1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2010 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <algorithm> |
30 | 30 |
|
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup min_cost_flow_algs |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 41 |
/// |
42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow" |
44 | 44 |
/// \ref amo93networkflows, \ref dantzig63linearprog, |
45 | 45 |
/// \ref kellyoneill91netsimplex. |
46 | 46 |
/// This algorithm is a highly efficient specialized version of the |
47 | 47 |
/// linear programming simplex method directly for the minimum cost |
48 | 48 |
/// flow problem. |
49 | 49 |
/// |
50 | 50 |
/// In general, %NetworkSimplex is the fastest implementation available |
51 | 51 |
/// in LEMON for this problem. |
52 | 52 |
/// Moreover, it supports both directions of the supply/demand inequality |
53 | 53 |
/// constraints. For more information, see \ref SupplyType. |
54 | 54 |
/// |
55 | 55 |
/// Most of the parameters of the problem (except for the digraph) |
56 | 56 |
/// can be given using separate functions, and the algorithm can be |
57 | 57 |
/// executed using the \ref run() function. If some parameters are not |
58 | 58 |
/// specified, then default values will be used. |
59 | 59 |
/// |
60 | 60 |
/// \tparam GR The digraph type the algorithm runs on. |
61 | 61 |
/// \tparam V The number type used for flow amounts, capacity bounds |
62 | 62 |
/// and supply values in the algorithm. By default, it is \c int. |
63 | 63 |
/// \tparam C The number type used for costs and potentials in the |
64 | 64 |
/// algorithm. By default, it is the same as \c V. |
65 | 65 |
/// |
66 | 66 |
/// \warning Both number types must be signed and all input data must |
67 | 67 |
/// be integer. |
68 | 68 |
/// |
69 | 69 |
/// \note %NetworkSimplex provides five different pivot rule |
70 | 70 |
/// implementations, from which the most efficient one is used |
71 | 71 |
/// by default. For more information, see \ref PivotRule. |
72 | 72 |
template <typename GR, typename V = int, typename C = V> |
73 | 73 |
class NetworkSimplex |
74 | 74 |
{ |
75 | 75 |
public: |
76 | 76 |
|
77 | 77 |
/// The type of the flow amounts, capacity bounds and supply values |
78 | 78 |
typedef V Value; |
79 | 79 |
/// The type of the arc costs |
80 | 80 |
typedef C Cost; |
81 | 81 |
|
82 | 82 |
public: |
83 | 83 |
|
84 | 84 |
/// \brief Problem type constants for the \c run() function. |
85 | 85 |
/// |
86 | 86 |
/// Enum type containing the problem type constants that can be |
87 | 87 |
/// returned by the \ref run() function of the algorithm. |
88 | 88 |
enum ProblemType { |
89 | 89 |
/// The problem has no feasible solution (flow). |
90 | 90 |
INFEASIBLE, |
91 | 91 |
/// The problem has optimal solution (i.e. it is feasible and |
92 | 92 |
/// bounded), and the algorithm has found optimal flow and node |
93 | 93 |
/// potentials (primal and dual solutions). |
94 | 94 |
OPTIMAL, |
95 | 95 |
/// The objective function of the problem is unbounded, i.e. |
96 | 96 |
/// there is a directed cycle having negative total cost and |
97 | 97 |
/// infinite upper bound. |
98 | 98 |
UNBOUNDED |
99 | 99 |
}; |
100 | 100 |
|
101 | 101 |
/// \brief Constants for selecting the type of the supply constraints. |
102 | 102 |
/// |
103 | 103 |
/// Enum type containing constants for selecting the supply type, |
104 | 104 |
/// i.e. the direction of the inequalities in the supply/demand |
105 | 105 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
106 | 106 |
/// |
107 | 107 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
108 | 108 |
/// selected using \ref supplyType(). |
109 | 109 |
/// The equality form is a special case of both supply types. |
110 | 110 |
enum SupplyType { |
111 | 111 |
/// This option means that there are <em>"greater or equal"</em> |
112 | 112 |
/// supply/demand constraints in the definition of the problem. |
113 | 113 |
GEQ, |
114 | 114 |
/// This option means that there are <em>"less or equal"</em> |
115 | 115 |
/// supply/demand constraints in the definition of the problem. |
116 | 116 |
LEQ |
117 | 117 |
}; |
118 | 118 |
|
119 | 119 |
/// \brief Constants for selecting the pivot rule. |
120 | 120 |
/// |
121 | 121 |
/// Enum type containing constants for selecting the pivot rule for |
122 | 122 |
/// the \ref run() function. |
123 | 123 |
/// |
124 | 124 |
/// \ref NetworkSimplex provides five different pivot rule |
125 | 125 |
/// implementations that significantly affect the running time |
126 | 126 |
/// of the algorithm. |
127 | 127 |
/// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
128 | 128 |
/// proved to be the most efficient and the most robust on various |
129 | 129 |
/// test inputs. |
130 | 130 |
/// However, another pivot rule can be selected using the \ref run() |
131 | 131 |
/// function with the proper parameter. |
132 | 132 |
enum PivotRule { |
133 | 133 |
|
134 | 134 |
/// The \e First \e Eligible pivot rule. |
135 | 135 |
/// The next eligible arc is selected in a wraparound fashion |
136 | 136 |
/// in every iteration. |
137 | 137 |
FIRST_ELIGIBLE, |
138 | 138 |
|
139 | 139 |
/// The \e Best \e Eligible pivot rule. |
140 | 140 |
/// The best eligible arc is selected in every iteration. |
141 | 141 |
BEST_ELIGIBLE, |
142 | 142 |
|
143 | 143 |
/// The \e Block \e Search pivot rule. |
144 | 144 |
/// A specified number of arcs are examined in every iteration |
145 | 145 |
/// in a wraparound fashion and the best eligible arc is selected |
146 | 146 |
/// from this block. |
147 | 147 |
BLOCK_SEARCH, |
148 | 148 |
|
149 | 149 |
/// The \e Candidate \e List pivot rule. |
150 | 150 |
/// In a major iteration a candidate list is built from eligible arcs |
151 | 151 |
/// in a wraparound fashion and in the following minor iterations |
152 | 152 |
/// the best eligible arc is selected from this list. |
153 | 153 |
CANDIDATE_LIST, |
154 | 154 |
|
155 | 155 |
/// The \e Altering \e Candidate \e List pivot rule. |
156 | 156 |
/// It is a modified version of the Candidate List method. |
157 | 157 |
/// It keeps only the several best eligible arcs from the former |
158 | 158 |
/// candidate list and extends this list in every iteration. |
159 | 159 |
ALTERING_LIST |
160 | 160 |
}; |
161 | 161 |
|
162 | 162 |
private: |
163 | 163 |
|
164 | 164 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
165 | 165 |
|
166 | 166 |
typedef std::vector<int> IntVector; |
167 | 167 |
typedef std::vector<Value> ValueVector; |
168 | 168 |
typedef std::vector<Cost> CostVector; |
169 |
typedef std::vector<char> BoolVector; |
|
170 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
|
169 |
typedef std::vector<signed char> CharVector; |
|
170 |
// Note: vector<signed char> is used instead of vector<ArcState> and |
|
171 |
// vector<ArcDirection> for efficiency reasons |
|
171 | 172 |
|
172 | 173 |
// State constants for arcs |
173 | 174 |
enum ArcState { |
174 | 175 |
STATE_UPPER = -1, |
175 | 176 |
STATE_TREE = 0, |
176 | 177 |
STATE_LOWER = 1 |
177 | 178 |
}; |
178 | 179 |
|
179 |
typedef std::vector<signed char> StateVector; |
|
180 |
// Note: vector<signed char> is used instead of vector<ArcState> for |
|
181 |
// |
|
180 |
// Direction constants for tree arcs |
|
181 |
enum ArcDirection { |
|
182 |
DIR_DOWN = -1, |
|
183 |
DIR_UP = 1 |
|
184 |
}; |
|
182 | 185 |
|
183 | 186 |
private: |
184 | 187 |
|
185 | 188 |
// Data related to the underlying digraph |
186 | 189 |
const GR &_graph; |
187 | 190 |
int _node_num; |
188 | 191 |
int _arc_num; |
189 | 192 |
int _all_arc_num; |
190 | 193 |
int _search_arc_num; |
191 | 194 |
|
192 | 195 |
// Parameters of the problem |
193 | 196 |
bool _have_lower; |
194 | 197 |
SupplyType _stype; |
195 | 198 |
Value _sum_supply; |
196 | 199 |
|
197 | 200 |
// Data structures for storing the digraph |
198 | 201 |
IntNodeMap _node_id; |
199 | 202 |
IntArcMap _arc_id; |
200 | 203 |
IntVector _source; |
201 | 204 |
IntVector _target; |
202 | 205 |
bool _arc_mixing; |
203 | 206 |
|
204 | 207 |
// Node and arc data |
205 | 208 |
ValueVector _lower; |
206 | 209 |
ValueVector _upper; |
207 | 210 |
ValueVector _cap; |
208 | 211 |
CostVector _cost; |
209 | 212 |
ValueVector _supply; |
210 | 213 |
ValueVector _flow; |
211 | 214 |
CostVector _pi; |
212 | 215 |
|
213 | 216 |
// Data for storing the spanning tree structure |
214 | 217 |
IntVector _parent; |
215 | 218 |
IntVector _pred; |
216 | 219 |
IntVector _thread; |
217 | 220 |
IntVector _rev_thread; |
218 | 221 |
IntVector _succ_num; |
219 | 222 |
IntVector _last_succ; |
223 |
CharVector _pred_dir; |
|
224 |
CharVector _state; |
|
220 | 225 |
IntVector _dirty_revs; |
221 |
BoolVector _forward; |
|
222 |
StateVector _state; |
|
223 | 226 |
int _root; |
224 | 227 |
|
225 | 228 |
// Temporary data used in the current pivot iteration |
226 | 229 |
int in_arc, join, u_in, v_in, u_out, v_out; |
227 |
int first, second, right, last; |
|
228 |
int stem, par_stem, new_stem; |
|
229 | 230 |
Value delta; |
230 | 231 |
|
231 | 232 |
const Value MAX; |
232 | 233 |
|
233 | 234 |
public: |
234 | 235 |
|
235 | 236 |
/// \brief Constant for infinite upper bounds (capacities). |
236 | 237 |
/// |
237 | 238 |
/// Constant for infinite upper bounds (capacities). |
238 | 239 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
239 | 240 |
/// \c std::numeric_limits<Value>::max() otherwise. |
240 | 241 |
const Value INF; |
241 | 242 |
|
242 | 243 |
private: |
243 | 244 |
|
244 | 245 |
// Implementation of the First Eligible pivot rule |
245 | 246 |
class FirstEligiblePivotRule |
246 | 247 |
{ |
247 | 248 |
private: |
248 | 249 |
|
249 | 250 |
// References to the NetworkSimplex class |
250 | 251 |
const IntVector &_source; |
251 | 252 |
const IntVector &_target; |
252 | 253 |
const CostVector &_cost; |
253 |
const |
|
254 |
const CharVector &_state; |
|
254 | 255 |
const CostVector &_pi; |
255 | 256 |
int &_in_arc; |
256 | 257 |
int _search_arc_num; |
257 | 258 |
|
258 | 259 |
// Pivot rule data |
259 | 260 |
int _next_arc; |
260 | 261 |
|
261 | 262 |
public: |
262 | 263 |
|
263 | 264 |
// Constructor |
264 | 265 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
265 | 266 |
_source(ns._source), _target(ns._target), |
266 | 267 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
267 | 268 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
268 | 269 |
_next_arc(0) |
269 | 270 |
{} |
270 | 271 |
|
271 | 272 |
// Find next entering arc |
272 | 273 |
bool findEnteringArc() { |
273 | 274 |
Cost c; |
274 | 275 |
for (int e = _next_arc; e != _search_arc_num; ++e) { |
275 | 276 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
276 | 277 |
if (c < 0) { |
277 | 278 |
_in_arc = e; |
278 | 279 |
_next_arc = e + 1; |
279 | 280 |
return true; |
280 | 281 |
} |
281 | 282 |
} |
282 | 283 |
for (int e = 0; e != _next_arc; ++e) { |
283 | 284 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
284 | 285 |
if (c < 0) { |
285 | 286 |
_in_arc = e; |
286 | 287 |
_next_arc = e + 1; |
287 | 288 |
return true; |
288 | 289 |
} |
289 | 290 |
} |
290 | 291 |
return false; |
291 | 292 |
} |
292 | 293 |
|
293 | 294 |
}; //class FirstEligiblePivotRule |
294 | 295 |
|
295 | 296 |
|
296 | 297 |
// Implementation of the Best Eligible pivot rule |
297 | 298 |
class BestEligiblePivotRule |
298 | 299 |
{ |
299 | 300 |
private: |
300 | 301 |
|
301 | 302 |
// References to the NetworkSimplex class |
302 | 303 |
const IntVector &_source; |
303 | 304 |
const IntVector &_target; |
304 | 305 |
const CostVector &_cost; |
305 |
const |
|
306 |
const CharVector &_state; |
|
306 | 307 |
const CostVector &_pi; |
307 | 308 |
int &_in_arc; |
308 | 309 |
int _search_arc_num; |
309 | 310 |
|
310 | 311 |
public: |
311 | 312 |
|
312 | 313 |
// Constructor |
313 | 314 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
314 | 315 |
_source(ns._source), _target(ns._target), |
315 | 316 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
316 | 317 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
317 | 318 |
{} |
318 | 319 |
|
319 | 320 |
// Find next entering arc |
320 | 321 |
bool findEnteringArc() { |
321 | 322 |
Cost c, min = 0; |
322 | 323 |
for (int e = 0; e != _search_arc_num; ++e) { |
323 | 324 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
324 | 325 |
if (c < min) { |
325 | 326 |
min = c; |
326 | 327 |
_in_arc = e; |
327 | 328 |
} |
328 | 329 |
} |
329 | 330 |
return min < 0; |
330 | 331 |
} |
331 | 332 |
|
332 | 333 |
}; //class BestEligiblePivotRule |
333 | 334 |
|
334 | 335 |
|
335 | 336 |
// Implementation of the Block Search pivot rule |
336 | 337 |
class BlockSearchPivotRule |
337 | 338 |
{ |
338 | 339 |
private: |
339 | 340 |
|
340 | 341 |
// References to the NetworkSimplex class |
341 | 342 |
const IntVector &_source; |
342 | 343 |
const IntVector &_target; |
343 | 344 |
const CostVector &_cost; |
344 |
const |
|
345 |
const CharVector &_state; |
|
345 | 346 |
const CostVector &_pi; |
346 | 347 |
int &_in_arc; |
347 | 348 |
int _search_arc_num; |
348 | 349 |
|
349 | 350 |
// Pivot rule data |
350 | 351 |
int _block_size; |
351 | 352 |
int _next_arc; |
352 | 353 |
|
353 | 354 |
public: |
354 | 355 |
|
355 | 356 |
// Constructor |
356 | 357 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
357 | 358 |
_source(ns._source), _target(ns._target), |
358 | 359 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
359 | 360 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
360 | 361 |
_next_arc(0) |
361 | 362 |
{ |
362 | 363 |
// The main parameters of the pivot rule |
363 | 364 |
const double BLOCK_SIZE_FACTOR = 1.0; |
364 | 365 |
const int MIN_BLOCK_SIZE = 10; |
365 | 366 |
|
366 | 367 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
367 | 368 |
std::sqrt(double(_search_arc_num))), |
368 | 369 |
MIN_BLOCK_SIZE ); |
369 | 370 |
} |
370 | 371 |
|
371 | 372 |
// Find next entering arc |
372 | 373 |
bool findEnteringArc() { |
373 | 374 |
Cost c, min = 0; |
374 | 375 |
int cnt = _block_size; |
375 | 376 |
int e; |
376 | 377 |
for (e = _next_arc; e != _search_arc_num; ++e) { |
377 | 378 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
378 | 379 |
if (c < min) { |
379 | 380 |
min = c; |
380 | 381 |
_in_arc = e; |
381 | 382 |
} |
382 | 383 |
if (--cnt == 0) { |
383 | 384 |
if (min < 0) goto search_end; |
384 | 385 |
cnt = _block_size; |
385 | 386 |
} |
386 | 387 |
} |
387 | 388 |
for (e = 0; e != _next_arc; ++e) { |
388 | 389 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
389 | 390 |
if (c < min) { |
390 | 391 |
min = c; |
391 | 392 |
_in_arc = e; |
392 | 393 |
} |
393 | 394 |
if (--cnt == 0) { |
394 | 395 |
if (min < 0) goto search_end; |
395 | 396 |
cnt = _block_size; |
396 | 397 |
} |
397 | 398 |
} |
398 | 399 |
if (min >= 0) return false; |
399 | 400 |
|
400 | 401 |
search_end: |
401 | 402 |
_next_arc = e; |
402 | 403 |
return true; |
403 | 404 |
} |
404 | 405 |
|
405 | 406 |
}; //class BlockSearchPivotRule |
406 | 407 |
|
407 | 408 |
|
408 | 409 |
// Implementation of the Candidate List pivot rule |
409 | 410 |
class CandidateListPivotRule |
410 | 411 |
{ |
411 | 412 |
private: |
412 | 413 |
|
413 | 414 |
// References to the NetworkSimplex class |
414 | 415 |
const IntVector &_source; |
415 | 416 |
const IntVector &_target; |
416 | 417 |
const CostVector &_cost; |
417 |
const |
|
418 |
const CharVector &_state; |
|
418 | 419 |
const CostVector &_pi; |
419 | 420 |
int &_in_arc; |
420 | 421 |
int _search_arc_num; |
421 | 422 |
|
422 | 423 |
// Pivot rule data |
423 | 424 |
IntVector _candidates; |
424 | 425 |
int _list_length, _minor_limit; |
425 | 426 |
int _curr_length, _minor_count; |
426 | 427 |
int _next_arc; |
427 | 428 |
|
428 | 429 |
public: |
429 | 430 |
|
430 | 431 |
/// Constructor |
431 | 432 |
CandidateListPivotRule(NetworkSimplex &ns) : |
432 | 433 |
_source(ns._source), _target(ns._target), |
433 | 434 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
434 | 435 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
435 | 436 |
_next_arc(0) |
436 | 437 |
{ |
437 | 438 |
// The main parameters of the pivot rule |
438 | 439 |
const double LIST_LENGTH_FACTOR = 0.25; |
439 | 440 |
const int MIN_LIST_LENGTH = 10; |
440 | 441 |
const double MINOR_LIMIT_FACTOR = 0.1; |
441 | 442 |
const int MIN_MINOR_LIMIT = 3; |
442 | 443 |
|
443 | 444 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
444 | 445 |
std::sqrt(double(_search_arc_num))), |
445 | 446 |
MIN_LIST_LENGTH ); |
446 | 447 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
447 | 448 |
MIN_MINOR_LIMIT ); |
448 | 449 |
_curr_length = _minor_count = 0; |
449 | 450 |
_candidates.resize(_list_length); |
450 | 451 |
} |
451 | 452 |
|
452 | 453 |
/// Find next entering arc |
453 | 454 |
bool findEnteringArc() { |
454 | 455 |
Cost min, c; |
455 | 456 |
int e; |
456 | 457 |
if (_curr_length > 0 && _minor_count < _minor_limit) { |
457 | 458 |
// Minor iteration: select the best eligible arc from the |
458 | 459 |
// current candidate list |
459 | 460 |
++_minor_count; |
460 | 461 |
min = 0; |
461 | 462 |
for (int i = 0; i < _curr_length; ++i) { |
462 | 463 |
e = _candidates[i]; |
463 | 464 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
464 | 465 |
if (c < min) { |
465 | 466 |
min = c; |
466 | 467 |
_in_arc = e; |
467 | 468 |
} |
468 | 469 |
else if (c >= 0) { |
469 | 470 |
_candidates[i--] = _candidates[--_curr_length]; |
470 | 471 |
} |
471 | 472 |
} |
472 | 473 |
if (min < 0) return true; |
473 | 474 |
} |
474 | 475 |
|
475 | 476 |
// Major iteration: build a new candidate list |
476 | 477 |
min = 0; |
477 | 478 |
_curr_length = 0; |
478 | 479 |
for (e = _next_arc; e != _search_arc_num; ++e) { |
479 | 480 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
480 | 481 |
if (c < 0) { |
481 | 482 |
_candidates[_curr_length++] = e; |
482 | 483 |
if (c < min) { |
483 | 484 |
min = c; |
484 | 485 |
_in_arc = e; |
485 | 486 |
} |
486 | 487 |
if (_curr_length == _list_length) goto search_end; |
487 | 488 |
} |
488 | 489 |
} |
489 | 490 |
for (e = 0; e != _next_arc; ++e) { |
490 | 491 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
491 | 492 |
if (c < 0) { |
492 | 493 |
_candidates[_curr_length++] = e; |
493 | 494 |
if (c < min) { |
494 | 495 |
min = c; |
495 | 496 |
_in_arc = e; |
496 | 497 |
} |
497 | 498 |
if (_curr_length == _list_length) goto search_end; |
498 | 499 |
} |
499 | 500 |
} |
500 | 501 |
if (_curr_length == 0) return false; |
501 | 502 |
|
502 | 503 |
search_end: |
503 | 504 |
_minor_count = 1; |
504 | 505 |
_next_arc = e; |
505 | 506 |
return true; |
506 | 507 |
} |
507 | 508 |
|
508 | 509 |
}; //class CandidateListPivotRule |
509 | 510 |
|
510 | 511 |
|
511 | 512 |
// Implementation of the Altering Candidate List pivot rule |
512 | 513 |
class AlteringListPivotRule |
513 | 514 |
{ |
514 | 515 |
private: |
515 | 516 |
|
516 | 517 |
// References to the NetworkSimplex class |
517 | 518 |
const IntVector &_source; |
518 | 519 |
const IntVector &_target; |
519 | 520 |
const CostVector &_cost; |
520 |
const |
|
521 |
const CharVector &_state; |
|
521 | 522 |
const CostVector &_pi; |
522 | 523 |
int &_in_arc; |
523 | 524 |
int _search_arc_num; |
524 | 525 |
|
525 | 526 |
// Pivot rule data |
526 | 527 |
int _block_size, _head_length, _curr_length; |
527 | 528 |
int _next_arc; |
528 | 529 |
IntVector _candidates; |
529 | 530 |
CostVector _cand_cost; |
530 | 531 |
|
531 | 532 |
// Functor class to compare arcs during sort of the candidate list |
532 | 533 |
class SortFunc |
533 | 534 |
{ |
534 | 535 |
private: |
535 | 536 |
const CostVector &_map; |
536 | 537 |
public: |
537 | 538 |
SortFunc(const CostVector &map) : _map(map) {} |
538 | 539 |
bool operator()(int left, int right) { |
539 | 540 |
return _map[left] > _map[right]; |
540 | 541 |
} |
541 | 542 |
}; |
542 | 543 |
|
543 | 544 |
SortFunc _sort_func; |
544 | 545 |
|
545 | 546 |
public: |
546 | 547 |
|
547 | 548 |
// Constructor |
548 | 549 |
AlteringListPivotRule(NetworkSimplex &ns) : |
549 | 550 |
_source(ns._source), _target(ns._target), |
550 | 551 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
551 | 552 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
552 | 553 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
553 | 554 |
{ |
554 | 555 |
// The main parameters of the pivot rule |
555 | 556 |
const double BLOCK_SIZE_FACTOR = 1.0; |
556 | 557 |
const int MIN_BLOCK_SIZE = 10; |
557 | 558 |
const double HEAD_LENGTH_FACTOR = 0.1; |
558 | 559 |
const int MIN_HEAD_LENGTH = 3; |
559 | 560 |
|
560 | 561 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
561 | 562 |
std::sqrt(double(_search_arc_num))), |
562 | 563 |
MIN_BLOCK_SIZE ); |
563 | 564 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
564 | 565 |
MIN_HEAD_LENGTH ); |
565 | 566 |
_candidates.resize(_head_length + _block_size); |
566 | 567 |
_curr_length = 0; |
567 | 568 |
} |
568 | 569 |
|
569 | 570 |
// Find next entering arc |
570 | 571 |
bool findEnteringArc() { |
571 | 572 |
// Check the current candidate list |
572 | 573 |
int e; |
574 |
Cost c; |
|
573 | 575 |
for (int i = 0; i != _curr_length; ++i) { |
574 | 576 |
e = _candidates[i]; |
575 |
_cand_cost[e] = _state[e] * |
|
576 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
577 |
|
|
577 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
578 |
if (c < 0) { |
|
579 |
_cand_cost[e] = c; |
|
580 |
} else { |
|
578 | 581 |
_candidates[i--] = _candidates[--_curr_length]; |
579 | 582 |
} |
580 | 583 |
} |
581 | 584 |
|
582 | 585 |
// Extend the list |
583 | 586 |
int cnt = _block_size; |
584 | 587 |
int limit = _head_length; |
585 | 588 |
|
586 | 589 |
for (e = _next_arc; e != _search_arc_num; ++e) { |
587 |
_cand_cost[e] = _state[e] * |
|
588 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
589 |
|
|
590 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
591 |
if (c < 0) { |
|
592 |
_cand_cost[e] = c; |
|
590 | 593 |
_candidates[_curr_length++] = e; |
591 | 594 |
} |
592 | 595 |
if (--cnt == 0) { |
593 | 596 |
if (_curr_length > limit) goto search_end; |
594 | 597 |
limit = 0; |
595 | 598 |
cnt = _block_size; |
596 | 599 |
} |
597 | 600 |
} |
598 | 601 |
for (e = 0; e != _next_arc; ++e) { |
599 | 602 |
_cand_cost[e] = _state[e] * |
600 | 603 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
601 | 604 |
if (_cand_cost[e] < 0) { |
602 | 605 |
_candidates[_curr_length++] = e; |
603 | 606 |
} |
604 | 607 |
if (--cnt == 0) { |
605 | 608 |
if (_curr_length > limit) goto search_end; |
606 | 609 |
limit = 0; |
607 | 610 |
cnt = _block_size; |
608 | 611 |
} |
609 | 612 |
} |
610 | 613 |
if (_curr_length == 0) return false; |
611 | 614 |
|
612 | 615 |
search_end: |
613 | 616 |
|
614 | 617 |
// Make heap of the candidate list (approximating a partial sort) |
615 | 618 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
616 | 619 |
_sort_func ); |
617 | 620 |
|
618 | 621 |
// Pop the first element of the heap |
619 | 622 |
_in_arc = _candidates[0]; |
620 | 623 |
_next_arc = e; |
621 | 624 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
622 | 625 |
_sort_func ); |
623 | 626 |
_curr_length = std::min(_head_length, _curr_length - 1); |
624 | 627 |
return true; |
625 | 628 |
} |
626 | 629 |
|
627 | 630 |
}; //class AlteringListPivotRule |
628 | 631 |
|
629 | 632 |
public: |
630 | 633 |
|
631 | 634 |
/// \brief Constructor. |
632 | 635 |
/// |
633 | 636 |
/// The constructor of the class. |
634 | 637 |
/// |
635 | 638 |
/// \param graph The digraph the algorithm runs on. |
636 | 639 |
/// \param arc_mixing Indicate if the arcs have to be stored in a |
637 | 640 |
/// mixed order in the internal data structure. |
638 | 641 |
/// In special cases, it could lead to better overall performance, |
639 | 642 |
/// but it is usually slower. Therefore it is disabled by default. |
640 | 643 |
NetworkSimplex(const GR& graph, bool arc_mixing = false) : |
641 | 644 |
_graph(graph), _node_id(graph), _arc_id(graph), |
642 | 645 |
_arc_mixing(arc_mixing), |
643 | 646 |
MAX(std::numeric_limits<Value>::max()), |
644 | 647 |
INF(std::numeric_limits<Value>::has_infinity ? |
645 | 648 |
std::numeric_limits<Value>::infinity() : MAX) |
646 | 649 |
{ |
647 | 650 |
// Check the number types |
648 | 651 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
649 | 652 |
"The flow type of NetworkSimplex must be signed"); |
650 | 653 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
651 | 654 |
"The cost type of NetworkSimplex must be signed"); |
652 | 655 |
|
653 | 656 |
// Reset data structures |
654 | 657 |
reset(); |
655 | 658 |
} |
656 | 659 |
|
657 | 660 |
/// \name Parameters |
658 | 661 |
/// The parameters of the algorithm can be specified using these |
659 | 662 |
/// functions. |
660 | 663 |
|
661 | 664 |
/// @{ |
662 | 665 |
|
663 | 666 |
/// \brief Set the lower bounds on the arcs. |
664 | 667 |
/// |
665 | 668 |
/// This function sets the lower bounds on the arcs. |
666 | 669 |
/// If it is not used before calling \ref run(), the lower bounds |
667 | 670 |
/// will be set to zero on all arcs. |
668 | 671 |
/// |
669 | 672 |
/// \param map An arc map storing the lower bounds. |
670 | 673 |
/// Its \c Value type must be convertible to the \c Value type |
671 | 674 |
/// of the algorithm. |
672 | 675 |
/// |
673 | 676 |
/// \return <tt>(*this)</tt> |
674 | 677 |
template <typename LowerMap> |
675 | 678 |
NetworkSimplex& lowerMap(const LowerMap& map) { |
676 | 679 |
_have_lower = true; |
677 | 680 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
678 | 681 |
_lower[_arc_id[a]] = map[a]; |
679 | 682 |
} |
680 | 683 |
return *this; |
681 | 684 |
} |
682 | 685 |
|
683 | 686 |
/// \brief Set the upper bounds (capacities) on the arcs. |
684 | 687 |
/// |
685 | 688 |
/// This function sets the upper bounds (capacities) on the arcs. |
686 | 689 |
/// If it is not used before calling \ref run(), the upper bounds |
687 | 690 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
688 | 691 |
/// unbounded from above). |
689 | 692 |
/// |
690 | 693 |
/// \param map An arc map storing the upper bounds. |
691 | 694 |
/// Its \c Value type must be convertible to the \c Value type |
692 | 695 |
/// of the algorithm. |
693 | 696 |
/// |
694 | 697 |
/// \return <tt>(*this)</tt> |
695 | 698 |
template<typename UpperMap> |
696 | 699 |
NetworkSimplex& upperMap(const UpperMap& map) { |
697 | 700 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
698 | 701 |
_upper[_arc_id[a]] = map[a]; |
699 | 702 |
} |
700 | 703 |
return *this; |
701 | 704 |
} |
702 | 705 |
|
703 | 706 |
/// \brief Set the costs of the arcs. |
704 | 707 |
/// |
705 | 708 |
/// This function sets the costs of the arcs. |
706 | 709 |
/// If it is not used before calling \ref run(), the costs |
707 | 710 |
/// will be set to \c 1 on all arcs. |
708 | 711 |
/// |
709 | 712 |
/// \param map An arc map storing the costs. |
710 | 713 |
/// Its \c Value type must be convertible to the \c Cost type |
711 | 714 |
/// of the algorithm. |
712 | 715 |
/// |
713 | 716 |
/// \return <tt>(*this)</tt> |
714 | 717 |
template<typename CostMap> |
715 | 718 |
NetworkSimplex& costMap(const CostMap& map) { |
716 | 719 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
717 | 720 |
_cost[_arc_id[a]] = map[a]; |
718 | 721 |
} |
719 | 722 |
return *this; |
720 | 723 |
} |
721 | 724 |
|
722 | 725 |
/// \brief Set the supply values of the nodes. |
723 | 726 |
/// |
724 | 727 |
/// This function sets the supply values of the nodes. |
725 | 728 |
/// If neither this function nor \ref stSupply() is used before |
726 | 729 |
/// calling \ref run(), the supply of each node will be set to zero. |
727 | 730 |
/// |
728 | 731 |
/// \param map A node map storing the supply values. |
729 | 732 |
/// Its \c Value type must be convertible to the \c Value type |
730 | 733 |
/// of the algorithm. |
731 | 734 |
/// |
732 | 735 |
/// \return <tt>(*this)</tt> |
733 | 736 |
template<typename SupplyMap> |
734 | 737 |
NetworkSimplex& supplyMap(const SupplyMap& map) { |
735 | 738 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
736 | 739 |
_supply[_node_id[n]] = map[n]; |
737 | 740 |
} |
738 | 741 |
return *this; |
739 | 742 |
} |
740 | 743 |
|
741 | 744 |
/// \brief Set single source and target nodes and a supply value. |
742 | 745 |
/// |
743 | 746 |
/// This function sets a single source node and a single target node |
744 | 747 |
/// and the required flow value. |
745 | 748 |
/// If neither this function nor \ref supplyMap() is used before |
746 | 749 |
/// calling \ref run(), the supply of each node will be set to zero. |
747 | 750 |
/// |
748 | 751 |
/// Using this function has the same effect as using \ref supplyMap() |
749 | 752 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
750 | 753 |
/// assigned to \c t and all other nodes have zero supply value. |
751 | 754 |
/// |
752 | 755 |
/// \param s The source node. |
753 | 756 |
/// \param t The target node. |
754 | 757 |
/// \param k The required amount of flow from node \c s to node \c t |
755 | 758 |
/// (i.e. the supply of \c s and the demand of \c t). |
756 | 759 |
/// |
757 | 760 |
/// \return <tt>(*this)</tt> |
758 | 761 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
759 | 762 |
for (int i = 0; i != _node_num; ++i) { |
760 | 763 |
_supply[i] = 0; |
761 | 764 |
} |
762 | 765 |
_supply[_node_id[s]] = k; |
763 | 766 |
_supply[_node_id[t]] = -k; |
764 | 767 |
return *this; |
765 | 768 |
} |
766 | 769 |
|
767 | 770 |
/// \brief Set the type of the supply constraints. |
768 | 771 |
/// |
769 | 772 |
/// This function sets the type of the supply/demand constraints. |
770 | 773 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
771 | 774 |
/// type will be used. |
772 | 775 |
/// |
773 | 776 |
/// For more information, see \ref SupplyType. |
774 | 777 |
/// |
775 | 778 |
/// \return <tt>(*this)</tt> |
776 | 779 |
NetworkSimplex& supplyType(SupplyType supply_type) { |
777 | 780 |
_stype = supply_type; |
778 | 781 |
return *this; |
779 | 782 |
} |
780 | 783 |
|
781 | 784 |
/// @} |
782 | 785 |
|
783 | 786 |
/// \name Execution Control |
784 | 787 |
/// The algorithm can be executed using \ref run(). |
785 | 788 |
|
786 | 789 |
/// @{ |
787 | 790 |
|
788 | 791 |
/// \brief Run the algorithm. |
789 | 792 |
/// |
790 | 793 |
/// This function runs the algorithm. |
791 | 794 |
/// The paramters can be specified using functions \ref lowerMap(), |
792 | 795 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
793 | 796 |
/// \ref supplyType(). |
794 | 797 |
/// For example, |
795 | 798 |
/// \code |
796 | 799 |
/// NetworkSimplex<ListDigraph> ns(graph); |
797 | 800 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
798 | 801 |
/// .supplyMap(sup).run(); |
799 | 802 |
/// \endcode |
800 | 803 |
/// |
801 | 804 |
/// This function can be called more than once. All the given parameters |
802 | 805 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
803 | 806 |
/// is used, thus only the modified parameters have to be set again. |
804 | 807 |
/// If the underlying digraph was also modified after the construction |
805 | 808 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
806 | 809 |
/// function must be called. |
807 | 810 |
/// |
808 | 811 |
/// \param pivot_rule The pivot rule that will be used during the |
809 | 812 |
/// algorithm. For more information, see \ref PivotRule. |
810 | 813 |
/// |
811 | 814 |
/// \return \c INFEASIBLE if no feasible flow exists, |
812 | 815 |
/// \n \c OPTIMAL if the problem has optimal solution |
813 | 816 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
814 | 817 |
/// optimal flow and node potentials (primal and dual solutions), |
815 | 818 |
/// \n \c UNBOUNDED if the objective function of the problem is |
816 | 819 |
/// unbounded, i.e. there is a directed cycle having negative total |
817 | 820 |
/// cost and infinite upper bound. |
818 | 821 |
/// |
819 | 822 |
/// \see ProblemType, PivotRule |
820 | 823 |
/// \see resetParams(), reset() |
821 | 824 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
822 | 825 |
if (!init()) return INFEASIBLE; |
823 | 826 |
return start(pivot_rule); |
824 | 827 |
} |
825 | 828 |
|
826 | 829 |
/// \brief Reset all the parameters that have been given before. |
827 | 830 |
/// |
828 | 831 |
/// This function resets all the paramaters that have been given |
829 | 832 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
830 | 833 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
831 | 834 |
/// |
832 | 835 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
833 | 836 |
/// parameters are kept for the next \ref run() call, unless |
834 | 837 |
/// \ref resetParams() or \ref reset() is used. |
835 | 838 |
/// If the underlying digraph was also modified after the construction |
836 | 839 |
/// of the class or the last \ref reset() call, then the \ref reset() |
837 | 840 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
838 | 841 |
/// |
839 | 842 |
/// For example, |
840 | 843 |
/// \code |
841 | 844 |
/// NetworkSimplex<ListDigraph> ns(graph); |
842 | 845 |
/// |
843 | 846 |
/// // First run |
844 | 847 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
845 | 848 |
/// .supplyMap(sup).run(); |
846 | 849 |
/// |
847 | 850 |
/// // Run again with modified cost map (resetParams() is not called, |
848 | 851 |
/// // so only the cost map have to be set again) |
849 | 852 |
/// cost[e] += 100; |
850 | 853 |
/// ns.costMap(cost).run(); |
851 | 854 |
/// |
852 | 855 |
/// // Run again from scratch using resetParams() |
853 | 856 |
/// // (the lower bounds will be set to zero on all arcs) |
854 | 857 |
/// ns.resetParams(); |
855 | 858 |
/// ns.upperMap(capacity).costMap(cost) |
856 | 859 |
/// .supplyMap(sup).run(); |
857 | 860 |
/// \endcode |
858 | 861 |
/// |
859 | 862 |
/// \return <tt>(*this)</tt> |
860 | 863 |
/// |
861 | 864 |
/// \see reset(), run() |
862 | 865 |
NetworkSimplex& resetParams() { |
863 | 866 |
for (int i = 0; i != _node_num; ++i) { |
864 | 867 |
_supply[i] = 0; |
865 | 868 |
} |
866 | 869 |
for (int i = 0; i != _arc_num; ++i) { |
867 | 870 |
_lower[i] = 0; |
868 | 871 |
_upper[i] = INF; |
869 | 872 |
_cost[i] = 1; |
870 | 873 |
} |
871 | 874 |
_have_lower = false; |
872 | 875 |
_stype = GEQ; |
873 | 876 |
return *this; |
874 | 877 |
} |
875 | 878 |
|
876 | 879 |
/// \brief Reset the internal data structures and all the parameters |
877 | 880 |
/// that have been given before. |
878 | 881 |
/// |
879 | 882 |
/// This function resets the internal data structures and all the |
880 | 883 |
/// paramaters that have been given before using functions \ref lowerMap(), |
881 | 884 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
882 | 885 |
/// \ref supplyType(). |
883 | 886 |
/// |
884 | 887 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
885 | 888 |
/// parameters are kept for the next \ref run() call, unless |
886 | 889 |
/// \ref resetParams() or \ref reset() is used. |
887 | 890 |
/// If the underlying digraph was also modified after the construction |
888 | 891 |
/// of the class or the last \ref reset() call, then the \ref reset() |
889 | 892 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
890 | 893 |
/// |
891 | 894 |
/// See \ref resetParams() for examples. |
892 | 895 |
/// |
893 | 896 |
/// \return <tt>(*this)</tt> |
894 | 897 |
/// |
895 | 898 |
/// \see resetParams(), run() |
896 | 899 |
NetworkSimplex& reset() { |
897 | 900 |
// Resize vectors |
898 | 901 |
_node_num = countNodes(_graph); |
899 | 902 |
_arc_num = countArcs(_graph); |
900 | 903 |
int all_node_num = _node_num + 1; |
901 | 904 |
int max_arc_num = _arc_num + 2 * _node_num; |
902 | 905 |
|
903 | 906 |
_source.resize(max_arc_num); |
904 | 907 |
_target.resize(max_arc_num); |
905 | 908 |
|
906 | 909 |
_lower.resize(_arc_num); |
907 | 910 |
_upper.resize(_arc_num); |
908 | 911 |
_cap.resize(max_arc_num); |
909 | 912 |
_cost.resize(max_arc_num); |
910 | 913 |
_supply.resize(all_node_num); |
911 | 914 |
_flow.resize(max_arc_num); |
912 | 915 |
_pi.resize(all_node_num); |
913 | 916 |
|
914 | 917 |
_parent.resize(all_node_num); |
915 | 918 |
_pred.resize(all_node_num); |
916 |
|
|
919 |
_pred_dir.resize(all_node_num); |
|
917 | 920 |
_thread.resize(all_node_num); |
918 | 921 |
_rev_thread.resize(all_node_num); |
919 | 922 |
_succ_num.resize(all_node_num); |
920 | 923 |
_last_succ.resize(all_node_num); |
921 | 924 |
_state.resize(max_arc_num); |
922 | 925 |
|
923 | 926 |
// Copy the graph |
924 | 927 |
int i = 0; |
925 | 928 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
926 | 929 |
_node_id[n] = i; |
927 | 930 |
} |
928 | 931 |
if (_arc_mixing) { |
929 | 932 |
// Store the arcs in a mixed order |
930 | 933 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
931 | 934 |
int i = 0, j = 0; |
932 | 935 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
933 | 936 |
_arc_id[a] = i; |
934 | 937 |
_source[i] = _node_id[_graph.source(a)]; |
935 | 938 |
_target[i] = _node_id[_graph.target(a)]; |
936 | 939 |
if ((i += k) >= _arc_num) i = ++j; |
937 | 940 |
} |
938 | 941 |
} else { |
939 | 942 |
// Store the arcs in the original order |
940 | 943 |
int i = 0; |
941 | 944 |
for (ArcIt a(_graph); a != INVALID; ++a, ++i) { |
942 | 945 |
_arc_id[a] = i; |
943 | 946 |
_source[i] = _node_id[_graph.source(a)]; |
944 | 947 |
_target[i] = _node_id[_graph.target(a)]; |
945 | 948 |
} |
946 | 949 |
} |
947 | 950 |
|
948 | 951 |
// Reset parameters |
949 | 952 |
resetParams(); |
950 | 953 |
return *this; |
951 | 954 |
} |
952 | 955 |
|
953 | 956 |
/// @} |
954 | 957 |
|
955 | 958 |
/// \name Query Functions |
956 | 959 |
/// The results of the algorithm can be obtained using these |
957 | 960 |
/// functions.\n |
958 | 961 |
/// The \ref run() function must be called before using them. |
959 | 962 |
|
960 | 963 |
/// @{ |
961 | 964 |
|
962 | 965 |
/// \brief Return the total cost of the found flow. |
963 | 966 |
/// |
964 | 967 |
/// This function returns the total cost of the found flow. |
965 | 968 |
/// Its complexity is O(e). |
966 | 969 |
/// |
967 | 970 |
/// \note The return type of the function can be specified as a |
968 | 971 |
/// template parameter. For example, |
969 | 972 |
/// \code |
970 | 973 |
/// ns.totalCost<double>(); |
971 | 974 |
/// \endcode |
972 | 975 |
/// It is useful if the total cost cannot be stored in the \c Cost |
973 | 976 |
/// type of the algorithm, which is the default return type of the |
974 | 977 |
/// function. |
975 | 978 |
/// |
976 | 979 |
/// \pre \ref run() must be called before using this function. |
977 | 980 |
template <typename Number> |
978 | 981 |
Number totalCost() const { |
979 | 982 |
Number c = 0; |
980 | 983 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
981 | 984 |
int i = _arc_id[a]; |
982 | 985 |
c += Number(_flow[i]) * Number(_cost[i]); |
983 | 986 |
} |
984 | 987 |
return c; |
985 | 988 |
} |
986 | 989 |
|
987 | 990 |
#ifndef DOXYGEN |
988 | 991 |
Cost totalCost() const { |
989 | 992 |
return totalCost<Cost>(); |
990 | 993 |
} |
991 | 994 |
#endif |
992 | 995 |
|
993 | 996 |
/// \brief Return the flow on the given arc. |
994 | 997 |
/// |
995 | 998 |
/// This function returns the flow on the given arc. |
996 | 999 |
/// |
997 | 1000 |
/// \pre \ref run() must be called before using this function. |
998 | 1001 |
Value flow(const Arc& a) const { |
999 | 1002 |
return _flow[_arc_id[a]]; |
1000 | 1003 |
} |
1001 | 1004 |
|
1002 | 1005 |
/// \brief Return the flow map (the primal solution). |
1003 | 1006 |
/// |
1004 | 1007 |
/// This function copies the flow value on each arc into the given |
1005 | 1008 |
/// map. The \c Value type of the algorithm must be convertible to |
1006 | 1009 |
/// the \c Value type of the map. |
1007 | 1010 |
/// |
1008 | 1011 |
/// \pre \ref run() must be called before using this function. |
1009 | 1012 |
template <typename FlowMap> |
1010 | 1013 |
void flowMap(FlowMap &map) const { |
1011 | 1014 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
1012 | 1015 |
map.set(a, _flow[_arc_id[a]]); |
1013 | 1016 |
} |
1014 | 1017 |
} |
1015 | 1018 |
|
1016 | 1019 |
/// \brief Return the potential (dual value) of the given node. |
1017 | 1020 |
/// |
1018 | 1021 |
/// This function returns the potential (dual value) of the |
1019 | 1022 |
/// given node. |
1020 | 1023 |
/// |
1021 | 1024 |
/// \pre \ref run() must be called before using this function. |
1022 | 1025 |
Cost potential(const Node& n) const { |
1023 | 1026 |
return _pi[_node_id[n]]; |
1024 | 1027 |
} |
1025 | 1028 |
|
1026 | 1029 |
/// \brief Return the potential map (the dual solution). |
1027 | 1030 |
/// |
1028 | 1031 |
/// This function copies the potential (dual value) of each node |
1029 | 1032 |
/// into the given map. |
1030 | 1033 |
/// The \c Cost type of the algorithm must be convertible to the |
1031 | 1034 |
/// \c Value type of the map. |
1032 | 1035 |
/// |
1033 | 1036 |
/// \pre \ref run() must be called before using this function. |
1034 | 1037 |
template <typename PotentialMap> |
1035 | 1038 |
void potentialMap(PotentialMap &map) const { |
1036 | 1039 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1037 | 1040 |
map.set(n, _pi[_node_id[n]]); |
1038 | 1041 |
} |
1039 | 1042 |
} |
1040 | 1043 |
|
1041 | 1044 |
/// @} |
1042 | 1045 |
|
1043 | 1046 |
private: |
1044 | 1047 |
|
1045 | 1048 |
// Initialize internal data structures |
1046 | 1049 |
bool init() { |
1047 | 1050 |
if (_node_num == 0) return false; |
1048 | 1051 |
|
1049 | 1052 |
// Check the sum of supply values |
1050 | 1053 |
_sum_supply = 0; |
1051 | 1054 |
for (int i = 0; i != _node_num; ++i) { |
1052 | 1055 |
_sum_supply += _supply[i]; |
1053 | 1056 |
} |
1054 | 1057 |
if ( !((_stype == GEQ && _sum_supply <= 0) || |
1055 | 1058 |
(_stype == LEQ && _sum_supply >= 0)) ) return false; |
1056 | 1059 |
|
1057 | 1060 |
// Remove non-zero lower bounds |
1058 | 1061 |
if (_have_lower) { |
1059 | 1062 |
for (int i = 0; i != _arc_num; ++i) { |
1060 | 1063 |
Value c = _lower[i]; |
1061 | 1064 |
if (c >= 0) { |
1062 | 1065 |
_cap[i] = _upper[i] < MAX ? _upper[i] - c : INF; |
1063 | 1066 |
} else { |
1064 | 1067 |
_cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF; |
1065 | 1068 |
} |
1066 | 1069 |
_supply[_source[i]] -= c; |
1067 | 1070 |
_supply[_target[i]] += c; |
1068 | 1071 |
} |
1069 | 1072 |
} else { |
1070 | 1073 |
for (int i = 0; i != _arc_num; ++i) { |
1071 | 1074 |
_cap[i] = _upper[i]; |
1072 | 1075 |
} |
1073 | 1076 |
} |
1074 | 1077 |
|
1075 | 1078 |
// Initialize artifical cost |
1076 | 1079 |
Cost ART_COST; |
1077 | 1080 |
if (std::numeric_limits<Cost>::is_exact) { |
1078 | 1081 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
1079 | 1082 |
} else { |
1080 | 1083 |
ART_COST = 0; |
1081 | 1084 |
for (int i = 0; i != _arc_num; ++i) { |
1082 | 1085 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
1083 | 1086 |
} |
1084 | 1087 |
ART_COST = (ART_COST + 1) * _node_num; |
1085 | 1088 |
} |
1086 | 1089 |
|
1087 | 1090 |
// Initialize arc maps |
1088 | 1091 |
for (int i = 0; i != _arc_num; ++i) { |
1089 | 1092 |
_flow[i] = 0; |
1090 | 1093 |
_state[i] = STATE_LOWER; |
1091 | 1094 |
} |
1092 | 1095 |
|
1093 | 1096 |
// Set data for the artificial root node |
1094 | 1097 |
_root = _node_num; |
1095 | 1098 |
_parent[_root] = -1; |
1096 | 1099 |
_pred[_root] = -1; |
1097 | 1100 |
_thread[_root] = 0; |
1098 | 1101 |
_rev_thread[0] = _root; |
1099 | 1102 |
_succ_num[_root] = _node_num + 1; |
1100 | 1103 |
_last_succ[_root] = _root - 1; |
1101 | 1104 |
_supply[_root] = -_sum_supply; |
1102 | 1105 |
_pi[_root] = 0; |
1103 | 1106 |
|
1104 | 1107 |
// Add artificial arcs and initialize the spanning tree data structure |
1105 | 1108 |
if (_sum_supply == 0) { |
1106 | 1109 |
// EQ supply constraints |
1107 | 1110 |
_search_arc_num = _arc_num; |
1108 | 1111 |
_all_arc_num = _arc_num + _node_num; |
1109 | 1112 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1110 | 1113 |
_parent[u] = _root; |
1111 | 1114 |
_pred[u] = e; |
1112 | 1115 |
_thread[u] = u + 1; |
1113 | 1116 |
_rev_thread[u + 1] = u; |
1114 | 1117 |
_succ_num[u] = 1; |
1115 | 1118 |
_last_succ[u] = u; |
1116 | 1119 |
_cap[e] = INF; |
1117 | 1120 |
_state[e] = STATE_TREE; |
1118 | 1121 |
if (_supply[u] >= 0) { |
1119 |
|
|
1122 |
_pred_dir[u] = DIR_UP; |
|
1120 | 1123 |
_pi[u] = 0; |
1121 | 1124 |
_source[e] = u; |
1122 | 1125 |
_target[e] = _root; |
1123 | 1126 |
_flow[e] = _supply[u]; |
1124 | 1127 |
_cost[e] = 0; |
1125 | 1128 |
} else { |
1126 |
|
|
1129 |
_pred_dir[u] = DIR_DOWN; |
|
1127 | 1130 |
_pi[u] = ART_COST; |
1128 | 1131 |
_source[e] = _root; |
1129 | 1132 |
_target[e] = u; |
1130 | 1133 |
_flow[e] = -_supply[u]; |
1131 | 1134 |
_cost[e] = ART_COST; |
1132 | 1135 |
} |
1133 | 1136 |
} |
1134 | 1137 |
} |
1135 | 1138 |
else if (_sum_supply > 0) { |
1136 | 1139 |
// LEQ supply constraints |
1137 | 1140 |
_search_arc_num = _arc_num + _node_num; |
1138 | 1141 |
int f = _arc_num + _node_num; |
1139 | 1142 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1140 | 1143 |
_parent[u] = _root; |
1141 | 1144 |
_thread[u] = u + 1; |
1142 | 1145 |
_rev_thread[u + 1] = u; |
1143 | 1146 |
_succ_num[u] = 1; |
1144 | 1147 |
_last_succ[u] = u; |
1145 | 1148 |
if (_supply[u] >= 0) { |
1146 |
|
|
1149 |
_pred_dir[u] = DIR_UP; |
|
1147 | 1150 |
_pi[u] = 0; |
1148 | 1151 |
_pred[u] = e; |
1149 | 1152 |
_source[e] = u; |
1150 | 1153 |
_target[e] = _root; |
1151 | 1154 |
_cap[e] = INF; |
1152 | 1155 |
_flow[e] = _supply[u]; |
1153 | 1156 |
_cost[e] = 0; |
1154 | 1157 |
_state[e] = STATE_TREE; |
1155 | 1158 |
} else { |
1156 |
|
|
1159 |
_pred_dir[u] = DIR_DOWN; |
|
1157 | 1160 |
_pi[u] = ART_COST; |
1158 | 1161 |
_pred[u] = f; |
1159 | 1162 |
_source[f] = _root; |
1160 | 1163 |
_target[f] = u; |
1161 | 1164 |
_cap[f] = INF; |
1162 | 1165 |
_flow[f] = -_supply[u]; |
1163 | 1166 |
_cost[f] = ART_COST; |
1164 | 1167 |
_state[f] = STATE_TREE; |
1165 | 1168 |
_source[e] = u; |
1166 | 1169 |
_target[e] = _root; |
1167 | 1170 |
_cap[e] = INF; |
1168 | 1171 |
_flow[e] = 0; |
1169 | 1172 |
_cost[e] = 0; |
1170 | 1173 |
_state[e] = STATE_LOWER; |
1171 | 1174 |
++f; |
1172 | 1175 |
} |
1173 | 1176 |
} |
1174 | 1177 |
_all_arc_num = f; |
1175 | 1178 |
} |
1176 | 1179 |
else { |
1177 | 1180 |
// GEQ supply constraints |
1178 | 1181 |
_search_arc_num = _arc_num + _node_num; |
1179 | 1182 |
int f = _arc_num + _node_num; |
1180 | 1183 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1181 | 1184 |
_parent[u] = _root; |
1182 | 1185 |
_thread[u] = u + 1; |
1183 | 1186 |
_rev_thread[u + 1] = u; |
1184 | 1187 |
_succ_num[u] = 1; |
1185 | 1188 |
_last_succ[u] = u; |
1186 | 1189 |
if (_supply[u] <= 0) { |
1187 |
|
|
1190 |
_pred_dir[u] = DIR_DOWN; |
|
1188 | 1191 |
_pi[u] = 0; |
1189 | 1192 |
_pred[u] = e; |
1190 | 1193 |
_source[e] = _root; |
1191 | 1194 |
_target[e] = u; |
1192 | 1195 |
_cap[e] = INF; |
1193 | 1196 |
_flow[e] = -_supply[u]; |
1194 | 1197 |
_cost[e] = 0; |
1195 | 1198 |
_state[e] = STATE_TREE; |
1196 | 1199 |
} else { |
1197 |
|
|
1200 |
_pred_dir[u] = DIR_UP; |
|
1198 | 1201 |
_pi[u] = -ART_COST; |
1199 | 1202 |
_pred[u] = f; |
1200 | 1203 |
_source[f] = u; |
1201 | 1204 |
_target[f] = _root; |
1202 | 1205 |
_cap[f] = INF; |
1203 | 1206 |
_flow[f] = _supply[u]; |
1204 | 1207 |
_state[f] = STATE_TREE; |
1205 | 1208 |
_cost[f] = ART_COST; |
1206 | 1209 |
_source[e] = _root; |
1207 | 1210 |
_target[e] = u; |
1208 | 1211 |
_cap[e] = INF; |
1209 | 1212 |
_flow[e] = 0; |
1210 | 1213 |
_cost[e] = 0; |
1211 | 1214 |
_state[e] = STATE_LOWER; |
1212 | 1215 |
++f; |
1213 | 1216 |
} |
1214 | 1217 |
} |
1215 | 1218 |
_all_arc_num = f; |
1216 | 1219 |
} |
1217 | 1220 |
|
1218 | 1221 |
return true; |
1219 | 1222 |
} |
1220 | 1223 |
|
1221 | 1224 |
// Find the join node |
1222 | 1225 |
void findJoinNode() { |
1223 | 1226 |
int u = _source[in_arc]; |
1224 | 1227 |
int v = _target[in_arc]; |
1225 | 1228 |
while (u != v) { |
1226 | 1229 |
if (_succ_num[u] < _succ_num[v]) { |
1227 | 1230 |
u = _parent[u]; |
1228 | 1231 |
} else { |
1229 | 1232 |
v = _parent[v]; |
1230 | 1233 |
} |
1231 | 1234 |
} |
1232 | 1235 |
join = u; |
1233 | 1236 |
} |
1234 | 1237 |
|
1235 | 1238 |
// Find the leaving arc of the cycle and returns true if the |
1236 | 1239 |
// leaving arc is not the same as the entering arc |
1237 | 1240 |
bool findLeavingArc() { |
1238 | 1241 |
// Initialize first and second nodes according to the direction |
1239 | 1242 |
// of the cycle |
1243 |
int first, second; |
|
1240 | 1244 |
if (_state[in_arc] == STATE_LOWER) { |
1241 | 1245 |
first = _source[in_arc]; |
1242 | 1246 |
second = _target[in_arc]; |
1243 | 1247 |
} else { |
1244 | 1248 |
first = _target[in_arc]; |
1245 | 1249 |
second = _source[in_arc]; |
1246 | 1250 |
} |
1247 | 1251 |
delta = _cap[in_arc]; |
1248 | 1252 |
int result = 0; |
1249 |
Value d; |
|
1253 |
Value c, d; |
|
1250 | 1254 |
int e; |
1251 | 1255 |
|
1252 |
// Search the cycle |
|
1256 |
// Search the cycle form the first node to the join node |
|
1253 | 1257 |
for (int u = first; u != join; u = _parent[u]) { |
1254 | 1258 |
e = _pred[u]; |
1255 |
d = _forward[u] ? |
|
1256 |
_flow[e] : (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]); |
|
1259 |
d = _flow[e]; |
|
1260 |
if (_pred_dir[u] == DIR_DOWN) { |
|
1261 |
c = _cap[e]; |
|
1262 |
d = c >= MAX ? INF : c - d; |
|
1263 |
} |
|
1257 | 1264 |
if (d < delta) { |
1258 | 1265 |
delta = d; |
1259 | 1266 |
u_out = u; |
1260 | 1267 |
result = 1; |
1261 | 1268 |
} |
1262 | 1269 |
} |
1263 |
|
|
1270 |
|
|
1271 |
// Search the cycle form the second node to the join node |
|
1264 | 1272 |
for (int u = second; u != join; u = _parent[u]) { |
1265 | 1273 |
e = _pred[u]; |
1266 |
d = _forward[u] ? |
|
1267 |
(_cap[e] >= MAX ? INF : _cap[e] - _flow[e]) : _flow[e]; |
|
1274 |
d = _flow[e]; |
|
1275 |
if (_pred_dir[u] == DIR_UP) { |
|
1276 |
c = _cap[e]; |
|
1277 |
d = c >= MAX ? INF : c - d; |
|
1278 |
} |
|
1268 | 1279 |
if (d <= delta) { |
1269 | 1280 |
delta = d; |
1270 | 1281 |
u_out = u; |
1271 | 1282 |
result = 2; |
1272 | 1283 |
} |
1273 | 1284 |
} |
1274 | 1285 |
|
1275 | 1286 |
if (result == 1) { |
1276 | 1287 |
u_in = first; |
1277 | 1288 |
v_in = second; |
1278 | 1289 |
} else { |
1279 | 1290 |
u_in = second; |
1280 | 1291 |
v_in = first; |
1281 | 1292 |
} |
1282 | 1293 |
return result != 0; |
1283 | 1294 |
} |
1284 | 1295 |
|
1285 | 1296 |
// Change _flow and _state vectors |
1286 | 1297 |
void changeFlow(bool change) { |
1287 | 1298 |
// Augment along the cycle |
1288 | 1299 |
if (delta > 0) { |
1289 | 1300 |
Value val = _state[in_arc] * delta; |
1290 | 1301 |
_flow[in_arc] += val; |
1291 | 1302 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
1292 |
_flow[_pred[u]] |
|
1303 |
_flow[_pred[u]] -= _pred_dir[u] * val; |
|
1293 | 1304 |
} |
1294 | 1305 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
1295 |
_flow[_pred[u]] += |
|
1306 |
_flow[_pred[u]] += _pred_dir[u] * val; |
|
1296 | 1307 |
} |
1297 | 1308 |
} |
1298 | 1309 |
// Update the state of the entering and leaving arcs |
1299 | 1310 |
if (change) { |
1300 | 1311 |
_state[in_arc] = STATE_TREE; |
1301 | 1312 |
_state[_pred[u_out]] = |
1302 | 1313 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
1303 | 1314 |
} else { |
1304 | 1315 |
_state[in_arc] = -_state[in_arc]; |
1305 | 1316 |
} |
1306 | 1317 |
} |
1307 | 1318 |
|
1308 | 1319 |
// Update the tree structure |
1309 | 1320 |
void updateTreeStructure() { |
1310 |
int u, w; |
|
1311 | 1321 |
int old_rev_thread = _rev_thread[u_out]; |
1312 | 1322 |
int old_succ_num = _succ_num[u_out]; |
1313 | 1323 |
int old_last_succ = _last_succ[u_out]; |
1314 | 1324 |
v_out = _parent[u_out]; |
1315 | 1325 |
|
1316 |
u = _last_succ[u_in]; // the last successor of u_in |
|
1317 |
right = _thread[u]; // the node after it |
|
1326 |
// Check if u_in and u_out coincide |
|
1327 |
if (u_in == u_out) { |
|
1328 |
// Update _parent, _pred, _pred_dir |
|
1329 |
_parent[u_in] = v_in; |
|
1330 |
_pred[u_in] = in_arc; |
|
1331 |
_pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN; |
|
1318 | 1332 |
|
1333 |
// Update _thread and _rev_thread |
|
1334 |
if (_thread[v_in] != u_out) { |
|
1335 |
int after = _thread[old_last_succ]; |
|
1336 |
_thread[old_rev_thread] = after; |
|
1337 |
_rev_thread[after] = old_rev_thread; |
|
1338 |
after = _thread[v_in]; |
|
1339 |
_thread[v_in] = u_out; |
|
1340 |
_rev_thread[u_out] = v_in; |
|
1341 |
_thread[old_last_succ] = after; |
|
1342 |
_rev_thread[after] = old_last_succ; |
|
1343 |
} |
|
1344 |
} else { |
|
1319 | 1345 |
// Handle the case when old_rev_thread equals to v_in |
1320 | 1346 |
// (it also means that join and v_out coincide) |
1321 |
if (old_rev_thread == v_in) { |
|
1322 |
last = _thread[_last_succ[u_out]]; |
|
1323 |
} else { |
|
1324 |
last = _thread[v_in]; |
|
1325 |
|
|
1347 |
int thread_continue = old_rev_thread == v_in ? |
|
1348 |
_thread[old_last_succ] : _thread[v_in]; |
|
1326 | 1349 |
|
1327 | 1350 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
1328 | 1351 |
// between u_in and u_out, whose parent have to be changed) |
1329 |
|
|
1352 |
int stem = u_in; // the current stem node |
|
1353 |
int par_stem = v_in; // the new parent of stem |
|
1354 |
int next_stem; // the next stem node |
|
1355 |
int last = _last_succ[u_in]; // the last successor of stem |
|
1356 |
int before, after = _thread[last]; |
|
1357 |
_thread[v_in] = u_in; |
|
1330 | 1358 |
_dirty_revs.clear(); |
1331 | 1359 |
_dirty_revs.push_back(v_in); |
1332 |
par_stem = v_in; |
|
1333 | 1360 |
while (stem != u_out) { |
1334 | 1361 |
// Insert the next stem node into the thread list |
1335 |
new_stem = _parent[stem]; |
|
1336 |
_thread[u] = new_stem; |
|
1337 |
|
|
1362 |
next_stem = _parent[stem]; |
|
1363 |
_thread[last] = next_stem; |
|
1364 |
_dirty_revs.push_back(last); |
|
1338 | 1365 |
|
1339 | 1366 |
// Remove the subtree of stem from the thread list |
1340 |
w = _rev_thread[stem]; |
|
1341 |
_thread[w] = right; |
|
1342 |
|
|
1367 |
before = _rev_thread[stem]; |
|
1368 |
_thread[before] = after; |
|
1369 |
_rev_thread[after] = before; |
|
1343 | 1370 |
|
1344 | 1371 |
// Change the parent node and shift stem nodes |
1345 | 1372 |
_parent[stem] = par_stem; |
1346 | 1373 |
par_stem = stem; |
1347 |
stem = |
|
1374 |
stem = next_stem; |
|
1348 | 1375 |
|
1349 |
// Update u and right |
|
1350 |
u = _last_succ[stem] == _last_succ[par_stem] ? |
|
1376 |
// Update last and after |
|
1377 |
last = _last_succ[stem] == _last_succ[par_stem] ? |
|
1351 | 1378 |
_rev_thread[par_stem] : _last_succ[stem]; |
1352 |
|
|
1379 |
after = _thread[last]; |
|
1353 | 1380 |
} |
1354 | 1381 |
_parent[u_out] = par_stem; |
1355 |
_thread[u] = last; |
|
1356 |
_rev_thread[last] = u; |
|
1357 |
|
|
1382 |
_thread[last] = thread_continue; |
|
1383 |
_rev_thread[thread_continue] = last; |
|
1384 |
_last_succ[u_out] = last; |
|
1358 | 1385 |
|
1359 | 1386 |
// Remove the subtree of u_out from the thread list except for |
1360 | 1387 |
// the case when old_rev_thread equals to v_in |
1361 |
// (it also means that join and v_out coincide) |
|
1362 | 1388 |
if (old_rev_thread != v_in) { |
1363 |
_thread[old_rev_thread] = right; |
|
1364 |
_rev_thread[right] = old_rev_thread; |
|
1389 |
_thread[old_rev_thread] = after; |
|
1390 |
_rev_thread[after] = old_rev_thread; |
|
1365 | 1391 |
} |
1366 | 1392 |
|
1367 | 1393 |
// Update _rev_thread using the new _thread values |
1368 | 1394 |
for (int i = 0; i != int(_dirty_revs.size()); ++i) { |
1369 |
u = _dirty_revs[i]; |
|
1395 |
int u = _dirty_revs[i]; |
|
1370 | 1396 |
_rev_thread[_thread[u]] = u; |
1371 | 1397 |
} |
1372 | 1398 |
|
1373 |
// Update _pred, |
|
1399 |
// Update _pred, _pred_dir, _last_succ and _succ_num for the |
|
1374 | 1400 |
// stem nodes from u_out to u_in |
1375 | 1401 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
1376 |
u = u_out; |
|
1377 |
while (u != u_in) { |
|
1378 |
w = _parent[u]; |
|
1379 |
_pred[u] = _pred[w]; |
|
1380 |
_forward[u] = !_forward[w]; |
|
1381 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
|
1402 |
for (int u = u_out, p = _parent[u]; u != u_in; u = p, p = _parent[u]) { |
|
1403 |
_pred[u] = _pred[p]; |
|
1404 |
_pred_dir[u] = -_pred_dir[p]; |
|
1405 |
tmp_sc += _succ_num[u] - _succ_num[p]; |
|
1382 | 1406 |
_succ_num[u] = tmp_sc; |
1383 |
_last_succ[w] = tmp_ls; |
|
1384 |
u = w; |
|
1407 |
_last_succ[p] = tmp_ls; |
|
1385 | 1408 |
} |
1386 | 1409 |
_pred[u_in] = in_arc; |
1387 |
|
|
1410 |
_pred_dir[u_in] = u_in == _source[in_arc] ? DIR_UP : DIR_DOWN; |
|
1388 | 1411 |
_succ_num[u_in] = old_succ_num; |
1389 |
|
|
1390 |
// Set limits for updating _last_succ form v_in and v_out |
|
1391 |
// towards the root |
|
1392 |
int up_limit_in = -1; |
|
1393 |
int up_limit_out = -1; |
|
1394 |
if (_last_succ[join] == v_in) { |
|
1395 |
up_limit_out = join; |
|
1396 |
} else { |
|
1397 |
up_limit_in = join; |
|
1398 | 1412 |
} |
1399 | 1413 |
|
1400 | 1414 |
// Update _last_succ from v_in towards the root |
1401 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
|
1402 |
u = _parent[u]) { |
|
1403 |
|
|
1415 |
int up_limit_out = _last_succ[join] == v_in ? join : -1; |
|
1416 |
int last_succ_out = _last_succ[u_out]; |
|
1417 |
for (int u = v_in; u != -1 && _last_succ[u] == v_in; u = _parent[u]) { |
|
1418 |
_last_succ[u] = last_succ_out; |
|
1404 | 1419 |
} |
1420 |
|
|
1405 | 1421 |
// Update _last_succ from v_out towards the root |
1406 | 1422 |
if (join != old_rev_thread && v_in != old_rev_thread) { |
1407 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
|
1423 |
for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
|
1408 | 1424 |
u = _parent[u]) { |
1409 | 1425 |
_last_succ[u] = old_rev_thread; |
1410 | 1426 |
} |
1411 |
} else { |
|
1412 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
|
1427 |
} |
|
1428 |
else if (last_succ_out != old_last_succ) { |
|
1429 |
for (int u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
|
1413 | 1430 |
u = _parent[u]) { |
1414 |
_last_succ[u] = |
|
1431 |
_last_succ[u] = last_succ_out; |
|
1415 | 1432 |
} |
1416 | 1433 |
} |
1417 | 1434 |
|
1418 | 1435 |
// Update _succ_num from v_in to join |
1419 |
for (u = v_in; u != join; u = _parent[u]) { |
|
1436 |
for (int u = v_in; u != join; u = _parent[u]) { |
|
1420 | 1437 |
_succ_num[u] += old_succ_num; |
1421 | 1438 |
} |
1422 | 1439 |
// Update _succ_num from v_out to join |
1423 |
for (u = v_out; u != join; u = _parent[u]) { |
|
1440 |
for (int u = v_out; u != join; u = _parent[u]) { |
|
1424 | 1441 |
_succ_num[u] -= old_succ_num; |
1425 | 1442 |
} |
1426 | 1443 |
} |
1427 | 1444 |
|
1428 |
// Update potentials |
|
1445 |
// Update potentials in the subtree that has been moved |
|
1429 | 1446 |
void updatePotential() { |
1430 |
Cost sigma = _forward[u_in] ? |
|
1431 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
|
1432 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
|
1433 |
// Update potentials in the subtree, which has been moved |
|
1447 |
Cost sigma = _pi[v_in] - _pi[u_in] - |
|
1448 |
_pred_dir[u_in] * _cost[in_arc]; |
|
1434 | 1449 |
int end = _thread[_last_succ[u_in]]; |
1435 | 1450 |
for (int u = u_in; u != end; u = _thread[u]) { |
1436 | 1451 |
_pi[u] += sigma; |
1437 | 1452 |
} |
1438 | 1453 |
} |
1439 | 1454 |
|
1440 | 1455 |
// Heuristic initial pivots |
1441 | 1456 |
bool initialPivots() { |
1442 | 1457 |
Value curr, total = 0; |
1443 | 1458 |
std::vector<Node> supply_nodes, demand_nodes; |
1444 | 1459 |
for (NodeIt u(_graph); u != INVALID; ++u) { |
1445 | 1460 |
curr = _supply[_node_id[u]]; |
1446 | 1461 |
if (curr > 0) { |
1447 | 1462 |
total += curr; |
1448 | 1463 |
supply_nodes.push_back(u); |
1449 | 1464 |
} |
1450 | 1465 |
else if (curr < 0) { |
1451 | 1466 |
demand_nodes.push_back(u); |
1452 | 1467 |
} |
1453 | 1468 |
} |
1454 | 1469 |
if (_sum_supply > 0) total -= _sum_supply; |
1455 | 1470 |
if (total <= 0) return true; |
1456 | 1471 |
|
1457 | 1472 |
IntVector arc_vector; |
1458 | 1473 |
if (_sum_supply >= 0) { |
1459 | 1474 |
if (supply_nodes.size() == 1 && demand_nodes.size() == 1) { |
1460 | 1475 |
// Perform a reverse graph search from the sink to the source |
1461 | 1476 |
typename GR::template NodeMap<bool> reached(_graph, false); |
1462 | 1477 |
Node s = supply_nodes[0], t = demand_nodes[0]; |
1463 | 1478 |
std::vector<Node> stack; |
1464 | 1479 |
reached[t] = true; |
1465 | 1480 |
stack.push_back(t); |
1466 | 1481 |
while (!stack.empty()) { |
1467 | 1482 |
Node u, v = stack.back(); |
1468 | 1483 |
stack.pop_back(); |
1469 | 1484 |
if (v == s) break; |
1470 | 1485 |
for (InArcIt a(_graph, v); a != INVALID; ++a) { |
1471 | 1486 |
if (reached[u = _graph.source(a)]) continue; |
1472 | 1487 |
int j = _arc_id[a]; |
1473 | 1488 |
if (_cap[j] >= total) { |
1474 | 1489 |
arc_vector.push_back(j); |
1475 | 1490 |
reached[u] = true; |
1476 | 1491 |
stack.push_back(u); |
1477 | 1492 |
} |
1478 | 1493 |
} |
1479 | 1494 |
} |
1480 | 1495 |
} else { |
1481 | 1496 |
// Find the min. cost incomming arc for each demand node |
1482 | 1497 |
for (int i = 0; i != int(demand_nodes.size()); ++i) { |
1483 | 1498 |
Node v = demand_nodes[i]; |
1484 | 1499 |
Cost c, min_cost = std::numeric_limits<Cost>::max(); |
1485 | 1500 |
Arc min_arc = INVALID; |
1486 | 1501 |
for (InArcIt a(_graph, v); a != INVALID; ++a) { |
1487 | 1502 |
c = _cost[_arc_id[a]]; |
1488 | 1503 |
if (c < min_cost) { |
1489 | 1504 |
min_cost = c; |
1490 | 1505 |
min_arc = a; |
1491 | 1506 |
} |
1492 | 1507 |
} |
1493 | 1508 |
if (min_arc != INVALID) { |
1494 | 1509 |
arc_vector.push_back(_arc_id[min_arc]); |
1495 | 1510 |
} |
1496 | 1511 |
} |
1497 | 1512 |
} |
1498 | 1513 |
} else { |
1499 | 1514 |
// Find the min. cost outgoing arc for each supply node |
1500 | 1515 |
for (int i = 0; i != int(supply_nodes.size()); ++i) { |
1501 | 1516 |
Node u = supply_nodes[i]; |
1502 | 1517 |
Cost c, min_cost = std::numeric_limits<Cost>::max(); |
1503 | 1518 |
Arc min_arc = INVALID; |
1504 | 1519 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) { |
1505 | 1520 |
c = _cost[_arc_id[a]]; |
1506 | 1521 |
if (c < min_cost) { |
1507 | 1522 |
min_cost = c; |
1508 | 1523 |
min_arc = a; |
1509 | 1524 |
} |
1510 | 1525 |
} |
1511 | 1526 |
if (min_arc != INVALID) { |
1512 | 1527 |
arc_vector.push_back(_arc_id[min_arc]); |
1513 | 1528 |
} |
1514 | 1529 |
} |
1515 | 1530 |
} |
1516 | 1531 |
|
1517 | 1532 |
// Perform heuristic initial pivots |
1518 | 1533 |
for (int i = 0; i != int(arc_vector.size()); ++i) { |
1519 | 1534 |
in_arc = arc_vector[i]; |
1520 | 1535 |
if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] - |
1521 | 1536 |
_pi[_target[in_arc]]) >= 0) continue; |
1522 | 1537 |
findJoinNode(); |
1523 | 1538 |
bool change = findLeavingArc(); |
1524 | 1539 |
if (delta >= MAX) return false; |
1525 | 1540 |
changeFlow(change); |
1526 | 1541 |
if (change) { |
1527 | 1542 |
updateTreeStructure(); |
1528 | 1543 |
updatePotential(); |
1529 | 1544 |
} |
1530 | 1545 |
} |
1531 | 1546 |
return true; |
1532 | 1547 |
} |
1533 | 1548 |
|
1534 | 1549 |
// Execute the algorithm |
1535 | 1550 |
ProblemType start(PivotRule pivot_rule) { |
1536 | 1551 |
// Select the pivot rule implementation |
1537 | 1552 |
switch (pivot_rule) { |
1538 | 1553 |
case FIRST_ELIGIBLE: |
1539 | 1554 |
return start<FirstEligiblePivotRule>(); |
1540 | 1555 |
case BEST_ELIGIBLE: |
1541 | 1556 |
return start<BestEligiblePivotRule>(); |
1542 | 1557 |
case BLOCK_SEARCH: |
1543 | 1558 |
return start<BlockSearchPivotRule>(); |
1544 | 1559 |
case CANDIDATE_LIST: |
1545 | 1560 |
return start<CandidateListPivotRule>(); |
1546 | 1561 |
case ALTERING_LIST: |
1547 | 1562 |
return start<AlteringListPivotRule>(); |
1548 | 1563 |
} |
1549 | 1564 |
return INFEASIBLE; // avoid warning |
1550 | 1565 |
} |
1551 | 1566 |
|
1552 | 1567 |
template <typename PivotRuleImpl> |
1553 | 1568 |
ProblemType start() { |
1554 | 1569 |
PivotRuleImpl pivot(*this); |
1555 | 1570 |
|
1556 | 1571 |
// Perform heuristic initial pivots |
1557 | 1572 |
if (!initialPivots()) return UNBOUNDED; |
1558 | 1573 |
|
1559 | 1574 |
// Execute the Network Simplex algorithm |
1560 | 1575 |
while (pivot.findEnteringArc()) { |
1561 | 1576 |
findJoinNode(); |
1562 | 1577 |
bool change = findLeavingArc(); |
1563 | 1578 |
if (delta >= MAX) return UNBOUNDED; |
1564 | 1579 |
changeFlow(change); |
1565 | 1580 |
if (change) { |
1566 | 1581 |
updateTreeStructure(); |
1567 | 1582 |
updatePotential(); |
1568 | 1583 |
} |
1569 | 1584 |
} |
1570 | 1585 |
|
1571 | 1586 |
// Check feasibility |
1572 | 1587 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) { |
1573 | 1588 |
if (_flow[e] != 0) return INFEASIBLE; |
1574 | 1589 |
} |
1575 | 1590 |
|
1576 | 1591 |
// Transform the solution and the supply map to the original form |
1577 | 1592 |
if (_have_lower) { |
1578 | 1593 |
for (int i = 0; i != _arc_num; ++i) { |
1579 | 1594 |
Value c = _lower[i]; |
1580 | 1595 |
if (c != 0) { |
1581 | 1596 |
_flow[i] += c; |
1582 | 1597 |
_supply[_source[i]] += c; |
1583 | 1598 |
_supply[_target[i]] -= c; |
1584 | 1599 |
} |
1585 | 1600 |
} |
1586 | 1601 |
} |
1587 | 1602 |
|
1588 | 1603 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
1589 | 1604 |
// optimality conditions |
1590 | 1605 |
if (_sum_supply == 0) { |
1591 | 1606 |
if (_stype == GEQ) { |
1592 | 1607 |
Cost max_pot = -std::numeric_limits<Cost>::max(); |
1593 | 1608 |
for (int i = 0; i != _node_num; ++i) { |
1594 | 1609 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
1595 | 1610 |
} |
1596 | 1611 |
if (max_pot > 0) { |
1597 | 1612 |
for (int i = 0; i != _node_num; ++i) |
1598 | 1613 |
_pi[i] -= max_pot; |
1599 | 1614 |
} |
1600 | 1615 |
} else { |
1601 | 1616 |
Cost min_pot = std::numeric_limits<Cost>::max(); |
1602 | 1617 |
for (int i = 0; i != _node_num; ++i) { |
1603 | 1618 |
if (_pi[i] < min_pot) min_pot = _pi[i]; |
1604 | 1619 |
} |
1605 | 1620 |
if (min_pot < 0) { |
1606 | 1621 |
for (int i = 0; i != _node_num; ++i) |
1607 | 1622 |
_pi[i] -= min_pot; |
1608 | 1623 |
} |
1609 | 1624 |
} |
1610 | 1625 |
} |
1611 | 1626 |
|
1612 | 1627 |
return OPTIMAL; |
1613 | 1628 |
} |
1614 | 1629 |
|
1615 | 1630 |
}; //class NetworkSimplex |
1616 | 1631 |
|
1617 | 1632 |
///@} |
1618 | 1633 |
|
1619 | 1634 |
} //namespace lemon |
1620 | 1635 |
|
1621 | 1636 |
#endif //LEMON_NETWORK_SIMPLEX_H |
0 comments (0 inline)