0
21
0
2
2
2
2
10
10
... | ... |
@@ -69,25 +69,25 @@ |
69 | 69 |
|
70 | 70 |
The dual solution of the minimum cost flow problem is represented by |
71 | 71 |
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$. |
72 | 72 |
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal |
73 | 73 |
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials |
74 | 74 |
the following \e complementary \e slackness optimality conditions hold. |
75 | 75 |
|
76 | 76 |
- For all \f$uv\in A\f$ arcs: |
77 | 77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
78 | 78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
79 | 79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
80 | 80 |
- For all \f$u\in V\f$ nodes: |
81 |
- \f$\pi(u) |
|
81 |
- \f$\pi(u)\leq 0\f$; |
|
82 | 82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
83 | 83 |
then \f$\pi(u)=0\f$. |
84 | 84 |
|
85 | 85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
86 | 86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
87 | 87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
88 | 88 |
|
89 | 89 |
All algorithms provide dual solution (node potentials), as well, |
90 | 90 |
if an optimal flow is found. |
91 | 91 |
|
92 | 92 |
|
93 | 93 |
\section mcf_eq Equality Form |
... | ... |
@@ -136,18 +136,18 @@ |
136 | 136 |
Note that the optimality conditions for this supply constraint type are |
137 | 137 |
slightly differ from the conditions that are discussed for the GEQ form, |
138 | 138 |
namely the potentials have to be non-negative instead of non-positive. |
139 | 139 |
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem |
140 | 140 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ |
141 | 141 |
node potentials the following conditions hold. |
142 | 142 |
|
143 | 143 |
- For all \f$uv\in A\f$ arcs: |
144 | 144 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
145 | 145 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
146 | 146 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
147 | 147 |
- For all \f$u\in V\f$ nodes: |
148 |
- \f$\pi(u) |
|
148 |
- \f$\pi(u)\geq 0\f$; |
|
149 | 149 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
150 | 150 |
then \f$\pi(u)=0\f$. |
151 | 151 |
|
152 | 152 |
*/ |
153 | 153 |
} |
... | ... |
@@ -290,25 +290,25 @@ |
290 | 290 |
}; |
291 | 291 |
|
292 | 292 |
template <class T> |
293 | 293 |
struct SetOperationTraitsTraits : public Traits { |
294 | 294 |
typedef T OperationTraits; |
295 | 295 |
}; |
296 | 296 |
|
297 | 297 |
/// \brief \ref named-templ-param "Named parameter" for setting |
298 | 298 |
/// \c OperationTraits type. |
299 | 299 |
/// |
300 | 300 |
/// \ref named-templ-param "Named parameter" for setting |
301 | 301 |
/// \c OperationTraits type. |
302 |
/// For more information see \ref BellmanFordDefaultOperationTraits. |
|
302 |
/// For more information, see \ref BellmanFordDefaultOperationTraits. |
|
303 | 303 |
template <class T> |
304 | 304 |
struct SetOperationTraits |
305 | 305 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
306 | 306 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
307 | 307 |
Create; |
308 | 308 |
}; |
309 | 309 |
|
310 | 310 |
///@} |
311 | 311 |
|
312 | 312 |
protected: |
313 | 313 |
|
314 | 314 |
BellmanFord() {} |
... | ... |
@@ -708,40 +708,40 @@ |
708 | 708 |
/// using this function. |
709 | 709 |
Value dist(Node v) const { return (*_dist)[v]; } |
710 | 710 |
|
711 | 711 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
712 | 712 |
/// the given node. |
713 | 713 |
/// |
714 | 714 |
/// This function returns the 'previous arc' of the shortest path |
715 | 715 |
/// tree for node \c v, i.e. it returns the last arc of a |
716 | 716 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
717 | 717 |
/// is not reached from the root(s) or if \c v is a root. |
718 | 718 |
/// |
719 | 719 |
/// The shortest path tree used here is equal to the shortest path |
720 |
/// tree used in \ref predNode() and \predMap(). |
|
720 |
/// tree used in \ref predNode() and \ref predMap(). |
|
721 | 721 |
/// |
722 | 722 |
/// \pre Either \ref run() or \ref init() must be called before |
723 | 723 |
/// using this function. |
724 | 724 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
725 | 725 |
|
726 | 726 |
/// \brief Returns the 'previous node' of the shortest path tree for |
727 | 727 |
/// the given node. |
728 | 728 |
/// |
729 | 729 |
/// This function returns the 'previous node' of the shortest path |
730 | 730 |
/// tree for node \c v, i.e. it returns the last but one node of |
731 | 731 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
732 | 732 |
/// is not reached from the root(s) or if \c v is a root. |
733 | 733 |
/// |
734 | 734 |
/// The shortest path tree used here is equal to the shortest path |
735 |
/// tree used in \ref predArc() and \predMap(). |
|
735 |
/// tree used in \ref predArc() and \ref predMap(). |
|
736 | 736 |
/// |
737 | 737 |
/// \pre Either \ref run() or \ref init() must be called before |
738 | 738 |
/// using this function. |
739 | 739 |
Node predNode(Node v) const { |
740 | 740 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
741 | 741 |
} |
742 | 742 |
|
743 | 743 |
/// \brief Returns a const reference to the node map that stores the |
744 | 744 |
/// distances of the nodes. |
745 | 745 |
/// |
746 | 746 |
/// Returns a const reference to the node map that stores the distances |
747 | 747 |
/// of the nodes calculated by the algorithm. |
... | ... |
@@ -54,25 +54,25 @@ |
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 | 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
66 |
///By default it is a NullMap. |
|
66 |
///By default, it is a NullMap. |
|
67 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
68 | 68 |
///Instantiates a \c ProcessedMap. |
69 | 69 |
|
70 | 70 |
///This function instantiates a \ref ProcessedMap. |
71 | 71 |
///\param g is the digraph, to which |
72 | 72 |
///we would like to define the \ref ProcessedMap |
73 | 73 |
#ifdef DOXYGEN |
74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
75 | 75 |
#else |
76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
77 | 77 |
#endif |
78 | 78 |
{ |
... | ... |
@@ -843,25 +843,25 @@ |
843 | 843 |
///This function instantiates a PredMap. |
844 | 844 |
///\param g is the digraph, to which we would like to define the |
845 | 845 |
///PredMap. |
846 | 846 |
static PredMap *createPredMap(const Digraph &g) |
847 | 847 |
{ |
848 | 848 |
return new PredMap(g); |
849 | 849 |
} |
850 | 850 |
|
851 | 851 |
///The type of the map that indicates which nodes are processed. |
852 | 852 |
|
853 | 853 |
///The type of the map that indicates which nodes are processed. |
854 | 854 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
855 |
///By default it is a NullMap. |
|
855 |
///By default, it is a NullMap. |
|
856 | 856 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
857 | 857 |
///Instantiates a ProcessedMap. |
858 | 858 |
|
859 | 859 |
///This function instantiates a ProcessedMap. |
860 | 860 |
///\param g is the digraph, to which |
861 | 861 |
///we would like to define the ProcessedMap. |
862 | 862 |
#ifdef DOXYGEN |
863 | 863 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
864 | 864 |
#else |
865 | 865 |
static ProcessedMap *createProcessedMap(const Digraph &) |
866 | 866 |
#endif |
867 | 867 |
{ |
... | ... |
@@ -297,25 +297,25 @@ |
297 | 297 |
return new Elevator(digraph, max_level); |
298 | 298 |
} |
299 | 299 |
}; |
300 | 300 |
|
301 | 301 |
/// \brief \ref named-templ-param "Named parameter" for setting |
302 | 302 |
/// Elevator type with automatic allocation |
303 | 303 |
/// |
304 | 304 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
305 | 305 |
/// type with automatic allocation. |
306 | 306 |
/// The Elevator should have standard constructor interface to be |
307 | 307 |
/// able to automatically created by the algorithm (i.e. the |
308 | 308 |
/// digraph and the maximum level should be passed to it). |
309 |
/// However an external elevator object could also be passed to the |
|
309 |
/// However, an external elevator object could also be passed to the |
|
310 | 310 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
311 | 311 |
/// before calling \ref run() or \ref init(). |
312 | 312 |
/// \sa SetElevator |
313 | 313 |
template <typename T> |
314 | 314 |
struct SetStandardElevator |
315 | 315 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
316 | 316 |
SetStandardElevatorTraits<T> > { |
317 | 317 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
318 | 318 |
SetStandardElevatorTraits<T> > Create; |
319 | 319 |
}; |
320 | 320 |
|
321 | 321 |
/// @} |
... | ... |
@@ -98,25 +98,25 @@ |
98 | 98 |
|
99 | 99 |
/// Artificial ordering operator. |
100 | 100 |
/// |
101 | 101 |
/// \note This operator only has to define some strict ordering of |
102 | 102 |
/// the nodes; this order has nothing to do with the iteration |
103 | 103 |
/// ordering of the nodes. |
104 | 104 |
bool operator<(Node) const { return false; } |
105 | 105 |
}; |
106 | 106 |
|
107 | 107 |
/// Iterator class for the nodes. |
108 | 108 |
|
109 | 109 |
/// This iterator goes through each node of the digraph. |
110 |
/// Its usage is quite simple, for example you can count the number |
|
110 |
/// Its usage is quite simple, for example, you can count the number |
|
111 | 111 |
/// of nodes in a digraph \c g of type \c %Digraph like this: |
112 | 112 |
///\code |
113 | 113 |
/// int count=0; |
114 | 114 |
/// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count; |
115 | 115 |
///\endcode |
116 | 116 |
class NodeIt : public Node { |
117 | 117 |
public: |
118 | 118 |
/// Default constructor |
119 | 119 |
|
120 | 120 |
/// Default constructor. |
121 | 121 |
/// \warning It sets the iterator to an undefined value. |
122 | 122 |
NodeIt() { } |
... | ... |
@@ -187,25 +187,25 @@ |
187 | 187 |
/// Artificial ordering operator. |
188 | 188 |
/// |
189 | 189 |
/// \note This operator only has to define some strict ordering of |
190 | 190 |
/// the arcs; this order has nothing to do with the iteration |
191 | 191 |
/// ordering of the arcs. |
192 | 192 |
bool operator<(Arc) const { return false; } |
193 | 193 |
}; |
194 | 194 |
|
195 | 195 |
/// Iterator class for the outgoing arcs of a node. |
196 | 196 |
|
197 | 197 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
198 | 198 |
/// of a digraph. |
199 |
/// Its usage is quite simple, for example you can count the number |
|
199 |
/// Its usage is quite simple, for example, you can count the number |
|
200 | 200 |
/// of outgoing arcs of a node \c n |
201 | 201 |
/// in a digraph \c g of type \c %Digraph as follows. |
202 | 202 |
///\code |
203 | 203 |
/// int count=0; |
204 | 204 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
205 | 205 |
///\endcode |
206 | 206 |
class OutArcIt : public Arc { |
207 | 207 |
public: |
208 | 208 |
/// Default constructor |
209 | 209 |
|
210 | 210 |
/// Default constructor. |
211 | 211 |
/// \warning It sets the iterator to an undefined value. |
... | ... |
@@ -232,25 +232,25 @@ |
232 | 232 |
OutArcIt(const Digraph&, const Arc&) { } |
233 | 233 |
/// Next outgoing arc |
234 | 234 |
|
235 | 235 |
/// Assign the iterator to the next |
236 | 236 |
/// outgoing arc of the corresponding node. |
237 | 237 |
OutArcIt& operator++() { return *this; } |
238 | 238 |
}; |
239 | 239 |
|
240 | 240 |
/// Iterator class for the incoming arcs of a node. |
241 | 241 |
|
242 | 242 |
/// This iterator goes trough the \e incoming arcs of a certain node |
243 | 243 |
/// of a digraph. |
244 |
/// Its usage is quite simple, for example you can count the number |
|
244 |
/// Its usage is quite simple, for example, you can count the number |
|
245 | 245 |
/// of incoming arcs of a node \c n |
246 | 246 |
/// in a digraph \c g of type \c %Digraph as follows. |
247 | 247 |
///\code |
248 | 248 |
/// int count=0; |
249 | 249 |
/// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
250 | 250 |
///\endcode |
251 | 251 |
class InArcIt : public Arc { |
252 | 252 |
public: |
253 | 253 |
/// Default constructor |
254 | 254 |
|
255 | 255 |
/// Default constructor. |
256 | 256 |
/// \warning It sets the iterator to an undefined value. |
... | ... |
@@ -276,25 +276,25 @@ |
276 | 276 |
/// |
277 | 277 |
InArcIt(const Digraph&, const Arc&) { } |
278 | 278 |
/// Next incoming arc |
279 | 279 |
|
280 | 280 |
/// Assign the iterator to the next |
281 | 281 |
/// incoming arc of the corresponding node. |
282 | 282 |
InArcIt& operator++() { return *this; } |
283 | 283 |
}; |
284 | 284 |
|
285 | 285 |
/// Iterator class for the arcs. |
286 | 286 |
|
287 | 287 |
/// This iterator goes through each arc of the digraph. |
288 |
/// Its usage is quite simple, for example you can count the number |
|
288 |
/// Its usage is quite simple, for example, you can count the number |
|
289 | 289 |
/// of arcs in a digraph \c g of type \c %Digraph as follows: |
290 | 290 |
///\code |
291 | 291 |
/// int count=0; |
292 | 292 |
/// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count; |
293 | 293 |
///\endcode |
294 | 294 |
class ArcIt : public Arc { |
295 | 295 |
public: |
296 | 296 |
/// Default constructor |
297 | 297 |
|
298 | 298 |
/// Default constructor. |
299 | 299 |
/// \warning It sets the iterator to an undefined value. |
300 | 300 |
ArcIt() { } |
... | ... |
@@ -131,25 +131,25 @@ |
131 | 131 |
/// Artificial ordering operator. |
132 | 132 |
/// |
133 | 133 |
/// \note This operator only has to define some strict ordering of |
134 | 134 |
/// the items; this order has nothing to do with the iteration |
135 | 135 |
/// ordering of the items. |
136 | 136 |
bool operator<(Node) const { return false; } |
137 | 137 |
|
138 | 138 |
}; |
139 | 139 |
|
140 | 140 |
/// Iterator class for the nodes. |
141 | 141 |
|
142 | 142 |
/// This iterator goes through each node of the graph. |
143 |
/// Its usage is quite simple, for example you can count the number |
|
143 |
/// Its usage is quite simple, for example, you can count the number |
|
144 | 144 |
/// of nodes in a graph \c g of type \c %Graph like this: |
145 | 145 |
///\code |
146 | 146 |
/// int count=0; |
147 | 147 |
/// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; |
148 | 148 |
///\endcode |
149 | 149 |
class NodeIt : public Node { |
150 | 150 |
public: |
151 | 151 |
/// Default constructor |
152 | 152 |
|
153 | 153 |
/// Default constructor. |
154 | 154 |
/// \warning It sets the iterator to an undefined value. |
155 | 155 |
NodeIt() { } |
... | ... |
@@ -219,25 +219,25 @@ |
219 | 219 |
|
220 | 220 |
/// Artificial ordering operator. |
221 | 221 |
/// |
222 | 222 |
/// \note This operator only has to define some strict ordering of |
223 | 223 |
/// the edges; this order has nothing to do with the iteration |
224 | 224 |
/// ordering of the edges. |
225 | 225 |
bool operator<(Edge) const { return false; } |
226 | 226 |
}; |
227 | 227 |
|
228 | 228 |
/// Iterator class for the edges. |
229 | 229 |
|
230 | 230 |
/// This iterator goes through each edge of the graph. |
231 |
/// Its usage is quite simple, for example you can count the number |
|
231 |
/// Its usage is quite simple, for example, you can count the number |
|
232 | 232 |
/// of edges in a graph \c g of type \c %Graph as follows: |
233 | 233 |
///\code |
234 | 234 |
/// int count=0; |
235 | 235 |
/// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; |
236 | 236 |
///\endcode |
237 | 237 |
class EdgeIt : public Edge { |
238 | 238 |
public: |
239 | 239 |
/// Default constructor |
240 | 240 |
|
241 | 241 |
/// Default constructor. |
242 | 242 |
/// \warning It sets the iterator to an undefined value. |
243 | 243 |
EdgeIt() { } |
... | ... |
@@ -263,25 +263,25 @@ |
263 | 263 |
EdgeIt(const Graph&, const Edge&) { } |
264 | 264 |
/// Next edge |
265 | 265 |
|
266 | 266 |
/// Assign the iterator to the next edge. |
267 | 267 |
/// |
268 | 268 |
EdgeIt& operator++() { return *this; } |
269 | 269 |
}; |
270 | 270 |
|
271 | 271 |
/// Iterator class for the incident edges of a node. |
272 | 272 |
|
273 | 273 |
/// This iterator goes trough the incident undirected edges |
274 | 274 |
/// of a certain node of a graph. |
275 |
/// Its usage is quite simple, for example you can compute the |
|
275 |
/// Its usage is quite simple, for example, you can compute the |
|
276 | 276 |
/// degree (i.e. the number of incident edges) of a node \c n |
277 | 277 |
/// in a graph \c g of type \c %Graph as follows. |
278 | 278 |
/// |
279 | 279 |
///\code |
280 | 280 |
/// int count=0; |
281 | 281 |
/// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
282 | 282 |
///\endcode |
283 | 283 |
/// |
284 | 284 |
/// \warning Loop edges will be iterated twice. |
285 | 285 |
class IncEdgeIt : public Edge { |
286 | 286 |
public: |
287 | 287 |
/// Default constructor |
... | ... |
@@ -360,25 +360,25 @@ |
360 | 360 |
bool operator<(Arc) const { return false; } |
361 | 361 |
|
362 | 362 |
/// Converison to \c Edge |
363 | 363 |
|
364 | 364 |
/// Converison to \c Edge. |
365 | 365 |
/// |
366 | 366 |
operator Edge() const { return Edge(); } |
367 | 367 |
}; |
368 | 368 |
|
369 | 369 |
/// Iterator class for the arcs. |
370 | 370 |
|
371 | 371 |
/// This iterator goes through each directed arc of the graph. |
372 |
/// Its usage is quite simple, for example you can count the number |
|
372 |
/// Its usage is quite simple, for example, you can count the number |
|
373 | 373 |
/// of arcs in a graph \c g of type \c %Graph as follows: |
374 | 374 |
///\code |
375 | 375 |
/// int count=0; |
376 | 376 |
/// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count; |
377 | 377 |
///\endcode |
378 | 378 |
class ArcIt : public Arc { |
379 | 379 |
public: |
380 | 380 |
/// Default constructor |
381 | 381 |
|
382 | 382 |
/// Default constructor. |
383 | 383 |
/// \warning It sets the iterator to an undefined value. |
384 | 384 |
ArcIt() { } |
... | ... |
@@ -404,25 +404,25 @@ |
404 | 404 |
ArcIt(const Graph&, const Arc&) { } |
405 | 405 |
/// Next arc |
406 | 406 |
|
407 | 407 |
/// Assign the iterator to the next arc. |
408 | 408 |
/// |
409 | 409 |
ArcIt& operator++() { return *this; } |
410 | 410 |
}; |
411 | 411 |
|
412 | 412 |
/// Iterator class for the outgoing arcs of a node. |
413 | 413 |
|
414 | 414 |
/// This iterator goes trough the \e outgoing directed arcs of a |
415 | 415 |
/// certain node of a graph. |
416 |
/// Its usage is quite simple, for example you can count the number |
|
416 |
/// Its usage is quite simple, for example, you can count the number |
|
417 | 417 |
/// of outgoing arcs of a node \c n |
418 | 418 |
/// in a graph \c g of type \c %Graph as follows. |
419 | 419 |
///\code |
420 | 420 |
/// int count=0; |
421 | 421 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
422 | 422 |
///\endcode |
423 | 423 |
class OutArcIt : public Arc { |
424 | 424 |
public: |
425 | 425 |
/// Default constructor |
426 | 426 |
|
427 | 427 |
/// Default constructor. |
428 | 428 |
/// \warning It sets the iterator to an undefined value. |
... | ... |
@@ -452,25 +452,25 @@ |
452 | 452 |
OutArcIt(const Graph&, const Arc&) { } |
453 | 453 |
/// Next outgoing arc |
454 | 454 |
|
455 | 455 |
/// Assign the iterator to the next |
456 | 456 |
/// outgoing arc of the corresponding node. |
457 | 457 |
OutArcIt& operator++() { return *this; } |
458 | 458 |
}; |
459 | 459 |
|
460 | 460 |
/// Iterator class for the incoming arcs of a node. |
461 | 461 |
|
462 | 462 |
/// This iterator goes trough the \e incoming directed arcs of a |
463 | 463 |
/// certain node of a graph. |
464 |
/// Its usage is quite simple, for example you can count the number |
|
464 |
/// Its usage is quite simple, for example, you can count the number |
|
465 | 465 |
/// of incoming arcs of a node \c n |
466 | 466 |
/// in a graph \c g of type \c %Graph as follows. |
467 | 467 |
///\code |
468 | 468 |
/// int count=0; |
469 | 469 |
/// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
470 | 470 |
///\endcode |
471 | 471 |
class InArcIt : public Arc { |
472 | 472 |
public: |
473 | 473 |
/// Default constructor |
474 | 474 |
|
475 | 475 |
/// Default constructor. |
476 | 476 |
/// \warning It sets the iterator to an undefined value. |
... | ... |
@@ -578,38 +578,38 @@ |
578 | 578 |
///Assignment operator |
579 | 579 |
template <typename CMap> |
580 | 580 |
EdgeMap& operator=(const CMap&) { |
581 | 581 |
checkConcept<ReadMap<Edge, T>, CMap>(); |
582 | 582 |
return *this; |
583 | 583 |
} |
584 | 584 |
}; |
585 | 585 |
|
586 | 586 |
/// \brief The first node of the edge. |
587 | 587 |
/// |
588 | 588 |
/// Returns the first node of the given edge. |
589 | 589 |
/// |
590 |
/// Edges don't have source and target nodes, however methods |
|
590 |
/// Edges don't have source and target nodes, however, methods |
|
591 | 591 |
/// u() and v() are used to query the two end-nodes of an edge. |
592 | 592 |
/// The orientation of an edge that arises this way is called |
593 | 593 |
/// the inherent direction, it is used to define the default |
594 | 594 |
/// direction for the corresponding arcs. |
595 | 595 |
/// \sa v() |
596 | 596 |
/// \sa direction() |
597 | 597 |
Node u(Edge) const { return INVALID; } |
598 | 598 |
|
599 | 599 |
/// \brief The second node of the edge. |
600 | 600 |
/// |
601 | 601 |
/// Returns the second node of the given edge. |
602 | 602 |
/// |
603 |
/// Edges don't have source and target nodes, however methods |
|
603 |
/// Edges don't have source and target nodes, however, methods |
|
604 | 604 |
/// u() and v() are used to query the two end-nodes of an edge. |
605 | 605 |
/// The orientation of an edge that arises this way is called |
606 | 606 |
/// the inherent direction, it is used to define the default |
607 | 607 |
/// direction for the corresponding arcs. |
608 | 608 |
/// \sa u() |
609 | 609 |
/// \sa direction() |
610 | 610 |
Node v(Edge) const { return INVALID; } |
611 | 611 |
|
612 | 612 |
/// \brief The source node of the arc. |
613 | 613 |
/// |
614 | 614 |
/// Returns the source node of the given arc. |
615 | 615 |
Node source(Arc) const { return INVALID; } |
... | ... |
@@ -9,25 +9,25 @@ |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup graph_concepts |
20 | 20 |
///\file |
21 |
///\brief The |
|
21 |
///\brief The concepts of graph components. |
|
22 | 22 |
|
23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
24 | 24 |
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
#include <lemon/bits/alteration_notifier.h> |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
namespace concepts { |
33 | 33 |
... | ... |
@@ -203,25 +203,25 @@ |
203 | 203 |
|
204 | 204 |
/// Resets the counter to the given value. |
205 | 205 |
/// \note This function does not reset the values of |
206 | 206 |
/// \ref SubCounter "SubCounter"s but it resets \ref NoSubCounter |
207 | 207 |
/// "NoSubCounter"s along with the main counter. |
208 | 208 |
void reset(int c=0) {count=c;} |
209 | 209 |
/// Returns the value of the counter. |
210 | 210 |
operator int() {return count;} |
211 | 211 |
}; |
212 | 212 |
|
213 | 213 |
/// 'Do nothing' version of Counter. |
214 | 214 |
|
215 |
/// This class can be used in the same way as \ref Counter |
|
215 |
/// This class can be used in the same way as \ref Counter, but it |
|
216 | 216 |
/// does not count at all and does not print report on destruction. |
217 | 217 |
/// |
218 | 218 |
/// Replacing a \ref Counter with a \ref NoCounter makes it possible |
219 | 219 |
/// to turn off all counting and reporting (SubCounters should also |
220 | 220 |
/// be replaced with NoSubCounters), so it does not affect the |
221 | 221 |
/// efficiency of the program at all. |
222 | 222 |
/// |
223 | 223 |
/// \sa Counter |
224 | 224 |
class NoCounter |
225 | 225 |
{ |
226 | 226 |
public: |
227 | 227 |
typedef _NoSubCounter<NoCounter> SubCounter; |
... | ... |
@@ -54,25 +54,25 @@ |
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 | 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
66 |
///By default it is a NullMap. |
|
66 |
///By default, it is a NullMap. |
|
67 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
68 | 68 |
///Instantiates a \c ProcessedMap. |
69 | 69 |
|
70 | 70 |
///This function instantiates a \ref ProcessedMap. |
71 | 71 |
///\param g is the digraph, to which |
72 | 72 |
///we would like to define the \ref ProcessedMap. |
73 | 73 |
#ifdef DOXYGEN |
74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
75 | 75 |
#else |
76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
77 | 77 |
#endif |
78 | 78 |
{ |
... | ... |
@@ -773,25 +773,25 @@ |
773 | 773 |
///This function instantiates a PredMap. |
774 | 774 |
///\param g is the digraph, to which we would like to define the |
775 | 775 |
///PredMap. |
776 | 776 |
static PredMap *createPredMap(const Digraph &g) |
777 | 777 |
{ |
778 | 778 |
return new PredMap(g); |
779 | 779 |
} |
780 | 780 |
|
781 | 781 |
///The type of the map that indicates which nodes are processed. |
782 | 782 |
|
783 | 783 |
///The type of the map that indicates which nodes are processed. |
784 | 784 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
785 |
///By default it is a NullMap. |
|
785 |
///By default, it is a NullMap. |
|
786 | 786 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
787 | 787 |
///Instantiates a ProcessedMap. |
788 | 788 |
|
789 | 789 |
///This function instantiates a ProcessedMap. |
790 | 790 |
///\param g is the digraph, to which |
791 | 791 |
///we would like to define the ProcessedMap. |
792 | 792 |
#ifdef DOXYGEN |
793 | 793 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
794 | 794 |
#else |
795 | 795 |
static ProcessedMap *createProcessedMap(const Digraph &) |
796 | 796 |
#endif |
797 | 797 |
{ |
... | ... |
@@ -123,25 +123,25 @@ |
123 | 123 |
///This function instantiates a \ref PredMap. |
124 | 124 |
///\param g is the digraph, to which we would like to define the |
125 | 125 |
///\ref PredMap. |
126 | 126 |
static PredMap *createPredMap(const Digraph &g) |
127 | 127 |
{ |
128 | 128 |
return new PredMap(g); |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
///The type of the map that indicates which nodes are processed. |
132 | 132 |
|
133 | 133 |
///The type of the map that indicates which nodes are processed. |
134 | 134 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
135 |
///By default it is a NullMap. |
|
135 |
///By default, it is a NullMap. |
|
136 | 136 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
137 | 137 |
///Instantiates a \c ProcessedMap. |
138 | 138 |
|
139 | 139 |
///This function instantiates a \ref ProcessedMap. |
140 | 140 |
///\param g is the digraph, to which |
141 | 141 |
///we would like to define the \ref ProcessedMap. |
142 | 142 |
#ifdef DOXYGEN |
143 | 143 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
144 | 144 |
#else |
145 | 145 |
static ProcessedMap *createProcessedMap(const Digraph &) |
146 | 146 |
#endif |
147 | 147 |
{ |
... | ... |
@@ -417,46 +417,46 @@ |
417 | 417 |
return new Heap(R); |
418 | 418 |
} |
419 | 419 |
}; |
420 | 420 |
///\brief \ref named-templ-param "Named parameter" for setting |
421 | 421 |
///heap and cross reference types with automatic allocation |
422 | 422 |
/// |
423 | 423 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
424 | 424 |
///reference types with automatic allocation. |
425 | 425 |
///They should have standard constructor interfaces to be able to |
426 | 426 |
///automatically created by the algorithm (i.e. the digraph should be |
427 | 427 |
///passed to the constructor of the cross reference and the cross |
428 | 428 |
///reference should be passed to the constructor of the heap). |
429 |
///However external heap and cross reference objects could also be |
|
429 |
///However, external heap and cross reference objects could also be |
|
430 | 430 |
///passed to the algorithm using the \ref heap() function before |
431 | 431 |
///calling \ref run(Node) "run()" or \ref init(). |
432 | 432 |
///\sa SetHeap |
433 | 433 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
434 | 434 |
struct SetStandardHeap |
435 | 435 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
436 | 436 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
437 | 437 |
Create; |
438 | 438 |
}; |
439 | 439 |
|
440 | 440 |
template <class T> |
441 | 441 |
struct SetOperationTraitsTraits : public Traits { |
442 | 442 |
typedef T OperationTraits; |
443 | 443 |
}; |
444 | 444 |
|
445 | 445 |
/// \brief \ref named-templ-param "Named parameter" for setting |
446 | 446 |
///\c OperationTraits type |
447 | 447 |
/// |
448 | 448 |
///\ref named-templ-param "Named parameter" for setting |
449 | 449 |
///\c OperationTraits type. |
450 |
/// For more information see \ref DijkstraDefaultOperationTraits. |
|
450 |
/// For more information, see \ref DijkstraDefaultOperationTraits. |
|
451 | 451 |
template <class T> |
452 | 452 |
struct SetOperationTraits |
453 | 453 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
454 | 454 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
455 | 455 |
Create; |
456 | 456 |
}; |
457 | 457 |
|
458 | 458 |
///@} |
459 | 459 |
|
460 | 460 |
protected: |
461 | 461 |
|
462 | 462 |
Dijkstra() {} |
... | ... |
@@ -987,25 +987,25 @@ |
987 | 987 |
///This function instantiates a PredMap. |
988 | 988 |
///\param g is the digraph, to which we would like to define the |
989 | 989 |
///PredMap. |
990 | 990 |
static PredMap *createPredMap(const Digraph &g) |
991 | 991 |
{ |
992 | 992 |
return new PredMap(g); |
993 | 993 |
} |
994 | 994 |
|
995 | 995 |
///The type of the map that indicates which nodes are processed. |
996 | 996 |
|
997 | 997 |
///The type of the map that indicates which nodes are processed. |
998 | 998 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
999 |
///By default it is a NullMap. |
|
999 |
///By default, it is a NullMap. |
|
1000 | 1000 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
1001 | 1001 |
///Instantiates a ProcessedMap. |
1002 | 1002 |
|
1003 | 1003 |
///This function instantiates a ProcessedMap. |
1004 | 1004 |
///\param g is the digraph, to which |
1005 | 1005 |
///we would like to define the ProcessedMap. |
1006 | 1006 |
#ifdef DOXYGEN |
1007 | 1007 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
1008 | 1008 |
#else |
1009 | 1009 |
static ProcessedMap *createProcessedMap(const Digraph &) |
1010 | 1010 |
#endif |
1011 | 1011 |
{ |
... | ... |
@@ -285,29 +285,27 @@ |
285 | 285 |
/// For higher level interfaces see MinCutNodeIt and MinCutEdgeIt. |
286 | 286 |
/// |
287 | 287 |
/// \param s The base node. |
288 | 288 |
/// \param t The node you want to separate from node \c s. |
289 | 289 |
/// \param cutMap The cut will be returned in this map. |
290 | 290 |
/// It must be a \c bool (or convertible) \ref concepts::ReadWriteMap |
291 | 291 |
/// "ReadWriteMap" on the graph nodes. |
292 | 292 |
/// |
293 | 293 |
/// \return The value of the minimum cut between \c s and \c t. |
294 | 294 |
/// |
295 | 295 |
/// \pre \ref run() must be called before using this function. |
296 | 296 |
template <typename CutMap> |
297 |
Value minCutMap(const Node& s, |
|
297 |
Value minCutMap(const Node& s, |
|
298 | 298 |
const Node& t, |
299 |
///< |
|
300 | 299 |
CutMap& cutMap |
301 |
///< |
|
302 | 300 |
) const { |
303 | 301 |
Node sn = s, tn = t; |
304 | 302 |
bool s_root=false; |
305 | 303 |
Node rn = INVALID; |
306 | 304 |
Value value = std::numeric_limits<Value>::max(); |
307 | 305 |
|
308 | 306 |
while (sn != tn) { |
309 | 307 |
if ((*_order)[sn] < (*_order)[tn]) { |
310 | 308 |
if ((*_weight)[tn] <= value) { |
311 | 309 |
rn = tn; |
312 | 310 |
s_root = false; |
313 | 311 |
value = (*_weight)[tn]; |
... | ... |
@@ -385,25 +383,25 @@ |
385 | 383 |
///< If it is \c true (default) then the iterator lists |
386 | 384 |
/// the nodes of the component containing \c s, |
387 | 385 |
/// otherwise it lists the other component. |
388 | 386 |
/// \note As the minimum cut is not always unique, |
389 | 387 |
/// \code |
390 | 388 |
/// MinCutNodeIt(gomory, s, t, true); |
391 | 389 |
/// \endcode |
392 | 390 |
/// and |
393 | 391 |
/// \code |
394 | 392 |
/// MinCutNodeIt(gomory, t, s, false); |
395 | 393 |
/// \endcode |
396 | 394 |
/// does not necessarily give the same set of nodes. |
397 |
/// However it is ensured that |
|
395 |
/// However, it is ensured that |
|
398 | 396 |
/// \code |
399 | 397 |
/// MinCutNodeIt(gomory, s, t, true); |
400 | 398 |
/// \endcode |
401 | 399 |
/// and |
402 | 400 |
/// \code |
403 | 401 |
/// MinCutNodeIt(gomory, s, t, false); |
404 | 402 |
/// \endcode |
405 | 403 |
/// together list each node exactly once. |
406 | 404 |
) |
407 | 405 |
: _side(side), _cut(gomory._graph) |
408 | 406 |
{ |
409 | 407 |
gomory.minCutMap(s,t,_cut); |
... | ... |
@@ -133,25 +133,25 @@ |
133 | 133 |
|
134 | 134 |
bool _absoluteNodeSizes; |
135 | 135 |
bool _absoluteArcWidths; |
136 | 136 |
|
137 | 137 |
bool _negY; |
138 | 138 |
|
139 | 139 |
bool _preScale; |
140 | 140 |
///Constructor |
141 | 141 |
|
142 | 142 |
///Constructor |
143 | 143 |
///\param gr Reference to the graph to be printed. |
144 | 144 |
///\param ost Reference to the output stream. |
145 |
///By default it is <tt>std::cout</tt>. |
|
145 |
///By default, it is <tt>std::cout</tt>. |
|
146 | 146 |
///\param pros If it is \c true, then the \c ostream referenced by \c os |
147 | 147 |
///will be explicitly deallocated by the destructor. |
148 | 148 |
DefaultGraphToEpsTraits(const GR &gr, std::ostream& ost = std::cout, |
149 | 149 |
bool pros = false) : |
150 | 150 |
g(gr), os(ost), |
151 | 151 |
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0), |
152 | 152 |
_nodeColors(WHITE), _arcColors(BLACK), |
153 | 153 |
_arcWidths(1.0), _arcWidthScale(0.003), |
154 | 154 |
_nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0), |
155 | 155 |
_nodeBorderQuotient(.1), |
156 | 156 |
_drawArrows(false), _arrowLength(1), _arrowWidth(0.3), |
157 | 157 |
_showNodes(true), _showArcs(true), |
... | ... |
@@ -503,25 +503,25 @@ |
503 | 503 |
/// |
504 | 504 |
GraphToEps<T> &absoluteNodeSizes(bool b=true) { |
505 | 505 |
_absoluteNodeSizes=b;return *this; |
506 | 506 |
} |
507 | 507 |
|
508 | 508 |
///Negates the Y coordinates. |
509 | 509 |
GraphToEps<T> &negateY(bool b=true) { |
510 | 510 |
_negY=b;return *this; |
511 | 511 |
} |
512 | 512 |
|
513 | 513 |
///Turn on/off pre-scaling |
514 | 514 |
|
515 |
///By default graphToEps() rescales the whole image in order to avoid |
|
515 |
///By default, graphToEps() rescales the whole image in order to avoid |
|
516 | 516 |
///very big or very small bounding boxes. |
517 | 517 |
/// |
518 | 518 |
///This (p)rescaling can be turned off with this function. |
519 | 519 |
/// |
520 | 520 |
GraphToEps<T> &preScale(bool b=true) { |
521 | 521 |
_preScale=b;return *this; |
522 | 522 |
} |
523 | 523 |
|
524 | 524 |
///Sets a global scale factor for arc widths |
525 | 525 |
|
526 | 526 |
/// Sets a global scale factor for arc widths. |
527 | 527 |
/// |
... | ... |
@@ -1105,37 +1105,37 @@ |
1105 | 1105 |
template<class T> |
1106 | 1106 |
const double GraphToEps<T>::A4WIDTH = 595.275590551181; |
1107 | 1107 |
template<class T> |
1108 | 1108 |
const double GraphToEps<T>::A4BORDER = 15; |
1109 | 1109 |
|
1110 | 1110 |
|
1111 | 1111 |
///Generates an EPS file from a graph |
1112 | 1112 |
|
1113 | 1113 |
///\ingroup eps_io |
1114 | 1114 |
///Generates an EPS file from a graph. |
1115 | 1115 |
///\param g Reference to the graph to be printed. |
1116 | 1116 |
///\param os Reference to the output stream. |
1117 |
///By default it is <tt>std::cout</tt>. |
|
1117 |
///By default, it is <tt>std::cout</tt>. |
|
1118 | 1118 |
/// |
1119 | 1119 |
///This function also has a lot of |
1120 | 1120 |
///\ref named-templ-func-param "named parameters", |
1121 | 1121 |
///they are declared as the members of class \ref GraphToEps. The following |
1122 | 1122 |
///example shows how to use these parameters. |
1123 | 1123 |
///\code |
1124 | 1124 |
/// graphToEps(g,os).scale(10).coords(coords) |
1125 | 1125 |
/// .nodeScale(2).nodeSizes(sizes) |
1126 | 1126 |
/// .arcWidthScale(.4).run(); |
1127 | 1127 |
///\endcode |
1128 | 1128 |
/// |
1129 |
///For more detailed examples see the \ref graph_to_eps_demo.cc demo file. |
|
1129 |
///For more detailed examples, see the \ref graph_to_eps_demo.cc demo file. |
|
1130 | 1130 |
/// |
1131 | 1131 |
///\warning Don't forget to put the \ref GraphToEps::run() "run()" |
1132 | 1132 |
///to the end of the parameter list. |
1133 | 1133 |
///\sa GraphToEps |
1134 | 1134 |
///\sa graphToEps(GR &g, const char *file_name) |
1135 | 1135 |
template<class GR> |
1136 | 1136 |
GraphToEps<DefaultGraphToEpsTraits<GR> > |
1137 | 1137 |
graphToEps(GR &g, std::ostream& os=std::cout) |
1138 | 1138 |
{ |
1139 | 1139 |
return |
1140 | 1140 |
GraphToEps<DefaultGraphToEpsTraits<GR> >(DefaultGraphToEpsTraits<GR>(g,os)); |
1141 | 1141 |
} |
... | ... |
@@ -278,25 +278,25 @@ |
278 | 278 |
|
279 | 279 |
typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase; |
280 | 280 |
|
281 | 281 |
/// \ingroup graphs |
282 | 282 |
/// |
283 | 283 |
/// \brief Hypercube graph class |
284 | 284 |
/// |
285 | 285 |
/// HypercubeGraph implements a special graph type. The nodes of the |
286 | 286 |
/// graph are indexed with integers having at most \c dim binary digits. |
287 | 287 |
/// Two nodes are connected in the graph if and only if their indices |
288 | 288 |
/// differ only on one position in the binary form. |
289 | 289 |
/// This class is completely static and it needs constant memory space. |
290 |
/// Thus you can neither add nor delete nodes or edges, however |
|
290 |
/// Thus you can neither add nor delete nodes or edges, however, |
|
291 | 291 |
/// the structure can be resized using resize(). |
292 | 292 |
/// |
293 | 293 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
294 | 294 |
/// Most of its member functions and nested classes are documented |
295 | 295 |
/// only in the concept class. |
296 | 296 |
/// |
297 | 297 |
/// \note The type of the indices is chosen to \c int for efficiency |
298 | 298 |
/// reasons. Thus the maximum dimension of this implementation is 26 |
299 | 299 |
/// (assuming that the size of \c int is 32 bit). |
300 | 300 |
class HypercubeGraph : public ExtendedHypercubeGraphBase { |
301 | 301 |
typedef ExtendedHypercubeGraphBase Parent; |
302 | 302 |
... | ... |
@@ -418,25 +418,25 @@ |
418 | 418 |
/// rules. |
419 | 419 |
/// |
420 | 420 |
///\code |
421 | 421 |
/// DigraphReader<DGR>(digraph, std::cin). |
422 | 422 |
/// nodeMap("coordinates", coord_map). |
423 | 423 |
/// arcMap("capacity", cap_map). |
424 | 424 |
/// node("source", src). |
425 | 425 |
/// node("target", trg). |
426 | 426 |
/// attribute("caption", caption). |
427 | 427 |
/// run(); |
428 | 428 |
///\endcode |
429 | 429 |
/// |
430 |
/// By default the reader uses the first section in the file of the |
|
430 |
/// By default, the reader uses the first section in the file of the |
|
431 | 431 |
/// proper type. If a section has an optional name, then it can be |
432 | 432 |
/// selected for reading by giving an optional name parameter to the |
433 | 433 |
/// \c nodes(), \c arcs() or \c attributes() functions. |
434 | 434 |
/// |
435 | 435 |
/// The \c useNodes() and \c useArcs() functions are used to tell the reader |
436 | 436 |
/// that the nodes or arcs should not be constructed (added to the |
437 | 437 |
/// graph) during the reading, but instead the label map of the items |
438 | 438 |
/// are given as a parameter of these functions. An |
439 | 439 |
/// application of these functions is multipass reading, which is |
440 | 440 |
/// important if two \c \@arcs sections must be read from the |
441 | 441 |
/// file. In this case the first phase would read the node set and one |
442 | 442 |
/// of the arc sets, while the second phase would read the second arc |
... | ... |
@@ -2212,25 +2212,25 @@ |
2212 | 2212 |
/// \name Section Readers |
2213 | 2213 |
/// @{ |
2214 | 2214 |
|
2215 | 2215 |
/// \brief Add a section processor with line oriented reading |
2216 | 2216 |
/// |
2217 | 2217 |
/// The first parameter is the type descriptor of the section, the |
2218 | 2218 |
/// second is a functor, which takes just one \c std::string |
2219 | 2219 |
/// parameter. At the reading process, each line of the section |
2220 | 2220 |
/// will be given to the functor object. However, the empty lines |
2221 | 2221 |
/// and the comment lines are filtered out, and the leading |
2222 | 2222 |
/// whitespaces are trimmed from each processed string. |
2223 | 2223 |
/// |
2224 |
/// For example let's see a section, which contain several |
|
2224 |
/// For example, let's see a section, which contain several |
|
2225 | 2225 |
/// integers, which should be inserted into a vector. |
2226 | 2226 |
///\code |
2227 | 2227 |
/// @numbers |
2228 | 2228 |
/// 12 45 23 |
2229 | 2229 |
/// 4 |
2230 | 2230 |
/// 23 6 |
2231 | 2231 |
///\endcode |
2232 | 2232 |
/// |
2233 | 2233 |
/// The functor is implemented as a struct: |
2234 | 2234 |
///\code |
2235 | 2235 |
/// struct NumberSection { |
2236 | 2236 |
/// std::vector<int>& _data; |
... | ... |
@@ -382,37 +382,37 @@ |
382 | 382 |
/// This function gives back \c true if the given arc is valid, |
383 | 383 |
/// i.e. it is a real arc of the digraph. |
384 | 384 |
/// |
385 | 385 |
/// \warning A removed arc could become valid again if new arcs are |
386 | 386 |
/// added to the digraph. |
387 | 387 |
bool valid(Arc a) const { return Parent::valid(a); } |
388 | 388 |
|
389 | 389 |
/// Change the target node of an arc |
390 | 390 |
|
391 | 391 |
/// This function changes the target node of the given arc \c a to \c n. |
392 | 392 |
/// |
393 | 393 |
///\note \c ArcIt and \c OutArcIt iterators referencing the changed |
394 |
///arc remain valid, |
|
394 |
///arc remain valid, but \c InArcIt iterators are invalidated. |
|
395 | 395 |
/// |
396 | 396 |
///\warning This functionality cannot be used together with the Snapshot |
397 | 397 |
///feature. |
398 | 398 |
void changeTarget(Arc a, Node n) { |
399 | 399 |
Parent::changeTarget(a,n); |
400 | 400 |
} |
401 | 401 |
/// Change the source node of an arc |
402 | 402 |
|
403 | 403 |
/// This function changes the source node of the given arc \c a to \c n. |
404 | 404 |
/// |
405 | 405 |
///\note \c InArcIt iterators referencing the changed arc remain |
406 |
///valid, |
|
406 |
///valid, but \c ArcIt and \c OutArcIt iterators are invalidated. |
|
407 | 407 |
/// |
408 | 408 |
///\warning This functionality cannot be used together with the Snapshot |
409 | 409 |
///feature. |
410 | 410 |
void changeSource(Arc a, Node n) { |
411 | 411 |
Parent::changeSource(a,n); |
412 | 412 |
} |
413 | 413 |
|
414 | 414 |
/// Reverse the direction of an arc. |
415 | 415 |
|
416 | 416 |
/// This function reverses the direction of the given arc. |
417 | 417 |
///\note \c ArcIt, \c OutArcIt and \c InArcIt iterators referencing |
418 | 418 |
///the changed arc are invalidated. |
... | ... |
@@ -540,25 +540,25 @@ |
540 | 540 |
/// Class to make a snapshot of the digraph and restore it later. |
541 | 541 |
/// |
542 | 542 |
/// The newly added nodes and arcs can be removed using the |
543 | 543 |
/// restore() function. |
544 | 544 |
/// |
545 | 545 |
/// \note After a state is restored, you cannot restore a later state, |
546 | 546 |
/// i.e. you cannot add the removed nodes and arcs again using |
547 | 547 |
/// another Snapshot instance. |
548 | 548 |
/// |
549 | 549 |
/// \warning Node and arc deletions and other modifications (e.g. |
550 | 550 |
/// reversing, contracting, splitting arcs or nodes) cannot be |
551 | 551 |
/// restored. These events invalidate the snapshot. |
552 |
/// However the arcs and nodes that were added to the digraph after |
|
552 |
/// However, the arcs and nodes that were added to the digraph after |
|
553 | 553 |
/// making the current snapshot can be removed without invalidating it. |
554 | 554 |
class Snapshot { |
555 | 555 |
protected: |
556 | 556 |
|
557 | 557 |
typedef Parent::NodeNotifier NodeNotifier; |
558 | 558 |
|
559 | 559 |
class NodeObserverProxy : public NodeNotifier::ObserverBase { |
560 | 560 |
public: |
561 | 561 |
|
562 | 562 |
NodeObserverProxy(Snapshot& _snapshot) |
563 | 563 |
: snapshot(_snapshot) {} |
564 | 564 |
|
... | ... |
@@ -1258,25 +1258,25 @@ |
1258 | 1258 |
///base node is the changed node are also invalidated. |
1259 | 1259 |
/// |
1260 | 1260 |
///\warning This functionality cannot be used together with the |
1261 | 1261 |
///Snapshot feature. |
1262 | 1262 |
void changeU(Edge e, Node n) { |
1263 | 1263 |
Parent::changeU(e,n); |
1264 | 1264 |
} |
1265 | 1265 |
/// \brief Change the second node of an edge. |
1266 | 1266 |
/// |
1267 | 1267 |
/// This function changes the second node of the given edge \c e to \c n. |
1268 | 1268 |
/// |
1269 | 1269 |
///\note \c EdgeIt iterators referencing the changed edge remain |
1270 |
///valid, |
|
1270 |
///valid, but \c ArcIt iterators referencing the changed edge and |
|
1271 | 1271 |
///all other iterators whose base node is the changed node are also |
1272 | 1272 |
///invalidated. |
1273 | 1273 |
/// |
1274 | 1274 |
///\warning This functionality cannot be used together with the |
1275 | 1275 |
///Snapshot feature. |
1276 | 1276 |
void changeV(Edge e, Node n) { |
1277 | 1277 |
Parent::changeV(e,n); |
1278 | 1278 |
} |
1279 | 1279 |
|
1280 | 1280 |
/// \brief Contract two nodes. |
1281 | 1281 |
/// |
1282 | 1282 |
/// This function contracts the given two nodes. |
... | ... |
@@ -1342,25 +1342,25 @@ |
1342 | 1342 |
/// Class to make a snapshot of the graph and restore it later. |
1343 | 1343 |
/// |
1344 | 1344 |
/// The newly added nodes and edges can be removed |
1345 | 1345 |
/// using the restore() function. |
1346 | 1346 |
/// |
1347 | 1347 |
/// \note After a state is restored, you cannot restore a later state, |
1348 | 1348 |
/// i.e. you cannot add the removed nodes and edges again using |
1349 | 1349 |
/// another Snapshot instance. |
1350 | 1350 |
/// |
1351 | 1351 |
/// \warning Node and edge deletions and other modifications |
1352 | 1352 |
/// (e.g. changing the end-nodes of edges or contracting nodes) |
1353 | 1353 |
/// cannot be restored. These events invalidate the snapshot. |
1354 |
/// However the edges and nodes that were added to the graph after |
|
1354 |
/// However, the edges and nodes that were added to the graph after |
|
1355 | 1355 |
/// making the current snapshot can be removed without invalidating it. |
1356 | 1356 |
class Snapshot { |
1357 | 1357 |
protected: |
1358 | 1358 |
|
1359 | 1359 |
typedef Parent::NodeNotifier NodeNotifier; |
1360 | 1360 |
|
1361 | 1361 |
class NodeObserverProxy : public NodeNotifier::ObserverBase { |
1362 | 1362 |
public: |
1363 | 1363 |
|
1364 | 1364 |
NodeObserverProxy(Snapshot& _snapshot) |
1365 | 1365 |
: snapshot(_snapshot) {} |
1366 | 1366 |
... | ... |
@@ -137,25 +137,25 @@ |
137 | 137 |
|
138 | 138 |
/// To allow the use of this object in std::map or similar |
139 | 139 |
/// associative container we require this. |
140 | 140 |
/// |
141 | 141 |
/// \note This operator only have to define some strict ordering of |
142 | 142 |
/// the items; this order has nothing to do with the iteration |
143 | 143 |
/// ordering of the items. |
144 | 144 |
bool operator<(Col c) const {return _id < c._id;} |
145 | 145 |
}; |
146 | 146 |
|
147 | 147 |
///Iterator for iterate over the columns of an LP problem |
148 | 148 |
|
149 |
/// Its usage is quite simple, for example you can count the number |
|
149 |
/// Its usage is quite simple, for example, you can count the number |
|
150 | 150 |
/// of columns in an LP \c lp: |
151 | 151 |
///\code |
152 | 152 |
/// int count=0; |
153 | 153 |
/// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count; |
154 | 154 |
///\endcode |
155 | 155 |
class ColIt : public Col { |
156 | 156 |
const LpBase *_solver; |
157 | 157 |
public: |
158 | 158 |
/// Default constructor |
159 | 159 |
|
160 | 160 |
/// \warning The default constructor sets the iterator |
161 | 161 |
/// to an undefined value. |
... | ... |
@@ -232,25 +232,25 @@ |
232 | 232 |
|
233 | 233 |
/// To allow the use of this object in std::map or similar |
234 | 234 |
/// associative container we require this. |
235 | 235 |
/// |
236 | 236 |
/// \note This operator only have to define some strict ordering of |
237 | 237 |
/// the items; this order has nothing to do with the iteration |
238 | 238 |
/// ordering of the items. |
239 | 239 |
bool operator<(Row r) const {return _id < r._id;} |
240 | 240 |
}; |
241 | 241 |
|
242 | 242 |
///Iterator for iterate over the rows of an LP problem |
243 | 243 |
|
244 |
/// Its usage is quite simple, for example you can count the number |
|
244 |
/// Its usage is quite simple, for example, you can count the number |
|
245 | 245 |
/// of rows in an LP \c lp: |
246 | 246 |
///\code |
247 | 247 |
/// int count=0; |
248 | 248 |
/// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count; |
249 | 249 |
///\endcode |
250 | 250 |
class RowIt : public Row { |
251 | 251 |
const LpBase *_solver; |
252 | 252 |
public: |
253 | 253 |
/// Default constructor |
254 | 254 |
|
255 | 255 |
/// \warning The default constructor sets the iterator |
256 | 256 |
/// to an undefined value. |
... | ... |
@@ -221,28 +221,28 @@ |
221 | 221 |
/// \relates IdentityMap |
222 | 222 |
template<typename T> |
223 | 223 |
inline IdentityMap<T> identityMap() { |
224 | 224 |
return IdentityMap<T>(); |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
|
228 | 228 |
/// \brief Map for storing values for integer keys from the range |
229 | 229 |
/// <tt>[0..size-1]</tt>. |
230 | 230 |
/// |
231 | 231 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
232 | 232 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
233 |
/// It can be used with some data structures, for example |
|
234 |
/// \c UnionFind, \c BinHeap, when the used items are small |
|
233 |
/// It can be used together with some data structures, e.g. |
|
234 |
/// heap types and \c UnionFind, when the used items are small |
|
235 | 235 |
/// integers. This map conforms to the \ref concepts::ReferenceMap |
236 |
/// "ReferenceMap" concept. |
|
236 |
/// "ReferenceMap" concept. |
|
237 | 237 |
/// |
238 | 238 |
/// The simplest way of using this map is through the rangeMap() |
239 | 239 |
/// function. |
240 | 240 |
template <typename V> |
241 | 241 |
class RangeMap : public MapBase<int, V> { |
242 | 242 |
template <typename V1> |
243 | 243 |
friend class RangeMap; |
244 | 244 |
private: |
245 | 245 |
|
246 | 246 |
typedef std::vector<V> Vector; |
247 | 247 |
Vector _vector; |
248 | 248 |
|
... | ... |
@@ -339,27 +339,27 @@ |
339 | 339 |
/// This map is essentially a wrapper for \c std::map with addition |
340 | 340 |
/// that you can specify a default value for the keys that are not |
341 | 341 |
/// stored actually. This value can be different from the default |
342 | 342 |
/// contructed value (i.e. \c %Value()). |
343 | 343 |
/// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap" |
344 | 344 |
/// concept. |
345 | 345 |
/// |
346 | 346 |
/// This map is useful if a default value should be assigned to most of |
347 | 347 |
/// the keys and different values should be assigned only to a few |
348 | 348 |
/// keys (i.e. the map is "sparse"). |
349 | 349 |
/// The name of this type also refers to this important usage. |
350 | 350 |
/// |
351 |
/// Apart form that this map can be used in many other cases since it |
|
351 |
/// Apart form that, this map can be used in many other cases since it |
|
352 | 352 |
/// is based on \c std::map, which is a general associative container. |
353 |
/// However keep in mind that it is usually not as efficient as other |
|
353 |
/// However, keep in mind that it is usually not as efficient as other |
|
354 | 354 |
/// maps. |
355 | 355 |
/// |
356 | 356 |
/// The simplest way of using this map is through the sparseMap() |
357 | 357 |
/// function. |
358 | 358 |
template <typename K, typename V, typename Comp = std::less<K> > |
359 | 359 |
class SparseMap : public MapBase<K, V> { |
360 | 360 |
template <typename K1, typename V1, typename C1> |
361 | 361 |
friend class SparseMap; |
362 | 362 |
public: |
363 | 363 |
|
364 | 364 |
/// Key type |
365 | 365 |
typedef K Key; |
... | ... |
@@ -1776,40 +1776,40 @@ |
1776 | 1776 |
|
1777 | 1777 |
private: |
1778 | 1778 |
Iterator _begin; |
1779 | 1779 |
Iterator _end; |
1780 | 1780 |
}; |
1781 | 1781 |
|
1782 | 1782 |
/// Returns a \c LoggerBoolMap class |
1783 | 1783 |
|
1784 | 1784 |
/// This function just returns a \c LoggerBoolMap class. |
1785 | 1785 |
/// |
1786 | 1786 |
/// The most important usage of it is storing certain nodes or arcs |
1787 | 1787 |
/// that were marked \c true by an algorithm. |
1788 |
/// For example it makes easier to store the nodes in the processing |
|
1788 |
/// For example, it makes easier to store the nodes in the processing |
|
1789 | 1789 |
/// order of Dfs algorithm, as the following examples show. |
1790 | 1790 |
/// \code |
1791 | 1791 |
/// std::vector<Node> v; |
1792 | 1792 |
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s); |
1793 | 1793 |
/// \endcode |
1794 | 1794 |
/// \code |
1795 | 1795 |
/// std::vector<Node> v(countNodes(g)); |
1796 | 1796 |
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s); |
1797 | 1797 |
/// \endcode |
1798 | 1798 |
/// |
1799 | 1799 |
/// \note The container of the iterator must contain enough space |
1800 | 1800 |
/// for the elements or the iterator should be an inserter iterator. |
1801 | 1801 |
/// |
1802 | 1802 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1803 |
/// it cannot be used when a readable map is needed, for example as |
|
1803 |
/// it cannot be used when a readable map is needed, for example, as |
|
1804 | 1804 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
1805 | 1805 |
/// |
1806 | 1806 |
/// \relates LoggerBoolMap |
1807 | 1807 |
template<typename Iterator> |
1808 | 1808 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1809 | 1809 |
return LoggerBoolMap<Iterator>(it); |
1810 | 1810 |
} |
1811 | 1811 |
|
1812 | 1812 |
/// @} |
1813 | 1813 |
|
1814 | 1814 |
/// \addtogroup graph_maps |
1815 | 1815 |
/// @{ |
... | ... |
@@ -1913,25 +1913,25 @@ |
1913 | 1913 |
/// This class provides simple invertable graph maps. |
1914 | 1914 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
1915 | 1915 |
/// and if a key is set to a new value, then stores it in the inverse map. |
1916 | 1916 |
/// The graph items can be accessed by their values either using |
1917 | 1917 |
/// \c InverseMap or \c operator()(), and the values of the map can be |
1918 | 1918 |
/// accessed with an STL compatible forward iterator (\c ValueIt). |
1919 | 1919 |
/// |
1920 | 1920 |
/// This map is intended to be used when all associated values are |
1921 | 1921 |
/// different (the map is actually invertable) or there are only a few |
1922 | 1922 |
/// items with the same value. |
1923 | 1923 |
/// Otherwise consider to use \c IterableValueMap, which is more |
1924 | 1924 |
/// suitable and more efficient for such cases. It provides iterators |
1925 |
/// to traverse the items with the same associated value, |
|
1925 |
/// to traverse the items with the same associated value, but |
|
1926 | 1926 |
/// it does not have \c InverseMap. |
1927 | 1927 |
/// |
1928 | 1928 |
/// This type is not reference map, so it cannot be modified with |
1929 | 1929 |
/// the subscript operator. |
1930 | 1930 |
/// |
1931 | 1931 |
/// \tparam GR The graph type. |
1932 | 1932 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1933 | 1933 |
/// \c GR::Edge). |
1934 | 1934 |
/// \tparam V The value type of the map. |
1935 | 1935 |
/// |
1936 | 1936 |
/// \see IterableValueMap |
1937 | 1937 |
template <typename GR, typename K, typename V> |
... | ... |
@@ -3457,25 +3457,25 @@ |
3457 | 3457 |
} |
3458 | 3458 |
|
3459 | 3459 |
/// \brief Map of the in-degrees of nodes in a digraph. |
3460 | 3460 |
/// |
3461 | 3461 |
/// This map returns the in-degree of a node. Once it is constructed, |
3462 | 3462 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
3463 | 3463 |
/// in constant time. On the other hand, the values are updated automatically |
3464 | 3464 |
/// whenever the digraph changes. |
3465 | 3465 |
/// |
3466 | 3466 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
3467 | 3467 |
/// may provide alternative ways to modify the digraph. |
3468 | 3468 |
/// The correct behavior of InDegMap is not guarantied if these additional |
3469 |
/// features are used. For example the functions |
|
3469 |
/// features are used. For example, the functions |
|
3470 | 3470 |
/// \ref ListDigraph::changeSource() "changeSource()", |
3471 | 3471 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
3472 | 3472 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
3473 | 3473 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
3474 | 3474 |
/// |
3475 | 3475 |
/// \sa OutDegMap |
3476 | 3476 |
template <typename GR> |
3477 | 3477 |
class InDegMap |
3478 | 3478 |
: protected ItemSetTraits<GR, typename GR::Arc> |
3479 | 3479 |
::ItemNotifier::ObserverBase { |
3480 | 3480 |
|
3481 | 3481 |
public: |
... | ... |
@@ -3587,25 +3587,25 @@ |
3587 | 3587 |
}; |
3588 | 3588 |
|
3589 | 3589 |
/// \brief Map of the out-degrees of nodes in a digraph. |
3590 | 3590 |
/// |
3591 | 3591 |
/// This map returns the out-degree of a node. Once it is constructed, |
3592 | 3592 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
3593 | 3593 |
/// in constant time. On the other hand, the values are updated automatically |
3594 | 3594 |
/// whenever the digraph changes. |
3595 | 3595 |
/// |
3596 | 3596 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
3597 | 3597 |
/// may provide alternative ways to modify the digraph. |
3598 | 3598 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
3599 |
/// features are used. For example the functions |
|
3599 |
/// features are used. For example, the functions |
|
3600 | 3600 |
/// \ref ListDigraph::changeSource() "changeSource()", |
3601 | 3601 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
3602 | 3602 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
3603 | 3603 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
3604 | 3604 |
/// |
3605 | 3605 |
/// \sa InDegMap |
3606 | 3606 |
template <typename GR> |
3607 | 3607 |
class OutDegMap |
3608 | 3608 |
: protected ItemSetTraits<GR, typename GR::Arc> |
3609 | 3609 |
::ItemNotifier::ObserverBase { |
3610 | 3610 |
|
3611 | 3611 |
public: |
... | ... |
@@ -39,43 +39,43 @@ |
39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 41 |
/// |
42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
44 | 44 |
/// This algorithm is a specialized version of the linear programming |
45 | 45 |
/// simplex method directly for the minimum cost flow problem. |
46 | 46 |
/// It is one of the most efficient solution methods. |
47 | 47 |
/// |
48 | 48 |
/// In general this class is the fastest implementation available |
49 | 49 |
/// in LEMON for the minimum cost flow problem. |
50 | 50 |
/// Moreover it supports both directions of the supply/demand inequality |
51 |
/// constraints. For more information see \ref SupplyType. |
|
51 |
/// constraints. For more information, see \ref SupplyType. |
|
52 | 52 |
/// |
53 | 53 |
/// Most of the parameters of the problem (except for the digraph) |
54 | 54 |
/// can be given using separate functions, and the algorithm can be |
55 | 55 |
/// executed using the \ref run() function. If some parameters are not |
56 | 56 |
/// specified, then default values will be used. |
57 | 57 |
/// |
58 | 58 |
/// \tparam GR The digraph type the algorithm runs on. |
59 | 59 |
/// \tparam V The value type used for flow amounts, capacity bounds |
60 |
/// and supply values in the algorithm. By default it is \c int. |
|
60 |
/// and supply values in the algorithm. By default, it is \c int. |
|
61 | 61 |
/// \tparam C The value type used for costs and potentials in the |
62 |
/// algorithm. By default it is the same as \c V. |
|
62 |
/// algorithm. By default, it is the same as \c V. |
|
63 | 63 |
/// |
64 | 64 |
/// \warning Both value types must be signed and all input data must |
65 | 65 |
/// be integer. |
66 | 66 |
/// |
67 | 67 |
/// \note %NetworkSimplex provides five different pivot rule |
68 | 68 |
/// implementations, from which the most efficient one is used |
69 |
/// by default. For more information see \ref PivotRule. |
|
69 |
/// by default. For more information, see \ref PivotRule. |
|
70 | 70 |
template <typename GR, typename V = int, typename C = V> |
71 | 71 |
class NetworkSimplex |
72 | 72 |
{ |
73 | 73 |
public: |
74 | 74 |
|
75 | 75 |
/// The type of the flow amounts, capacity bounds and supply values |
76 | 76 |
typedef V Value; |
77 | 77 |
/// The type of the arc costs |
78 | 78 |
typedef C Cost; |
79 | 79 |
|
80 | 80 |
public: |
81 | 81 |
|
... | ... |
@@ -113,53 +113,53 @@ |
113 | 113 |
/// supply/demand constraints in the definition of the problem. |
114 | 114 |
LEQ |
115 | 115 |
}; |
116 | 116 |
|
117 | 117 |
/// \brief Constants for selecting the pivot rule. |
118 | 118 |
/// |
119 | 119 |
/// Enum type containing constants for selecting the pivot rule for |
120 | 120 |
/// the \ref run() function. |
121 | 121 |
/// |
122 | 122 |
/// \ref NetworkSimplex provides five different pivot rule |
123 | 123 |
/// implementations that significantly affect the running time |
124 | 124 |
/// of the algorithm. |
125 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
|
125 |
/// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
|
126 | 126 |
/// proved to be the most efficient and the most robust on various |
127 | 127 |
/// test inputs according to our benchmark tests. |
128 |
/// However another pivot rule can be selected using the \ref run() |
|
128 |
/// However, another pivot rule can be selected using the \ref run() |
|
129 | 129 |
/// function with the proper parameter. |
130 | 130 |
enum PivotRule { |
131 | 131 |
|
132 |
/// The First Eligible pivot rule. |
|
132 |
/// The \e First \e Eligible pivot rule. |
|
133 | 133 |
/// The next eligible arc is selected in a wraparound fashion |
134 | 134 |
/// in every iteration. |
135 | 135 |
FIRST_ELIGIBLE, |
136 | 136 |
|
137 |
/// The Best Eligible pivot rule. |
|
137 |
/// The \e Best \e Eligible pivot rule. |
|
138 | 138 |
/// The best eligible arc is selected in every iteration. |
139 | 139 |
BEST_ELIGIBLE, |
140 | 140 |
|
141 |
/// The Block Search pivot rule. |
|
141 |
/// The \e Block \e Search pivot rule. |
|
142 | 142 |
/// A specified number of arcs are examined in every iteration |
143 | 143 |
/// in a wraparound fashion and the best eligible arc is selected |
144 | 144 |
/// from this block. |
145 | 145 |
BLOCK_SEARCH, |
146 | 146 |
|
147 |
/// The Candidate List pivot rule. |
|
147 |
/// The \e Candidate \e List pivot rule. |
|
148 | 148 |
/// In a major iteration a candidate list is built from eligible arcs |
149 | 149 |
/// in a wraparound fashion and in the following minor iterations |
150 | 150 |
/// the best eligible arc is selected from this list. |
151 | 151 |
CANDIDATE_LIST, |
152 | 152 |
|
153 |
/// The Altering Candidate List pivot rule. |
|
153 |
/// The \e Altering \e Candidate \e List pivot rule. |
|
154 | 154 |
/// It is a modified version of the Candidate List method. |
155 | 155 |
/// It keeps only the several best eligible arcs from the former |
156 | 156 |
/// candidate list and extends this list in every iteration. |
157 | 157 |
ALTERING_LIST |
158 | 158 |
}; |
159 | 159 |
|
160 | 160 |
private: |
161 | 161 |
|
162 | 162 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
163 | 163 |
|
164 | 164 |
typedef std::vector<int> IntVector; |
165 | 165 |
typedef std::vector<bool> BoolVector; |
... | ... |
@@ -801,25 +801,25 @@ |
801 | 801 |
} |
802 | 802 |
_supply[_node_id[s]] = k; |
803 | 803 |
_supply[_node_id[t]] = -k; |
804 | 804 |
return *this; |
805 | 805 |
} |
806 | 806 |
|
807 | 807 |
/// \brief Set the type of the supply constraints. |
808 | 808 |
/// |
809 | 809 |
/// This function sets the type of the supply/demand constraints. |
810 | 810 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
811 | 811 |
/// type will be used. |
812 | 812 |
/// |
813 |
/// For more information see \ref SupplyType. |
|
813 |
/// For more information, see \ref SupplyType. |
|
814 | 814 |
/// |
815 | 815 |
/// \return <tt>(*this)</tt> |
816 | 816 |
NetworkSimplex& supplyType(SupplyType supply_type) { |
817 | 817 |
_stype = supply_type; |
818 | 818 |
return *this; |
819 | 819 |
} |
820 | 820 |
|
821 | 821 |
/// @} |
822 | 822 |
|
823 | 823 |
/// \name Execution Control |
824 | 824 |
/// The algorithm can be executed using \ref run(). |
825 | 825 |
|
... | ... |
@@ -833,54 +833,54 @@ |
833 | 833 |
/// \ref supplyType(). |
834 | 834 |
/// For example, |
835 | 835 |
/// \code |
836 | 836 |
/// NetworkSimplex<ListDigraph> ns(graph); |
837 | 837 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
838 | 838 |
/// .supplyMap(sup).run(); |
839 | 839 |
/// \endcode |
840 | 840 |
/// |
841 | 841 |
/// This function can be called more than once. All the parameters |
842 | 842 |
/// that have been given are kept for the next call, unless |
843 | 843 |
/// \ref reset() is called, thus only the modified parameters |
844 | 844 |
/// have to be set again. See \ref reset() for examples. |
845 |
/// However the underlying digraph must not be modified after this |
|
845 |
/// However, the underlying digraph must not be modified after this |
|
846 | 846 |
/// class have been constructed, since it copies and extends the graph. |
847 | 847 |
/// |
848 | 848 |
/// \param pivot_rule The pivot rule that will be used during the |
849 |
/// algorithm. For more information see \ref PivotRule. |
|
849 |
/// algorithm. For more information, see \ref PivotRule. |
|
850 | 850 |
/// |
851 | 851 |
/// \return \c INFEASIBLE if no feasible flow exists, |
852 | 852 |
/// \n \c OPTIMAL if the problem has optimal solution |
853 | 853 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
854 | 854 |
/// optimal flow and node potentials (primal and dual solutions), |
855 | 855 |
/// \n \c UNBOUNDED if the objective function of the problem is |
856 | 856 |
/// unbounded, i.e. there is a directed cycle having negative total |
857 | 857 |
/// cost and infinite upper bound. |
858 | 858 |
/// |
859 | 859 |
/// \see ProblemType, PivotRule |
860 | 860 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
861 | 861 |
if (!init()) return INFEASIBLE; |
862 | 862 |
return start(pivot_rule); |
863 | 863 |
} |
864 | 864 |
|
865 | 865 |
/// \brief Reset all the parameters that have been given before. |
866 | 866 |
/// |
867 | 867 |
/// This function resets all the paramaters that have been given |
868 | 868 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
869 | 869 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
870 | 870 |
/// |
871 | 871 |
/// It is useful for multiple run() calls. If this function is not |
872 | 872 |
/// used, all the parameters given before are kept for the next |
873 | 873 |
/// \ref run() call. |
874 |
/// However the underlying digraph must not be modified after this |
|
874 |
/// However, the underlying digraph must not be modified after this |
|
875 | 875 |
/// class have been constructed, since it copies and extends the graph. |
876 | 876 |
/// |
877 | 877 |
/// For example, |
878 | 878 |
/// \code |
879 | 879 |
/// NetworkSimplex<ListDigraph> ns(graph); |
880 | 880 |
/// |
881 | 881 |
/// // First run |
882 | 882 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
883 | 883 |
/// .supplyMap(sup).run(); |
884 | 884 |
/// |
885 | 885 |
/// // Run again with modified cost map (reset() is not called, |
886 | 886 |
/// // so only the cost map have to be set again) |
... | ... |
@@ -255,25 +255,25 @@ |
255 | 255 |
return new Elevator(digraph, max_level); |
256 | 256 |
} |
257 | 257 |
}; |
258 | 258 |
|
259 | 259 |
/// \brief \ref named-templ-param "Named parameter" for setting |
260 | 260 |
/// Elevator type with automatic allocation |
261 | 261 |
/// |
262 | 262 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
263 | 263 |
/// type with automatic allocation. |
264 | 264 |
/// The Elevator should have standard constructor interface to be |
265 | 265 |
/// able to automatically created by the algorithm (i.e. the |
266 | 266 |
/// digraph and the maximum level should be passed to it). |
267 |
/// However an external elevator object could also be passed to the |
|
267 |
/// However, an external elevator object could also be passed to the |
|
268 | 268 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
269 | 269 |
/// before calling \ref run() or \ref init(). |
270 | 270 |
/// \sa SetElevator |
271 | 271 |
template <typename T> |
272 | 272 |
struct SetStandardElevator |
273 | 273 |
: public Preflow<Digraph, CapacityMap, |
274 | 274 |
SetStandardElevatorTraits<T> > { |
275 | 275 |
typedef Preflow<Digraph, CapacityMap, |
276 | 276 |
SetStandardElevatorTraits<T> > Create; |
277 | 277 |
}; |
278 | 278 |
|
279 | 279 |
/// @} |
... | ... |
@@ -366,25 +366,25 @@ |
366 | 366 |
if(_running) { |
367 | 367 |
_running=0; |
368 | 368 |
TimeStamp t; |
369 | 369 |
t.stamp(); |
370 | 370 |
start_time=t-start_time; |
371 | 371 |
} |
372 | 372 |
} |
373 | 373 |
|
374 | 374 |
///Returns the running state of the timer |
375 | 375 |
|
376 | 376 |
///This function returns the number of stop() exections that is |
377 | 377 |
///necessary to really stop the timer. |
378 |
///For example the timer |
|
378 |
///For example, the timer |
|
379 | 379 |
///is running if and only if the return value is \c true |
380 | 380 |
///(i.e. greater than |
381 | 381 |
///zero). |
382 | 382 |
int running() { return _running; } |
383 | 383 |
|
384 | 384 |
|
385 | 385 |
///Restart the time counters |
386 | 386 |
|
387 | 387 |
///This function is a shorthand for |
388 | 388 |
///a reset() and a start() calls. |
389 | 389 |
/// |
390 | 390 |
void restart() |
... | ... |
@@ -34,25 +34,25 @@ |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \ingroup auxdat |
38 | 38 |
/// |
39 | 39 |
/// \brief A \e Union-Find data structure implementation |
40 | 40 |
/// |
41 | 41 |
/// The class implements the \e Union-Find data structure. |
42 | 42 |
/// The union operation uses rank heuristic, while |
43 | 43 |
/// the find operation uses path compression. |
44 | 44 |
/// This is a very simple but efficient implementation, providing |
45 | 45 |
/// only four methods: join (union), find, insert and size. |
46 |
/// For more features see the \ref UnionFindEnum class. |
|
46 |
/// For more features, see the \ref UnionFindEnum class. |
|
47 | 47 |
/// |
48 | 48 |
/// It is primarily used in Kruskal algorithm for finding minimal |
49 | 49 |
/// cost spanning tree in a graph. |
50 | 50 |
/// \sa kruskal() |
51 | 51 |
/// |
52 | 52 |
/// \pre You need to add all the elements by the \ref insert() |
53 | 53 |
/// method. |
54 | 54 |
template <typename IM> |
55 | 55 |
class UnionFind { |
56 | 56 |
public: |
57 | 57 |
|
58 | 58 |
///\e |
0 comments (0 inline)