) { |
227 | 228 |
extendOnArc(a); |
228 | 229 |
} else if ((*_status)[v] == UNMATCHED) { |
229 | 230 |
augmentOnArc(a); |
230 | 231 |
return; |
231 | 232 |
} |
232 | 233 |
} |
233 | 234 |
} |
234 | 235 |
} |
235 | 236 |
|
236 | 237 |
void shrinkOnEdge(const Edge& e) { |
237 | 238 |
Node nca = INVALID; |
238 | 239 |
|
239 | 240 |
{ |
240 | 241 |
std::set<Node> left_set, right_set; |
241 | 242 |
|
242 | 243 |
Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))]; |
243 | 244 |
left_set.insert(left); |
244 | 245 |
|
245 | 246 |
Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))]; |
246 | 247 |
right_set.insert(right); |
247 | 248 |
|
248 | 249 |
while (true) { |
249 | 250 |
if ((*_matching)[left] == INVALID) break; |
250 | 251 |
left = _graph.target((*_matching)[left]); |
251 | 252 |
left = (*_blossom_rep)[_blossom_set-> |
252 | 253 |
find(_graph.target((*_ear)[left]))]; |
253 | 254 |
if (right_set.find(left) != right_set.end()) { |
254 | 255 |
nca = left; |
255 | 256 |
break; |
256 | 257 |
} |
257 | 258 |
left_set.insert(left); |
258 | 259 |
|
259 | 260 |
if ((*_matching)[right] == INVALID) break; |
260 | 261 |
right = _graph.target((*_matching)[right]); |
261 | 262 |
right = (*_blossom_rep)[_blossom_set-> |
262 | 263 |
find(_graph.target((*_ear)[right]))]; |
263 | 264 |
if (left_set.find(right) != left_set.end()) { |
264 | 265 |
nca = right; |
265 | 266 |
break; |
266 | 267 |
} |
267 | 268 |
right_set.insert(right); |
268 | 269 |
} |
... | ... |
@@ -323,2108 +324,2143 @@ |
323 | 324 |
Arc arc = _graph.direct(e, false); |
324 | 325 |
Node base = (*_blossom_rep)[_blossom_set->find(node)]; |
325 | 326 |
|
326 | 327 |
while (base != nca) { |
327 | 328 |
(*_ear)[node] = arc; |
328 | 329 |
|
329 | 330 |
Node n = node; |
330 | 331 |
while (n != base) { |
331 | 332 |
n = _graph.target((*_matching)[n]); |
332 | 333 |
Arc a = (*_ear)[n]; |
333 | 334 |
n = _graph.target(a); |
334 | 335 |
(*_ear)[n] = _graph.oppositeArc(a); |
335 | 336 |
} |
336 | 337 |
node = _graph.target((*_matching)[base]); |
337 | 338 |
_tree_set->erase(base); |
338 | 339 |
_tree_set->erase(node); |
339 | 340 |
_blossom_set->insert(node, _blossom_set->find(base)); |
340 | 341 |
(*_status)[node] = EVEN; |
341 | 342 |
_node_queue[_last++] = node; |
342 | 343 |
arc = _graph.oppositeArc((*_ear)[node]); |
343 | 344 |
node = _graph.target((*_ear)[node]); |
344 | 345 |
base = (*_blossom_rep)[_blossom_set->find(node)]; |
345 | 346 |
_blossom_set->join(_graph.target(arc), base); |
346 | 347 |
} |
347 | 348 |
} |
348 | 349 |
|
349 | 350 |
(*_blossom_rep)[_blossom_set->find(nca)] = nca; |
350 | 351 |
} |
351 | 352 |
|
352 | 353 |
void extendOnArc(const Arc& a) { |
353 | 354 |
Node base = _graph.source(a); |
354 | 355 |
Node odd = _graph.target(a); |
355 | 356 |
|
356 | 357 |
(*_ear)[odd] = _graph.oppositeArc(a); |
357 | 358 |
Node even = _graph.target((*_matching)[odd]); |
358 | 359 |
(*_blossom_rep)[_blossom_set->insert(even)] = even; |
359 | 360 |
(*_status)[odd] = ODD; |
360 | 361 |
(*_status)[even] = EVEN; |
361 | 362 |
int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]); |
362 | 363 |
_tree_set->insert(odd, tree); |
363 | 364 |
_tree_set->insert(even, tree); |
364 | 365 |
_node_queue[_last++] = even; |
365 | 366 |
|
366 | 367 |
} |
367 | 368 |
|
368 | 369 |
void augmentOnArc(const Arc& a) { |
369 | 370 |
Node even = _graph.source(a); |
370 | 371 |
Node odd = _graph.target(a); |
371 | 372 |
|
372 | 373 |
int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]); |
373 | 374 |
|
374 | 375 |
(*_matching)[odd] = _graph.oppositeArc(a); |
375 | 376 |
(*_status)[odd] = MATCHED; |
376 | 377 |
|
377 | 378 |
Arc arc = (*_matching)[even]; |
378 | 379 |
(*_matching)[even] = a; |
379 | 380 |
|
380 | 381 |
while (arc != INVALID) { |
381 | 382 |
odd = _graph.target(arc); |
382 | 383 |
arc = (*_ear)[odd]; |
383 | 384 |
even = _graph.target(arc); |
384 | 385 |
(*_matching)[odd] = arc; |
385 | 386 |
arc = (*_matching)[even]; |
386 | 387 |
(*_matching)[even] = _graph.oppositeArc((*_matching)[odd]); |
387 | 388 |
} |
388 | 389 |
|
389 | 390 |
for (typename TreeSet::ItemIt it(*_tree_set, tree); |
390 | 391 |
it != INVALID; ++it) { |
391 | 392 |
if ((*_status)[it] == ODD) { |
392 | 393 |
(*_status)[it] = MATCHED; |
393 | 394 |
} else { |
394 | 395 |
int blossom = _blossom_set->find(it); |
395 | 396 |
for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom); |
396 | 397 |
jt != INVALID; ++jt) { |
397 | 398 |
(*_status)[jt] = MATCHED; |
398 | 399 |
} |
399 | 400 |
_blossom_set->eraseClass(blossom); |
400 | 401 |
} |
401 | 402 |
} |
402 | 403 |
_tree_set->eraseClass(tree); |
403 | 404 |
|
404 | 405 |
} |
405 | 406 |
|
406 | 407 |
public: |
407 | 408 |
|
408 | 409 |
/// \brief Constructor |
409 | 410 |
/// |
410 | 411 |
/// Constructor. |
411 | 412 |
MaxMatching(const Graph& graph) |
412 | 413 |
: _graph(graph), _matching(0), _status(0), _ear(0), |
413 | 414 |
_blossom_set_index(0), _blossom_set(0), _blossom_rep(0), |
414 | 415 |
_tree_set_index(0), _tree_set(0) {} |
415 | 416 |
|
416 | 417 |
~MaxMatching() { |
417 | 418 |
destroyStructures(); |
418 | 419 |
} |
419 | 420 |
|
420 | 421 |
/// \name Execution Control |
421 | 422 |
/// The simplest way to execute the algorithm is to use the |
422 | 423 |
/// \c run() member function.\n |
423 | 424 |
/// If you need better control on the execution, you have to call |
424 | 425 |
/// one of the functions \ref init(), \ref greedyInit() or |
425 | 426 |
/// \ref matchingInit() first, then you can start the algorithm with |
426 | 427 |
/// \ref startSparse() or \ref startDense(). |
427 | 428 |
|
428 | 429 |
///@{ |
429 | 430 |
|
430 | 431 |
/// \brief Set the initial matching to the empty matching. |
431 | 432 |
/// |
432 | 433 |
/// This function sets the initial matching to the empty matching. |
433 | 434 |
void init() { |
434 | 435 |
createStructures(); |
435 | 436 |
for(NodeIt n(_graph); n != INVALID; ++n) { |
436 | 437 |
(*_matching)[n] = INVALID; |
437 | 438 |
(*_status)[n] = UNMATCHED; |
438 | 439 |
} |
439 | 440 |
} |
440 | 441 |
|
441 | 442 |
/// \brief Find an initial matching in a greedy way. |
442 | 443 |
/// |
443 | 444 |
/// This function finds an initial matching in a greedy way. |
444 | 445 |
void greedyInit() { |
445 | 446 |
createStructures(); |
446 | 447 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
447 | 448 |
(*_matching)[n] = INVALID; |
448 | 449 |
(*_status)[n] = UNMATCHED; |
449 | 450 |
} |
450 | 451 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
451 | 452 |
if ((*_matching)[n] == INVALID) { |
452 | 453 |
for (OutArcIt a(_graph, n); a != INVALID ; ++a) { |
453 | 454 |
Node v = _graph.target(a); |
454 | 455 |
if ((*_matching)[v] == INVALID && v != n) { |
455 | 456 |
(*_matching)[n] = a; |
456 | 457 |
(*_status)[n] = MATCHED; |
457 | 458 |
(*_matching)[v] = _graph.oppositeArc(a); |
458 | 459 |
(*_status)[v] = MATCHED; |
459 | 460 |
break; |
460 | 461 |
} |
461 | 462 |
} |
462 | 463 |
} |
463 | 464 |
} |
464 | 465 |
} |
465 | 466 |
|
466 | 467 |
|
467 | 468 |
/// \brief Initialize the matching from a map. |
468 | 469 |
/// |
469 | 470 |
/// This function initializes the matching from a \c bool valued edge |
470 | 471 |
/// map. This map should have the property that there are no two incident |
471 | 472 |
/// edges with \c true value, i.e. it really contains a matching. |
472 | 473 |
/// \return \c true if the map contains a matching. |
473 | 474 |
template <typename MatchingMap> |
474 | 475 |
bool matchingInit(const MatchingMap& matching) { |
475 | 476 |
createStructures(); |
476 | 477 |
|
477 | 478 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
478 | 479 |
(*_matching)[n] = INVALID; |
479 | 480 |
(*_status)[n] = UNMATCHED; |
480 | 481 |
} |
481 | 482 |
for(EdgeIt e(_graph); e!=INVALID; ++e) { |
482 | 483 |
if (matching[e]) { |
483 | 484 |
|
484 | 485 |
Node u = _graph.u(e); |
485 | 486 |
if ((*_matching)[u] != INVALID) return false; |
486 | 487 |
(*_matching)[u] = _graph.direct(e, true); |
487 | 488 |
(*_status)[u] = MATCHED; |
488 | 489 |
|
489 | 490 |
Node v = _graph.v(e); |
490 | 491 |
if ((*_matching)[v] != INVALID) return false; |
491 | 492 |
(*_matching)[v] = _graph.direct(e, false); |
492 | 493 |
(*_status)[v] = MATCHED; |
493 | 494 |
} |
494 | 495 |
} |
495 | 496 |
return true; |
496 | 497 |
} |
497 | 498 |
|
498 | 499 |
/// \brief Start Edmonds' algorithm |
499 | 500 |
/// |
500 | 501 |
/// This function runs the original Edmonds' algorithm. |
501 | 502 |
/// |
502 | 503 |
/// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be |
503 | 504 |
/// called before using this function. |
504 | 505 |
void startSparse() { |
505 | 506 |
for(NodeIt n(_graph); n != INVALID; ++n) { |
506 | 507 |
if ((*_status)[n] == UNMATCHED) { |
507 | 508 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
508 | 509 |
_tree_set->insert(n); |
509 | 510 |
(*_status)[n] = EVEN; |
510 | 511 |
processSparse(n); |
511 | 512 |
} |
512 | 513 |
} |
513 | 514 |
} |
514 | 515 |
|
515 |
/// \brief Start Edmonds' algorithm with a heuristic improvement |
|
516 |
/// \brief Start Edmonds' algorithm with a heuristic improvement |
|
516 | 517 |
/// for dense graphs |
517 | 518 |
/// |
518 | 519 |
/// This function runs Edmonds' algorithm with a heuristic of postponing |
519 | 520 |
/// shrinks, therefore resulting in a faster algorithm for dense graphs. |
520 | 521 |
/// |
521 | 522 |
/// \pre \ref init(), \ref greedyInit() or \ref matchingInit() must be |
522 | 523 |
/// called before using this function. |
523 | 524 |
void startDense() { |
524 | 525 |
for(NodeIt n(_graph); n != INVALID; ++n) { |
525 | 526 |
if ((*_status)[n] == UNMATCHED) { |
526 | 527 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
527 | 528 |
_tree_set->insert(n); |
528 | 529 |
(*_status)[n] = EVEN; |
529 | 530 |
processDense(n); |
530 | 531 |
} |
531 | 532 |
} |
532 | 533 |
} |
533 | 534 |
|
534 | 535 |
|
535 | 536 |
/// \brief Run Edmonds' algorithm |
536 | 537 |
/// |
537 |
/// This function runs Edmonds' algorithm. An additional heuristic of |
|
538 |
/// postponing shrinks is used for relatively dense graphs |
|
538 |
/// This function runs Edmonds' algorithm. An additional heuristic of |
|
539 |
/// postponing shrinks is used for relatively dense graphs |
|
539 | 540 |
/// (for which <tt>m>=2*n</tt> holds). |
540 | 541 |
void run() { |
541 | 542 |
if (countEdges(_graph) < 2 * countNodes(_graph)) { |
542 | 543 |
greedyInit(); |
543 | 544 |
startSparse(); |
544 | 545 |
} else { |
545 | 546 |
init(); |
546 | 547 |
startDense(); |
547 | 548 |
} |
548 | 549 |
} |
549 | 550 |
|
550 | 551 |
/// @} |
551 | 552 |
|
552 | 553 |
/// \name Primal Solution |
553 | 554 |
/// Functions to get the primal solution, i.e. the maximum matching. |
554 | 555 |
|
555 | 556 |
/// @{ |
556 | 557 |
|
557 | 558 |
/// \brief Return the size (cardinality) of the matching. |
558 | 559 |
/// |
559 |
/// This function returns the size (cardinality) of the current matching. |
|
560 |
/// This function returns the size (cardinality) of the current matching. |
|
560 | 561 |
/// After run() it returns the size of the maximum matching in the graph. |
561 | 562 |
int matchingSize() const { |
562 | 563 |
int size = 0; |
563 | 564 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
564 | 565 |
if ((*_matching)[n] != INVALID) { |
565 | 566 |
++size; |
566 | 567 |
} |
567 | 568 |
} |
568 | 569 |
return size / 2; |
569 | 570 |
} |
570 | 571 |
|
571 | 572 |
/// \brief Return \c true if the given edge is in the matching. |
572 | 573 |
/// |
573 |
/// This function returns \c true if the given edge is in the current |
|
574 |
/// This function returns \c true if the given edge is in the current |
|
574 | 575 |
/// matching. |
575 | 576 |
bool matching(const Edge& edge) const { |
576 | 577 |
return edge == (*_matching)[_graph.u(edge)]; |
577 | 578 |
} |
578 | 579 |
|
579 | 580 |
/// \brief Return the matching arc (or edge) incident to the given node. |
580 | 581 |
/// |
581 | 582 |
/// This function returns the matching arc (or edge) incident to the |
582 |
/// given node in the current matching or \c INVALID if the node is |
|
583 |
/// given node in the current matching or \c INVALID if the node is |
|
583 | 584 |
/// not covered by the matching. |
584 | 585 |
Arc matching(const Node& n) const { |
585 | 586 |
return (*_matching)[n]; |
586 | 587 |
} |
587 | 588 |
|
588 | 589 |
/// \brief Return a const reference to the matching map. |
589 | 590 |
/// |
590 | 591 |
/// This function returns a const reference to a node map that stores |
591 | 592 |
/// the matching arc (or edge) incident to each node. |
592 | 593 |
const MatchingMap& matchingMap() const { |
593 | 594 |
return *_matching; |
594 | 595 |
} |
595 | 596 |
|
596 | 597 |
/// \brief Return the mate of the given node. |
597 | 598 |
/// |
598 |
/// This function returns the mate of the given node in the current |
|
599 |
/// This function returns the mate of the given node in the current |
|
599 | 600 |
/// matching or \c INVALID if the node is not covered by the matching. |
600 | 601 |
Node mate(const Node& n) const { |
601 | 602 |
return (*_matching)[n] != INVALID ? |
602 | 603 |
_graph.target((*_matching)[n]) : INVALID; |
603 | 604 |
} |
604 | 605 |
|
605 | 606 |
/// @} |
606 | 607 |
|
607 | 608 |
/// \name Dual Solution |
608 |
/// Functions to get the dual solution, i.e. the Gallai-Edmonds |
|
609 |
/// Functions to get the dual solution, i.e. the Gallai-Edmonds |
|
609 | 610 |
/// decomposition. |
610 | 611 |
|
611 | 612 |
/// @{ |
612 | 613 |
|
613 | 614 |
/// \brief Return the status of the given node in the Edmonds-Gallai |
614 | 615 |
/// decomposition. |
615 | 616 |
/// |
616 | 617 |
/// This function returns the \ref Status "status" of the given node |
617 | 618 |
/// in the Edmonds-Gallai decomposition. |
618 | 619 |
Status status(const Node& n) const { |
619 | 620 |
return (*_status)[n]; |
620 | 621 |
} |
621 | 622 |
|
622 | 623 |
/// \brief Return a const reference to the status map, which stores |
623 | 624 |
/// the Edmonds-Gallai decomposition. |
624 | 625 |
/// |
625 | 626 |
/// This function returns a const reference to a node map that stores the |
626 | 627 |
/// \ref Status "status" of each node in the Edmonds-Gallai decomposition. |
627 | 628 |
const StatusMap& statusMap() const { |
628 | 629 |
return *_status; |
629 | 630 |
} |
630 | 631 |
|
631 | 632 |
/// \brief Return \c true if the given node is in the barrier. |
632 | 633 |
/// |
633 | 634 |
/// This function returns \c true if the given node is in the barrier. |
634 | 635 |
bool barrier(const Node& n) const { |
635 | 636 |
return (*_status)[n] == ODD; |
636 | 637 |
} |
637 | 638 |
|
638 | 639 |
/// @} |
639 | 640 |
|
640 | 641 |
}; |
641 | 642 |
|
642 | 643 |
/// \ingroup matching |
643 | 644 |
/// |
644 | 645 |
/// \brief Weighted matching in general graphs |
645 | 646 |
/// |
646 | 647 |
/// This class provides an efficient implementation of Edmond's |
647 | 648 |
/// maximum weighted matching algorithm. The implementation is based |
648 | 649 |
/// on extensive use of priority queues and provides |
649 | 650 |
/// \f$O(nm\log n)\f$ time complexity. |
650 | 651 |
/// |
651 |
/// The maximum weighted matching problem is to find a subset of the |
|
652 |
/// edges in an undirected graph with maximum overall weight for which |
|
652 |
/// The maximum weighted matching problem is to find a subset of the |
|
653 |
/// edges in an undirected graph with maximum overall weight for which |
|
653 | 654 |
/// each node has at most one incident edge. |
654 | 655 |
/// It can be formulated with the following linear program. |
655 | 656 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f] |
656 | 657 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} |
657 | 658 |
\quad \forall B\in\mathcal{O}\f] */ |
658 | 659 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
659 | 660 |
/// \f[\max \sum_{e\in E}x_ew_e\f] |
660 | 661 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
661 | 662 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
662 | 663 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality |
663 | 664 |
/// subsets of the nodes. |
664 | 665 |
/// |
665 | 666 |
/// The algorithm calculates an optimal matching and a proof of the |
666 | 667 |
/// optimality. The solution of the dual problem can be used to check |
667 | 668 |
/// the result of the algorithm. The dual linear problem is the |
668 | 669 |
/// following. |
669 | 670 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)} |
670 | 671 |
z_B \ge w_{uv} \quad \forall uv\in E\f] */ |
671 | 672 |
/// \f[y_u \ge 0 \quad \forall u \in V\f] |
672 | 673 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
673 | 674 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
674 | 675 |
\frac{\vert B \vert - 1}{2}z_B\f] */ |
675 | 676 |
/// |
676 |
/// The algorithm can be executed with the run() function. |
|
677 |
/// The algorithm can be executed with the run() function. |
|
677 | 678 |
/// After it the matching (the primal solution) and the dual solution |
678 |
/// can be obtained using the query functions and the |
|
679 |
/// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, |
|
680 |
/// |
|
679 |
/// can be obtained using the query functions and the |
|
680 |
/// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, |
|
681 |
/// which is able to iterate on the nodes of a blossom. |
|
681 | 682 |
/// If the value type is integer, then the dual solution is multiplied |
682 | 683 |
/// by \ref MaxWeightedMatching::dualScale "4". |
683 | 684 |
/// |
684 | 685 |
/// \tparam GR The undirected graph type the algorithm runs on. |
685 |
/// \tparam WM The type edge weight map. The default type is |
|
686 |
/// \tparam WM The type edge weight map. The default type is |
|
686 | 687 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
687 | 688 |
#ifdef DOXYGEN |
688 | 689 |
template <typename GR, typename WM> |
689 | 690 |
#else |
690 | 691 |
template <typename GR, |
691 | 692 |
typename WM = typename GR::template EdgeMap<int> > |
692 | 693 |
#endif |
693 | 694 |
class MaxWeightedMatching { |
694 | 695 |
public: |
695 | 696 |
|
696 | 697 |
/// The graph type of the algorithm |
697 | 698 |
typedef GR Graph; |
698 | 699 |
/// The type of the edge weight map |
699 | 700 |
typedef WM WeightMap; |
700 | 701 |
/// The value type of the edge weights |
701 | 702 |
typedef typename WeightMap::Value Value; |
702 | 703 |
|
703 | 704 |
/// The type of the matching map |
704 | 705 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
705 | 706 |
MatchingMap; |
706 | 707 |
|
707 | 708 |
/// \brief Scaling factor for dual solution |
708 | 709 |
/// |
709 | 710 |
/// Scaling factor for dual solution. It is equal to 4 or 1 |
710 | 711 |
/// according to the value type. |
711 | 712 |
static const int dualScale = |
712 | 713 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
713 | 714 |
|
714 | 715 |
private: |
715 | 716 |
|
716 | 717 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
717 | 718 |
|
718 | 719 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
719 | 720 |
typedef std::vector<Node> BlossomNodeList; |
720 | 721 |
|
721 | 722 |
struct BlossomVariable { |
722 | 723 |
int begin, end; |
723 | 724 |
Value value; |
724 | 725 |
|
725 | 726 |
BlossomVariable(int _begin, int _end, Value _value) |
726 | 727 |
: begin(_begin), end(_end), value(_value) {} |
727 | 728 |
|
728 | 729 |
}; |
729 | 730 |
|
730 | 731 |
typedef std::vector<BlossomVariable> BlossomPotential; |
731 | 732 |
|
732 | 733 |
const Graph& _graph; |
733 | 734 |
const WeightMap& _weight; |
734 | 735 |
|
735 | 736 |
MatchingMap* _matching; |
736 | 737 |
|
737 | 738 |
NodePotential* _node_potential; |
738 | 739 |
|
739 | 740 |
BlossomPotential _blossom_potential; |
740 | 741 |
BlossomNodeList _blossom_node_list; |
741 | 742 |
|
742 | 743 |
int _node_num; |
743 | 744 |
int _blossom_num; |
744 | 745 |
|
745 | 746 |
typedef RangeMap<int> IntIntMap; |
746 | 747 |
|
747 | 748 |
enum Status { |
748 |
EVEN = -1, MATCHED = 0, ODD = 1 |
|
749 |
EVEN = -1, MATCHED = 0, ODD = 1 |
|
749 | 750 |
}; |
750 | 751 |
|
751 | 752 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
752 | 753 |
struct BlossomData { |
753 | 754 |
int tree; |
754 | 755 |
Status status; |
755 | 756 |
Arc pred, next; |
756 | 757 |
Value pot, offset; |
757 | 758 |
Node base; |
758 | 759 |
}; |
759 | 760 |
|
760 | 761 |
IntNodeMap *_blossom_index; |
761 | 762 |
BlossomSet *_blossom_set; |
762 | 763 |
RangeMap<BlossomData>* _blossom_data; |
763 | 764 |
|
764 | 765 |
IntNodeMap *_node_index; |
765 | 766 |
IntArcMap *_node_heap_index; |
766 | 767 |
|
767 | 768 |
struct NodeData { |
768 | 769 |
|
769 | 770 |
NodeData(IntArcMap& node_heap_index) |
770 | 771 |
: heap(node_heap_index) {} |
771 | 772 |
|
772 | 773 |
int blossom; |
773 | 774 |
Value pot; |
774 | 775 |
BinHeap<Value, IntArcMap> heap; |
775 | 776 |
std::map<int, Arc> heap_index; |
776 | 777 |
|
777 | 778 |
int tree; |
778 | 779 |
}; |
779 | 780 |
|
780 | 781 |
RangeMap<NodeData>* _node_data; |
781 | 782 |
|
782 | 783 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
783 | 784 |
|
784 | 785 |
IntIntMap *_tree_set_index; |
785 | 786 |
TreeSet *_tree_set; |
786 | 787 |
|
787 | 788 |
IntNodeMap *_delta1_index; |
788 | 789 |
BinHeap<Value, IntNodeMap> *_delta1; |
789 | 790 |
|
790 | 791 |
IntIntMap *_delta2_index; |
791 | 792 |
BinHeap<Value, IntIntMap> *_delta2; |
792 | 793 |
|
793 | 794 |
IntEdgeMap *_delta3_index; |
794 | 795 |
BinHeap<Value, IntEdgeMap> *_delta3; |
795 | 796 |
|
796 | 797 |
IntIntMap *_delta4_index; |
797 | 798 |
BinHeap<Value, IntIntMap> *_delta4; |
798 | 799 |
|
799 | 800 |
Value _delta_sum; |
801 |
int _unmatched; |
|
802 |
|
|
803 |
typedef MaxWeightedFractionalMatching<Graph, WeightMap> FractionalMatching; |
|
804 |
FractionalMatching *_fractional; |
|
800 | 805 |
|
801 | 806 |
void createStructures() { |
802 | 807 |
_node_num = countNodes(_graph); |
803 | 808 |
_blossom_num = _node_num * 3 / 2; |
804 | 809 |
|
805 | 810 |
if (!_matching) { |
806 | 811 |
_matching = new MatchingMap(_graph); |
807 | 812 |
} |
808 | 813 |
if (!_node_potential) { |
809 | 814 |
_node_potential = new NodePotential(_graph); |
810 | 815 |
} |
811 | 816 |
if (!_blossom_set) { |
812 | 817 |
_blossom_index = new IntNodeMap(_graph); |
813 | 818 |
_blossom_set = new BlossomSet(*_blossom_index); |
814 | 819 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
815 | 820 |
} |
816 | 821 |
|
817 | 822 |
if (!_node_index) { |
818 | 823 |
_node_index = new IntNodeMap(_graph); |
819 | 824 |
_node_heap_index = new IntArcMap(_graph); |
820 | 825 |
_node_data = new RangeMap<NodeData>(_node_num, |
821 | 826 |
NodeData(*_node_heap_index)); |
822 | 827 |
} |
823 | 828 |
|
824 | 829 |
if (!_tree_set) { |
825 | 830 |
_tree_set_index = new IntIntMap(_blossom_num); |
826 | 831 |
_tree_set = new TreeSet(*_tree_set_index); |
827 | 832 |
} |
828 | 833 |
if (!_delta1) { |
829 | 834 |
_delta1_index = new IntNodeMap(_graph); |
830 | 835 |
_delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index); |
831 | 836 |
} |
832 | 837 |
if (!_delta2) { |
833 | 838 |
_delta2_index = new IntIntMap(_blossom_num); |
834 | 839 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
835 | 840 |
} |
836 | 841 |
if (!_delta3) { |
837 | 842 |
_delta3_index = new IntEdgeMap(_graph); |
838 | 843 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
839 | 844 |
} |
840 | 845 |
if (!_delta4) { |
841 | 846 |
_delta4_index = new IntIntMap(_blossom_num); |
842 | 847 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
843 | 848 |
} |
844 | 849 |
} |
845 | 850 |
|
846 | 851 |
void destroyStructures() { |
847 |
_node_num = countNodes(_graph); |
|
848 |
_blossom_num = _node_num * 3 / 2; |
|
849 |
|
|
850 | 852 |
if (_matching) { |
851 | 853 |
delete _matching; |
852 | 854 |
} |
853 | 855 |
if (_node_potential) { |
854 | 856 |
delete _node_potential; |
855 | 857 |
} |
856 | 858 |
if (_blossom_set) { |
857 | 859 |
delete _blossom_index; |
858 | 860 |
delete _blossom_set; |
859 | 861 |
delete _blossom_data; |
860 | 862 |
} |
861 | 863 |
|
862 | 864 |
if (_node_index) { |
863 | 865 |
delete _node_index; |
864 | 866 |
delete _node_heap_index; |
865 | 867 |
delete _node_data; |
866 | 868 |
} |
867 | 869 |
|
868 | 870 |
if (_tree_set) { |
869 | 871 |
delete _tree_set_index; |
870 | 872 |
delete _tree_set; |
871 | 873 |
} |
872 | 874 |
if (_delta1) { |
873 | 875 |
delete _delta1_index; |
874 | 876 |
delete _delta1; |
875 | 877 |
} |
876 | 878 |
if (_delta2) { |
877 | 879 |
delete _delta2_index; |
878 | 880 |
delete _delta2; |
879 | 881 |
} |
880 | 882 |
if (_delta3) { |
881 | 883 |
delete _delta3_index; |
882 | 884 |
delete _delta3; |
883 | 885 |
} |
884 | 886 |
if (_delta4) { |
885 | 887 |
delete _delta4_index; |
886 | 888 |
delete _delta4; |
887 | 889 |
} |
888 | 890 |
} |
889 | 891 |
|
890 | 892 |
void matchedToEven(int blossom, int tree) { |
891 | 893 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
892 | 894 |
_delta2->erase(blossom); |
893 | 895 |
} |
894 | 896 |
|
895 | 897 |
if (!_blossom_set->trivial(blossom)) { |
896 | 898 |
(*_blossom_data)[blossom].pot -= |
897 | 899 |
2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
898 | 900 |
} |
899 | 901 |
|
900 | 902 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
901 | 903 |
n != INVALID; ++n) { |
902 | 904 |
|
903 | 905 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
904 | 906 |
int ni = (*_node_index)[n]; |
905 | 907 |
|
906 | 908 |
(*_node_data)[ni].heap.clear(); |
907 | 909 |
(*_node_data)[ni].heap_index.clear(); |
908 | 910 |
|
909 | 911 |
(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
910 | 912 |
|
911 | 913 |
_delta1->push(n, (*_node_data)[ni].pot); |
912 | 914 |
|
913 | 915 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
914 | 916 |
Node v = _graph.source(e); |
915 | 917 |
int vb = _blossom_set->find(v); |
916 | 918 |
int vi = (*_node_index)[v]; |
917 | 919 |
|
918 | 920 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
919 | 921 |
dualScale * _weight[e]; |
920 | 922 |
|
921 | 923 |
if ((*_blossom_data)[vb].status == EVEN) { |
922 | 924 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
923 | 925 |
_delta3->push(e, rw / 2); |
924 | 926 |
} |
925 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) { |
|
926 |
if (_delta3->state(e) != _delta3->IN_HEAP) { |
|
927 |
_delta3->push(e, rw); |
|
928 |
} |
|
929 | 927 |
} else { |
930 | 928 |
typename std::map<int, Arc>::iterator it = |
931 | 929 |
(*_node_data)[vi].heap_index.find(tree); |
932 | 930 |
|
933 | 931 |
if (it != (*_node_data)[vi].heap_index.end()) { |
934 | 932 |
if ((*_node_data)[vi].heap[it->second] > rw) { |
935 | 933 |
(*_node_data)[vi].heap.replace(it->second, e); |
936 | 934 |
(*_node_data)[vi].heap.decrease(e, rw); |
937 | 935 |
it->second = e; |
938 | 936 |
} |
939 | 937 |
} else { |
940 | 938 |
(*_node_data)[vi].heap.push(e, rw); |
941 | 939 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
942 | 940 |
} |
943 | 941 |
|
944 | 942 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
945 | 943 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
946 | 944 |
|
947 | 945 |
if ((*_blossom_data)[vb].status == MATCHED) { |
948 | 946 |
if (_delta2->state(vb) != _delta2->IN_HEAP) { |
949 | 947 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
950 | 948 |
(*_blossom_data)[vb].offset); |
951 | 949 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
952 |
(*_blossom_data)[vb].offset){ |
|
953 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
|
954 |
(*_blossom_data)[vb].offset); |
|
955 |
} |
|
956 |
} |
|
957 |
} |
|
958 |
} |
|
959 |
} |
|
960 |
} |
|
961 |
(*_blossom_data)[blossom].offset = 0; |
|
962 |
} |
|
963 |
|
|
964 |
void matchedToOdd(int blossom) { |
|
965 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
|
966 |
_delta2->erase(blossom); |
|
967 |
} |
|
968 |
(*_blossom_data)[blossom].offset += _delta_sum; |
|
969 |
if (!_blossom_set->trivial(blossom)) { |
|
970 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
|
971 |
(*_blossom_data)[blossom].offset); |
|
972 |
} |
|
973 |
} |
|
974 |
|
|
975 |
void evenToMatched(int blossom, int tree) { |
|
976 |
if (!_blossom_set->trivial(blossom)) { |
|
977 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum; |
|
978 |
} |
|
979 |
|
|
980 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
981 |
n != INVALID; ++n) { |
|
982 |
int ni = (*_node_index)[n]; |
|
983 |
(*_node_data)[ni].pot -= _delta_sum; |
|
984 |
|
|
985 |
_delta1->erase(n); |
|
986 |
|
|
987 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
|
988 |
Node v = _graph.source(e); |
|
989 |
int vb = _blossom_set->find(v); |
|
990 |
int vi = (*_node_index)[v]; |
|
991 |
|
|
992 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
993 |
dualScale * _weight[e]; |
|
994 |
|
|
995 |
if (vb == blossom) { |
|
996 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
997 |
_delta3->erase(e); |
|
998 |
} |
|
999 |
} else if ((*_blossom_data)[vb].status == EVEN) { |
|
1000 |
|
|
1001 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
1002 |
_delta3->erase(e); |
|
1003 |
} |
|
1004 |
|
|
1005 |
int vt = _tree_set->find(vb); |
|
1006 |
|
|
1007 |
if (vt != tree) { |
|
1008 |
|
|
1009 |
Arc r = _graph.oppositeArc(e); |
|
1010 |
|
|
1011 |
typename std::map<int, Arc>::iterator it = |
|
1012 |
(*_node_data)[ni].heap_index.find(vt); |
|
1013 |
|
|
1014 |
if (it != (*_node_data)[ni].heap_index.end()) { |
|
1015 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
|
1016 |
(*_node_data)[ni].heap.replace(it->second, r); |
|
1017 |
(*_node_data)[ni].heap.decrease(r, rw); |
|
1018 |
it->second = r; |
|
1019 |
} |
|
1020 |
} else { |
|
1021 |
(*_node_data)[ni].heap.push(r, rw); |
|
1022 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
|
1023 |
} |
|
1024 |
|
|
1025 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
|
1026 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
1027 |
|
|
1028 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
|
1029 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
1030 |
(*_blossom_data)[blossom].offset); |
|
1031 |
} else if ((*_delta2)[blossom] > |
|
1032 |
_blossom_set->classPrio(blossom) - |
|
1033 |
(*_blossom_data)[blossom].offset){ |
|
1034 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
|
1035 |
(*_blossom_data)[blossom].offset); |
|
1036 |
} |
|
1037 |
} |
|
1038 |
} |
|
1039 |
|
|
1040 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) { |
|
1041 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
1042 |
_delta3->erase(e); |
|
1043 |
} |
|
1044 |
} else { |
|
1045 |
|
|
1046 |
typename std::map<int, Arc>::iterator it = |
|
1047 |
(*_node_data)[vi].heap_index.find(tree); |
|
1048 |
|
|
1049 |
if (it != (*_node_data)[vi].heap_index.end()) { |
|
1050 |
(*_node_data)[vi].heap.erase(it->second); |
|
1051 |
(*_node_data)[vi].heap_index.erase(it); |
|
1052 |
if ((*_node_data)[vi].heap.empty()) { |
|
1053 |
_blossom_set->increase(v, std::numeric_limits<Value>::max()); |
|
1054 |
} else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { |
|
1055 |
_blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
|
1056 |
} |
|
1057 |
|
|
1058 |
if ((*_blossom_data)[vb].status == MATCHED) { |
|
1059 |
if (_blossom_set->classPrio(vb) == |
|
1060 |
std::numeric_limits<Value>::max()) { |
|
1061 |
_delta2->erase(vb); |
|
1062 |
} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
|
1063 |
(*_blossom_data)[vb].offset) { |
|
1064 |
_delta2->increase(vb, _blossom_set->classPrio(vb) - |
|
1065 |
(*_blossom_data)[vb].offset); |
|
1066 |
} |
|
1067 |
} |
|
1068 |
} |
|
1069 |
} |
|
1070 |
} |
|
1071 |
} |
|
1072 |
} |
|
1073 |
|
|
1074 |
void oddToMatched(int blossom) { |
|
1075 |
(*_blossom_data)[blossom].offset -= _delta_sum; |
|
1076 |
|
|
1077 |
if (_blossom_set->classPrio(blossom) != |
|
1078 |
std::numeric_limits<Value>::max()) { |
|
1079 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
1080 |
(*_blossom_data)[blossom].offset); |
|
1081 |
} |
|
1082 |
|
|
1083 |
if (!_blossom_set->trivial(blossom)) { |
|
1084 |
_delta4->erase(blossom); |
|
1085 |
} |
|
1086 |
} |
|
1087 |
|
|
1088 |
void oddToEven(int blossom, int tree) { |
|
1089 |
if (!_blossom_set->trivial(blossom)) { |
|
1090 |
_delta4->erase(blossom); |
|
1091 |
(*_blossom_data)[blossom].pot -= |
|
1092 |
2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
|
1093 |
} |
|
1094 |
|
|
1095 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
1096 |
n != INVALID; ++n) { |
|
1097 |
int ni = (*_node_index)[n]; |
|
1098 |
|
|
1099 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
1100 |
|
|
1101 |
(*_node_data)[ni].heap.clear(); |
|
1102 |
(*_node_data)[ni].heap_index.clear(); |
|
1103 |
(*_node_data)[ni].pot += |
|
1104 |
2 * _delta_sum - (*_blossom_data)[blossom].offset; |
|
1105 |
|
|
1106 |
_delta1->push(n, (*_node_data)[ni].pot); |
|
1107 |
|
|
1108 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
|
1109 |
Node v = _graph.source(e); |
|
1110 |
int vb = _blossom_set->find(v); |
|
1111 |
int vi = (*_node_index)[v]; |
|
1112 |
|
|
1113 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
1114 |
dualScale * _weight[e]; |
|
1115 |
|
|
1116 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
1117 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
|
1118 |
_delta3->push(e, rw / 2); |
|
1119 |
} |
|
1120 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) { |
|
1121 |
if (_delta3->state(e) != _delta3->IN_HEAP) { |
|
1122 |
_delta3->push(e, rw); |
|
1123 |
} |
|
1124 |
} else { |
|
1125 |
|
|
1126 |
typename std::map<int, Arc>::iterator it = |
|
1127 |
(*_node_data)[vi].heap_index.find(tree); |
|
1128 |
|
|
1129 |
if (it != (*_node_data)[vi].heap_index.end()) { |
|
1130 |
if ((*_node_data)[vi].heap[it->second] > rw) { |
|
1131 |
(*_node_data)[vi].heap.replace(it->second, e); |
|
1132 |
(*_node_data)[vi].heap.decrease(e, rw); |
|
1133 |
it->second = e; |
|
1134 |
} |
|
1135 |
} else { |
|
1136 |
(*_node_data)[vi].heap.push(e, rw); |
|
1137 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
|
1138 |
} |
|
1139 |
|
|
1140 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
|
1141 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
|
1142 |
|
|
1143 |
if ((*_blossom_data)[vb].status == MATCHED) { |
|
1144 |
if (_delta2->state(vb) != _delta2->IN_HEAP) { |
|
1145 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
|
1146 |
(*_blossom_data)[vb].offset); |
|
1147 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
|
1148 | 950 |
(*_blossom_data)[vb].offset) { |
1149 | 951 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
1150 | 952 |
(*_blossom_data)[vb].offset); |
1151 | 953 |
} |
1152 | 954 |
} |
1153 | 955 |
} |
1154 | 956 |
} |
1155 | 957 |
} |
1156 | 958 |
} |
1157 | 959 |
(*_blossom_data)[blossom].offset = 0; |
1158 | 960 |
} |
1159 | 961 |
|
1160 |
|
|
1161 |
void matchedToUnmatched(int blossom) { |
|
962 |
void matchedToOdd(int blossom) { |
|
1162 | 963 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
1163 | 964 |
_delta2->erase(blossom); |
1164 | 965 |
} |
966 |
(*_blossom_data)[blossom].offset += _delta_sum; |
|
967 |
if (!_blossom_set->trivial(blossom)) { |
|
968 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
|
969 |
(*_blossom_data)[blossom].offset); |
|
970 |
} |
|
971 |
} |
|
972 |
|
|
973 |
void evenToMatched(int blossom, int tree) { |
|
974 |
if (!_blossom_set->trivial(blossom)) { |
|
975 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum; |
|
976 |
} |
|
1165 | 977 |
|
1166 | 978 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
1167 | 979 |
n != INVALID; ++n) { |
1168 | 980 |
int ni = (*_node_index)[n]; |
1169 |
|
|
1170 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
1171 |
|
|
1172 |
(*_node_data)[ni].heap.clear(); |
|
1173 |
(*_node_data)[ni].heap_index.clear(); |
|
1174 |
|
|
1175 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
1176 |
Node v = _graph.target(e); |
|
981 |
(*_node_data)[ni].pot -= _delta_sum; |
|
982 |
|
|
983 |
_delta1->erase(n); |
|
984 |
|
|
985 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
|
986 |
Node v = _graph.source(e); |
|
1177 | 987 |
int vb = _blossom_set->find(v); |
1178 | 988 |
int vi = (*_node_index)[v]; |
1179 | 989 |
|
1180 | 990 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
1181 | 991 |
dualScale * _weight[e]; |
1182 | 992 |
|
1183 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
1184 |
if (_delta3->state(e) != _delta3->IN_HEAP) { |
|
1185 |
|
|
993 |
if (vb == blossom) { |
|
994 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
995 |
_delta3->erase(e); |
|
996 |
} |
|
997 |
} else if ((*_blossom_data)[vb].status == EVEN) { |
|
998 |
|
|
999 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
1000 |
_delta3->erase(e); |
|
1001 |
} |
|
1002 |
|
|
1003 |
int vt = _tree_set->find(vb); |
|
1004 |
|
|
1005 |
if (vt != tree) { |
|
1006 |
|
|
1007 |
Arc r = _graph.oppositeArc(e); |
|
1008 |
|
|
1009 |
typename std::map<int, Arc>::iterator it = |
|
1010 |
(*_node_data)[ni].heap_index.find(vt); |
|
1011 |
|
|
1012 |
if (it != (*_node_data)[ni].heap_index.end()) { |
|
1013 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
|
1014 |
(*_node_data)[ni].heap.replace(it->second, r); |
|
1015 |
(*_node_data)[ni].heap.decrease(r, rw); |
|
1016 |
it->second = r; |
|
1017 |
} |
|
1018 |
} else { |
|
1019 |
(*_node_data)[ni].heap.push(r, rw); |
|
1020 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
|
1021 |
} |
|
1022 |
|
|
1023 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
|
1024 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
1025 |
|
|
1026 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
|
1027 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
1028 |
(*_blossom_data)[blossom].offset); |
|
1029 |
} else if ((*_delta2)[blossom] > |
|
1030 |
_blossom_set->classPrio(blossom) - |
|
1031 |
(*_blossom_data)[blossom].offset){ |
|
1032 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
|
1033 |
(*_blossom_data)[blossom].offset); |
|
1034 |
} |
|
1035 |
} |
|
1036 |
} |
|
1037 |
} else { |
|
1038 |
|
|
1039 |
typename std::map<int, Arc>::iterator it = |
|
1040 |
(*_node_data)[vi].heap_index.find(tree); |
|
1041 |
|
|
1042 |
if (it != (*_node_data)[vi].heap_index.end()) { |
|
1043 |
(*_node_data)[vi].heap.erase(it->second); |
|
1044 |
(*_node_data)[vi].heap_index.erase(it); |
|
1045 |
if ((*_node_data)[vi].heap.empty()) { |
|
1046 |
_blossom_set->increase(v, std::numeric_limits<Value>::max()); |
|
1047 |
} else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { |
|
1048 |
_blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
|
1049 |
} |
|
1050 |
|
|
1051 |
if ((*_blossom_data)[vb].status == MATCHED) { |
|
1052 |
if (_blossom_set->classPrio(vb) == |
|
1053 |
std::numeric_limits<Value>::max()) { |
|
1054 |
_delta2->erase(vb); |
|
1055 |
} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
|
1056 |
(*_blossom_data)[vb].offset) { |
|
1057 |
_delta2->increase(vb, _blossom_set->classPrio(vb) - |
|
1058 |
(*_blossom_data)[vb].offset); |
|
1059 |
} |
|
1060 |
} |
|
1186 | 1061 |
} |
1187 | 1062 |
} |
1188 | 1063 |
} |
1189 | 1064 |
} |
1190 | 1065 |
} |
1191 | 1066 |
|
1192 |
void |
|
1067 |
void oddToMatched(int blossom) { |
|
1068 |
(*_blossom_data)[blossom].offset -= _delta_sum; |
|
1069 |
|
|
1070 |
if (_blossom_set->classPrio(blossom) != |
|
1071 |
std::numeric_limits<Value>::max()) { |
|
1072 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
1073 |
(*_blossom_data)[blossom].offset); |
|
1074 |
} |
|
1075 |
|
|
1076 |
if (!_blossom_set->trivial(blossom)) { |
|
1077 |
_delta4->erase(blossom); |
|
1078 |
} |
|
1079 |
} |
|
1080 |
|
|
1081 |
void oddToEven(int blossom, int tree) { |
|
1082 |
if (!_blossom_set->trivial(blossom)) { |
|
1083 |
_delta4->erase(blossom); |
|
1084 |
(*_blossom_data)[blossom].pot -= |
|
1085 |
2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
|
1086 |
} |
|
1087 |
|
|
1193 | 1088 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
1194 | 1089 |
n != INVALID; ++n) { |
1195 | 1090 |
int ni = (*_node_index)[n]; |
1196 | 1091 |
|
1092 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
1093 |
|
|
1094 |
(*_node_data)[ni].heap.clear(); |
|
1095 |
(*_node_data)[ni].heap_index.clear(); |
|
1096 |
(*_node_data)[ni].pot += |
|
1097 |
2 * _delta_sum - (*_blossom_data)[blossom].offset; |
|
1098 |
|
|
1099 |
_delta1->push(n, (*_node_data)[ni].pot); |
|
1100 |
|
|
1197 | 1101 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
1198 | 1102 |
Node v = _graph.source(e); |
1199 | 1103 |
int vb = _blossom_set->find(v); |
1200 | 1104 |
int vi = (*_node_index)[v]; |
1201 | 1105 |
|
1202 | 1106 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
1203 | 1107 |
dualScale * _weight[e]; |
1204 | 1108 |
|
1205 |
if (vb == blossom) { |
|
1206 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
1207 |
|
|
1109 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
1110 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
|
1111 |
_delta3->push(e, rw / 2); |
|
1208 | 1112 |
} |
1209 |
} else if ((*_blossom_data)[vb].status == EVEN) { |
|
1210 |
|
|
1211 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
1212 |
_delta3->erase(e); |
|
1213 |
} |
|
1214 |
|
|
1215 |
int vt = _tree_set->find(vb); |
|
1216 |
|
|
1217 |
|
|
1113 |
} else { |
|
1218 | 1114 |
|
1219 | 1115 |
typename std::map<int, Arc>::iterator it = |
1220 |
(*_node_data)[ni].heap_index.find(vt); |
|
1221 |
|
|
1222 |
if (it != (*_node_data)[ni].heap_index.end()) { |
|
1223 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
|
1224 |
(*_node_data)[ni].heap.replace(it->second, r); |
|
1225 |
(*_node_data)[ni].heap.decrease(r, rw); |
|
1226 |
|
|
1116 |
(*_node_data)[vi].heap_index.find(tree); |
|
1117 |
|
|
1118 |
if (it != (*_node_data)[vi].heap_index.end()) { |
|
1119 |
if ((*_node_data)[vi].heap[it->second] > rw) { |
|
1120 |
(*_node_data)[vi].heap.replace(it->second, e); |
|
1121 |
(*_node_data)[vi].heap.decrease(e, rw); |
|
1122 |
it->second = e; |
|
1227 | 1123 |
} |
1228 | 1124 |
} else { |
1229 |
(*_node_data)[ni].heap.push(r, rw); |
|
1230 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
|
1125 |
(*_node_data)[vi].heap.push(e, rw); |
|
1126 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
|
1231 | 1127 |
} |
1232 | 1128 |
|
1233 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
|
1234 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
1235 |
|
|
1236 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
|
1237 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
1238 |
(*_blossom_data)[blossom].offset); |
|
1239 |
} else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)- |
|
1240 |
(*_blossom_data)[blossom].offset){ |
|
1241 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
|
1242 |
(*_blossom_data)[blossom].offset); |
|
1129 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
|
1130 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
|
1131 |
|
|
1132 |
if ((*_blossom_data)[vb].status == MATCHED) { |
|
1133 |
if (_delta2->state(vb) != _delta2->IN_HEAP) { |
|
1134 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
|
1135 |
(*_blossom_data)[vb].offset); |
|
1136 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
|
1137 |
(*_blossom_data)[vb].offset) { |
|
1138 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
|
1139 |
(*_blossom_data)[vb].offset); |
|
1140 |
} |
|
1243 | 1141 |
} |
1244 | 1142 |
} |
1245 |
|
|
1246 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) { |
|
1247 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
1248 |
_delta3->erase(e); |
|
1249 |
} |
|
1250 | 1143 |
} |
1251 | 1144 |
} |
1252 | 1145 |
} |
1146 |
(*_blossom_data)[blossom].offset = 0; |
|
1253 | 1147 |
} |
1254 | 1148 |
|
1255 | 1149 |
void alternatePath(int even, int tree) { |
1256 | 1150 |
int odd; |
1257 | 1151 |
|
1258 | 1152 |
evenToMatched(even, tree); |
1259 | 1153 |
(*_blossom_data)[even].status = MATCHED; |
1260 | 1154 |
|
1261 | 1155 |
while ((*_blossom_data)[even].pred != INVALID) { |
1262 | 1156 |
odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred)); |
1263 | 1157 |
(*_blossom_data)[odd].status = MATCHED; |
1264 | 1158 |
oddToMatched(odd); |
1265 | 1159 |
(*_blossom_data)[odd].next = (*_blossom_data)[odd].pred; |
1266 | 1160 |
|
1267 | 1161 |
even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred)); |
1268 | 1162 |
(*_blossom_data)[even].status = MATCHED; |
1269 | 1163 |
evenToMatched(even, tree); |
1270 | 1164 |
(*_blossom_data)[even].next = |
1271 | 1165 |
_graph.oppositeArc((*_blossom_data)[odd].pred); |
1272 | 1166 |
} |
1273 | 1167 |
|
1274 | 1168 |
} |
1275 | 1169 |
|
1276 | 1170 |
void destroyTree(int tree) { |
1277 | 1171 |
for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) { |
1278 | 1172 |
if ((*_blossom_data)[b].status == EVEN) { |
1279 | 1173 |
(*_blossom_data)[b].status = MATCHED; |
1280 | 1174 |
evenToMatched(b, tree); |
1281 | 1175 |
} else if ((*_blossom_data)[b].status == ODD) { |
1282 | 1176 |
(*_blossom_data)[b].status = MATCHED; |
1283 | 1177 |
oddToMatched(b); |
1284 | 1178 |
} |
1285 | 1179 |
} |
1286 | 1180 |
_tree_set->eraseClass(tree); |
1287 | 1181 |
} |
1288 | 1182 |
|
1289 | 1183 |
|
1290 | 1184 |
void unmatchNode(const Node& node) { |
1291 | 1185 |
int blossom = _blossom_set->find(node); |
1292 | 1186 |
int tree = _tree_set->find(blossom); |
1293 | 1187 |
|
1294 | 1188 |
alternatePath(blossom, tree); |
1295 | 1189 |
destroyTree(tree); |
1296 | 1190 |
|
1297 |
(*_blossom_data)[blossom].status = UNMATCHED; |
|
1298 | 1191 |
(*_blossom_data)[blossom].base = node; |
1299 |
|
|
1192 |
(*_blossom_data)[blossom].next = INVALID; |
|
1300 | 1193 |
} |
1301 | 1194 |
|
1302 |
|
|
1303 | 1195 |
void augmentOnEdge(const Edge& edge) { |
1304 | 1196 |
|
1305 | 1197 |
int left = _blossom_set->find(_graph.u(edge)); |
1306 | 1198 |
int right = _blossom_set->find(_graph.v(edge)); |
1307 | 1199 |
|
1308 |
if ((*_blossom_data)[left].status == EVEN) { |
|
1309 |
int left_tree = _tree_set->find(left); |
|
1310 |
alternatePath(left, left_tree); |
|
1311 |
destroyTree(left_tree); |
|
1312 |
} else { |
|
1313 |
(*_blossom_data)[left].status = MATCHED; |
|
1314 |
unmatchedToMatched(left); |
|
1315 |
} |
|
1316 |
|
|
1317 |
if ((*_blossom_data)[right].status == EVEN) { |
|
1318 |
int right_tree = _tree_set->find(right); |
|
1319 |
alternatePath(right, right_tree); |
|
1320 |
destroyTree(right_tree); |
|
1321 |
} else { |
|
1322 |
(*_blossom_data)[right].status = MATCHED; |
|
1323 |
unmatchedToMatched(right); |
|
1324 |
|
|
1200 |
int left_tree = _tree_set->find(left); |
|
1201 |
alternatePath(left, left_tree); |
|
1202 |
destroyTree(left_tree); |
|
1203 |
|
|
1204 |
int right_tree = _tree_set->find(right); |
|
1205 |
alternatePath(right, right_tree); |
|
1206 |
destroyTree(right_tree); |
|
1325 | 1207 |
|
1326 | 1208 |
(*_blossom_data)[left].next = _graph.direct(edge, true); |
1327 | 1209 |
(*_blossom_data)[right].next = _graph.direct(edge, false); |
1328 | 1210 |
} |
1329 | 1211 |
|
1212 |
void augmentOnArc(const Arc& arc) { |
|
1213 |
|
|
1214 |
int left = _blossom_set->find(_graph.source(arc)); |
|
1215 |
int right = _blossom_set->find(_graph.target(arc)); |
|
1216 |
|
|
1217 |
(*_blossom_data)[left].status = MATCHED; |
|
1218 |
|
|
1219 |
int right_tree = _tree_set->find(right); |
|
1220 |
alternatePath(right, right_tree); |
|
1221 |
destroyTree(right_tree); |
|
1222 |
|
|
1223 |
(*_blossom_data)[left].next = arc; |
|
1224 |
(*_blossom_data)[right].next = _graph.oppositeArc(arc); |
|
1225 |
} |
|
1226 |
|
|
1330 | 1227 |
void extendOnArc(const Arc& arc) { |
1331 | 1228 |
int base = _blossom_set->find(_graph.target(arc)); |
1332 | 1229 |
int tree = _tree_set->find(base); |
1333 | 1230 |
|
1334 | 1231 |
int odd = _blossom_set->find(_graph.source(arc)); |
1335 | 1232 |
_tree_set->insert(odd, tree); |
1336 | 1233 |
(*_blossom_data)[odd].status = ODD; |
1337 | 1234 |
matchedToOdd(odd); |
1338 | 1235 |
(*_blossom_data)[odd].pred = arc; |
1339 | 1236 |
|
1340 | 1237 |
int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next)); |
1341 | 1238 |
(*_blossom_data)[even].pred = (*_blossom_data)[even].next; |
1342 | 1239 |
_tree_set->insert(even, tree); |
1343 | 1240 |
(*_blossom_data)[even].status = EVEN; |
1344 | 1241 |
matchedToEven(even, tree); |
1345 | 1242 |
} |
1346 | 1243 |
|
1347 | 1244 |
void shrinkOnEdge(const Edge& edge, int tree) { |
1348 | 1245 |
int nca = -1; |
1349 | 1246 |
std::vector<int> left_path, right_path; |
1350 | 1247 |
|
1351 | 1248 |
{ |
1352 | 1249 |
std::set<int> left_set, right_set; |
1353 | 1250 |
int left = _blossom_set->find(_graph.u(edge)); |
1354 | 1251 |
left_path.push_back(left); |
1355 | 1252 |
left_set.insert(left); |
1356 | 1253 |
|
1357 | 1254 |
int right = _blossom_set->find(_graph.v(edge)); |
1358 | 1255 |
right_path.push_back(right); |
1359 | 1256 |
right_set.insert(right); |
1360 | 1257 |
|
1361 | 1258 |
while (true) { |
1362 | 1259 |
|
1363 | 1260 |
if ((*_blossom_data)[left].pred == INVALID) break; |
1364 | 1261 |
|
1365 | 1262 |
left = |
1366 | 1263 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
1367 | 1264 |
left_path.push_back(left); |
1368 | 1265 |
left = |
1369 | 1266 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
1370 | 1267 |
left_path.push_back(left); |
1371 | 1268 |
|
1372 | 1269 |
left_set.insert(left); |
1373 | 1270 |
|
1374 | 1271 |
if (right_set.find(left) != right_set.end()) { |
1375 | 1272 |
nca = left; |
1376 | 1273 |
break; |
1377 | 1274 |
} |
1378 | 1275 |
|
1379 | 1276 |
if ((*_blossom_data)[right].pred == INVALID) break; |
1380 | 1277 |
|
1381 | 1278 |
right = |
1382 | 1279 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
1383 | 1280 |
right_path.push_back(right); |
1384 | 1281 |
right = |
1385 | 1282 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
1386 | 1283 |
right_path.push_back(right); |
1387 | 1284 |
|
1388 | 1285 |
right_set.insert(right); |
1389 | 1286 |
|
1390 | 1287 |
if (left_set.find(right) != left_set.end()) { |
1391 | 1288 |
nca = right; |
1392 | 1289 |
break; |
1393 | 1290 |
} |
1394 | 1291 |
|
1395 | 1292 |
} |
1396 | 1293 |
|
1397 | 1294 |
if (nca == -1) { |
1398 | 1295 |
if ((*_blossom_data)[left].pred == INVALID) { |
1399 | 1296 |
nca = right; |
1400 | 1297 |
while (left_set.find(nca) == left_set.end()) { |
1401 | 1298 |
nca = |
1402 | 1299 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
1403 | 1300 |
right_path.push_back(nca); |
1404 | 1301 |
nca = |
1405 | 1302 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
1406 | 1303 |
right_path.push_back(nca); |
1407 | 1304 |
} |
1408 | 1305 |
} else { |
1409 | 1306 |
nca = left; |
1410 | 1307 |
while (right_set.find(nca) == right_set.end()) { |
1411 | 1308 |
nca = |
1412 | 1309 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
1413 | 1310 |
left_path.push_back(nca); |
1414 | 1311 |
nca = |
1415 | 1312 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
1416 | 1313 |
left_path.push_back(nca); |
1417 | 1314 |
} |
1418 | 1315 |
} |
1419 | 1316 |
} |
1420 | 1317 |
} |
1421 | 1318 |
|
1422 | 1319 |
std::vector<int> subblossoms; |
1423 | 1320 |
Arc prev; |
1424 | 1321 |
|
1425 | 1322 |
prev = _graph.direct(edge, true); |
1426 | 1323 |
for (int i = 0; left_path[i] != nca; i += 2) { |
1427 | 1324 |
subblossoms.push_back(left_path[i]); |
1428 | 1325 |
(*_blossom_data)[left_path[i]].next = prev; |
1429 | 1326 |
_tree_set->erase(left_path[i]); |
1430 | 1327 |
|
1431 | 1328 |
subblossoms.push_back(left_path[i + 1]); |
1432 | 1329 |
(*_blossom_data)[left_path[i + 1]].status = EVEN; |
1433 | 1330 |
oddToEven(left_path[i + 1], tree); |
1434 | 1331 |
_tree_set->erase(left_path[i + 1]); |
1435 | 1332 |
prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred); |
1436 | 1333 |
} |
1437 | 1334 |
|
1438 | 1335 |
int k = 0; |
1439 | 1336 |
while (right_path[k] != nca) ++k; |
1440 | 1337 |
|
1441 | 1338 |
subblossoms.push_back(nca); |
1442 | 1339 |
(*_blossom_data)[nca].next = prev; |
1443 | 1340 |
|
1444 | 1341 |
for (int i = k - 2; i >= 0; i -= 2) { |
1445 | 1342 |
subblossoms.push_back(right_path[i + 1]); |
1446 | 1343 |
(*_blossom_data)[right_path[i + 1]].status = EVEN; |
1447 | 1344 |
oddToEven(right_path[i + 1], tree); |
1448 | 1345 |
_tree_set->erase(right_path[i + 1]); |
1449 | 1346 |
|
1450 | 1347 |
(*_blossom_data)[right_path[i + 1]].next = |
1451 | 1348 |
(*_blossom_data)[right_path[i + 1]].pred; |
1452 | 1349 |
|
1453 | 1350 |
subblossoms.push_back(right_path[i]); |
1454 | 1351 |
_tree_set->erase(right_path[i]); |
1455 | 1352 |
} |
1456 | 1353 |
|
1457 | 1354 |
int surface = |
1458 | 1355 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
1459 | 1356 |
|
1460 | 1357 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
1461 | 1358 |
if (!_blossom_set->trivial(subblossoms[i])) { |
1462 | 1359 |
(*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum; |
1463 | 1360 |
} |
1464 | 1361 |
(*_blossom_data)[subblossoms[i]].status = MATCHED; |
1465 | 1362 |
} |
1466 | 1363 |
|
1467 | 1364 |
(*_blossom_data)[surface].pot = -2 * _delta_sum; |
1468 | 1365 |
(*_blossom_data)[surface].offset = 0; |
1469 | 1366 |
(*_blossom_data)[surface].status = EVEN; |
1470 | 1367 |
(*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred; |
1471 | 1368 |
(*_blossom_data)[surface].next = (*_blossom_data)[nca].pred; |
1472 | 1369 |
|
1473 | 1370 |
_tree_set->insert(surface, tree); |
1474 | 1371 |
_tree_set->erase(nca); |
1475 | 1372 |
} |
1476 | 1373 |
|
1477 | 1374 |
void splitBlossom(int blossom) { |
1478 | 1375 |
Arc next = (*_blossom_data)[blossom].next; |
1479 | 1376 |
Arc pred = (*_blossom_data)[blossom].pred; |
1480 | 1377 |
|
1481 | 1378 |
int tree = _tree_set->find(blossom); |
1482 | 1379 |
|
1483 | 1380 |
(*_blossom_data)[blossom].status = MATCHED; |
1484 | 1381 |
oddToMatched(blossom); |
1485 | 1382 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
1486 | 1383 |
_delta2->erase(blossom); |
1487 | 1384 |
} |
1488 | 1385 |
|
1489 | 1386 |
std::vector<int> subblossoms; |
1490 | 1387 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
1491 | 1388 |
|
1492 | 1389 |
Value offset = (*_blossom_data)[blossom].offset; |
1493 | 1390 |
int b = _blossom_set->find(_graph.source(pred)); |
1494 | 1391 |
int d = _blossom_set->find(_graph.source(next)); |
1495 | 1392 |
|
1496 | 1393 |
int ib = -1, id = -1; |
1497 | 1394 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
1498 | 1395 |
if (subblossoms[i] == b) ib = i; |
1499 | 1396 |
if (subblossoms[i] == d) id = i; |
1500 | 1397 |
|
1501 | 1398 |
(*_blossom_data)[subblossoms[i]].offset = offset; |
1502 | 1399 |
if (!_blossom_set->trivial(subblossoms[i])) { |
1503 | 1400 |
(*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
1504 | 1401 |
} |
1505 | 1402 |
if (_blossom_set->classPrio(subblossoms[i]) != |
1506 | 1403 |
std::numeric_limits<Value>::max()) { |
1507 | 1404 |
_delta2->push(subblossoms[i], |
1508 | 1405 |
_blossom_set->classPrio(subblossoms[i]) - |
1509 | 1406 |
(*_blossom_data)[subblossoms[i]].offset); |
1510 | 1407 |
} |
1511 | 1408 |
} |
1512 | 1409 |
|
1513 | 1410 |
if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
1514 | 1411 |
for (int i = (id + 1) % subblossoms.size(); |
1515 | 1412 |
i != ib; i = (i + 2) % subblossoms.size()) { |
1516 | 1413 |
int sb = subblossoms[i]; |
1517 | 1414 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
1518 | 1415 |
(*_blossom_data)[sb].next = |
1519 | 1416 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
1520 | 1417 |
} |
1521 | 1418 |
|
1522 | 1419 |
for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
1523 | 1420 |
int sb = subblossoms[i]; |
1524 | 1421 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
1525 | 1422 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
1526 | 1423 |
|
1527 | 1424 |
(*_blossom_data)[sb].status = ODD; |
1528 | 1425 |
matchedToOdd(sb); |
1529 | 1426 |
_tree_set->insert(sb, tree); |
1530 | 1427 |
(*_blossom_data)[sb].pred = pred; |
1531 | 1428 |
(*_blossom_data)[sb].next = |
1532 |
|
|
1429 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
1533 | 1430 |
|
1534 | 1431 |
pred = (*_blossom_data)[ub].next; |
1535 | 1432 |
|
1536 | 1433 |
(*_blossom_data)[tb].status = EVEN; |
1537 | 1434 |
matchedToEven(tb, tree); |
1538 | 1435 |
_tree_set->insert(tb, tree); |
1539 | 1436 |
(*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
1540 | 1437 |
} |
1541 | 1438 |
|
1542 | 1439 |
(*_blossom_data)[subblossoms[id]].status = ODD; |
1543 | 1440 |
matchedToOdd(subblossoms[id]); |
1544 | 1441 |
_tree_set->insert(subblossoms[id], tree); |
1545 | 1442 |
(*_blossom_data)[subblossoms[id]].next = next; |
1546 | 1443 |
(*_blossom_data)[subblossoms[id]].pred = pred; |
1547 | 1444 |
|
1548 | 1445 |
} else { |
1549 | 1446 |
|
1550 | 1447 |
for (int i = (ib + 1) % subblossoms.size(); |
1551 | 1448 |
i != id; i = (i + 2) % subblossoms.size()) { |
1552 | 1449 |
int sb = subblossoms[i]; |
1553 | 1450 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
1554 | 1451 |
(*_blossom_data)[sb].next = |
1555 | 1452 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
1556 | 1453 |
} |
1557 | 1454 |
|
1558 | 1455 |
for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
1559 | 1456 |
int sb = subblossoms[i]; |
1560 | 1457 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
1561 | 1458 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
1562 | 1459 |
|
1563 | 1460 |
(*_blossom_data)[sb].status = ODD; |
1564 | 1461 |
matchedToOdd(sb); |
1565 | 1462 |
_tree_set->insert(sb, tree); |
1566 | 1463 |
(*_blossom_data)[sb].next = next; |
1567 | 1464 |
(*_blossom_data)[sb].pred = |
1568 | 1465 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
1569 | 1466 |
|
1570 | 1467 |
(*_blossom_data)[tb].status = EVEN; |
1571 | 1468 |
matchedToEven(tb, tree); |
1572 | 1469 |
_tree_set->insert(tb, tree); |
1573 | 1470 |
(*_blossom_data)[tb].pred = |
1574 | 1471 |
(*_blossom_data)[tb].next = |
1575 | 1472 |
_graph.oppositeArc((*_blossom_data)[ub].next); |
1576 | 1473 |
next = (*_blossom_data)[ub].next; |
1577 | 1474 |
} |
1578 | 1475 |
|
1579 | 1476 |
(*_blossom_data)[subblossoms[ib]].status = ODD; |
1580 | 1477 |
matchedToOdd(subblossoms[ib]); |
1581 | 1478 |
_tree_set->insert(subblossoms[ib], tree); |
1582 | 1479 |
(*_blossom_data)[subblossoms[ib]].next = next; |
1583 | 1480 |
(*_blossom_data)[subblossoms[ib]].pred = pred; |
1584 | 1481 |
} |
1585 | 1482 |
_tree_set->erase(blossom); |
1586 | 1483 |
} |
1587 | 1484 |
|
1588 | 1485 |
void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
1589 | 1486 |
if (_blossom_set->trivial(blossom)) { |
1590 | 1487 |
int bi = (*_node_index)[base]; |
1591 | 1488 |
Value pot = (*_node_data)[bi].pot; |
1592 | 1489 |
|
1593 | 1490 |
(*_matching)[base] = matching; |
1594 | 1491 |
_blossom_node_list.push_back(base); |
1595 | 1492 |
(*_node_potential)[base] = pot; |
1596 | 1493 |
} else { |
1597 | 1494 |
|
1598 | 1495 |
Value pot = (*_blossom_data)[blossom].pot; |
1599 | 1496 |
int bn = _blossom_node_list.size(); |
1600 | 1497 |
|
1601 | 1498 |
std::vector<int> subblossoms; |
1602 | 1499 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
1603 | 1500 |
int b = _blossom_set->find(base); |
1604 | 1501 |
int ib = -1; |
1605 | 1502 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
1606 | 1503 |
if (subblossoms[i] == b) { ib = i; break; } |
1607 | 1504 |
} |
1608 | 1505 |
|
1609 | 1506 |
for (int i = 1; i < int(subblossoms.size()); i += 2) { |
1610 | 1507 |
int sb = subblossoms[(ib + i) % subblossoms.size()]; |
1611 | 1508 |
int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
1612 | 1509 |
|
1613 | 1510 |
Arc m = (*_blossom_data)[tb].next; |
1614 | 1511 |
extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
1615 | 1512 |
extractBlossom(tb, _graph.source(m), m); |
1616 | 1513 |
} |
1617 | 1514 |
extractBlossom(subblossoms[ib], base, matching); |
1618 | 1515 |
|
1619 | 1516 |
int en = _blossom_node_list.size(); |
1620 | 1517 |
|
1621 | 1518 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
1622 | 1519 |
} |
1623 | 1520 |
} |
1624 | 1521 |
|
1625 | 1522 |
void extractMatching() { |
1626 | 1523 |
std::vector<int> blossoms; |
1627 | 1524 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
1628 | 1525 |
blossoms.push_back(c); |
1629 | 1526 |
} |
1630 | 1527 |
|
1631 | 1528 |
for (int i = 0; i < int(blossoms.size()); ++i) { |
1632 |
if ((*_blossom_data)[blossoms[i]]. |
|
1529 |
if ((*_blossom_data)[blossoms[i]].next != INVALID) { |
|
1633 | 1530 |
|
1634 | 1531 |
Value offset = (*_blossom_data)[blossoms[i]].offset; |
1635 | 1532 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset; |
1636 | 1533 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
1637 | 1534 |
n != INVALID; ++n) { |
1638 | 1535 |
(*_node_data)[(*_node_index)[n]].pot -= offset; |
1639 | 1536 |
} |
1640 | 1537 |
|
1641 | 1538 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
1642 | 1539 |
Node base = _graph.source(matching); |
1643 | 1540 |
extractBlossom(blossoms[i], base, matching); |
1644 | 1541 |
} else { |
1645 | 1542 |
Node base = (*_blossom_data)[blossoms[i]].base; |
1646 | 1543 |
extractBlossom(blossoms[i], base, INVALID); |
1647 | 1544 |
} |
1648 | 1545 |
} |
1649 | 1546 |
} |
1650 | 1547 |
|
1651 | 1548 |
public: |
1652 | 1549 |
|
1653 | 1550 |
/// \brief Constructor |
1654 | 1551 |
/// |
1655 | 1552 |
/// Constructor. |
1656 | 1553 |
MaxWeightedMatching(const Graph& graph, const WeightMap& weight) |
1657 | 1554 |
: _graph(graph), _weight(weight), _matching(0), |
1658 | 1555 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
1659 | 1556 |
_node_num(0), _blossom_num(0), |
1660 | 1557 |
|
1661 | 1558 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
1662 | 1559 |
_node_index(0), _node_heap_index(0), _node_data(0), |
1663 | 1560 |
_tree_set_index(0), _tree_set(0), |
1664 | 1561 |
|
1665 | 1562 |
_delta1_index(0), _delta1(0), |
1666 | 1563 |
_delta2_index(0), _delta2(0), |
1667 | 1564 |
_delta3_index(0), _delta3(0), |
1668 | 1565 |
_delta4_index(0), _delta4(0), |
1669 | 1566 |
|
1670 |
_delta_sum() |
|
1567 |
_delta_sum(), _unmatched(0), |
|
1568 |
|
|
1569 |
_fractional(0) |
|
1570 |
{} |
|
1671 | 1571 |
|
1672 | 1572 |
~MaxWeightedMatching() { |
1673 | 1573 |
destroyStructures(); |
1574 |
if (_fractional) { |
|
1575 |
delete _fractional; |
|
1576 |
} |
|
1674 | 1577 |
} |
1675 | 1578 |
|
1676 | 1579 |
/// \name Execution Control |
1677 | 1580 |
/// The simplest way to execute the algorithm is to use the |
1678 | 1581 |
/// \ref run() member function. |
1679 | 1582 |
|
1680 | 1583 |
///@{ |
1681 | 1584 |
|
1682 | 1585 |
/// \brief Initialize the algorithm |
1683 | 1586 |
/// |
1684 | 1587 |
/// This function initializes the algorithm. |
1685 | 1588 |
void init() { |
1686 | 1589 |
createStructures(); |
1687 | 1590 |
|
1688 | 1591 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
1689 | 1592 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
1690 | 1593 |
} |
1691 | 1594 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1692 | 1595 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
1693 | 1596 |
} |
1694 | 1597 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
1695 | 1598 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
1696 | 1599 |
} |
1697 | 1600 |
for (int i = 0; i < _blossom_num; ++i) { |
1698 | 1601 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
1699 | 1602 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
1700 | 1603 |
} |
1701 | 1604 |
|
1605 |
_unmatched = _node_num; |
|
1606 |
|
|
1702 | 1607 |
int index = 0; |
1703 | 1608 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1704 | 1609 |
Value max = 0; |
1705 | 1610 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
1706 | 1611 |
if (_graph.target(e) == n) continue; |
1707 | 1612 |
if ((dualScale * _weight[e]) / 2 > max) { |
1708 | 1613 |
max = (dualScale * _weight[e]) / 2; |
1709 | 1614 |
} |
1710 | 1615 |
} |
1711 | 1616 |
(*_node_index)[n] = index; |
1712 | 1617 |
(*_node_data)[index].pot = max; |
1713 | 1618 |
_delta1->push(n, max); |
1714 | 1619 |
int blossom = |
1715 | 1620 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
1716 | 1621 |
|
1717 | 1622 |
_tree_set->insert(blossom); |
1718 | 1623 |
|
1719 | 1624 |
(*_blossom_data)[blossom].status = EVEN; |
1720 | 1625 |
(*_blossom_data)[blossom].pred = INVALID; |
1721 | 1626 |
(*_blossom_data)[blossom].next = INVALID; |
1722 | 1627 |
(*_blossom_data)[blossom].pot = 0; |
1723 | 1628 |
(*_blossom_data)[blossom].offset = 0; |
1724 | 1629 |
++index; |
1725 | 1630 |
} |
1726 | 1631 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
1727 | 1632 |
int si = (*_node_index)[_graph.u(e)]; |
1728 | 1633 |
int ti = (*_node_index)[_graph.v(e)]; |
1729 | 1634 |
if (_graph.u(e) != _graph.v(e)) { |
1730 | 1635 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
1731 | 1636 |
dualScale * _weight[e]) / 2); |
1732 | 1637 |
} |
1733 | 1638 |
} |
1734 | 1639 |
} |
1735 | 1640 |
|
1641 |
/// \brief Initialize the algorithm with fractional matching |
|
1642 |
/// |
|
1643 |
/// This function initializes the algorithm with a fractional |
|
1644 |
/// matching. This initialization is also called jumpstart heuristic. |
|
1645 |
void fractionalInit() { |
|
1646 |
createStructures(); |
|
1647 |
|
|
1648 |
if (_fractional == 0) { |
|
1649 |
_fractional = new FractionalMatching(_graph, _weight, false); |
|
1650 |
} |
|
1651 |
_fractional->run(); |
|
1652 |
|
|
1653 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
1654 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
1655 |
} |
|
1656 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1657 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
|
1658 |
} |
|
1659 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1660 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
1661 |
} |
|
1662 |
for (int i = 0; i < _blossom_num; ++i) { |
|
1663 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
1664 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
1665 |
} |
|
1666 |
|
|
1667 |
_unmatched = 0; |
|
1668 |
|
|
1669 |
int index = 0; |
|
1670 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1671 |
Value pot = _fractional->nodeValue(n); |
|
1672 |
(*_node_index)[n] = index; |
|
1673 |
(*_node_data)[index].pot = pot; |
|
1674 |
int blossom = |
|
1675 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
1676 |
|
|
1677 |
(*_blossom_data)[blossom].status = MATCHED; |
|
1678 |
(*_blossom_data)[blossom].pred = INVALID; |
|
1679 |
(*_blossom_data)[blossom].next = _fractional->matching(n); |
|
1680 |
if (_fractional->matching(n) == INVALID) { |
|
1681 |
(*_blossom_data)[blossom].base = n; |
|
1682 |
} |
|
1683 |
(*_blossom_data)[blossom].pot = 0; |
|
1684 |
(*_blossom_data)[blossom].offset = 0; |
|
1685 |
++index; |
|
1686 |
} |
|
1687 |
|
|
1688 |
typename Graph::template NodeMap<bool> processed(_graph, false); |
|
1689 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1690 |
if (processed[n]) continue; |
|
1691 |
processed[n] = true; |
|
1692 |
if (_fractional->matching(n) == INVALID) continue; |
|
1693 |
int num = 1; |
|
1694 |
Node v = _graph.target(_fractional->matching(n)); |
|
1695 |
while (n != v) { |
|
1696 |
processed[v] = true; |
|
1697 |
v = _graph.target(_fractional->matching(v)); |
|
1698 |
++num; |
|
1699 |
} |
|
1700 |
|
|
1701 |
if (num % 2 == 1) { |
|
1702 |
std::vector<int> subblossoms(num); |
|
1703 |
|
|
1704 |
subblossoms[--num] = _blossom_set->find(n); |
|
1705 |
_delta1->push(n, _fractional->nodeValue(n)); |
|
1706 |
v = _graph.target(_fractional->matching(n)); |
|
1707 |
while (n != v) { |
|
1708 |
subblossoms[--num] = _blossom_set->find(v); |
|
1709 |
_delta1->push(v, _fractional->nodeValue(v)); |
|
1710 |
v = _graph.target(_fractional->matching(v)); |
|
1711 |
} |
|
1712 |
|
|
1713 |
int surface = |
|
1714 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
1715 |
(*_blossom_data)[surface].status = EVEN; |
|
1716 |
(*_blossom_data)[surface].pred = INVALID; |
|
1717 |
(*_blossom_data)[surface].next = INVALID; |
|
1718 |
(*_blossom_data)[surface].pot = 0; |
|
1719 |
(*_blossom_data)[surface].offset = 0; |
|
1720 |
|
|
1721 |
_tree_set->insert(surface); |
|
1722 |
++_unmatched; |
|
1723 |
} |
|
1724 |
} |
|
1725 |
|
|
1726 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1727 |
int si = (*_node_index)[_graph.u(e)]; |
|
1728 |
int sb = _blossom_set->find(_graph.u(e)); |
|
1729 |
int ti = (*_node_index)[_graph.v(e)]; |
|
1730 |
int tb = _blossom_set->find(_graph.v(e)); |
|
1731 |
if ((*_blossom_data)[sb].status == EVEN && |
|
1732 |
(*_blossom_data)[tb].status == EVEN && sb != tb) { |
|
1733 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
1734 |
dualScale * _weight[e]) / 2); |
|
1735 |
} |
|
1736 |
} |
|
1737 |
|
|
1738 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1739 |
int nb = _blossom_set->find(n); |
|
1740 |
if ((*_blossom_data)[nb].status != MATCHED) continue; |
|
1741 |
int ni = (*_node_index)[n]; |
|
1742 |
|
|
1743 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
1744 |
Node v = _graph.target(e); |
|
1745 |
int vb = _blossom_set->find(v); |
|
1746 |
int vi = (*_node_index)[v]; |
|
1747 |
|
|
1748 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
1749 |
dualScale * _weight[e]; |
|
1750 |
|
|
1751 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
1752 |
|
|
1753 |
int vt = _tree_set->find(vb); |
|
1754 |
|
|
1755 |
typename std::map<int, Arc>::iterator it = |
|
1756 |
(*_node_data)[ni].heap_index.find(vt); |
|
1757 |
|
|
1758 |
if (it != (*_node_data)[ni].heap_index.end()) { |
|
1759 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
|
1760 |
(*_node_data)[ni].heap.replace(it->second, e); |
|
1761 |
(*_node_data)[ni].heap.decrease(e, rw); |
|
1762 |
it->second = e; |
|
1763 |
} |
|
1764 |
} else { |
|
1765 |
(*_node_data)[ni].heap.push(e, rw); |
|
1766 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e)); |
|
1767 |
} |
|
1768 |
} |
|
1769 |
} |
|
1770 |
|
|
1771 |
if (!(*_node_data)[ni].heap.empty()) { |
|
1772 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
1773 |
_delta2->push(nb, _blossom_set->classPrio(nb)); |
|
1774 |
} |
|
1775 |
} |
|
1776 |
} |
|
1777 |
|
|
1736 | 1778 |
/// \brief Start the algorithm |
1737 | 1779 |
/// |
1738 | 1780 |
/// This function starts the algorithm. |
1739 | 1781 |
/// |
1740 |
/// \pre \ref init() must be called |
|
1782 |
/// \pre \ref init() or \ref fractionalInit() must be called |
|
1783 |
/// before using this function. |
|
1741 | 1784 |
void start() { |
1742 | 1785 |
enum OpType { |
1743 | 1786 |
D1, D2, D3, D4 |
1744 | 1787 |
}; |
1745 | 1788 |
|
1746 |
int unmatched = _node_num; |
|
1747 |
while (unmatched > 0) { |
|
1789 |
while (_unmatched > 0) { |
|
1748 | 1790 |
Value d1 = !_delta1->empty() ? |
1749 | 1791 |
_delta1->prio() : std::numeric_limits<Value>::max(); |
1750 | 1792 |
|
1751 | 1793 |
Value d2 = !_delta2->empty() ? |
1752 | 1794 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
1753 | 1795 |
|
1754 | 1796 |
Value d3 = !_delta3->empty() ? |
1755 | 1797 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
1756 | 1798 |
|
1757 | 1799 |
Value d4 = !_delta4->empty() ? |
1758 | 1800 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
1759 | 1801 |
|
1760 |
_delta_sum = |
|
1802 |
_delta_sum = d3; OpType ot = D3; |
|
1803 |
if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; } |
|
1761 | 1804 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
1762 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } |
|
1763 | 1805 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
1764 | 1806 |
|
1765 |
|
|
1766 | 1807 |
switch (ot) { |
1767 | 1808 |
case D1: |
1768 | 1809 |
{ |
1769 | 1810 |
Node n = _delta1->top(); |
1770 | 1811 |
unmatchNode(n); |
1771 |
-- |
|
1812 |
--_unmatched; |
|
1772 | 1813 |
} |
1773 | 1814 |
break; |
1774 | 1815 |
case D2: |
1775 | 1816 |
{ |
1776 | 1817 |
int blossom = _delta2->top(); |
1777 | 1818 |
Node n = _blossom_set->classTop(blossom); |
1778 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
|
1779 |
extendOnArc(e); |
|
1819 |
Arc a = (*_node_data)[(*_node_index)[n]].heap.top(); |
|
1820 |
if ((*_blossom_data)[blossom].next == INVALID) { |
|
1821 |
augmentOnArc(a); |
|
1822 |
--_unmatched; |
|
1823 |
} else { |
|
1824 |
extendOnArc(a); |
|
1825 |
} |
|
1780 | 1826 |
} |
1781 | 1827 |
break; |
1782 | 1828 |
case D3: |
1783 | 1829 |
{ |
1784 | 1830 |
Edge e = _delta3->top(); |
1785 | 1831 |
|
1786 | 1832 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
1787 | 1833 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
1788 | 1834 |
|
1789 | 1835 |
if (left_blossom == right_blossom) { |
1790 | 1836 |
_delta3->pop(); |
1791 | 1837 |
} else { |
1792 |
int left_tree; |
|
1793 |
if ((*_blossom_data)[left_blossom].status == EVEN) { |
|
1794 |
left_tree = _tree_set->find(left_blossom); |
|
1795 |
} else { |
|
1796 |
left_tree = -1; |
|
1797 |
++unmatched; |
|
1798 |
} |
|
1799 |
int right_tree; |
|
1800 |
if ((*_blossom_data)[right_blossom].status == EVEN) { |
|
1801 |
right_tree = _tree_set->find(right_blossom); |
|
1802 |
} else { |
|
1803 |
right_tree = -1; |
|
1804 |
++unmatched; |
|
1805 |
} |
|
1838 |
int left_tree = _tree_set->find(left_blossom); |
|
1839 |
int right_tree = _tree_set->find(right_blossom); |
|
1806 | 1840 |
|
1807 | 1841 |
if (left_tree == right_tree) { |
1808 | 1842 |
shrinkOnEdge(e, left_tree); |
1809 | 1843 |
} else { |
1810 | 1844 |
augmentOnEdge(e); |
1811 |
|
|
1845 |
_unmatched -= 2; |
|
1812 | 1846 |
} |
1813 | 1847 |
} |
1814 | 1848 |
} break; |
1815 | 1849 |
case D4: |
1816 | 1850 |
splitBlossom(_delta4->top()); |
1817 | 1851 |
break; |
1818 | 1852 |
} |
1819 | 1853 |
} |
1820 | 1854 |
extractMatching(); |
1821 | 1855 |
} |
1822 | 1856 |
|
1823 | 1857 |
/// \brief Run the algorithm. |
1824 | 1858 |
/// |
1825 | 1859 |
/// This method runs the \c %MaxWeightedMatching algorithm. |
1826 | 1860 |
/// |
1827 | 1861 |
/// \note mwm.run() is just a shortcut of the following code. |
1828 | 1862 |
/// \code |
1829 |
/// mwm. |
|
1863 |
/// mwm.fractionalInit(); |
|
1830 | 1864 |
/// mwm.start(); |
1831 | 1865 |
/// \endcode |
1832 | 1866 |
void run() { |
1833 |
|
|
1867 |
fractionalInit(); |
|
1834 | 1868 |
start(); |
1835 | 1869 |
} |
1836 | 1870 |
|
1837 | 1871 |
/// @} |
1838 | 1872 |
|
1839 | 1873 |
/// \name Primal Solution |
1840 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
1874 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
1841 | 1875 |
/// matching.\n |
1842 | 1876 |
/// Either \ref run() or \ref start() function should be called before |
1843 | 1877 |
/// using them. |
1844 | 1878 |
|
1845 | 1879 |
/// @{ |
1846 | 1880 |
|
1847 | 1881 |
/// \brief Return the weight of the matching. |
1848 | 1882 |
/// |
1849 | 1883 |
/// This function returns the weight of the found matching. |
1850 | 1884 |
/// |
1851 | 1885 |
/// \pre Either run() or start() must be called before using this function. |
1852 | 1886 |
Value matchingWeight() const { |
1853 | 1887 |
Value sum = 0; |
1854 | 1888 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1855 | 1889 |
if ((*_matching)[n] != INVALID) { |
1856 | 1890 |
sum += _weight[(*_matching)[n]]; |
1857 | 1891 |
} |
1858 | 1892 |
} |
1859 |
return sum / |
|
1893 |
return sum / 2; |
|
1860 | 1894 |
} |
1861 | 1895 |
|
1862 | 1896 |
/// \brief Return the size (cardinality) of the matching. |
1863 | 1897 |
/// |
1864 | 1898 |
/// This function returns the size (cardinality) of the found matching. |
1865 | 1899 |
/// |
1866 | 1900 |
/// \pre Either run() or start() must be called before using this function. |
1867 | 1901 |
int matchingSize() const { |
1868 | 1902 |
int num = 0; |
1869 | 1903 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1870 | 1904 |
if ((*_matching)[n] != INVALID) { |
1871 | 1905 |
++num; |
1872 | 1906 |
} |
1873 | 1907 |
} |
1874 | 1908 |
return num /= 2; |
1875 | 1909 |
} |
1876 | 1910 |
|
1877 | 1911 |
/// \brief Return \c true if the given edge is in the matching. |
1878 | 1912 |
/// |
1879 |
/// This function returns \c true if the given edge is in the found |
|
1913 |
/// This function returns \c true if the given edge is in the found |
|
1880 | 1914 |
/// matching. |
1881 | 1915 |
/// |
1882 | 1916 |
/// \pre Either run() or start() must be called before using this function. |
1883 | 1917 |
bool matching(const Edge& edge) const { |
1884 | 1918 |
return edge == (*_matching)[_graph.u(edge)]; |
1885 | 1919 |
} |
1886 | 1920 |
|
1887 | 1921 |
/// \brief Return the matching arc (or edge) incident to the given node. |
1888 | 1922 |
/// |
1889 | 1923 |
/// This function returns the matching arc (or edge) incident to the |
1890 |
/// given node in the found matching or \c INVALID if the node is |
|
1924 |
/// given node in the found matching or \c INVALID if the node is |
|
1891 | 1925 |
/// not covered by the matching. |
1892 | 1926 |
/// |
1893 | 1927 |
/// \pre Either run() or start() must be called before using this function. |
1894 | 1928 |
Arc matching(const Node& node) const { |
1895 | 1929 |
return (*_matching)[node]; |
1896 | 1930 |
} |
1897 | 1931 |
|
1898 | 1932 |
/// \brief Return a const reference to the matching map. |
1899 | 1933 |
/// |
1900 | 1934 |
/// This function returns a const reference to a node map that stores |
1901 | 1935 |
/// the matching arc (or edge) incident to each node. |
1902 | 1936 |
const MatchingMap& matchingMap() const { |
1903 | 1937 |
return *_matching; |
1904 | 1938 |
} |
1905 | 1939 |
|
1906 | 1940 |
/// \brief Return the mate of the given node. |
1907 | 1941 |
/// |
1908 |
/// This function returns the mate of the given node in the found |
|
1942 |
/// This function returns the mate of the given node in the found |
|
1909 | 1943 |
/// matching or \c INVALID if the node is not covered by the matching. |
1910 | 1944 |
/// |
1911 | 1945 |
/// \pre Either run() or start() must be called before using this function. |
1912 | 1946 |
Node mate(const Node& node) const { |
1913 | 1947 |
return (*_matching)[node] != INVALID ? |
1914 | 1948 |
_graph.target((*_matching)[node]) : INVALID; |
1915 | 1949 |
} |
1916 | 1950 |
|
1917 | 1951 |
/// @} |
1918 | 1952 |
|
1919 | 1953 |
/// \name Dual Solution |
1920 | 1954 |
/// Functions to get the dual solution.\n |
1921 | 1955 |
/// Either \ref run() or \ref start() function should be called before |
1922 | 1956 |
/// using them. |
1923 | 1957 |
|
1924 | 1958 |
/// @{ |
1925 | 1959 |
|
1926 | 1960 |
/// \brief Return the value of the dual solution. |
1927 | 1961 |
/// |
1928 |
/// This function returns the value of the dual solution. |
|
1929 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
1962 |
/// This function returns the value of the dual solution. |
|
1963 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
1930 | 1964 |
/// "dual scale". |
1931 | 1965 |
/// |
1932 | 1966 |
/// \pre Either run() or start() must be called before using this function. |
1933 | 1967 |
Value dualValue() const { |
1934 | 1968 |
Value sum = 0; |
1935 | 1969 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1936 | 1970 |
sum += nodeValue(n); |
1937 | 1971 |
} |
1938 | 1972 |
for (int i = 0; i < blossomNum(); ++i) { |
1939 | 1973 |
sum += blossomValue(i) * (blossomSize(i) / 2); |
1940 | 1974 |
} |
1941 | 1975 |
return sum; |
1942 | 1976 |
} |
1943 | 1977 |
|
1944 | 1978 |
/// \brief Return the dual value (potential) of the given node. |
1945 | 1979 |
/// |
1946 | 1980 |
/// This function returns the dual value (potential) of the given node. |
1947 | 1981 |
/// |
1948 | 1982 |
/// \pre Either run() or start() must be called before using this function. |
1949 | 1983 |
Value nodeValue(const Node& n) const { |
1950 | 1984 |
return (*_node_potential)[n]; |
1951 | 1985 |
} |
1952 | 1986 |
|
1953 | 1987 |
/// \brief Return the number of the blossoms in the basis. |
1954 | 1988 |
/// |
1955 | 1989 |
/// This function returns the number of the blossoms in the basis. |
1956 | 1990 |
/// |
1957 | 1991 |
/// \pre Either run() or start() must be called before using this function. |
1958 | 1992 |
/// \see BlossomIt |
1959 | 1993 |
int blossomNum() const { |
1960 | 1994 |
return _blossom_potential.size(); |
1961 | 1995 |
} |
1962 | 1996 |
|
1963 | 1997 |
/// \brief Return the number of the nodes in the given blossom. |
1964 | 1998 |
/// |
1965 | 1999 |
/// This function returns the number of the nodes in the given blossom. |
1966 | 2000 |
/// |
1967 | 2001 |
/// \pre Either run() or start() must be called before using this function. |
1968 | 2002 |
/// \see BlossomIt |
1969 | 2003 |
int blossomSize(int k) const { |
1970 | 2004 |
return _blossom_potential[k].end - _blossom_potential[k].begin; |
1971 | 2005 |
} |
1972 | 2006 |
|
1973 | 2007 |
/// \brief Return the dual value (ptential) of the given blossom. |
1974 | 2008 |
/// |
1975 | 2009 |
/// This function returns the dual value (ptential) of the given blossom. |
1976 | 2010 |
/// |
1977 | 2011 |
/// \pre Either run() or start() must be called before using this function. |
1978 | 2012 |
Value blossomValue(int k) const { |
1979 | 2013 |
return _blossom_potential[k].value; |
1980 | 2014 |
} |
1981 | 2015 |
|
1982 | 2016 |
/// \brief Iterator for obtaining the nodes of a blossom. |
1983 | 2017 |
/// |
1984 |
/// This class provides an iterator for obtaining the nodes of the |
|
2018 |
/// This class provides an iterator for obtaining the nodes of the |
|
1985 | 2019 |
/// given blossom. It lists a subset of the nodes. |
1986 |
/// Before using this iterator, you must allocate a |
|
2020 |
/// Before using this iterator, you must allocate a |
|
1987 | 2021 |
/// MaxWeightedMatching class and execute it. |
1988 | 2022 |
class BlossomIt { |
1989 | 2023 |
public: |
1990 | 2024 |
|
1991 | 2025 |
/// \brief Constructor. |
1992 | 2026 |
/// |
1993 | 2027 |
/// Constructor to get the nodes of the given variable. |
1994 | 2028 |
/// |
1995 |
/// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or |
|
1996 |
/// \ref MaxWeightedMatching::start() "algorithm.start()" must be |
|
2029 |
/// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or |
|
2030 |
/// \ref MaxWeightedMatching::start() "algorithm.start()" must be |
|
1997 | 2031 |
/// called before initializing this iterator. |
1998 | 2032 |
BlossomIt(const MaxWeightedMatching& algorithm, int variable) |
1999 | 2033 |
: _algorithm(&algorithm) |
2000 | 2034 |
{ |
2001 | 2035 |
_index = _algorithm->_blossom_potential[variable].begin; |
2002 | 2036 |
_last = _algorithm->_blossom_potential[variable].end; |
2003 | 2037 |
} |
2004 | 2038 |
|
2005 | 2039 |
/// \brief Conversion to \c Node. |
2006 | 2040 |
/// |
2007 | 2041 |
/// Conversion to \c Node. |
2008 | 2042 |
operator Node() const { |
2009 | 2043 |
return _algorithm->_blossom_node_list[_index]; |
2010 | 2044 |
} |
2011 | 2045 |
|
2012 | 2046 |
/// \brief Increment operator. |
2013 | 2047 |
/// |
2014 | 2048 |
/// Increment operator. |
2015 | 2049 |
BlossomIt& operator++() { |
2016 | 2050 |
++_index; |
2017 | 2051 |
return *this; |
2018 | 2052 |
} |
2019 | 2053 |
|
2020 | 2054 |
/// \brief Validity checking |
2021 | 2055 |
/// |
2022 | 2056 |
/// Checks whether the iterator is invalid. |
2023 | 2057 |
bool operator==(Invalid) const { return _index == _last; } |
2024 | 2058 |
|
2025 | 2059 |
/// \brief Validity checking |
2026 | 2060 |
/// |
2027 | 2061 |
/// Checks whether the iterator is valid. |
2028 | 2062 |
bool operator!=(Invalid) const { return _index != _last; } |
2029 | 2063 |
|
2030 | 2064 |
private: |
2031 | 2065 |
const MaxWeightedMatching* _algorithm; |
2032 | 2066 |
int _last; |
2033 | 2067 |
int _index; |
2034 | 2068 |
}; |
2035 | 2069 |
|
2036 | 2070 |
/// @} |
2037 | 2071 |
|
2038 | 2072 |
}; |
2039 | 2073 |
|
2040 | 2074 |
/// \ingroup matching |
2041 | 2075 |
/// |
2042 | 2076 |
/// \brief Weighted perfect matching in general graphs |
2043 | 2077 |
/// |
2044 | 2078 |
/// This class provides an efficient implementation of Edmond's |
2045 | 2079 |
/// maximum weighted perfect matching algorithm. The implementation |
2046 | 2080 |
/// is based on extensive use of priority queues and provides |
2047 | 2081 |
/// \f$O(nm\log n)\f$ time complexity. |
2048 | 2082 |
/// |
2049 |
/// The maximum weighted perfect matching problem is to find a subset of |
|
2050 |
/// the edges in an undirected graph with maximum overall weight for which |
|
2083 |
/// The maximum weighted perfect matching problem is to find a subset of |
|
2084 |
/// the edges in an undirected graph with maximum overall weight for which |
|
2051 | 2085 |
/// each node has exactly one incident edge. |
2052 | 2086 |
/// It can be formulated with the following linear program. |
2053 | 2087 |
/// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f] |
2054 | 2088 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} |
2055 | 2089 |
\quad \forall B\in\mathcal{O}\f] */ |
2056 | 2090 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
2057 | 2091 |
/// \f[\max \sum_{e\in E}x_ew_e\f] |
2058 | 2092 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
2059 | 2093 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
2060 | 2094 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality |
2061 | 2095 |
/// subsets of the nodes. |
2062 | 2096 |
/// |
2063 | 2097 |
/// The algorithm calculates an optimal matching and a proof of the |
2064 | 2098 |
/// optimality. The solution of the dual problem can be used to check |
2065 | 2099 |
/// the result of the algorithm. The dual linear problem is the |
2066 | 2100 |
/// following. |
2067 | 2101 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge |
2068 | 2102 |
w_{uv} \quad \forall uv\in E\f] */ |
2069 | 2103 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
2070 | 2104 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
2071 | 2105 |
\frac{\vert B \vert - 1}{2}z_B\f] */ |
2072 | 2106 |
/// |
2073 |
/// The algorithm can be executed with the run() function. |
|
2107 |
/// The algorithm can be executed with the run() function. |
|
2074 | 2108 |
/// After it the matching (the primal solution) and the dual solution |
2075 |
/// can be obtained using the query functions and the |
|
2076 |
/// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, |
|
2077 |
/// |
|
2109 |
/// can be obtained using the query functions and the |
|
2110 |
/// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, |
|
2111 |
/// which is able to iterate on the nodes of a blossom. |
|
2078 | 2112 |
/// If the value type is integer, then the dual solution is multiplied |
2079 | 2113 |
/// by \ref MaxWeightedMatching::dualScale "4". |
2080 | 2114 |
/// |
2081 | 2115 |
/// \tparam GR The undirected graph type the algorithm runs on. |
2082 |
/// \tparam WM The type edge weight map. The default type is |
|
2116 |
/// \tparam WM The type edge weight map. The default type is |
|
2083 | 2117 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
2084 | 2118 |
#ifdef DOXYGEN |
2085 | 2119 |
template <typename GR, typename WM> |
2086 | 2120 |
#else |
2087 | 2121 |
template <typename GR, |
2088 | 2122 |
typename WM = typename GR::template EdgeMap<int> > |
2089 | 2123 |
#endif |
2090 | 2124 |
class MaxWeightedPerfectMatching { |
2091 | 2125 |
public: |
2092 | 2126 |
|
2093 | 2127 |
/// The graph type of the algorithm |
2094 | 2128 |
typedef GR Graph; |
2095 | 2129 |
/// The type of the edge weight map |
2096 | 2130 |
typedef WM WeightMap; |
2097 | 2131 |
/// The value type of the edge weights |
2098 | 2132 |
typedef typename WeightMap::Value Value; |
2099 | 2133 |
|
2100 | 2134 |
/// \brief Scaling factor for dual solution |
2101 | 2135 |
/// |
2102 | 2136 |
/// Scaling factor for dual solution, it is equal to 4 or 1 |
2103 | 2137 |
/// according to the value type. |
2104 | 2138 |
static const int dualScale = |
2105 | 2139 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
2106 | 2140 |
|
2107 | 2141 |
/// The type of the matching map |
2108 | 2142 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
2109 | 2143 |
MatchingMap; |
2110 | 2144 |
|
2111 | 2145 |
private: |
2112 | 2146 |
|
2113 | 2147 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
2114 | 2148 |
|
2115 | 2149 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
2116 | 2150 |
typedef std::vector<Node> BlossomNodeList; |
2117 | 2151 |
|
2118 | 2152 |
struct BlossomVariable { |
2119 | 2153 |
int begin, end; |
2120 | 2154 |
Value value; |
2121 | 2155 |
|
2122 | 2156 |
BlossomVariable(int _begin, int _end, Value _value) |
2123 | 2157 |
: begin(_begin), end(_end), value(_value) {} |
2124 | 2158 |
|
2125 | 2159 |
}; |
2126 | 2160 |
|
2127 | 2161 |
typedef std::vector<BlossomVariable> BlossomPotential; |
2128 | 2162 |
|
2129 | 2163 |
const Graph& _graph; |
2130 | 2164 |
const WeightMap& _weight; |
2131 | 2165 |
|
2132 | 2166 |
MatchingMap* _matching; |
2133 | 2167 |
|
2134 | 2168 |
NodePotential* _node_potential; |
2135 | 2169 |
|
2136 | 2170 |
BlossomPotential _blossom_potential; |
2137 | 2171 |
BlossomNodeList _blossom_node_list; |
2138 | 2172 |
|
2139 | 2173 |
int _node_num; |
2140 | 2174 |
int _blossom_num; |
2141 | 2175 |
|
2142 | 2176 |
typedef RangeMap<int> IntIntMap; |
2143 | 2177 |
|
2144 | 2178 |
enum Status { |
2145 | 2179 |
EVEN = -1, MATCHED = 0, ODD = 1 |
2146 | 2180 |
}; |
2147 | 2181 |
|
2148 | 2182 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
2149 | 2183 |
struct BlossomData { |
2150 | 2184 |
int tree; |
2151 | 2185 |
Status status; |
2152 | 2186 |
Arc pred, next; |
2153 | 2187 |
Value pot, offset; |
2154 | 2188 |
}; |
2155 | 2189 |
|
2156 | 2190 |
IntNodeMap *_blossom_index; |
2157 | 2191 |
BlossomSet *_blossom_set; |
2158 | 2192 |
RangeMap<BlossomData>* _blossom_data; |
2159 | 2193 |
|
2160 | 2194 |
IntNodeMap *_node_index; |
2161 | 2195 |
IntArcMap *_node_heap_index; |
2162 | 2196 |
|
2163 | 2197 |
struct NodeData { |
2164 | 2198 |
|
2165 | 2199 |
NodeData(IntArcMap& node_heap_index) |
2166 | 2200 |
: heap(node_heap_index) {} |
2167 | 2201 |
|
2168 | 2202 |
int blossom; |
2169 | 2203 |
Value pot; |
2170 | 2204 |
BinHeap<Value, IntArcMap> heap; |
2171 | 2205 |
std::map<int, Arc> heap_index; |
2172 | 2206 |
|
2173 | 2207 |
int tree; |
2174 | 2208 |
}; |
2175 | 2209 |
|
2176 | 2210 |
RangeMap<NodeData>* _node_data; |
2177 | 2211 |
|
2178 | 2212 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
2179 | 2213 |
|
2180 | 2214 |
IntIntMap *_tree_set_index; |
2181 | 2215 |
TreeSet *_tree_set; |
2182 | 2216 |
|
2183 | 2217 |
IntIntMap *_delta2_index; |
2184 | 2218 |
BinHeap<Value, IntIntMap> *_delta2; |
2185 | 2219 |
|
2186 | 2220 |
IntEdgeMap *_delta3_index; |
2187 | 2221 |
BinHeap<Value, IntEdgeMap> *_delta3; |
2188 | 2222 |
|
2189 | 2223 |
IntIntMap *_delta4_index; |
2190 | 2224 |
BinHeap<Value, IntIntMap> *_delta4; |
2191 | 2225 |
|
2192 | 2226 |
Value _delta_sum; |
2227 |
int _unmatched; |
|
2228 |
|
|
2229 |
typedef MaxWeightedPerfectFractionalMatching<Graph, WeightMap> |
|
2230 |
FractionalMatching; |
|
2231 |
FractionalMatching *_fractional; |
|
2193 | 2232 |
|
2194 | 2233 |
void createStructures() { |
2195 | 2234 |
_node_num = countNodes(_graph); |
2196 | 2235 |
_blossom_num = _node_num * 3 / 2; |
2197 | 2236 |
|
2198 | 2237 |
if (!_matching) { |
2199 | 2238 |
_matching = new MatchingMap(_graph); |
2200 | 2239 |
} |
2201 | 2240 |
if (!_node_potential) { |
2202 | 2241 |
_node_potential = new NodePotential(_graph); |
2203 | 2242 |
} |
2204 | 2243 |
if (!_blossom_set) { |
2205 | 2244 |
_blossom_index = new IntNodeMap(_graph); |
2206 | 2245 |
_blossom_set = new BlossomSet(*_blossom_index); |
2207 | 2246 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
2208 | 2247 |
} |
2209 | 2248 |
|
2210 | 2249 |
if (!_node_index) { |
2211 | 2250 |
_node_index = new IntNodeMap(_graph); |
2212 | 2251 |
_node_heap_index = new IntArcMap(_graph); |
2213 | 2252 |
_node_data = new RangeMap<NodeData>(_node_num, |
2214 | 2253 |
NodeData(*_node_heap_index)); |
2215 | 2254 |
} |
2216 | 2255 |
|
2217 | 2256 |
if (!_tree_set) { |
2218 | 2257 |
_tree_set_index = new IntIntMap(_blossom_num); |
2219 | 2258 |
_tree_set = new TreeSet(*_tree_set_index); |
2220 | 2259 |
} |
2221 | 2260 |
if (!_delta2) { |
2222 | 2261 |
_delta2_index = new IntIntMap(_blossom_num); |
2223 | 2262 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
2224 | 2263 |
} |
2225 | 2264 |
if (!_delta3) { |
2226 | 2265 |
_delta3_index = new IntEdgeMap(_graph); |
2227 | 2266 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
2228 | 2267 |
} |
2229 | 2268 |
if (!_delta4) { |
2230 | 2269 |
_delta4_index = new IntIntMap(_blossom_num); |
2231 | 2270 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
2232 | 2271 |
} |
2233 | 2272 |
} |
2234 | 2273 |
|
2235 | 2274 |
void destroyStructures() { |
2236 |
_node_num = countNodes(_graph); |
|
2237 |
_blossom_num = _node_num * 3 / 2; |
|
2238 |
|
|
2239 | 2275 |
if (_matching) { |
2240 | 2276 |
delete _matching; |
2241 | 2277 |
} |
2242 | 2278 |
if (_node_potential) { |
2243 | 2279 |
delete _node_potential; |
2244 | 2280 |
} |
2245 | 2281 |
if (_blossom_set) { |
2246 | 2282 |
delete _blossom_index; |
2247 | 2283 |
delete _blossom_set; |
2248 | 2284 |
delete _blossom_data; |
2249 | 2285 |
} |
2250 | 2286 |
|
2251 | 2287 |
if (_node_index) { |
2252 | 2288 |
delete _node_index; |
2253 | 2289 |
delete _node_heap_index; |
2254 | 2290 |
delete _node_data; |
2255 | 2291 |
} |
2256 | 2292 |
|
2257 | 2293 |
if (_tree_set) { |
2258 | 2294 |
delete _tree_set_index; |
2259 | 2295 |
delete _tree_set; |
2260 | 2296 |
} |
2261 | 2297 |
if (_delta2) { |
2262 | 2298 |
delete _delta2_index; |
2263 | 2299 |
delete _delta2; |
2264 | 2300 |
} |
2265 | 2301 |
if (_delta3) { |
2266 | 2302 |
delete _delta3_index; |
2267 | 2303 |
delete _delta3; |
2268 | 2304 |
} |
2269 | 2305 |
if (_delta4) { |
2270 | 2306 |
delete _delta4_index; |
2271 | 2307 |
delete _delta4; |
2272 | 2308 |
} |
2273 | 2309 |
} |
2274 | 2310 |
|
2275 | 2311 |
void matchedToEven(int blossom, int tree) { |
2276 | 2312 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
2277 | 2313 |
_delta2->erase(blossom); |
2278 | 2314 |
} |
2279 | 2315 |
|
2280 | 2316 |
if (!_blossom_set->trivial(blossom)) { |
2281 | 2317 |
(*_blossom_data)[blossom].pot -= |
2282 | 2318 |
2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
2283 | 2319 |
} |
2284 | 2320 |
|
2285 | 2321 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
2286 | 2322 |
n != INVALID; ++n) { |
2287 | 2323 |
|
2288 | 2324 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
2289 | 2325 |
int ni = (*_node_index)[n]; |
2290 | 2326 |
|
2291 | 2327 |
(*_node_data)[ni].heap.clear(); |
2292 | 2328 |
(*_node_data)[ni].heap_index.clear(); |
2293 | 2329 |
|
2294 | 2330 |
(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
2295 | 2331 |
|
2296 | 2332 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
2297 | 2333 |
Node v = _graph.source(e); |
2298 | 2334 |
int vb = _blossom_set->find(v); |
2299 | 2335 |
int vi = (*_node_index)[v]; |
2300 | 2336 |
|
2301 | 2337 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
2302 | 2338 |
dualScale * _weight[e]; |
2303 | 2339 |
|
2304 | 2340 |
if ((*_blossom_data)[vb].status == EVEN) { |
2305 | 2341 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
2306 | 2342 |
_delta3->push(e, rw / 2); |
2307 | 2343 |
} |
2308 | 2344 |
} else { |
2309 | 2345 |
typename std::map<int, Arc>::iterator it = |
2310 | 2346 |
(*_node_data)[vi].heap_index.find(tree); |
2311 | 2347 |
|
2312 | 2348 |
if (it != (*_node_data)[vi].heap_index.end()) { |
2313 | 2349 |
if ((*_node_data)[vi].heap[it->second] > rw) { |
2314 | 2350 |
(*_node_data)[vi].heap.replace(it->second, e); |
2315 | 2351 |
(*_node_data)[vi].heap.decrease(e, rw); |
2316 | 2352 |
it->second = e; |
2317 | 2353 |
} |
2318 | 2354 |
} else { |
2319 | 2355 |
(*_node_data)[vi].heap.push(e, rw); |
2320 | 2356 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
2321 | 2357 |
} |
2322 | 2358 |
|
2323 | 2359 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
2324 | 2360 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
2325 | 2361 |
|
2326 | 2362 |
if ((*_blossom_data)[vb].status == MATCHED) { |
2327 | 2363 |
if (_delta2->state(vb) != _delta2->IN_HEAP) { |
2328 | 2364 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
2329 | 2365 |
(*_blossom_data)[vb].offset); |
2330 | 2366 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
2331 | 2367 |
(*_blossom_data)[vb].offset){ |
2332 | 2368 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
2333 | 2369 |
(*_blossom_data)[vb].offset); |
2334 | 2370 |
} |
2335 | 2371 |
} |
2336 | 2372 |
} |
2337 | 2373 |
} |
2338 | 2374 |
} |
2339 | 2375 |
} |
2340 | 2376 |
(*_blossom_data)[blossom].offset = 0; |
2341 | 2377 |
} |
2342 | 2378 |
|
2343 | 2379 |
void matchedToOdd(int blossom) { |
2344 | 2380 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
2345 | 2381 |
_delta2->erase(blossom); |
2346 | 2382 |
} |
2347 | 2383 |
(*_blossom_data)[blossom].offset += _delta_sum; |
2348 | 2384 |
if (!_blossom_set->trivial(blossom)) { |
2349 | 2385 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
2350 | 2386 |
(*_blossom_data)[blossom].offset); |
2351 | 2387 |
} |
2352 | 2388 |
} |
2353 | 2389 |
|
2354 | 2390 |
void evenToMatched(int blossom, int tree) { |
2355 | 2391 |
if (!_blossom_set->trivial(blossom)) { |
2356 | 2392 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum; |
2357 | 2393 |
} |
2358 | 2394 |
|
2359 | 2395 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
2360 | 2396 |
n != INVALID; ++n) { |
2361 | 2397 |
int ni = (*_node_index)[n]; |
2362 | 2398 |
(*_node_data)[ni].pot -= _delta_sum; |
2363 | 2399 |
|
2364 | 2400 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
2365 | 2401 |
Node v = _graph.source(e); |
2366 | 2402 |
int vb = _blossom_set->find(v); |
2367 | 2403 |
int vi = (*_node_index)[v]; |
2368 | 2404 |
|
2369 | 2405 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
2370 | 2406 |
dualScale * _weight[e]; |
2371 | 2407 |
|
2372 | 2408 |
if (vb == blossom) { |
2373 | 2409 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
2374 | 2410 |
_delta3->erase(e); |
2375 | 2411 |
} |
2376 | 2412 |
} else if ((*_blossom_data)[vb].status == EVEN) { |
2377 | 2413 |
|
2378 | 2414 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
2379 | 2415 |
_delta3->erase(e); |
2380 | 2416 |
} |
2381 | 2417 |
|
2382 | 2418 |
int vt = _tree_set->find(vb); |
2383 | 2419 |
|
2384 | 2420 |
if (vt != tree) { |
2385 | 2421 |
|
2386 | 2422 |
Arc r = _graph.oppositeArc(e); |
2387 | 2423 |
|
2388 | 2424 |
typename std::map<int, Arc>::iterator it = |
2389 | 2425 |
(*_node_data)[ni].heap_index.find(vt); |
2390 | 2426 |
|
2391 | 2427 |
if (it != (*_node_data)[ni].heap_index.end()) { |
2392 | 2428 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
2393 | 2429 |
(*_node_data)[ni].heap.replace(it->second, r); |
2394 | 2430 |
(*_node_data)[ni].heap.decrease(r, rw); |
2395 | 2431 |
it->second = r; |
2396 | 2432 |
} |
2397 | 2433 |
} else { |
2398 | 2434 |
(*_node_data)[ni].heap.push(r, rw); |
2399 | 2435 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
2400 | 2436 |
} |
2401 | 2437 |
|
2402 | 2438 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
2403 | 2439 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
2404 | 2440 |
|
2405 | 2441 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
2406 | 2442 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
2407 | 2443 |
(*_blossom_data)[blossom].offset); |
2408 | 2444 |
} else if ((*_delta2)[blossom] > |
2409 | 2445 |
_blossom_set->classPrio(blossom) - |
2410 | 2446 |
(*_blossom_data)[blossom].offset){ |
2411 | 2447 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
2412 | 2448 |
(*_blossom_data)[blossom].offset); |
2413 | 2449 |
} |
2414 | 2450 |
} |
2415 | 2451 |
} |
2416 | 2452 |
} else { |
2417 | 2453 |
|
2418 | 2454 |
typename std::map<int, Arc>::iterator it = |
2419 | 2455 |
(*_node_data)[vi].heap_index.find(tree); |
2420 | 2456 |
|
2421 | 2457 |
if (it != (*_node_data)[vi].heap_index.end()) { |
2422 | 2458 |
(*_node_data)[vi].heap.erase(it->second); |
2423 | 2459 |
(*_node_data)[vi].heap_index.erase(it); |
2424 | 2460 |
if ((*_node_data)[vi].heap.empty()) { |
2425 | 2461 |
_blossom_set->increase(v, std::numeric_limits<Value>::max()); |
2426 | 2462 |
} else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { |
2427 | 2463 |
_blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
2428 | 2464 |
} |
2429 | 2465 |
|
2430 | 2466 |
if ((*_blossom_data)[vb].status == MATCHED) { |
... | ... |
@@ -2719,526 +2755,668 @@ |
2719 | 2755 |
|
2720 | 2756 |
_tree_set->insert(surface, tree); |
2721 | 2757 |
_tree_set->erase(nca); |
2722 | 2758 |
} |
2723 | 2759 |
|
2724 | 2760 |
void splitBlossom(int blossom) { |
2725 | 2761 |
Arc next = (*_blossom_data)[blossom].next; |
2726 | 2762 |
Arc pred = (*_blossom_data)[blossom].pred; |
2727 | 2763 |
|
2728 | 2764 |
int tree = _tree_set->find(blossom); |
2729 | 2765 |
|
2730 | 2766 |
(*_blossom_data)[blossom].status = MATCHED; |
2731 | 2767 |
oddToMatched(blossom); |
2732 | 2768 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
2733 | 2769 |
_delta2->erase(blossom); |
2734 | 2770 |
} |
2735 | 2771 |
|
2736 | 2772 |
std::vector<int> subblossoms; |
2737 | 2773 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
2738 | 2774 |
|
2739 | 2775 |
Value offset = (*_blossom_data)[blossom].offset; |
2740 | 2776 |
int b = _blossom_set->find(_graph.source(pred)); |
2741 | 2777 |
int d = _blossom_set->find(_graph.source(next)); |
2742 | 2778 |
|
2743 | 2779 |
int ib = -1, id = -1; |
2744 | 2780 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
2745 | 2781 |
if (subblossoms[i] == b) ib = i; |
2746 | 2782 |
if (subblossoms[i] == d) id = i; |
2747 | 2783 |
|
2748 | 2784 |
(*_blossom_data)[subblossoms[i]].offset = offset; |
2749 | 2785 |
if (!_blossom_set->trivial(subblossoms[i])) { |
2750 | 2786 |
(*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
2751 | 2787 |
} |
2752 | 2788 |
if (_blossom_set->classPrio(subblossoms[i]) != |
2753 | 2789 |
std::numeric_limits<Value>::max()) { |
2754 | 2790 |
_delta2->push(subblossoms[i], |
2755 | 2791 |
_blossom_set->classPrio(subblossoms[i]) - |
2756 | 2792 |
(*_blossom_data)[subblossoms[i]].offset); |
2757 | 2793 |
} |
2758 | 2794 |
} |
2759 | 2795 |
|
2760 | 2796 |
if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
2761 | 2797 |
for (int i = (id + 1) % subblossoms.size(); |
2762 | 2798 |
i != ib; i = (i + 2) % subblossoms.size()) { |
2763 | 2799 |
int sb = subblossoms[i]; |
2764 | 2800 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
2765 | 2801 |
(*_blossom_data)[sb].next = |
2766 | 2802 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
2767 | 2803 |
} |
2768 | 2804 |
|
2769 | 2805 |
for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
2770 | 2806 |
int sb = subblossoms[i]; |
2771 | 2807 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
2772 | 2808 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
2773 | 2809 |
|
2774 | 2810 |
(*_blossom_data)[sb].status = ODD; |
2775 | 2811 |
matchedToOdd(sb); |
2776 | 2812 |
_tree_set->insert(sb, tree); |
2777 | 2813 |
(*_blossom_data)[sb].pred = pred; |
2778 | 2814 |
(*_blossom_data)[sb].next = |
2779 | 2815 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
2780 | 2816 |
|
2781 | 2817 |
pred = (*_blossom_data)[ub].next; |
2782 | 2818 |
|
2783 | 2819 |
(*_blossom_data)[tb].status = EVEN; |
2784 | 2820 |
matchedToEven(tb, tree); |
2785 | 2821 |
_tree_set->insert(tb, tree); |
2786 | 2822 |
(*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
2787 | 2823 |
} |
2788 | 2824 |
|
2789 | 2825 |
(*_blossom_data)[subblossoms[id]].status = ODD; |
2790 | 2826 |
matchedToOdd(subblossoms[id]); |
2791 | 2827 |
_tree_set->insert(subblossoms[id], tree); |
2792 | 2828 |
(*_blossom_data)[subblossoms[id]].next = next; |
2793 | 2829 |
(*_blossom_data)[subblossoms[id]].pred = pred; |
2794 | 2830 |
|
2795 | 2831 |
} else { |
2796 | 2832 |
|
2797 | 2833 |
for (int i = (ib + 1) % subblossoms.size(); |
2798 | 2834 |
i != id; i = (i + 2) % subblossoms.size()) { |
2799 | 2835 |
int sb = subblossoms[i]; |
2800 | 2836 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
2801 | 2837 |
(*_blossom_data)[sb].next = |
2802 | 2838 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
2803 | 2839 |
} |
2804 | 2840 |
|
2805 | 2841 |
for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
2806 | 2842 |
int sb = subblossoms[i]; |
2807 | 2843 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
2808 | 2844 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
2809 | 2845 |
|
2810 | 2846 |
(*_blossom_data)[sb].status = ODD; |
2811 | 2847 |
matchedToOdd(sb); |
2812 | 2848 |
_tree_set->insert(sb, tree); |
2813 | 2849 |
(*_blossom_data)[sb].next = next; |
2814 | 2850 |
(*_blossom_data)[sb].pred = |
2815 | 2851 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
2816 | 2852 |
|
2817 | 2853 |
(*_blossom_data)[tb].status = EVEN; |
2818 | 2854 |
matchedToEven(tb, tree); |
2819 | 2855 |
_tree_set->insert(tb, tree); |
2820 | 2856 |
(*_blossom_data)[tb].pred = |
2821 | 2857 |
(*_blossom_data)[tb].next = |
2822 | 2858 |
_graph.oppositeArc((*_blossom_data)[ub].next); |
2823 | 2859 |
next = (*_blossom_data)[ub].next; |
2824 | 2860 |
} |
2825 | 2861 |
|
2826 | 2862 |
(*_blossom_data)[subblossoms[ib]].status = ODD; |
2827 | 2863 |
matchedToOdd(subblossoms[ib]); |
2828 | 2864 |
_tree_set->insert(subblossoms[ib], tree); |
2829 | 2865 |
(*_blossom_data)[subblossoms[ib]].next = next; |
2830 | 2866 |
(*_blossom_data)[subblossoms[ib]].pred = pred; |
2831 | 2867 |
} |
2832 | 2868 |
_tree_set->erase(blossom); |
2833 | 2869 |
} |
2834 | 2870 |
|
2835 | 2871 |
void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
2836 | 2872 |
if (_blossom_set->trivial(blossom)) { |
2837 | 2873 |
int bi = (*_node_index)[base]; |
2838 | 2874 |
Value pot = (*_node_data)[bi].pot; |
2839 | 2875 |
|
2840 | 2876 |
(*_matching)[base] = matching; |
2841 | 2877 |
_blossom_node_list.push_back(base); |
2842 | 2878 |
(*_node_potential)[base] = pot; |
2843 | 2879 |
} else { |
2844 | 2880 |
|
2845 | 2881 |
Value pot = (*_blossom_data)[blossom].pot; |
2846 | 2882 |
int bn = _blossom_node_list.size(); |
2847 | 2883 |
|
2848 | 2884 |
std::vector<int> subblossoms; |
2849 | 2885 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
2850 | 2886 |
int b = _blossom_set->find(base); |
2851 | 2887 |
int ib = -1; |
2852 | 2888 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
2853 | 2889 |
if (subblossoms[i] == b) { ib = i; break; } |
2854 | 2890 |
} |
2855 | 2891 |
|
2856 | 2892 |
for (int i = 1; i < int(subblossoms.size()); i += 2) { |
2857 | 2893 |
int sb = subblossoms[(ib + i) % subblossoms.size()]; |
2858 | 2894 |
int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
2859 | 2895 |
|
2860 | 2896 |
Arc m = (*_blossom_data)[tb].next; |
2861 | 2897 |
extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
2862 | 2898 |
extractBlossom(tb, _graph.source(m), m); |
2863 | 2899 |
} |
2864 | 2900 |
extractBlossom(subblossoms[ib], base, matching); |
2865 | 2901 |
|
2866 | 2902 |
int en = _blossom_node_list.size(); |
2867 | 2903 |
|
2868 | 2904 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
2869 | 2905 |
} |
2870 | 2906 |
} |
2871 | 2907 |
|
2872 | 2908 |
void extractMatching() { |
2873 | 2909 |
std::vector<int> blossoms; |
2874 | 2910 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
2875 | 2911 |
blossoms.push_back(c); |
2876 | 2912 |
} |
2877 | 2913 |
|
2878 | 2914 |
for (int i = 0; i < int(blossoms.size()); ++i) { |
2879 | 2915 |
|
2880 | 2916 |
Value offset = (*_blossom_data)[blossoms[i]].offset; |
2881 | 2917 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset; |
2882 | 2918 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
2883 | 2919 |
n != INVALID; ++n) { |
2884 | 2920 |
(*_node_data)[(*_node_index)[n]].pot -= offset; |
2885 | 2921 |
} |
2886 | 2922 |
|
2887 | 2923 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
2888 | 2924 |
Node base = _graph.source(matching); |
2889 | 2925 |
extractBlossom(blossoms[i], base, matching); |
2890 | 2926 |
} |
2891 | 2927 |
} |
2892 | 2928 |
|
2893 | 2929 |
public: |
2894 | 2930 |
|
2895 | 2931 |
/// \brief Constructor |
2896 | 2932 |
/// |
2897 | 2933 |
/// Constructor. |
2898 | 2934 |
MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight) |
2899 | 2935 |
: _graph(graph), _weight(weight), _matching(0), |
2900 | 2936 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
2901 | 2937 |
_node_num(0), _blossom_num(0), |
2902 | 2938 |
|
2903 | 2939 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
2904 | 2940 |
_node_index(0), _node_heap_index(0), _node_data(0), |
2905 | 2941 |
_tree_set_index(0), _tree_set(0), |
2906 | 2942 |
|
2907 | 2943 |
_delta2_index(0), _delta2(0), |
2908 | 2944 |
_delta3_index(0), _delta3(0), |
2909 | 2945 |
_delta4_index(0), _delta4(0), |
2910 | 2946 |
|
2911 |
_delta_sum() |
|
2947 |
_delta_sum(), _unmatched(0), |
|
2948 |
|
|
2949 |
_fractional(0) |
|
2950 |
{} |
|
2912 | 2951 |
|
2913 | 2952 |
~MaxWeightedPerfectMatching() { |
2914 | 2953 |
destroyStructures(); |
2954 |
if (_fractional) { |
|
2955 |
delete _fractional; |
|
2956 |
} |
|
2915 | 2957 |
} |
2916 | 2958 |
|
2917 | 2959 |
/// \name Execution Control |
2918 | 2960 |
/// The simplest way to execute the algorithm is to use the |
2919 | 2961 |
/// \ref run() member function. |
2920 | 2962 |
|
2921 | 2963 |
///@{ |
2922 | 2964 |
|
2923 | 2965 |
/// \brief Initialize the algorithm |
2924 | 2966 |
/// |
2925 | 2967 |
/// This function initializes the algorithm. |
2926 | 2968 |
void init() { |
2927 | 2969 |
createStructures(); |
2928 | 2970 |
|
2929 | 2971 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
2930 | 2972 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
2931 | 2973 |
} |
2932 | 2974 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
2933 | 2975 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
2934 | 2976 |
} |
2935 | 2977 |
for (int i = 0; i < _blossom_num; ++i) { |
2936 | 2978 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
2937 | 2979 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
2938 | 2980 |
} |
2939 | 2981 |
|
2982 |
_unmatched = _node_num; |
|
2983 |
|
|
2940 | 2984 |
int index = 0; |
2941 | 2985 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
2942 | 2986 |
Value max = - std::numeric_limits<Value>::max(); |
2943 | 2987 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
2944 | 2988 |
if (_graph.target(e) == n) continue; |
2945 | 2989 |
if ((dualScale * _weight[e]) / 2 > max) { |
2946 | 2990 |
max = (dualScale * _weight[e]) / 2; |
2947 | 2991 |
} |
2948 | 2992 |
} |
2949 | 2993 |
(*_node_index)[n] = index; |
2950 | 2994 |
(*_node_data)[index].pot = max; |
2951 | 2995 |
int blossom = |
2952 | 2996 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
2953 | 2997 |
|
2954 | 2998 |
_tree_set->insert(blossom); |
2955 | 2999 |
|
2956 | 3000 |
(*_blossom_data)[blossom].status = EVEN; |
2957 | 3001 |
(*_blossom_data)[blossom].pred = INVALID; |
2958 | 3002 |
(*_blossom_data)[blossom].next = INVALID; |
2959 | 3003 |
(*_blossom_data)[blossom].pot = 0; |
2960 | 3004 |
(*_blossom_data)[blossom].offset = 0; |
2961 | 3005 |
++index; |
2962 | 3006 |
} |
2963 | 3007 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
2964 | 3008 |
int si = (*_node_index)[_graph.u(e)]; |
2965 | 3009 |
int ti = (*_node_index)[_graph.v(e)]; |
2966 | 3010 |
if (_graph.u(e) != _graph.v(e)) { |
2967 | 3011 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
2968 | 3012 |
dualScale * _weight[e]) / 2); |
2969 | 3013 |
} |
2970 | 3014 |
} |
2971 | 3015 |
} |
2972 | 3016 |
|
3017 |
/// \brief Initialize the algorithm with fractional matching |
|
3018 |
/// |
|
3019 |
/// This function initializes the algorithm with a fractional |
|
3020 |
/// matching. This initialization is also called jumpstart heuristic. |
|
3021 |
void fractionalInit() { |
|
3022 |
createStructures(); |
|
3023 |
|
|
3024 |
if (_fractional == 0) { |
|
3025 |
_fractional = new FractionalMatching(_graph, _weight, false); |
|
3026 |
} |
|
3027 |
if (!_fractional->run()) { |
|
3028 |
_unmatched = -1; |
|
3029 |
return; |
|
3030 |
} |
|
3031 |
|
|
3032 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
3033 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
3034 |
} |
|
3035 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
3036 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
3037 |
} |
|
3038 |
for (int i = 0; i < _blossom_num; ++i) { |
|
3039 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
3040 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
3041 |
} |
|
3042 |
|
|
3043 |
_unmatched = 0; |
|
3044 |
|
|
3045 |
int index = 0; |
|
3046 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
3047 |
Value pot = _fractional->nodeValue(n); |
|
3048 |
(*_node_index)[n] = index; |
|
3049 |
(*_node_data)[index].pot = pot; |
|
3050 |
int blossom = |
|
3051 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
3052 |
|
|
3053 |
(*_blossom_data)[blossom].status = MATCHED; |
|
3054 |
(*_blossom_data)[blossom].pred = INVALID; |
|
3055 |
(*_blossom_data)[blossom].next = _fractional->matching(n); |
|
3056 |
(*_blossom_data)[blossom].pot = 0; |
|
3057 |
(*_blossom_data)[blossom].offset = 0; |
|
3058 |
++index; |
|
3059 |
} |
|
3060 |
|
|
3061 |
typename Graph::template NodeMap<bool> processed(_graph, false); |
|
3062 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
3063 |
if (processed[n]) continue; |
|
3064 |
processed[n] = true; |
|
3065 |
if (_fractional->matching(n) == INVALID) continue; |
|
3066 |
int num = 1; |
|
3067 |
Node v = _graph.target(_fractional->matching(n)); |
|
3068 |
while (n != v) { |
|
3069 |
processed[v] = true; |
|
3070 |
v = _graph.target(_fractional->matching(v)); |
|
3071 |
++num; |
|
3072 |
} |
|
3073 |
|
|
3074 |
if (num % 2 == 1) { |
|
3075 |
std::vector<int> subblossoms(num); |
|
3076 |
|
|
3077 |
subblossoms[--num] = _blossom_set->find(n); |
|
3078 |
v = _graph.target(_fractional->matching(n)); |
|
3079 |
while (n != v) { |
|
3080 |
subblossoms[--num] = _blossom_set->find(v); |
|
3081 |
v = _graph.target(_fractional->matching(v)); |
|
3082 |
} |
|
3083 |
|
|
3084 |
int surface = |
|
3085 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
3086 |
(*_blossom_data)[surface].status = EVEN; |
|
3087 |
(*_blossom_data)[surface].pred = INVALID; |
|
3088 |
(*_blossom_data)[surface].next = INVALID; |
|
3089 |
(*_blossom_data)[surface].pot = 0; |
|
3090 |
(*_blossom_data)[surface].offset = 0; |
|
3091 |
|
|
3092 |
_tree_set->insert(surface); |
|
3093 |
++_unmatched; |
|
3094 |
} |
|
3095 |
} |
|
3096 |
|
|
3097 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
3098 |
int si = (*_node_index)[_graph.u(e)]; |
|
3099 |
int sb = _blossom_set->find(_graph.u(e)); |
|
3100 |
int ti = (*_node_index)[_graph.v(e)]; |
|
3101 |
int tb = _blossom_set->find(_graph.v(e)); |
|
3102 |
if ((*_blossom_data)[sb].status == EVEN && |
|
3103 |
(*_blossom_data)[tb].status == EVEN && sb != tb) { |
|
3104 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
3105 |
dualScale * _weight[e]) / 2); |
|
3106 |
} |
|
3107 |
} |
|
3108 |
|
|
3109 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
3110 |
int nb = _blossom_set->find(n); |
|
3111 |
if ((*_blossom_data)[nb].status != MATCHED) continue; |
|
3112 |
int ni = (*_node_index)[n]; |
|
3113 |
|
|
3114 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
3115 |
Node v = _graph.target(e); |
|
3116 |
int vb = _blossom_set->find(v); |
|
3117 |
int vi = (*_node_index)[v]; |
|
3118 |
|
|
3119 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
3120 |
dualScale * _weight[e]; |
|
3121 |
|
|
3122 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
3123 |
|
|
3124 |
int vt = _tree_set->find(vb); |
|
3125 |
|
|
3126 |
typename std::map<int, Arc>::iterator it = |
|
3127 |
(*_node_data)[ni].heap_index.find(vt); |
|
3128 |
|
|
3129 |
if (it != (*_node_data)[ni].heap_index.end()) { |
|
3130 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
|
3131 |
(*_node_data)[ni].heap.replace(it->second, e); |
|
3132 |
(*_node_data)[ni].heap.decrease(e, rw); |
|
3133 |
it->second = e; |
|
3134 |
} |
|
3135 |
} else { |
|
3136 |
(*_node_data)[ni].heap.push(e, rw); |
|
3137 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e)); |
|
3138 |
} |
|
3139 |
} |
|
3140 |
} |
|
3141 |
|
|
3142 |
if (!(*_node_data)[ni].heap.empty()) { |
|
3143 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
3144 |
_delta2->push(nb, _blossom_set->classPrio(nb)); |
|
3145 |
} |
|
3146 |
} |
|
3147 |
} |
|
3148 |
|
|
2973 | 3149 |
/// \brief Start the algorithm |
2974 | 3150 |
/// |
2975 | 3151 |
/// This function starts the algorithm. |
2976 | 3152 |
/// |
2977 |
/// \pre \ref init() must be called before |
|
3153 |
/// \pre \ref init() or \ref fractionalInit() must be called before |
|
3154 |
/// using this function. |
|
2978 | 3155 |
bool start() { |
2979 | 3156 |
enum OpType { |
2980 | 3157 |
D2, D3, D4 |
2981 | 3158 |
}; |
2982 | 3159 |
|
2983 |
int unmatched = _node_num; |
|
2984 |
while (unmatched > 0) { |
|
3160 |
if (_unmatched == -1) return false; |
|
3161 |
|
|
3162 |
while (_unmatched > 0) { |
|
2985 | 3163 |
Value d2 = !_delta2->empty() ? |
2986 | 3164 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
2987 | 3165 |
|
2988 | 3166 |
Value d3 = !_delta3->empty() ? |
2989 | 3167 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
2990 | 3168 |
|
2991 | 3169 |
Value d4 = !_delta4->empty() ? |
2992 | 3170 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
2993 | 3171 |
|
2994 |
_delta_sum = d2; OpType ot = D2; |
|
2995 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } |
|
3172 |
_delta_sum = d3; OpType ot = D3; |
|
3173 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
|
2996 | 3174 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
2997 | 3175 |
|
2998 | 3176 |
if (_delta_sum == std::numeric_limits<Value>::max()) { |
2999 | 3177 |
return false; |
3000 | 3178 |
} |
3001 | 3179 |
|
3002 | 3180 |
switch (ot) { |
3003 | 3181 |
case D2: |
3004 | 3182 |
{ |
3005 | 3183 |
int blossom = _delta2->top(); |
3006 | 3184 |
Node n = _blossom_set->classTop(blossom); |
3007 | 3185 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
3008 | 3186 |
extendOnArc(e); |
3009 | 3187 |
} |
3010 | 3188 |
break; |
3011 | 3189 |
case D3: |
3012 | 3190 |
{ |
3013 | 3191 |
Edge e = _delta3->top(); |
3014 | 3192 |
|
3015 | 3193 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
3016 | 3194 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
3017 | 3195 |
|
3018 | 3196 |
if (left_blossom == right_blossom) { |
3019 | 3197 |
_delta3->pop(); |
3020 | 3198 |
} else { |
3021 | 3199 |
int left_tree = _tree_set->find(left_blossom); |
3022 | 3200 |
int right_tree = _tree_set->find(right_blossom); |
3023 | 3201 |
|
3024 | 3202 |
if (left_tree == right_tree) { |
3025 | 3203 |
shrinkOnEdge(e, left_tree); |
3026 | 3204 |
} else { |
3027 | 3205 |
augmentOnEdge(e); |
3028 |
|
|
3206 |
_unmatched -= 2; |
|
3029 | 3207 |
} |
3030 | 3208 |
} |
3031 | 3209 |
} break; |
3032 | 3210 |
case D4: |
3033 | 3211 |
splitBlossom(_delta4->top()); |
3034 | 3212 |
break; |
3035 | 3213 |
} |
3036 | 3214 |
} |
3037 | 3215 |
extractMatching(); |
3038 | 3216 |
return true; |
3039 | 3217 |
} |
3040 | 3218 |
|
3041 | 3219 |
/// \brief Run the algorithm. |
3042 | 3220 |
/// |
3043 | 3221 |
/// This method runs the \c %MaxWeightedPerfectMatching algorithm. |
3044 | 3222 |
/// |
3045 | 3223 |
/// \note mwpm.run() is just a shortcut of the following code. |
3046 | 3224 |
/// \code |
3047 |
/// mwpm. |
|
3225 |
/// mwpm.fractionalInit(); |
|
3048 | 3226 |
/// mwpm.start(); |
3049 | 3227 |
/// \endcode |
3050 | 3228 |
bool run() { |
3051 |
|
|
3229 |
fractionalInit(); |
|
3052 | 3230 |
return start(); |
3053 | 3231 |
} |
3054 | 3232 |
|
3055 | 3233 |
/// @} |
3056 | 3234 |
|
3057 | 3235 |
/// \name Primal Solution |
3058 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
3236 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
3059 | 3237 |
/// perfect matching.\n |
3060 | 3238 |
/// Either \ref run() or \ref start() function should be called before |
3061 | 3239 |
/// using them. |
3062 | 3240 |
|
3063 | 3241 |
/// @{ |
3064 | 3242 |
|
3065 | 3243 |
/// \brief Return the weight of the matching. |
3066 | 3244 |
/// |
3067 | 3245 |
/// This function returns the weight of the found matching. |
3068 | 3246 |
/// |
3069 | 3247 |
/// \pre Either run() or start() must be called before using this function. |
3070 | 3248 |
Value matchingWeight() const { |
3071 | 3249 |
Value sum = 0; |
3072 | 3250 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
3073 | 3251 |
if ((*_matching)[n] != INVALID) { |
3074 | 3252 |
sum += _weight[(*_matching)[n]]; |
3075 | 3253 |
} |
3076 | 3254 |
} |
3077 |
return sum / |
|
3255 |
return sum / 2; |
|
3078 | 3256 |
} |
3079 | 3257 |
|
3080 | 3258 |
/// \brief Return \c true if the given edge is in the matching. |
3081 | 3259 |
/// |
3082 |
/// This function returns \c true if the given edge is in the found |
|
3260 |
/// This function returns \c true if the given edge is in the found |
|
3083 | 3261 |
/// matching. |
3084 | 3262 |
/// |
3085 | 3263 |
/// \pre Either run() or start() must be called before using this function. |
3086 | 3264 |
bool matching(const Edge& edge) const { |
3087 | 3265 |
return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge; |
3088 | 3266 |
} |
3089 | 3267 |
|
3090 | 3268 |
/// \brief Return the matching arc (or edge) incident to the given node. |
3091 | 3269 |
/// |
3092 | 3270 |
/// This function returns the matching arc (or edge) incident to the |
3093 |
/// given node in the found matching or \c INVALID if the node is |
|
3271 |
/// given node in the found matching or \c INVALID if the node is |
|
3094 | 3272 |
/// not covered by the matching. |
3095 | 3273 |
/// |
3096 | 3274 |
/// \pre Either run() or start() must be called before using this function. |
3097 | 3275 |
Arc matching(const Node& node) const { |
3098 | 3276 |
return (*_matching)[node]; |
3099 | 3277 |
} |
3100 | 3278 |
|
3101 | 3279 |
/// \brief Return a const reference to the matching map. |
3102 | 3280 |
/// |
3103 | 3281 |
/// This function returns a const reference to a node map that stores |
3104 | 3282 |
/// the matching arc (or edge) incident to each node. |
3105 | 3283 |
const MatchingMap& matchingMap() const { |
3106 | 3284 |
return *_matching; |
3107 | 3285 |
} |
3108 | 3286 |
|
3109 | 3287 |
/// \brief Return the mate of the given node. |
3110 | 3288 |
/// |
3111 |
/// This function returns the mate of the given node in the found |
|
3289 |
/// This function returns the mate of the given node in the found |
|
3112 | 3290 |
/// matching or \c INVALID if the node is not covered by the matching. |
3113 | 3291 |
/// |
3114 | 3292 |
/// \pre Either run() or start() must be called before using this function. |
3115 | 3293 |
Node mate(const Node& node) const { |
3116 | 3294 |
return _graph.target((*_matching)[node]); |
3117 | 3295 |
} |
3118 | 3296 |
|
3119 | 3297 |
/// @} |
3120 | 3298 |
|
3121 | 3299 |
/// \name Dual Solution |
3122 | 3300 |
/// Functions to get the dual solution.\n |
3123 | 3301 |
/// Either \ref run() or \ref start() function should be called before |
3124 | 3302 |
/// using them. |
3125 | 3303 |
|
3126 | 3304 |
/// @{ |
3127 | 3305 |
|
3128 | 3306 |
/// \brief Return the value of the dual solution. |
3129 | 3307 |
/// |
3130 |
/// This function returns the value of the dual solution. |
|
3131 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
3308 |
/// This function returns the value of the dual solution. |
|
3309 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
3132 | 3310 |
/// "dual scale". |
3133 | 3311 |
/// |
3134 | 3312 |
/// \pre Either run() or start() must be called before using this function. |
3135 | 3313 |
Value dualValue() const { |
3136 | 3314 |
Value sum = 0; |
3137 | 3315 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
3138 | 3316 |
sum += nodeValue(n); |
3139 | 3317 |
} |
3140 | 3318 |
for (int i = 0; i < blossomNum(); ++i) { |
3141 | 3319 |
sum += blossomValue(i) * (blossomSize(i) / 2); |
3142 | 3320 |
} |
3143 | 3321 |
return sum; |
3144 | 3322 |
} |
3145 | 3323 |
|
3146 | 3324 |
/// \brief Return the dual value (potential) of the given node. |
3147 | 3325 |
/// |
3148 | 3326 |
/// This function returns the dual value (potential) of the given node. |
3149 | 3327 |
/// |
3150 | 3328 |
/// \pre Either run() or start() must be called before using this function. |
3151 | 3329 |
Value nodeValue(const Node& n) const { |
3152 | 3330 |
return (*_node_potential)[n]; |
3153 | 3331 |
} |
3154 | 3332 |
|
3155 | 3333 |
/// \brief Return the number of the blossoms in the basis. |
3156 | 3334 |
/// |
3157 | 3335 |
/// This function returns the number of the blossoms in the basis. |
3158 | 3336 |
/// |
3159 | 3337 |
/// \pre Either run() or start() must be called before using this function. |
3160 | 3338 |
/// \see BlossomIt |
3161 | 3339 |
int blossomNum() const { |
3162 | 3340 |
return _blossom_potential.size(); |
3163 | 3341 |
} |
3164 | 3342 |
|
3165 | 3343 |
/// \brief Return the number of the nodes in the given blossom. |
3166 | 3344 |
/// |
3167 | 3345 |
/// This function returns the number of the nodes in the given blossom. |
3168 | 3346 |
/// |
3169 | 3347 |
/// \pre Either run() or start() must be called before using this function. |
3170 | 3348 |
/// \see BlossomIt |
3171 | 3349 |
int blossomSize(int k) const { |
3172 | 3350 |
return _blossom_potential[k].end - _blossom_potential[k].begin; |
3173 | 3351 |
} |
3174 | 3352 |
|
3175 | 3353 |
/// \brief Return the dual value (ptential) of the given blossom. |
3176 | 3354 |
/// |
3177 | 3355 |
/// This function returns the dual value (ptential) of the given blossom. |
3178 | 3356 |
/// |
3179 | 3357 |
/// \pre Either run() or start() must be called before using this function. |
3180 | 3358 |
Value blossomValue(int k) const { |
3181 | 3359 |
return _blossom_potential[k].value; |
3182 | 3360 |
} |
3183 | 3361 |
|
3184 | 3362 |
/// \brief Iterator for obtaining the nodes of a blossom. |
3185 | 3363 |
/// |
3186 |
/// This class provides an iterator for obtaining the nodes of the |
|
3364 |
/// This class provides an iterator for obtaining the nodes of the |
|
3187 | 3365 |
/// given blossom. It lists a subset of the nodes. |
3188 |
/// Before using this iterator, you must allocate a |
|
3366 |
/// Before using this iterator, you must allocate a |
|
3189 | 3367 |
/// MaxWeightedPerfectMatching class and execute it. |
3190 | 3368 |
class BlossomIt { |
3191 | 3369 |
public: |
3192 | 3370 |
|
3193 | 3371 |
/// \brief Constructor. |
3194 | 3372 |
/// |
3195 | 3373 |
/// Constructor to get the nodes of the given variable. |
3196 | 3374 |
/// |
3197 |
/// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" |
|
3198 |
/// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" |
|
3375 |
/// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" |
|
3376 |
/// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" |
|
3199 | 3377 |
/// must be called before initializing this iterator. |
3200 | 3378 |
BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable) |
3201 | 3379 |
: _algorithm(&algorithm) |
3202 | 3380 |
{ |
3203 | 3381 |
_index = _algorithm->_blossom_potential[variable].begin; |
3204 | 3382 |
_last = _algorithm->_blossom_potential[variable].end; |
3205 | 3383 |
} |
3206 | 3384 |
|
3207 | 3385 |
/// \brief Conversion to \c Node. |
3208 | 3386 |
/// |
3209 | 3387 |
/// Conversion to \c Node. |
3210 | 3388 |
operator Node() const { |
3211 | 3389 |
return _algorithm->_blossom_node_list[_index]; |
3212 | 3390 |
} |
3213 | 3391 |
|
3214 | 3392 |
/// \brief Increment operator. |
3215 | 3393 |
/// |
3216 | 3394 |
/// Increment operator. |
3217 | 3395 |
BlossomIt& operator++() { |
3218 | 3396 |
++_index; |
3219 | 3397 |
return *this; |
3220 | 3398 |
} |
3221 | 3399 |
|
3222 | 3400 |
/// \brief Validity checking |
3223 | 3401 |
/// |
3224 | 3402 |
/// This function checks whether the iterator is invalid. |
3225 | 3403 |
bool operator==(Invalid) const { return _index == _last; } |
3226 | 3404 |
|
3227 | 3405 |
/// \brief Validity checking |
3228 | 3406 |
/// |
3229 | 3407 |
/// This function checks whether the iterator is valid. |
3230 | 3408 |
bool operator!=(Invalid) const { return _index != _last; } |
3231 | 3409 |
|
3232 | 3410 |
private: |
3233 | 3411 |
const MaxWeightedPerfectMatching* _algorithm; |
3234 | 3412 |
int _last; |
3235 | 3413 |
int _index; |
3236 | 3414 |
}; |
3237 | 3415 |
|
3238 | 3416 |
/// @} |
3239 | 3417 |
|
3240 | 3418 |
}; |
3241 | 3419 |
|
3242 | 3420 |
} //END OF NAMESPACE LEMON |
3243 | 3421 |
|
3244 |
#endif // |
|
3422 |
#endif //LEMON_MATCHING_H |
1 | 1 |
INCLUDE_DIRECTORIES( |
2 | 2 |
${PROJECT_SOURCE_DIR} |
3 | 3 |
${PROJECT_BINARY_DIR} |
4 | 4 |
) |
5 | 5 |
|
6 | 6 |
LINK_DIRECTORIES( |
7 | 7 |
${PROJECT_BINARY_DIR}/lemon |
8 | 8 |
) |
9 | 9 |
|
10 | 10 |
SET(TESTS |
11 | 11 |
adaptors_test |
12 | 12 |
bellman_ford_test |
13 | 13 |
bfs_test |
14 | 14 |
circulation_test |
15 | 15 |
connectivity_test |
16 | 16 |
counter_test |
17 | 17 |
dfs_test |
18 | 18 |
digraph_test |
19 | 19 |
dijkstra_test |
20 | 20 |
dim_test |
21 | 21 |
edge_set_test |
22 | 22 |
error_test |
23 | 23 |
euler_test |
24 |
fractional_matching_test |
|
24 | 25 |
gomory_hu_test |
25 | 26 |
graph_copy_test |
26 | 27 |
graph_test |
27 | 28 |
graph_utils_test |
28 | 29 |
hao_orlin_test |
29 | 30 |
heap_test |
30 | 31 |
kruskal_test |
31 | 32 |
maps_test |
32 | 33 |
matching_test |
33 | 34 |
min_cost_arborescence_test |
34 | 35 |
min_cost_flow_test |
35 | 36 |
min_mean_cycle_test |
36 | 37 |
path_test |
37 | 38 |
planarity_test |
38 | 39 |
preflow_test |
39 | 40 |
radix_sort_test |
40 | 41 |
random_test |
41 | 42 |
suurballe_test |
42 | 43 |
time_measure_test |
43 | 44 |
unionfind_test |
44 | 45 |
) |
45 | 46 |
|
46 | 47 |
IF(LEMON_HAVE_LP) |
47 | 48 |
ADD_EXECUTABLE(lp_test lp_test.cc) |
48 | 49 |
SET(LP_TEST_LIBS lemon) |
49 | 50 |
|
50 | 51 |
IF(LEMON_HAVE_GLPK) |
51 | 52 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${GLPK_LIBRARIES}) |
52 | 53 |
ENDIF() |
53 | 54 |
IF(LEMON_HAVE_CPLEX) |
54 | 55 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${CPLEX_LIBRARIES}) |
55 | 56 |
ENDIF() |
56 | 57 |
IF(LEMON_HAVE_CLP) |
57 | 58 |
SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${COIN_CLP_LIBRARIES}) |
58 | 59 |
ENDIF() |
59 | 60 |
|
60 | 61 |
TARGET_LINK_LIBRARIES(lp_test ${LP_TEST_LIBS}) |
61 | 62 |
ADD_TEST(lp_test lp_test) |
62 | 63 |
|
63 | 64 |
IF(WIN32 AND LEMON_HAVE_GLPK) |
64 | 65 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
65 | 66 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
66 | 67 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
67 | 68 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH} |
68 | 69 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH} |
69 | 70 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH} |
70 | 71 |
) |
71 | 72 |
ENDIF() |
72 | 73 |
|
73 | 74 |
IF(WIN32 AND LEMON_HAVE_CPLEX) |
74 | 75 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
75 | 76 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
76 | 77 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
77 | 78 |
COMMAND ${CMAKE_COMMAND} -E copy ${CPLEX_BIN_DIR}/cplex91.dll ${TARGET_PATH} |
78 | 79 |
) |
79 | 80 |
ENDIF() |
80 | 81 |
ENDIF() |
81 | 82 |
|
82 | 83 |
IF(LEMON_HAVE_MIP) |
83 | 84 |
ADD_EXECUTABLE(mip_test mip_test.cc) |
84 | 85 |
SET(MIP_TEST_LIBS lemon) |
85 | 86 |
|
86 | 87 |
IF(LEMON_HAVE_GLPK) |
87 | 88 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${GLPK_LIBRARIES}) |
88 | 89 |
ENDIF() |
89 | 90 |
IF(LEMON_HAVE_CPLEX) |
90 | 91 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${CPLEX_LIBRARIES}) |
91 | 92 |
ENDIF() |
92 | 93 |
IF(LEMON_HAVE_CBC) |
93 | 94 |
SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${COIN_CBC_LIBRARIES}) |
94 | 95 |
ENDIF() |
95 | 96 |
|
96 | 97 |
TARGET_LINK_LIBRARIES(mip_test ${MIP_TEST_LIBS}) |
97 | 98 |
ADD_TEST(mip_test mip_test) |
98 | 99 |
|
99 | 100 |
IF(WIN32 AND LEMON_HAVE_GLPK) |
100 | 101 |
GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION) |
101 | 102 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
102 | 103 |
ADD_CUSTOM_COMMAND(TARGET mip_test POST_BUILD |
103 | 104 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH} |
104 | 105 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH} |
105 | 106 |
COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH} |
106 | 107 |
) |
107 | 108 |
ENDIF() |
108 | 109 |
|
109 | 110 |
IF(WIN32 AND LEMON_HAVE_CPLEX) |
110 | 111 |
GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION) |
111 | 112 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
112 | 113 |
ADD_CUSTOM_COMMAND(TARGET mip_test POST_BUILD |
113 | 114 |
COMMAND ${CMAKE_COMMAND} -E copy ${CPLEX_BIN_DIR}/cplex91.dll ${TARGET_PATH} |
114 | 115 |
) |
115 | 116 |
ENDIF() |
116 | 117 |
ENDIF() |
117 | 118 |
|
118 | 119 |
FOREACH(TEST_NAME ${TESTS}) |
119 | 120 |
ADD_EXECUTABLE(${TEST_NAME} ${TEST_NAME}.cc) |
120 | 121 |
TARGET_LINK_LIBRARIES(${TEST_NAME} lemon) |
121 | 122 |
ADD_TEST(${TEST_NAME} ${TEST_NAME}) |
122 | 123 |
ENDFOREACH() |
1 | 1 |
if USE_VALGRIND |
2 | 2 |
TESTS_ENVIRONMENT=$(top_srcdir)/scripts/valgrind-wrapper.sh |
3 | 3 |
endif |
4 | 4 |
|
5 | 5 |
EXTRA_DIST += \ |
6 | 6 |
test/CMakeLists.txt |
7 | 7 |
|
8 | 8 |
noinst_HEADERS += \ |
9 | 9 |
test/graph_test.h \ |
10 | 10 |
test/test_tools.h |
11 | 11 |
|
12 | 12 |
check_PROGRAMS += \ |
13 | 13 |
test/adaptors_test \ |
14 | 14 |
test/bellman_ford_test \ |
15 | 15 |
test/bfs_test \ |
16 | 16 |
test/circulation_test \ |
17 | 17 |
test/connectivity_test \ |
18 | 18 |
test/counter_test \ |
19 | 19 |
test/dfs_test \ |
20 | 20 |
test/digraph_test \ |
21 | 21 |
test/dijkstra_test \ |
22 | 22 |
test/dim_test \ |
23 | 23 |
test/edge_set_test \ |
24 | 24 |
test/error_test \ |
25 | 25 |
test/euler_test \ |
26 |
test/fractional_matching_test \ |
|
26 | 27 |
test/gomory_hu_test \ |
27 | 28 |
test/graph_copy_test \ |
28 | 29 |
test/graph_test \ |
29 | 30 |
test/graph_utils_test \ |
30 | 31 |
test/hao_orlin_test \ |
31 | 32 |
test/heap_test \ |
32 | 33 |
test/kruskal_test \ |
33 | 34 |
test/maps_test \ |
34 | 35 |
test/matching_test \ |
35 | 36 |
test/min_cost_arborescence_test \ |
36 | 37 |
test/min_cost_flow_test \ |
37 | 38 |
test/min_mean_cycle_test \ |
38 | 39 |
test/path_test \ |
39 | 40 |
test/planarity_test \ |
40 | 41 |
test/preflow_test \ |
41 | 42 |
test/radix_sort_test \ |
42 | 43 |
test/random_test \ |
43 | 44 |
test/suurballe_test \ |
44 | 45 |
test/test_tools_fail \ |
45 | 46 |
test/test_tools_pass \ |
46 | 47 |
test/time_measure_test \ |
47 | 48 |
test/unionfind_test |
48 | 49 |
|
49 | 50 |
test_test_tools_pass_DEPENDENCIES = demo |
50 | 51 |
|
51 | 52 |
if HAVE_LP |
52 | 53 |
check_PROGRAMS += test/lp_test |
53 | 54 |
endif HAVE_LP |
54 | 55 |
if HAVE_MIP |
55 | 56 |
check_PROGRAMS += test/mip_test |
56 | 57 |
endif HAVE_MIP |
57 | 58 |
|
58 | 59 |
TESTS += $(check_PROGRAMS) |
59 | 60 |
XFAIL_TESTS += test/test_tools_fail$(EXEEXT) |
60 | 61 |
|
61 | 62 |
test_adaptors_test_SOURCES = test/adaptors_test.cc |
62 | 63 |
test_bellman_ford_test_SOURCES = test/bellman_ford_test.cc |
63 | 64 |
test_bfs_test_SOURCES = test/bfs_test.cc |
64 | 65 |
test_circulation_test_SOURCES = test/circulation_test.cc |
65 | 66 |
test_counter_test_SOURCES = test/counter_test.cc |
66 | 67 |
test_connectivity_test_SOURCES = test/connectivity_test.cc |
67 | 68 |
test_dfs_test_SOURCES = test/dfs_test.cc |
68 | 69 |
test_digraph_test_SOURCES = test/digraph_test.cc |
69 | 70 |
test_dijkstra_test_SOURCES = test/dijkstra_test.cc |
70 | 71 |
test_dim_test_SOURCES = test/dim_test.cc |
71 | 72 |
test_edge_set_test_SOURCES = test/edge_set_test.cc |
72 | 73 |
test_error_test_SOURCES = test/error_test.cc |
73 | 74 |
test_euler_test_SOURCES = test/euler_test.cc |
75 |
test_fractional_matching_test_SOURCES = test/fractional_matching_test.cc |
|
74 | 76 |
test_gomory_hu_test_SOURCES = test/gomory_hu_test.cc |
75 | 77 |
test_graph_copy_test_SOURCES = test/graph_copy_test.cc |
76 | 78 |
test_graph_test_SOURCES = test/graph_test.cc |
77 | 79 |
test_graph_utils_test_SOURCES = test/graph_utils_test.cc |
78 | 80 |
test_heap_test_SOURCES = test/heap_test.cc |
79 | 81 |
test_kruskal_test_SOURCES = test/kruskal_test.cc |
80 | 82 |
test_hao_orlin_test_SOURCES = test/hao_orlin_test.cc |
81 | 83 |
test_lp_test_SOURCES = test/lp_test.cc |
82 | 84 |
test_maps_test_SOURCES = test/maps_test.cc |
83 | 85 |
test_mip_test_SOURCES = test/mip_test.cc |
84 | 86 |
test_matching_test_SOURCES = test/matching_test.cc |
85 | 87 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
86 | 88 |
test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc |
87 | 89 |
test_min_mean_cycle_test_SOURCES = test/min_mean_cycle_test.cc |
88 | 90 |
test_path_test_SOURCES = test/path_test.cc |
89 | 91 |
test_planarity_test_SOURCES = test/planarity_test.cc |
90 | 92 |
test_preflow_test_SOURCES = test/preflow_test.cc |
91 | 93 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
92 | 94 |
test_suurballe_test_SOURCES = test/suurballe_test.cc |
93 | 95 |
test_random_test_SOURCES = test/random_test.cc |
94 | 96 |
test_test_tools_fail_SOURCES = test/test_tools_fail.cc |
95 | 97 |
test_test_tools_pass_SOURCES = test/test_tools_pass.cc |
96 | 98 |
test_time_measure_test_SOURCES = test/time_measure_test.cc |
97 | 99 |
test_unionfind_test_SOURCES = test/unionfind_test.cc |
... | ... |
@@ -212,213 +212,237 @@ |
212 | 212 |
const_mat_test.matching(e); |
213 | 213 |
const_mat_test.matching(n); |
214 | 214 |
const MaxWeightedPerfectMatching<Graph>::MatchingMap& mmap = |
215 | 215 |
const_mat_test.matchingMap(); |
216 | 216 |
e = mmap[n]; |
217 | 217 |
const_mat_test.mate(n); |
218 | 218 |
|
219 | 219 |
int k = 0; |
220 | 220 |
const_mat_test.dualValue(); |
221 | 221 |
const_mat_test.nodeValue(n); |
222 | 222 |
const_mat_test.blossomNum(); |
223 | 223 |
const_mat_test.blossomSize(k); |
224 | 224 |
const_mat_test.blossomValue(k); |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
void checkMatching(const SmartGraph& graph, |
228 | 228 |
const MaxMatching<SmartGraph>& mm) { |
229 | 229 |
int num = 0; |
230 | 230 |
|
231 | 231 |
IntNodeMap comp_index(graph); |
232 | 232 |
UnionFind<IntNodeMap> comp(comp_index); |
233 | 233 |
|
234 | 234 |
int barrier_num = 0; |
235 | 235 |
|
236 | 236 |
for (NodeIt n(graph); n != INVALID; ++n) { |
237 | 237 |
check(mm.status(n) == MaxMatching<SmartGraph>::EVEN || |
238 | 238 |
mm.matching(n) != INVALID, "Wrong Gallai-Edmonds decomposition"); |
239 | 239 |
if (mm.status(n) == MaxMatching<SmartGraph>::ODD) { |
240 | 240 |
++barrier_num; |
241 | 241 |
} else { |
242 | 242 |
comp.insert(n); |
243 | 243 |
} |
244 | 244 |
} |
245 | 245 |
|
246 | 246 |
for (EdgeIt e(graph); e != INVALID; ++e) { |
247 | 247 |
if (mm.matching(e)) { |
248 | 248 |
check(e == mm.matching(graph.u(e)), "Wrong matching"); |
249 | 249 |
check(e == mm.matching(graph.v(e)), "Wrong matching"); |
250 | 250 |
++num; |
251 | 251 |
} |
252 | 252 |
check(mm.status(graph.u(e)) != MaxMatching<SmartGraph>::EVEN || |
253 | 253 |
mm.status(graph.v(e)) != MaxMatching<SmartGraph>::MATCHED, |
254 | 254 |
"Wrong Gallai-Edmonds decomposition"); |
255 | 255 |
|
256 | 256 |
check(mm.status(graph.v(e)) != MaxMatching<SmartGraph>::EVEN || |
257 | 257 |
mm.status(graph.u(e)) != MaxMatching<SmartGraph>::MATCHED, |
258 | 258 |
"Wrong Gallai-Edmonds decomposition"); |
259 | 259 |
|
260 | 260 |
if (mm.status(graph.u(e)) != MaxMatching<SmartGraph>::ODD && |
261 | 261 |
mm.status(graph.v(e)) != MaxMatching<SmartGraph>::ODD) { |
262 | 262 |
comp.join(graph.u(e), graph.v(e)); |
263 | 263 |
} |
264 | 264 |
} |
265 | 265 |
|
266 | 266 |
std::set<int> comp_root; |
267 | 267 |
int odd_comp_num = 0; |
268 | 268 |
for (NodeIt n(graph); n != INVALID; ++n) { |
269 | 269 |
if (mm.status(n) != MaxMatching<SmartGraph>::ODD) { |
270 | 270 |
int root = comp.find(n); |
271 | 271 |
if (comp_root.find(root) == comp_root.end()) { |
272 | 272 |
comp_root.insert(root); |
273 | 273 |
if (comp.size(n) % 2 == 1) { |
274 | 274 |
++odd_comp_num; |
275 | 275 |
} |
276 | 276 |
} |
277 | 277 |
} |
278 | 278 |
} |
279 | 279 |
|
280 | 280 |
check(mm.matchingSize() == num, "Wrong matching"); |
281 | 281 |
check(2 * num == countNodes(graph) - (odd_comp_num - barrier_num), |
282 | 282 |
"Wrong matching"); |
283 | 283 |
return; |
284 | 284 |
} |
285 | 285 |
|
286 | 286 |
void checkWeightedMatching(const SmartGraph& graph, |
287 | 287 |
const SmartGraph::EdgeMap<int>& weight, |
288 | 288 |
const MaxWeightedMatching<SmartGraph>& mwm) { |
289 | 289 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) { |
290 | 290 |
if (graph.u(e) == graph.v(e)) continue; |
291 | 291 |
int rw = mwm.nodeValue(graph.u(e)) + mwm.nodeValue(graph.v(e)); |
292 | 292 |
|
293 | 293 |
for (int i = 0; i < mwm.blossomNum(); ++i) { |
294 | 294 |
bool s = false, t = false; |
295 | 295 |
for (MaxWeightedMatching<SmartGraph>::BlossomIt n(mwm, i); |
296 | 296 |
n != INVALID; ++n) { |
297 | 297 |
if (graph.u(e) == n) s = true; |
298 | 298 |
if (graph.v(e) == n) t = true; |
299 | 299 |
} |
300 | 300 |
if (s == true && t == true) { |
301 | 301 |
rw += mwm.blossomValue(i); |
302 | 302 |
} |
303 | 303 |
} |
304 | 304 |
rw -= weight[e] * mwm.dualScale; |
305 | 305 |
|
306 | 306 |
check(rw >= 0, "Negative reduced weight"); |
307 | 307 |
check(rw == 0 || !mwm.matching(e), |
308 | 308 |
"Non-zero reduced weight on matching edge"); |
309 | 309 |
} |
310 | 310 |
|
311 | 311 |
int pv = 0; |
312 | 312 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
313 | 313 |
if (mwm.matching(n) != INVALID) { |
314 | 314 |
check(mwm.nodeValue(n) >= 0, "Invalid node value"); |
315 | 315 |
pv += weight[mwm.matching(n)]; |
316 | 316 |
SmartGraph::Node o = graph.target(mwm.matching(n)); |
317 | 317 |
check(mwm.mate(n) == o, "Invalid matching"); |
318 | 318 |
check(mwm.matching(n) == graph.oppositeArc(mwm.matching(o)), |
319 | 319 |
"Invalid matching"); |
320 | 320 |
} else { |
321 | 321 |
check(mwm.mate(n) == INVALID, "Invalid matching"); |
322 | 322 |
check(mwm.nodeValue(n) == 0, "Invalid matching"); |
323 | 323 |
} |
324 | 324 |
} |
325 | 325 |
|
326 | 326 |
int dv = 0; |
327 | 327 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
328 | 328 |
dv += mwm.nodeValue(n); |
329 | 329 |
} |
330 | 330 |
|
331 | 331 |
for (int i = 0; i < mwm.blossomNum(); ++i) { |
332 | 332 |
check(mwm.blossomValue(i) >= 0, "Invalid blossom value"); |
333 | 333 |
check(mwm.blossomSize(i) % 2 == 1, "Even blossom size"); |
334 | 334 |
dv += mwm.blossomValue(i) * ((mwm.blossomSize(i) - 1) / 2); |
335 | 335 |
} |
336 | 336 |
|
337 | 337 |
check(pv * mwm.dualScale == dv * 2, "Wrong duality"); |
338 | 338 |
|
339 | 339 |
return; |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
void checkWeightedPerfectMatching(const SmartGraph& graph, |
343 | 343 |
const SmartGraph::EdgeMap<int>& weight, |
344 | 344 |
const MaxWeightedPerfectMatching<SmartGraph>& mwpm) { |
345 | 345 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) { |
346 | 346 |
if (graph.u(e) == graph.v(e)) continue; |
347 | 347 |
int rw = mwpm.nodeValue(graph.u(e)) + mwpm.nodeValue(graph.v(e)); |
348 | 348 |
|
349 | 349 |
for (int i = 0; i < mwpm.blossomNum(); ++i) { |
350 | 350 |
bool s = false, t = false; |
351 | 351 |
for (MaxWeightedPerfectMatching<SmartGraph>::BlossomIt n(mwpm, i); |
352 | 352 |
n != INVALID; ++n) { |
353 | 353 |
if (graph.u(e) == n) s = true; |
354 | 354 |
if (graph.v(e) == n) t = true; |
355 | 355 |
} |
356 | 356 |
if (s == true && t == true) { |
357 | 357 |
rw += mwpm.blossomValue(i); |
358 | 358 |
} |
359 | 359 |
} |
360 | 360 |
rw -= weight[e] * mwpm.dualScale; |
361 | 361 |
|
362 | 362 |
check(rw >= 0, "Negative reduced weight"); |
363 | 363 |
check(rw == 0 || !mwpm.matching(e), |
364 | 364 |
"Non-zero reduced weight on matching edge"); |
365 | 365 |
} |
366 | 366 |
|
367 | 367 |
int pv = 0; |
368 | 368 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
369 | 369 |
check(mwpm.matching(n) != INVALID, "Non perfect"); |
370 | 370 |
pv += weight[mwpm.matching(n)]; |
371 | 371 |
SmartGraph::Node o = graph.target(mwpm.matching(n)); |
372 | 372 |
check(mwpm.mate(n) == o, "Invalid matching"); |
373 | 373 |
check(mwpm.matching(n) == graph.oppositeArc(mwpm.matching(o)), |
374 | 374 |
"Invalid matching"); |
375 | 375 |
} |
376 | 376 |
|
377 | 377 |
int dv = 0; |
378 | 378 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
379 | 379 |
dv += mwpm.nodeValue(n); |
380 | 380 |
} |
381 | 381 |
|
382 | 382 |
for (int i = 0; i < mwpm.blossomNum(); ++i) { |
383 | 383 |
check(mwpm.blossomValue(i) >= 0, "Invalid blossom value"); |
384 | 384 |
check(mwpm.blossomSize(i) % 2 == 1, "Even blossom size"); |
385 | 385 |
dv += mwpm.blossomValue(i) * ((mwpm.blossomSize(i) - 1) / 2); |
386 | 386 |
} |
387 | 387 |
|
388 | 388 |
check(pv * mwpm.dualScale == dv * 2, "Wrong duality"); |
389 | 389 |
|
390 | 390 |
return; |
391 | 391 |
} |
392 | 392 |
|
393 | 393 |
|
394 | 394 |
int main() { |
395 | 395 |
|
396 | 396 |
for (int i = 0; i < lgfn; ++i) { |
397 | 397 |
SmartGraph graph; |
398 | 398 |
SmartGraph::EdgeMap<int> weight(graph); |
399 | 399 |
|
400 | 400 |
istringstream lgfs(lgf[i]); |
401 | 401 |
graphReader(graph, lgfs). |
402 | 402 |
edgeMap("weight", weight).run(); |
403 | 403 |
|
404 |
MaxMatching<SmartGraph> mm(graph); |
|
405 |
mm.run(); |
|
406 |
|
|
404 |
bool perfect; |
|
405 |
{ |
|
406 |
MaxMatching<SmartGraph> mm(graph); |
|
407 |
mm.run(); |
|
408 |
checkMatching(graph, mm); |
|
409 |
perfect = 2 * mm.matchingSize() == countNodes(graph); |
|
410 |
} |
|
407 | 411 |
|
408 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
409 |
mwm.run(); |
|
410 |
|
|
412 |
{ |
|
413 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
414 |
mwm.run(); |
|
415 |
checkWeightedMatching(graph, weight, mwm); |
|
416 |
} |
|
411 | 417 |
|
412 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
413 |
bool perfect = mwpm.run(); |
|
418 |
{ |
|
419 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
|
420 |
mwm.init(); |
|
421 |
mwm.start(); |
|
422 |
checkWeightedMatching(graph, weight, mwm); |
|
423 |
} |
|
414 | 424 |
|
415 |
check(perfect == (mm.matchingSize() * 2 == countNodes(graph)), |
|
416 |
"Perfect matching found"); |
|
425 |
{ |
|
426 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
427 |
bool result = mwpm.run(); |
|
428 |
|
|
429 |
check(result == perfect, "Perfect matching found"); |
|
430 |
if (perfect) { |
|
431 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
432 |
} |
|
433 |
} |
|
417 | 434 |
|
418 |
if (perfect) { |
|
419 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
435 |
{ |
|
436 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
|
437 |
mwpm.init(); |
|
438 |
bool result = mwpm.start(); |
|
439 |
|
|
440 |
check(result == perfect, "Perfect matching found"); |
|
441 |
if (perfect) { |
|
442 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
|
443 |
} |
|
420 | 444 |
} |
421 | 445 |
} |
422 | 446 |
|
423 | 447 |
return 0; |
424 | 448 |
} |
0 comments (0 inline)