0
5
2
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2010 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_GROSSO_LOCATELLI_PULLAN_MC_H |
|
20 |
#define LEMON_GROSSO_LOCATELLI_PULLAN_MC_H |
|
21 |
|
|
22 |
/// \ingroup approx_algs |
|
23 |
/// |
|
24 |
/// \file |
|
25 |
/// \brief The iterated local search algorithm of Grosso, Locatelli, and Pullan |
|
26 |
/// for the maximum clique problem |
|
27 |
|
|
28 |
#include <vector> |
|
29 |
#include <limits> |
|
30 |
#include <lemon/core.h> |
|
31 |
#include <lemon/random.h> |
|
32 |
|
|
33 |
namespace lemon { |
|
34 |
|
|
35 |
/// \addtogroup approx_algs |
|
36 |
/// @{ |
|
37 |
|
|
38 |
/// \brief Implementation of the iterated local search algorithm of Grosso, |
|
39 |
/// Locatelli, and Pullan for the maximum clique problem |
|
40 |
/// |
|
41 |
/// \ref GrossoLocatelliPullanMc implements the iterated local search |
|
42 |
/// algorithm of Grosso, Locatelli, and Pullan for solving the \e maximum |
|
43 |
/// \e clique \e problem \ref grosso08maxclique. |
|
44 |
/// It is to find the largest complete subgraph (\e clique) in an |
|
45 |
/// undirected graph, i.e., the largest set of nodes where each |
|
46 |
/// pair of nodes is connected. |
|
47 |
/// |
|
48 |
/// This class provides a simple but highly efficient and robust heuristic |
|
49 |
/// method that quickly finds a large clique, but not necessarily the |
|
50 |
/// largest one. |
|
51 |
/// |
|
52 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
53 |
/// |
|
54 |
/// \note %GrossoLocatelliPullanMc provides three different node selection |
|
55 |
/// rules, from which the most powerful one is used by default. |
|
56 |
/// For more information, see \ref SelectionRule. |
|
57 |
template <typename GR> |
|
58 |
class GrossoLocatelliPullanMc |
|
59 |
{ |
|
60 |
public: |
|
61 |
|
|
62 |
/// \brief Constants for specifying the node selection rule. |
|
63 |
/// |
|
64 |
/// Enum type containing constants for specifying the node selection rule |
|
65 |
/// for the \ref run() function. |
|
66 |
/// |
|
67 |
/// During the algorithm, nodes are selected for addition to the current |
|
68 |
/// clique according to the applied rule. |
|
69 |
/// In general, the PENALTY_BASED rule turned out to be the most powerful |
|
70 |
/// and the most robust, thus it is the default option. |
|
71 |
/// However, another selection rule can be specified using the \ref run() |
|
72 |
/// function with the proper parameter. |
|
73 |
enum SelectionRule { |
|
74 |
|
|
75 |
/// A node is selected randomly without any evaluation at each step. |
|
76 |
RANDOM, |
|
77 |
|
|
78 |
/// A node of maximum degree is selected randomly at each step. |
|
79 |
DEGREE_BASED, |
|
80 |
|
|
81 |
/// A node of minimum penalty is selected randomly at each step. |
|
82 |
/// The node penalties are updated adaptively after each stage of the |
|
83 |
/// search process. |
|
84 |
PENALTY_BASED |
|
85 |
}; |
|
86 |
|
|
87 |
private: |
|
88 |
|
|
89 |
TEMPLATE_GRAPH_TYPEDEFS(GR); |
|
90 |
|
|
91 |
typedef std::vector<int> IntVector; |
|
92 |
typedef std::vector<char> BoolVector; |
|
93 |
typedef std::vector<BoolVector> BoolMatrix; |
|
94 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
|
95 |
|
|
96 |
const GR &_graph; |
|
97 |
IntNodeMap _id; |
|
98 |
|
|
99 |
// Internal matrix representation of the graph |
|
100 |
BoolMatrix _gr; |
|
101 |
int _n; |
|
102 |
|
|
103 |
// The current clique |
|
104 |
BoolVector _clique; |
|
105 |
int _size; |
|
106 |
|
|
107 |
// The best clique found so far |
|
108 |
BoolVector _best_clique; |
|
109 |
int _best_size; |
|
110 |
|
|
111 |
// The "distances" of the nodes from the current clique. |
|
112 |
// _delta[u] is the number of nodes in the clique that are |
|
113 |
// not connected with u. |
|
114 |
IntVector _delta; |
|
115 |
|
|
116 |
// The current tabu set |
|
117 |
BoolVector _tabu; |
|
118 |
|
|
119 |
// Random number generator |
|
120 |
Random _rnd; |
|
121 |
|
|
122 |
private: |
|
123 |
|
|
124 |
// Implementation of the RANDOM node selection rule. |
|
125 |
class RandomSelectionRule |
|
126 |
{ |
|
127 |
private: |
|
128 |
|
|
129 |
// References to the algorithm instance |
|
130 |
const BoolVector &_clique; |
|
131 |
const IntVector &_delta; |
|
132 |
const BoolVector &_tabu; |
|
133 |
Random &_rnd; |
|
134 |
|
|
135 |
// Pivot rule data |
|
136 |
int _n; |
|
137 |
|
|
138 |
public: |
|
139 |
|
|
140 |
// Constructor |
|
141 |
RandomSelectionRule(GrossoLocatelliPullanMc &mc) : |
|
142 |
_clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu), |
|
143 |
_rnd(mc._rnd), _n(mc._n) |
|
144 |
{} |
|
145 |
|
|
146 |
// Return a node index for a feasible add move or -1 if no one exists |
|
147 |
int nextFeasibleAddNode() const { |
|
148 |
int start_node = _rnd[_n]; |
|
149 |
for (int i = start_node; i != _n; i++) { |
|
150 |
if (_delta[i] == 0 && !_tabu[i]) return i; |
|
151 |
} |
|
152 |
for (int i = 0; i != start_node; i++) { |
|
153 |
if (_delta[i] == 0 && !_tabu[i]) return i; |
|
154 |
} |
|
155 |
return -1; |
|
156 |
} |
|
157 |
|
|
158 |
// Return a node index for a feasible swap move or -1 if no one exists |
|
159 |
int nextFeasibleSwapNode() const { |
|
160 |
int start_node = _rnd[_n]; |
|
161 |
for (int i = start_node; i != _n; i++) { |
|
162 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i; |
|
163 |
} |
|
164 |
for (int i = 0; i != start_node; i++) { |
|
165 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i; |
|
166 |
} |
|
167 |
return -1; |
|
168 |
} |
|
169 |
|
|
170 |
// Return a node index for an add move or -1 if no one exists |
|
171 |
int nextAddNode() const { |
|
172 |
int start_node = _rnd[_n]; |
|
173 |
for (int i = start_node; i != _n; i++) { |
|
174 |
if (_delta[i] == 0) return i; |
|
175 |
} |
|
176 |
for (int i = 0; i != start_node; i++) { |
|
177 |
if (_delta[i] == 0) return i; |
|
178 |
} |
|
179 |
return -1; |
|
180 |
} |
|
181 |
|
|
182 |
// Update internal data structures between stages (if necessary) |
|
183 |
void update() {} |
|
184 |
|
|
185 |
}; //class RandomSelectionRule |
|
186 |
|
|
187 |
|
|
188 |
// Implementation of the DEGREE_BASED node selection rule. |
|
189 |
class DegreeBasedSelectionRule |
|
190 |
{ |
|
191 |
private: |
|
192 |
|
|
193 |
// References to the algorithm instance |
|
194 |
const BoolVector &_clique; |
|
195 |
const IntVector &_delta; |
|
196 |
const BoolVector &_tabu; |
|
197 |
Random &_rnd; |
|
198 |
|
|
199 |
// Pivot rule data |
|
200 |
int _n; |
|
201 |
IntVector _deg; |
|
202 |
|
|
203 |
public: |
|
204 |
|
|
205 |
// Constructor |
|
206 |
DegreeBasedSelectionRule(GrossoLocatelliPullanMc &mc) : |
|
207 |
_clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu), |
|
208 |
_rnd(mc._rnd), _n(mc._n), _deg(_n) |
|
209 |
{ |
|
210 |
for (int i = 0; i != _n; i++) { |
|
211 |
int d = 0; |
|
212 |
BoolVector &row = mc._gr[i]; |
|
213 |
for (int j = 0; j != _n; j++) { |
|
214 |
if (row[j]) d++; |
|
215 |
} |
|
216 |
_deg[i] = d; |
|
217 |
} |
|
218 |
} |
|
219 |
|
|
220 |
// Return a node index for a feasible add move or -1 if no one exists |
|
221 |
int nextFeasibleAddNode() const { |
|
222 |
int start_node = _rnd[_n]; |
|
223 |
int node = -1, max_deg = -1; |
|
224 |
for (int i = start_node; i != _n; i++) { |
|
225 |
if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) { |
|
226 |
node = i; |
|
227 |
max_deg = _deg[i]; |
|
228 |
} |
|
229 |
} |
|
230 |
for (int i = 0; i != start_node; i++) { |
|
231 |
if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) { |
|
232 |
node = i; |
|
233 |
max_deg = _deg[i]; |
|
234 |
} |
|
235 |
} |
|
236 |
return node; |
|
237 |
} |
|
238 |
|
|
239 |
// Return a node index for a feasible swap move or -1 if no one exists |
|
240 |
int nextFeasibleSwapNode() const { |
|
241 |
int start_node = _rnd[_n]; |
|
242 |
int node = -1, max_deg = -1; |
|
243 |
for (int i = start_node; i != _n; i++) { |
|
244 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] && |
|
245 |
_deg[i] > max_deg) { |
|
246 |
node = i; |
|
247 |
max_deg = _deg[i]; |
|
248 |
} |
|
249 |
} |
|
250 |
for (int i = 0; i != start_node; i++) { |
|
251 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] && |
|
252 |
_deg[i] > max_deg) { |
|
253 |
node = i; |
|
254 |
max_deg = _deg[i]; |
|
255 |
} |
|
256 |
} |
|
257 |
return node; |
|
258 |
} |
|
259 |
|
|
260 |
// Return a node index for an add move or -1 if no one exists |
|
261 |
int nextAddNode() const { |
|
262 |
int start_node = _rnd[_n]; |
|
263 |
int node = -1, max_deg = -1; |
|
264 |
for (int i = start_node; i != _n; i++) { |
|
265 |
if (_delta[i] == 0 && _deg[i] > max_deg) { |
|
266 |
node = i; |
|
267 |
max_deg = _deg[i]; |
|
268 |
} |
|
269 |
} |
|
270 |
for (int i = 0; i != start_node; i++) { |
|
271 |
if (_delta[i] == 0 && _deg[i] > max_deg) { |
|
272 |
node = i; |
|
273 |
max_deg = _deg[i]; |
|
274 |
} |
|
275 |
} |
|
276 |
return node; |
|
277 |
} |
|
278 |
|
|
279 |
// Update internal data structures between stages (if necessary) |
|
280 |
void update() {} |
|
281 |
|
|
282 |
}; //class DegreeBasedSelectionRule |
|
283 |
|
|
284 |
|
|
285 |
// Implementation of the PENALTY_BASED node selection rule. |
|
286 |
class PenaltyBasedSelectionRule |
|
287 |
{ |
|
288 |
private: |
|
289 |
|
|
290 |
// References to the algorithm instance |
|
291 |
const BoolVector &_clique; |
|
292 |
const IntVector &_delta; |
|
293 |
const BoolVector &_tabu; |
|
294 |
Random &_rnd; |
|
295 |
|
|
296 |
// Pivot rule data |
|
297 |
int _n; |
|
298 |
IntVector _penalty; |
|
299 |
|
|
300 |
public: |
|
301 |
|
|
302 |
// Constructor |
|
303 |
PenaltyBasedSelectionRule(GrossoLocatelliPullanMc &mc) : |
|
304 |
_clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu), |
|
305 |
_rnd(mc._rnd), _n(mc._n), _penalty(_n, 0) |
|
306 |
{} |
|
307 |
|
|
308 |
// Return a node index for a feasible add move or -1 if no one exists |
|
309 |
int nextFeasibleAddNode() const { |
|
310 |
int start_node = _rnd[_n]; |
|
311 |
int node = -1, min_p = std::numeric_limits<int>::max(); |
|
312 |
for (int i = start_node; i != _n; i++) { |
|
313 |
if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) { |
|
314 |
node = i; |
|
315 |
min_p = _penalty[i]; |
|
316 |
} |
|
317 |
} |
|
318 |
for (int i = 0; i != start_node; i++) { |
|
319 |
if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) { |
|
320 |
node = i; |
|
321 |
min_p = _penalty[i]; |
|
322 |
} |
|
323 |
} |
|
324 |
return node; |
|
325 |
} |
|
326 |
|
|
327 |
// Return a node index for a feasible swap move or -1 if no one exists |
|
328 |
int nextFeasibleSwapNode() const { |
|
329 |
int start_node = _rnd[_n]; |
|
330 |
int node = -1, min_p = std::numeric_limits<int>::max(); |
|
331 |
for (int i = start_node; i != _n; i++) { |
|
332 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] && |
|
333 |
_penalty[i] < min_p) { |
|
334 |
node = i; |
|
335 |
min_p = _penalty[i]; |
|
336 |
} |
|
337 |
} |
|
338 |
for (int i = 0; i != start_node; i++) { |
|
339 |
if (!_clique[i] && _delta[i] == 1 && !_tabu[i] && |
|
340 |
_penalty[i] < min_p) { |
|
341 |
node = i; |
|
342 |
min_p = _penalty[i]; |
|
343 |
} |
|
344 |
} |
|
345 |
return node; |
|
346 |
} |
|
347 |
|
|
348 |
// Return a node index for an add move or -1 if no one exists |
|
349 |
int nextAddNode() const { |
|
350 |
int start_node = _rnd[_n]; |
|
351 |
int node = -1, min_p = std::numeric_limits<int>::max(); |
|
352 |
for (int i = start_node; i != _n; i++) { |
|
353 |
if (_delta[i] == 0 && _penalty[i] < min_p) { |
|
354 |
node = i; |
|
355 |
min_p = _penalty[i]; |
|
356 |
} |
|
357 |
} |
|
358 |
for (int i = 0; i != start_node; i++) { |
|
359 |
if (_delta[i] == 0 && _penalty[i] < min_p) { |
|
360 |
node = i; |
|
361 |
min_p = _penalty[i]; |
|
362 |
} |
|
363 |
} |
|
364 |
return node; |
|
365 |
} |
|
366 |
|
|
367 |
// Update internal data structures between stages (if necessary) |
|
368 |
void update() {} |
|
369 |
|
|
370 |
}; //class PenaltyBasedSelectionRule |
|
371 |
|
|
372 |
public: |
|
373 |
|
|
374 |
/// \brief Constructor. |
|
375 |
/// |
|
376 |
/// Constructor. |
|
377 |
/// The global \ref rnd "random number generator instance" is used |
|
378 |
/// during the algorithm. |
|
379 |
/// |
|
380 |
/// \param graph The undirected graph the algorithm runs on. |
|
381 |
GrossoLocatelliPullanMc(const GR& graph) : |
|
382 |
_graph(graph), _id(_graph), _rnd(rnd) |
|
383 |
{} |
|
384 |
|
|
385 |
/// \brief Constructor with random seed. |
|
386 |
/// |
|
387 |
/// Constructor with random seed. |
|
388 |
/// |
|
389 |
/// \param graph The undirected graph the algorithm runs on. |
|
390 |
/// \param seed Seed value for the internal random number generator |
|
391 |
/// that is used during the algorithm. |
|
392 |
GrossoLocatelliPullanMc(const GR& graph, int seed) : |
|
393 |
_graph(graph), _id(_graph), _rnd(seed) |
|
394 |
{} |
|
395 |
|
|
396 |
/// \brief Constructor with random number generator. |
|
397 |
/// |
|
398 |
/// Constructor with random number generator. |
|
399 |
/// |
|
400 |
/// \param graph The undirected graph the algorithm runs on. |
|
401 |
/// \param random A random number generator that is used during the |
|
402 |
/// algorithm. |
|
403 |
GrossoLocatelliPullanMc(const GR& graph, const Random& random) : |
|
404 |
_graph(graph), _id(_graph), _rnd(random) |
|
405 |
{} |
|
406 |
|
|
407 |
/// \name Execution Control |
|
408 |
/// @{ |
|
409 |
|
|
410 |
/// \brief Runs the algorithm. |
|
411 |
/// |
|
412 |
/// This function runs the algorithm. |
|
413 |
/// |
|
414 |
/// \param step_num The maximum number of node selections (steps) |
|
415 |
/// during the search process. |
|
416 |
/// This parameter controls the running time and the success of the |
|
417 |
/// algorithm. For larger values, the algorithm runs slower but it more |
|
418 |
/// likely finds larger cliques. For smaller values, the algorithm is |
|
419 |
/// faster but probably gives worse results. |
|
420 |
/// \param rule The node selection rule. For more information, see |
|
421 |
/// \ref SelectionRule. |
|
422 |
/// |
|
423 |
/// \return The size of the found clique. |
|
424 |
int run(int step_num = 100000, |
|
425 |
SelectionRule rule = PENALTY_BASED) |
|
426 |
{ |
|
427 |
init(); |
|
428 |
switch (rule) { |
|
429 |
case RANDOM: |
|
430 |
return start<RandomSelectionRule>(step_num); |
|
431 |
case DEGREE_BASED: |
|
432 |
return start<DegreeBasedSelectionRule>(step_num); |
|
433 |
case PENALTY_BASED: |
|
434 |
return start<PenaltyBasedSelectionRule>(step_num); |
|
435 |
} |
|
436 |
return 0; // avoid warning |
|
437 |
} |
|
438 |
|
|
439 |
/// @} |
|
440 |
|
|
441 |
/// \name Query Functions |
|
442 |
/// @{ |
|
443 |
|
|
444 |
/// \brief The size of the found clique |
|
445 |
/// |
|
446 |
/// This function returns the size of the found clique. |
|
447 |
/// |
|
448 |
/// \pre run() must be called before using this function. |
|
449 |
int cliqueSize() const { |
|
450 |
return _best_size; |
|
451 |
} |
|
452 |
|
|
453 |
/// \brief Gives back the found clique in a \c bool node map |
|
454 |
/// |
|
455 |
/// This function gives back the characteristic vector of the found |
|
456 |
/// clique in the given node map. |
|
457 |
/// It must be a \ref concepts::WriteMap "writable" node map with |
|
458 |
/// \c bool (or convertible) value type. |
|
459 |
/// |
|
460 |
/// \pre run() must be called before using this function. |
|
461 |
template <typename CliqueMap> |
|
462 |
void cliqueMap(CliqueMap &map) const { |
|
463 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
464 |
map[n] = static_cast<bool>(_best_clique[_id[n]]); |
|
465 |
} |
|
466 |
} |
|
467 |
|
|
468 |
/// \brief Iterator to list the nodes of the found clique |
|
469 |
/// |
|
470 |
/// This iterator class lists the nodes of the found clique. |
|
471 |
/// Before using it, you must allocate a GrossoLocatelliPullanMc instance |
|
472 |
/// and call its \ref GrossoLocatelliPullanMc::run() "run()" method. |
|
473 |
/// |
|
474 |
/// The following example prints out the IDs of the nodes in the found |
|
475 |
/// clique. |
|
476 |
/// \code |
|
477 |
/// GrossoLocatelliPullanMc<Graph> mc(g); |
|
478 |
/// mc.run(); |
|
479 |
/// for (GrossoLocatelliPullanMc<Graph>::CliqueNodeIt n(mc); |
|
480 |
/// n != INVALID; ++n) |
|
481 |
/// { |
|
482 |
/// std::cout << g.id(n) << std::endl; |
|
483 |
/// } |
|
484 |
/// \endcode |
|
485 |
class CliqueNodeIt |
|
486 |
{ |
|
487 |
private: |
|
488 |
NodeIt _it; |
|
489 |
BoolNodeMap _map; |
|
490 |
|
|
491 |
public: |
|
492 |
|
|
493 |
/// Constructor |
|
494 |
|
|
495 |
/// Constructor. |
|
496 |
/// \param mc The algorithm instance. |
|
497 |
CliqueNodeIt(const GrossoLocatelliPullanMc &mc) |
|
498 |
: _map(mc._graph) |
|
499 |
{ |
|
500 |
mc.cliqueMap(_map); |
|
501 |
for (_it = NodeIt(mc._graph); _it != INVALID && !_map[_it]; ++_it) ; |
|
502 |
} |
|
503 |
|
|
504 |
/// Conversion to \c Node |
|
505 |
operator Node() const { return _it; } |
|
506 |
|
|
507 |
bool operator==(Invalid) const { return _it == INVALID; } |
|
508 |
bool operator!=(Invalid) const { return _it != INVALID; } |
|
509 |
|
|
510 |
/// Next node |
|
511 |
CliqueNodeIt &operator++() { |
|
512 |
for (++_it; _it != INVALID && !_map[_it]; ++_it) ; |
|
513 |
return *this; |
|
514 |
} |
|
515 |
|
|
516 |
/// Postfix incrementation |
|
517 |
|
|
518 |
/// Postfix incrementation. |
|
519 |
/// |
|
520 |
/// \warning This incrementation returns a \c Node, not a |
|
521 |
/// \c CliqueNodeIt as one may expect. |
|
522 |
typename GR::Node operator++(int) { |
|
523 |
Node n=*this; |
|
524 |
++(*this); |
|
525 |
return n; |
|
526 |
} |
|
527 |
|
|
528 |
}; |
|
529 |
|
|
530 |
/// @} |
|
531 |
|
|
532 |
private: |
|
533 |
|
|
534 |
// Adds a node to the current clique |
|
535 |
void addCliqueNode(int u) { |
|
536 |
if (_clique[u]) return; |
|
537 |
_clique[u] = true; |
|
538 |
_size++; |
|
539 |
BoolVector &row = _gr[u]; |
|
540 |
for (int i = 0; i != _n; i++) { |
|
541 |
if (!row[i]) _delta[i]++; |
|
542 |
} |
|
543 |
} |
|
544 |
|
|
545 |
// Removes a node from the current clique |
|
546 |
void delCliqueNode(int u) { |
|
547 |
if (!_clique[u]) return; |
|
548 |
_clique[u] = false; |
|
549 |
_size--; |
|
550 |
BoolVector &row = _gr[u]; |
|
551 |
for (int i = 0; i != _n; i++) { |
|
552 |
if (!row[i]) _delta[i]--; |
|
553 |
} |
|
554 |
} |
|
555 |
|
|
556 |
// Initialize data structures |
|
557 |
void init() { |
|
558 |
_n = countNodes(_graph); |
|
559 |
int ui = 0; |
|
560 |
for (NodeIt u(_graph); u != INVALID; ++u) { |
|
561 |
_id[u] = ui++; |
|
562 |
} |
|
563 |
_gr.clear(); |
|
564 |
_gr.resize(_n, BoolVector(_n, false)); |
|
565 |
ui = 0; |
|
566 |
for (NodeIt u(_graph); u != INVALID; ++u) { |
|
567 |
for (IncEdgeIt e(_graph, u); e != INVALID; ++e) { |
|
568 |
int vi = _id[_graph.runningNode(e)]; |
|
569 |
_gr[ui][vi] = true; |
|
570 |
_gr[vi][ui] = true; |
|
571 |
} |
|
572 |
++ui; |
|
573 |
} |
|
574 |
|
|
575 |
_clique.clear(); |
|
576 |
_clique.resize(_n, false); |
|
577 |
_size = 0; |
|
578 |
_best_clique.clear(); |
|
579 |
_best_clique.resize(_n, false); |
|
580 |
_best_size = 0; |
|
581 |
_delta.clear(); |
|
582 |
_delta.resize(_n, 0); |
|
583 |
_tabu.clear(); |
|
584 |
_tabu.resize(_n, false); |
|
585 |
} |
|
586 |
|
|
587 |
// Executes the algorithm |
|
588 |
template <typename SelectionRuleImpl> |
|
589 |
int start(int max_select) { |
|
590 |
// Options for the restart rule |
|
591 |
const bool delta_based_restart = true; |
|
592 |
const int restart_delta_limit = 4; |
|
593 |
|
|
594 |
if (_n == 0) return 0; |
|
595 |
if (_n == 1) { |
|
596 |
_best_clique[0] = true; |
|
597 |
_best_size = 1; |
|
598 |
return _best_size; |
|
599 |
} |
|
600 |
|
|
601 |
// Iterated local search |
|
602 |
SelectionRuleImpl sel_method(*this); |
|
603 |
int select = 0; |
|
604 |
IntVector restart_nodes; |
|
605 |
|
|
606 |
while (select < max_select) { |
|
607 |
|
|
608 |
// Perturbation/restart |
|
609 |
if (delta_based_restart) { |
|
610 |
restart_nodes.clear(); |
|
611 |
for (int i = 0; i != _n; i++) { |
|
612 |
if (_delta[i] >= restart_delta_limit) |
|
613 |
restart_nodes.push_back(i); |
|
614 |
} |
|
615 |
} |
|
616 |
int rs_node = -1; |
|
617 |
if (restart_nodes.size() > 0) { |
|
618 |
rs_node = restart_nodes[_rnd[restart_nodes.size()]]; |
|
619 |
} else { |
|
620 |
rs_node = _rnd[_n]; |
|
621 |
} |
|
622 |
BoolVector &row = _gr[rs_node]; |
|
623 |
for (int i = 0; i != _n; i++) { |
|
624 |
if (_clique[i] && !row[i]) delCliqueNode(i); |
|
625 |
} |
|
626 |
addCliqueNode(rs_node); |
|
627 |
|
|
628 |
// Local search |
|
629 |
_tabu.clear(); |
|
630 |
_tabu.resize(_n, false); |
|
631 |
bool tabu_empty = true; |
|
632 |
int max_swap = _size; |
|
633 |
while (select < max_select) { |
|
634 |
select++; |
|
635 |
int u; |
|
636 |
if ((u = sel_method.nextFeasibleAddNode()) != -1) { |
|
637 |
// Feasible add move |
|
638 |
addCliqueNode(u); |
|
639 |
if (tabu_empty) max_swap = _size; |
|
640 |
} |
|
641 |
else if ((u = sel_method.nextFeasibleSwapNode()) != -1) { |
|
642 |
// Feasible swap move |
|
643 |
int v = -1; |
|
644 |
BoolVector &row = _gr[u]; |
|
645 |
for (int i = 0; i != _n; i++) { |
|
646 |
if (_clique[i] && !row[i]) { |
|
647 |
v = i; |
|
648 |
break; |
|
649 |
} |
|
650 |
} |
|
651 |
addCliqueNode(u); |
|
652 |
delCliqueNode(v); |
|
653 |
_tabu[v] = true; |
|
654 |
tabu_empty = false; |
|
655 |
if (--max_swap <= 0) break; |
|
656 |
} |
|
657 |
else if ((u = sel_method.nextAddNode()) != -1) { |
|
658 |
// Non-feasible add move |
|
659 |
addCliqueNode(u); |
|
660 |
} |
|
661 |
else break; |
|
662 |
} |
|
663 |
if (_size > _best_size) { |
|
664 |
_best_clique = _clique; |
|
665 |
_best_size = _size; |
|
666 |
if (_best_size == _n) return _best_size; |
|
667 |
} |
|
668 |
sel_method.update(); |
|
669 |
} |
|
670 |
|
|
671 |
return _best_size; |
|
672 |
} |
|
673 |
|
|
674 |
}; //class GrossoLocatelliPullanMc |
|
675 |
|
|
676 |
///@} |
|
677 |
|
|
678 |
} //namespace lemon |
|
679 |
|
|
680 |
#endif //LEMON_GROSSO_LOCATELLI_PULLAN_MC_H |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2010 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#include <sstream> |
|
20 |
#include <lemon/list_graph.h> |
|
21 |
#include <lemon/full_graph.h> |
|
22 |
#include <lemon/grid_graph.h> |
|
23 |
#include <lemon/lgf_reader.h> |
|
24 |
#include <lemon/grosso_locatelli_pullan_mc.h> |
|
25 |
|
|
26 |
#include "test_tools.h" |
|
27 |
|
|
28 |
using namespace lemon; |
|
29 |
|
|
30 |
char test_lgf[] = |
|
31 |
"@nodes\n" |
|
32 |
"label max_clique\n" |
|
33 |
"1 0\n" |
|
34 |
"2 0\n" |
|
35 |
"3 0\n" |
|
36 |
"4 1\n" |
|
37 |
"5 1\n" |
|
38 |
"6 1\n" |
|
39 |
"7 1\n" |
|
40 |
"@edges\n" |
|
41 |
" label\n" |
|
42 |
"1 2 1\n" |
|
43 |
"1 3 2\n" |
|
44 |
"1 4 3\n" |
|
45 |
"1 6 4\n" |
|
46 |
"2 3 5\n" |
|
47 |
"2 5 6\n" |
|
48 |
"2 7 7\n" |
|
49 |
"3 4 8\n" |
|
50 |
"3 5 9\n" |
|
51 |
"4 5 10\n" |
|
52 |
"4 6 11\n" |
|
53 |
"4 7 12\n" |
|
54 |
"5 6 13\n" |
|
55 |
"5 7 14\n" |
|
56 |
"6 7 15\n"; |
|
57 |
|
|
58 |
|
|
59 |
// Check with general graphs |
|
60 |
template <typename Param> |
|
61 |
void checkMaxCliqueGeneral(int max_sel, Param rule) { |
|
62 |
typedef ListGraph GR; |
|
63 |
typedef GrossoLocatelliPullanMc<GR> McAlg; |
|
64 |
typedef McAlg::CliqueNodeIt CliqueIt; |
|
65 |
|
|
66 |
// Basic tests |
|
67 |
{ |
|
68 |
GR g; |
|
69 |
GR::NodeMap<bool> map(g); |
|
70 |
McAlg mc(g); |
|
71 |
check(mc.run(max_sel, rule) == 0, "Wrong clique size"); |
|
72 |
check(mc.cliqueSize() == 0, "Wrong clique size"); |
|
73 |
check(CliqueIt(mc) == INVALID, "Wrong CliqueNodeIt"); |
|
74 |
|
|
75 |
GR::Node u = g.addNode(); |
|
76 |
check(mc.run(max_sel, rule) == 1, "Wrong clique size"); |
|
77 |
check(mc.cliqueSize() == 1, "Wrong clique size"); |
|
78 |
mc.cliqueMap(map); |
|
79 |
check(map[u], "Wrong clique map"); |
|
80 |
CliqueIt it1(mc); |
|
81 |
check(static_cast<GR::Node>(it1) == u && ++it1 == INVALID, |
|
82 |
"Wrong CliqueNodeIt"); |
|
83 |
|
|
84 |
GR::Node v = g.addNode(); |
|
85 |
check(mc.run(max_sel, rule) == 1, "Wrong clique size"); |
|
86 |
check(mc.cliqueSize() == 1, "Wrong clique size"); |
|
87 |
mc.cliqueMap(map); |
|
88 |
check((map[u] && !map[v]) || (map[v] && !map[u]), "Wrong clique map"); |
|
89 |
CliqueIt it2(mc); |
|
90 |
check(it2 != INVALID && ++it2 == INVALID, "Wrong CliqueNodeIt"); |
|
91 |
|
|
92 |
g.addEdge(u, v); |
|
93 |
check(mc.run(max_sel, rule) == 2, "Wrong clique size"); |
|
94 |
check(mc.cliqueSize() == 2, "Wrong clique size"); |
|
95 |
mc.cliqueMap(map); |
|
96 |
check(map[u] && map[v], "Wrong clique map"); |
|
97 |
CliqueIt it3(mc); |
|
98 |
check(it3 != INVALID && ++it3 != INVALID && ++it3 == INVALID, |
|
99 |
"Wrong CliqueNodeIt"); |
|
100 |
} |
|
101 |
|
|
102 |
// Test graph |
|
103 |
{ |
|
104 |
GR g; |
|
105 |
GR::NodeMap<bool> max_clique(g); |
|
106 |
GR::NodeMap<bool> map(g); |
|
107 |
std::istringstream input(test_lgf); |
|
108 |
graphReader(g, input) |
|
109 |
.nodeMap("max_clique", max_clique) |
|
110 |
.run(); |
|
111 |
|
|
112 |
McAlg mc(g); |
|
113 |
check(mc.run(max_sel, rule) == 4, "Wrong clique size"); |
|
114 |
check(mc.cliqueSize() == 4, "Wrong clique size"); |
|
115 |
mc.cliqueMap(map); |
|
116 |
for (GR::NodeIt n(g); n != INVALID; ++n) { |
|
117 |
check(map[n] == max_clique[n], "Wrong clique map"); |
|
118 |
} |
|
119 |
int cnt = 0; |
|
120 |
for (CliqueIt n(mc); n != INVALID; ++n) { |
|
121 |
cnt++; |
|
122 |
check(map[n] && max_clique[n], "Wrong CliqueNodeIt"); |
|
123 |
} |
|
124 |
check(cnt == 4, "Wrong CliqueNodeIt"); |
|
125 |
} |
|
126 |
} |
|
127 |
|
|
128 |
// Check with full graphs |
|
129 |
template <typename Param> |
|
130 |
void checkMaxCliqueFullGraph(int max_sel, Param rule) { |
|
131 |
typedef FullGraph GR; |
|
132 |
typedef GrossoLocatelliPullanMc<FullGraph> McAlg; |
|
133 |
typedef McAlg::CliqueNodeIt CliqueIt; |
|
134 |
|
|
135 |
for (int size = 0; size <= 40; size = size * 3 + 1) { |
|
136 |
GR g(size); |
|
137 |
GR::NodeMap<bool> map(g); |
|
138 |
McAlg mc(g); |
|
139 |
check(mc.run(max_sel, rule) == size, "Wrong clique size"); |
|
140 |
check(mc.cliqueSize() == size, "Wrong clique size"); |
|
141 |
mc.cliqueMap(map); |
|
142 |
for (GR::NodeIt n(g); n != INVALID; ++n) { |
|
143 |
check(map[n], "Wrong clique map"); |
|
144 |
} |
|
145 |
int cnt = 0; |
|
146 |
for (CliqueIt n(mc); n != INVALID; ++n) cnt++; |
|
147 |
check(cnt == size, "Wrong CliqueNodeIt"); |
|
148 |
} |
|
149 |
} |
|
150 |
|
|
151 |
// Check with grid graphs |
|
152 |
template <typename Param> |
|
153 |
void checkMaxCliqueGridGraph(int max_sel, Param rule) { |
|
154 |
GridGraph g(5, 7); |
|
155 |
GridGraph::NodeMap<char> map(g); |
|
156 |
GrossoLocatelliPullanMc<GridGraph> mc(g); |
|
157 |
check(mc.run(max_sel, rule) == 2, "Wrong clique size"); |
|
158 |
check(mc.cliqueSize() == 2, "Wrong clique size"); |
|
159 |
} |
|
160 |
|
|
161 |
|
|
162 |
int main() { |
|
163 |
checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::RANDOM); |
|
164 |
checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::DEGREE_BASED); |
|
165 |
checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::PENALTY_BASED); |
|
166 |
|
|
167 |
checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::RANDOM); |
|
168 |
checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::DEGREE_BASED); |
|
169 |
checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::PENALTY_BASED); |
|
170 |
|
|
171 |
checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::RANDOM); |
|
172 |
checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::DEGREE_BASED); |
|
173 |
checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::PENALTY_BASED); |
|
174 |
|
|
175 |
return 0; |
|
176 |
} |
... | ... |
@@ -538,38 +538,42 @@ |
538 | 538 |
\image latex connected_components.eps "Connected components" width=\textwidth |
539 | 539 |
*/ |
540 | 540 |
|
541 | 541 |
/** |
542 | 542 |
@defgroup planar Planarity Embedding and Drawing |
543 | 543 |
@ingroup algs |
544 | 544 |
\brief Algorithms for planarity checking, embedding and drawing |
545 | 545 |
|
546 | 546 |
This group contains the algorithms for planarity checking, |
547 | 547 |
embedding and drawing. |
548 | 548 |
|
549 | 549 |
\image html planar.png |
550 | 550 |
\image latex planar.eps "Plane graph" width=\textwidth |
551 | 551 |
*/ |
552 | 552 |
|
553 | 553 |
/** |
554 |
@defgroup |
|
554 |
@defgroup approx_algs Approximation Algorithms |
|
555 | 555 |
@ingroup algs |
556 | 556 |
\brief Approximation algorithms. |
557 | 557 |
|
558 | 558 |
This group contains the approximation and heuristic algorithms |
559 | 559 |
implemented in LEMON. |
560 |
|
|
561 |
<b>Maximum Clique Problem</b> |
|
562 |
- \ref GrossoLocatelliPullanMc An efficient heuristic algorithm of |
|
563 |
Grosso, Locatelli, and Pullan. |
|
560 | 564 |
*/ |
561 | 565 |
|
562 | 566 |
/** |
563 | 567 |
@defgroup auxalg Auxiliary Algorithms |
564 | 568 |
@ingroup algs |
565 | 569 |
\brief Auxiliary algorithms implemented in LEMON. |
566 | 570 |
|
567 | 571 |
This group contains some algorithms implemented in LEMON |
568 | 572 |
in order to make it easier to implement complex algorithms. |
569 | 573 |
*/ |
570 | 574 |
|
571 | 575 |
/** |
572 | 576 |
@defgroup gen_opt_group General Optimization Tools |
573 | 577 |
\brief This group contains some general optimization frameworks |
574 | 578 |
implemented in LEMON. |
575 | 579 |
... | ... |
@@ -284,18 +284,31 @@ |
284 | 284 |
} |
285 | 285 |
|
286 | 286 |
@book{dantzig63linearprog, |
287 | 287 |
author = {George B. Dantzig}, |
288 | 288 |
title = {Linear Programming and Extensions}, |
289 | 289 |
publisher = {Princeton University Press}, |
290 | 290 |
year = 1963 |
291 | 291 |
} |
292 | 292 |
|
293 | 293 |
@mastersthesis{kellyoneill91netsimplex, |
294 | 294 |
author = {Damian J. Kelly and Garrett M. O'Neill}, |
295 | 295 |
title = {The Minimum Cost Flow Problem and The Network |
296 | 296 |
Simplex Method}, |
297 | 297 |
school = {University College}, |
298 | 298 |
address = {Dublin, Ireland}, |
299 | 299 |
year = 1991, |
300 |
month = sep |
|
300 |
month = sep |
|
301 | 301 |
} |
302 |
|
|
303 |
%%%%% Other algorithms %%%%% |
|
304 |
|
|
305 |
@article{grosso08maxclique, |
|
306 |
author = {Andrea Grosso and Marco Locatelli and Wayne Pullan}, |
|
307 |
title = {Simple ingredients leading to very efficient |
|
308 |
heuristics for the maximum clique problem}, |
|
309 |
journal = {Journal of Heuristics}, |
|
310 |
year = 2008, |
|
311 |
volume = 14, |
|
312 |
number = 6, |
|
313 |
pages = {587--612} |
|
314 |
} |
... | ... |
@@ -77,32 +77,33 @@ |
77 | 77 |
lemon/dfs.h \ |
78 | 78 |
lemon/dheap.h \ |
79 | 79 |
lemon/dijkstra.h \ |
80 | 80 |
lemon/dim2.h \ |
81 | 81 |
lemon/dimacs.h \ |
82 | 82 |
lemon/edge_set.h \ |
83 | 83 |
lemon/elevator.h \ |
84 | 84 |
lemon/error.h \ |
85 | 85 |
lemon/euler.h \ |
86 | 86 |
lemon/fib_heap.h \ |
87 | 87 |
lemon/fractional_matching.h \ |
88 | 88 |
lemon/full_graph.h \ |
89 | 89 |
lemon/glpk.h \ |
90 | 90 |
lemon/gomory_hu.h \ |
91 | 91 |
lemon/graph_to_eps.h \ |
92 | 92 |
lemon/grid_graph.h \ |
93 |
lemon/grosso_locatelli_pullan_mc.h \ |
|
93 | 94 |
lemon/hartmann_orlin_mmc.h \ |
94 | 95 |
lemon/howard_mmc.h \ |
95 | 96 |
lemon/hypercube_graph.h \ |
96 | 97 |
lemon/karp_mmc.h \ |
97 | 98 |
lemon/kruskal.h \ |
98 | 99 |
lemon/hao_orlin.h \ |
99 | 100 |
lemon/lgf_reader.h \ |
100 | 101 |
lemon/lgf_writer.h \ |
101 | 102 |
lemon/list_graph.h \ |
102 | 103 |
lemon/lp.h \ |
103 | 104 |
lemon/lp_base.h \ |
104 | 105 |
lemon/lp_skeleton.h \ |
105 | 106 |
lemon/maps.h \ |
106 | 107 |
lemon/matching.h \ |
107 | 108 |
lemon/math.h \ |
108 | 109 |
lemon/min_cost_arborescence.h \ |
... | ... |
@@ -18,32 +18,33 @@ |
18 | 18 |
digraph_test |
19 | 19 |
dijkstra_test |
20 | 20 |
dim_test |
21 | 21 |
edge_set_test |
22 | 22 |
error_test |
23 | 23 |
euler_test |
24 | 24 |
fractional_matching_test |
25 | 25 |
gomory_hu_test |
26 | 26 |
graph_copy_test |
27 | 27 |
graph_test |
28 | 28 |
graph_utils_test |
29 | 29 |
hao_orlin_test |
30 | 30 |
heap_test |
31 | 31 |
kruskal_test |
32 | 32 |
maps_test |
33 | 33 |
matching_test |
34 |
max_clique_test |
|
34 | 35 |
min_cost_arborescence_test |
35 | 36 |
min_cost_flow_test |
36 | 37 |
min_mean_cycle_test |
37 | 38 |
path_test |
38 | 39 |
planarity_test |
39 | 40 |
preflow_test |
40 | 41 |
radix_sort_test |
41 | 42 |
random_test |
42 | 43 |
suurballe_test |
43 | 44 |
time_measure_test |
44 | 45 |
unionfind_test |
45 | 46 |
) |
46 | 47 |
|
47 | 48 |
IF(LEMON_HAVE_LP) |
48 | 49 |
ADD_EXECUTABLE(lp_test lp_test.cc) |
49 | 50 |
SET(LP_TEST_LIBS lemon) |
... | ... |
@@ -20,32 +20,33 @@ |
20 | 20 |
test/digraph_test \ |
21 | 21 |
test/dijkstra_test \ |
22 | 22 |
test/dim_test \ |
23 | 23 |
test/edge_set_test \ |
24 | 24 |
test/error_test \ |
25 | 25 |
test/euler_test \ |
26 | 26 |
test/fractional_matching_test \ |
27 | 27 |
test/gomory_hu_test \ |
28 | 28 |
test/graph_copy_test \ |
29 | 29 |
test/graph_test \ |
30 | 30 |
test/graph_utils_test \ |
31 | 31 |
test/hao_orlin_test \ |
32 | 32 |
test/heap_test \ |
33 | 33 |
test/kruskal_test \ |
34 | 34 |
test/maps_test \ |
35 | 35 |
test/matching_test \ |
36 |
test/max_clique_test \ |
|
36 | 37 |
test/min_cost_arborescence_test \ |
37 | 38 |
test/min_cost_flow_test \ |
38 | 39 |
test/min_mean_cycle_test \ |
39 | 40 |
test/path_test \ |
40 | 41 |
test/planarity_test \ |
41 | 42 |
test/preflow_test \ |
42 | 43 |
test/radix_sort_test \ |
43 | 44 |
test/random_test \ |
44 | 45 |
test/suurballe_test \ |
45 | 46 |
test/test_tools_fail \ |
46 | 47 |
test/test_tools_pass \ |
47 | 48 |
test/time_measure_test \ |
48 | 49 |
test/unionfind_test |
49 | 50 |
|
50 | 51 |
test_test_tools_pass_DEPENDENCIES = demo |
51 | 52 |
|
... | ... |
@@ -71,29 +72,30 @@ |
71 | 72 |
test_dim_test_SOURCES = test/dim_test.cc |
72 | 73 |
test_edge_set_test_SOURCES = test/edge_set_test.cc |
73 | 74 |
test_error_test_SOURCES = test/error_test.cc |
74 | 75 |
test_euler_test_SOURCES = test/euler_test.cc |
75 | 76 |
test_fractional_matching_test_SOURCES = test/fractional_matching_test.cc |
76 | 77 |
test_gomory_hu_test_SOURCES = test/gomory_hu_test.cc |
77 | 78 |
test_graph_copy_test_SOURCES = test/graph_copy_test.cc |
78 | 79 |
test_graph_test_SOURCES = test/graph_test.cc |
79 | 80 |
test_graph_utils_test_SOURCES = test/graph_utils_test.cc |
80 | 81 |
test_heap_test_SOURCES = test/heap_test.cc |
81 | 82 |
test_kruskal_test_SOURCES = test/kruskal_test.cc |
82 | 83 |
test_hao_orlin_test_SOURCES = test/hao_orlin_test.cc |
83 | 84 |
test_lp_test_SOURCES = test/lp_test.cc |
84 | 85 |
test_maps_test_SOURCES = test/maps_test.cc |
85 | 86 |
test_mip_test_SOURCES = test/mip_test.cc |
86 | 87 |
test_matching_test_SOURCES = test/matching_test.cc |
88 |
test_max_clique_test_SOURCES = test/max_clique_test.cc |
|
87 | 89 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
88 | 90 |
test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc |
89 | 91 |
test_min_mean_cycle_test_SOURCES = test/min_mean_cycle_test.cc |
90 | 92 |
test_path_test_SOURCES = test/path_test.cc |
91 | 93 |
test_planarity_test_SOURCES = test/planarity_test.cc |
92 | 94 |
test_preflow_test_SOURCES = test/preflow_test.cc |
93 | 95 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
94 | 96 |
test_suurballe_test_SOURCES = test/suurballe_test.cc |
95 | 97 |
test_random_test_SOURCES = test/random_test.cc |
96 | 98 |
test_test_tools_fail_SOURCES = test/test_tools_fail.cc |
97 | 99 |
test_test_tools_pass_SOURCES = test/test_tools_pass.cc |
98 | 100 |
test_time_measure_test_SOURCES = test/time_measure_test.cc |
99 | 101 |
test_unionfind_test_SOURCES = test/unionfind_test.cc |
0 comments (0 inline)