| 1 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
| 2 |
2 |
*
|
| 3 |
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
| 4 |
4 |
*
|
| 5 |
5 |
* Copyright (C) 2003-2008
|
| 6 |
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
| 7 |
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
| 8 |
8 |
*
|
| 9 |
9 |
* Permission to use, modify and distribute this software is granted
|
| 10 |
10 |
* provided that this copyright notice appears in all copies. For
|
| 11 |
11 |
* precise terms see the accompanying LICENSE file.
|
| 12 |
12 |
*
|
| 13 |
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
| 14 |
14 |
* express or implied, and with no claim as to its suitability for any
|
| 15 |
15 |
* purpose.
|
| 16 |
16 |
*
|
| 17 |
17 |
*/
|
| 18 |
18 |
|
| 19 |
19 |
#ifndef LEMON_PREFLOW_H
|
| 20 |
20 |
#define LEMON_PREFLOW_H
|
| 21 |
21 |
|
| 22 |
22 |
#include <lemon/tolerance.h>
|
| 23 |
23 |
#include <lemon/elevator.h>
|
| 24 |
24 |
|
| 25 |
25 |
/// \file
|
| 26 |
26 |
/// \ingroup max_flow
|
| 27 |
27 |
/// \brief Implementation of the preflow algorithm.
|
| 28 |
28 |
|
| 29 |
29 |
namespace lemon {
|
| 30 |
30 |
|
| 31 |
31 |
/// \brief Default traits class of Preflow class.
|
| 32 |
32 |
///
|
| 33 |
33 |
/// Default traits class of Preflow class.
|
| 34 |
34 |
/// \param _Graph Digraph type.
|
| 35 |
35 |
/// \param _CapacityMap Type of capacity map.
|
| 36 |
36 |
template <typename _Graph, typename _CapacityMap>
|
| 37 |
37 |
struct PreflowDefaultTraits {
|
| 38 |
38 |
|
| 39 |
39 |
/// \brief The digraph type the algorithm runs on.
|
| 40 |
40 |
typedef _Graph Digraph;
|
| 41 |
41 |
|
| 42 |
42 |
/// \brief The type of the map that stores the arc capacities.
|
| 43 |
43 |
///
|
| 44 |
44 |
/// The type of the map that stores the arc capacities.
|
| 45 |
45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
|
| 46 |
46 |
typedef _CapacityMap CapacityMap;
|
| 47 |
47 |
|
| 48 |
48 |
/// \brief The type of the length of the arcs.
|
| 49 |
49 |
typedef typename CapacityMap::Value Value;
|
| 50 |
50 |
|
| 51 |
51 |
/// \brief The map type that stores the flow values.
|
| 52 |
52 |
///
|
| 53 |
53 |
/// The map type that stores the flow values.
|
| 54 |
54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
|
| 55 |
55 |
typedef typename Digraph::template ArcMap<Value> FlowMap;
|
| 56 |
56 |
|
| 57 |
57 |
/// \brief Instantiates a FlowMap.
|
| 58 |
58 |
///
|
| 59 |
59 |
/// This function instantiates a \ref FlowMap.
|
| 60 |
60 |
/// \param digraph The digraph, to which we would like to define
|
| 61 |
61 |
/// the flow map.
|
| 62 |
62 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 63 |
63 |
return new FlowMap(digraph);
|
| 64 |
64 |
}
|
| 65 |
65 |
|
| 66 |
66 |
/// \brief The eleavator type used by Preflow algorithm.
|
| 67 |
67 |
///
|
| 68 |
68 |
/// The elevator type used by Preflow algorithm.
|
| 69 |
69 |
///
|
| 70 |
70 |
/// \sa Elevator
|
| 71 |
71 |
/// \sa LinkedElevator
|
| 72 |
72 |
typedef LinkedElevator<Digraph, typename Digraph::Node> Elevator;
|
| 73 |
73 |
|
| 74 |
74 |
/// \brief Instantiates an Elevator.
|
| 75 |
75 |
///
|
| 76 |
76 |
/// This function instantiates a \ref Elevator.
|
| 77 |
77 |
/// \param digraph The digraph, to which we would like to define
|
| 78 |
78 |
/// the elevator.
|
| 79 |
79 |
/// \param max_level The maximum level of the elevator.
|
| 80 |
80 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
| 81 |
81 |
return new Elevator(digraph, max_level);
|
| 82 |
82 |
}
|
| 83 |
83 |
|
| 84 |
84 |
/// \brief The tolerance used by the algorithm
|
| 85 |
85 |
///
|
| 86 |
86 |
/// The tolerance used by the algorithm to handle inexact computation.
|
| 87 |
87 |
typedef lemon::Tolerance<Value> Tolerance;
|
| 88 |
88 |
|
| 89 |
89 |
};
|
| 90 |
90 |
|
| 91 |
91 |
|
| 92 |
92 |
/// \ingroup max_flow
|
| 93 |
93 |
///
|
| 94 |
94 |
/// \brief %Preflow algorithms class.
|
| 95 |
95 |
///
|
| 96 |
96 |
/// This class provides an implementation of the Goldberg's \e
|
| 97 |
97 |
/// preflow \e algorithm producing a flow of maximum value in a
|
| 98 |
98 |
/// digraph. The preflow algorithms are the fastest known max
|
| 99 |
99 |
/// flow algorithms. The current implementation use a mixture of the
|
| 100 |
100 |
/// \e "highest label" and the \e "bound decrease" heuristics.
|
| 101 |
101 |
/// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
|
| 102 |
102 |
///
|
| 103 |
103 |
/// The algorithm consists from two phases. After the first phase
|
| 104 |
104 |
/// the maximal flow value and the minimum cut can be obtained. The
|
| 105 |
105 |
/// second phase constructs the feasible maximum flow on each arc.
|
| 106 |
106 |
///
|
| 107 |
107 |
/// \param _Graph The digraph type the algorithm runs on.
|
| 108 |
108 |
/// \param _CapacityMap The flow map type.
|
| 109 |
109 |
/// \param _Traits Traits class to set various data types used by
|
| 110 |
110 |
/// the algorithm. The default traits class is \ref
|
| 111 |
111 |
/// PreflowDefaultTraits. See \ref PreflowDefaultTraits for the
|
| 112 |
112 |
/// documentation of a %Preflow traits class.
|
| 113 |
113 |
///
|
| 114 |
114 |
///\author Jacint Szabo and Balazs Dezso
|
| 115 |
115 |
#ifdef DOXYGEN
|
| 116 |
116 |
template <typename _Graph, typename _CapacityMap, typename _Traits>
|
| 117 |
117 |
#else
|
| 118 |
118 |
template <typename _Graph,
|
| 119 |
119 |
typename _CapacityMap = typename _Graph::template ArcMap<int>,
|
| 120 |
120 |
typename _Traits = PreflowDefaultTraits<_Graph, _CapacityMap> >
|
| 121 |
121 |
#endif
|
| 122 |
122 |
class Preflow {
|
| 123 |
123 |
public:
|
| 124 |
124 |
|
| 125 |
125 |
typedef _Traits Traits;
|
| 126 |
126 |
typedef typename Traits::Digraph Digraph;
|
| 127 |
127 |
typedef typename Traits::CapacityMap CapacityMap;
|
| 128 |
128 |
typedef typename Traits::Value Value;
|
| 129 |
129 |
|
| 130 |
130 |
typedef typename Traits::FlowMap FlowMap;
|
| 131 |
131 |
typedef typename Traits::Elevator Elevator;
|
| 132 |
132 |
typedef typename Traits::Tolerance Tolerance;
|
| 133 |
133 |
|
| 134 |
134 |
private:
|
| 135 |
135 |
|
| 136 |
136 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
|
| 137 |
137 |
|
| 138 |
138 |
const Digraph& _graph;
|
| 139 |
139 |
const CapacityMap* _capacity;
|
| 140 |
140 |
|
| 141 |
141 |
int _node_num;
|
| 142 |
142 |
|
| 143 |
143 |
Node _source, _target;
|
| 144 |
144 |
|
| 145 |
145 |
FlowMap* _flow;
|
| 146 |
146 |
bool _local_flow;
|
| 147 |
147 |
|
| 148 |
148 |
Elevator* _level;
|
| 149 |
149 |
bool _local_level;
|
| 150 |
150 |
|
| 151 |
151 |
typedef typename Digraph::template NodeMap<Value> ExcessMap;
|
| 152 |
152 |
ExcessMap* _excess;
|
| 153 |
153 |
|
| 154 |
154 |
Tolerance _tolerance;
|
| 155 |
155 |
|
| 156 |
156 |
bool _phase;
|
| 157 |
157 |
|
| 158 |
158 |
|
| 159 |
159 |
void createStructures() {
|
| 160 |
160 |
_node_num = countNodes(_graph);
|
| 161 |
161 |
|
| 162 |
162 |
if (!_flow) {
|
| 163 |
163 |
_flow = Traits::createFlowMap(_graph);
|
| 164 |
164 |
_local_flow = true;
|
| 165 |
165 |
}
|
| 166 |
166 |
if (!_level) {
|
| 167 |
167 |
_level = Traits::createElevator(_graph, _node_num);
|
| 168 |
168 |
_local_level = true;
|
| 169 |
169 |
}
|
| 170 |
170 |
if (!_excess) {
|
| 171 |
171 |
_excess = new ExcessMap(_graph);
|
| 172 |
172 |
}
|
| 173 |
173 |
}
|
| 174 |
174 |
|
| 175 |
175 |
void destroyStructures() {
|
| 176 |
176 |
if (_local_flow) {
|
| 177 |
177 |
delete _flow;
|
| 178 |
178 |
}
|
| 179 |
179 |
if (_local_level) {
|
| 180 |
180 |
delete _level;
|
| 181 |
181 |
}
|
| 182 |
182 |
if (_excess) {
|
| 183 |
183 |
delete _excess;
|
| 184 |
184 |
}
|
| 185 |
185 |
}
|
| 186 |
186 |
|
| 187 |
187 |
public:
|
| 188 |
188 |
|
| 189 |
189 |
typedef Preflow Create;
|
| 190 |
190 |
|
| 191 |
191 |
///\name Named template parameters
|
| 192 |
192 |
|
| 193 |
193 |
///@{
|
| 194 |
194 |
|
| 195 |
195 |
template <typename _FlowMap>
|
| 196 |
196 |
struct SetFlowMapTraits : public Traits {
|
| 197 |
197 |
typedef _FlowMap FlowMap;
|
| 198 |
198 |
static FlowMap *createFlowMap(const Digraph&) {
|
| 199 |
199 |
LEMON_ASSERT(false, "FlowMap is not initialized");
|
| 200 |
200 |
return 0; // ignore warnings
|
| 201 |
201 |
}
|
| 202 |
202 |
};
|
| 203 |
203 |
|
| 204 |
204 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
| 205 |
205 |
/// FlowMap type
|
| 206 |
206 |
///
|
| 207 |
207 |
/// \ref named-templ-param "Named parameter" for setting FlowMap
|
| 208 |
208 |
/// type
|
| 209 |
209 |
template <typename _FlowMap>
|
| 210 |
210 |
struct SetFlowMap
|
| 211 |
211 |
: public Preflow<Digraph, CapacityMap, SetFlowMapTraits<_FlowMap> > {
|
| 212 |
212 |
typedef Preflow<Digraph, CapacityMap,
|
| 213 |
213 |
SetFlowMapTraits<_FlowMap> > Create;
|
| 214 |
214 |
};
|
| 215 |
215 |
|
| 216 |
216 |
template <typename _Elevator>
|
| 217 |
217 |
struct SetElevatorTraits : public Traits {
|
| 218 |
218 |
typedef _Elevator Elevator;
|
| 219 |
219 |
static Elevator *createElevator(const Digraph&, int) {
|
| 220 |
220 |
LEMON_ASSERT(false, "Elevator is not initialized");
|
| 221 |
221 |
return 0; // ignore warnings
|
| 222 |
222 |
}
|
| 223 |
223 |
};
|
| 224 |
224 |
|
| 225 |
225 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
| 226 |
226 |
/// Elevator type
|
| 227 |
227 |
///
|
| 228 |
228 |
/// \ref named-templ-param "Named parameter" for setting Elevator
|
| 229 |
229 |
/// type
|
| 230 |
230 |
template <typename _Elevator>
|
| 231 |
231 |
struct SetElevator
|
| 232 |
232 |
: public Preflow<Digraph, CapacityMap, SetElevatorTraits<_Elevator> > {
|
| 233 |
233 |
typedef Preflow<Digraph, CapacityMap,
|
| 234 |
234 |
SetElevatorTraits<_Elevator> > Create;
|
| 235 |
235 |
};
|
| 236 |
236 |
|
| 237 |
237 |
template <typename _Elevator>
|
| 238 |
238 |
struct SetStandardElevatorTraits : public Traits {
|
| 239 |
239 |
typedef _Elevator Elevator;
|
| 240 |
240 |
static Elevator *createElevator(const Digraph& digraph, int max_level) {
|
| 241 |
241 |
return new Elevator(digraph, max_level);
|
| 242 |
242 |
}
|
| 243 |
243 |
};
|
| 244 |
244 |
|
| 245 |
245 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
| 246 |
246 |
/// Elevator type
|
| 247 |
247 |
///
|
| 248 |
248 |
/// \ref named-templ-param "Named parameter" for setting Elevator
|
| 249 |
249 |
/// type. The Elevator should be standard constructor interface, ie.
|
| 250 |
250 |
/// the digraph and the maximum level should be passed to it.
|
| 251 |
251 |
template <typename _Elevator>
|
| 252 |
252 |
struct SetStandardElevator
|
| 253 |
253 |
: public Preflow<Digraph, CapacityMap,
|
| 254 |
254 |
SetStandardElevatorTraits<_Elevator> > {
|
| 255 |
255 |
typedef Preflow<Digraph, CapacityMap,
|
| 256 |
256 |
SetStandardElevatorTraits<_Elevator> > Create;
|
| 257 |
257 |
};
|
| 258 |
258 |
|
| 259 |
259 |
/// @}
|
| 260 |
260 |
|
| 261 |
261 |
protected:
|
| 262 |
262 |
|
| 263 |
263 |
Preflow() {}
|
| 264 |
264 |
|
| 265 |
265 |
public:
|
| 266 |
266 |
|
| 267 |
267 |
|
| 268 |
268 |
/// \brief The constructor of the class.
|
| 269 |
269 |
///
|
| 270 |
270 |
/// The constructor of the class.
|
| 271 |
271 |
/// \param digraph The digraph the algorithm runs on.
|
| 272 |
272 |
/// \param capacity The capacity of the arcs.
|
| 273 |
273 |
/// \param source The source node.
|
| 274 |
274 |
/// \param target The target node.
|
| 275 |
275 |
Preflow(const Digraph& digraph, const CapacityMap& capacity,
|
| 276 |
276 |
Node source, Node target)
|
| 277 |
277 |
: _graph(digraph), _capacity(&capacity),
|
| 278 |
278 |
_node_num(0), _source(source), _target(target),
|
| 279 |
279 |
_flow(0), _local_flow(false),
|
| 280 |
280 |
_level(0), _local_level(false),
|
| 281 |
281 |
_excess(0), _tolerance(), _phase() {}
|
| 282 |
282 |
|
| 283 |
283 |
/// \brief Destrcutor.
|
| 284 |
284 |
///
|
| 285 |
285 |
/// Destructor.
|
| 286 |
286 |
~Preflow() {
|
| 287 |
287 |
destroyStructures();
|
| 288 |
288 |
}
|
| 289 |
289 |
|
| 290 |
290 |
/// \brief Sets the capacity map.
|
| 291 |
291 |
///
|
| 292 |
292 |
/// Sets the capacity map.
|
| 293 |
293 |
/// \return \c (*this)
|
| 294 |
294 |
Preflow& capacityMap(const CapacityMap& map) {
|
| 295 |
295 |
_capacity = ↦
|
| 296 |
296 |
return *this;
|
| 297 |
297 |
}
|
| 298 |
298 |
|
| 299 |
299 |
/// \brief Sets the flow map.
|
| 300 |
300 |
///
|
| 301 |
301 |
/// Sets the flow map.
|
| 302 |
302 |
/// \return \c (*this)
|
| 303 |
303 |
Preflow& flowMap(FlowMap& map) {
|
| 304 |
304 |
if (_local_flow) {
|
| 305 |
305 |
delete _flow;
|
| 306 |
306 |
_local_flow = false;
|
| 307 |
307 |
}
|
| 308 |
308 |
_flow = ↦
|
| 309 |
309 |
return *this;
|
| 310 |
310 |
}
|
| 311 |
311 |
|
| 312 |
312 |
/// \brief Returns the flow map.
|
| 313 |
313 |
///
|
| 314 |
314 |
/// \return The flow map.
|
| 315 |
315 |
const FlowMap& flowMap() {
|
| 316 |
316 |
return *_flow;
|
| 317 |
317 |
}
|
| 318 |
318 |
|
| 319 |
319 |
/// \brief Sets the elevator.
|
| 320 |
320 |
///
|
| 321 |
321 |
/// Sets the elevator.
|
| 322 |
322 |
/// \return \c (*this)
|
| 323 |
323 |
Preflow& elevator(Elevator& elevator) {
|
| 324 |
324 |
if (_local_level) {
|
| 325 |
325 |
delete _level;
|
| 326 |
326 |
_local_level = false;
|
| 327 |
327 |
}
|
| 328 |
328 |
_level = &elevator;
|
| 329 |
329 |
return *this;
|
| 330 |
330 |
}
|
| 331 |
331 |
|
| 332 |
332 |
/// \brief Returns the elevator.
|
| 333 |
333 |
///
|
| 334 |
334 |
/// \return The elevator.
|
| 335 |
335 |
const Elevator& elevator() {
|
| 336 |
336 |
return *_level;
|
| 337 |
337 |
}
|
| 338 |
338 |
|
| 339 |
339 |
/// \brief Sets the source node.
|
| 340 |
340 |
///
|
| 341 |
341 |
/// Sets the source node.
|
| 342 |
342 |
/// \return \c (*this)
|
| 343 |
343 |
Preflow& source(const Node& node) {
|
| 344 |
344 |
_source = node;
|
| 345 |
345 |
return *this;
|
| 346 |
346 |
}
|
| 347 |
347 |
|
| 348 |
348 |
/// \brief Sets the target node.
|
| 349 |
349 |
///
|
| 350 |
350 |
/// Sets the target node.
|
| 351 |
351 |
/// \return \c (*this)
|
| 352 |
352 |
Preflow& target(const Node& node) {
|
| 353 |
353 |
_target = node;
|
| 354 |
354 |
return *this;
|
| 355 |
355 |
}
|
| 356 |
356 |
|
| 357 |
357 |
/// \brief Sets the tolerance used by algorithm.
|
| 358 |
358 |
///
|
| 359 |
359 |
/// Sets the tolerance used by algorithm.
|
| 360 |
360 |
Preflow& tolerance(const Tolerance& tolerance) const {
|
| 361 |
361 |
_tolerance = tolerance;
|
| 362 |
362 |
return *this;
|
| 363 |
363 |
}
|
| 364 |
364 |
|
| 365 |
365 |
/// \brief Returns the tolerance used by algorithm.
|
| 366 |
366 |
///
|
| 367 |
367 |
/// Returns the tolerance used by algorithm.
|
| 368 |
368 |
const Tolerance& tolerance() const {
|
| 369 |
369 |
return tolerance;
|
| 370 |
370 |
}
|
| 371 |
371 |
|
| 372 |
372 |
/// \name Execution control The simplest way to execute the
|
| 373 |
373 |
/// algorithm is to use one of the member functions called \c
|
| 374 |
374 |
/// run().
|
| 375 |
375 |
/// \n
|
| 376 |
376 |
/// If you need more control on initial solution or
|
| 377 |
377 |
/// execution then you have to call one \ref init() function and then
|
| 378 |
378 |
/// the startFirstPhase() and if you need the startSecondPhase().
|
| 379 |
379 |
|
| 380 |
380 |
///@{
|
| 381 |
381 |
|
| 382 |
382 |
/// \brief Initializes the internal data structures.
|
| 383 |
383 |
///
|
| 384 |
384 |
/// Initializes the internal data structures.
|
| 385 |
385 |
///
|
| 386 |
386 |
void init() {
|
| 387 |
387 |
createStructures();
|
| 388 |
388 |
|
| 389 |
389 |
_phase = true;
|
| 390 |
390 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 391 |
391 |
_excess->set(n, 0);
|
| 392 |
392 |
}
|
| 393 |
393 |
|
| 394 |
394 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 395 |
395 |
_flow->set(e, 0);
|
| 396 |
396 |
}
|
| 397 |
397 |
|
| 398 |
398 |
typename Digraph::template NodeMap<bool> reached(_graph, false);
|
| 399 |
399 |
|
| 400 |
400 |
_level->initStart();
|
| 401 |
401 |
_level->initAddItem(_target);
|
| 402 |
402 |
|
| 403 |
403 |
std::vector<Node> queue;
|
| 404 |
404 |
reached.set(_source, true);
|
| 405 |
405 |
|
| 406 |
406 |
queue.push_back(_target);
|
| 407 |
407 |
reached.set(_target, true);
|
| 408 |
408 |
while (!queue.empty()) {
|
| 409 |
409 |
_level->initNewLevel();
|
| 410 |
410 |
std::vector<Node> nqueue;
|
| 411 |
411 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 412 |
412 |
Node n = queue[i];
|
| 413 |
413 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 414 |
414 |
Node u = _graph.source(e);
|
| 415 |
415 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
|
| 416 |
416 |
reached.set(u, true);
|
| 417 |
417 |
_level->initAddItem(u);
|
| 418 |
418 |
nqueue.push_back(u);
|
| 419 |
419 |
}
|
| 420 |
420 |
}
|
| 421 |
421 |
}
|
| 422 |
422 |
queue.swap(nqueue);
|
| 423 |
423 |
}
|
| 424 |
424 |
_level->initFinish();
|
| 425 |
425 |
|
| 426 |
426 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 427 |
427 |
if (_tolerance.positive((*_capacity)[e])) {
|
| 428 |
428 |
Node u = _graph.target(e);
|
| 429 |
429 |
if ((*_level)[u] == _level->maxLevel()) continue;
|
| 430 |
430 |
_flow->set(e, (*_capacity)[e]);
|
| 431 |
431 |
_excess->set(u, (*_excess)[u] + (*_capacity)[e]);
|
| 432 |
432 |
if (u != _target && !_level->active(u)) {
|
| 433 |
433 |
_level->activate(u);
|
| 434 |
434 |
}
|
| 435 |
435 |
}
|
| 436 |
436 |
}
|
| 437 |
437 |
}
|
| 438 |
438 |
|
| 439 |
439 |
/// \brief Initializes the internal data structures.
|
| 440 |
440 |
///
|
| 441 |
441 |
/// Initializes the internal data structures and sets the initial
|
| 442 |
442 |
/// flow to the given \c flowMap. The \c flowMap should contain a
|
| 443 |
443 |
/// flow or at least a preflow, ie. in each node excluding the
|
| 444 |
444 |
/// target the incoming flow should greater or equal to the
|
| 445 |
445 |
/// outgoing flow.
|
| 446 |
446 |
/// \return %False when the given \c flowMap is not a preflow.
|
| 447 |
447 |
template <typename FlowMap>
|
| 448 |
|
bool flowInit(const FlowMap& flowMap) {
|
|
448 |
bool init(const FlowMap& flowMap) {
|
| 449 |
449 |
createStructures();
|
| 450 |
450 |
|
| 451 |
451 |
for (ArcIt e(_graph); e != INVALID; ++e) {
|
| 452 |
452 |
_flow->set(e, flowMap[e]);
|
| 453 |
453 |
}
|
| 454 |
454 |
|
| 455 |
455 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 456 |
456 |
Value excess = 0;
|
| 457 |
457 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 458 |
458 |
excess += (*_flow)[e];
|
| 459 |
459 |
}
|
| 460 |
460 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 461 |
461 |
excess -= (*_flow)[e];
|
| 462 |
462 |
}
|
| 463 |
463 |
if (excess < 0 && n != _source) return false;
|
| 464 |
464 |
_excess->set(n, excess);
|
| 465 |
465 |
}
|
| 466 |
466 |
|
| 467 |
467 |
typename Digraph::template NodeMap<bool> reached(_graph, false);
|
| 468 |
468 |
|
| 469 |
469 |
_level->initStart();
|
| 470 |
470 |
_level->initAddItem(_target);
|
| 471 |
471 |
|
| 472 |
472 |
std::vector<Node> queue;
|
| 473 |
473 |
reached.set(_source, true);
|
| 474 |
474 |
|
| 475 |
475 |
queue.push_back(_target);
|
| 476 |
476 |
reached.set(_target, true);
|
| 477 |
477 |
while (!queue.empty()) {
|
| 478 |
478 |
_level->initNewLevel();
|
| 479 |
479 |
std::vector<Node> nqueue;
|
| 480 |
480 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 481 |
481 |
Node n = queue[i];
|
| 482 |
482 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 483 |
483 |
Node u = _graph.source(e);
|
| 484 |
484 |
if (!reached[u] &&
|
| 485 |
485 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
|
| 486 |
486 |
reached.set(u, true);
|
| 487 |
487 |
_level->initAddItem(u);
|
| 488 |
488 |
nqueue.push_back(u);
|
| 489 |
489 |
}
|
| 490 |
490 |
}
|
| 491 |
491 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 492 |
492 |
Node v = _graph.target(e);
|
| 493 |
493 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
|
| 494 |
494 |
reached.set(v, true);
|
| 495 |
495 |
_level->initAddItem(v);
|
| 496 |
496 |
nqueue.push_back(v);
|
| 497 |
497 |
}
|
| 498 |
498 |
}
|
| 499 |
499 |
}
|
| 500 |
500 |
queue.swap(nqueue);
|
| 501 |
501 |
}
|
| 502 |
502 |
_level->initFinish();
|
| 503 |
503 |
|
| 504 |
504 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 505 |
505 |
Value rem = (*_capacity)[e] - (*_flow)[e];
|
| 506 |
506 |
if (_tolerance.positive(rem)) {
|
| 507 |
507 |
Node u = _graph.target(e);
|
| 508 |
508 |
if ((*_level)[u] == _level->maxLevel()) continue;
|
| 509 |
509 |
_flow->set(e, (*_capacity)[e]);
|
| 510 |
510 |
_excess->set(u, (*_excess)[u] + rem);
|
| 511 |
511 |
if (u != _target && !_level->active(u)) {
|
| 512 |
512 |
_level->activate(u);
|
| 513 |
513 |
}
|
| 514 |
514 |
}
|
| 515 |
515 |
}
|
| 516 |
516 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) {
|
| 517 |
517 |
Value rem = (*_flow)[e];
|
| 518 |
518 |
if (_tolerance.positive(rem)) {
|
| 519 |
519 |
Node v = _graph.source(e);
|
| 520 |
520 |
if ((*_level)[v] == _level->maxLevel()) continue;
|
| 521 |
521 |
_flow->set(e, 0);
|
| 522 |
522 |
_excess->set(v, (*_excess)[v] + rem);
|
| 523 |
523 |
if (v != _target && !_level->active(v)) {
|
| 524 |
524 |
_level->activate(v);
|
| 525 |
525 |
}
|
| 526 |
526 |
}
|
| 527 |
527 |
}
|
| 528 |
528 |
return true;
|
| 529 |
529 |
}
|
| 530 |
530 |
|
| 531 |
531 |
/// \brief Starts the first phase of the preflow algorithm.
|
| 532 |
532 |
///
|
| 533 |
533 |
/// The preflow algorithm consists of two phases, this method runs
|
| 534 |
534 |
/// the first phase. After the first phase the maximum flow value
|
| 535 |
535 |
/// and a minimum value cut can already be computed, although a
|
| 536 |
536 |
/// maximum flow is not yet obtained. So after calling this method
|
| 537 |
537 |
/// \ref flowValue() returns the value of a maximum flow and \ref
|
| 538 |
538 |
/// minCut() returns a minimum cut.
|
| 539 |
539 |
/// \pre One of the \ref init() functions should be called.
|
| 540 |
540 |
void startFirstPhase() {
|
| 541 |
541 |
_phase = true;
|
| 542 |
542 |
|
| 543 |
543 |
Node n = _level->highestActive();
|
| 544 |
544 |
int level = _level->highestActiveLevel();
|
| 545 |
545 |
while (n != INVALID) {
|
| 546 |
546 |
int num = _node_num;
|
| 547 |
547 |
|
| 548 |
548 |
while (num > 0 && n != INVALID) {
|
| 549 |
549 |
Value excess = (*_excess)[n];
|
| 550 |
550 |
int new_level = _level->maxLevel();
|
| 551 |
551 |
|
| 552 |
552 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 553 |
553 |
Value rem = (*_capacity)[e] - (*_flow)[e];
|
| 554 |
554 |
if (!_tolerance.positive(rem)) continue;
|
| 555 |
555 |
Node v = _graph.target(e);
|
| 556 |
556 |
if ((*_level)[v] < level) {
|
| 557 |
557 |
if (!_level->active(v) && v != _target) {
|
| 558 |
558 |
_level->activate(v);
|
| 559 |
559 |
}
|
| 560 |
560 |
if (!_tolerance.less(rem, excess)) {
|
| 561 |
561 |
_flow->set(e, (*_flow)[e] + excess);
|
| 562 |
562 |
_excess->set(v, (*_excess)[v] + excess);
|
| 563 |
563 |
excess = 0;
|
| 564 |
564 |
goto no_more_push_1;
|
| 565 |
565 |
} else {
|
| 566 |
566 |
excess -= rem;
|
| 567 |
567 |
_excess->set(v, (*_excess)[v] + rem);
|
| 568 |
568 |
_flow->set(e, (*_capacity)[e]);
|
| 569 |
569 |
}
|
| 570 |
570 |
} else if (new_level > (*_level)[v]) {
|
| 571 |
571 |
new_level = (*_level)[v];
|
| 572 |
572 |
}
|
| 573 |
573 |
}
|
| 574 |
574 |
|
| 575 |
575 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 576 |
576 |
Value rem = (*_flow)[e];
|
| 577 |
577 |
if (!_tolerance.positive(rem)) continue;
|
| 578 |
578 |
Node v = _graph.source(e);
|
| 579 |
579 |
if ((*_level)[v] < level) {
|
| 580 |
580 |
if (!_level->active(v) && v != _target) {
|
| 581 |
581 |
_level->activate(v);
|
| 582 |
582 |
}
|
| 583 |
583 |
if (!_tolerance.less(rem, excess)) {
|
| 584 |
584 |
_flow->set(e, (*_flow)[e] - excess);
|
| 585 |
585 |
_excess->set(v, (*_excess)[v] + excess);
|
| 586 |
586 |
excess = 0;
|
| 587 |
587 |
goto no_more_push_1;
|
| 588 |
588 |
} else {
|
| 589 |
589 |
excess -= rem;
|
| 590 |
590 |
_excess->set(v, (*_excess)[v] + rem);
|
| 591 |
591 |
_flow->set(e, 0);
|
| 592 |
592 |
}
|
| 593 |
593 |
} else if (new_level > (*_level)[v]) {
|
| 594 |
594 |
new_level = (*_level)[v];
|
| 595 |
595 |
}
|
| 596 |
596 |
}
|
| 597 |
597 |
|
| 598 |
598 |
no_more_push_1:
|
| 599 |
599 |
|
| 600 |
600 |
_excess->set(n, excess);
|
| 601 |
601 |
|
| 602 |
602 |
if (excess != 0) {
|
| 603 |
603 |
if (new_level + 1 < _level->maxLevel()) {
|
| 604 |
604 |
_level->liftHighestActive(new_level + 1);
|
| 605 |
605 |
} else {
|
| 606 |
606 |
_level->liftHighestActiveToTop();
|
| 607 |
607 |
}
|
| 608 |
608 |
if (_level->emptyLevel(level)) {
|
| 609 |
609 |
_level->liftToTop(level);
|
| 610 |
610 |
}
|
| 611 |
611 |
} else {
|
| 612 |
612 |
_level->deactivate(n);
|
| 613 |
613 |
}
|
| 614 |
614 |
|
| 615 |
615 |
n = _level->highestActive();
|
| 616 |
616 |
level = _level->highestActiveLevel();
|
| 617 |
617 |
--num;
|
| 618 |
618 |
}
|
| 619 |
619 |
|
| 620 |
620 |
num = _node_num * 20;
|
| 621 |
621 |
while (num > 0 && n != INVALID) {
|
| 622 |
622 |
Value excess = (*_excess)[n];
|
| 623 |
623 |
int new_level = _level->maxLevel();
|
| 624 |
624 |
|
| 625 |
625 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 626 |
626 |
Value rem = (*_capacity)[e] - (*_flow)[e];
|
| 627 |
627 |
if (!_tolerance.positive(rem)) continue;
|
| 628 |
628 |
Node v = _graph.target(e);
|
| 629 |
629 |
if ((*_level)[v] < level) {
|
| 630 |
630 |
if (!_level->active(v) && v != _target) {
|
| 631 |
631 |
_level->activate(v);
|
| 632 |
632 |
}
|
| 633 |
633 |
if (!_tolerance.less(rem, excess)) {
|
| 634 |
634 |
_flow->set(e, (*_flow)[e] + excess);
|
| 635 |
635 |
_excess->set(v, (*_excess)[v] + excess);
|
| 636 |
636 |
excess = 0;
|
| 637 |
637 |
goto no_more_push_2;
|
| 638 |
638 |
} else {
|
| 639 |
639 |
excess -= rem;
|
| 640 |
640 |
_excess->set(v, (*_excess)[v] + rem);
|
| 641 |
641 |
_flow->set(e, (*_capacity)[e]);
|
| 642 |
642 |
}
|
| 643 |
643 |
} else if (new_level > (*_level)[v]) {
|
| 644 |
644 |
new_level = (*_level)[v];
|
| 645 |
645 |
}
|
| 646 |
646 |
}
|
| 647 |
647 |
|
| 648 |
648 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 649 |
649 |
Value rem = (*_flow)[e];
|
| 650 |
650 |
if (!_tolerance.positive(rem)) continue;
|
| 651 |
651 |
Node v = _graph.source(e);
|
| 652 |
652 |
if ((*_level)[v] < level) {
|
| 653 |
653 |
if (!_level->active(v) && v != _target) {
|
| 654 |
654 |
_level->activate(v);
|
| 655 |
655 |
}
|
| 656 |
656 |
if (!_tolerance.less(rem, excess)) {
|
| 657 |
657 |
_flow->set(e, (*_flow)[e] - excess);
|
| 658 |
658 |
_excess->set(v, (*_excess)[v] + excess);
|
| 659 |
659 |
excess = 0;
|
| 660 |
660 |
goto no_more_push_2;
|
| 661 |
661 |
} else {
|
| 662 |
662 |
excess -= rem;
|
| 663 |
663 |
_excess->set(v, (*_excess)[v] + rem);
|
| 664 |
664 |
_flow->set(e, 0);
|
| 665 |
665 |
}
|
| 666 |
666 |
} else if (new_level > (*_level)[v]) {
|
| 667 |
667 |
new_level = (*_level)[v];
|
| 668 |
668 |
}
|
| 669 |
669 |
}
|
| 670 |
670 |
|
| 671 |
671 |
no_more_push_2:
|
| 672 |
672 |
|
| 673 |
673 |
_excess->set(n, excess);
|
| 674 |
674 |
|
| 675 |
675 |
if (excess != 0) {
|
| 676 |
676 |
if (new_level + 1 < _level->maxLevel()) {
|
| 677 |
677 |
_level->liftActiveOn(level, new_level + 1);
|
| 678 |
678 |
} else {
|
| 679 |
679 |
_level->liftActiveToTop(level);
|
| 680 |
680 |
}
|
| 681 |
681 |
if (_level->emptyLevel(level)) {
|
| 682 |
682 |
_level->liftToTop(level);
|
| 683 |
683 |
}
|
| 684 |
684 |
} else {
|
| 685 |
685 |
_level->deactivate(n);
|
| 686 |
686 |
}
|
| 687 |
687 |
|
| 688 |
688 |
while (level >= 0 && _level->activeFree(level)) {
|
| 689 |
689 |
--level;
|
| 690 |
690 |
}
|
| 691 |
691 |
if (level == -1) {
|
| 692 |
692 |
n = _level->highestActive();
|
| 693 |
693 |
level = _level->highestActiveLevel();
|
| 694 |
694 |
} else {
|
| 695 |
695 |
n = _level->activeOn(level);
|
| 696 |
696 |
}
|
| 697 |
697 |
--num;
|
| 698 |
698 |
}
|
| 699 |
699 |
}
|
| 700 |
700 |
}
|
| 701 |
701 |
|
| 702 |
702 |
/// \brief Starts the second phase of the preflow algorithm.
|
| 703 |
703 |
///
|
| 704 |
704 |
/// The preflow algorithm consists of two phases, this method runs
|
| 705 |
705 |
/// the second phase. After calling \ref init() and \ref
|
| 706 |
706 |
/// startFirstPhase() and then \ref startSecondPhase(), \ref
|
| 707 |
707 |
/// flowMap() return a maximum flow, \ref flowValue() returns the
|
| 708 |
708 |
/// value of a maximum flow, \ref minCut() returns a minimum cut
|
| 709 |
709 |
/// \pre The \ref init() and startFirstPhase() functions should be
|
| 710 |
710 |
/// called before.
|
| 711 |
711 |
void startSecondPhase() {
|
| 712 |
712 |
_phase = false;
|
| 713 |
713 |
|
| 714 |
714 |
typename Digraph::template NodeMap<bool> reached(_graph);
|
| 715 |
715 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 716 |
716 |
reached.set(n, (*_level)[n] < _level->maxLevel());
|
| 717 |
717 |
}
|
| 718 |
718 |
|
| 719 |
719 |
_level->initStart();
|
| 720 |
720 |
_level->initAddItem(_source);
|
| 721 |
721 |
|
| 722 |
722 |
std::vector<Node> queue;
|
| 723 |
723 |
queue.push_back(_source);
|
| 724 |
724 |
reached.set(_source, true);
|
| 725 |
725 |
|
| 726 |
726 |
while (!queue.empty()) {
|
| 727 |
727 |
_level->initNewLevel();
|
| 728 |
728 |
std::vector<Node> nqueue;
|
| 729 |
729 |
for (int i = 0; i < int(queue.size()); ++i) {
|
| 730 |
730 |
Node n = queue[i];
|
| 731 |
731 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 732 |
732 |
Node v = _graph.target(e);
|
| 733 |
733 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
|
| 734 |
734 |
reached.set(v, true);
|
| 735 |
735 |
_level->initAddItem(v);
|
| 736 |
736 |
nqueue.push_back(v);
|
| 737 |
737 |
}
|
| 738 |
738 |
}
|
| 739 |
739 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 740 |
740 |
Node u = _graph.source(e);
|
| 741 |
741 |
if (!reached[u] &&
|
| 742 |
742 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
|
| 743 |
743 |
reached.set(u, true);
|
| 744 |
744 |
_level->initAddItem(u);
|
| 745 |
745 |
nqueue.push_back(u);
|
| 746 |
746 |
}
|
| 747 |
747 |
}
|
| 748 |
748 |
}
|
| 749 |
749 |
queue.swap(nqueue);
|
| 750 |
750 |
}
|
| 751 |
751 |
_level->initFinish();
|
| 752 |
752 |
|
| 753 |
753 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 754 |
754 |
if (!reached[n]) {
|
| 755 |
755 |
_level->dirtyTopButOne(n);
|
| 756 |
756 |
} else if ((*_excess)[n] > 0 && _target != n) {
|
| 757 |
757 |
_level->activate(n);
|
| 758 |
758 |
}
|
| 759 |
759 |
}
|
| 760 |
760 |
|
| 761 |
761 |
Node n;
|
| 762 |
762 |
while ((n = _level->highestActive()) != INVALID) {
|
| 763 |
763 |
Value excess = (*_excess)[n];
|
| 764 |
764 |
int level = _level->highestActiveLevel();
|
| 765 |
765 |
int new_level = _level->maxLevel();
|
| 766 |
766 |
|
| 767 |
767 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
|
| 768 |
768 |
Value rem = (*_capacity)[e] - (*_flow)[e];
|
| 769 |
769 |
if (!_tolerance.positive(rem)) continue;
|
| 770 |
770 |
Node v = _graph.target(e);
|
| 771 |
771 |
if ((*_level)[v] < level) {
|
| 772 |
772 |
if (!_level->active(v) && v != _source) {
|
| 773 |
773 |
_level->activate(v);
|
| 774 |
774 |
}
|
| 775 |
775 |
if (!_tolerance.less(rem, excess)) {
|
| 776 |
776 |
_flow->set(e, (*_flow)[e] + excess);
|
| 777 |
777 |
_excess->set(v, (*_excess)[v] + excess);
|
| 778 |
778 |
excess = 0;
|
| 779 |
779 |
goto no_more_push;
|
| 780 |
780 |
} else {
|
| 781 |
781 |
excess -= rem;
|
| 782 |
782 |
_excess->set(v, (*_excess)[v] + rem);
|
| 783 |
783 |
_flow->set(e, (*_capacity)[e]);
|
| 784 |
784 |
}
|
| 785 |
785 |
} else if (new_level > (*_level)[v]) {
|
| 786 |
786 |
new_level = (*_level)[v];
|
| 787 |
787 |
}
|
| 788 |
788 |
}
|
| 789 |
789 |
|
| 790 |
790 |
for (InArcIt e(_graph, n); e != INVALID; ++e) {
|
| 791 |
791 |
Value rem = (*_flow)[e];
|
| 792 |
792 |
if (!_tolerance.positive(rem)) continue;
|
| 793 |
793 |
Node v = _graph.source(e);
|
| 794 |
794 |
if ((*_level)[v] < level) {
|
| 795 |
795 |
if (!_level->active(v) && v != _source) {
|
| 796 |
796 |
_level->activate(v);
|
| 797 |
797 |
}
|
| 798 |
798 |
if (!_tolerance.less(rem, excess)) {
|
| 799 |
799 |
_flow->set(e, (*_flow)[e] - excess);
|
| 800 |
800 |
_excess->set(v, (*_excess)[v] + excess);
|
| 801 |
801 |
excess = 0;
|
| 802 |
802 |
goto no_more_push;
|
| 803 |
803 |
} else {
|
| 804 |
804 |
excess -= rem;
|
| 805 |
805 |
_excess->set(v, (*_excess)[v] + rem);
|
| 806 |
806 |
_flow->set(e, 0);
|
| 807 |
807 |
}
|
| 808 |
808 |
} else if (new_level > (*_level)[v]) {
|
| 809 |
809 |
new_level = (*_level)[v];
|
| 810 |
810 |
}
|
| 811 |
811 |
}
|
| 812 |
812 |
|
| 813 |
813 |
no_more_push:
|
| 814 |
814 |
|
| 815 |
815 |
_excess->set(n, excess);
|
| 816 |
816 |
|
| 817 |
817 |
if (excess != 0) {
|
| 818 |
818 |
if (new_level + 1 < _level->maxLevel()) {
|
| 819 |
819 |
_level->liftHighestActive(new_level + 1);
|
| 820 |
820 |
} else {
|
| 821 |
821 |
// Calculation error
|
| 822 |
822 |
_level->liftHighestActiveToTop();
|
| 823 |
823 |
}
|
| 824 |
824 |
if (_level->emptyLevel(level)) {
|
| 825 |
825 |
// Calculation error
|
| 826 |
826 |
_level->liftToTop(level);
|
| 827 |
827 |
}
|
| 828 |
828 |
} else {
|
| 829 |
829 |
_level->deactivate(n);
|
| 830 |
830 |
}
|
| 831 |
831 |
|
| 832 |
832 |
}
|
| 833 |
833 |
}
|
| 834 |
834 |
|
| 835 |
835 |
/// \brief Runs the preflow algorithm.
|
| 836 |
836 |
///
|
| 837 |
837 |
/// Runs the preflow algorithm.
|
| 838 |
838 |
/// \note pf.run() is just a shortcut of the following code.
|
| 839 |
839 |
/// \code
|
| 840 |
840 |
/// pf.init();
|
| 841 |
841 |
/// pf.startFirstPhase();
|
| 842 |
842 |
/// pf.startSecondPhase();
|
| 843 |
843 |
/// \endcode
|
| 844 |
844 |
void run() {
|
| 845 |
845 |
init();
|
| 846 |
846 |
startFirstPhase();
|
| 847 |
847 |
startSecondPhase();
|
| 848 |
848 |
}
|
| 849 |
849 |
|
| 850 |
850 |
/// \brief Runs the preflow algorithm to compute the minimum cut.
|
| 851 |
851 |
///
|
| 852 |
852 |
/// Runs the preflow algorithm to compute the minimum cut.
|
| 853 |
853 |
/// \note pf.runMinCut() is just a shortcut of the following code.
|
| 854 |
854 |
/// \code
|
| 855 |
855 |
/// pf.init();
|
| 856 |
856 |
/// pf.startFirstPhase();
|
| 857 |
857 |
/// \endcode
|
| 858 |
858 |
void runMinCut() {
|
| 859 |
859 |
init();
|
| 860 |
860 |
startFirstPhase();
|
| 861 |
861 |
}
|
| 862 |
862 |
|
| 863 |
863 |
/// @}
|
| 864 |
864 |
|
| 865 |
865 |
/// \name Query Functions
|
| 866 |
866 |
/// The result of the %Preflow algorithm can be obtained using these
|
| 867 |
867 |
/// functions.\n
|
| 868 |
868 |
/// Before the use of these functions,
|
| 869 |
869 |
/// either run() or start() must be called.
|
| 870 |
870 |
|
| 871 |
871 |
///@{
|
| 872 |
872 |
|
| 873 |
873 |
/// \brief Returns the value of the maximum flow.
|
| 874 |
874 |
///
|
| 875 |
875 |
/// Returns the value of the maximum flow by returning the excess
|
| 876 |
876 |
/// of the target node \c t. This value equals to the value of
|
| 877 |
877 |
/// the maximum flow already after the first phase.
|
| 878 |
878 |
Value flowValue() const {
|
| 879 |
879 |
return (*_excess)[_target];
|
| 880 |
880 |
}
|
| 881 |
881 |
|
| 882 |
882 |
/// \brief Returns true when the node is on the source side of minimum cut.
|
| 883 |
883 |
///
|
| 884 |
884 |
/// Returns true when the node is on the source side of minimum
|
| 885 |
885 |
/// cut. This method can be called both after running \ref
|
| 886 |
886 |
/// startFirstPhase() and \ref startSecondPhase().
|
| 887 |
887 |
bool minCut(const Node& node) const {
|
| 888 |
888 |
return ((*_level)[node] == _level->maxLevel()) == _phase;
|
| 889 |
889 |
}
|
| 890 |
890 |
|
| 891 |
891 |
/// \brief Returns a minimum value cut.
|
| 892 |
892 |
///
|
| 893 |
893 |
/// Sets the \c cutMap to the characteristic vector of a minimum value
|
| 894 |
894 |
/// cut. This method can be called both after running \ref
|
| 895 |
895 |
/// startFirstPhase() and \ref startSecondPhase(). The result after second
|
| 896 |
896 |
/// phase could be changed slightly if inexact computation is used.
|
| 897 |
897 |
/// \pre The \c cutMap should be a bool-valued node-map.
|
| 898 |
898 |
template <typename CutMap>
|
| 899 |
899 |
void minCutMap(CutMap& cutMap) const {
|
| 900 |
900 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 901 |
901 |
cutMap.set(n, minCut(n));
|
| 902 |
902 |
}
|
| 903 |
903 |
}
|
| 904 |
904 |
|
| 905 |
905 |
/// \brief Returns the flow on the arc.
|
| 906 |
906 |
///
|
| 907 |
907 |
/// Sets the \c flowMap to the flow on the arcs. This method can
|
| 908 |
908 |
/// be called after the second phase of algorithm.
|
| 909 |
909 |
Value flow(const Arc& arc) const {
|
| 910 |
910 |
return (*_flow)[arc];
|
| 911 |
911 |
}
|
| 912 |
912 |
|
| 913 |
913 |
/// @}
|
| 914 |
914 |
};
|
| 915 |
915 |
}
|
| 916 |
916 |
|
| 917 |
917 |
#endif
|