| ... | ... |
@@ -352,193 +352,193 @@ |
| 352 | 352 |
Preflow& target(const Node& node) {
|
| 353 | 353 |
_target = node; |
| 354 | 354 |
return *this; |
| 355 | 355 |
} |
| 356 | 356 |
|
| 357 | 357 |
/// \brief Sets the tolerance used by algorithm. |
| 358 | 358 |
/// |
| 359 | 359 |
/// Sets the tolerance used by algorithm. |
| 360 | 360 |
Preflow& tolerance(const Tolerance& tolerance) const {
|
| 361 | 361 |
_tolerance = tolerance; |
| 362 | 362 |
return *this; |
| 363 | 363 |
} |
| 364 | 364 |
|
| 365 | 365 |
/// \brief Returns the tolerance used by algorithm. |
| 366 | 366 |
/// |
| 367 | 367 |
/// Returns the tolerance used by algorithm. |
| 368 | 368 |
const Tolerance& tolerance() const {
|
| 369 | 369 |
return tolerance; |
| 370 | 370 |
} |
| 371 | 371 |
|
| 372 | 372 |
/// \name Execution control The simplest way to execute the |
| 373 | 373 |
/// algorithm is to use one of the member functions called \c |
| 374 | 374 |
/// run(). |
| 375 | 375 |
/// \n |
| 376 | 376 |
/// If you need more control on initial solution or |
| 377 | 377 |
/// execution then you have to call one \ref init() function and then |
| 378 | 378 |
/// the startFirstPhase() and if you need the startSecondPhase(). |
| 379 | 379 |
|
| 380 | 380 |
///@{
|
| 381 | 381 |
|
| 382 | 382 |
/// \brief Initializes the internal data structures. |
| 383 | 383 |
/// |
| 384 | 384 |
/// Initializes the internal data structures. |
| 385 | 385 |
/// |
| 386 | 386 |
void init() {
|
| 387 | 387 |
createStructures(); |
| 388 | 388 |
|
| 389 | 389 |
_phase = true; |
| 390 | 390 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 391 | 391 |
_excess->set(n, 0); |
| 392 | 392 |
} |
| 393 | 393 |
|
| 394 | 394 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 395 | 395 |
_flow->set(e, 0); |
| 396 | 396 |
} |
| 397 | 397 |
|
| 398 | 398 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 399 | 399 |
|
| 400 | 400 |
_level->initStart(); |
| 401 | 401 |
_level->initAddItem(_target); |
| 402 | 402 |
|
| 403 | 403 |
std::vector<Node> queue; |
| 404 | 404 |
reached.set(_source, true); |
| 405 | 405 |
|
| 406 | 406 |
queue.push_back(_target); |
| 407 | 407 |
reached.set(_target, true); |
| 408 | 408 |
while (!queue.empty()) {
|
| 409 | 409 |
_level->initNewLevel(); |
| 410 | 410 |
std::vector<Node> nqueue; |
| 411 | 411 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 412 | 412 |
Node n = queue[i]; |
| 413 | 413 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 414 | 414 |
Node u = _graph.source(e); |
| 415 | 415 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
|
| 416 | 416 |
reached.set(u, true); |
| 417 | 417 |
_level->initAddItem(u); |
| 418 | 418 |
nqueue.push_back(u); |
| 419 | 419 |
} |
| 420 | 420 |
} |
| 421 | 421 |
} |
| 422 | 422 |
queue.swap(nqueue); |
| 423 | 423 |
} |
| 424 | 424 |
_level->initFinish(); |
| 425 | 425 |
|
| 426 | 426 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 427 | 427 |
if (_tolerance.positive((*_capacity)[e])) {
|
| 428 | 428 |
Node u = _graph.target(e); |
| 429 | 429 |
if ((*_level)[u] == _level->maxLevel()) continue; |
| 430 | 430 |
_flow->set(e, (*_capacity)[e]); |
| 431 | 431 |
_excess->set(u, (*_excess)[u] + (*_capacity)[e]); |
| 432 | 432 |
if (u != _target && !_level->active(u)) {
|
| 433 | 433 |
_level->activate(u); |
| 434 | 434 |
} |
| 435 | 435 |
} |
| 436 | 436 |
} |
| 437 | 437 |
} |
| 438 | 438 |
|
| 439 | 439 |
/// \brief Initializes the internal data structures. |
| 440 | 440 |
/// |
| 441 | 441 |
/// Initializes the internal data structures and sets the initial |
| 442 | 442 |
/// flow to the given \c flowMap. The \c flowMap should contain a |
| 443 | 443 |
/// flow or at least a preflow, ie. in each node excluding the |
| 444 | 444 |
/// target the incoming flow should greater or equal to the |
| 445 | 445 |
/// outgoing flow. |
| 446 | 446 |
/// \return %False when the given \c flowMap is not a preflow. |
| 447 | 447 |
template <typename FlowMap> |
| 448 |
bool |
|
| 448 |
bool init(const FlowMap& flowMap) {
|
|
| 449 | 449 |
createStructures(); |
| 450 | 450 |
|
| 451 | 451 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 452 | 452 |
_flow->set(e, flowMap[e]); |
| 453 | 453 |
} |
| 454 | 454 |
|
| 455 | 455 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 456 | 456 |
Value excess = 0; |
| 457 | 457 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 458 | 458 |
excess += (*_flow)[e]; |
| 459 | 459 |
} |
| 460 | 460 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 461 | 461 |
excess -= (*_flow)[e]; |
| 462 | 462 |
} |
| 463 | 463 |
if (excess < 0 && n != _source) return false; |
| 464 | 464 |
_excess->set(n, excess); |
| 465 | 465 |
} |
| 466 | 466 |
|
| 467 | 467 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
| 468 | 468 |
|
| 469 | 469 |
_level->initStart(); |
| 470 | 470 |
_level->initAddItem(_target); |
| 471 | 471 |
|
| 472 | 472 |
std::vector<Node> queue; |
| 473 | 473 |
reached.set(_source, true); |
| 474 | 474 |
|
| 475 | 475 |
queue.push_back(_target); |
| 476 | 476 |
reached.set(_target, true); |
| 477 | 477 |
while (!queue.empty()) {
|
| 478 | 478 |
_level->initNewLevel(); |
| 479 | 479 |
std::vector<Node> nqueue; |
| 480 | 480 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 481 | 481 |
Node n = queue[i]; |
| 482 | 482 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 483 | 483 |
Node u = _graph.source(e); |
| 484 | 484 |
if (!reached[u] && |
| 485 | 485 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
|
| 486 | 486 |
reached.set(u, true); |
| 487 | 487 |
_level->initAddItem(u); |
| 488 | 488 |
nqueue.push_back(u); |
| 489 | 489 |
} |
| 490 | 490 |
} |
| 491 | 491 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 492 | 492 |
Node v = _graph.target(e); |
| 493 | 493 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
|
| 494 | 494 |
reached.set(v, true); |
| 495 | 495 |
_level->initAddItem(v); |
| 496 | 496 |
nqueue.push_back(v); |
| 497 | 497 |
} |
| 498 | 498 |
} |
| 499 | 499 |
} |
| 500 | 500 |
queue.swap(nqueue); |
| 501 | 501 |
} |
| 502 | 502 |
_level->initFinish(); |
| 503 | 503 |
|
| 504 | 504 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 505 | 505 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
| 506 | 506 |
if (_tolerance.positive(rem)) {
|
| 507 | 507 |
Node u = _graph.target(e); |
| 508 | 508 |
if ((*_level)[u] == _level->maxLevel()) continue; |
| 509 | 509 |
_flow->set(e, (*_capacity)[e]); |
| 510 | 510 |
_excess->set(u, (*_excess)[u] + rem); |
| 511 | 511 |
if (u != _target && !_level->active(u)) {
|
| 512 | 512 |
_level->activate(u); |
| 513 | 513 |
} |
| 514 | 514 |
} |
| 515 | 515 |
} |
| 516 | 516 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 517 | 517 |
Value rem = (*_flow)[e]; |
| 518 | 518 |
if (_tolerance.positive(rem)) {
|
| 519 | 519 |
Node v = _graph.source(e); |
| 520 | 520 |
if ((*_level)[v] == _level->maxLevel()) continue; |
| 521 | 521 |
_flow->set(e, 0); |
| 522 | 522 |
_excess->set(v, (*_excess)[v] + rem); |
| 523 | 523 |
if (v != _target && !_level->active(v)) {
|
| 524 | 524 |
_level->activate(v); |
| 525 | 525 |
} |
| 526 | 526 |
} |
| 527 | 527 |
} |
| 528 | 528 |
return true; |
| 529 | 529 |
} |
| 530 | 530 |
|
| 531 | 531 |
/// \brief Starts the first phase of the preflow algorithm. |
| 532 | 532 |
/// |
| 533 | 533 |
/// The preflow algorithm consists of two phases, this method runs |
| 534 | 534 |
/// the first phase. After the first phase the maximum flow value |
| 535 | 535 |
/// and a minimum value cut can already be computed, although a |
| 536 | 536 |
/// maximum flow is not yet obtained. So after calling this method |
| 537 | 537 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
| 538 | 538 |
/// minCut() returns a minimum cut. |
| 539 | 539 |
/// \pre One of the \ref init() functions should be called. |
| 540 | 540 |
void startFirstPhase() {
|
| 541 | 541 |
_phase = true; |
| 542 | 542 |
|
| 543 | 543 |
Node n = _level->highestActive(); |
| 544 | 544 |
int level = _level->highestActiveLevel(); |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <fstream> |
| 20 | 20 |
#include <string> |
| 21 | 21 |
|
| 22 | 22 |
#include "test_tools.h" |
| 23 | 23 |
#include <lemon/smart_graph.h> |
| 24 | 24 |
#include <lemon/preflow.h> |
| 25 | 25 |
#include <lemon/concepts/digraph.h> |
| 26 | 26 |
#include <lemon/concepts/maps.h> |
| 27 | 27 |
#include <lemon/lgf_reader.h> |
| 28 | 28 |
|
| 29 | 29 |
using namespace lemon; |
| 30 | 30 |
|
| 31 | 31 |
void checkPreflow() |
| 32 | 32 |
{
|
| 33 | 33 |
typedef int VType; |
| 34 | 34 |
typedef concepts::Digraph Digraph; |
| 35 | 35 |
|
| 36 | 36 |
typedef Digraph::Node Node; |
| 37 | 37 |
typedef Digraph::Arc Arc; |
| 38 | 38 |
typedef concepts::ReadMap<Arc,VType> CapMap; |
| 39 | 39 |
typedef concepts::ReadWriteMap<Arc,VType> FlowMap; |
| 40 | 40 |
typedef concepts::WriteMap<Node,bool> CutMap; |
| 41 | 41 |
|
| 42 | 42 |
Digraph g; |
| 43 | 43 |
Node n; |
| 44 | 44 |
Arc e; |
| 45 | 45 |
CapMap cap; |
| 46 | 46 |
FlowMap flow; |
| 47 | 47 |
CutMap cut; |
| 48 | 48 |
|
| 49 | 49 |
Preflow<Digraph, CapMap>::SetFlowMap<FlowMap>::Create preflow_test(g,cap,n,n); |
| 50 | 50 |
|
| 51 | 51 |
preflow_test.capacityMap(cap); |
| 52 | 52 |
flow = preflow_test.flowMap(); |
| 53 | 53 |
preflow_test.flowMap(flow); |
| 54 | 54 |
preflow_test.source(n); |
| 55 | 55 |
preflow_test.target(n); |
| 56 | 56 |
|
| 57 | 57 |
preflow_test.init(); |
| 58 |
preflow_test. |
|
| 58 |
preflow_test.init(cap); |
|
| 59 | 59 |
preflow_test.startFirstPhase(); |
| 60 | 60 |
preflow_test.startSecondPhase(); |
| 61 | 61 |
preflow_test.run(); |
| 62 | 62 |
preflow_test.runMinCut(); |
| 63 | 63 |
|
| 64 | 64 |
preflow_test.flowValue(); |
| 65 | 65 |
preflow_test.minCut(n); |
| 66 | 66 |
preflow_test.minCutMap(cut); |
| 67 | 67 |
preflow_test.flow(e); |
| 68 | 68 |
|
| 69 | 69 |
} |
| 70 | 70 |
|
| 71 | 71 |
int cutValue (const SmartDigraph& g, |
| 72 | 72 |
const SmartDigraph::NodeMap<bool>& cut, |
| 73 | 73 |
const SmartDigraph::ArcMap<int>& cap) {
|
| 74 | 74 |
|
| 75 | 75 |
int c=0; |
| 76 | 76 |
for(SmartDigraph::ArcIt e(g); e!=INVALID; ++e) {
|
| 77 | 77 |
if (cut[g.source(e)] && !cut[g.target(e)]) c+=cap[e]; |
| 78 | 78 |
} |
| 79 | 79 |
return c; |
| 80 | 80 |
} |
| 81 | 81 |
|
| 82 | 82 |
bool checkFlow(const SmartDigraph& g, |
| 83 | 83 |
const SmartDigraph::ArcMap<int>& flow, |
| 84 | 84 |
const SmartDigraph::ArcMap<int>& cap, |
| 85 | 85 |
SmartDigraph::Node s, SmartDigraph::Node t) {
|
| 86 | 86 |
|
| 87 | 87 |
for (SmartDigraph::ArcIt e(g); e != INVALID; ++e) {
|
| 88 | 88 |
if (flow[e] < 0 || flow[e] > cap[e]) return false; |
| 89 | 89 |
} |
| 90 | 90 |
|
| 91 | 91 |
for (SmartDigraph::NodeIt n(g); n != INVALID; ++n) {
|
| 92 | 92 |
if (n == s || n == t) continue; |
| 93 | 93 |
int sum = 0; |
| 94 | 94 |
for (SmartDigraph::OutArcIt e(g, n); e != INVALID; ++e) {
|
| 95 | 95 |
sum += flow[e]; |
| 96 | 96 |
} |
| 97 | 97 |
for (SmartDigraph::InArcIt e(g, n); e != INVALID; ++e) {
|
| 98 | 98 |
sum -= flow[e]; |
| 99 | 99 |
} |
| 100 | 100 |
if (sum != 0) return false; |
| 101 | 101 |
} |
| 102 | 102 |
return true; |
| 103 | 103 |
} |
| 104 | 104 |
|
| 105 | 105 |
int main() {
|
| 106 | 106 |
|
| 107 | 107 |
typedef SmartDigraph Digraph; |
| 108 | 108 |
|
| 109 | 109 |
typedef Digraph::Node Node; |
| 110 | 110 |
typedef Digraph::NodeIt NodeIt; |
| 111 | 111 |
typedef Digraph::ArcIt ArcIt; |
| 112 | 112 |
typedef Digraph::ArcMap<int> CapMap; |
| 113 | 113 |
typedef Digraph::ArcMap<int> FlowMap; |
| 114 | 114 |
typedef Digraph::NodeMap<bool> CutMap; |
| 115 | 115 |
|
| 116 | 116 |
typedef Preflow<Digraph, CapMap> PType; |
| 117 | 117 |
|
| 118 | 118 |
std::string f_name; |
| 119 | 119 |
if( getenv("srcdir") )
|
| 120 | 120 |
f_name = std::string(getenv("srcdir"));
|
| 121 | 121 |
else f_name = "."; |
| 122 | 122 |
f_name += "/test/preflow_graph.lgf"; |
| 123 | 123 |
|
| 124 | 124 |
std::ifstream file(f_name.c_str()); |
| 125 | 125 |
|
| 126 | 126 |
check(file, "Input file '" << f_name << "' not found."); |
| 127 | 127 |
|
| 128 | 128 |
Digraph g; |
| 129 | 129 |
Node s, t; |
| 130 | 130 |
CapMap cap(g); |
| 131 | 131 |
DigraphReader<Digraph>(g,file). |
| 132 | 132 |
arcMap("capacity", cap).
|
| 133 | 133 |
node("source",s).
|
| 134 | 134 |
node("target",t).
|
| 135 | 135 |
run(); |
| 136 | 136 |
|
| 137 | 137 |
PType preflow_test(g, cap, s, t); |
| 138 | 138 |
preflow_test.run(); |
| 139 | 139 |
|
| 140 | 140 |
check(checkFlow(g, preflow_test.flowMap(), cap, s, t), |
| 141 | 141 |
"The flow is not feasible."); |
| 142 | 142 |
|
| 143 | 143 |
CutMap min_cut(g); |
| 144 | 144 |
preflow_test.minCutMap(min_cut); |
| 145 | 145 |
int min_cut_value=cutValue(g,min_cut,cap); |
| 146 | 146 |
|
| 147 | 147 |
check(preflow_test.flowValue() == min_cut_value, |
| 148 | 148 |
"The max flow value is not equal to the three min cut values."); |
| 149 | 149 |
|
| 150 | 150 |
FlowMap flow(g); |
| 151 | 151 |
for(ArcIt e(g); e!=INVALID; ++e) flow[e] = preflow_test.flowMap()[e]; |
| 152 | 152 |
|
| 153 | 153 |
int flow_value=preflow_test.flowValue(); |
| 154 | 154 |
|
| 155 | 155 |
for(ArcIt e(g); e!=INVALID; ++e) cap[e]=2*cap[e]; |
| 156 |
preflow_test. |
|
| 156 |
preflow_test.init(flow); |
|
| 157 | 157 |
preflow_test.startFirstPhase(); |
| 158 | 158 |
|
| 159 | 159 |
CutMap min_cut1(g); |
| 160 | 160 |
preflow_test.minCutMap(min_cut1); |
| 161 | 161 |
min_cut_value=cutValue(g,min_cut1,cap); |
| 162 | 162 |
|
| 163 | 163 |
check(preflow_test.flowValue() == min_cut_value && |
| 164 | 164 |
min_cut_value == 2*flow_value, |
| 165 | 165 |
"The max flow value or the min cut value is wrong."); |
| 166 | 166 |
|
| 167 | 167 |
preflow_test.startSecondPhase(); |
| 168 | 168 |
|
| 169 | 169 |
check(checkFlow(g, preflow_test.flowMap(), cap, s, t), |
| 170 | 170 |
"The flow is not feasible."); |
| 171 | 171 |
|
| 172 | 172 |
CutMap min_cut2(g); |
| 173 | 173 |
preflow_test.minCutMap(min_cut2); |
| 174 | 174 |
min_cut_value=cutValue(g,min_cut2,cap); |
| 175 | 175 |
|
| 176 | 176 |
check(preflow_test.flowValue() == min_cut_value && |
| 177 | 177 |
min_cut_value == 2*flow_value, |
| 178 | 178 |
"The max flow value or the three min cut values were not doubled"); |
| 179 | 179 |
|
| 180 | 180 |
|
| 181 | 181 |
preflow_test.flowMap(flow); |
| 182 | 182 |
|
| 183 | 183 |
NodeIt tmp1(g,s); |
| 184 | 184 |
++tmp1; |
| 185 | 185 |
if ( tmp1 != INVALID ) s=tmp1; |
| 186 | 186 |
|
| 187 | 187 |
NodeIt tmp2(g,t); |
| 188 | 188 |
++tmp2; |
| 189 | 189 |
if ( tmp2 != INVALID ) t=tmp2; |
| 190 | 190 |
|
| 191 | 191 |
preflow_test.source(s); |
| 192 | 192 |
preflow_test.target(t); |
| 193 | 193 |
|
| 194 | 194 |
preflow_test.run(); |
| 195 | 195 |
|
| 196 | 196 |
CutMap min_cut3(g); |
| 197 | 197 |
preflow_test.minCutMap(min_cut3); |
| 198 | 198 |
min_cut_value=cutValue(g,min_cut3,cap); |
| 199 | 199 |
|
| 200 | 200 |
|
| 201 | 201 |
check(preflow_test.flowValue() == min_cut_value, |
| 202 | 202 |
"The max flow value or the three min cut values are incorrect."); |
| 203 | 203 |
|
| 204 | 204 |
return 0; |
| 205 | 205 |
} |
0 comments (0 inline)