| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
namespace lemon {
|
| 20 | 20 |
|
| 21 | 21 |
/** |
| 22 | 22 |
\page min_cost_flow Minimum Cost Flow Problem |
| 23 | 23 |
|
| 24 | 24 |
\section mcf_def Definition (GEQ form) |
| 25 | 25 |
|
| 26 | 26 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
| 27 | 27 |
minimum total cost from a set of supply nodes to a set of demand nodes |
| 28 | 28 |
in a network with capacity constraints (lower and upper bounds) |
| 29 | 29 |
and arc costs. |
| 30 | 30 |
|
| 31 | 31 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
|
| 32 | 32 |
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
|
| 33 | 33 |
upper bounds for the flow values on the arcs, for which |
| 34 | 34 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
| 35 | 35 |
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow
|
| 36 | 36 |
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the
|
| 37 | 37 |
signed supply values of the nodes. |
| 38 | 38 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
| 39 | 39 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
| 40 | 40 |
\f$-sup(u)\f$ demand. |
| 41 | 41 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{R}\f$ solution
|
| 42 | 42 |
of the following optimization problem. |
| 43 | 43 |
|
| 44 | 44 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
| 45 | 45 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
| 46 | 46 |
sup(u) \quad \forall u\in V \f] |
| 47 | 47 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
| 48 | 48 |
|
| 49 | 49 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
| 50 | 50 |
zero or negative in order to have a feasible solution (since the sum |
| 51 | 51 |
of the expressions on the left-hand side of the inequalities is zero). |
| 52 | 52 |
It means that the total demand must be greater or equal to the total |
| 53 | 53 |
supply and all the supplies have to be carried out from the supply nodes, |
| 54 | 54 |
but there could be demands that are not satisfied. |
| 55 | 55 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
|
| 56 | 56 |
constraints have to be satisfied with equality, i.e. all demands |
| 57 | 57 |
have to be satisfied and all supplies have to be used. |
| 58 | 58 |
|
| 59 | 59 |
|
| 60 | 60 |
\section mcf_algs Algorithms |
| 61 | 61 |
|
| 62 | 62 |
LEMON contains several algorithms for solving this problem, for more |
| 63 | 63 |
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms". |
| 64 | 64 |
|
| 65 | 65 |
A feasible solution for this problem can be found using \ref Circulation. |
| 66 | 66 |
|
| 67 | 67 |
|
| 68 | 68 |
\section mcf_dual Dual Solution |
| 69 | 69 |
|
| 70 | 70 |
The dual solution of the minimum cost flow problem is represented by |
| 71 | 71 |
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$.
|
| 72 | 72 |
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal
|
| 73 | 73 |
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials
|
| 74 | 74 |
the following \e complementary \e slackness optimality conditions hold. |
| 75 | 75 |
|
| 76 | 76 |
- For all \f$uv\in A\f$ arcs: |
| 77 | 77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
| 78 | 78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
| 79 | 79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
| 80 | 80 |
- For all \f$u\in V\f$ nodes: |
| 81 |
- \f$\pi(u) |
|
| 81 |
- \f$\pi(u)\leq 0\f$; |
|
| 82 | 82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
| 83 | 83 |
then \f$\pi(u)=0\f$. |
| 84 | 84 |
|
| 85 | 85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
| 86 | 86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
| 87 | 87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
| 88 | 88 |
|
| 89 | 89 |
All algorithms provide dual solution (node potentials), as well, |
| 90 | 90 |
if an optimal flow is found. |
| 91 | 91 |
|
| 92 | 92 |
|
| 93 | 93 |
\section mcf_eq Equality Form |
| 94 | 94 |
|
| 95 | 95 |
The above \ref mcf_def "definition" is actually more general than the |
| 96 | 96 |
usual formulation of the minimum cost flow problem, in which strict |
| 97 | 97 |
equalities are required in the supply/demand contraints. |
| 98 | 98 |
|
| 99 | 99 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
| 100 | 100 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) =
|
| 101 | 101 |
sup(u) \quad \forall u\in V \f] |
| 102 | 102 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
| 103 | 103 |
|
| 104 | 104 |
However if the sum of the supply values is zero, then these two problems |
| 105 | 105 |
are equivalent. |
| 106 | 106 |
The \ref min_cost_flow_algs "algorithms" in LEMON support the general |
| 107 | 107 |
form, so if you need the equality form, you have to ensure this additional |
| 108 | 108 |
contraint manually. |
| 109 | 109 |
|
| 110 | 110 |
|
| 111 | 111 |
\section mcf_leq Opposite Inequalites (LEQ Form) |
| 112 | 112 |
|
| 113 | 113 |
Another possible definition of the minimum cost flow problem is |
| 114 | 114 |
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints, |
| 115 | 115 |
instead of the <em>"greater or equal"</em> (GEQ) constraints. |
| 116 | 116 |
|
| 117 | 117 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
| 118 | 118 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
|
| 119 | 119 |
sup(u) \quad \forall u\in V \f] |
| 120 | 120 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
| 121 | 121 |
|
| 122 | 122 |
It means that the total demand must be less or equal to the |
| 123 | 123 |
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
| 124 | 124 |
positive) and all the demands have to be satisfied, but there |
| 125 | 125 |
could be supplies that are not carried out from the supply |
| 126 | 126 |
nodes. |
| 127 | 127 |
The equality form is also a special case of this form, of course. |
| 128 | 128 |
|
| 129 | 129 |
You could easily transform this case to the \ref mcf_def "GEQ form" |
| 130 | 130 |
of the problem by reversing the direction of the arcs and taking the |
| 131 | 131 |
negative of the supply values (e.g. using \ref ReverseDigraph and |
| 132 | 132 |
\ref NegMap adaptors). |
| 133 | 133 |
However \ref NetworkSimplex algorithm also supports this form directly |
| 134 | 134 |
for the sake of convenience. |
| 135 | 135 |
|
| 136 | 136 |
Note that the optimality conditions for this supply constraint type are |
| 137 | 137 |
slightly differ from the conditions that are discussed for the GEQ form, |
| 138 | 138 |
namely the potentials have to be non-negative instead of non-positive. |
| 139 | 139 |
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem
|
| 140 | 140 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$
|
| 141 | 141 |
node potentials the following conditions hold. |
| 142 | 142 |
|
| 143 | 143 |
- For all \f$uv\in A\f$ arcs: |
| 144 | 144 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
| 145 | 145 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
| 146 | 146 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
| 147 | 147 |
- For all \f$u\in V\f$ nodes: |
| 148 |
- \f$\pi(u) |
|
| 148 |
- \f$\pi(u)\geq 0\f$; |
|
| 149 | 149 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
| 150 | 150 |
then \f$\pi(u)=0\f$. |
| 151 | 151 |
|
| 152 | 152 |
*/ |
| 153 | 153 |
} |
| 1 | 1 |
/* -*- C++ -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BELLMAN_FORD_H |
| 20 | 20 |
#define LEMON_BELLMAN_FORD_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup shortest_path |
| 23 | 23 |
/// \file |
| 24 | 24 |
/// \brief Bellman-Ford algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/bits/path_dump.h> |
| 27 | 27 |
#include <lemon/core.h> |
| 28 | 28 |
#include <lemon/error.h> |
| 29 | 29 |
#include <lemon/maps.h> |
| 30 | 30 |
#include <lemon/path.h> |
| 31 | 31 |
|
| 32 | 32 |
#include <limits> |
| 33 | 33 |
|
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 | 36 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
| 37 | 37 |
/// |
| 38 | 38 |
/// This operation traits class defines all computational operations |
| 39 | 39 |
/// and constants that are used in the Bellman-Ford algorithm. |
| 40 | 40 |
/// The default implementation is based on the \c numeric_limits class. |
| 41 | 41 |
/// If the numeric type does not have infinity value, then the maximum |
| 42 | 42 |
/// value is used as extremal infinity value. |
| 43 | 43 |
template < |
| 44 | 44 |
typename V, |
| 45 | 45 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
| 46 | 46 |
struct BellmanFordDefaultOperationTraits {
|
| 47 | 47 |
/// \e |
| 48 | 48 |
typedef V Value; |
| 49 | 49 |
/// \brief Gives back the zero value of the type. |
| 50 | 50 |
static Value zero() {
|
| 51 | 51 |
return static_cast<Value>(0); |
| 52 | 52 |
} |
| 53 | 53 |
/// \brief Gives back the positive infinity value of the type. |
| 54 | 54 |
static Value infinity() {
|
| 55 | 55 |
return std::numeric_limits<Value>::infinity(); |
| 56 | 56 |
} |
| 57 | 57 |
/// \brief Gives back the sum of the given two elements. |
| 58 | 58 |
static Value plus(const Value& left, const Value& right) {
|
| 59 | 59 |
return left + right; |
| 60 | 60 |
} |
| 61 | 61 |
/// \brief Gives back \c true only if the first value is less than |
| 62 | 62 |
/// the second. |
| 63 | 63 |
static bool less(const Value& left, const Value& right) {
|
| 64 | 64 |
return left < right; |
| 65 | 65 |
} |
| 66 | 66 |
}; |
| 67 | 67 |
|
| 68 | 68 |
template <typename V> |
| 69 | 69 |
struct BellmanFordDefaultOperationTraits<V, false> {
|
| 70 | 70 |
typedef V Value; |
| 71 | 71 |
static Value zero() {
|
| 72 | 72 |
return static_cast<Value>(0); |
| 73 | 73 |
} |
| 74 | 74 |
static Value infinity() {
|
| 75 | 75 |
return std::numeric_limits<Value>::max(); |
| 76 | 76 |
} |
| 77 | 77 |
static Value plus(const Value& left, const Value& right) {
|
| 78 | 78 |
if (left == infinity() || right == infinity()) return infinity(); |
| 79 | 79 |
return left + right; |
| 80 | 80 |
} |
| 81 | 81 |
static bool less(const Value& left, const Value& right) {
|
| 82 | 82 |
return left < right; |
| 83 | 83 |
} |
| 84 | 84 |
}; |
| 85 | 85 |
|
| 86 | 86 |
/// \brief Default traits class of BellmanFord class. |
| 87 | 87 |
/// |
| 88 | 88 |
/// Default traits class of BellmanFord class. |
| 89 | 89 |
/// \param GR The type of the digraph. |
| 90 | 90 |
/// \param LEN The type of the length map. |
| 91 | 91 |
template<typename GR, typename LEN> |
| 92 | 92 |
struct BellmanFordDefaultTraits {
|
| 93 | 93 |
/// The type of the digraph the algorithm runs on. |
| 94 | 94 |
typedef GR Digraph; |
| 95 | 95 |
|
| 96 | 96 |
/// \brief The type of the map that stores the arc lengths. |
| 97 | 97 |
/// |
| 98 | 98 |
/// The type of the map that stores the arc lengths. |
| 99 | 99 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 100 | 100 |
typedef LEN LengthMap; |
| 101 | 101 |
|
| 102 | 102 |
/// The type of the arc lengths. |
| 103 | 103 |
typedef typename LEN::Value Value; |
| 104 | 104 |
|
| 105 | 105 |
/// \brief Operation traits for Bellman-Ford algorithm. |
| 106 | 106 |
/// |
| 107 | 107 |
/// It defines the used operations and the infinity value for the |
| 108 | 108 |
/// given \c Value type. |
| 109 | 109 |
/// \see BellmanFordDefaultOperationTraits |
| 110 | 110 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
| 111 | 111 |
|
| 112 | 112 |
/// \brief The type of the map that stores the last arcs of the |
| 113 | 113 |
/// shortest paths. |
| 114 | 114 |
/// |
| 115 | 115 |
/// The type of the map that stores the last |
| 116 | 116 |
/// arcs of the shortest paths. |
| 117 | 117 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 118 | 118 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
| 119 | 119 |
|
| 120 | 120 |
/// \brief Instantiates a \c PredMap. |
| 121 | 121 |
/// |
| 122 | 122 |
/// This function instantiates a \ref PredMap. |
| 123 | 123 |
/// \param g is the digraph to which we would like to define the |
| 124 | 124 |
/// \ref PredMap. |
| 125 | 125 |
static PredMap *createPredMap(const GR& g) {
|
| 126 | 126 |
return new PredMap(g); |
| 127 | 127 |
} |
| 128 | 128 |
|
| 129 | 129 |
/// \brief The type of the map that stores the distances of the nodes. |
| 130 | 130 |
/// |
| 131 | 131 |
/// The type of the map that stores the distances of the nodes. |
| 132 | 132 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 133 | 133 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
| 134 | 134 |
|
| 135 | 135 |
/// \brief Instantiates a \c DistMap. |
| 136 | 136 |
/// |
| 137 | 137 |
/// This function instantiates a \ref DistMap. |
| 138 | 138 |
/// \param g is the digraph to which we would like to define the |
| 139 | 139 |
/// \ref DistMap. |
| 140 | 140 |
static DistMap *createDistMap(const GR& g) {
|
| 141 | 141 |
return new DistMap(g); |
| 142 | 142 |
} |
| 143 | 143 |
|
| 144 | 144 |
}; |
| 145 | 145 |
|
| 146 | 146 |
/// \brief %BellmanFord algorithm class. |
| 147 | 147 |
/// |
| 148 | 148 |
/// \ingroup shortest_path |
| 149 | 149 |
/// This class provides an efficient implementation of the Bellman-Ford |
| 150 | 150 |
/// algorithm. The maximum time complexity of the algorithm is |
| 151 | 151 |
/// <tt>O(ne)</tt>. |
| 152 | 152 |
/// |
| 153 | 153 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
| 154 | 154 |
/// problem when the arcs can have negative lengths, but the digraph |
| 155 | 155 |
/// should not contain directed cycles with negative total length. |
| 156 | 156 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
| 157 | 157 |
/// algorithm instead, since it is more efficient. |
| 158 | 158 |
/// |
| 159 | 159 |
/// The arc lengths are passed to the algorithm using a |
| 160 | 160 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
| 161 | 161 |
/// kind of length. The type of the length values is determined by the |
| 162 | 162 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
| 163 | 163 |
/// |
| 164 | 164 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
| 165 | 165 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
| 166 | 166 |
/// it can be used easier. |
| 167 | 167 |
/// |
| 168 | 168 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 169 | 169 |
/// The default type is \ref ListDigraph. |
| 170 | 170 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
| 171 | 171 |
/// the lengths of the arcs. The default map type is |
| 172 | 172 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 173 | 173 |
#ifdef DOXYGEN |
| 174 | 174 |
template <typename GR, typename LEN, typename TR> |
| 175 | 175 |
#else |
| 176 | 176 |
template <typename GR=ListDigraph, |
| 177 | 177 |
typename LEN=typename GR::template ArcMap<int>, |
| 178 | 178 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
| 179 | 179 |
#endif |
| 180 | 180 |
class BellmanFord {
|
| 181 | 181 |
public: |
| 182 | 182 |
|
| 183 | 183 |
///The type of the underlying digraph. |
| 184 | 184 |
typedef typename TR::Digraph Digraph; |
| 185 | 185 |
|
| 186 | 186 |
/// \brief The type of the arc lengths. |
| 187 | 187 |
typedef typename TR::LengthMap::Value Value; |
| 188 | 188 |
/// \brief The type of the map that stores the arc lengths. |
| 189 | 189 |
typedef typename TR::LengthMap LengthMap; |
| 190 | 190 |
/// \brief The type of the map that stores the last |
| 191 | 191 |
/// arcs of the shortest paths. |
| 192 | 192 |
typedef typename TR::PredMap PredMap; |
| 193 | 193 |
/// \brief The type of the map that stores the distances of the nodes. |
| 194 | 194 |
typedef typename TR::DistMap DistMap; |
| 195 | 195 |
/// The type of the paths. |
| 196 | 196 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 197 | 197 |
///\brief The \ref BellmanFordDefaultOperationTraits |
| 198 | 198 |
/// "operation traits class" of the algorithm. |
| 199 | 199 |
typedef typename TR::OperationTraits OperationTraits; |
| 200 | 200 |
|
| 201 | 201 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
| 202 | 202 |
typedef TR Traits; |
| 203 | 203 |
|
| 204 | 204 |
private: |
| 205 | 205 |
|
| 206 | 206 |
typedef typename Digraph::Node Node; |
| 207 | 207 |
typedef typename Digraph::NodeIt NodeIt; |
| 208 | 208 |
typedef typename Digraph::Arc Arc; |
| 209 | 209 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 210 | 210 |
|
| 211 | 211 |
// Pointer to the underlying digraph. |
| 212 | 212 |
const Digraph *_gr; |
| 213 | 213 |
// Pointer to the length map |
| 214 | 214 |
const LengthMap *_length; |
| 215 | 215 |
// Pointer to the map of predecessors arcs. |
| 216 | 216 |
PredMap *_pred; |
| 217 | 217 |
// Indicates if _pred is locally allocated (true) or not. |
| 218 | 218 |
bool _local_pred; |
| 219 | 219 |
// Pointer to the map of distances. |
| 220 | 220 |
DistMap *_dist; |
| 221 | 221 |
// Indicates if _dist is locally allocated (true) or not. |
| 222 | 222 |
bool _local_dist; |
| 223 | 223 |
|
| 224 | 224 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
| 225 | 225 |
MaskMap *_mask; |
| 226 | 226 |
|
| 227 | 227 |
std::vector<Node> _process; |
| 228 | 228 |
|
| 229 | 229 |
// Creates the maps if necessary. |
| 230 | 230 |
void create_maps() {
|
| 231 | 231 |
if(!_pred) {
|
| 232 | 232 |
_local_pred = true; |
| 233 | 233 |
_pred = Traits::createPredMap(*_gr); |
| 234 | 234 |
} |
| 235 | 235 |
if(!_dist) {
|
| 236 | 236 |
_local_dist = true; |
| 237 | 237 |
_dist = Traits::createDistMap(*_gr); |
| 238 | 238 |
} |
| 239 | 239 |
_mask = new MaskMap(*_gr, false); |
| 240 | 240 |
} |
| 241 | 241 |
|
| 242 | 242 |
public : |
| 243 | 243 |
|
| 244 | 244 |
typedef BellmanFord Create; |
| 245 | 245 |
|
| 246 | 246 |
/// \name Named Template Parameters |
| 247 | 247 |
|
| 248 | 248 |
///@{
|
| 249 | 249 |
|
| 250 | 250 |
template <class T> |
| 251 | 251 |
struct SetPredMapTraits : public Traits {
|
| 252 | 252 |
typedef T PredMap; |
| 253 | 253 |
static PredMap *createPredMap(const Digraph&) {
|
| 254 | 254 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 255 | 255 |
return 0; // ignore warnings |
| 256 | 256 |
} |
| 257 | 257 |
}; |
| 258 | 258 |
|
| 259 | 259 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 260 | 260 |
/// \c PredMap type. |
| 261 | 261 |
/// |
| 262 | 262 |
/// \ref named-templ-param "Named parameter" for setting |
| 263 | 263 |
/// \c PredMap type. |
| 264 | 264 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 265 | 265 |
template <class T> |
| 266 | 266 |
struct SetPredMap |
| 267 | 267 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
|
| 268 | 268 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
| 269 | 269 |
}; |
| 270 | 270 |
|
| 271 | 271 |
template <class T> |
| 272 | 272 |
struct SetDistMapTraits : public Traits {
|
| 273 | 273 |
typedef T DistMap; |
| 274 | 274 |
static DistMap *createDistMap(const Digraph&) {
|
| 275 | 275 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 276 | 276 |
return 0; // ignore warnings |
| 277 | 277 |
} |
| 278 | 278 |
}; |
| 279 | 279 |
|
| 280 | 280 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 281 | 281 |
/// \c DistMap type. |
| 282 | 282 |
/// |
| 283 | 283 |
/// \ref named-templ-param "Named parameter" for setting |
| 284 | 284 |
/// \c DistMap type. |
| 285 | 285 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 286 | 286 |
template <class T> |
| 287 | 287 |
struct SetDistMap |
| 288 | 288 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
|
| 289 | 289 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
| 290 | 290 |
}; |
| 291 | 291 |
|
| 292 | 292 |
template <class T> |
| 293 | 293 |
struct SetOperationTraitsTraits : public Traits {
|
| 294 | 294 |
typedef T OperationTraits; |
| 295 | 295 |
}; |
| 296 | 296 |
|
| 297 | 297 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 298 | 298 |
/// \c OperationTraits type. |
| 299 | 299 |
/// |
| 300 | 300 |
/// \ref named-templ-param "Named parameter" for setting |
| 301 | 301 |
/// \c OperationTraits type. |
| 302 |
/// For more information see \ref BellmanFordDefaultOperationTraits. |
|
| 302 |
/// For more information, see \ref BellmanFordDefaultOperationTraits. |
|
| 303 | 303 |
template <class T> |
| 304 | 304 |
struct SetOperationTraits |
| 305 | 305 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
| 306 | 306 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
| 307 | 307 |
Create; |
| 308 | 308 |
}; |
| 309 | 309 |
|
| 310 | 310 |
///@} |
| 311 | 311 |
|
| 312 | 312 |
protected: |
| 313 | 313 |
|
| 314 | 314 |
BellmanFord() {}
|
| 315 | 315 |
|
| 316 | 316 |
public: |
| 317 | 317 |
|
| 318 | 318 |
/// \brief Constructor. |
| 319 | 319 |
/// |
| 320 | 320 |
/// Constructor. |
| 321 | 321 |
/// \param g The digraph the algorithm runs on. |
| 322 | 322 |
/// \param length The length map used by the algorithm. |
| 323 | 323 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
| 324 | 324 |
_gr(&g), _length(&length), |
| 325 | 325 |
_pred(0), _local_pred(false), |
| 326 | 326 |
_dist(0), _local_dist(false), _mask(0) {}
|
| 327 | 327 |
|
| 328 | 328 |
///Destructor. |
| 329 | 329 |
~BellmanFord() {
|
| 330 | 330 |
if(_local_pred) delete _pred; |
| 331 | 331 |
if(_local_dist) delete _dist; |
| 332 | 332 |
if(_mask) delete _mask; |
| 333 | 333 |
} |
| 334 | 334 |
|
| 335 | 335 |
/// \brief Sets the length map. |
| 336 | 336 |
/// |
| 337 | 337 |
/// Sets the length map. |
| 338 | 338 |
/// \return <tt>(*this)</tt> |
| 339 | 339 |
BellmanFord &lengthMap(const LengthMap &map) {
|
| 340 | 340 |
_length = ↦ |
| 341 | 341 |
return *this; |
| 342 | 342 |
} |
| 343 | 343 |
|
| 344 | 344 |
/// \brief Sets the map that stores the predecessor arcs. |
| 345 | 345 |
/// |
| 346 | 346 |
/// Sets the map that stores the predecessor arcs. |
| 347 | 347 |
/// If you don't use this function before calling \ref run() |
| 348 | 348 |
/// or \ref init(), an instance will be allocated automatically. |
| 349 | 349 |
/// The destructor deallocates this automatically allocated map, |
| 350 | 350 |
/// of course. |
| 351 | 351 |
/// \return <tt>(*this)</tt> |
| 352 | 352 |
BellmanFord &predMap(PredMap &map) {
|
| 353 | 353 |
if(_local_pred) {
|
| 354 | 354 |
delete _pred; |
| 355 | 355 |
_local_pred=false; |
| 356 | 356 |
} |
| 357 | 357 |
_pred = ↦ |
| 358 | 358 |
return *this; |
| 359 | 359 |
} |
| 360 | 360 |
|
| 361 | 361 |
/// \brief Sets the map that stores the distances of the nodes. |
| 362 | 362 |
/// |
| 363 | 363 |
/// Sets the map that stores the distances of the nodes calculated |
| 364 | 364 |
/// by the algorithm. |
| 365 | 365 |
/// If you don't use this function before calling \ref run() |
| 366 | 366 |
/// or \ref init(), an instance will be allocated automatically. |
| 367 | 367 |
/// The destructor deallocates this automatically allocated map, |
| 368 | 368 |
/// of course. |
| 369 | 369 |
/// \return <tt>(*this)</tt> |
| 370 | 370 |
BellmanFord &distMap(DistMap &map) {
|
| 371 | 371 |
if(_local_dist) {
|
| 372 | 372 |
delete _dist; |
| 373 | 373 |
_local_dist=false; |
| 374 | 374 |
} |
| 375 | 375 |
_dist = ↦ |
| 376 | 376 |
return *this; |
| 377 | 377 |
} |
| 378 | 378 |
|
| 379 | 379 |
/// \name Execution Control |
| 380 | 380 |
/// The simplest way to execute the Bellman-Ford algorithm is to use |
| 381 | 381 |
/// one of the member functions called \ref run().\n |
| 382 | 382 |
/// If you need better control on the execution, you have to call |
| 383 | 383 |
/// \ref init() first, then you can add several source nodes |
| 384 | 384 |
/// with \ref addSource(). Finally the actual path computation can be |
| 385 | 385 |
/// performed with \ref start(), \ref checkedStart() or |
| 386 | 386 |
/// \ref limitedStart(). |
| 387 | 387 |
|
| 388 | 388 |
///@{
|
| 389 | 389 |
|
| 390 | 390 |
/// \brief Initializes the internal data structures. |
| 391 | 391 |
/// |
| 392 | 392 |
/// Initializes the internal data structures. The optional parameter |
| 393 | 393 |
/// is the initial distance of each node. |
| 394 | 394 |
void init(const Value value = OperationTraits::infinity()) {
|
| 395 | 395 |
create_maps(); |
| 396 | 396 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
| 397 | 397 |
_pred->set(it, INVALID); |
| 398 | 398 |
_dist->set(it, value); |
| 399 | 399 |
} |
| 400 | 400 |
_process.clear(); |
| 401 | 401 |
if (OperationTraits::less(value, OperationTraits::infinity())) {
|
| 402 | 402 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
| 403 | 403 |
_process.push_back(it); |
| 404 | 404 |
_mask->set(it, true); |
| 405 | 405 |
} |
| 406 | 406 |
} |
| 407 | 407 |
} |
| 408 | 408 |
|
| 409 | 409 |
/// \brief Adds a new source node. |
| 410 | 410 |
/// |
| 411 | 411 |
/// This function adds a new source node. The optional second parameter |
| 412 | 412 |
/// is the initial distance of the node. |
| 413 | 413 |
void addSource(Node source, Value dst = OperationTraits::zero()) {
|
| 414 | 414 |
_dist->set(source, dst); |
| 415 | 415 |
if (!(*_mask)[source]) {
|
| 416 | 416 |
_process.push_back(source); |
| 417 | 417 |
_mask->set(source, true); |
| 418 | 418 |
} |
| 419 | 419 |
} |
| 420 | 420 |
|
| 421 | 421 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
| 422 | 422 |
/// |
| 423 | 423 |
/// If the algoritm calculated the distances in the previous round |
| 424 | 424 |
/// exactly for the paths of at most \c k arcs, then this function |
| 425 | 425 |
/// will calculate the distances exactly for the paths of at most |
| 426 | 426 |
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function |
| 427 | 427 |
/// calculates the shortest path distances exactly for the paths |
| 428 | 428 |
/// consisting of at most \c k arcs. |
| 429 | 429 |
/// |
| 430 | 430 |
/// \warning The paths with limited arc number cannot be retrieved |
| 431 | 431 |
/// easily with \ref path() or \ref predArc() functions. If you also |
| 432 | 432 |
/// need the shortest paths and not only the distances, you should |
| 433 | 433 |
/// store the \ref predMap() "predecessor map" after each iteration |
| 434 | 434 |
/// and build the path manually. |
| 435 | 435 |
/// |
| 436 | 436 |
/// \return \c true when the algorithm have not found more shorter |
| 437 | 437 |
/// paths. |
| 438 | 438 |
/// |
| 439 | 439 |
/// \see ActiveIt |
| 440 | 440 |
bool processNextRound() {
|
| 441 | 441 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 442 | 442 |
_mask->set(_process[i], false); |
| 443 | 443 |
} |
| 444 | 444 |
std::vector<Node> nextProcess; |
| 445 | 445 |
std::vector<Value> values(_process.size()); |
| 446 | 446 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 447 | 447 |
values[i] = (*_dist)[_process[i]]; |
| 448 | 448 |
} |
| 449 | 449 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 450 | 450 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
| 451 | 451 |
Node target = _gr->target(it); |
| 452 | 452 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
| 453 | 453 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
| 454 | 454 |
_pred->set(target, it); |
| 455 | 455 |
_dist->set(target, relaxed); |
| 456 | 456 |
if (!(*_mask)[target]) {
|
| 457 | 457 |
_mask->set(target, true); |
| 458 | 458 |
nextProcess.push_back(target); |
| 459 | 459 |
} |
| 460 | 460 |
} |
| 461 | 461 |
} |
| 462 | 462 |
} |
| 463 | 463 |
_process.swap(nextProcess); |
| 464 | 464 |
return _process.empty(); |
| 465 | 465 |
} |
| 466 | 466 |
|
| 467 | 467 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
| 468 | 468 |
/// |
| 469 | 469 |
/// If the algorithm calculated the distances in the previous round |
| 470 | 470 |
/// at least for the paths of at most \c k arcs, then this function |
| 471 | 471 |
/// will calculate the distances at least for the paths of at most |
| 472 | 472 |
/// <tt>k+1</tt> arcs. |
| 473 | 473 |
/// This function does not make it possible to calculate the shortest |
| 474 | 474 |
/// path distances exactly for paths consisting of at most \c k arcs, |
| 475 | 475 |
/// this is why it is called weak round. |
| 476 | 476 |
/// |
| 477 | 477 |
/// \return \c true when the algorithm have not found more shorter |
| 478 | 478 |
/// paths. |
| 479 | 479 |
/// |
| 480 | 480 |
/// \see ActiveIt |
| 481 | 481 |
bool processNextWeakRound() {
|
| 482 | 482 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 483 | 483 |
_mask->set(_process[i], false); |
| 484 | 484 |
} |
| 485 | 485 |
std::vector<Node> nextProcess; |
| 486 | 486 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 487 | 487 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
| 488 | 488 |
Node target = _gr->target(it); |
| 489 | 489 |
Value relaxed = |
| 490 | 490 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
| 491 | 491 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
| 492 | 492 |
_pred->set(target, it); |
| 493 | 493 |
_dist->set(target, relaxed); |
| 494 | 494 |
if (!(*_mask)[target]) {
|
| 495 | 495 |
_mask->set(target, true); |
| 496 | 496 |
nextProcess.push_back(target); |
| 497 | 497 |
} |
| 498 | 498 |
} |
| 499 | 499 |
} |
| 500 | 500 |
} |
| 501 | 501 |
_process.swap(nextProcess); |
| 502 | 502 |
return _process.empty(); |
| 503 | 503 |
} |
| 504 | 504 |
|
| 505 | 505 |
/// \brief Executes the algorithm. |
| 506 | 506 |
/// |
| 507 | 507 |
/// Executes the algorithm. |
| 508 | 508 |
/// |
| 509 | 509 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
| 510 | 510 |
/// in order to compute the shortest path to each node. |
| 511 | 511 |
/// |
| 512 | 512 |
/// The algorithm computes |
| 513 | 513 |
/// - the shortest path tree (forest), |
| 514 | 514 |
/// - the distance of each node from the root(s). |
| 515 | 515 |
/// |
| 516 | 516 |
/// \pre init() must be called and at least one root node should be |
| 517 | 517 |
/// added with addSource() before using this function. |
| 518 | 518 |
void start() {
|
| 519 | 519 |
int num = countNodes(*_gr) - 1; |
| 520 | 520 |
for (int i = 0; i < num; ++i) {
|
| 521 | 521 |
if (processNextWeakRound()) break; |
| 522 | 522 |
} |
| 523 | 523 |
} |
| 524 | 524 |
|
| 525 | 525 |
/// \brief Executes the algorithm and checks the negative cycles. |
| 526 | 526 |
/// |
| 527 | 527 |
/// Executes the algorithm and checks the negative cycles. |
| 528 | 528 |
/// |
| 529 | 529 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
| 530 | 530 |
/// in order to compute the shortest path to each node and also checks |
| 531 | 531 |
/// if the digraph contains cycles with negative total length. |
| 532 | 532 |
/// |
| 533 | 533 |
/// The algorithm computes |
| 534 | 534 |
/// - the shortest path tree (forest), |
| 535 | 535 |
/// - the distance of each node from the root(s). |
| 536 | 536 |
/// |
| 537 | 537 |
/// \return \c false if there is a negative cycle in the digraph. |
| 538 | 538 |
/// |
| 539 | 539 |
/// \pre init() must be called and at least one root node should be |
| 540 | 540 |
/// added with addSource() before using this function. |
| 541 | 541 |
bool checkedStart() {
|
| 542 | 542 |
int num = countNodes(*_gr); |
| 543 | 543 |
for (int i = 0; i < num; ++i) {
|
| 544 | 544 |
if (processNextWeakRound()) return true; |
| 545 | 545 |
} |
| 546 | 546 |
return _process.empty(); |
| 547 | 547 |
} |
| 548 | 548 |
|
| 549 | 549 |
/// \brief Executes the algorithm with arc number limit. |
| 550 | 550 |
/// |
| 551 | 551 |
/// Executes the algorithm with arc number limit. |
| 552 | 552 |
/// |
| 553 | 553 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
| 554 | 554 |
/// in order to compute the shortest path distance for each node |
| 555 | 555 |
/// using only the paths consisting of at most \c num arcs. |
| 556 | 556 |
/// |
| 557 | 557 |
/// The algorithm computes |
| 558 | 558 |
/// - the limited distance of each node from the root(s), |
| 559 | 559 |
/// - the predecessor arc for each node. |
| 560 | 560 |
/// |
| 561 | 561 |
/// \warning The paths with limited arc number cannot be retrieved |
| 562 | 562 |
/// easily with \ref path() or \ref predArc() functions. If you also |
| 563 | 563 |
/// need the shortest paths and not only the distances, you should |
| 564 | 564 |
/// store the \ref predMap() "predecessor map" after each iteration |
| 565 | 565 |
/// and build the path manually. |
| 566 | 566 |
/// |
| 567 | 567 |
/// \pre init() must be called and at least one root node should be |
| 568 | 568 |
/// added with addSource() before using this function. |
| 569 | 569 |
void limitedStart(int num) {
|
| 570 | 570 |
for (int i = 0; i < num; ++i) {
|
| 571 | 571 |
if (processNextRound()) break; |
| 572 | 572 |
} |
| 573 | 573 |
} |
| 574 | 574 |
|
| 575 | 575 |
/// \brief Runs the algorithm from the given root node. |
| 576 | 576 |
/// |
| 577 | 577 |
/// This method runs the Bellman-Ford algorithm from the given root |
| 578 | 578 |
/// node \c s in order to compute the shortest path to each node. |
| 579 | 579 |
/// |
| 580 | 580 |
/// The algorithm computes |
| 581 | 581 |
/// - the shortest path tree (forest), |
| 582 | 582 |
/// - the distance of each node from the root(s). |
| 583 | 583 |
/// |
| 584 | 584 |
/// \note bf.run(s) is just a shortcut of the following code. |
| 585 | 585 |
/// \code |
| 586 | 586 |
/// bf.init(); |
| 587 | 587 |
/// bf.addSource(s); |
| 588 | 588 |
/// bf.start(); |
| 589 | 589 |
/// \endcode |
| 590 | 590 |
void run(Node s) {
|
| 591 | 591 |
init(); |
| 592 | 592 |
addSource(s); |
| 593 | 593 |
start(); |
| 594 | 594 |
} |
| 595 | 595 |
|
| 596 | 596 |
/// \brief Runs the algorithm from the given root node with arc |
| 597 | 597 |
/// number limit. |
| 598 | 598 |
/// |
| 599 | 599 |
/// This method runs the Bellman-Ford algorithm from the given root |
| 600 | 600 |
/// node \c s in order to compute the shortest path distance for each |
| 601 | 601 |
/// node using only the paths consisting of at most \c num arcs. |
| 602 | 602 |
/// |
| 603 | 603 |
/// The algorithm computes |
| 604 | 604 |
/// - the limited distance of each node from the root(s), |
| 605 | 605 |
/// - the predecessor arc for each node. |
| 606 | 606 |
/// |
| 607 | 607 |
/// \warning The paths with limited arc number cannot be retrieved |
| 608 | 608 |
/// easily with \ref path() or \ref predArc() functions. If you also |
| 609 | 609 |
/// need the shortest paths and not only the distances, you should |
| 610 | 610 |
/// store the \ref predMap() "predecessor map" after each iteration |
| 611 | 611 |
/// and build the path manually. |
| 612 | 612 |
/// |
| 613 | 613 |
/// \note bf.run(s, num) is just a shortcut of the following code. |
| 614 | 614 |
/// \code |
| 615 | 615 |
/// bf.init(); |
| 616 | 616 |
/// bf.addSource(s); |
| 617 | 617 |
/// bf.limitedStart(num); |
| 618 | 618 |
/// \endcode |
| 619 | 619 |
void run(Node s, int num) {
|
| 620 | 620 |
init(); |
| 621 | 621 |
addSource(s); |
| 622 | 622 |
limitedStart(num); |
| 623 | 623 |
} |
| 624 | 624 |
|
| 625 | 625 |
///@} |
| 626 | 626 |
|
| 627 | 627 |
/// \brief LEMON iterator for getting the active nodes. |
| 628 | 628 |
/// |
| 629 | 629 |
/// This class provides a common style LEMON iterator that traverses |
| 630 | 630 |
/// the active nodes of the Bellman-Ford algorithm after the last |
| 631 | 631 |
/// phase. These nodes should be checked in the next phase to |
| 632 | 632 |
/// find augmenting arcs outgoing from them. |
| 633 | 633 |
class ActiveIt {
|
| 634 | 634 |
public: |
| 635 | 635 |
|
| 636 | 636 |
/// \brief Constructor. |
| 637 | 637 |
/// |
| 638 | 638 |
/// Constructor for getting the active nodes of the given BellmanFord |
| 639 | 639 |
/// instance. |
| 640 | 640 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
| 641 | 641 |
{
|
| 642 | 642 |
_index = _algorithm->_process.size() - 1; |
| 643 | 643 |
} |
| 644 | 644 |
|
| 645 | 645 |
/// \brief Invalid constructor. |
| 646 | 646 |
/// |
| 647 | 647 |
/// Invalid constructor. |
| 648 | 648 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
|
| 649 | 649 |
|
| 650 | 650 |
/// \brief Conversion to \c Node. |
| 651 | 651 |
/// |
| 652 | 652 |
/// Conversion to \c Node. |
| 653 | 653 |
operator Node() const {
|
| 654 | 654 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
| 655 | 655 |
} |
| 656 | 656 |
|
| 657 | 657 |
/// \brief Increment operator. |
| 658 | 658 |
/// |
| 659 | 659 |
/// Increment operator. |
| 660 | 660 |
ActiveIt& operator++() {
|
| 661 | 661 |
--_index; |
| 662 | 662 |
return *this; |
| 663 | 663 |
} |
| 664 | 664 |
|
| 665 | 665 |
bool operator==(const ActiveIt& it) const {
|
| 666 | 666 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
| 667 | 667 |
} |
| 668 | 668 |
bool operator!=(const ActiveIt& it) const {
|
| 669 | 669 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
| 670 | 670 |
} |
| 671 | 671 |
bool operator<(const ActiveIt& it) const {
|
| 672 | 672 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
| 673 | 673 |
} |
| 674 | 674 |
|
| 675 | 675 |
private: |
| 676 | 676 |
const BellmanFord* _algorithm; |
| 677 | 677 |
int _index; |
| 678 | 678 |
}; |
| 679 | 679 |
|
| 680 | 680 |
/// \name Query Functions |
| 681 | 681 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
| 682 | 682 |
/// functions.\n |
| 683 | 683 |
/// Either \ref run() or \ref init() should be called before using them. |
| 684 | 684 |
|
| 685 | 685 |
///@{
|
| 686 | 686 |
|
| 687 | 687 |
/// \brief The shortest path to the given node. |
| 688 | 688 |
/// |
| 689 | 689 |
/// Gives back the shortest path to the given node from the root(s). |
| 690 | 690 |
/// |
| 691 | 691 |
/// \warning \c t should be reached from the root(s). |
| 692 | 692 |
/// |
| 693 | 693 |
/// \pre Either \ref run() or \ref init() must be called before |
| 694 | 694 |
/// using this function. |
| 695 | 695 |
Path path(Node t) const |
| 696 | 696 |
{
|
| 697 | 697 |
return Path(*_gr, *_pred, t); |
| 698 | 698 |
} |
| 699 | 699 |
|
| 700 | 700 |
/// \brief The distance of the given node from the root(s). |
| 701 | 701 |
/// |
| 702 | 702 |
/// Returns the distance of the given node from the root(s). |
| 703 | 703 |
/// |
| 704 | 704 |
/// \warning If node \c v is not reached from the root(s), then |
| 705 | 705 |
/// the return value of this function is undefined. |
| 706 | 706 |
/// |
| 707 | 707 |
/// \pre Either \ref run() or \ref init() must be called before |
| 708 | 708 |
/// using this function. |
| 709 | 709 |
Value dist(Node v) const { return (*_dist)[v]; }
|
| 710 | 710 |
|
| 711 | 711 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
| 712 | 712 |
/// the given node. |
| 713 | 713 |
/// |
| 714 | 714 |
/// This function returns the 'previous arc' of the shortest path |
| 715 | 715 |
/// tree for node \c v, i.e. it returns the last arc of a |
| 716 | 716 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
| 717 | 717 |
/// is not reached from the root(s) or if \c v is a root. |
| 718 | 718 |
/// |
| 719 | 719 |
/// The shortest path tree used here is equal to the shortest path |
| 720 |
/// tree used in \ref predNode() and \predMap(). |
|
| 720 |
/// tree used in \ref predNode() and \ref predMap(). |
|
| 721 | 721 |
/// |
| 722 | 722 |
/// \pre Either \ref run() or \ref init() must be called before |
| 723 | 723 |
/// using this function. |
| 724 | 724 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
| 725 | 725 |
|
| 726 | 726 |
/// \brief Returns the 'previous node' of the shortest path tree for |
| 727 | 727 |
/// the given node. |
| 728 | 728 |
/// |
| 729 | 729 |
/// This function returns the 'previous node' of the shortest path |
| 730 | 730 |
/// tree for node \c v, i.e. it returns the last but one node of |
| 731 | 731 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
| 732 | 732 |
/// is not reached from the root(s) or if \c v is a root. |
| 733 | 733 |
/// |
| 734 | 734 |
/// The shortest path tree used here is equal to the shortest path |
| 735 |
/// tree used in \ref predArc() and \predMap(). |
|
| 735 |
/// tree used in \ref predArc() and \ref predMap(). |
|
| 736 | 736 |
/// |
| 737 | 737 |
/// \pre Either \ref run() or \ref init() must be called before |
| 738 | 738 |
/// using this function. |
| 739 | 739 |
Node predNode(Node v) const {
|
| 740 | 740 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
| 741 | 741 |
} |
| 742 | 742 |
|
| 743 | 743 |
/// \brief Returns a const reference to the node map that stores the |
| 744 | 744 |
/// distances of the nodes. |
| 745 | 745 |
/// |
| 746 | 746 |
/// Returns a const reference to the node map that stores the distances |
| 747 | 747 |
/// of the nodes calculated by the algorithm. |
| 748 | 748 |
/// |
| 749 | 749 |
/// \pre Either \ref run() or \ref init() must be called before |
| 750 | 750 |
/// using this function. |
| 751 | 751 |
const DistMap &distMap() const { return *_dist;}
|
| 752 | 752 |
|
| 753 | 753 |
/// \brief Returns a const reference to the node map that stores the |
| 754 | 754 |
/// predecessor arcs. |
| 755 | 755 |
/// |
| 756 | 756 |
/// Returns a const reference to the node map that stores the predecessor |
| 757 | 757 |
/// arcs, which form the shortest path tree (forest). |
| 758 | 758 |
/// |
| 759 | 759 |
/// \pre Either \ref run() or \ref init() must be called before |
| 760 | 760 |
/// using this function. |
| 761 | 761 |
const PredMap &predMap() const { return *_pred; }
|
| 762 | 762 |
|
| 763 | 763 |
/// \brief Checks if a node is reached from the root(s). |
| 764 | 764 |
/// |
| 765 | 765 |
/// Returns \c true if \c v is reached from the root(s). |
| 766 | 766 |
/// |
| 767 | 767 |
/// \pre Either \ref run() or \ref init() must be called before |
| 768 | 768 |
/// using this function. |
| 769 | 769 |
bool reached(Node v) const {
|
| 770 | 770 |
return (*_dist)[v] != OperationTraits::infinity(); |
| 771 | 771 |
} |
| 772 | 772 |
|
| 773 | 773 |
/// \brief Gives back a negative cycle. |
| 774 | 774 |
/// |
| 775 | 775 |
/// This function gives back a directed cycle with negative total |
| 776 | 776 |
/// length if the algorithm has already found one. |
| 777 | 777 |
/// Otherwise it gives back an empty path. |
| 778 | 778 |
lemon::Path<Digraph> negativeCycle() {
|
| 779 | 779 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
| 780 | 780 |
lemon::Path<Digraph> cycle; |
| 781 | 781 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 782 | 782 |
if (state[_process[i]] != -1) continue; |
| 783 | 783 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
| 784 | 784 |
v = _gr->source((*_pred)[v])) {
|
| 785 | 785 |
if (state[v] == i) {
|
| 786 | 786 |
cycle.addFront((*_pred)[v]); |
| 787 | 787 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
| 788 | 788 |
u = _gr->source((*_pred)[u])) {
|
| 789 | 789 |
cycle.addFront((*_pred)[u]); |
| 790 | 790 |
} |
| 791 | 791 |
return cycle; |
| 792 | 792 |
} |
| 793 | 793 |
else if (state[v] >= 0) {
|
| 794 | 794 |
break; |
| 795 | 795 |
} |
| 796 | 796 |
state[v] = i; |
| 797 | 797 |
} |
| 798 | 798 |
} |
| 799 | 799 |
return cycle; |
| 800 | 800 |
} |
| 801 | 801 |
|
| 802 | 802 |
///@} |
| 803 | 803 |
}; |
| 804 | 804 |
|
| 805 | 805 |
/// \brief Default traits class of bellmanFord() function. |
| 806 | 806 |
/// |
| 807 | 807 |
/// Default traits class of bellmanFord() function. |
| 808 | 808 |
/// \tparam GR The type of the digraph. |
| 809 | 809 |
/// \tparam LEN The type of the length map. |
| 810 | 810 |
template <typename GR, typename LEN> |
| 811 | 811 |
struct BellmanFordWizardDefaultTraits {
|
| 812 | 812 |
/// The type of the digraph the algorithm runs on. |
| 813 | 813 |
typedef GR Digraph; |
| 814 | 814 |
|
| 815 | 815 |
/// \brief The type of the map that stores the arc lengths. |
| 816 | 816 |
/// |
| 817 | 817 |
/// The type of the map that stores the arc lengths. |
| 818 | 818 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 819 | 819 |
typedef LEN LengthMap; |
| 820 | 820 |
|
| 821 | 821 |
/// The type of the arc lengths. |
| 822 | 822 |
typedef typename LEN::Value Value; |
| 823 | 823 |
|
| 824 | 824 |
/// \brief Operation traits for Bellman-Ford algorithm. |
| 825 | 825 |
/// |
| 826 | 826 |
/// It defines the used operations and the infinity value for the |
| 827 | 827 |
/// given \c Value type. |
| 828 | 828 |
/// \see BellmanFordDefaultOperationTraits |
| 829 | 829 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
| 830 | 830 |
|
| 831 | 831 |
/// \brief The type of the map that stores the last |
| 832 | 832 |
/// arcs of the shortest paths. |
| 833 | 833 |
/// |
| 834 | 834 |
/// The type of the map that stores the last arcs of the shortest paths. |
| 835 | 835 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 836 | 836 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
| 837 | 837 |
|
| 838 | 838 |
/// \brief Instantiates a \c PredMap. |
| 839 | 839 |
/// |
| 840 | 840 |
/// This function instantiates a \ref PredMap. |
| 841 | 841 |
/// \param g is the digraph to which we would like to define the |
| 842 | 842 |
/// \ref PredMap. |
| 843 | 843 |
static PredMap *createPredMap(const GR &g) {
|
| 844 | 844 |
return new PredMap(g); |
| 845 | 845 |
} |
| 846 | 846 |
|
| 847 | 847 |
/// \brief The type of the map that stores the distances of the nodes. |
| 848 | 848 |
/// |
| 849 | 849 |
/// The type of the map that stores the distances of the nodes. |
| 850 | 850 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 851 | 851 |
typedef typename GR::template NodeMap<Value> DistMap; |
| 852 | 852 |
|
| 853 | 853 |
/// \brief Instantiates a \c DistMap. |
| 854 | 854 |
/// |
| 855 | 855 |
/// This function instantiates a \ref DistMap. |
| 856 | 856 |
/// \param g is the digraph to which we would like to define the |
| 857 | 857 |
/// \ref DistMap. |
| 858 | 858 |
static DistMap *createDistMap(const GR &g) {
|
| 859 | 859 |
return new DistMap(g); |
| 860 | 860 |
} |
| 861 | 861 |
|
| 862 | 862 |
///The type of the shortest paths. |
| 863 | 863 |
|
| 864 | 864 |
///The type of the shortest paths. |
| 865 | 865 |
///It must meet the \ref concepts::Path "Path" concept. |
| 866 | 866 |
typedef lemon::Path<Digraph> Path; |
| 867 | 867 |
}; |
| 868 | 868 |
|
| 869 | 869 |
/// \brief Default traits class used by BellmanFordWizard. |
| 870 | 870 |
/// |
| 871 | 871 |
/// Default traits class used by BellmanFordWizard. |
| 872 | 872 |
/// \tparam GR The type of the digraph. |
| 873 | 873 |
/// \tparam LEN The type of the length map. |
| 874 | 874 |
template <typename GR, typename LEN> |
| 875 | 875 |
class BellmanFordWizardBase |
| 876 | 876 |
: public BellmanFordWizardDefaultTraits<GR, LEN> {
|
| 877 | 877 |
|
| 878 | 878 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
| 879 | 879 |
protected: |
| 880 | 880 |
// Type of the nodes in the digraph. |
| 881 | 881 |
typedef typename Base::Digraph::Node Node; |
| 882 | 882 |
|
| 883 | 883 |
// Pointer to the underlying digraph. |
| 884 | 884 |
void *_graph; |
| 885 | 885 |
// Pointer to the length map |
| 886 | 886 |
void *_length; |
| 887 | 887 |
// Pointer to the map of predecessors arcs. |
| 888 | 888 |
void *_pred; |
| 889 | 889 |
// Pointer to the map of distances. |
| 890 | 890 |
void *_dist; |
| 891 | 891 |
//Pointer to the shortest path to the target node. |
| 892 | 892 |
void *_path; |
| 893 | 893 |
//Pointer to the distance of the target node. |
| 894 | 894 |
void *_di; |
| 895 | 895 |
|
| 896 | 896 |
public: |
| 897 | 897 |
/// Constructor. |
| 898 | 898 |
|
| 899 | 899 |
/// This constructor does not require parameters, it initiates |
| 900 | 900 |
/// all of the attributes to default values \c 0. |
| 901 | 901 |
BellmanFordWizardBase() : |
| 902 | 902 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 903 | 903 |
|
| 904 | 904 |
/// Constructor. |
| 905 | 905 |
|
| 906 | 906 |
/// This constructor requires two parameters, |
| 907 | 907 |
/// others are initiated to \c 0. |
| 908 | 908 |
/// \param gr The digraph the algorithm runs on. |
| 909 | 909 |
/// \param len The length map. |
| 910 | 910 |
BellmanFordWizardBase(const GR& gr, |
| 911 | 911 |
const LEN& len) : |
| 912 | 912 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
| 913 | 913 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
| 914 | 914 |
_pred(0), _dist(0), _path(0), _di(0) {}
|
| 915 | 915 |
|
| 916 | 916 |
}; |
| 917 | 917 |
|
| 918 | 918 |
/// \brief Auxiliary class for the function-type interface of the |
| 919 | 919 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
| 920 | 920 |
/// |
| 921 | 921 |
/// This auxiliary class is created to implement the |
| 922 | 922 |
/// \ref bellmanFord() "function-type interface" of the |
| 923 | 923 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
| 924 | 924 |
/// It does not have own \ref run() method, it uses the |
| 925 | 925 |
/// functions and features of the plain \ref BellmanFord. |
| 926 | 926 |
/// |
| 927 | 927 |
/// This class should only be used through the \ref bellmanFord() |
| 928 | 928 |
/// function, which makes it easier to use the algorithm. |
| 929 | 929 |
template<class TR> |
| 930 | 930 |
class BellmanFordWizard : public TR {
|
| 931 | 931 |
typedef TR Base; |
| 932 | 932 |
|
| 933 | 933 |
typedef typename TR::Digraph Digraph; |
| 934 | 934 |
|
| 935 | 935 |
typedef typename Digraph::Node Node; |
| 936 | 936 |
typedef typename Digraph::NodeIt NodeIt; |
| 937 | 937 |
typedef typename Digraph::Arc Arc; |
| 938 | 938 |
typedef typename Digraph::OutArcIt ArcIt; |
| 939 | 939 |
|
| 940 | 940 |
typedef typename TR::LengthMap LengthMap; |
| 941 | 941 |
typedef typename LengthMap::Value Value; |
| 942 | 942 |
typedef typename TR::PredMap PredMap; |
| 943 | 943 |
typedef typename TR::DistMap DistMap; |
| 944 | 944 |
typedef typename TR::Path Path; |
| 945 | 945 |
|
| 946 | 946 |
public: |
| 947 | 947 |
/// Constructor. |
| 948 | 948 |
BellmanFordWizard() : TR() {}
|
| 949 | 949 |
|
| 950 | 950 |
/// \brief Constructor that requires parameters. |
| 951 | 951 |
/// |
| 952 | 952 |
/// Constructor that requires parameters. |
| 953 | 953 |
/// These parameters will be the default values for the traits class. |
| 954 | 954 |
/// \param gr The digraph the algorithm runs on. |
| 955 | 955 |
/// \param len The length map. |
| 956 | 956 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
| 957 | 957 |
: TR(gr, len) {}
|
| 958 | 958 |
|
| 959 | 959 |
/// \brief Copy constructor |
| 960 | 960 |
BellmanFordWizard(const TR &b) : TR(b) {}
|
| 961 | 961 |
|
| 962 | 962 |
~BellmanFordWizard() {}
|
| 963 | 963 |
|
| 964 | 964 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
| 965 | 965 |
/// |
| 966 | 966 |
/// This method runs the Bellman-Ford algorithm from the given source |
| 967 | 967 |
/// node in order to compute the shortest path to each node. |
| 968 | 968 |
void run(Node s) {
|
| 969 | 969 |
BellmanFord<Digraph,LengthMap,TR> |
| 970 | 970 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
| 971 | 971 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 972 | 972 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 973 | 973 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 974 | 974 |
bf.run(s); |
| 975 | 975 |
} |
| 976 | 976 |
|
| 977 | 977 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
| 978 | 978 |
/// between \c s and \c t. |
| 979 | 979 |
/// |
| 980 | 980 |
/// This method runs the Bellman-Ford algorithm from node \c s |
| 981 | 981 |
/// in order to compute the shortest path to node \c t. |
| 982 | 982 |
/// Actually, it computes the shortest path to each node, but using |
| 983 | 983 |
/// this function you can retrieve the distance and the shortest path |
| 984 | 984 |
/// for a single target node easier. |
| 985 | 985 |
/// |
| 986 | 986 |
/// \return \c true if \c t is reachable form \c s. |
| 987 | 987 |
bool run(Node s, Node t) {
|
| 988 | 988 |
BellmanFord<Digraph,LengthMap,TR> |
| 989 | 989 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
| 990 | 990 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 991 | 991 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 992 | 992 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 993 | 993 |
bf.run(s); |
| 994 | 994 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
| 995 | 995 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
| 996 | 996 |
return bf.reached(t); |
| 997 | 997 |
} |
| 998 | 998 |
|
| 999 | 999 |
template<class T> |
| 1000 | 1000 |
struct SetPredMapBase : public Base {
|
| 1001 | 1001 |
typedef T PredMap; |
| 1002 | 1002 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1003 | 1003 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1004 | 1004 |
}; |
| 1005 | 1005 |
|
| 1006 | 1006 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1007 | 1007 |
/// the predecessor map. |
| 1008 | 1008 |
/// |
| 1009 | 1009 |
/// \ref named-templ-param "Named parameter" for setting |
| 1010 | 1010 |
/// the map that stores the predecessor arcs of the nodes. |
| 1011 | 1011 |
template<class T> |
| 1012 | 1012 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
|
| 1013 | 1013 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1014 | 1014 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
| 1015 | 1015 |
} |
| 1016 | 1016 |
|
| 1017 | 1017 |
template<class T> |
| 1018 | 1018 |
struct SetDistMapBase : public Base {
|
| 1019 | 1019 |
typedef T DistMap; |
| 1020 | 1020 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1021 | 1021 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1022 | 1022 |
}; |
| 1023 | 1023 |
|
| 1024 | 1024 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1025 | 1025 |
/// the distance map. |
| 1026 | 1026 |
/// |
| 1027 | 1027 |
/// \ref named-templ-param "Named parameter" for setting |
| 1028 | 1028 |
/// the map that stores the distances of the nodes calculated |
| 1029 | 1029 |
/// by the algorithm. |
| 1030 | 1030 |
template<class T> |
| 1031 | 1031 |
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
|
| 1032 | 1032 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1033 | 1033 |
return BellmanFordWizard<SetDistMapBase<T> >(*this); |
| 1034 | 1034 |
} |
| 1035 | 1035 |
|
| 1036 | 1036 |
template<class T> |
| 1037 | 1037 |
struct SetPathBase : public Base {
|
| 1038 | 1038 |
typedef T Path; |
| 1039 | 1039 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1040 | 1040 |
}; |
| 1041 | 1041 |
|
| 1042 | 1042 |
/// \brief \ref named-func-param "Named parameter" for getting |
| 1043 | 1043 |
/// the shortest path to the target node. |
| 1044 | 1044 |
/// |
| 1045 | 1045 |
/// \ref named-func-param "Named parameter" for getting |
| 1046 | 1046 |
/// the shortest path to the target node. |
| 1047 | 1047 |
template<class T> |
| 1048 | 1048 |
BellmanFordWizard<SetPathBase<T> > path(const T &t) |
| 1049 | 1049 |
{
|
| 1050 | 1050 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1051 | 1051 |
return BellmanFordWizard<SetPathBase<T> >(*this); |
| 1052 | 1052 |
} |
| 1053 | 1053 |
|
| 1054 | 1054 |
/// \brief \ref named-func-param "Named parameter" for getting |
| 1055 | 1055 |
/// the distance of the target node. |
| 1056 | 1056 |
/// |
| 1057 | 1057 |
/// \ref named-func-param "Named parameter" for getting |
| 1058 | 1058 |
/// the distance of the target node. |
| 1059 | 1059 |
BellmanFordWizard dist(const Value &d) |
| 1060 | 1060 |
{
|
| 1061 | 1061 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
| 1062 | 1062 |
return *this; |
| 1063 | 1063 |
} |
| 1064 | 1064 |
|
| 1065 | 1065 |
}; |
| 1066 | 1066 |
|
| 1067 | 1067 |
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
| 1068 | 1068 |
/// algorithm. |
| 1069 | 1069 |
/// |
| 1070 | 1070 |
/// \ingroup shortest_path |
| 1071 | 1071 |
/// Function type interface for the \ref BellmanFord "Bellman-Ford" |
| 1072 | 1072 |
/// algorithm. |
| 1073 | 1073 |
/// |
| 1074 | 1074 |
/// This function also has several \ref named-templ-func-param |
| 1075 | 1075 |
/// "named parameters", they are declared as the members of class |
| 1076 | 1076 |
/// \ref BellmanFordWizard. |
| 1077 | 1077 |
/// The following examples show how to use these parameters. |
| 1078 | 1078 |
/// \code |
| 1079 | 1079 |
/// // Compute shortest path from node s to each node |
| 1080 | 1080 |
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
| 1081 | 1081 |
/// |
| 1082 | 1082 |
/// // Compute shortest path from s to t |
| 1083 | 1083 |
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t); |
| 1084 | 1084 |
/// \endcode |
| 1085 | 1085 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
| 1086 | 1086 |
/// to the end of the parameter list. |
| 1087 | 1087 |
/// \sa BellmanFordWizard |
| 1088 | 1088 |
/// \sa BellmanFord |
| 1089 | 1089 |
template<typename GR, typename LEN> |
| 1090 | 1090 |
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> > |
| 1091 | 1091 |
bellmanFord(const GR& digraph, |
| 1092 | 1092 |
const LEN& length) |
| 1093 | 1093 |
{
|
| 1094 | 1094 |
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length); |
| 1095 | 1095 |
} |
| 1096 | 1096 |
|
| 1097 | 1097 |
} //END OF NAMESPACE LEMON |
| 1098 | 1098 |
|
| 1099 | 1099 |
#endif |
| 1100 | 1100 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BFS_H |
| 20 | 20 |
#define LEMON_BFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief BFS algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
#include <lemon/path.h> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
///Default traits class of Bfs class. |
| 36 | 36 |
|
| 37 | 37 |
///Default traits class of Bfs class. |
| 38 | 38 |
///\tparam GR Digraph type. |
| 39 | 39 |
template<class GR> |
| 40 | 40 |
struct BfsDefaultTraits |
| 41 | 41 |
{
|
| 42 | 42 |
///The type of the digraph the algorithm runs on. |
| 43 | 43 |
typedef GR Digraph; |
| 44 | 44 |
|
| 45 | 45 |
///\brief The type of the map that stores the predecessor |
| 46 | 46 |
///arcs of the shortest paths. |
| 47 | 47 |
/// |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the shortest paths. |
| 50 | 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \c PredMap. |
| 53 | 53 |
|
| 54 | 54 |
///This function instantiates a \ref PredMap. |
| 55 | 55 |
///\param g is the digraph, to which we would like to define the |
| 56 | 56 |
///\ref PredMap. |
| 57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
| 58 | 58 |
{
|
| 59 | 59 |
return new PredMap(g); |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 | 62 |
///The type of the map that indicates which nodes are processed. |
| 63 | 63 |
|
| 64 | 64 |
///The type of the map that indicates which nodes are processed. |
| 65 | 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 66 |
///By default it is a NullMap. |
|
| 66 |
///By default, it is a NullMap. |
|
| 67 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 68 | 68 |
///Instantiates a \c ProcessedMap. |
| 69 | 69 |
|
| 70 | 70 |
///This function instantiates a \ref ProcessedMap. |
| 71 | 71 |
///\param g is the digraph, to which |
| 72 | 72 |
///we would like to define the \ref ProcessedMap |
| 73 | 73 |
#ifdef DOXYGEN |
| 74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 75 | 75 |
#else |
| 76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 77 | 77 |
#endif |
| 78 | 78 |
{
|
| 79 | 79 |
return new ProcessedMap(); |
| 80 | 80 |
} |
| 81 | 81 |
|
| 82 | 82 |
///The type of the map that indicates which nodes are reached. |
| 83 | 83 |
|
| 84 | 84 |
///The type of the map that indicates which nodes are reached. |
| 85 | 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 86 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 87 | 87 |
///Instantiates a \c ReachedMap. |
| 88 | 88 |
|
| 89 | 89 |
///This function instantiates a \ref ReachedMap. |
| 90 | 90 |
///\param g is the digraph, to which |
| 91 | 91 |
///we would like to define the \ref ReachedMap. |
| 92 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 93 | 93 |
{
|
| 94 | 94 |
return new ReachedMap(g); |
| 95 | 95 |
} |
| 96 | 96 |
|
| 97 | 97 |
///The type of the map that stores the distances of the nodes. |
| 98 | 98 |
|
| 99 | 99 |
///The type of the map that stores the distances of the nodes. |
| 100 | 100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 101 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 102 | 102 |
///Instantiates a \c DistMap. |
| 103 | 103 |
|
| 104 | 104 |
///This function instantiates a \ref DistMap. |
| 105 | 105 |
///\param g is the digraph, to which we would like to define the |
| 106 | 106 |
///\ref DistMap. |
| 107 | 107 |
static DistMap *createDistMap(const Digraph &g) |
| 108 | 108 |
{
|
| 109 | 109 |
return new DistMap(g); |
| 110 | 110 |
} |
| 111 | 111 |
}; |
| 112 | 112 |
|
| 113 | 113 |
///%BFS algorithm class. |
| 114 | 114 |
|
| 115 | 115 |
///\ingroup search |
| 116 | 116 |
///This class provides an efficient implementation of the %BFS algorithm. |
| 117 | 117 |
/// |
| 118 | 118 |
///There is also a \ref bfs() "function-type interface" for the BFS |
| 119 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
| 120 | 120 |
///used easier. |
| 121 | 121 |
/// |
| 122 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 123 | 123 |
///The default type is \ref ListDigraph. |
| 124 | 124 |
#ifdef DOXYGEN |
| 125 | 125 |
template <typename GR, |
| 126 | 126 |
typename TR> |
| 127 | 127 |
#else |
| 128 | 128 |
template <typename GR=ListDigraph, |
| 129 | 129 |
typename TR=BfsDefaultTraits<GR> > |
| 130 | 130 |
#endif |
| 131 | 131 |
class Bfs {
|
| 132 | 132 |
public: |
| 133 | 133 |
|
| 134 | 134 |
///The type of the digraph the algorithm runs on. |
| 135 | 135 |
typedef typename TR::Digraph Digraph; |
| 136 | 136 |
|
| 137 | 137 |
///\brief The type of the map that stores the predecessor arcs of the |
| 138 | 138 |
///shortest paths. |
| 139 | 139 |
typedef typename TR::PredMap PredMap; |
| 140 | 140 |
///The type of the map that stores the distances of the nodes. |
| 141 | 141 |
typedef typename TR::DistMap DistMap; |
| 142 | 142 |
///The type of the map that indicates which nodes are reached. |
| 143 | 143 |
typedef typename TR::ReachedMap ReachedMap; |
| 144 | 144 |
///The type of the map that indicates which nodes are processed. |
| 145 | 145 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 146 | 146 |
///The type of the paths. |
| 147 | 147 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 148 | 148 |
|
| 149 | 149 |
///The \ref BfsDefaultTraits "traits class" of the algorithm. |
| 150 | 150 |
typedef TR Traits; |
| 151 | 151 |
|
| 152 | 152 |
private: |
| 153 | 153 |
|
| 154 | 154 |
typedef typename Digraph::Node Node; |
| 155 | 155 |
typedef typename Digraph::NodeIt NodeIt; |
| 156 | 156 |
typedef typename Digraph::Arc Arc; |
| 157 | 157 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 158 | 158 |
|
| 159 | 159 |
//Pointer to the underlying digraph. |
| 160 | 160 |
const Digraph *G; |
| 161 | 161 |
//Pointer to the map of predecessor arcs. |
| 162 | 162 |
PredMap *_pred; |
| 163 | 163 |
//Indicates if _pred is locally allocated (true) or not. |
| 164 | 164 |
bool local_pred; |
| 165 | 165 |
//Pointer to the map of distances. |
| 166 | 166 |
DistMap *_dist; |
| 167 | 167 |
//Indicates if _dist is locally allocated (true) or not. |
| 168 | 168 |
bool local_dist; |
| 169 | 169 |
//Pointer to the map of reached status of the nodes. |
| 170 | 170 |
ReachedMap *_reached; |
| 171 | 171 |
//Indicates if _reached is locally allocated (true) or not. |
| 172 | 172 |
bool local_reached; |
| 173 | 173 |
//Pointer to the map of processed status of the nodes. |
| 174 | 174 |
ProcessedMap *_processed; |
| 175 | 175 |
//Indicates if _processed is locally allocated (true) or not. |
| 176 | 176 |
bool local_processed; |
| 177 | 177 |
|
| 178 | 178 |
std::vector<typename Digraph::Node> _queue; |
| 179 | 179 |
int _queue_head,_queue_tail,_queue_next_dist; |
| 180 | 180 |
int _curr_dist; |
| 181 | 181 |
|
| 182 | 182 |
//Creates the maps if necessary. |
| 183 | 183 |
void create_maps() |
| 184 | 184 |
{
|
| 185 | 185 |
if(!_pred) {
|
| 186 | 186 |
local_pred = true; |
| 187 | 187 |
_pred = Traits::createPredMap(*G); |
| 188 | 188 |
} |
| 189 | 189 |
if(!_dist) {
|
| 190 | 190 |
local_dist = true; |
| 191 | 191 |
_dist = Traits::createDistMap(*G); |
| 192 | 192 |
} |
| 193 | 193 |
if(!_reached) {
|
| 194 | 194 |
local_reached = true; |
| 195 | 195 |
_reached = Traits::createReachedMap(*G); |
| 196 | 196 |
} |
| 197 | 197 |
if(!_processed) {
|
| 198 | 198 |
local_processed = true; |
| 199 | 199 |
_processed = Traits::createProcessedMap(*G); |
| 200 | 200 |
} |
| 201 | 201 |
} |
| 202 | 202 |
|
| 203 | 203 |
protected: |
| 204 | 204 |
|
| 205 | 205 |
Bfs() {}
|
| 206 | 206 |
|
| 207 | 207 |
public: |
| 208 | 208 |
|
| 209 | 209 |
typedef Bfs Create; |
| 210 | 210 |
|
| 211 | 211 |
///\name Named Template Parameters |
| 212 | 212 |
|
| 213 | 213 |
///@{
|
| 214 | 214 |
|
| 215 | 215 |
template <class T> |
| 216 | 216 |
struct SetPredMapTraits : public Traits {
|
| 217 | 217 |
typedef T PredMap; |
| 218 | 218 |
static PredMap *createPredMap(const Digraph &) |
| 219 | 219 |
{
|
| 220 | 220 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 221 | 221 |
return 0; // ignore warnings |
| 222 | 222 |
} |
| 223 | 223 |
}; |
| 224 | 224 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 225 | 225 |
///\c PredMap type. |
| 226 | 226 |
/// |
| 227 | 227 |
///\ref named-templ-param "Named parameter" for setting |
| 228 | 228 |
///\c PredMap type. |
| 229 | 229 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 230 | 230 |
template <class T> |
| 231 | 231 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
|
| 232 | 232 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
| 233 | 233 |
}; |
| 234 | 234 |
|
| 235 | 235 |
template <class T> |
| 236 | 236 |
struct SetDistMapTraits : public Traits {
|
| 237 | 237 |
typedef T DistMap; |
| 238 | 238 |
static DistMap *createDistMap(const Digraph &) |
| 239 | 239 |
{
|
| 240 | 240 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 241 | 241 |
return 0; // ignore warnings |
| 242 | 242 |
} |
| 243 | 243 |
}; |
| 244 | 244 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 245 | 245 |
///\c DistMap type. |
| 246 | 246 |
/// |
| 247 | 247 |
///\ref named-templ-param "Named parameter" for setting |
| 248 | 248 |
///\c DistMap type. |
| 249 | 249 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 250 | 250 |
template <class T> |
| 251 | 251 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
|
| 252 | 252 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
| 253 | 253 |
}; |
| 254 | 254 |
|
| 255 | 255 |
template <class T> |
| 256 | 256 |
struct SetReachedMapTraits : public Traits {
|
| 257 | 257 |
typedef T ReachedMap; |
| 258 | 258 |
static ReachedMap *createReachedMap(const Digraph &) |
| 259 | 259 |
{
|
| 260 | 260 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 261 | 261 |
return 0; // ignore warnings |
| 262 | 262 |
} |
| 263 | 263 |
}; |
| 264 | 264 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 265 | 265 |
///\c ReachedMap type. |
| 266 | 266 |
/// |
| 267 | 267 |
///\ref named-templ-param "Named parameter" for setting |
| 268 | 268 |
///\c ReachedMap type. |
| 269 | 269 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 270 | 270 |
template <class T> |
| 271 | 271 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
|
| 272 | 272 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
| 273 | 273 |
}; |
| 274 | 274 |
|
| 275 | 275 |
template <class T> |
| 276 | 276 |
struct SetProcessedMapTraits : public Traits {
|
| 277 | 277 |
typedef T ProcessedMap; |
| 278 | 278 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 279 | 279 |
{
|
| 280 | 280 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
| 281 | 281 |
return 0; // ignore warnings |
| 282 | 282 |
} |
| 283 | 283 |
}; |
| 284 | 284 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 285 | 285 |
///\c ProcessedMap type. |
| 286 | 286 |
/// |
| 287 | 287 |
///\ref named-templ-param "Named parameter" for setting |
| 288 | 288 |
///\c ProcessedMap type. |
| 289 | 289 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 290 | 290 |
template <class T> |
| 291 | 291 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
|
| 292 | 292 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 293 | 293 |
}; |
| 294 | 294 |
|
| 295 | 295 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 296 | 296 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 297 | 297 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 298 | 298 |
{
|
| 299 | 299 |
return new ProcessedMap(g); |
| 300 | 300 |
return 0; // ignore warnings |
| 301 | 301 |
} |
| 302 | 302 |
}; |
| 303 | 303 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 304 | 304 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 305 | 305 |
/// |
| 306 | 306 |
///\ref named-templ-param "Named parameter" for setting |
| 307 | 307 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 308 | 308 |
///If you don't set it explicitly, it will be automatically allocated. |
| 309 | 309 |
struct SetStandardProcessedMap : |
| 310 | 310 |
public Bfs< Digraph, SetStandardProcessedMapTraits > {
|
| 311 | 311 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
| 312 | 312 |
}; |
| 313 | 313 |
|
| 314 | 314 |
///@} |
| 315 | 315 |
|
| 316 | 316 |
public: |
| 317 | 317 |
|
| 318 | 318 |
///Constructor. |
| 319 | 319 |
|
| 320 | 320 |
///Constructor. |
| 321 | 321 |
///\param g The digraph the algorithm runs on. |
| 322 | 322 |
Bfs(const Digraph &g) : |
| 323 | 323 |
G(&g), |
| 324 | 324 |
_pred(NULL), local_pred(false), |
| 325 | 325 |
_dist(NULL), local_dist(false), |
| 326 | 326 |
_reached(NULL), local_reached(false), |
| 327 | 327 |
_processed(NULL), local_processed(false) |
| 328 | 328 |
{ }
|
| 329 | 329 |
|
| 330 | 330 |
///Destructor. |
| 331 | 331 |
~Bfs() |
| 332 | 332 |
{
|
| 333 | 333 |
if(local_pred) delete _pred; |
| 334 | 334 |
if(local_dist) delete _dist; |
| 335 | 335 |
if(local_reached) delete _reached; |
| 336 | 336 |
if(local_processed) delete _processed; |
| 337 | 337 |
} |
| 338 | 338 |
|
| 339 | 339 |
///Sets the map that stores the predecessor arcs. |
| 340 | 340 |
|
| 341 | 341 |
///Sets the map that stores the predecessor arcs. |
| 342 | 342 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 343 | 343 |
///or \ref init(), an instance will be allocated automatically. |
| 344 | 344 |
///The destructor deallocates this automatically allocated map, |
| 345 | 345 |
///of course. |
| 346 | 346 |
///\return <tt> (*this) </tt> |
| 347 | 347 |
Bfs &predMap(PredMap &m) |
| 348 | 348 |
{
|
| 349 | 349 |
if(local_pred) {
|
| 350 | 350 |
delete _pred; |
| 351 | 351 |
local_pred=false; |
| 352 | 352 |
} |
| 353 | 353 |
_pred = &m; |
| 354 | 354 |
return *this; |
| 355 | 355 |
} |
| 356 | 356 |
|
| 357 | 357 |
///Sets the map that indicates which nodes are reached. |
| 358 | 358 |
|
| 359 | 359 |
///Sets the map that indicates which nodes are reached. |
| 360 | 360 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 361 | 361 |
///or \ref init(), an instance will be allocated automatically. |
| 362 | 362 |
///The destructor deallocates this automatically allocated map, |
| 363 | 363 |
///of course. |
| 364 | 364 |
///\return <tt> (*this) </tt> |
| 365 | 365 |
Bfs &reachedMap(ReachedMap &m) |
| 366 | 366 |
{
|
| 367 | 367 |
if(local_reached) {
|
| 368 | 368 |
delete _reached; |
| 369 | 369 |
local_reached=false; |
| 370 | 370 |
} |
| 371 | 371 |
_reached = &m; |
| 372 | 372 |
return *this; |
| 373 | 373 |
} |
| 374 | 374 |
|
| 375 | 375 |
///Sets the map that indicates which nodes are processed. |
| 376 | 376 |
|
| 377 | 377 |
///Sets the map that indicates which nodes are processed. |
| 378 | 378 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 379 | 379 |
///or \ref init(), an instance will be allocated automatically. |
| 380 | 380 |
///The destructor deallocates this automatically allocated map, |
| 381 | 381 |
///of course. |
| 382 | 382 |
///\return <tt> (*this) </tt> |
| 383 | 383 |
Bfs &processedMap(ProcessedMap &m) |
| 384 | 384 |
{
|
| 385 | 385 |
if(local_processed) {
|
| 386 | 386 |
delete _processed; |
| 387 | 387 |
local_processed=false; |
| 388 | 388 |
} |
| 389 | 389 |
_processed = &m; |
| 390 | 390 |
return *this; |
| 391 | 391 |
} |
| 392 | 392 |
|
| 393 | 393 |
///Sets the map that stores the distances of the nodes. |
| 394 | 394 |
|
| 395 | 395 |
///Sets the map that stores the distances of the nodes calculated by |
| 396 | 396 |
///the algorithm. |
| 397 | 397 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 398 | 398 |
///or \ref init(), an instance will be allocated automatically. |
| 399 | 399 |
///The destructor deallocates this automatically allocated map, |
| 400 | 400 |
///of course. |
| 401 | 401 |
///\return <tt> (*this) </tt> |
| 402 | 402 |
Bfs &distMap(DistMap &m) |
| 403 | 403 |
{
|
| 404 | 404 |
if(local_dist) {
|
| 405 | 405 |
delete _dist; |
| 406 | 406 |
local_dist=false; |
| 407 | 407 |
} |
| 408 | 408 |
_dist = &m; |
| 409 | 409 |
return *this; |
| 410 | 410 |
} |
| 411 | 411 |
|
| 412 | 412 |
public: |
| 413 | 413 |
|
| 414 | 414 |
///\name Execution Control |
| 415 | 415 |
///The simplest way to execute the BFS algorithm is to use one of the |
| 416 | 416 |
///member functions called \ref run(Node) "run()".\n |
| 417 | 417 |
///If you need better control on the execution, you have to call |
| 418 | 418 |
///\ref init() first, then you can add several source nodes with |
| 419 | 419 |
///\ref addSource(). Finally the actual path computation can be |
| 420 | 420 |
///performed with one of the \ref start() functions. |
| 421 | 421 |
|
| 422 | 422 |
///@{
|
| 423 | 423 |
|
| 424 | 424 |
///\brief Initializes the internal data structures. |
| 425 | 425 |
/// |
| 426 | 426 |
///Initializes the internal data structures. |
| 427 | 427 |
void init() |
| 428 | 428 |
{
|
| 429 | 429 |
create_maps(); |
| 430 | 430 |
_queue.resize(countNodes(*G)); |
| 431 | 431 |
_queue_head=_queue_tail=0; |
| 432 | 432 |
_curr_dist=1; |
| 433 | 433 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 434 | 434 |
_pred->set(u,INVALID); |
| 435 | 435 |
_reached->set(u,false); |
| 436 | 436 |
_processed->set(u,false); |
| 437 | 437 |
} |
| 438 | 438 |
} |
| 439 | 439 |
|
| 440 | 440 |
///Adds a new source node. |
| 441 | 441 |
|
| 442 | 442 |
///Adds a new source node to the set of nodes to be processed. |
| 443 | 443 |
/// |
| 444 | 444 |
void addSource(Node s) |
| 445 | 445 |
{
|
| 446 | 446 |
if(!(*_reached)[s]) |
| 447 | 447 |
{
|
| 448 | 448 |
_reached->set(s,true); |
| 449 | 449 |
_pred->set(s,INVALID); |
| 450 | 450 |
_dist->set(s,0); |
| 451 | 451 |
_queue[_queue_head++]=s; |
| 452 | 452 |
_queue_next_dist=_queue_head; |
| 453 | 453 |
} |
| 454 | 454 |
} |
| 455 | 455 |
|
| 456 | 456 |
///Processes the next node. |
| 457 | 457 |
|
| 458 | 458 |
///Processes the next node. |
| 459 | 459 |
/// |
| 460 | 460 |
///\return The processed node. |
| 461 | 461 |
/// |
| 462 | 462 |
///\pre The queue must not be empty. |
| 463 | 463 |
Node processNextNode() |
| 464 | 464 |
{
|
| 465 | 465 |
if(_queue_tail==_queue_next_dist) {
|
| 466 | 466 |
_curr_dist++; |
| 467 | 467 |
_queue_next_dist=_queue_head; |
| 468 | 468 |
} |
| 469 | 469 |
Node n=_queue[_queue_tail++]; |
| 470 | 470 |
_processed->set(n,true); |
| 471 | 471 |
Node m; |
| 472 | 472 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 473 | 473 |
if(!(*_reached)[m=G->target(e)]) {
|
| 474 | 474 |
_queue[_queue_head++]=m; |
| 475 | 475 |
_reached->set(m,true); |
| 476 | 476 |
_pred->set(m,e); |
| 477 | 477 |
_dist->set(m,_curr_dist); |
| 478 | 478 |
} |
| 479 | 479 |
return n; |
| 480 | 480 |
} |
| 481 | 481 |
|
| 482 | 482 |
///Processes the next node. |
| 483 | 483 |
|
| 484 | 484 |
///Processes the next node and checks if the given target node |
| 485 | 485 |
///is reached. If the target node is reachable from the processed |
| 486 | 486 |
///node, then the \c reach parameter will be set to \c true. |
| 487 | 487 |
/// |
| 488 | 488 |
///\param target The target node. |
| 489 | 489 |
///\retval reach Indicates if the target node is reached. |
| 490 | 490 |
///It should be initially \c false. |
| 491 | 491 |
/// |
| 492 | 492 |
///\return The processed node. |
| 493 | 493 |
/// |
| 494 | 494 |
///\pre The queue must not be empty. |
| 495 | 495 |
Node processNextNode(Node target, bool& reach) |
| 496 | 496 |
{
|
| 497 | 497 |
if(_queue_tail==_queue_next_dist) {
|
| 498 | 498 |
_curr_dist++; |
| 499 | 499 |
_queue_next_dist=_queue_head; |
| 500 | 500 |
} |
| 501 | 501 |
Node n=_queue[_queue_tail++]; |
| 502 | 502 |
_processed->set(n,true); |
| 503 | 503 |
Node m; |
| 504 | 504 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 505 | 505 |
if(!(*_reached)[m=G->target(e)]) {
|
| 506 | 506 |
_queue[_queue_head++]=m; |
| 507 | 507 |
_reached->set(m,true); |
| 508 | 508 |
_pred->set(m,e); |
| 509 | 509 |
_dist->set(m,_curr_dist); |
| 510 | 510 |
reach = reach || (target == m); |
| 511 | 511 |
} |
| 512 | 512 |
return n; |
| 513 | 513 |
} |
| 514 | 514 |
|
| 515 | 515 |
///Processes the next node. |
| 516 | 516 |
|
| 517 | 517 |
///Processes the next node and checks if at least one of reached |
| 518 | 518 |
///nodes has \c true value in the \c nm node map. If one node |
| 519 | 519 |
///with \c true value is reachable from the processed node, then the |
| 520 | 520 |
///\c rnode parameter will be set to the first of such nodes. |
| 521 | 521 |
/// |
| 522 | 522 |
///\param nm A \c bool (or convertible) node map that indicates the |
| 523 | 523 |
///possible targets. |
| 524 | 524 |
///\retval rnode The reached target node. |
| 525 | 525 |
///It should be initially \c INVALID. |
| 526 | 526 |
/// |
| 527 | 527 |
///\return The processed node. |
| 528 | 528 |
/// |
| 529 | 529 |
///\pre The queue must not be empty. |
| 530 | 530 |
template<class NM> |
| 531 | 531 |
Node processNextNode(const NM& nm, Node& rnode) |
| 532 | 532 |
{
|
| 533 | 533 |
if(_queue_tail==_queue_next_dist) {
|
| 534 | 534 |
_curr_dist++; |
| 535 | 535 |
_queue_next_dist=_queue_head; |
| 536 | 536 |
} |
| 537 | 537 |
Node n=_queue[_queue_tail++]; |
| 538 | 538 |
_processed->set(n,true); |
| 539 | 539 |
Node m; |
| 540 | 540 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 541 | 541 |
if(!(*_reached)[m=G->target(e)]) {
|
| 542 | 542 |
_queue[_queue_head++]=m; |
| 543 | 543 |
_reached->set(m,true); |
| 544 | 544 |
_pred->set(m,e); |
| 545 | 545 |
_dist->set(m,_curr_dist); |
| 546 | 546 |
if (nm[m] && rnode == INVALID) rnode = m; |
| 547 | 547 |
} |
| 548 | 548 |
return n; |
| 549 | 549 |
} |
| 550 | 550 |
|
| 551 | 551 |
///The next node to be processed. |
| 552 | 552 |
|
| 553 | 553 |
///Returns the next node to be processed or \c INVALID if the queue |
| 554 | 554 |
///is empty. |
| 555 | 555 |
Node nextNode() const |
| 556 | 556 |
{
|
| 557 | 557 |
return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
| 558 | 558 |
} |
| 559 | 559 |
|
| 560 | 560 |
///Returns \c false if there are nodes to be processed. |
| 561 | 561 |
|
| 562 | 562 |
///Returns \c false if there are nodes to be processed |
| 563 | 563 |
///in the queue. |
| 564 | 564 |
bool emptyQueue() const { return _queue_tail==_queue_head; }
|
| 565 | 565 |
|
| 566 | 566 |
///Returns the number of the nodes to be processed. |
| 567 | 567 |
|
| 568 | 568 |
///Returns the number of the nodes to be processed |
| 569 | 569 |
///in the queue. |
| 570 | 570 |
int queueSize() const { return _queue_head-_queue_tail; }
|
| 571 | 571 |
|
| 572 | 572 |
///Executes the algorithm. |
| 573 | 573 |
|
| 574 | 574 |
///Executes the algorithm. |
| 575 | 575 |
/// |
| 576 | 576 |
///This method runs the %BFS algorithm from the root node(s) |
| 577 | 577 |
///in order to compute the shortest path to each node. |
| 578 | 578 |
/// |
| 579 | 579 |
///The algorithm computes |
| 580 | 580 |
///- the shortest path tree (forest), |
| 581 | 581 |
///- the distance of each node from the root(s). |
| 582 | 582 |
/// |
| 583 | 583 |
///\pre init() must be called and at least one root node should be |
| 584 | 584 |
///added with addSource() before using this function. |
| 585 | 585 |
/// |
| 586 | 586 |
///\note <tt>b.start()</tt> is just a shortcut of the following code. |
| 587 | 587 |
///\code |
| 588 | 588 |
/// while ( !b.emptyQueue() ) {
|
| 589 | 589 |
/// b.processNextNode(); |
| 590 | 590 |
/// } |
| 591 | 591 |
///\endcode |
| 592 | 592 |
void start() |
| 593 | 593 |
{
|
| 594 | 594 |
while ( !emptyQueue() ) processNextNode(); |
| 595 | 595 |
} |
| 596 | 596 |
|
| 597 | 597 |
///Executes the algorithm until the given target node is reached. |
| 598 | 598 |
|
| 599 | 599 |
///Executes the algorithm until the given target node is reached. |
| 600 | 600 |
/// |
| 601 | 601 |
///This method runs the %BFS algorithm from the root node(s) |
| 602 | 602 |
///in order to compute the shortest path to \c t. |
| 603 | 603 |
/// |
| 604 | 604 |
///The algorithm computes |
| 605 | 605 |
///- the shortest path to \c t, |
| 606 | 606 |
///- the distance of \c t from the root(s). |
| 607 | 607 |
/// |
| 608 | 608 |
///\pre init() must be called and at least one root node should be |
| 609 | 609 |
///added with addSource() before using this function. |
| 610 | 610 |
/// |
| 611 | 611 |
///\note <tt>b.start(t)</tt> is just a shortcut of the following code. |
| 612 | 612 |
///\code |
| 613 | 613 |
/// bool reach = false; |
| 614 | 614 |
/// while ( !b.emptyQueue() && !reach ) {
|
| 615 | 615 |
/// b.processNextNode(t, reach); |
| 616 | 616 |
/// } |
| 617 | 617 |
///\endcode |
| 618 | 618 |
void start(Node t) |
| 619 | 619 |
{
|
| 620 | 620 |
bool reach = false; |
| 621 | 621 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
| 622 | 622 |
} |
| 623 | 623 |
|
| 624 | 624 |
///Executes the algorithm until a condition is met. |
| 625 | 625 |
|
| 626 | 626 |
///Executes the algorithm until a condition is met. |
| 627 | 627 |
/// |
| 628 | 628 |
///This method runs the %BFS algorithm from the root node(s) in |
| 629 | 629 |
///order to compute the shortest path to a node \c v with |
| 630 | 630 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 631 | 631 |
/// |
| 632 | 632 |
///\param nm A \c bool (or convertible) node map. The algorithm |
| 633 | 633 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
| 634 | 634 |
/// |
| 635 | 635 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
| 636 | 636 |
///\c INVALID if no such node was found. |
| 637 | 637 |
/// |
| 638 | 638 |
///\pre init() must be called and at least one root node should be |
| 639 | 639 |
///added with addSource() before using this function. |
| 640 | 640 |
/// |
| 641 | 641 |
///\note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
| 642 | 642 |
///\code |
| 643 | 643 |
/// Node rnode = INVALID; |
| 644 | 644 |
/// while ( !b.emptyQueue() && rnode == INVALID ) {
|
| 645 | 645 |
/// b.processNextNode(nm, rnode); |
| 646 | 646 |
/// } |
| 647 | 647 |
/// return rnode; |
| 648 | 648 |
///\endcode |
| 649 | 649 |
template<class NodeBoolMap> |
| 650 | 650 |
Node start(const NodeBoolMap &nm) |
| 651 | 651 |
{
|
| 652 | 652 |
Node rnode = INVALID; |
| 653 | 653 |
while ( !emptyQueue() && rnode == INVALID ) {
|
| 654 | 654 |
processNextNode(nm, rnode); |
| 655 | 655 |
} |
| 656 | 656 |
return rnode; |
| 657 | 657 |
} |
| 658 | 658 |
|
| 659 | 659 |
///Runs the algorithm from the given source node. |
| 660 | 660 |
|
| 661 | 661 |
///This method runs the %BFS algorithm from node \c s |
| 662 | 662 |
///in order to compute the shortest path to each node. |
| 663 | 663 |
/// |
| 664 | 664 |
///The algorithm computes |
| 665 | 665 |
///- the shortest path tree, |
| 666 | 666 |
///- the distance of each node from the root. |
| 667 | 667 |
/// |
| 668 | 668 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 669 | 669 |
///\code |
| 670 | 670 |
/// b.init(); |
| 671 | 671 |
/// b.addSource(s); |
| 672 | 672 |
/// b.start(); |
| 673 | 673 |
///\endcode |
| 674 | 674 |
void run(Node s) {
|
| 675 | 675 |
init(); |
| 676 | 676 |
addSource(s); |
| 677 | 677 |
start(); |
| 678 | 678 |
} |
| 679 | 679 |
|
| 680 | 680 |
///Finds the shortest path between \c s and \c t. |
| 681 | 681 |
|
| 682 | 682 |
///This method runs the %BFS algorithm from node \c s |
| 683 | 683 |
///in order to compute the shortest path to node \c t |
| 684 | 684 |
///(it stops searching when \c t is processed). |
| 685 | 685 |
/// |
| 686 | 686 |
///\return \c true if \c t is reachable form \c s. |
| 687 | 687 |
/// |
| 688 | 688 |
///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
| 689 | 689 |
///shortcut of the following code. |
| 690 | 690 |
///\code |
| 691 | 691 |
/// b.init(); |
| 692 | 692 |
/// b.addSource(s); |
| 693 | 693 |
/// b.start(t); |
| 694 | 694 |
///\endcode |
| 695 | 695 |
bool run(Node s,Node t) {
|
| 696 | 696 |
init(); |
| 697 | 697 |
addSource(s); |
| 698 | 698 |
start(t); |
| 699 | 699 |
return reached(t); |
| 700 | 700 |
} |
| 701 | 701 |
|
| 702 | 702 |
///Runs the algorithm to visit all nodes in the digraph. |
| 703 | 703 |
|
| 704 | 704 |
///This method runs the %BFS algorithm in order to |
| 705 | 705 |
///compute the shortest path to each node. |
| 706 | 706 |
/// |
| 707 | 707 |
///The algorithm computes |
| 708 | 708 |
///- the shortest path tree (forest), |
| 709 | 709 |
///- the distance of each node from the root(s). |
| 710 | 710 |
/// |
| 711 | 711 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 712 | 712 |
///\code |
| 713 | 713 |
/// b.init(); |
| 714 | 714 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 715 | 715 |
/// if (!b.reached(n)) {
|
| 716 | 716 |
/// b.addSource(n); |
| 717 | 717 |
/// b.start(); |
| 718 | 718 |
/// } |
| 719 | 719 |
/// } |
| 720 | 720 |
///\endcode |
| 721 | 721 |
void run() {
|
| 722 | 722 |
init(); |
| 723 | 723 |
for (NodeIt n(*G); n != INVALID; ++n) {
|
| 724 | 724 |
if (!reached(n)) {
|
| 725 | 725 |
addSource(n); |
| 726 | 726 |
start(); |
| 727 | 727 |
} |
| 728 | 728 |
} |
| 729 | 729 |
} |
| 730 | 730 |
|
| 731 | 731 |
///@} |
| 732 | 732 |
|
| 733 | 733 |
///\name Query Functions |
| 734 | 734 |
///The results of the BFS algorithm can be obtained using these |
| 735 | 735 |
///functions.\n |
| 736 | 736 |
///Either \ref run(Node) "run()" or \ref start() should be called |
| 737 | 737 |
///before using them. |
| 738 | 738 |
|
| 739 | 739 |
///@{
|
| 740 | 740 |
|
| 741 | 741 |
///The shortest path to the given node. |
| 742 | 742 |
|
| 743 | 743 |
///Returns the shortest path to the given node from the root(s). |
| 744 | 744 |
/// |
| 745 | 745 |
///\warning \c t should be reached from the root(s). |
| 746 | 746 |
/// |
| 747 | 747 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 748 | 748 |
///must be called before using this function. |
| 749 | 749 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 750 | 750 |
|
| 751 | 751 |
///The distance of the given node from the root(s). |
| 752 | 752 |
|
| 753 | 753 |
///Returns the distance of the given node from the root(s). |
| 754 | 754 |
/// |
| 755 | 755 |
///\warning If node \c v is not reached from the root(s), then |
| 756 | 756 |
///the return value of this function is undefined. |
| 757 | 757 |
/// |
| 758 | 758 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 759 | 759 |
///must be called before using this function. |
| 760 | 760 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 761 | 761 |
|
| 762 | 762 |
///\brief Returns the 'previous arc' of the shortest path tree for |
| 763 | 763 |
///the given node. |
| 764 | 764 |
/// |
| 765 | 765 |
///This function returns the 'previous arc' of the shortest path |
| 766 | 766 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 767 | 767 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
| 768 | 768 |
///is not reached from the root(s) or if \c v is a root. |
| 769 | 769 |
/// |
| 770 | 770 |
///The shortest path tree used here is equal to the shortest path |
| 771 | 771 |
///tree used in \ref predNode() and \ref predMap(). |
| 772 | 772 |
/// |
| 773 | 773 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 774 | 774 |
///must be called before using this function. |
| 775 | 775 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 776 | 776 |
|
| 777 | 777 |
///\brief Returns the 'previous node' of the shortest path tree for |
| 778 | 778 |
///the given node. |
| 779 | 779 |
/// |
| 780 | 780 |
///This function returns the 'previous node' of the shortest path |
| 781 | 781 |
///tree for the node \c v, i.e. it returns the last but one node |
| 782 | 782 |
///of a shortest path from a root to \c v. It is \c INVALID |
| 783 | 783 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 784 | 784 |
/// |
| 785 | 785 |
///The shortest path tree used here is equal to the shortest path |
| 786 | 786 |
///tree used in \ref predArc() and \ref predMap(). |
| 787 | 787 |
/// |
| 788 | 788 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 789 | 789 |
///must be called before using this function. |
| 790 | 790 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 791 | 791 |
G->source((*_pred)[v]); } |
| 792 | 792 |
|
| 793 | 793 |
///\brief Returns a const reference to the node map that stores the |
| 794 | 794 |
/// distances of the nodes. |
| 795 | 795 |
/// |
| 796 | 796 |
///Returns a const reference to the node map that stores the distances |
| 797 | 797 |
///of the nodes calculated by the algorithm. |
| 798 | 798 |
/// |
| 799 | 799 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 800 | 800 |
///must be called before using this function. |
| 801 | 801 |
const DistMap &distMap() const { return *_dist;}
|
| 802 | 802 |
|
| 803 | 803 |
///\brief Returns a const reference to the node map that stores the |
| 804 | 804 |
///predecessor arcs. |
| 805 | 805 |
/// |
| 806 | 806 |
///Returns a const reference to the node map that stores the predecessor |
| 807 | 807 |
///arcs, which form the shortest path tree (forest). |
| 808 | 808 |
/// |
| 809 | 809 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 810 | 810 |
///must be called before using this function. |
| 811 | 811 |
const PredMap &predMap() const { return *_pred;}
|
| 812 | 812 |
|
| 813 | 813 |
///Checks if the given node is reached from the root(s). |
| 814 | 814 |
|
| 815 | 815 |
///Returns \c true if \c v is reached from the root(s). |
| 816 | 816 |
/// |
| 817 | 817 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 818 | 818 |
///must be called before using this function. |
| 819 | 819 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 820 | 820 |
|
| 821 | 821 |
///@} |
| 822 | 822 |
}; |
| 823 | 823 |
|
| 824 | 824 |
///Default traits class of bfs() function. |
| 825 | 825 |
|
| 826 | 826 |
///Default traits class of bfs() function. |
| 827 | 827 |
///\tparam GR Digraph type. |
| 828 | 828 |
template<class GR> |
| 829 | 829 |
struct BfsWizardDefaultTraits |
| 830 | 830 |
{
|
| 831 | 831 |
///The type of the digraph the algorithm runs on. |
| 832 | 832 |
typedef GR Digraph; |
| 833 | 833 |
|
| 834 | 834 |
///\brief The type of the map that stores the predecessor |
| 835 | 835 |
///arcs of the shortest paths. |
| 836 | 836 |
/// |
| 837 | 837 |
///The type of the map that stores the predecessor |
| 838 | 838 |
///arcs of the shortest paths. |
| 839 | 839 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 840 | 840 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 841 | 841 |
///Instantiates a PredMap. |
| 842 | 842 |
|
| 843 | 843 |
///This function instantiates a PredMap. |
| 844 | 844 |
///\param g is the digraph, to which we would like to define the |
| 845 | 845 |
///PredMap. |
| 846 | 846 |
static PredMap *createPredMap(const Digraph &g) |
| 847 | 847 |
{
|
| 848 | 848 |
return new PredMap(g); |
| 849 | 849 |
} |
| 850 | 850 |
|
| 851 | 851 |
///The type of the map that indicates which nodes are processed. |
| 852 | 852 |
|
| 853 | 853 |
///The type of the map that indicates which nodes are processed. |
| 854 | 854 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 855 |
///By default it is a NullMap. |
|
| 855 |
///By default, it is a NullMap. |
|
| 856 | 856 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 857 | 857 |
///Instantiates a ProcessedMap. |
| 858 | 858 |
|
| 859 | 859 |
///This function instantiates a ProcessedMap. |
| 860 | 860 |
///\param g is the digraph, to which |
| 861 | 861 |
///we would like to define the ProcessedMap. |
| 862 | 862 |
#ifdef DOXYGEN |
| 863 | 863 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 864 | 864 |
#else |
| 865 | 865 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 866 | 866 |
#endif |
| 867 | 867 |
{
|
| 868 | 868 |
return new ProcessedMap(); |
| 869 | 869 |
} |
| 870 | 870 |
|
| 871 | 871 |
///The type of the map that indicates which nodes are reached. |
| 872 | 872 |
|
| 873 | 873 |
///The type of the map that indicates which nodes are reached. |
| 874 | 874 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 875 | 875 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 876 | 876 |
///Instantiates a ReachedMap. |
| 877 | 877 |
|
| 878 | 878 |
///This function instantiates a ReachedMap. |
| 879 | 879 |
///\param g is the digraph, to which |
| 880 | 880 |
///we would like to define the ReachedMap. |
| 881 | 881 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 882 | 882 |
{
|
| 883 | 883 |
return new ReachedMap(g); |
| 884 | 884 |
} |
| 885 | 885 |
|
| 886 | 886 |
///The type of the map that stores the distances of the nodes. |
| 887 | 887 |
|
| 888 | 888 |
///The type of the map that stores the distances of the nodes. |
| 889 | 889 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
| 890 | 890 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 891 | 891 |
///Instantiates a DistMap. |
| 892 | 892 |
|
| 893 | 893 |
///This function instantiates a DistMap. |
| 894 | 894 |
///\param g is the digraph, to which we would like to define |
| 895 | 895 |
///the DistMap |
| 896 | 896 |
static DistMap *createDistMap(const Digraph &g) |
| 897 | 897 |
{
|
| 898 | 898 |
return new DistMap(g); |
| 899 | 899 |
} |
| 900 | 900 |
|
| 901 | 901 |
///The type of the shortest paths. |
| 902 | 902 |
|
| 903 | 903 |
///The type of the shortest paths. |
| 904 | 904 |
///It must conform to the \ref concepts::Path "Path" concept. |
| 905 | 905 |
typedef lemon::Path<Digraph> Path; |
| 906 | 906 |
}; |
| 907 | 907 |
|
| 908 | 908 |
/// Default traits class used by BfsWizard |
| 909 | 909 |
|
| 910 | 910 |
/// Default traits class used by BfsWizard. |
| 911 | 911 |
/// \tparam GR The type of the digraph. |
| 912 | 912 |
template<class GR> |
| 913 | 913 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
| 914 | 914 |
{
|
| 915 | 915 |
|
| 916 | 916 |
typedef BfsWizardDefaultTraits<GR> Base; |
| 917 | 917 |
protected: |
| 918 | 918 |
//The type of the nodes in the digraph. |
| 919 | 919 |
typedef typename Base::Digraph::Node Node; |
| 920 | 920 |
|
| 921 | 921 |
//Pointer to the digraph the algorithm runs on. |
| 922 | 922 |
void *_g; |
| 923 | 923 |
//Pointer to the map of reached nodes. |
| 924 | 924 |
void *_reached; |
| 925 | 925 |
//Pointer to the map of processed nodes. |
| 926 | 926 |
void *_processed; |
| 927 | 927 |
//Pointer to the map of predecessors arcs. |
| 928 | 928 |
void *_pred; |
| 929 | 929 |
//Pointer to the map of distances. |
| 930 | 930 |
void *_dist; |
| 931 | 931 |
//Pointer to the shortest path to the target node. |
| 932 | 932 |
void *_path; |
| 933 | 933 |
//Pointer to the distance of the target node. |
| 934 | 934 |
int *_di; |
| 935 | 935 |
|
| 936 | 936 |
public: |
| 937 | 937 |
/// Constructor. |
| 938 | 938 |
|
| 939 | 939 |
/// This constructor does not require parameters, it initiates |
| 940 | 940 |
/// all of the attributes to \c 0. |
| 941 | 941 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 942 | 942 |
_dist(0), _path(0), _di(0) {}
|
| 943 | 943 |
|
| 944 | 944 |
/// Constructor. |
| 945 | 945 |
|
| 946 | 946 |
/// This constructor requires one parameter, |
| 947 | 947 |
/// others are initiated to \c 0. |
| 948 | 948 |
/// \param g The digraph the algorithm runs on. |
| 949 | 949 |
BfsWizardBase(const GR &g) : |
| 950 | 950 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 951 | 951 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 952 | 952 |
|
| 953 | 953 |
}; |
| 954 | 954 |
|
| 955 | 955 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
| 956 | 956 |
|
| 957 | 957 |
/// This auxiliary class is created to implement the |
| 958 | 958 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
| 959 | 959 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 960 | 960 |
/// functions and features of the plain \ref Bfs. |
| 961 | 961 |
/// |
| 962 | 962 |
/// This class should only be used through the \ref bfs() function, |
| 963 | 963 |
/// which makes it easier to use the algorithm. |
| 964 | 964 |
template<class TR> |
| 965 | 965 |
class BfsWizard : public TR |
| 966 | 966 |
{
|
| 967 | 967 |
typedef TR Base; |
| 968 | 968 |
|
| 969 | 969 |
typedef typename TR::Digraph Digraph; |
| 970 | 970 |
|
| 971 | 971 |
typedef typename Digraph::Node Node; |
| 972 | 972 |
typedef typename Digraph::NodeIt NodeIt; |
| 973 | 973 |
typedef typename Digraph::Arc Arc; |
| 974 | 974 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 975 | 975 |
|
| 976 | 976 |
typedef typename TR::PredMap PredMap; |
| 977 | 977 |
typedef typename TR::DistMap DistMap; |
| 978 | 978 |
typedef typename TR::ReachedMap ReachedMap; |
| 979 | 979 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 980 | 980 |
typedef typename TR::Path Path; |
| 981 | 981 |
|
| 982 | 982 |
public: |
| 983 | 983 |
|
| 984 | 984 |
/// Constructor. |
| 985 | 985 |
BfsWizard() : TR() {}
|
| 986 | 986 |
|
| 987 | 987 |
/// Constructor that requires parameters. |
| 988 | 988 |
|
| 989 | 989 |
/// Constructor that requires parameters. |
| 990 | 990 |
/// These parameters will be the default values for the traits class. |
| 991 | 991 |
/// \param g The digraph the algorithm runs on. |
| 992 | 992 |
BfsWizard(const Digraph &g) : |
| 993 | 993 |
TR(g) {}
|
| 994 | 994 |
|
| 995 | 995 |
///Copy constructor |
| 996 | 996 |
BfsWizard(const TR &b) : TR(b) {}
|
| 997 | 997 |
|
| 998 | 998 |
~BfsWizard() {}
|
| 999 | 999 |
|
| 1000 | 1000 |
///Runs BFS algorithm from the given source node. |
| 1001 | 1001 |
|
| 1002 | 1002 |
///This method runs BFS algorithm from node \c s |
| 1003 | 1003 |
///in order to compute the shortest path to each node. |
| 1004 | 1004 |
void run(Node s) |
| 1005 | 1005 |
{
|
| 1006 | 1006 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 1007 | 1007 |
if (Base::_pred) |
| 1008 | 1008 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1009 | 1009 |
if (Base::_dist) |
| 1010 | 1010 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1011 | 1011 |
if (Base::_reached) |
| 1012 | 1012 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 1013 | 1013 |
if (Base::_processed) |
| 1014 | 1014 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1015 | 1015 |
if (s!=INVALID) |
| 1016 | 1016 |
alg.run(s); |
| 1017 | 1017 |
else |
| 1018 | 1018 |
alg.run(); |
| 1019 | 1019 |
} |
| 1020 | 1020 |
|
| 1021 | 1021 |
///Finds the shortest path between \c s and \c t. |
| 1022 | 1022 |
|
| 1023 | 1023 |
///This method runs BFS algorithm from node \c s |
| 1024 | 1024 |
///in order to compute the shortest path to node \c t |
| 1025 | 1025 |
///(it stops searching when \c t is processed). |
| 1026 | 1026 |
/// |
| 1027 | 1027 |
///\return \c true if \c t is reachable form \c s. |
| 1028 | 1028 |
bool run(Node s, Node t) |
| 1029 | 1029 |
{
|
| 1030 | 1030 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 1031 | 1031 |
if (Base::_pred) |
| 1032 | 1032 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1033 | 1033 |
if (Base::_dist) |
| 1034 | 1034 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1035 | 1035 |
if (Base::_reached) |
| 1036 | 1036 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 1037 | 1037 |
if (Base::_processed) |
| 1038 | 1038 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1039 | 1039 |
alg.run(s,t); |
| 1040 | 1040 |
if (Base::_path) |
| 1041 | 1041 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
| 1042 | 1042 |
if (Base::_di) |
| 1043 | 1043 |
*Base::_di = alg.dist(t); |
| 1044 | 1044 |
return alg.reached(t); |
| 1045 | 1045 |
} |
| 1046 | 1046 |
|
| 1047 | 1047 |
///Runs BFS algorithm to visit all nodes in the digraph. |
| 1048 | 1048 |
|
| 1049 | 1049 |
///This method runs BFS algorithm in order to compute |
| 1050 | 1050 |
///the shortest path to each node. |
| 1051 | 1051 |
void run() |
| 1052 | 1052 |
{
|
| 1053 | 1053 |
run(INVALID); |
| 1054 | 1054 |
} |
| 1055 | 1055 |
|
| 1056 | 1056 |
template<class T> |
| 1057 | 1057 |
struct SetPredMapBase : public Base {
|
| 1058 | 1058 |
typedef T PredMap; |
| 1059 | 1059 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1060 | 1060 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1061 | 1061 |
}; |
| 1062 | 1062 |
|
| 1063 | 1063 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 1064 | 1064 |
///the predecessor map. |
| 1065 | 1065 |
/// |
| 1066 | 1066 |
///\ref named-templ-param "Named parameter" function for setting |
| 1067 | 1067 |
///the map that stores the predecessor arcs of the nodes. |
| 1068 | 1068 |
template<class T> |
| 1069 | 1069 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1070 | 1070 |
{
|
| 1071 | 1071 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1072 | 1072 |
return BfsWizard<SetPredMapBase<T> >(*this); |
| 1073 | 1073 |
} |
| 1074 | 1074 |
|
| 1075 | 1075 |
template<class T> |
| 1076 | 1076 |
struct SetReachedMapBase : public Base {
|
| 1077 | 1077 |
typedef T ReachedMap; |
| 1078 | 1078 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
|
| 1079 | 1079 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1080 | 1080 |
}; |
| 1081 | 1081 |
|
| 1082 | 1082 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 1083 | 1083 |
///the reached map. |
| 1084 | 1084 |
/// |
| 1085 | 1085 |
///\ref named-templ-param "Named parameter" function for setting |
| 1086 | 1086 |
///the map that indicates which nodes are reached. |
| 1087 | 1087 |
template<class T> |
| 1088 | 1088 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| 1089 | 1089 |
{
|
| 1090 | 1090 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1091 | 1091 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
| 1092 | 1092 |
} |
| 1093 | 1093 |
|
| 1094 | 1094 |
template<class T> |
| 1095 | 1095 |
struct SetDistMapBase : public Base {
|
| 1096 | 1096 |
typedef T DistMap; |
| 1097 | 1097 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1098 | 1098 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1099 | 1099 |
}; |
| 1100 | 1100 |
|
| 1101 | 1101 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 1102 | 1102 |
///the distance map. |
| 1103 | 1103 |
/// |
| 1104 | 1104 |
///\ref named-templ-param "Named parameter" function for setting |
| 1105 | 1105 |
///the map that stores the distances of the nodes calculated |
| 1106 | 1106 |
///by the algorithm. |
| 1107 | 1107 |
template<class T> |
| 1108 | 1108 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1109 | 1109 |
{
|
| 1110 | 1110 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1111 | 1111 |
return BfsWizard<SetDistMapBase<T> >(*this); |
| 1112 | 1112 |
} |
| 1113 | 1113 |
|
| 1114 | 1114 |
template<class T> |
| 1115 | 1115 |
struct SetProcessedMapBase : public Base {
|
| 1116 | 1116 |
typedef T ProcessedMap; |
| 1117 | 1117 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1118 | 1118 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1119 | 1119 |
}; |
| 1120 | 1120 |
|
| 1121 | 1121 |
///\brief \ref named-func-param "Named parameter" for setting |
| 1122 | 1122 |
///the processed map. |
| 1123 | 1123 |
/// |
| 1124 | 1124 |
///\ref named-templ-param "Named parameter" function for setting |
| 1125 | 1125 |
///the map that indicates which nodes are processed. |
| 1126 | 1126 |
template<class T> |
| 1127 | 1127 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1128 | 1128 |
{
|
| 1129 | 1129 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1130 | 1130 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
| 1131 | 1131 |
} |
| 1132 | 1132 |
|
| 1133 | 1133 |
template<class T> |
| 1134 | 1134 |
struct SetPathBase : public Base {
|
| 1135 | 1135 |
typedef T Path; |
| 1136 | 1136 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1137 | 1137 |
}; |
| 1138 | 1138 |
///\brief \ref named-func-param "Named parameter" |
| 1139 | 1139 |
///for getting the shortest path to the target node. |
| 1140 | 1140 |
/// |
| 1141 | 1141 |
///\ref named-func-param "Named parameter" |
| 1142 | 1142 |
///for getting the shortest path to the target node. |
| 1143 | 1143 |
template<class T> |
| 1144 | 1144 |
BfsWizard<SetPathBase<T> > path(const T &t) |
| 1145 | 1145 |
{
|
| 1146 | 1146 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1147 | 1147 |
return BfsWizard<SetPathBase<T> >(*this); |
| 1148 | 1148 |
} |
| 1149 | 1149 |
|
| 1150 | 1150 |
///\brief \ref named-func-param "Named parameter" |
| 1151 | 1151 |
///for getting the distance of the target node. |
| 1152 | 1152 |
/// |
| 1153 | 1153 |
///\ref named-func-param "Named parameter" |
| 1154 | 1154 |
///for getting the distance of the target node. |
| 1155 | 1155 |
BfsWizard dist(const int &d) |
| 1156 | 1156 |
{
|
| 1157 | 1157 |
Base::_di=const_cast<int*>(&d); |
| 1158 | 1158 |
return *this; |
| 1159 | 1159 |
} |
| 1160 | 1160 |
|
| 1161 | 1161 |
}; |
| 1162 | 1162 |
|
| 1163 | 1163 |
///Function-type interface for BFS algorithm. |
| 1164 | 1164 |
|
| 1165 | 1165 |
/// \ingroup search |
| 1166 | 1166 |
///Function-type interface for BFS algorithm. |
| 1167 | 1167 |
/// |
| 1168 | 1168 |
///This function also has several \ref named-func-param "named parameters", |
| 1169 | 1169 |
///they are declared as the members of class \ref BfsWizard. |
| 1170 | 1170 |
///The following examples show how to use these parameters. |
| 1171 | 1171 |
///\code |
| 1172 | 1172 |
/// // Compute shortest path from node s to each node |
| 1173 | 1173 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
| 1174 | 1174 |
/// |
| 1175 | 1175 |
/// // Compute shortest path from s to t |
| 1176 | 1176 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
| 1177 | 1177 |
///\endcode |
| 1178 | 1178 |
///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()" |
| 1179 | 1179 |
///to the end of the parameter list. |
| 1180 | 1180 |
///\sa BfsWizard |
| 1181 | 1181 |
///\sa Bfs |
| 1182 | 1182 |
template<class GR> |
| 1183 | 1183 |
BfsWizard<BfsWizardBase<GR> > |
| 1184 | 1184 |
bfs(const GR &digraph) |
| 1185 | 1185 |
{
|
| 1186 | 1186 |
return BfsWizard<BfsWizardBase<GR> >(digraph); |
| 1187 | 1187 |
} |
| 1188 | 1188 |
|
| 1189 | 1189 |
#ifdef DOXYGEN |
| 1190 | 1190 |
/// \brief Visitor class for BFS. |
| 1191 | 1191 |
/// |
| 1192 | 1192 |
/// This class defines the interface of the BfsVisit events, and |
| 1193 | 1193 |
/// it could be the base of a real visitor class. |
| 1194 | 1194 |
template <typename GR> |
| 1195 | 1195 |
struct BfsVisitor {
|
| 1196 | 1196 |
typedef GR Digraph; |
| 1197 | 1197 |
typedef typename Digraph::Arc Arc; |
| 1198 | 1198 |
typedef typename Digraph::Node Node; |
| 1199 | 1199 |
/// \brief Called for the source node(s) of the BFS. |
| 1200 | 1200 |
/// |
| 1201 | 1201 |
/// This function is called for the source node(s) of the BFS. |
| 1202 | 1202 |
void start(const Node& node) {}
|
| 1203 | 1203 |
/// \brief Called when a node is reached first time. |
| 1204 | 1204 |
/// |
| 1205 | 1205 |
/// This function is called when a node is reached first time. |
| 1206 | 1206 |
void reach(const Node& node) {}
|
| 1207 | 1207 |
/// \brief Called when a node is processed. |
| 1208 | 1208 |
/// |
| 1209 | 1209 |
/// This function is called when a node is processed. |
| 1210 | 1210 |
void process(const Node& node) {}
|
| 1211 | 1211 |
/// \brief Called when an arc reaches a new node. |
| 1212 | 1212 |
/// |
| 1213 | 1213 |
/// This function is called when the BFS finds an arc whose target node |
| 1214 | 1214 |
/// is not reached yet. |
| 1215 | 1215 |
void discover(const Arc& arc) {}
|
| 1216 | 1216 |
/// \brief Called when an arc is examined but its target node is |
| 1217 | 1217 |
/// already discovered. |
| 1218 | 1218 |
/// |
| 1219 | 1219 |
/// This function is called when an arc is examined but its target node is |
| 1220 | 1220 |
/// already discovered. |
| 1221 | 1221 |
void examine(const Arc& arc) {}
|
| 1222 | 1222 |
}; |
| 1223 | 1223 |
#else |
| 1224 | 1224 |
template <typename GR> |
| 1225 | 1225 |
struct BfsVisitor {
|
| 1226 | 1226 |
typedef GR Digraph; |
| 1227 | 1227 |
typedef typename Digraph::Arc Arc; |
| 1228 | 1228 |
typedef typename Digraph::Node Node; |
| 1229 | 1229 |
void start(const Node&) {}
|
| 1230 | 1230 |
void reach(const Node&) {}
|
| 1231 | 1231 |
void process(const Node&) {}
|
| 1232 | 1232 |
void discover(const Arc&) {}
|
| 1233 | 1233 |
void examine(const Arc&) {}
|
| 1234 | 1234 |
|
| 1235 | 1235 |
template <typename _Visitor> |
| 1236 | 1236 |
struct Constraints {
|
| 1237 | 1237 |
void constraints() {
|
| 1238 | 1238 |
Arc arc; |
| 1239 | 1239 |
Node node; |
| 1240 | 1240 |
visitor.start(node); |
| 1241 | 1241 |
visitor.reach(node); |
| 1242 | 1242 |
visitor.process(node); |
| 1243 | 1243 |
visitor.discover(arc); |
| 1244 | 1244 |
visitor.examine(arc); |
| 1245 | 1245 |
} |
| 1246 | 1246 |
_Visitor& visitor; |
| 1247 | 1247 |
}; |
| 1248 | 1248 |
}; |
| 1249 | 1249 |
#endif |
| 1250 | 1250 |
|
| 1251 | 1251 |
/// \brief Default traits class of BfsVisit class. |
| 1252 | 1252 |
/// |
| 1253 | 1253 |
/// Default traits class of BfsVisit class. |
| 1254 | 1254 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1255 | 1255 |
template<class GR> |
| 1256 | 1256 |
struct BfsVisitDefaultTraits {
|
| 1257 | 1257 |
|
| 1258 | 1258 |
/// \brief The type of the digraph the algorithm runs on. |
| 1259 | 1259 |
typedef GR Digraph; |
| 1260 | 1260 |
|
| 1261 | 1261 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1262 | 1262 |
/// |
| 1263 | 1263 |
/// The type of the map that indicates which nodes are reached. |
| 1264 | 1264 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 1265 | 1265 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1266 | 1266 |
|
| 1267 | 1267 |
/// \brief Instantiates a ReachedMap. |
| 1268 | 1268 |
/// |
| 1269 | 1269 |
/// This function instantiates a ReachedMap. |
| 1270 | 1270 |
/// \param digraph is the digraph, to which |
| 1271 | 1271 |
/// we would like to define the ReachedMap. |
| 1272 | 1272 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1273 | 1273 |
return new ReachedMap(digraph); |
| 1274 | 1274 |
} |
| 1275 | 1275 |
|
| 1276 | 1276 |
}; |
| 1277 | 1277 |
|
| 1278 | 1278 |
/// \ingroup search |
| 1279 | 1279 |
/// |
| 1280 | 1280 |
/// \brief BFS algorithm class with visitor interface. |
| 1281 | 1281 |
/// |
| 1282 | 1282 |
/// This class provides an efficient implementation of the BFS algorithm |
| 1283 | 1283 |
/// with visitor interface. |
| 1284 | 1284 |
/// |
| 1285 | 1285 |
/// The BfsVisit class provides an alternative interface to the Bfs |
| 1286 | 1286 |
/// class. It works with callback mechanism, the BfsVisit object calls |
| 1287 | 1287 |
/// the member functions of the \c Visitor class on every BFS event. |
| 1288 | 1288 |
/// |
| 1289 | 1289 |
/// This interface of the BFS algorithm should be used in special cases |
| 1290 | 1290 |
/// when extra actions have to be performed in connection with certain |
| 1291 | 1291 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
| 1292 | 1292 |
/// instead. |
| 1293 | 1293 |
/// |
| 1294 | 1294 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1295 | 1295 |
/// The default type is \ref ListDigraph. |
| 1296 | 1296 |
/// The value of GR is not used directly by \ref BfsVisit, |
| 1297 | 1297 |
/// it is only passed to \ref BfsVisitDefaultTraits. |
| 1298 | 1298 |
/// \tparam VS The Visitor type that is used by the algorithm. |
| 1299 | 1299 |
/// \ref BfsVisitor "BfsVisitor<GR>" is an empty visitor, which |
| 1300 | 1300 |
/// does not observe the BFS events. If you want to observe the BFS |
| 1301 | 1301 |
/// events, you should implement your own visitor class. |
| 1302 | 1302 |
/// \tparam TR Traits class to set various data types used by the |
| 1303 | 1303 |
/// algorithm. The default traits class is |
| 1304 | 1304 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<GR>". |
| 1305 | 1305 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
| 1306 | 1306 |
/// a BFS visit traits class. |
| 1307 | 1307 |
#ifdef DOXYGEN |
| 1308 | 1308 |
template <typename GR, typename VS, typename TR> |
| 1309 | 1309 |
#else |
| 1310 | 1310 |
template <typename GR = ListDigraph, |
| 1311 | 1311 |
typename VS = BfsVisitor<GR>, |
| 1312 | 1312 |
typename TR = BfsVisitDefaultTraits<GR> > |
| 1313 | 1313 |
#endif |
| 1314 | 1314 |
class BfsVisit {
|
| 1315 | 1315 |
public: |
| 1316 | 1316 |
|
| 1317 | 1317 |
///The traits class. |
| 1318 | 1318 |
typedef TR Traits; |
| 1319 | 1319 |
|
| 1320 | 1320 |
///The type of the digraph the algorithm runs on. |
| 1321 | 1321 |
typedef typename Traits::Digraph Digraph; |
| 1322 | 1322 |
|
| 1323 | 1323 |
///The visitor type used by the algorithm. |
| 1324 | 1324 |
typedef VS Visitor; |
| 1325 | 1325 |
|
| 1326 | 1326 |
///The type of the map that indicates which nodes are reached. |
| 1327 | 1327 |
typedef typename Traits::ReachedMap ReachedMap; |
| 1328 | 1328 |
|
| 1329 | 1329 |
private: |
| 1330 | 1330 |
|
| 1331 | 1331 |
typedef typename Digraph::Node Node; |
| 1332 | 1332 |
typedef typename Digraph::NodeIt NodeIt; |
| 1333 | 1333 |
typedef typename Digraph::Arc Arc; |
| 1334 | 1334 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1335 | 1335 |
|
| 1336 | 1336 |
//Pointer to the underlying digraph. |
| 1337 | 1337 |
const Digraph *_digraph; |
| 1338 | 1338 |
//Pointer to the visitor object. |
| 1339 | 1339 |
Visitor *_visitor; |
| 1340 | 1340 |
//Pointer to the map of reached status of the nodes. |
| 1341 | 1341 |
ReachedMap *_reached; |
| 1342 | 1342 |
//Indicates if _reached is locally allocated (true) or not. |
| 1343 | 1343 |
bool local_reached; |
| 1344 | 1344 |
|
| 1345 | 1345 |
std::vector<typename Digraph::Node> _list; |
| 1346 | 1346 |
int _list_front, _list_back; |
| 1347 | 1347 |
|
| 1348 | 1348 |
//Creates the maps if necessary. |
| 1349 | 1349 |
void create_maps() {
|
| 1350 | 1350 |
if(!_reached) {
|
| 1351 | 1351 |
local_reached = true; |
| 1352 | 1352 |
_reached = Traits::createReachedMap(*_digraph); |
| 1353 | 1353 |
} |
| 1354 | 1354 |
} |
| 1355 | 1355 |
|
| 1356 | 1356 |
protected: |
| 1357 | 1357 |
|
| 1358 | 1358 |
BfsVisit() {}
|
| 1359 | 1359 |
|
| 1360 | 1360 |
public: |
| 1361 | 1361 |
|
| 1362 | 1362 |
typedef BfsVisit Create; |
| 1363 | 1363 |
|
| 1364 | 1364 |
/// \name Named Template Parameters |
| 1365 | 1365 |
|
| 1366 | 1366 |
///@{
|
| 1367 | 1367 |
template <class T> |
| 1368 | 1368 |
struct SetReachedMapTraits : public Traits {
|
| 1369 | 1369 |
typedef T ReachedMap; |
| 1370 | 1370 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1371 | 1371 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 1372 | 1372 |
return 0; // ignore warnings |
| 1373 | 1373 |
} |
| 1374 | 1374 |
}; |
| 1375 | 1375 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1376 | 1376 |
/// ReachedMap type. |
| 1377 | 1377 |
/// |
| 1378 | 1378 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
| 1379 | 1379 |
template <class T> |
| 1380 | 1380 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
| 1381 | 1381 |
SetReachedMapTraits<T> > {
|
| 1382 | 1382 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
| 1383 | 1383 |
}; |
| 1384 | 1384 |
///@} |
| 1385 | 1385 |
|
| 1386 | 1386 |
public: |
| 1387 | 1387 |
|
| 1388 | 1388 |
/// \brief Constructor. |
| 1389 | 1389 |
/// |
| 1390 | 1390 |
/// Constructor. |
| 1391 | 1391 |
/// |
| 1392 | 1392 |
/// \param digraph The digraph the algorithm runs on. |
| 1393 | 1393 |
/// \param visitor The visitor object of the algorithm. |
| 1394 | 1394 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
| 1395 | 1395 |
: _digraph(&digraph), _visitor(&visitor), |
| 1396 | 1396 |
_reached(0), local_reached(false) {}
|
| 1397 | 1397 |
|
| 1398 | 1398 |
/// \brief Destructor. |
| 1399 | 1399 |
~BfsVisit() {
|
| 1400 | 1400 |
if(local_reached) delete _reached; |
| 1401 | 1401 |
} |
| 1402 | 1402 |
|
| 1403 | 1403 |
/// \brief Sets the map that indicates which nodes are reached. |
| 1404 | 1404 |
/// |
| 1405 | 1405 |
/// Sets the map that indicates which nodes are reached. |
| 1406 | 1406 |
/// If you don't use this function before calling \ref run(Node) "run()" |
| 1407 | 1407 |
/// or \ref init(), an instance will be allocated automatically. |
| 1408 | 1408 |
/// The destructor deallocates this automatically allocated map, |
| 1409 | 1409 |
/// of course. |
| 1410 | 1410 |
/// \return <tt> (*this) </tt> |
| 1411 | 1411 |
BfsVisit &reachedMap(ReachedMap &m) {
|
| 1412 | 1412 |
if(local_reached) {
|
| 1413 | 1413 |
delete _reached; |
| 1414 | 1414 |
local_reached = false; |
| 1415 | 1415 |
} |
| 1416 | 1416 |
_reached = &m; |
| 1417 | 1417 |
return *this; |
| 1418 | 1418 |
} |
| 1419 | 1419 |
|
| 1420 | 1420 |
public: |
| 1421 | 1421 |
|
| 1422 | 1422 |
/// \name Execution Control |
| 1423 | 1423 |
/// The simplest way to execute the BFS algorithm is to use one of the |
| 1424 | 1424 |
/// member functions called \ref run(Node) "run()".\n |
| 1425 | 1425 |
/// If you need better control on the execution, you have to call |
| 1426 | 1426 |
/// \ref init() first, then you can add several source nodes with |
| 1427 | 1427 |
/// \ref addSource(). Finally the actual path computation can be |
| 1428 | 1428 |
/// performed with one of the \ref start() functions. |
| 1429 | 1429 |
|
| 1430 | 1430 |
/// @{
|
| 1431 | 1431 |
|
| 1432 | 1432 |
/// \brief Initializes the internal data structures. |
| 1433 | 1433 |
/// |
| 1434 | 1434 |
/// Initializes the internal data structures. |
| 1435 | 1435 |
void init() {
|
| 1436 | 1436 |
create_maps(); |
| 1437 | 1437 |
_list.resize(countNodes(*_digraph)); |
| 1438 | 1438 |
_list_front = _list_back = -1; |
| 1439 | 1439 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
|
| 1440 | 1440 |
_reached->set(u, false); |
| 1441 | 1441 |
} |
| 1442 | 1442 |
} |
| 1443 | 1443 |
|
| 1444 | 1444 |
/// \brief Adds a new source node. |
| 1445 | 1445 |
/// |
| 1446 | 1446 |
/// Adds a new source node to the set of nodes to be processed. |
| 1447 | 1447 |
void addSource(Node s) {
|
| 1448 | 1448 |
if(!(*_reached)[s]) {
|
| 1449 | 1449 |
_reached->set(s,true); |
| 1450 | 1450 |
_visitor->start(s); |
| 1451 | 1451 |
_visitor->reach(s); |
| 1452 | 1452 |
_list[++_list_back] = s; |
| 1453 | 1453 |
} |
| 1454 | 1454 |
} |
| 1455 | 1455 |
|
| 1456 | 1456 |
/// \brief Processes the next node. |
| 1457 | 1457 |
/// |
| 1458 | 1458 |
/// Processes the next node. |
| 1459 | 1459 |
/// |
| 1460 | 1460 |
/// \return The processed node. |
| 1461 | 1461 |
/// |
| 1462 | 1462 |
/// \pre The queue must not be empty. |
| 1463 | 1463 |
Node processNextNode() {
|
| 1464 | 1464 |
Node n = _list[++_list_front]; |
| 1465 | 1465 |
_visitor->process(n); |
| 1466 | 1466 |
Arc e; |
| 1467 | 1467 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1468 | 1468 |
Node m = _digraph->target(e); |
| 1469 | 1469 |
if (!(*_reached)[m]) {
|
| 1470 | 1470 |
_visitor->discover(e); |
| 1471 | 1471 |
_visitor->reach(m); |
| 1472 | 1472 |
_reached->set(m, true); |
| 1473 | 1473 |
_list[++_list_back] = m; |
| 1474 | 1474 |
} else {
|
| 1475 | 1475 |
_visitor->examine(e); |
| 1476 | 1476 |
} |
| 1477 | 1477 |
} |
| 1478 | 1478 |
return n; |
| 1479 | 1479 |
} |
| 1480 | 1480 |
|
| 1481 | 1481 |
/// \brief Processes the next node. |
| 1482 | 1482 |
/// |
| 1483 | 1483 |
/// Processes the next node and checks if the given target node |
| 1484 | 1484 |
/// is reached. If the target node is reachable from the processed |
| 1485 | 1485 |
/// node, then the \c reach parameter will be set to \c true. |
| 1486 | 1486 |
/// |
| 1487 | 1487 |
/// \param target The target node. |
| 1488 | 1488 |
/// \retval reach Indicates if the target node is reached. |
| 1489 | 1489 |
/// It should be initially \c false. |
| 1490 | 1490 |
/// |
| 1491 | 1491 |
/// \return The processed node. |
| 1492 | 1492 |
/// |
| 1493 | 1493 |
/// \pre The queue must not be empty. |
| 1494 | 1494 |
Node processNextNode(Node target, bool& reach) {
|
| 1495 | 1495 |
Node n = _list[++_list_front]; |
| 1496 | 1496 |
_visitor->process(n); |
| 1497 | 1497 |
Arc e; |
| 1498 | 1498 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1499 | 1499 |
Node m = _digraph->target(e); |
| 1500 | 1500 |
if (!(*_reached)[m]) {
|
| 1501 | 1501 |
_visitor->discover(e); |
| 1502 | 1502 |
_visitor->reach(m); |
| 1503 | 1503 |
_reached->set(m, true); |
| 1504 | 1504 |
_list[++_list_back] = m; |
| 1505 | 1505 |
reach = reach || (target == m); |
| 1506 | 1506 |
} else {
|
| 1507 | 1507 |
_visitor->examine(e); |
| 1508 | 1508 |
} |
| 1509 | 1509 |
} |
| 1510 | 1510 |
return n; |
| 1511 | 1511 |
} |
| 1512 | 1512 |
|
| 1513 | 1513 |
/// \brief Processes the next node. |
| 1514 | 1514 |
/// |
| 1515 | 1515 |
/// Processes the next node and checks if at least one of reached |
| 1516 | 1516 |
/// nodes has \c true value in the \c nm node map. If one node |
| 1517 | 1517 |
/// with \c true value is reachable from the processed node, then the |
| 1518 | 1518 |
/// \c rnode parameter will be set to the first of such nodes. |
| 1519 | 1519 |
/// |
| 1520 | 1520 |
/// \param nm A \c bool (or convertible) node map that indicates the |
| 1521 | 1521 |
/// possible targets. |
| 1522 | 1522 |
/// \retval rnode The reached target node. |
| 1523 | 1523 |
/// It should be initially \c INVALID. |
| 1524 | 1524 |
/// |
| 1525 | 1525 |
/// \return The processed node. |
| 1526 | 1526 |
/// |
| 1527 | 1527 |
/// \pre The queue must not be empty. |
| 1528 | 1528 |
template <typename NM> |
| 1529 | 1529 |
Node processNextNode(const NM& nm, Node& rnode) {
|
| 1530 | 1530 |
Node n = _list[++_list_front]; |
| 1531 | 1531 |
_visitor->process(n); |
| 1532 | 1532 |
Arc e; |
| 1533 | 1533 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1534 | 1534 |
Node m = _digraph->target(e); |
| 1535 | 1535 |
if (!(*_reached)[m]) {
|
| 1536 | 1536 |
_visitor->discover(e); |
| 1537 | 1537 |
_visitor->reach(m); |
| 1538 | 1538 |
_reached->set(m, true); |
| 1539 | 1539 |
_list[++_list_back] = m; |
| 1540 | 1540 |
if (nm[m] && rnode == INVALID) rnode = m; |
| 1541 | 1541 |
} else {
|
| 1542 | 1542 |
_visitor->examine(e); |
| 1543 | 1543 |
} |
| 1544 | 1544 |
} |
| 1545 | 1545 |
return n; |
| 1546 | 1546 |
} |
| 1547 | 1547 |
|
| 1548 | 1548 |
/// \brief The next node to be processed. |
| 1549 | 1549 |
/// |
| 1550 | 1550 |
/// Returns the next node to be processed or \c INVALID if the queue |
| 1551 | 1551 |
/// is empty. |
| 1552 | 1552 |
Node nextNode() const {
|
| 1553 | 1553 |
return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
| 1554 | 1554 |
} |
| 1555 | 1555 |
|
| 1556 | 1556 |
/// \brief Returns \c false if there are nodes |
| 1557 | 1557 |
/// to be processed. |
| 1558 | 1558 |
/// |
| 1559 | 1559 |
/// Returns \c false if there are nodes |
| 1560 | 1560 |
/// to be processed in the queue. |
| 1561 | 1561 |
bool emptyQueue() const { return _list_front == _list_back; }
|
| 1562 | 1562 |
|
| 1563 | 1563 |
/// \brief Returns the number of the nodes to be processed. |
| 1564 | 1564 |
/// |
| 1565 | 1565 |
/// Returns the number of the nodes to be processed in the queue. |
| 1566 | 1566 |
int queueSize() const { return _list_back - _list_front; }
|
| 1567 | 1567 |
|
| 1568 | 1568 |
/// \brief Executes the algorithm. |
| 1569 | 1569 |
/// |
| 1570 | 1570 |
/// Executes the algorithm. |
| 1571 | 1571 |
/// |
| 1572 | 1572 |
/// This method runs the %BFS algorithm from the root node(s) |
| 1573 | 1573 |
/// in order to compute the shortest path to each node. |
| 1574 | 1574 |
/// |
| 1575 | 1575 |
/// The algorithm computes |
| 1576 | 1576 |
/// - the shortest path tree (forest), |
| 1577 | 1577 |
/// - the distance of each node from the root(s). |
| 1578 | 1578 |
/// |
| 1579 | 1579 |
/// \pre init() must be called and at least one root node should be added |
| 1580 | 1580 |
/// with addSource() before using this function. |
| 1581 | 1581 |
/// |
| 1582 | 1582 |
/// \note <tt>b.start()</tt> is just a shortcut of the following code. |
| 1583 | 1583 |
/// \code |
| 1584 | 1584 |
/// while ( !b.emptyQueue() ) {
|
| 1585 | 1585 |
/// b.processNextNode(); |
| 1586 | 1586 |
/// } |
| 1587 | 1587 |
/// \endcode |
| 1588 | 1588 |
void start() {
|
| 1589 | 1589 |
while ( !emptyQueue() ) processNextNode(); |
| 1590 | 1590 |
} |
| 1591 | 1591 |
|
| 1592 | 1592 |
/// \brief Executes the algorithm until the given target node is reached. |
| 1593 | 1593 |
/// |
| 1594 | 1594 |
/// Executes the algorithm until the given target node is reached. |
| 1595 | 1595 |
/// |
| 1596 | 1596 |
/// This method runs the %BFS algorithm from the root node(s) |
| 1597 | 1597 |
/// in order to compute the shortest path to \c t. |
| 1598 | 1598 |
/// |
| 1599 | 1599 |
/// The algorithm computes |
| 1600 | 1600 |
/// - the shortest path to \c t, |
| 1601 | 1601 |
/// - the distance of \c t from the root(s). |
| 1602 | 1602 |
/// |
| 1603 | 1603 |
/// \pre init() must be called and at least one root node should be |
| 1604 | 1604 |
/// added with addSource() before using this function. |
| 1605 | 1605 |
/// |
| 1606 | 1606 |
/// \note <tt>b.start(t)</tt> is just a shortcut of the following code. |
| 1607 | 1607 |
/// \code |
| 1608 | 1608 |
/// bool reach = false; |
| 1609 | 1609 |
/// while ( !b.emptyQueue() && !reach ) {
|
| 1610 | 1610 |
/// b.processNextNode(t, reach); |
| 1611 | 1611 |
/// } |
| 1612 | 1612 |
/// \endcode |
| 1613 | 1613 |
void start(Node t) {
|
| 1614 | 1614 |
bool reach = false; |
| 1615 | 1615 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
| 1616 | 1616 |
} |
| 1617 | 1617 |
|
| 1618 | 1618 |
/// \brief Executes the algorithm until a condition is met. |
| 1619 | 1619 |
/// |
| 1620 | 1620 |
/// Executes the algorithm until a condition is met. |
| 1621 | 1621 |
/// |
| 1622 | 1622 |
/// This method runs the %BFS algorithm from the root node(s) in |
| 1623 | 1623 |
/// order to compute the shortest path to a node \c v with |
| 1624 | 1624 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 1625 | 1625 |
/// |
| 1626 | 1626 |
/// \param nm must be a bool (or convertible) node map. The |
| 1627 | 1627 |
/// algorithm will stop when it reaches a node \c v with |
| 1628 | 1628 |
/// <tt>nm[v]</tt> true. |
| 1629 | 1629 |
/// |
| 1630 | 1630 |
/// \return The reached node \c v with <tt>nm[v]</tt> true or |
| 1631 | 1631 |
/// \c INVALID if no such node was found. |
| 1632 | 1632 |
/// |
| 1633 | 1633 |
/// \pre init() must be called and at least one root node should be |
| 1634 | 1634 |
/// added with addSource() before using this function. |
| 1635 | 1635 |
/// |
| 1636 | 1636 |
/// \note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
| 1637 | 1637 |
/// \code |
| 1638 | 1638 |
/// Node rnode = INVALID; |
| 1639 | 1639 |
/// while ( !b.emptyQueue() && rnode == INVALID ) {
|
| 1640 | 1640 |
/// b.processNextNode(nm, rnode); |
| 1641 | 1641 |
/// } |
| 1642 | 1642 |
/// return rnode; |
| 1643 | 1643 |
/// \endcode |
| 1644 | 1644 |
template <typename NM> |
| 1645 | 1645 |
Node start(const NM &nm) {
|
| 1646 | 1646 |
Node rnode = INVALID; |
| 1647 | 1647 |
while ( !emptyQueue() && rnode == INVALID ) {
|
| 1648 | 1648 |
processNextNode(nm, rnode); |
| 1649 | 1649 |
} |
| 1650 | 1650 |
return rnode; |
| 1651 | 1651 |
} |
| 1652 | 1652 |
|
| 1653 | 1653 |
/// \brief Runs the algorithm from the given source node. |
| 1654 | 1654 |
/// |
| 1655 | 1655 |
/// This method runs the %BFS algorithm from node \c s |
| 1656 | 1656 |
/// in order to compute the shortest path to each node. |
| 1657 | 1657 |
/// |
| 1658 | 1658 |
/// The algorithm computes |
| 1659 | 1659 |
/// - the shortest path tree, |
| 1660 | 1660 |
/// - the distance of each node from the root. |
| 1661 | 1661 |
/// |
| 1662 | 1662 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 1663 | 1663 |
///\code |
| 1664 | 1664 |
/// b.init(); |
| 1665 | 1665 |
/// b.addSource(s); |
| 1666 | 1666 |
/// b.start(); |
| 1667 | 1667 |
///\endcode |
| 1668 | 1668 |
void run(Node s) {
|
| 1669 | 1669 |
init(); |
| 1670 | 1670 |
addSource(s); |
| 1671 | 1671 |
start(); |
| 1672 | 1672 |
} |
| 1673 | 1673 |
|
| 1674 | 1674 |
/// \brief Finds the shortest path between \c s and \c t. |
| 1675 | 1675 |
/// |
| 1676 | 1676 |
/// This method runs the %BFS algorithm from node \c s |
| 1677 | 1677 |
/// in order to compute the shortest path to node \c t |
| 1678 | 1678 |
/// (it stops searching when \c t is processed). |
| 1679 | 1679 |
/// |
| 1680 | 1680 |
/// \return \c true if \c t is reachable form \c s. |
| 1681 | 1681 |
/// |
| 1682 | 1682 |
/// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
| 1683 | 1683 |
/// shortcut of the following code. |
| 1684 | 1684 |
///\code |
| 1685 | 1685 |
/// b.init(); |
| 1686 | 1686 |
/// b.addSource(s); |
| 1687 | 1687 |
/// b.start(t); |
| 1688 | 1688 |
///\endcode |
| 1689 | 1689 |
bool run(Node s,Node t) {
|
| 1690 | 1690 |
init(); |
| 1691 | 1691 |
addSource(s); |
| 1692 | 1692 |
start(t); |
| 1693 | 1693 |
return reached(t); |
| 1694 | 1694 |
} |
| 1695 | 1695 |
|
| 1696 | 1696 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1697 | 1697 |
/// |
| 1698 | 1698 |
/// This method runs the %BFS algorithm in order to |
| 1699 | 1699 |
/// compute the shortest path to each node. |
| 1700 | 1700 |
/// |
| 1701 | 1701 |
/// The algorithm computes |
| 1702 | 1702 |
/// - the shortest path tree (forest), |
| 1703 | 1703 |
/// - the distance of each node from the root(s). |
| 1704 | 1704 |
/// |
| 1705 | 1705 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 1706 | 1706 |
///\code |
| 1707 | 1707 |
/// b.init(); |
| 1708 | 1708 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 1709 | 1709 |
/// if (!b.reached(n)) {
|
| 1710 | 1710 |
/// b.addSource(n); |
| 1711 | 1711 |
/// b.start(); |
| 1712 | 1712 |
/// } |
| 1713 | 1713 |
/// } |
| 1714 | 1714 |
///\endcode |
| 1715 | 1715 |
void run() {
|
| 1716 | 1716 |
init(); |
| 1717 | 1717 |
for (NodeIt it(*_digraph); it != INVALID; ++it) {
|
| 1718 | 1718 |
if (!reached(it)) {
|
| 1719 | 1719 |
addSource(it); |
| 1720 | 1720 |
start(); |
| 1721 | 1721 |
} |
| 1722 | 1722 |
} |
| 1723 | 1723 |
} |
| 1724 | 1724 |
|
| 1725 | 1725 |
///@} |
| 1726 | 1726 |
|
| 1727 | 1727 |
/// \name Query Functions |
| 1728 | 1728 |
/// The results of the BFS algorithm can be obtained using these |
| 1729 | 1729 |
/// functions.\n |
| 1730 | 1730 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
| 1731 | 1731 |
/// before using them. |
| 1732 | 1732 |
|
| 1733 | 1733 |
///@{
|
| 1734 | 1734 |
|
| 1735 | 1735 |
/// \brief Checks if the given node is reached from the root(s). |
| 1736 | 1736 |
/// |
| 1737 | 1737 |
/// Returns \c true if \c v is reached from the root(s). |
| 1738 | 1738 |
/// |
| 1739 | 1739 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
| 1740 | 1740 |
/// must be called before using this function. |
| 1741 | 1741 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 1742 | 1742 |
|
| 1743 | 1743 |
///@} |
| 1744 | 1744 |
|
| 1745 | 1745 |
}; |
| 1746 | 1746 |
|
| 1747 | 1747 |
} //END OF NAMESPACE LEMON |
| 1748 | 1748 |
|
| 1749 | 1749 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CIRCULATION_H |
| 20 | 20 |
#define LEMON_CIRCULATION_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/tolerance.h> |
| 23 | 23 |
#include <lemon/elevator.h> |
| 24 | 24 |
#include <limits> |
| 25 | 25 |
|
| 26 | 26 |
///\ingroup max_flow |
| 27 | 27 |
///\file |
| 28 | 28 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
| 29 | 29 |
/// |
| 30 | 30 |
namespace lemon {
|
| 31 | 31 |
|
| 32 | 32 |
/// \brief Default traits class of Circulation class. |
| 33 | 33 |
/// |
| 34 | 34 |
/// Default traits class of Circulation class. |
| 35 | 35 |
/// |
| 36 | 36 |
/// \tparam GR Type of the digraph the algorithm runs on. |
| 37 | 37 |
/// \tparam LM The type of the lower bound map. |
| 38 | 38 |
/// \tparam UM The type of the upper bound (capacity) map. |
| 39 | 39 |
/// \tparam SM The type of the supply map. |
| 40 | 40 |
template <typename GR, typename LM, |
| 41 | 41 |
typename UM, typename SM> |
| 42 | 42 |
struct CirculationDefaultTraits {
|
| 43 | 43 |
|
| 44 | 44 |
/// \brief The type of the digraph the algorithm runs on. |
| 45 | 45 |
typedef GR Digraph; |
| 46 | 46 |
|
| 47 | 47 |
/// \brief The type of the lower bound map. |
| 48 | 48 |
/// |
| 49 | 49 |
/// The type of the map that stores the lower bounds on the arcs. |
| 50 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 51 | 51 |
typedef LM LowerMap; |
| 52 | 52 |
|
| 53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
| 54 | 54 |
/// |
| 55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
| 56 | 56 |
/// on the arcs. |
| 57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 58 | 58 |
typedef UM UpperMap; |
| 59 | 59 |
|
| 60 | 60 |
/// \brief The type of supply map. |
| 61 | 61 |
/// |
| 62 | 62 |
/// The type of the map that stores the signed supply values of the |
| 63 | 63 |
/// nodes. |
| 64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
| 65 | 65 |
typedef SM SupplyMap; |
| 66 | 66 |
|
| 67 | 67 |
/// \brief The type of the flow and supply values. |
| 68 | 68 |
typedef typename SupplyMap::Value Value; |
| 69 | 69 |
|
| 70 | 70 |
/// \brief The type of the map that stores the flow values. |
| 71 | 71 |
/// |
| 72 | 72 |
/// The type of the map that stores the flow values. |
| 73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
| 74 | 74 |
/// concept. |
| 75 | 75 |
#ifdef DOXYGEN |
| 76 | 76 |
typedef GR::ArcMap<Value> FlowMap; |
| 77 | 77 |
#else |
| 78 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 79 | 79 |
#endif |
| 80 | 80 |
|
| 81 | 81 |
/// \brief Instantiates a FlowMap. |
| 82 | 82 |
/// |
| 83 | 83 |
/// This function instantiates a \ref FlowMap. |
| 84 | 84 |
/// \param digraph The digraph for which we would like to define |
| 85 | 85 |
/// the flow map. |
| 86 | 86 |
static FlowMap* createFlowMap(const Digraph& digraph) {
|
| 87 | 87 |
return new FlowMap(digraph); |
| 88 | 88 |
} |
| 89 | 89 |
|
| 90 | 90 |
/// \brief The elevator type used by the algorithm. |
| 91 | 91 |
/// |
| 92 | 92 |
/// The elevator type used by the algorithm. |
| 93 | 93 |
/// |
| 94 | 94 |
/// \sa Elevator, LinkedElevator |
| 95 | 95 |
#ifdef DOXYGEN |
| 96 | 96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
| 97 | 97 |
#else |
| 98 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
| 99 | 99 |
#endif |
| 100 | 100 |
|
| 101 | 101 |
/// \brief Instantiates an Elevator. |
| 102 | 102 |
/// |
| 103 | 103 |
/// This function instantiates an \ref Elevator. |
| 104 | 104 |
/// \param digraph The digraph for which we would like to define |
| 105 | 105 |
/// the elevator. |
| 106 | 106 |
/// \param max_level The maximum level of the elevator. |
| 107 | 107 |
static Elevator* createElevator(const Digraph& digraph, int max_level) {
|
| 108 | 108 |
return new Elevator(digraph, max_level); |
| 109 | 109 |
} |
| 110 | 110 |
|
| 111 | 111 |
/// \brief The tolerance used by the algorithm |
| 112 | 112 |
/// |
| 113 | 113 |
/// The tolerance used by the algorithm to handle inexact computation. |
| 114 | 114 |
typedef lemon::Tolerance<Value> Tolerance; |
| 115 | 115 |
|
| 116 | 116 |
}; |
| 117 | 117 |
|
| 118 | 118 |
/** |
| 119 | 119 |
\brief Push-relabel algorithm for the network circulation problem. |
| 120 | 120 |
|
| 121 | 121 |
\ingroup max_flow |
| 122 | 122 |
This class implements a push-relabel algorithm for the \e network |
| 123 | 123 |
\e circulation problem. |
| 124 | 124 |
It is to find a feasible circulation when lower and upper bounds |
| 125 | 125 |
are given for the flow values on the arcs and lower bounds are |
| 126 | 126 |
given for the difference between the outgoing and incoming flow |
| 127 | 127 |
at the nodes. |
| 128 | 128 |
|
| 129 | 129 |
The exact formulation of this problem is the following. |
| 130 | 130 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$
|
| 131 | 131 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and
|
| 132 | 132 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
| 133 | 133 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$
|
| 134 | 134 |
denotes the signed supply values of the nodes. |
| 135 | 135 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
| 136 | 136 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
| 137 | 137 |
\f$-sup(u)\f$ demand. |
| 138 | 138 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
|
| 139 | 139 |
solution of the following problem. |
| 140 | 140 |
|
| 141 | 141 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
|
| 142 | 142 |
\geq sup(u) \quad \forall u\in V, \f] |
| 143 | 143 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
| 144 | 144 |
|
| 145 | 145 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
|
| 146 | 146 |
zero or negative in order to have a feasible solution (since the sum |
| 147 | 147 |
of the expressions on the left-hand side of the inequalities is zero). |
| 148 | 148 |
It means that the total demand must be greater or equal to the total |
| 149 | 149 |
supply and all the supplies have to be carried out from the supply nodes, |
| 150 | 150 |
but there could be demands that are not satisfied. |
| 151 | 151 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
|
| 152 | 152 |
constraints have to be satisfied with equality, i.e. all demands |
| 153 | 153 |
have to be satisfied and all supplies have to be used. |
| 154 | 154 |
|
| 155 | 155 |
If you need the opposite inequalities in the supply/demand constraints |
| 156 | 156 |
(i.e. the total demand is less than the total supply and all the demands |
| 157 | 157 |
have to be satisfied while there could be supplies that are not used), |
| 158 | 158 |
then you could easily transform the problem to the above form by reversing |
| 159 | 159 |
the direction of the arcs and taking the negative of the supply values |
| 160 | 160 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
| 161 | 161 |
|
| 162 | 162 |
This algorithm either calculates a feasible circulation, or provides |
| 163 | 163 |
a \ref barrier() "barrier", which prooves that a feasible soultion |
| 164 | 164 |
cannot exist. |
| 165 | 165 |
|
| 166 | 166 |
Note that this algorithm also provides a feasible solution for the |
| 167 | 167 |
\ref min_cost_flow "minimum cost flow problem". |
| 168 | 168 |
|
| 169 | 169 |
\tparam GR The type of the digraph the algorithm runs on. |
| 170 | 170 |
\tparam LM The type of the lower bound map. The default |
| 171 | 171 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 172 | 172 |
\tparam UM The type of the upper bound (capacity) map. |
| 173 | 173 |
The default map type is \c LM. |
| 174 | 174 |
\tparam SM The type of the supply map. The default map type is |
| 175 | 175 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
| 176 | 176 |
*/ |
| 177 | 177 |
#ifdef DOXYGEN |
| 178 | 178 |
template< typename GR, |
| 179 | 179 |
typename LM, |
| 180 | 180 |
typename UM, |
| 181 | 181 |
typename SM, |
| 182 | 182 |
typename TR > |
| 183 | 183 |
#else |
| 184 | 184 |
template< typename GR, |
| 185 | 185 |
typename LM = typename GR::template ArcMap<int>, |
| 186 | 186 |
typename UM = LM, |
| 187 | 187 |
typename SM = typename GR::template NodeMap<typename UM::Value>, |
| 188 | 188 |
typename TR = CirculationDefaultTraits<GR, LM, UM, SM> > |
| 189 | 189 |
#endif |
| 190 | 190 |
class Circulation {
|
| 191 | 191 |
public: |
| 192 | 192 |
|
| 193 | 193 |
///The \ref CirculationDefaultTraits "traits class" of the algorithm. |
| 194 | 194 |
typedef TR Traits; |
| 195 | 195 |
///The type of the digraph the algorithm runs on. |
| 196 | 196 |
typedef typename Traits::Digraph Digraph; |
| 197 | 197 |
///The type of the flow and supply values. |
| 198 | 198 |
typedef typename Traits::Value Value; |
| 199 | 199 |
|
| 200 | 200 |
///The type of the lower bound map. |
| 201 | 201 |
typedef typename Traits::LowerMap LowerMap; |
| 202 | 202 |
///The type of the upper bound (capacity) map. |
| 203 | 203 |
typedef typename Traits::UpperMap UpperMap; |
| 204 | 204 |
///The type of the supply map. |
| 205 | 205 |
typedef typename Traits::SupplyMap SupplyMap; |
| 206 | 206 |
///The type of the flow map. |
| 207 | 207 |
typedef typename Traits::FlowMap FlowMap; |
| 208 | 208 |
|
| 209 | 209 |
///The type of the elevator. |
| 210 | 210 |
typedef typename Traits::Elevator Elevator; |
| 211 | 211 |
///The type of the tolerance. |
| 212 | 212 |
typedef typename Traits::Tolerance Tolerance; |
| 213 | 213 |
|
| 214 | 214 |
private: |
| 215 | 215 |
|
| 216 | 216 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
| 217 | 217 |
|
| 218 | 218 |
const Digraph &_g; |
| 219 | 219 |
int _node_num; |
| 220 | 220 |
|
| 221 | 221 |
const LowerMap *_lo; |
| 222 | 222 |
const UpperMap *_up; |
| 223 | 223 |
const SupplyMap *_supply; |
| 224 | 224 |
|
| 225 | 225 |
FlowMap *_flow; |
| 226 | 226 |
bool _local_flow; |
| 227 | 227 |
|
| 228 | 228 |
Elevator* _level; |
| 229 | 229 |
bool _local_level; |
| 230 | 230 |
|
| 231 | 231 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
| 232 | 232 |
ExcessMap* _excess; |
| 233 | 233 |
|
| 234 | 234 |
Tolerance _tol; |
| 235 | 235 |
int _el; |
| 236 | 236 |
|
| 237 | 237 |
public: |
| 238 | 238 |
|
| 239 | 239 |
typedef Circulation Create; |
| 240 | 240 |
|
| 241 | 241 |
///\name Named Template Parameters |
| 242 | 242 |
|
| 243 | 243 |
///@{
|
| 244 | 244 |
|
| 245 | 245 |
template <typename T> |
| 246 | 246 |
struct SetFlowMapTraits : public Traits {
|
| 247 | 247 |
typedef T FlowMap; |
| 248 | 248 |
static FlowMap *createFlowMap(const Digraph&) {
|
| 249 | 249 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
| 250 | 250 |
return 0; // ignore warnings |
| 251 | 251 |
} |
| 252 | 252 |
}; |
| 253 | 253 |
|
| 254 | 254 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 255 | 255 |
/// FlowMap type |
| 256 | 256 |
/// |
| 257 | 257 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
| 258 | 258 |
/// type. |
| 259 | 259 |
template <typename T> |
| 260 | 260 |
struct SetFlowMap |
| 261 | 261 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 262 | 262 |
SetFlowMapTraits<T> > {
|
| 263 | 263 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 264 | 264 |
SetFlowMapTraits<T> > Create; |
| 265 | 265 |
}; |
| 266 | 266 |
|
| 267 | 267 |
template <typename T> |
| 268 | 268 |
struct SetElevatorTraits : public Traits {
|
| 269 | 269 |
typedef T Elevator; |
| 270 | 270 |
static Elevator *createElevator(const Digraph&, int) {
|
| 271 | 271 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
| 272 | 272 |
return 0; // ignore warnings |
| 273 | 273 |
} |
| 274 | 274 |
}; |
| 275 | 275 |
|
| 276 | 276 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 277 | 277 |
/// Elevator type |
| 278 | 278 |
/// |
| 279 | 279 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 280 | 280 |
/// type. If this named parameter is used, then an external |
| 281 | 281 |
/// elevator object must be passed to the algorithm using the |
| 282 | 282 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
| 283 | 283 |
/// \ref run() or \ref init(). |
| 284 | 284 |
/// \sa SetStandardElevator |
| 285 | 285 |
template <typename T> |
| 286 | 286 |
struct SetElevator |
| 287 | 287 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 288 | 288 |
SetElevatorTraits<T> > {
|
| 289 | 289 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 290 | 290 |
SetElevatorTraits<T> > Create; |
| 291 | 291 |
}; |
| 292 | 292 |
|
| 293 | 293 |
template <typename T> |
| 294 | 294 |
struct SetStandardElevatorTraits : public Traits {
|
| 295 | 295 |
typedef T Elevator; |
| 296 | 296 |
static Elevator *createElevator(const Digraph& digraph, int max_level) {
|
| 297 | 297 |
return new Elevator(digraph, max_level); |
| 298 | 298 |
} |
| 299 | 299 |
}; |
| 300 | 300 |
|
| 301 | 301 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 302 | 302 |
/// Elevator type with automatic allocation |
| 303 | 303 |
/// |
| 304 | 304 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 305 | 305 |
/// type with automatic allocation. |
| 306 | 306 |
/// The Elevator should have standard constructor interface to be |
| 307 | 307 |
/// able to automatically created by the algorithm (i.e. the |
| 308 | 308 |
/// digraph and the maximum level should be passed to it). |
| 309 |
/// However an external elevator object could also be passed to the |
|
| 309 |
/// However, an external elevator object could also be passed to the |
|
| 310 | 310 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
| 311 | 311 |
/// before calling \ref run() or \ref init(). |
| 312 | 312 |
/// \sa SetElevator |
| 313 | 313 |
template <typename T> |
| 314 | 314 |
struct SetStandardElevator |
| 315 | 315 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 316 | 316 |
SetStandardElevatorTraits<T> > {
|
| 317 | 317 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| 318 | 318 |
SetStandardElevatorTraits<T> > Create; |
| 319 | 319 |
}; |
| 320 | 320 |
|
| 321 | 321 |
/// @} |
| 322 | 322 |
|
| 323 | 323 |
protected: |
| 324 | 324 |
|
| 325 | 325 |
Circulation() {}
|
| 326 | 326 |
|
| 327 | 327 |
public: |
| 328 | 328 |
|
| 329 | 329 |
/// Constructor. |
| 330 | 330 |
|
| 331 | 331 |
/// The constructor of the class. |
| 332 | 332 |
/// |
| 333 | 333 |
/// \param graph The digraph the algorithm runs on. |
| 334 | 334 |
/// \param lower The lower bounds for the flow values on the arcs. |
| 335 | 335 |
/// \param upper The upper bounds (capacities) for the flow values |
| 336 | 336 |
/// on the arcs. |
| 337 | 337 |
/// \param supply The signed supply values of the nodes. |
| 338 | 338 |
Circulation(const Digraph &graph, const LowerMap &lower, |
| 339 | 339 |
const UpperMap &upper, const SupplyMap &supply) |
| 340 | 340 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
| 341 | 341 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
| 342 | 342 |
_excess(NULL) {}
|
| 343 | 343 |
|
| 344 | 344 |
/// Destructor. |
| 345 | 345 |
~Circulation() {
|
| 346 | 346 |
destroyStructures(); |
| 347 | 347 |
} |
| 348 | 348 |
|
| 349 | 349 |
|
| 350 | 350 |
private: |
| 351 | 351 |
|
| 352 | 352 |
bool checkBoundMaps() {
|
| 353 | 353 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 354 | 354 |
if (_tol.less((*_up)[e], (*_lo)[e])) return false; |
| 355 | 355 |
} |
| 356 | 356 |
return true; |
| 357 | 357 |
} |
| 358 | 358 |
|
| 359 | 359 |
void createStructures() {
|
| 360 | 360 |
_node_num = _el = countNodes(_g); |
| 361 | 361 |
|
| 362 | 362 |
if (!_flow) {
|
| 363 | 363 |
_flow = Traits::createFlowMap(_g); |
| 364 | 364 |
_local_flow = true; |
| 365 | 365 |
} |
| 366 | 366 |
if (!_level) {
|
| 367 | 367 |
_level = Traits::createElevator(_g, _node_num); |
| 368 | 368 |
_local_level = true; |
| 369 | 369 |
} |
| 370 | 370 |
if (!_excess) {
|
| 371 | 371 |
_excess = new ExcessMap(_g); |
| 372 | 372 |
} |
| 373 | 373 |
} |
| 374 | 374 |
|
| 375 | 375 |
void destroyStructures() {
|
| 376 | 376 |
if (_local_flow) {
|
| 377 | 377 |
delete _flow; |
| 378 | 378 |
} |
| 379 | 379 |
if (_local_level) {
|
| 380 | 380 |
delete _level; |
| 381 | 381 |
} |
| 382 | 382 |
if (_excess) {
|
| 383 | 383 |
delete _excess; |
| 384 | 384 |
} |
| 385 | 385 |
} |
| 386 | 386 |
|
| 387 | 387 |
public: |
| 388 | 388 |
|
| 389 | 389 |
/// Sets the lower bound map. |
| 390 | 390 |
|
| 391 | 391 |
/// Sets the lower bound map. |
| 392 | 392 |
/// \return <tt>(*this)</tt> |
| 393 | 393 |
Circulation& lowerMap(const LowerMap& map) {
|
| 394 | 394 |
_lo = ↦ |
| 395 | 395 |
return *this; |
| 396 | 396 |
} |
| 397 | 397 |
|
| 398 | 398 |
/// Sets the upper bound (capacity) map. |
| 399 | 399 |
|
| 400 | 400 |
/// Sets the upper bound (capacity) map. |
| 401 | 401 |
/// \return <tt>(*this)</tt> |
| 402 | 402 |
Circulation& upperMap(const UpperMap& map) {
|
| 403 | 403 |
_up = ↦ |
| 404 | 404 |
return *this; |
| 405 | 405 |
} |
| 406 | 406 |
|
| 407 | 407 |
/// Sets the supply map. |
| 408 | 408 |
|
| 409 | 409 |
/// Sets the supply map. |
| 410 | 410 |
/// \return <tt>(*this)</tt> |
| 411 | 411 |
Circulation& supplyMap(const SupplyMap& map) {
|
| 412 | 412 |
_supply = ↦ |
| 413 | 413 |
return *this; |
| 414 | 414 |
} |
| 415 | 415 |
|
| 416 | 416 |
/// \brief Sets the flow map. |
| 417 | 417 |
/// |
| 418 | 418 |
/// Sets the flow map. |
| 419 | 419 |
/// If you don't use this function before calling \ref run() or |
| 420 | 420 |
/// \ref init(), an instance will be allocated automatically. |
| 421 | 421 |
/// The destructor deallocates this automatically allocated map, |
| 422 | 422 |
/// of course. |
| 423 | 423 |
/// \return <tt>(*this)</tt> |
| 424 | 424 |
Circulation& flowMap(FlowMap& map) {
|
| 425 | 425 |
if (_local_flow) {
|
| 426 | 426 |
delete _flow; |
| 427 | 427 |
_local_flow = false; |
| 428 | 428 |
} |
| 429 | 429 |
_flow = ↦ |
| 430 | 430 |
return *this; |
| 431 | 431 |
} |
| 432 | 432 |
|
| 433 | 433 |
/// \brief Sets the elevator used by algorithm. |
| 434 | 434 |
/// |
| 435 | 435 |
/// Sets the elevator used by algorithm. |
| 436 | 436 |
/// If you don't use this function before calling \ref run() or |
| 437 | 437 |
/// \ref init(), an instance will be allocated automatically. |
| 438 | 438 |
/// The destructor deallocates this automatically allocated elevator, |
| 439 | 439 |
/// of course. |
| 440 | 440 |
/// \return <tt>(*this)</tt> |
| 441 | 441 |
Circulation& elevator(Elevator& elevator) {
|
| 442 | 442 |
if (_local_level) {
|
| 443 | 443 |
delete _level; |
| 444 | 444 |
_local_level = false; |
| 445 | 445 |
} |
| 446 | 446 |
_level = &elevator; |
| 447 | 447 |
return *this; |
| 448 | 448 |
} |
| 449 | 449 |
|
| 450 | 450 |
/// \brief Returns a const reference to the elevator. |
| 451 | 451 |
/// |
| 452 | 452 |
/// Returns a const reference to the elevator. |
| 453 | 453 |
/// |
| 454 | 454 |
/// \pre Either \ref run() or \ref init() must be called before |
| 455 | 455 |
/// using this function. |
| 456 | 456 |
const Elevator& elevator() const {
|
| 457 | 457 |
return *_level; |
| 458 | 458 |
} |
| 459 | 459 |
|
| 460 | 460 |
/// \brief Sets the tolerance used by the algorithm. |
| 461 | 461 |
/// |
| 462 | 462 |
/// Sets the tolerance object used by the algorithm. |
| 463 | 463 |
/// \return <tt>(*this)</tt> |
| 464 | 464 |
Circulation& tolerance(const Tolerance& tolerance) {
|
| 465 | 465 |
_tol = tolerance; |
| 466 | 466 |
return *this; |
| 467 | 467 |
} |
| 468 | 468 |
|
| 469 | 469 |
/// \brief Returns a const reference to the tolerance. |
| 470 | 470 |
/// |
| 471 | 471 |
/// Returns a const reference to the tolerance object used by |
| 472 | 472 |
/// the algorithm. |
| 473 | 473 |
const Tolerance& tolerance() const {
|
| 474 | 474 |
return _tol; |
| 475 | 475 |
} |
| 476 | 476 |
|
| 477 | 477 |
/// \name Execution Control |
| 478 | 478 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
| 479 | 479 |
/// If you need better control on the initial solution or the execution, |
| 480 | 480 |
/// you have to call one of the \ref init() functions first, then |
| 481 | 481 |
/// the \ref start() function. |
| 482 | 482 |
|
| 483 | 483 |
///@{
|
| 484 | 484 |
|
| 485 | 485 |
/// Initializes the internal data structures. |
| 486 | 486 |
|
| 487 | 487 |
/// Initializes the internal data structures and sets all flow values |
| 488 | 488 |
/// to the lower bound. |
| 489 | 489 |
void init() |
| 490 | 490 |
{
|
| 491 | 491 |
LEMON_DEBUG(checkBoundMaps(), |
| 492 | 492 |
"Upper bounds must be greater or equal to the lower bounds"); |
| 493 | 493 |
|
| 494 | 494 |
createStructures(); |
| 495 | 495 |
|
| 496 | 496 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| 497 | 497 |
(*_excess)[n] = (*_supply)[n]; |
| 498 | 498 |
} |
| 499 | 499 |
|
| 500 | 500 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 501 | 501 |
_flow->set(e, (*_lo)[e]); |
| 502 | 502 |
(*_excess)[_g.target(e)] += (*_flow)[e]; |
| 503 | 503 |
(*_excess)[_g.source(e)] -= (*_flow)[e]; |
| 504 | 504 |
} |
| 505 | 505 |
|
| 506 | 506 |
// global relabeling tested, but in general case it provides |
| 507 | 507 |
// worse performance for random digraphs |
| 508 | 508 |
_level->initStart(); |
| 509 | 509 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 510 | 510 |
_level->initAddItem(n); |
| 511 | 511 |
_level->initFinish(); |
| 512 | 512 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 513 | 513 |
if(_tol.positive((*_excess)[n])) |
| 514 | 514 |
_level->activate(n); |
| 515 | 515 |
} |
| 516 | 516 |
|
| 517 | 517 |
/// Initializes the internal data structures using a greedy approach. |
| 518 | 518 |
|
| 519 | 519 |
/// Initializes the internal data structures using a greedy approach |
| 520 | 520 |
/// to construct the initial solution. |
| 521 | 521 |
void greedyInit() |
| 522 | 522 |
{
|
| 523 | 523 |
LEMON_DEBUG(checkBoundMaps(), |
| 524 | 524 |
"Upper bounds must be greater or equal to the lower bounds"); |
| 525 | 525 |
|
| 526 | 526 |
createStructures(); |
| 527 | 527 |
|
| 528 | 528 |
for(NodeIt n(_g);n!=INVALID;++n) {
|
| 529 | 529 |
(*_excess)[n] = (*_supply)[n]; |
| 530 | 530 |
} |
| 531 | 531 |
|
| 532 | 532 |
for (ArcIt e(_g);e!=INVALID;++e) {
|
| 533 | 533 |
if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) {
|
| 534 | 534 |
_flow->set(e, (*_up)[e]); |
| 535 | 535 |
(*_excess)[_g.target(e)] += (*_up)[e]; |
| 536 | 536 |
(*_excess)[_g.source(e)] -= (*_up)[e]; |
| 537 | 537 |
} else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) {
|
| 538 | 538 |
_flow->set(e, (*_lo)[e]); |
| 539 | 539 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
| 540 | 540 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
| 541 | 541 |
} else {
|
| 542 | 542 |
Value fc = -(*_excess)[_g.target(e)]; |
| 543 | 543 |
_flow->set(e, fc); |
| 544 | 544 |
(*_excess)[_g.target(e)] = 0; |
| 545 | 545 |
(*_excess)[_g.source(e)] -= fc; |
| 546 | 546 |
} |
| 547 | 547 |
} |
| 548 | 548 |
|
| 549 | 549 |
_level->initStart(); |
| 550 | 550 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 551 | 551 |
_level->initAddItem(n); |
| 552 | 552 |
_level->initFinish(); |
| 553 | 553 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 554 | 554 |
if(_tol.positive((*_excess)[n])) |
| 555 | 555 |
_level->activate(n); |
| 556 | 556 |
} |
| 557 | 557 |
|
| 558 | 558 |
///Executes the algorithm |
| 559 | 559 |
|
| 560 | 560 |
///This function executes the algorithm. |
| 561 | 561 |
/// |
| 562 | 562 |
///\return \c true if a feasible circulation is found. |
| 563 | 563 |
/// |
| 564 | 564 |
///\sa barrier() |
| 565 | 565 |
///\sa barrierMap() |
| 566 | 566 |
bool start() |
| 567 | 567 |
{
|
| 568 | 568 |
|
| 569 | 569 |
Node act; |
| 570 | 570 |
Node bact=INVALID; |
| 571 | 571 |
Node last_activated=INVALID; |
| 572 | 572 |
while((act=_level->highestActive())!=INVALID) {
|
| 573 | 573 |
int actlevel=(*_level)[act]; |
| 574 | 574 |
int mlevel=_node_num; |
| 575 | 575 |
Value exc=(*_excess)[act]; |
| 576 | 576 |
|
| 577 | 577 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) {
|
| 578 | 578 |
Node v = _g.target(e); |
| 579 | 579 |
Value fc=(*_up)[e]-(*_flow)[e]; |
| 580 | 580 |
if(!_tol.positive(fc)) continue; |
| 581 | 581 |
if((*_level)[v]<actlevel) {
|
| 582 | 582 |
if(!_tol.less(fc, exc)) {
|
| 583 | 583 |
_flow->set(e, (*_flow)[e] + exc); |
| 584 | 584 |
(*_excess)[v] += exc; |
| 585 | 585 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 586 | 586 |
_level->activate(v); |
| 587 | 587 |
(*_excess)[act] = 0; |
| 588 | 588 |
_level->deactivate(act); |
| 589 | 589 |
goto next_l; |
| 590 | 590 |
} |
| 591 | 591 |
else {
|
| 592 | 592 |
_flow->set(e, (*_up)[e]); |
| 593 | 593 |
(*_excess)[v] += fc; |
| 594 | 594 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 595 | 595 |
_level->activate(v); |
| 596 | 596 |
exc-=fc; |
| 597 | 597 |
} |
| 598 | 598 |
} |
| 599 | 599 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
| 600 | 600 |
} |
| 601 | 601 |
for(InArcIt e(_g,act);e!=INVALID; ++e) {
|
| 602 | 602 |
Node v = _g.source(e); |
| 603 | 603 |
Value fc=(*_flow)[e]-(*_lo)[e]; |
| 604 | 604 |
if(!_tol.positive(fc)) continue; |
| 605 | 605 |
if((*_level)[v]<actlevel) {
|
| 606 | 606 |
if(!_tol.less(fc, exc)) {
|
| 607 | 607 |
_flow->set(e, (*_flow)[e] - exc); |
| 608 | 608 |
(*_excess)[v] += exc; |
| 609 | 609 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 610 | 610 |
_level->activate(v); |
| 611 | 611 |
(*_excess)[act] = 0; |
| 612 | 612 |
_level->deactivate(act); |
| 613 | 613 |
goto next_l; |
| 614 | 614 |
} |
| 615 | 615 |
else {
|
| 616 | 616 |
_flow->set(e, (*_lo)[e]); |
| 617 | 617 |
(*_excess)[v] += fc; |
| 618 | 618 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
| 619 | 619 |
_level->activate(v); |
| 620 | 620 |
exc-=fc; |
| 621 | 621 |
} |
| 622 | 622 |
} |
| 623 | 623 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
| 624 | 624 |
} |
| 625 | 625 |
|
| 626 | 626 |
(*_excess)[act] = exc; |
| 627 | 627 |
if(!_tol.positive(exc)) _level->deactivate(act); |
| 628 | 628 |
else if(mlevel==_node_num) {
|
| 629 | 629 |
_level->liftHighestActiveToTop(); |
| 630 | 630 |
_el = _node_num; |
| 631 | 631 |
return false; |
| 632 | 632 |
} |
| 633 | 633 |
else {
|
| 634 | 634 |
_level->liftHighestActive(mlevel+1); |
| 635 | 635 |
if(_level->onLevel(actlevel)==0) {
|
| 636 | 636 |
_el = actlevel; |
| 637 | 637 |
return false; |
| 638 | 638 |
} |
| 639 | 639 |
} |
| 640 | 640 |
next_l: |
| 641 | 641 |
; |
| 642 | 642 |
} |
| 643 | 643 |
return true; |
| 644 | 644 |
} |
| 645 | 645 |
|
| 646 | 646 |
/// Runs the algorithm. |
| 647 | 647 |
|
| 648 | 648 |
/// This function runs the algorithm. |
| 649 | 649 |
/// |
| 650 | 650 |
/// \return \c true if a feasible circulation is found. |
| 651 | 651 |
/// |
| 652 | 652 |
/// \note Apart from the return value, c.run() is just a shortcut of |
| 653 | 653 |
/// the following code. |
| 654 | 654 |
/// \code |
| 655 | 655 |
/// c.greedyInit(); |
| 656 | 656 |
/// c.start(); |
| 657 | 657 |
/// \endcode |
| 658 | 658 |
bool run() {
|
| 659 | 659 |
greedyInit(); |
| 660 | 660 |
return start(); |
| 661 | 661 |
} |
| 662 | 662 |
|
| 663 | 663 |
/// @} |
| 664 | 664 |
|
| 665 | 665 |
/// \name Query Functions |
| 666 | 666 |
/// The results of the circulation algorithm can be obtained using |
| 667 | 667 |
/// these functions.\n |
| 668 | 668 |
/// Either \ref run() or \ref start() should be called before |
| 669 | 669 |
/// using them. |
| 670 | 670 |
|
| 671 | 671 |
///@{
|
| 672 | 672 |
|
| 673 | 673 |
/// \brief Returns the flow value on the given arc. |
| 674 | 674 |
/// |
| 675 | 675 |
/// Returns the flow value on the given arc. |
| 676 | 676 |
/// |
| 677 | 677 |
/// \pre Either \ref run() or \ref init() must be called before |
| 678 | 678 |
/// using this function. |
| 679 | 679 |
Value flow(const Arc& arc) const {
|
| 680 | 680 |
return (*_flow)[arc]; |
| 681 | 681 |
} |
| 682 | 682 |
|
| 683 | 683 |
/// \brief Returns a const reference to the flow map. |
| 684 | 684 |
/// |
| 685 | 685 |
/// Returns a const reference to the arc map storing the found flow. |
| 686 | 686 |
/// |
| 687 | 687 |
/// \pre Either \ref run() or \ref init() must be called before |
| 688 | 688 |
/// using this function. |
| 689 | 689 |
const FlowMap& flowMap() const {
|
| 690 | 690 |
return *_flow; |
| 691 | 691 |
} |
| 692 | 692 |
|
| 693 | 693 |
/** |
| 694 | 694 |
\brief Returns \c true if the given node is in a barrier. |
| 695 | 695 |
|
| 696 | 696 |
Barrier is a set \e B of nodes for which |
| 697 | 697 |
|
| 698 | 698 |
\f[ \sum_{uv\in A: u\in B} upper(uv) -
|
| 699 | 699 |
\sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f]
|
| 700 | 700 |
|
| 701 | 701 |
holds. The existence of a set with this property prooves that a |
| 702 | 702 |
feasible circualtion cannot exist. |
| 703 | 703 |
|
| 704 | 704 |
This function returns \c true if the given node is in the found |
| 705 | 705 |
barrier. If a feasible circulation is found, the function |
| 706 | 706 |
gives back \c false for every node. |
| 707 | 707 |
|
| 708 | 708 |
\pre Either \ref run() or \ref init() must be called before |
| 709 | 709 |
using this function. |
| 710 | 710 |
|
| 711 | 711 |
\sa barrierMap() |
| 712 | 712 |
\sa checkBarrier() |
| 713 | 713 |
*/ |
| 714 | 714 |
bool barrier(const Node& node) const |
| 715 | 715 |
{
|
| 716 | 716 |
return (*_level)[node] >= _el; |
| 717 | 717 |
} |
| 718 | 718 |
|
| 719 | 719 |
/// \brief Gives back a barrier. |
| 720 | 720 |
/// |
| 721 | 721 |
/// This function sets \c bar to the characteristic vector of the |
| 722 | 722 |
/// found barrier. \c bar should be a \ref concepts::WriteMap "writable" |
| 723 | 723 |
/// node map with \c bool (or convertible) value type. |
| 724 | 724 |
/// |
| 725 | 725 |
/// If a feasible circulation is found, the function gives back an |
| 726 | 726 |
/// empty set, so \c bar[v] will be \c false for all nodes \c v. |
| 727 | 727 |
/// |
| 728 | 728 |
/// \note This function calls \ref barrier() for each node, |
| 729 | 729 |
/// so it runs in O(n) time. |
| 730 | 730 |
/// |
| 731 | 731 |
/// \pre Either \ref run() or \ref init() must be called before |
| 732 | 732 |
/// using this function. |
| 733 | 733 |
/// |
| 734 | 734 |
/// \sa barrier() |
| 735 | 735 |
/// \sa checkBarrier() |
| 736 | 736 |
template<class BarrierMap> |
| 737 | 737 |
void barrierMap(BarrierMap &bar) const |
| 738 | 738 |
{
|
| 739 | 739 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 740 | 740 |
bar.set(n, (*_level)[n] >= _el); |
| 741 | 741 |
} |
| 742 | 742 |
|
| 743 | 743 |
/// @} |
| 744 | 744 |
|
| 745 | 745 |
/// \name Checker Functions |
| 746 | 746 |
/// The feasibility of the results can be checked using |
| 747 | 747 |
/// these functions.\n |
| 748 | 748 |
/// Either \ref run() or \ref start() should be called before |
| 749 | 749 |
/// using them. |
| 750 | 750 |
|
| 751 | 751 |
///@{
|
| 752 | 752 |
|
| 753 | 753 |
///Check if the found flow is a feasible circulation |
| 754 | 754 |
|
| 755 | 755 |
///Check if the found flow is a feasible circulation, |
| 756 | 756 |
/// |
| 757 | 757 |
bool checkFlow() const {
|
| 758 | 758 |
for(ArcIt e(_g);e!=INVALID;++e) |
| 759 | 759 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
| 760 | 760 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 761 | 761 |
{
|
| 762 | 762 |
Value dif=-(*_supply)[n]; |
| 763 | 763 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
| 764 | 764 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
| 765 | 765 |
if(_tol.negative(dif)) return false; |
| 766 | 766 |
} |
| 767 | 767 |
return true; |
| 768 | 768 |
} |
| 769 | 769 |
|
| 770 | 770 |
///Check whether or not the last execution provides a barrier |
| 771 | 771 |
|
| 772 | 772 |
///Check whether or not the last execution provides a barrier. |
| 773 | 773 |
///\sa barrier() |
| 774 | 774 |
///\sa barrierMap() |
| 775 | 775 |
bool checkBarrier() const |
| 776 | 776 |
{
|
| 777 | 777 |
Value delta=0; |
| 778 | 778 |
Value inf_cap = std::numeric_limits<Value>::has_infinity ? |
| 779 | 779 |
std::numeric_limits<Value>::infinity() : |
| 780 | 780 |
std::numeric_limits<Value>::max(); |
| 781 | 781 |
for(NodeIt n(_g);n!=INVALID;++n) |
| 782 | 782 |
if(barrier(n)) |
| 783 | 783 |
delta-=(*_supply)[n]; |
| 784 | 784 |
for(ArcIt e(_g);e!=INVALID;++e) |
| 785 | 785 |
{
|
| 786 | 786 |
Node s=_g.source(e); |
| 787 | 787 |
Node t=_g.target(e); |
| 788 | 788 |
if(barrier(s)&&!barrier(t)) {
|
| 789 | 789 |
if (_tol.less(inf_cap - (*_up)[e], delta)) return false; |
| 790 | 790 |
delta+=(*_up)[e]; |
| 791 | 791 |
} |
| 792 | 792 |
else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e]; |
| 793 | 793 |
} |
| 794 | 794 |
return _tol.negative(delta); |
| 795 | 795 |
} |
| 796 | 796 |
|
| 797 | 797 |
/// @} |
| 798 | 798 |
|
| 799 | 799 |
}; |
| 800 | 800 |
|
| 801 | 801 |
} |
| 802 | 802 |
|
| 803 | 803 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_CONCEPTS_DIGRAPH_H |
| 20 | 20 |
#define LEMON_CONCEPTS_DIGRAPH_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup graph_concepts |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief The concept of directed graphs. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
#include <lemon/concept_check.h> |
| 29 | 29 |
#include <lemon/concepts/graph_components.h> |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
namespace concepts {
|
| 33 | 33 |
|
| 34 | 34 |
/// \ingroup graph_concepts |
| 35 | 35 |
/// |
| 36 | 36 |
/// \brief Class describing the concept of directed graphs. |
| 37 | 37 |
/// |
| 38 | 38 |
/// This class describes the common interface of all directed |
| 39 | 39 |
/// graphs (digraphs). |
| 40 | 40 |
/// |
| 41 | 41 |
/// Like all concept classes, it only provides an interface |
| 42 | 42 |
/// without any sensible implementation. So any general algorithm for |
| 43 | 43 |
/// directed graphs should compile with this class, but it will not |
| 44 | 44 |
/// run properly, of course. |
| 45 | 45 |
/// An actual digraph implementation like \ref ListDigraph or |
| 46 | 46 |
/// \ref SmartDigraph may have additional functionality. |
| 47 | 47 |
/// |
| 48 | 48 |
/// \sa Graph |
| 49 | 49 |
class Digraph {
|
| 50 | 50 |
private: |
| 51 | 51 |
/// Diraphs are \e not copy constructible. Use DigraphCopy instead. |
| 52 | 52 |
Digraph(const Digraph &) {}
|
| 53 | 53 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
| 54 | 54 |
/// Use DigraphCopy instead. |
| 55 | 55 |
void operator=(const Digraph &) {}
|
| 56 | 56 |
|
| 57 | 57 |
public: |
| 58 | 58 |
/// Default constructor. |
| 59 | 59 |
Digraph() { }
|
| 60 | 60 |
|
| 61 | 61 |
/// The node type of the digraph |
| 62 | 62 |
|
| 63 | 63 |
/// This class identifies a node of the digraph. It also serves |
| 64 | 64 |
/// as a base class of the node iterators, |
| 65 | 65 |
/// thus they convert to this type. |
| 66 | 66 |
class Node {
|
| 67 | 67 |
public: |
| 68 | 68 |
/// Default constructor |
| 69 | 69 |
|
| 70 | 70 |
/// Default constructor. |
| 71 | 71 |
/// \warning It sets the object to an undefined value. |
| 72 | 72 |
Node() { }
|
| 73 | 73 |
/// Copy constructor. |
| 74 | 74 |
|
| 75 | 75 |
/// Copy constructor. |
| 76 | 76 |
/// |
| 77 | 77 |
Node(const Node&) { }
|
| 78 | 78 |
|
| 79 | 79 |
/// %Invalid constructor \& conversion. |
| 80 | 80 |
|
| 81 | 81 |
/// Initializes the object to be invalid. |
| 82 | 82 |
/// \sa Invalid for more details. |
| 83 | 83 |
Node(Invalid) { }
|
| 84 | 84 |
/// Equality operator |
| 85 | 85 |
|
| 86 | 86 |
/// Equality operator. |
| 87 | 87 |
/// |
| 88 | 88 |
/// Two iterators are equal if and only if they point to the |
| 89 | 89 |
/// same object or both are \c INVALID. |
| 90 | 90 |
bool operator==(Node) const { return true; }
|
| 91 | 91 |
|
| 92 | 92 |
/// Inequality operator |
| 93 | 93 |
|
| 94 | 94 |
/// Inequality operator. |
| 95 | 95 |
bool operator!=(Node) const { return true; }
|
| 96 | 96 |
|
| 97 | 97 |
/// Artificial ordering operator. |
| 98 | 98 |
|
| 99 | 99 |
/// Artificial ordering operator. |
| 100 | 100 |
/// |
| 101 | 101 |
/// \note This operator only has to define some strict ordering of |
| 102 | 102 |
/// the nodes; this order has nothing to do with the iteration |
| 103 | 103 |
/// ordering of the nodes. |
| 104 | 104 |
bool operator<(Node) const { return false; }
|
| 105 | 105 |
}; |
| 106 | 106 |
|
| 107 | 107 |
/// Iterator class for the nodes. |
| 108 | 108 |
|
| 109 | 109 |
/// This iterator goes through each node of the digraph. |
| 110 |
/// Its usage is quite simple, for example you can count the number |
|
| 110 |
/// Its usage is quite simple, for example, you can count the number |
|
| 111 | 111 |
/// of nodes in a digraph \c g of type \c %Digraph like this: |
| 112 | 112 |
///\code |
| 113 | 113 |
/// int count=0; |
| 114 | 114 |
/// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count; |
| 115 | 115 |
///\endcode |
| 116 | 116 |
class NodeIt : public Node {
|
| 117 | 117 |
public: |
| 118 | 118 |
/// Default constructor |
| 119 | 119 |
|
| 120 | 120 |
/// Default constructor. |
| 121 | 121 |
/// \warning It sets the iterator to an undefined value. |
| 122 | 122 |
NodeIt() { }
|
| 123 | 123 |
/// Copy constructor. |
| 124 | 124 |
|
| 125 | 125 |
/// Copy constructor. |
| 126 | 126 |
/// |
| 127 | 127 |
NodeIt(const NodeIt& n) : Node(n) { }
|
| 128 | 128 |
/// %Invalid constructor \& conversion. |
| 129 | 129 |
|
| 130 | 130 |
/// Initializes the iterator to be invalid. |
| 131 | 131 |
/// \sa Invalid for more details. |
| 132 | 132 |
NodeIt(Invalid) { }
|
| 133 | 133 |
/// Sets the iterator to the first node. |
| 134 | 134 |
|
| 135 | 135 |
/// Sets the iterator to the first node of the given digraph. |
| 136 | 136 |
/// |
| 137 | 137 |
explicit NodeIt(const Digraph&) { }
|
| 138 | 138 |
/// Sets the iterator to the given node. |
| 139 | 139 |
|
| 140 | 140 |
/// Sets the iterator to the given node of the given digraph. |
| 141 | 141 |
/// |
| 142 | 142 |
NodeIt(const Digraph&, const Node&) { }
|
| 143 | 143 |
/// Next node. |
| 144 | 144 |
|
| 145 | 145 |
/// Assign the iterator to the next node. |
| 146 | 146 |
/// |
| 147 | 147 |
NodeIt& operator++() { return *this; }
|
| 148 | 148 |
}; |
| 149 | 149 |
|
| 150 | 150 |
|
| 151 | 151 |
/// The arc type of the digraph |
| 152 | 152 |
|
| 153 | 153 |
/// This class identifies an arc of the digraph. It also serves |
| 154 | 154 |
/// as a base class of the arc iterators, |
| 155 | 155 |
/// thus they will convert to this type. |
| 156 | 156 |
class Arc {
|
| 157 | 157 |
public: |
| 158 | 158 |
/// Default constructor |
| 159 | 159 |
|
| 160 | 160 |
/// Default constructor. |
| 161 | 161 |
/// \warning It sets the object to an undefined value. |
| 162 | 162 |
Arc() { }
|
| 163 | 163 |
/// Copy constructor. |
| 164 | 164 |
|
| 165 | 165 |
/// Copy constructor. |
| 166 | 166 |
/// |
| 167 | 167 |
Arc(const Arc&) { }
|
| 168 | 168 |
/// %Invalid constructor \& conversion. |
| 169 | 169 |
|
| 170 | 170 |
/// Initializes the object to be invalid. |
| 171 | 171 |
/// \sa Invalid for more details. |
| 172 | 172 |
Arc(Invalid) { }
|
| 173 | 173 |
/// Equality operator |
| 174 | 174 |
|
| 175 | 175 |
/// Equality operator. |
| 176 | 176 |
/// |
| 177 | 177 |
/// Two iterators are equal if and only if they point to the |
| 178 | 178 |
/// same object or both are \c INVALID. |
| 179 | 179 |
bool operator==(Arc) const { return true; }
|
| 180 | 180 |
/// Inequality operator |
| 181 | 181 |
|
| 182 | 182 |
/// Inequality operator. |
| 183 | 183 |
bool operator!=(Arc) const { return true; }
|
| 184 | 184 |
|
| 185 | 185 |
/// Artificial ordering operator. |
| 186 | 186 |
|
| 187 | 187 |
/// Artificial ordering operator. |
| 188 | 188 |
/// |
| 189 | 189 |
/// \note This operator only has to define some strict ordering of |
| 190 | 190 |
/// the arcs; this order has nothing to do with the iteration |
| 191 | 191 |
/// ordering of the arcs. |
| 192 | 192 |
bool operator<(Arc) const { return false; }
|
| 193 | 193 |
}; |
| 194 | 194 |
|
| 195 | 195 |
/// Iterator class for the outgoing arcs of a node. |
| 196 | 196 |
|
| 197 | 197 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
| 198 | 198 |
/// of a digraph. |
| 199 |
/// Its usage is quite simple, for example you can count the number |
|
| 199 |
/// Its usage is quite simple, for example, you can count the number |
|
| 200 | 200 |
/// of outgoing arcs of a node \c n |
| 201 | 201 |
/// in a digraph \c g of type \c %Digraph as follows. |
| 202 | 202 |
///\code |
| 203 | 203 |
/// int count=0; |
| 204 | 204 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
| 205 | 205 |
///\endcode |
| 206 | 206 |
class OutArcIt : public Arc {
|
| 207 | 207 |
public: |
| 208 | 208 |
/// Default constructor |
| 209 | 209 |
|
| 210 | 210 |
/// Default constructor. |
| 211 | 211 |
/// \warning It sets the iterator to an undefined value. |
| 212 | 212 |
OutArcIt() { }
|
| 213 | 213 |
/// Copy constructor. |
| 214 | 214 |
|
| 215 | 215 |
/// Copy constructor. |
| 216 | 216 |
/// |
| 217 | 217 |
OutArcIt(const OutArcIt& e) : Arc(e) { }
|
| 218 | 218 |
/// %Invalid constructor \& conversion. |
| 219 | 219 |
|
| 220 | 220 |
/// Initializes the iterator to be invalid. |
| 221 | 221 |
/// \sa Invalid for more details. |
| 222 | 222 |
OutArcIt(Invalid) { }
|
| 223 | 223 |
/// Sets the iterator to the first outgoing arc. |
| 224 | 224 |
|
| 225 | 225 |
/// Sets the iterator to the first outgoing arc of the given node. |
| 226 | 226 |
/// |
| 227 | 227 |
OutArcIt(const Digraph&, const Node&) { }
|
| 228 | 228 |
/// Sets the iterator to the given arc. |
| 229 | 229 |
|
| 230 | 230 |
/// Sets the iterator to the given arc of the given digraph. |
| 231 | 231 |
/// |
| 232 | 232 |
OutArcIt(const Digraph&, const Arc&) { }
|
| 233 | 233 |
/// Next outgoing arc |
| 234 | 234 |
|
| 235 | 235 |
/// Assign the iterator to the next |
| 236 | 236 |
/// outgoing arc of the corresponding node. |
| 237 | 237 |
OutArcIt& operator++() { return *this; }
|
| 238 | 238 |
}; |
| 239 | 239 |
|
| 240 | 240 |
/// Iterator class for the incoming arcs of a node. |
| 241 | 241 |
|
| 242 | 242 |
/// This iterator goes trough the \e incoming arcs of a certain node |
| 243 | 243 |
/// of a digraph. |
| 244 |
/// Its usage is quite simple, for example you can count the number |
|
| 244 |
/// Its usage is quite simple, for example, you can count the number |
|
| 245 | 245 |
/// of incoming arcs of a node \c n |
| 246 | 246 |
/// in a digraph \c g of type \c %Digraph as follows. |
| 247 | 247 |
///\code |
| 248 | 248 |
/// int count=0; |
| 249 | 249 |
/// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
| 250 | 250 |
///\endcode |
| 251 | 251 |
class InArcIt : public Arc {
|
| 252 | 252 |
public: |
| 253 | 253 |
/// Default constructor |
| 254 | 254 |
|
| 255 | 255 |
/// Default constructor. |
| 256 | 256 |
/// \warning It sets the iterator to an undefined value. |
| 257 | 257 |
InArcIt() { }
|
| 258 | 258 |
/// Copy constructor. |
| 259 | 259 |
|
| 260 | 260 |
/// Copy constructor. |
| 261 | 261 |
/// |
| 262 | 262 |
InArcIt(const InArcIt& e) : Arc(e) { }
|
| 263 | 263 |
/// %Invalid constructor \& conversion. |
| 264 | 264 |
|
| 265 | 265 |
/// Initializes the iterator to be invalid. |
| 266 | 266 |
/// \sa Invalid for more details. |
| 267 | 267 |
InArcIt(Invalid) { }
|
| 268 | 268 |
/// Sets the iterator to the first incoming arc. |
| 269 | 269 |
|
| 270 | 270 |
/// Sets the iterator to the first incoming arc of the given node. |
| 271 | 271 |
/// |
| 272 | 272 |
InArcIt(const Digraph&, const Node&) { }
|
| 273 | 273 |
/// Sets the iterator to the given arc. |
| 274 | 274 |
|
| 275 | 275 |
/// Sets the iterator to the given arc of the given digraph. |
| 276 | 276 |
/// |
| 277 | 277 |
InArcIt(const Digraph&, const Arc&) { }
|
| 278 | 278 |
/// Next incoming arc |
| 279 | 279 |
|
| 280 | 280 |
/// Assign the iterator to the next |
| 281 | 281 |
/// incoming arc of the corresponding node. |
| 282 | 282 |
InArcIt& operator++() { return *this; }
|
| 283 | 283 |
}; |
| 284 | 284 |
|
| 285 | 285 |
/// Iterator class for the arcs. |
| 286 | 286 |
|
| 287 | 287 |
/// This iterator goes through each arc of the digraph. |
| 288 |
/// Its usage is quite simple, for example you can count the number |
|
| 288 |
/// Its usage is quite simple, for example, you can count the number |
|
| 289 | 289 |
/// of arcs in a digraph \c g of type \c %Digraph as follows: |
| 290 | 290 |
///\code |
| 291 | 291 |
/// int count=0; |
| 292 | 292 |
/// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count; |
| 293 | 293 |
///\endcode |
| 294 | 294 |
class ArcIt : public Arc {
|
| 295 | 295 |
public: |
| 296 | 296 |
/// Default constructor |
| 297 | 297 |
|
| 298 | 298 |
/// Default constructor. |
| 299 | 299 |
/// \warning It sets the iterator to an undefined value. |
| 300 | 300 |
ArcIt() { }
|
| 301 | 301 |
/// Copy constructor. |
| 302 | 302 |
|
| 303 | 303 |
/// Copy constructor. |
| 304 | 304 |
/// |
| 305 | 305 |
ArcIt(const ArcIt& e) : Arc(e) { }
|
| 306 | 306 |
/// %Invalid constructor \& conversion. |
| 307 | 307 |
|
| 308 | 308 |
/// Initializes the iterator to be invalid. |
| 309 | 309 |
/// \sa Invalid for more details. |
| 310 | 310 |
ArcIt(Invalid) { }
|
| 311 | 311 |
/// Sets the iterator to the first arc. |
| 312 | 312 |
|
| 313 | 313 |
/// Sets the iterator to the first arc of the given digraph. |
| 314 | 314 |
/// |
| 315 | 315 |
explicit ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
|
| 316 | 316 |
/// Sets the iterator to the given arc. |
| 317 | 317 |
|
| 318 | 318 |
/// Sets the iterator to the given arc of the given digraph. |
| 319 | 319 |
/// |
| 320 | 320 |
ArcIt(const Digraph&, const Arc&) { }
|
| 321 | 321 |
/// Next arc |
| 322 | 322 |
|
| 323 | 323 |
/// Assign the iterator to the next arc. |
| 324 | 324 |
/// |
| 325 | 325 |
ArcIt& operator++() { return *this; }
|
| 326 | 326 |
}; |
| 327 | 327 |
|
| 328 | 328 |
/// \brief The source node of the arc. |
| 329 | 329 |
/// |
| 330 | 330 |
/// Returns the source node of the given arc. |
| 331 | 331 |
Node source(Arc) const { return INVALID; }
|
| 332 | 332 |
|
| 333 | 333 |
/// \brief The target node of the arc. |
| 334 | 334 |
/// |
| 335 | 335 |
/// Returns the target node of the given arc. |
| 336 | 336 |
Node target(Arc) const { return INVALID; }
|
| 337 | 337 |
|
| 338 | 338 |
/// \brief The ID of the node. |
| 339 | 339 |
/// |
| 340 | 340 |
/// Returns the ID of the given node. |
| 341 | 341 |
int id(Node) const { return -1; }
|
| 342 | 342 |
|
| 343 | 343 |
/// \brief The ID of the arc. |
| 344 | 344 |
/// |
| 345 | 345 |
/// Returns the ID of the given arc. |
| 346 | 346 |
int id(Arc) const { return -1; }
|
| 347 | 347 |
|
| 348 | 348 |
/// \brief The node with the given ID. |
| 349 | 349 |
/// |
| 350 | 350 |
/// Returns the node with the given ID. |
| 351 | 351 |
/// \pre The argument should be a valid node ID in the digraph. |
| 352 | 352 |
Node nodeFromId(int) const { return INVALID; }
|
| 353 | 353 |
|
| 354 | 354 |
/// \brief The arc with the given ID. |
| 355 | 355 |
/// |
| 356 | 356 |
/// Returns the arc with the given ID. |
| 357 | 357 |
/// \pre The argument should be a valid arc ID in the digraph. |
| 358 | 358 |
Arc arcFromId(int) const { return INVALID; }
|
| 359 | 359 |
|
| 360 | 360 |
/// \brief An upper bound on the node IDs. |
| 361 | 361 |
/// |
| 362 | 362 |
/// Returns an upper bound on the node IDs. |
| 363 | 363 |
int maxNodeId() const { return -1; }
|
| 364 | 364 |
|
| 365 | 365 |
/// \brief An upper bound on the arc IDs. |
| 366 | 366 |
/// |
| 367 | 367 |
/// Returns an upper bound on the arc IDs. |
| 368 | 368 |
int maxArcId() const { return -1; }
|
| 369 | 369 |
|
| 370 | 370 |
void first(Node&) const {}
|
| 371 | 371 |
void next(Node&) const {}
|
| 372 | 372 |
|
| 373 | 373 |
void first(Arc&) const {}
|
| 374 | 374 |
void next(Arc&) const {}
|
| 375 | 375 |
|
| 376 | 376 |
|
| 377 | 377 |
void firstIn(Arc&, const Node&) const {}
|
| 378 | 378 |
void nextIn(Arc&) const {}
|
| 379 | 379 |
|
| 380 | 380 |
void firstOut(Arc&, const Node&) const {}
|
| 381 | 381 |
void nextOut(Arc&) const {}
|
| 382 | 382 |
|
| 383 | 383 |
// The second parameter is dummy. |
| 384 | 384 |
Node fromId(int, Node) const { return INVALID; }
|
| 385 | 385 |
// The second parameter is dummy. |
| 386 | 386 |
Arc fromId(int, Arc) const { return INVALID; }
|
| 387 | 387 |
|
| 388 | 388 |
// Dummy parameter. |
| 389 | 389 |
int maxId(Node) const { return -1; }
|
| 390 | 390 |
// Dummy parameter. |
| 391 | 391 |
int maxId(Arc) const { return -1; }
|
| 392 | 392 |
|
| 393 | 393 |
/// \brief The opposite node on the arc. |
| 394 | 394 |
/// |
| 395 | 395 |
/// Returns the opposite node on the given arc. |
| 396 | 396 |
Node oppositeNode(Node, Arc) const { return INVALID; }
|
| 397 | 397 |
|
| 398 | 398 |
/// \brief The base node of the iterator. |
| 399 | 399 |
/// |
| 400 | 400 |
/// Returns the base node of the given outgoing arc iterator |
| 401 | 401 |
/// (i.e. the source node of the corresponding arc). |
| 402 | 402 |
Node baseNode(OutArcIt) const { return INVALID; }
|
| 403 | 403 |
|
| 404 | 404 |
/// \brief The running node of the iterator. |
| 405 | 405 |
/// |
| 406 | 406 |
/// Returns the running node of the given outgoing arc iterator |
| 407 | 407 |
/// (i.e. the target node of the corresponding arc). |
| 408 | 408 |
Node runningNode(OutArcIt) const { return INVALID; }
|
| 409 | 409 |
|
| 410 | 410 |
/// \brief The base node of the iterator. |
| 411 | 411 |
/// |
| 412 | 412 |
/// Returns the base node of the given incomming arc iterator |
| 413 | 413 |
/// (i.e. the target node of the corresponding arc). |
| 414 | 414 |
Node baseNode(InArcIt) const { return INVALID; }
|
| 415 | 415 |
|
| 416 | 416 |
/// \brief The running node of the iterator. |
| 417 | 417 |
/// |
| 418 | 418 |
/// Returns the running node of the given incomming arc iterator |
| 419 | 419 |
/// (i.e. the source node of the corresponding arc). |
| 420 | 420 |
Node runningNode(InArcIt) const { return INVALID; }
|
| 421 | 421 |
|
| 422 | 422 |
/// \brief Standard graph map type for the nodes. |
| 423 | 423 |
/// |
| 424 | 424 |
/// Standard graph map type for the nodes. |
| 425 | 425 |
/// It conforms to the ReferenceMap concept. |
| 426 | 426 |
template<class T> |
| 427 | 427 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> {
|
| 428 | 428 |
public: |
| 429 | 429 |
|
| 430 | 430 |
/// Constructor |
| 431 | 431 |
explicit NodeMap(const Digraph&) { }
|
| 432 | 432 |
/// Constructor with given initial value |
| 433 | 433 |
NodeMap(const Digraph&, T) { }
|
| 434 | 434 |
|
| 435 | 435 |
private: |
| 436 | 436 |
///Copy constructor |
| 437 | 437 |
NodeMap(const NodeMap& nm) : |
| 438 | 438 |
ReferenceMap<Node, T, T&, const T&>(nm) { }
|
| 439 | 439 |
///Assignment operator |
| 440 | 440 |
template <typename CMap> |
| 441 | 441 |
NodeMap& operator=(const CMap&) {
|
| 442 | 442 |
checkConcept<ReadMap<Node, T>, CMap>(); |
| 443 | 443 |
return *this; |
| 444 | 444 |
} |
| 445 | 445 |
}; |
| 446 | 446 |
|
| 447 | 447 |
/// \brief Standard graph map type for the arcs. |
| 448 | 448 |
/// |
| 449 | 449 |
/// Standard graph map type for the arcs. |
| 450 | 450 |
/// It conforms to the ReferenceMap concept. |
| 451 | 451 |
template<class T> |
| 452 | 452 |
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> {
|
| 453 | 453 |
public: |
| 454 | 454 |
|
| 455 | 455 |
/// Constructor |
| 456 | 456 |
explicit ArcMap(const Digraph&) { }
|
| 457 | 457 |
/// Constructor with given initial value |
| 458 | 458 |
ArcMap(const Digraph&, T) { }
|
| 459 | 459 |
|
| 460 | 460 |
private: |
| 461 | 461 |
///Copy constructor |
| 462 | 462 |
ArcMap(const ArcMap& em) : |
| 463 | 463 |
ReferenceMap<Arc, T, T&, const T&>(em) { }
|
| 464 | 464 |
///Assignment operator |
| 465 | 465 |
template <typename CMap> |
| 466 | 466 |
ArcMap& operator=(const CMap&) {
|
| 467 | 467 |
checkConcept<ReadMap<Arc, T>, CMap>(); |
| 468 | 468 |
return *this; |
| 469 | 469 |
} |
| 470 | 470 |
}; |
| 471 | 471 |
|
| 472 | 472 |
template <typename _Digraph> |
| 473 | 473 |
struct Constraints {
|
| 474 | 474 |
void constraints() {
|
| 475 | 475 |
checkConcept<BaseDigraphComponent, _Digraph>(); |
| 476 | 476 |
checkConcept<IterableDigraphComponent<>, _Digraph>(); |
| 477 | 477 |
checkConcept<IDableDigraphComponent<>, _Digraph>(); |
| 478 | 478 |
checkConcept<MappableDigraphComponent<>, _Digraph>(); |
| 479 | 479 |
} |
| 480 | 480 |
}; |
| 481 | 481 |
|
| 482 | 482 |
}; |
| 483 | 483 |
|
| 484 | 484 |
} //namespace concepts |
| 485 | 485 |
} //namespace lemon |
| 486 | 486 |
|
| 487 | 487 |
|
| 488 | 488 |
|
| 489 | 489 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup graph_concepts |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief The concept of undirected graphs. |
| 22 | 22 |
|
| 23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_H |
| 24 | 24 |
#define LEMON_CONCEPTS_GRAPH_H |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/concepts/graph_components.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
#include <lemon/concept_check.h> |
| 29 | 29 |
#include <lemon/core.h> |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
namespace concepts {
|
| 33 | 33 |
|
| 34 | 34 |
/// \ingroup graph_concepts |
| 35 | 35 |
/// |
| 36 | 36 |
/// \brief Class describing the concept of undirected graphs. |
| 37 | 37 |
/// |
| 38 | 38 |
/// This class describes the common interface of all undirected |
| 39 | 39 |
/// graphs. |
| 40 | 40 |
/// |
| 41 | 41 |
/// Like all concept classes, it only provides an interface |
| 42 | 42 |
/// without any sensible implementation. So any general algorithm for |
| 43 | 43 |
/// undirected graphs should compile with this class, but it will not |
| 44 | 44 |
/// run properly, of course. |
| 45 | 45 |
/// An actual graph implementation like \ref ListGraph or |
| 46 | 46 |
/// \ref SmartGraph may have additional functionality. |
| 47 | 47 |
/// |
| 48 | 48 |
/// The undirected graphs also fulfill the concept of \ref Digraph |
| 49 | 49 |
/// "directed graphs", since each edge can also be regarded as two |
| 50 | 50 |
/// oppositely directed arcs. |
| 51 | 51 |
/// Undirected graphs provide an Edge type for the undirected edges and |
| 52 | 52 |
/// an Arc type for the directed arcs. The Arc type is convertible to |
| 53 | 53 |
/// Edge or inherited from it, i.e. the corresponding edge can be |
| 54 | 54 |
/// obtained from an arc. |
| 55 | 55 |
/// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt |
| 56 | 56 |
/// and ArcMap classes can be used for the arcs (just like in digraphs). |
| 57 | 57 |
/// Both InArcIt and OutArcIt iterates on the same edges but with |
| 58 | 58 |
/// opposite direction. IncEdgeIt also iterates on the same edges |
| 59 | 59 |
/// as OutArcIt and InArcIt, but it is not convertible to Arc, |
| 60 | 60 |
/// only to Edge. |
| 61 | 61 |
/// |
| 62 | 62 |
/// In LEMON, each undirected edge has an inherent orientation. |
| 63 | 63 |
/// Thus it can defined if an arc is forward or backward oriented in |
| 64 | 64 |
/// an undirected graph with respect to this default oriantation of |
| 65 | 65 |
/// the represented edge. |
| 66 | 66 |
/// With the direction() and direct() functions the direction |
| 67 | 67 |
/// of an arc can be obtained and set, respectively. |
| 68 | 68 |
/// |
| 69 | 69 |
/// Only nodes and edges can be added to or removed from an undirected |
| 70 | 70 |
/// graph and the corresponding arcs are added or removed automatically. |
| 71 | 71 |
/// |
| 72 | 72 |
/// \sa Digraph |
| 73 | 73 |
class Graph {
|
| 74 | 74 |
private: |
| 75 | 75 |
/// Graphs are \e not copy constructible. Use DigraphCopy instead. |
| 76 | 76 |
Graph(const Graph&) {}
|
| 77 | 77 |
/// \brief Assignment of a graph to another one is \e not allowed. |
| 78 | 78 |
/// Use DigraphCopy instead. |
| 79 | 79 |
void operator=(const Graph&) {}
|
| 80 | 80 |
|
| 81 | 81 |
public: |
| 82 | 82 |
/// Default constructor. |
| 83 | 83 |
Graph() {}
|
| 84 | 84 |
|
| 85 | 85 |
/// \brief Undirected graphs should be tagged with \c UndirectedTag. |
| 86 | 86 |
/// |
| 87 | 87 |
/// Undirected graphs should be tagged with \c UndirectedTag. |
| 88 | 88 |
/// |
| 89 | 89 |
/// This tag helps the \c enable_if technics to make compile time |
| 90 | 90 |
/// specializations for undirected graphs. |
| 91 | 91 |
typedef True UndirectedTag; |
| 92 | 92 |
|
| 93 | 93 |
/// The node type of the graph |
| 94 | 94 |
|
| 95 | 95 |
/// This class identifies a node of the graph. It also serves |
| 96 | 96 |
/// as a base class of the node iterators, |
| 97 | 97 |
/// thus they convert to this type. |
| 98 | 98 |
class Node {
|
| 99 | 99 |
public: |
| 100 | 100 |
/// Default constructor |
| 101 | 101 |
|
| 102 | 102 |
/// Default constructor. |
| 103 | 103 |
/// \warning It sets the object to an undefined value. |
| 104 | 104 |
Node() { }
|
| 105 | 105 |
/// Copy constructor. |
| 106 | 106 |
|
| 107 | 107 |
/// Copy constructor. |
| 108 | 108 |
/// |
| 109 | 109 |
Node(const Node&) { }
|
| 110 | 110 |
|
| 111 | 111 |
/// %Invalid constructor \& conversion. |
| 112 | 112 |
|
| 113 | 113 |
/// Initializes the object to be invalid. |
| 114 | 114 |
/// \sa Invalid for more details. |
| 115 | 115 |
Node(Invalid) { }
|
| 116 | 116 |
/// Equality operator |
| 117 | 117 |
|
| 118 | 118 |
/// Equality operator. |
| 119 | 119 |
/// |
| 120 | 120 |
/// Two iterators are equal if and only if they point to the |
| 121 | 121 |
/// same object or both are \c INVALID. |
| 122 | 122 |
bool operator==(Node) const { return true; }
|
| 123 | 123 |
|
| 124 | 124 |
/// Inequality operator |
| 125 | 125 |
|
| 126 | 126 |
/// Inequality operator. |
| 127 | 127 |
bool operator!=(Node) const { return true; }
|
| 128 | 128 |
|
| 129 | 129 |
/// Artificial ordering operator. |
| 130 | 130 |
|
| 131 | 131 |
/// Artificial ordering operator. |
| 132 | 132 |
/// |
| 133 | 133 |
/// \note This operator only has to define some strict ordering of |
| 134 | 134 |
/// the items; this order has nothing to do with the iteration |
| 135 | 135 |
/// ordering of the items. |
| 136 | 136 |
bool operator<(Node) const { return false; }
|
| 137 | 137 |
|
| 138 | 138 |
}; |
| 139 | 139 |
|
| 140 | 140 |
/// Iterator class for the nodes. |
| 141 | 141 |
|
| 142 | 142 |
/// This iterator goes through each node of the graph. |
| 143 |
/// Its usage is quite simple, for example you can count the number |
|
| 143 |
/// Its usage is quite simple, for example, you can count the number |
|
| 144 | 144 |
/// of nodes in a graph \c g of type \c %Graph like this: |
| 145 | 145 |
///\code |
| 146 | 146 |
/// int count=0; |
| 147 | 147 |
/// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; |
| 148 | 148 |
///\endcode |
| 149 | 149 |
class NodeIt : public Node {
|
| 150 | 150 |
public: |
| 151 | 151 |
/// Default constructor |
| 152 | 152 |
|
| 153 | 153 |
/// Default constructor. |
| 154 | 154 |
/// \warning It sets the iterator to an undefined value. |
| 155 | 155 |
NodeIt() { }
|
| 156 | 156 |
/// Copy constructor. |
| 157 | 157 |
|
| 158 | 158 |
/// Copy constructor. |
| 159 | 159 |
/// |
| 160 | 160 |
NodeIt(const NodeIt& n) : Node(n) { }
|
| 161 | 161 |
/// %Invalid constructor \& conversion. |
| 162 | 162 |
|
| 163 | 163 |
/// Initializes the iterator to be invalid. |
| 164 | 164 |
/// \sa Invalid for more details. |
| 165 | 165 |
NodeIt(Invalid) { }
|
| 166 | 166 |
/// Sets the iterator to the first node. |
| 167 | 167 |
|
| 168 | 168 |
/// Sets the iterator to the first node of the given digraph. |
| 169 | 169 |
/// |
| 170 | 170 |
explicit NodeIt(const Graph&) { }
|
| 171 | 171 |
/// Sets the iterator to the given node. |
| 172 | 172 |
|
| 173 | 173 |
/// Sets the iterator to the given node of the given digraph. |
| 174 | 174 |
/// |
| 175 | 175 |
NodeIt(const Graph&, const Node&) { }
|
| 176 | 176 |
/// Next node. |
| 177 | 177 |
|
| 178 | 178 |
/// Assign the iterator to the next node. |
| 179 | 179 |
/// |
| 180 | 180 |
NodeIt& operator++() { return *this; }
|
| 181 | 181 |
}; |
| 182 | 182 |
|
| 183 | 183 |
|
| 184 | 184 |
/// The edge type of the graph |
| 185 | 185 |
|
| 186 | 186 |
/// This class identifies an edge of the graph. It also serves |
| 187 | 187 |
/// as a base class of the edge iterators, |
| 188 | 188 |
/// thus they will convert to this type. |
| 189 | 189 |
class Edge {
|
| 190 | 190 |
public: |
| 191 | 191 |
/// Default constructor |
| 192 | 192 |
|
| 193 | 193 |
/// Default constructor. |
| 194 | 194 |
/// \warning It sets the object to an undefined value. |
| 195 | 195 |
Edge() { }
|
| 196 | 196 |
/// Copy constructor. |
| 197 | 197 |
|
| 198 | 198 |
/// Copy constructor. |
| 199 | 199 |
/// |
| 200 | 200 |
Edge(const Edge&) { }
|
| 201 | 201 |
/// %Invalid constructor \& conversion. |
| 202 | 202 |
|
| 203 | 203 |
/// Initializes the object to be invalid. |
| 204 | 204 |
/// \sa Invalid for more details. |
| 205 | 205 |
Edge(Invalid) { }
|
| 206 | 206 |
/// Equality operator |
| 207 | 207 |
|
| 208 | 208 |
/// Equality operator. |
| 209 | 209 |
/// |
| 210 | 210 |
/// Two iterators are equal if and only if they point to the |
| 211 | 211 |
/// same object or both are \c INVALID. |
| 212 | 212 |
bool operator==(Edge) const { return true; }
|
| 213 | 213 |
/// Inequality operator |
| 214 | 214 |
|
| 215 | 215 |
/// Inequality operator. |
| 216 | 216 |
bool operator!=(Edge) const { return true; }
|
| 217 | 217 |
|
| 218 | 218 |
/// Artificial ordering operator. |
| 219 | 219 |
|
| 220 | 220 |
/// Artificial ordering operator. |
| 221 | 221 |
/// |
| 222 | 222 |
/// \note This operator only has to define some strict ordering of |
| 223 | 223 |
/// the edges; this order has nothing to do with the iteration |
| 224 | 224 |
/// ordering of the edges. |
| 225 | 225 |
bool operator<(Edge) const { return false; }
|
| 226 | 226 |
}; |
| 227 | 227 |
|
| 228 | 228 |
/// Iterator class for the edges. |
| 229 | 229 |
|
| 230 | 230 |
/// This iterator goes through each edge of the graph. |
| 231 |
/// Its usage is quite simple, for example you can count the number |
|
| 231 |
/// Its usage is quite simple, for example, you can count the number |
|
| 232 | 232 |
/// of edges in a graph \c g of type \c %Graph as follows: |
| 233 | 233 |
///\code |
| 234 | 234 |
/// int count=0; |
| 235 | 235 |
/// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; |
| 236 | 236 |
///\endcode |
| 237 | 237 |
class EdgeIt : public Edge {
|
| 238 | 238 |
public: |
| 239 | 239 |
/// Default constructor |
| 240 | 240 |
|
| 241 | 241 |
/// Default constructor. |
| 242 | 242 |
/// \warning It sets the iterator to an undefined value. |
| 243 | 243 |
EdgeIt() { }
|
| 244 | 244 |
/// Copy constructor. |
| 245 | 245 |
|
| 246 | 246 |
/// Copy constructor. |
| 247 | 247 |
/// |
| 248 | 248 |
EdgeIt(const EdgeIt& e) : Edge(e) { }
|
| 249 | 249 |
/// %Invalid constructor \& conversion. |
| 250 | 250 |
|
| 251 | 251 |
/// Initializes the iterator to be invalid. |
| 252 | 252 |
/// \sa Invalid for more details. |
| 253 | 253 |
EdgeIt(Invalid) { }
|
| 254 | 254 |
/// Sets the iterator to the first edge. |
| 255 | 255 |
|
| 256 | 256 |
/// Sets the iterator to the first edge of the given graph. |
| 257 | 257 |
/// |
| 258 | 258 |
explicit EdgeIt(const Graph&) { }
|
| 259 | 259 |
/// Sets the iterator to the given edge. |
| 260 | 260 |
|
| 261 | 261 |
/// Sets the iterator to the given edge of the given graph. |
| 262 | 262 |
/// |
| 263 | 263 |
EdgeIt(const Graph&, const Edge&) { }
|
| 264 | 264 |
/// Next edge |
| 265 | 265 |
|
| 266 | 266 |
/// Assign the iterator to the next edge. |
| 267 | 267 |
/// |
| 268 | 268 |
EdgeIt& operator++() { return *this; }
|
| 269 | 269 |
}; |
| 270 | 270 |
|
| 271 | 271 |
/// Iterator class for the incident edges of a node. |
| 272 | 272 |
|
| 273 | 273 |
/// This iterator goes trough the incident undirected edges |
| 274 | 274 |
/// of a certain node of a graph. |
| 275 |
/// Its usage is quite simple, for example you can compute the |
|
| 275 |
/// Its usage is quite simple, for example, you can compute the |
|
| 276 | 276 |
/// degree (i.e. the number of incident edges) of a node \c n |
| 277 | 277 |
/// in a graph \c g of type \c %Graph as follows. |
| 278 | 278 |
/// |
| 279 | 279 |
///\code |
| 280 | 280 |
/// int count=0; |
| 281 | 281 |
/// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
| 282 | 282 |
///\endcode |
| 283 | 283 |
/// |
| 284 | 284 |
/// \warning Loop edges will be iterated twice. |
| 285 | 285 |
class IncEdgeIt : public Edge {
|
| 286 | 286 |
public: |
| 287 | 287 |
/// Default constructor |
| 288 | 288 |
|
| 289 | 289 |
/// Default constructor. |
| 290 | 290 |
/// \warning It sets the iterator to an undefined value. |
| 291 | 291 |
IncEdgeIt() { }
|
| 292 | 292 |
/// Copy constructor. |
| 293 | 293 |
|
| 294 | 294 |
/// Copy constructor. |
| 295 | 295 |
/// |
| 296 | 296 |
IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
|
| 297 | 297 |
/// %Invalid constructor \& conversion. |
| 298 | 298 |
|
| 299 | 299 |
/// Initializes the iterator to be invalid. |
| 300 | 300 |
/// \sa Invalid for more details. |
| 301 | 301 |
IncEdgeIt(Invalid) { }
|
| 302 | 302 |
/// Sets the iterator to the first incident edge. |
| 303 | 303 |
|
| 304 | 304 |
/// Sets the iterator to the first incident edge of the given node. |
| 305 | 305 |
/// |
| 306 | 306 |
IncEdgeIt(const Graph&, const Node&) { }
|
| 307 | 307 |
/// Sets the iterator to the given edge. |
| 308 | 308 |
|
| 309 | 309 |
/// Sets the iterator to the given edge of the given graph. |
| 310 | 310 |
/// |
| 311 | 311 |
IncEdgeIt(const Graph&, const Edge&) { }
|
| 312 | 312 |
/// Next incident edge |
| 313 | 313 |
|
| 314 | 314 |
/// Assign the iterator to the next incident edge |
| 315 | 315 |
/// of the corresponding node. |
| 316 | 316 |
IncEdgeIt& operator++() { return *this; }
|
| 317 | 317 |
}; |
| 318 | 318 |
|
| 319 | 319 |
/// The arc type of the graph |
| 320 | 320 |
|
| 321 | 321 |
/// This class identifies a directed arc of the graph. It also serves |
| 322 | 322 |
/// as a base class of the arc iterators, |
| 323 | 323 |
/// thus they will convert to this type. |
| 324 | 324 |
class Arc {
|
| 325 | 325 |
public: |
| 326 | 326 |
/// Default constructor |
| 327 | 327 |
|
| 328 | 328 |
/// Default constructor. |
| 329 | 329 |
/// \warning It sets the object to an undefined value. |
| 330 | 330 |
Arc() { }
|
| 331 | 331 |
/// Copy constructor. |
| 332 | 332 |
|
| 333 | 333 |
/// Copy constructor. |
| 334 | 334 |
/// |
| 335 | 335 |
Arc(const Arc&) { }
|
| 336 | 336 |
/// %Invalid constructor \& conversion. |
| 337 | 337 |
|
| 338 | 338 |
/// Initializes the object to be invalid. |
| 339 | 339 |
/// \sa Invalid for more details. |
| 340 | 340 |
Arc(Invalid) { }
|
| 341 | 341 |
/// Equality operator |
| 342 | 342 |
|
| 343 | 343 |
/// Equality operator. |
| 344 | 344 |
/// |
| 345 | 345 |
/// Two iterators are equal if and only if they point to the |
| 346 | 346 |
/// same object or both are \c INVALID. |
| 347 | 347 |
bool operator==(Arc) const { return true; }
|
| 348 | 348 |
/// Inequality operator |
| 349 | 349 |
|
| 350 | 350 |
/// Inequality operator. |
| 351 | 351 |
bool operator!=(Arc) const { return true; }
|
| 352 | 352 |
|
| 353 | 353 |
/// Artificial ordering operator. |
| 354 | 354 |
|
| 355 | 355 |
/// Artificial ordering operator. |
| 356 | 356 |
/// |
| 357 | 357 |
/// \note This operator only has to define some strict ordering of |
| 358 | 358 |
/// the arcs; this order has nothing to do with the iteration |
| 359 | 359 |
/// ordering of the arcs. |
| 360 | 360 |
bool operator<(Arc) const { return false; }
|
| 361 | 361 |
|
| 362 | 362 |
/// Converison to \c Edge |
| 363 | 363 |
|
| 364 | 364 |
/// Converison to \c Edge. |
| 365 | 365 |
/// |
| 366 | 366 |
operator Edge() const { return Edge(); }
|
| 367 | 367 |
}; |
| 368 | 368 |
|
| 369 | 369 |
/// Iterator class for the arcs. |
| 370 | 370 |
|
| 371 | 371 |
/// This iterator goes through each directed arc of the graph. |
| 372 |
/// Its usage is quite simple, for example you can count the number |
|
| 372 |
/// Its usage is quite simple, for example, you can count the number |
|
| 373 | 373 |
/// of arcs in a graph \c g of type \c %Graph as follows: |
| 374 | 374 |
///\code |
| 375 | 375 |
/// int count=0; |
| 376 | 376 |
/// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count; |
| 377 | 377 |
///\endcode |
| 378 | 378 |
class ArcIt : public Arc {
|
| 379 | 379 |
public: |
| 380 | 380 |
/// Default constructor |
| 381 | 381 |
|
| 382 | 382 |
/// Default constructor. |
| 383 | 383 |
/// \warning It sets the iterator to an undefined value. |
| 384 | 384 |
ArcIt() { }
|
| 385 | 385 |
/// Copy constructor. |
| 386 | 386 |
|
| 387 | 387 |
/// Copy constructor. |
| 388 | 388 |
/// |
| 389 | 389 |
ArcIt(const ArcIt& e) : Arc(e) { }
|
| 390 | 390 |
/// %Invalid constructor \& conversion. |
| 391 | 391 |
|
| 392 | 392 |
/// Initializes the iterator to be invalid. |
| 393 | 393 |
/// \sa Invalid for more details. |
| 394 | 394 |
ArcIt(Invalid) { }
|
| 395 | 395 |
/// Sets the iterator to the first arc. |
| 396 | 396 |
|
| 397 | 397 |
/// Sets the iterator to the first arc of the given graph. |
| 398 | 398 |
/// |
| 399 | 399 |
explicit ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
|
| 400 | 400 |
/// Sets the iterator to the given arc. |
| 401 | 401 |
|
| 402 | 402 |
/// Sets the iterator to the given arc of the given graph. |
| 403 | 403 |
/// |
| 404 | 404 |
ArcIt(const Graph&, const Arc&) { }
|
| 405 | 405 |
/// Next arc |
| 406 | 406 |
|
| 407 | 407 |
/// Assign the iterator to the next arc. |
| 408 | 408 |
/// |
| 409 | 409 |
ArcIt& operator++() { return *this; }
|
| 410 | 410 |
}; |
| 411 | 411 |
|
| 412 | 412 |
/// Iterator class for the outgoing arcs of a node. |
| 413 | 413 |
|
| 414 | 414 |
/// This iterator goes trough the \e outgoing directed arcs of a |
| 415 | 415 |
/// certain node of a graph. |
| 416 |
/// Its usage is quite simple, for example you can count the number |
|
| 416 |
/// Its usage is quite simple, for example, you can count the number |
|
| 417 | 417 |
/// of outgoing arcs of a node \c n |
| 418 | 418 |
/// in a graph \c g of type \c %Graph as follows. |
| 419 | 419 |
///\code |
| 420 | 420 |
/// int count=0; |
| 421 | 421 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
| 422 | 422 |
///\endcode |
| 423 | 423 |
class OutArcIt : public Arc {
|
| 424 | 424 |
public: |
| 425 | 425 |
/// Default constructor |
| 426 | 426 |
|
| 427 | 427 |
/// Default constructor. |
| 428 | 428 |
/// \warning It sets the iterator to an undefined value. |
| 429 | 429 |
OutArcIt() { }
|
| 430 | 430 |
/// Copy constructor. |
| 431 | 431 |
|
| 432 | 432 |
/// Copy constructor. |
| 433 | 433 |
/// |
| 434 | 434 |
OutArcIt(const OutArcIt& e) : Arc(e) { }
|
| 435 | 435 |
/// %Invalid constructor \& conversion. |
| 436 | 436 |
|
| 437 | 437 |
/// Initializes the iterator to be invalid. |
| 438 | 438 |
/// \sa Invalid for more details. |
| 439 | 439 |
OutArcIt(Invalid) { }
|
| 440 | 440 |
/// Sets the iterator to the first outgoing arc. |
| 441 | 441 |
|
| 442 | 442 |
/// Sets the iterator to the first outgoing arc of the given node. |
| 443 | 443 |
/// |
| 444 | 444 |
OutArcIt(const Graph& n, const Node& g) {
|
| 445 | 445 |
ignore_unused_variable_warning(n); |
| 446 | 446 |
ignore_unused_variable_warning(g); |
| 447 | 447 |
} |
| 448 | 448 |
/// Sets the iterator to the given arc. |
| 449 | 449 |
|
| 450 | 450 |
/// Sets the iterator to the given arc of the given graph. |
| 451 | 451 |
/// |
| 452 | 452 |
OutArcIt(const Graph&, const Arc&) { }
|
| 453 | 453 |
/// Next outgoing arc |
| 454 | 454 |
|
| 455 | 455 |
/// Assign the iterator to the next |
| 456 | 456 |
/// outgoing arc of the corresponding node. |
| 457 | 457 |
OutArcIt& operator++() { return *this; }
|
| 458 | 458 |
}; |
| 459 | 459 |
|
| 460 | 460 |
/// Iterator class for the incoming arcs of a node. |
| 461 | 461 |
|
| 462 | 462 |
/// This iterator goes trough the \e incoming directed arcs of a |
| 463 | 463 |
/// certain node of a graph. |
| 464 |
/// Its usage is quite simple, for example you can count the number |
|
| 464 |
/// Its usage is quite simple, for example, you can count the number |
|
| 465 | 465 |
/// of incoming arcs of a node \c n |
| 466 | 466 |
/// in a graph \c g of type \c %Graph as follows. |
| 467 | 467 |
///\code |
| 468 | 468 |
/// int count=0; |
| 469 | 469 |
/// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
| 470 | 470 |
///\endcode |
| 471 | 471 |
class InArcIt : public Arc {
|
| 472 | 472 |
public: |
| 473 | 473 |
/// Default constructor |
| 474 | 474 |
|
| 475 | 475 |
/// Default constructor. |
| 476 | 476 |
/// \warning It sets the iterator to an undefined value. |
| 477 | 477 |
InArcIt() { }
|
| 478 | 478 |
/// Copy constructor. |
| 479 | 479 |
|
| 480 | 480 |
/// Copy constructor. |
| 481 | 481 |
/// |
| 482 | 482 |
InArcIt(const InArcIt& e) : Arc(e) { }
|
| 483 | 483 |
/// %Invalid constructor \& conversion. |
| 484 | 484 |
|
| 485 | 485 |
/// Initializes the iterator to be invalid. |
| 486 | 486 |
/// \sa Invalid for more details. |
| 487 | 487 |
InArcIt(Invalid) { }
|
| 488 | 488 |
/// Sets the iterator to the first incoming arc. |
| 489 | 489 |
|
| 490 | 490 |
/// Sets the iterator to the first incoming arc of the given node. |
| 491 | 491 |
/// |
| 492 | 492 |
InArcIt(const Graph& g, const Node& n) {
|
| 493 | 493 |
ignore_unused_variable_warning(n); |
| 494 | 494 |
ignore_unused_variable_warning(g); |
| 495 | 495 |
} |
| 496 | 496 |
/// Sets the iterator to the given arc. |
| 497 | 497 |
|
| 498 | 498 |
/// Sets the iterator to the given arc of the given graph. |
| 499 | 499 |
/// |
| 500 | 500 |
InArcIt(const Graph&, const Arc&) { }
|
| 501 | 501 |
/// Next incoming arc |
| 502 | 502 |
|
| 503 | 503 |
/// Assign the iterator to the next |
| 504 | 504 |
/// incoming arc of the corresponding node. |
| 505 | 505 |
InArcIt& operator++() { return *this; }
|
| 506 | 506 |
}; |
| 507 | 507 |
|
| 508 | 508 |
/// \brief Standard graph map type for the nodes. |
| 509 | 509 |
/// |
| 510 | 510 |
/// Standard graph map type for the nodes. |
| 511 | 511 |
/// It conforms to the ReferenceMap concept. |
| 512 | 512 |
template<class T> |
| 513 | 513 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> |
| 514 | 514 |
{
|
| 515 | 515 |
public: |
| 516 | 516 |
|
| 517 | 517 |
/// Constructor |
| 518 | 518 |
explicit NodeMap(const Graph&) { }
|
| 519 | 519 |
/// Constructor with given initial value |
| 520 | 520 |
NodeMap(const Graph&, T) { }
|
| 521 | 521 |
|
| 522 | 522 |
private: |
| 523 | 523 |
///Copy constructor |
| 524 | 524 |
NodeMap(const NodeMap& nm) : |
| 525 | 525 |
ReferenceMap<Node, T, T&, const T&>(nm) { }
|
| 526 | 526 |
///Assignment operator |
| 527 | 527 |
template <typename CMap> |
| 528 | 528 |
NodeMap& operator=(const CMap&) {
|
| 529 | 529 |
checkConcept<ReadMap<Node, T>, CMap>(); |
| 530 | 530 |
return *this; |
| 531 | 531 |
} |
| 532 | 532 |
}; |
| 533 | 533 |
|
| 534 | 534 |
/// \brief Standard graph map type for the arcs. |
| 535 | 535 |
/// |
| 536 | 536 |
/// Standard graph map type for the arcs. |
| 537 | 537 |
/// It conforms to the ReferenceMap concept. |
| 538 | 538 |
template<class T> |
| 539 | 539 |
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> |
| 540 | 540 |
{
|
| 541 | 541 |
public: |
| 542 | 542 |
|
| 543 | 543 |
/// Constructor |
| 544 | 544 |
explicit ArcMap(const Graph&) { }
|
| 545 | 545 |
/// Constructor with given initial value |
| 546 | 546 |
ArcMap(const Graph&, T) { }
|
| 547 | 547 |
|
| 548 | 548 |
private: |
| 549 | 549 |
///Copy constructor |
| 550 | 550 |
ArcMap(const ArcMap& em) : |
| 551 | 551 |
ReferenceMap<Arc, T, T&, const T&>(em) { }
|
| 552 | 552 |
///Assignment operator |
| 553 | 553 |
template <typename CMap> |
| 554 | 554 |
ArcMap& operator=(const CMap&) {
|
| 555 | 555 |
checkConcept<ReadMap<Arc, T>, CMap>(); |
| 556 | 556 |
return *this; |
| 557 | 557 |
} |
| 558 | 558 |
}; |
| 559 | 559 |
|
| 560 | 560 |
/// \brief Standard graph map type for the edges. |
| 561 | 561 |
/// |
| 562 | 562 |
/// Standard graph map type for the edges. |
| 563 | 563 |
/// It conforms to the ReferenceMap concept. |
| 564 | 564 |
template<class T> |
| 565 | 565 |
class EdgeMap : public ReferenceMap<Edge, T, T&, const T&> |
| 566 | 566 |
{
|
| 567 | 567 |
public: |
| 568 | 568 |
|
| 569 | 569 |
/// Constructor |
| 570 | 570 |
explicit EdgeMap(const Graph&) { }
|
| 571 | 571 |
/// Constructor with given initial value |
| 572 | 572 |
EdgeMap(const Graph&, T) { }
|
| 573 | 573 |
|
| 574 | 574 |
private: |
| 575 | 575 |
///Copy constructor |
| 576 | 576 |
EdgeMap(const EdgeMap& em) : |
| 577 | 577 |
ReferenceMap<Edge, T, T&, const T&>(em) {}
|
| 578 | 578 |
///Assignment operator |
| 579 | 579 |
template <typename CMap> |
| 580 | 580 |
EdgeMap& operator=(const CMap&) {
|
| 581 | 581 |
checkConcept<ReadMap<Edge, T>, CMap>(); |
| 582 | 582 |
return *this; |
| 583 | 583 |
} |
| 584 | 584 |
}; |
| 585 | 585 |
|
| 586 | 586 |
/// \brief The first node of the edge. |
| 587 | 587 |
/// |
| 588 | 588 |
/// Returns the first node of the given edge. |
| 589 | 589 |
/// |
| 590 |
/// Edges don't have source and target nodes, however methods |
|
| 590 |
/// Edges don't have source and target nodes, however, methods |
|
| 591 | 591 |
/// u() and v() are used to query the two end-nodes of an edge. |
| 592 | 592 |
/// The orientation of an edge that arises this way is called |
| 593 | 593 |
/// the inherent direction, it is used to define the default |
| 594 | 594 |
/// direction for the corresponding arcs. |
| 595 | 595 |
/// \sa v() |
| 596 | 596 |
/// \sa direction() |
| 597 | 597 |
Node u(Edge) const { return INVALID; }
|
| 598 | 598 |
|
| 599 | 599 |
/// \brief The second node of the edge. |
| 600 | 600 |
/// |
| 601 | 601 |
/// Returns the second node of the given edge. |
| 602 | 602 |
/// |
| 603 |
/// Edges don't have source and target nodes, however methods |
|
| 603 |
/// Edges don't have source and target nodes, however, methods |
|
| 604 | 604 |
/// u() and v() are used to query the two end-nodes of an edge. |
| 605 | 605 |
/// The orientation of an edge that arises this way is called |
| 606 | 606 |
/// the inherent direction, it is used to define the default |
| 607 | 607 |
/// direction for the corresponding arcs. |
| 608 | 608 |
/// \sa u() |
| 609 | 609 |
/// \sa direction() |
| 610 | 610 |
Node v(Edge) const { return INVALID; }
|
| 611 | 611 |
|
| 612 | 612 |
/// \brief The source node of the arc. |
| 613 | 613 |
/// |
| 614 | 614 |
/// Returns the source node of the given arc. |
| 615 | 615 |
Node source(Arc) const { return INVALID; }
|
| 616 | 616 |
|
| 617 | 617 |
/// \brief The target node of the arc. |
| 618 | 618 |
/// |
| 619 | 619 |
/// Returns the target node of the given arc. |
| 620 | 620 |
Node target(Arc) const { return INVALID; }
|
| 621 | 621 |
|
| 622 | 622 |
/// \brief The ID of the node. |
| 623 | 623 |
/// |
| 624 | 624 |
/// Returns the ID of the given node. |
| 625 | 625 |
int id(Node) const { return -1; }
|
| 626 | 626 |
|
| 627 | 627 |
/// \brief The ID of the edge. |
| 628 | 628 |
/// |
| 629 | 629 |
/// Returns the ID of the given edge. |
| 630 | 630 |
int id(Edge) const { return -1; }
|
| 631 | 631 |
|
| 632 | 632 |
/// \brief The ID of the arc. |
| 633 | 633 |
/// |
| 634 | 634 |
/// Returns the ID of the given arc. |
| 635 | 635 |
int id(Arc) const { return -1; }
|
| 636 | 636 |
|
| 637 | 637 |
/// \brief The node with the given ID. |
| 638 | 638 |
/// |
| 639 | 639 |
/// Returns the node with the given ID. |
| 640 | 640 |
/// \pre The argument should be a valid node ID in the graph. |
| 641 | 641 |
Node nodeFromId(int) const { return INVALID; }
|
| 642 | 642 |
|
| 643 | 643 |
/// \brief The edge with the given ID. |
| 644 | 644 |
/// |
| 645 | 645 |
/// Returns the edge with the given ID. |
| 646 | 646 |
/// \pre The argument should be a valid edge ID in the graph. |
| 647 | 647 |
Edge edgeFromId(int) const { return INVALID; }
|
| 648 | 648 |
|
| 649 | 649 |
/// \brief The arc with the given ID. |
| 650 | 650 |
/// |
| 651 | 651 |
/// Returns the arc with the given ID. |
| 652 | 652 |
/// \pre The argument should be a valid arc ID in the graph. |
| 653 | 653 |
Arc arcFromId(int) const { return INVALID; }
|
| 654 | 654 |
|
| 655 | 655 |
/// \brief An upper bound on the node IDs. |
| 656 | 656 |
/// |
| 657 | 657 |
/// Returns an upper bound on the node IDs. |
| 658 | 658 |
int maxNodeId() const { return -1; }
|
| 659 | 659 |
|
| 660 | 660 |
/// \brief An upper bound on the edge IDs. |
| 661 | 661 |
/// |
| 662 | 662 |
/// Returns an upper bound on the edge IDs. |
| 663 | 663 |
int maxEdgeId() const { return -1; }
|
| 664 | 664 |
|
| 665 | 665 |
/// \brief An upper bound on the arc IDs. |
| 666 | 666 |
/// |
| 667 | 667 |
/// Returns an upper bound on the arc IDs. |
| 668 | 668 |
int maxArcId() const { return -1; }
|
| 669 | 669 |
|
| 670 | 670 |
/// \brief The direction of the arc. |
| 671 | 671 |
/// |
| 672 | 672 |
/// Returns \c true if the direction of the given arc is the same as |
| 673 | 673 |
/// the inherent orientation of the represented edge. |
| 674 | 674 |
bool direction(Arc) const { return true; }
|
| 675 | 675 |
|
| 676 | 676 |
/// \brief Direct the edge. |
| 677 | 677 |
/// |
| 678 | 678 |
/// Direct the given edge. The returned arc |
| 679 | 679 |
/// represents the given edge and its direction comes |
| 680 | 680 |
/// from the bool parameter. If it is \c true, then the direction |
| 681 | 681 |
/// of the arc is the same as the inherent orientation of the edge. |
| 682 | 682 |
Arc direct(Edge, bool) const {
|
| 683 | 683 |
return INVALID; |
| 684 | 684 |
} |
| 685 | 685 |
|
| 686 | 686 |
/// \brief Direct the edge. |
| 687 | 687 |
/// |
| 688 | 688 |
/// Direct the given edge. The returned arc represents the given |
| 689 | 689 |
/// edge and its source node is the given node. |
| 690 | 690 |
Arc direct(Edge, Node) const {
|
| 691 | 691 |
return INVALID; |
| 692 | 692 |
} |
| 693 | 693 |
|
| 694 | 694 |
/// \brief The oppositely directed arc. |
| 695 | 695 |
/// |
| 696 | 696 |
/// Returns the oppositely directed arc representing the same edge. |
| 697 | 697 |
Arc oppositeArc(Arc) const { return INVALID; }
|
| 698 | 698 |
|
| 699 | 699 |
/// \brief The opposite node on the edge. |
| 700 | 700 |
/// |
| 701 | 701 |
/// Returns the opposite node on the given edge. |
| 702 | 702 |
Node oppositeNode(Node, Edge) const { return INVALID; }
|
| 703 | 703 |
|
| 704 | 704 |
void first(Node&) const {}
|
| 705 | 705 |
void next(Node&) const {}
|
| 706 | 706 |
|
| 707 | 707 |
void first(Edge&) const {}
|
| 708 | 708 |
void next(Edge&) const {}
|
| 709 | 709 |
|
| 710 | 710 |
void first(Arc&) const {}
|
| 711 | 711 |
void next(Arc&) const {}
|
| 712 | 712 |
|
| 713 | 713 |
void firstOut(Arc&, Node) const {}
|
| 714 | 714 |
void nextOut(Arc&) const {}
|
| 715 | 715 |
|
| 716 | 716 |
void firstIn(Arc&, Node) const {}
|
| 717 | 717 |
void nextIn(Arc&) const {}
|
| 718 | 718 |
|
| 719 | 719 |
void firstInc(Edge &, bool &, const Node &) const {}
|
| 720 | 720 |
void nextInc(Edge &, bool &) const {}
|
| 721 | 721 |
|
| 722 | 722 |
// The second parameter is dummy. |
| 723 | 723 |
Node fromId(int, Node) const { return INVALID; }
|
| 724 | 724 |
// The second parameter is dummy. |
| 725 | 725 |
Edge fromId(int, Edge) const { return INVALID; }
|
| 726 | 726 |
// The second parameter is dummy. |
| 727 | 727 |
Arc fromId(int, Arc) const { return INVALID; }
|
| 728 | 728 |
|
| 729 | 729 |
// Dummy parameter. |
| 730 | 730 |
int maxId(Node) const { return -1; }
|
| 731 | 731 |
// Dummy parameter. |
| 732 | 732 |
int maxId(Edge) const { return -1; }
|
| 733 | 733 |
// Dummy parameter. |
| 734 | 734 |
int maxId(Arc) const { return -1; }
|
| 735 | 735 |
|
| 736 | 736 |
/// \brief The base node of the iterator. |
| 737 | 737 |
/// |
| 738 | 738 |
/// Returns the base node of the given incident edge iterator. |
| 739 | 739 |
Node baseNode(IncEdgeIt) const { return INVALID; }
|
| 740 | 740 |
|
| 741 | 741 |
/// \brief The running node of the iterator. |
| 742 | 742 |
/// |
| 743 | 743 |
/// Returns the running node of the given incident edge iterator. |
| 744 | 744 |
Node runningNode(IncEdgeIt) const { return INVALID; }
|
| 745 | 745 |
|
| 746 | 746 |
/// \brief The base node of the iterator. |
| 747 | 747 |
/// |
| 748 | 748 |
/// Returns the base node of the given outgoing arc iterator |
| 749 | 749 |
/// (i.e. the source node of the corresponding arc). |
| 750 | 750 |
Node baseNode(OutArcIt) const { return INVALID; }
|
| 751 | 751 |
|
| 752 | 752 |
/// \brief The running node of the iterator. |
| 753 | 753 |
/// |
| 754 | 754 |
/// Returns the running node of the given outgoing arc iterator |
| 755 | 755 |
/// (i.e. the target node of the corresponding arc). |
| 756 | 756 |
Node runningNode(OutArcIt) const { return INVALID; }
|
| 757 | 757 |
|
| 758 | 758 |
/// \brief The base node of the iterator. |
| 759 | 759 |
/// |
| 760 | 760 |
/// Returns the base node of the given incomming arc iterator |
| 761 | 761 |
/// (i.e. the target node of the corresponding arc). |
| 762 | 762 |
Node baseNode(InArcIt) const { return INVALID; }
|
| 763 | 763 |
|
| 764 | 764 |
/// \brief The running node of the iterator. |
| 765 | 765 |
/// |
| 766 | 766 |
/// Returns the running node of the given incomming arc iterator |
| 767 | 767 |
/// (i.e. the source node of the corresponding arc). |
| 768 | 768 |
Node runningNode(InArcIt) const { return INVALID; }
|
| 769 | 769 |
|
| 770 | 770 |
template <typename _Graph> |
| 771 | 771 |
struct Constraints {
|
| 772 | 772 |
void constraints() {
|
| 773 | 773 |
checkConcept<BaseGraphComponent, _Graph>(); |
| 774 | 774 |
checkConcept<IterableGraphComponent<>, _Graph>(); |
| 775 | 775 |
checkConcept<IDableGraphComponent<>, _Graph>(); |
| 776 | 776 |
checkConcept<MappableGraphComponent<>, _Graph>(); |
| 777 | 777 |
} |
| 778 | 778 |
}; |
| 779 | 779 |
|
| 780 | 780 |
}; |
| 781 | 781 |
|
| 782 | 782 |
} |
| 783 | 783 |
|
| 784 | 784 |
} |
| 785 | 785 |
|
| 786 | 786 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup graph_concepts |
| 20 | 20 |
///\file |
| 21 |
///\brief The |
|
| 21 |
///\brief The concepts of graph components. |
|
| 22 | 22 |
|
| 23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
| 24 | 24 |
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| 28 | 28 |
|
| 29 | 29 |
#include <lemon/bits/alteration_notifier.h> |
| 30 | 30 |
|
| 31 | 31 |
namespace lemon {
|
| 32 | 32 |
namespace concepts {
|
| 33 | 33 |
|
| 34 | 34 |
/// \brief Concept class for \c Node, \c Arc and \c Edge types. |
| 35 | 35 |
/// |
| 36 | 36 |
/// This class describes the concept of \c Node, \c Arc and \c Edge |
| 37 | 37 |
/// subtypes of digraph and graph types. |
| 38 | 38 |
/// |
| 39 | 39 |
/// \note This class is a template class so that we can use it to |
| 40 | 40 |
/// create graph skeleton classes. The reason for this is that \c Node |
| 41 | 41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
| 42 | 42 |
/// base class. For \c Node you should instantiate it with character |
| 43 | 43 |
/// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'. |
| 44 | 44 |
#ifndef DOXYGEN |
| 45 | 45 |
template <char sel = '0'> |
| 46 | 46 |
#endif |
| 47 | 47 |
class GraphItem {
|
| 48 | 48 |
public: |
| 49 | 49 |
/// \brief Default constructor. |
| 50 | 50 |
/// |
| 51 | 51 |
/// Default constructor. |
| 52 | 52 |
/// \warning The default constructor is not required to set |
| 53 | 53 |
/// the item to some well-defined value. So you should consider it |
| 54 | 54 |
/// as uninitialized. |
| 55 | 55 |
GraphItem() {}
|
| 56 | 56 |
|
| 57 | 57 |
/// \brief Copy constructor. |
| 58 | 58 |
/// |
| 59 | 59 |
/// Copy constructor. |
| 60 | 60 |
GraphItem(const GraphItem &) {}
|
| 61 | 61 |
|
| 62 | 62 |
/// \brief Constructor for conversion from \c INVALID. |
| 63 | 63 |
/// |
| 64 | 64 |
/// Constructor for conversion from \c INVALID. |
| 65 | 65 |
/// It initializes the item to be invalid. |
| 66 | 66 |
/// \sa Invalid for more details. |
| 67 | 67 |
GraphItem(Invalid) {}
|
| 68 | 68 |
|
| 69 | 69 |
/// \brief Assignment operator. |
| 70 | 70 |
/// |
| 71 | 71 |
/// Assignment operator for the item. |
| 72 | 72 |
GraphItem& operator=(const GraphItem&) { return *this; }
|
| 73 | 73 |
|
| 74 | 74 |
/// \brief Assignment operator for INVALID. |
| 75 | 75 |
/// |
| 76 | 76 |
/// This operator makes the item invalid. |
| 77 | 77 |
GraphItem& operator=(Invalid) { return *this; }
|
| 78 | 78 |
|
| 79 | 79 |
/// \brief Equality operator. |
| 80 | 80 |
/// |
| 81 | 81 |
/// Equality operator. |
| 82 | 82 |
bool operator==(const GraphItem&) const { return false; }
|
| 83 | 83 |
|
| 84 | 84 |
/// \brief Inequality operator. |
| 85 | 85 |
/// |
| 86 | 86 |
/// Inequality operator. |
| 87 | 87 |
bool operator!=(const GraphItem&) const { return false; }
|
| 88 | 88 |
|
| 89 | 89 |
/// \brief Ordering operator. |
| 90 | 90 |
/// |
| 91 | 91 |
/// This operator defines an ordering of the items. |
| 92 | 92 |
/// It makes possible to use graph item types as key types in |
| 93 | 93 |
/// associative containers (e.g. \c std::map). |
| 94 | 94 |
/// |
| 95 | 95 |
/// \note This operator only has to define some strict ordering of |
| 96 | 96 |
/// the items; this order has nothing to do with the iteration |
| 97 | 97 |
/// ordering of the items. |
| 98 | 98 |
bool operator<(const GraphItem&) const { return false; }
|
| 99 | 99 |
|
| 100 | 100 |
template<typename _GraphItem> |
| 101 | 101 |
struct Constraints {
|
| 102 | 102 |
void constraints() {
|
| 103 | 103 |
_GraphItem i1; |
| 104 | 104 |
i1=INVALID; |
| 105 | 105 |
_GraphItem i2 = i1; |
| 106 | 106 |
_GraphItem i3 = INVALID; |
| 107 | 107 |
|
| 108 | 108 |
i1 = i2 = i3; |
| 109 | 109 |
|
| 110 | 110 |
bool b; |
| 111 | 111 |
b = (ia == ib) && (ia != ib); |
| 112 | 112 |
b = (ia == INVALID) && (ib != INVALID); |
| 113 | 113 |
b = (ia < ib); |
| 114 | 114 |
} |
| 115 | 115 |
|
| 116 | 116 |
const _GraphItem &ia; |
| 117 | 117 |
const _GraphItem &ib; |
| 118 | 118 |
}; |
| 119 | 119 |
}; |
| 120 | 120 |
|
| 121 | 121 |
/// \brief Base skeleton class for directed graphs. |
| 122 | 122 |
/// |
| 123 | 123 |
/// This class describes the base interface of directed graph types. |
| 124 | 124 |
/// All digraph %concepts have to conform to this class. |
| 125 | 125 |
/// It just provides types for nodes and arcs and functions |
| 126 | 126 |
/// to get the source and the target nodes of arcs. |
| 127 | 127 |
class BaseDigraphComponent {
|
| 128 | 128 |
public: |
| 129 | 129 |
|
| 130 | 130 |
typedef BaseDigraphComponent Digraph; |
| 131 | 131 |
|
| 132 | 132 |
/// \brief Node class of the digraph. |
| 133 | 133 |
/// |
| 134 | 134 |
/// This class represents the nodes of the digraph. |
| 135 | 135 |
typedef GraphItem<'n'> Node; |
| 136 | 136 |
|
| 137 | 137 |
/// \brief Arc class of the digraph. |
| 138 | 138 |
/// |
| 139 | 139 |
/// This class represents the arcs of the digraph. |
| 140 | 140 |
typedef GraphItem<'a'> Arc; |
| 141 | 141 |
|
| 142 | 142 |
/// \brief Return the source node of an arc. |
| 143 | 143 |
/// |
| 144 | 144 |
/// This function returns the source node of an arc. |
| 145 | 145 |
Node source(const Arc&) const { return INVALID; }
|
| 146 | 146 |
|
| 147 | 147 |
/// \brief Return the target node of an arc. |
| 148 | 148 |
/// |
| 149 | 149 |
/// This function returns the target node of an arc. |
| 150 | 150 |
Node target(const Arc&) const { return INVALID; }
|
| 151 | 151 |
|
| 152 | 152 |
/// \brief Return the opposite node on the given arc. |
| 153 | 153 |
/// |
| 154 | 154 |
/// This function returns the opposite node on the given arc. |
| 155 | 155 |
Node oppositeNode(const Node&, const Arc&) const {
|
| 156 | 156 |
return INVALID; |
| 157 | 157 |
} |
| 158 | 158 |
|
| 159 | 159 |
template <typename _Digraph> |
| 160 | 160 |
struct Constraints {
|
| 161 | 161 |
typedef typename _Digraph::Node Node; |
| 162 | 162 |
typedef typename _Digraph::Arc Arc; |
| 163 | 163 |
|
| 164 | 164 |
void constraints() {
|
| 165 | 165 |
checkConcept<GraphItem<'n'>, Node>(); |
| 166 | 166 |
checkConcept<GraphItem<'a'>, Arc>(); |
| 167 | 167 |
{
|
| 168 | 168 |
Node n; |
| 169 | 169 |
Arc e(INVALID); |
| 170 | 170 |
n = digraph.source(e); |
| 171 | 171 |
n = digraph.target(e); |
| 172 | 172 |
n = digraph.oppositeNode(n, e); |
| 173 | 173 |
} |
| 174 | 174 |
} |
| 175 | 175 |
|
| 176 | 176 |
const _Digraph& digraph; |
| 177 | 177 |
}; |
| 178 | 178 |
}; |
| 179 | 179 |
|
| 180 | 180 |
/// \brief Base skeleton class for undirected graphs. |
| 181 | 181 |
/// |
| 182 | 182 |
/// This class describes the base interface of undirected graph types. |
| 183 | 183 |
/// All graph %concepts have to conform to this class. |
| 184 | 184 |
/// It extends the interface of \ref BaseDigraphComponent with an |
| 185 | 185 |
/// \c Edge type and functions to get the end nodes of edges, |
| 186 | 186 |
/// to convert from arcs to edges and to get both direction of edges. |
| 187 | 187 |
class BaseGraphComponent : public BaseDigraphComponent {
|
| 188 | 188 |
public: |
| 189 | 189 |
|
| 190 | 190 |
typedef BaseGraphComponent Graph; |
| 191 | 191 |
|
| 192 | 192 |
typedef BaseDigraphComponent::Node Node; |
| 193 | 193 |
typedef BaseDigraphComponent::Arc Arc; |
| 194 | 194 |
|
| 195 | 195 |
/// \brief Undirected edge class of the graph. |
| 196 | 196 |
/// |
| 197 | 197 |
/// This class represents the undirected edges of the graph. |
| 198 | 198 |
/// Undirected graphs can be used as directed graphs, each edge is |
| 199 | 199 |
/// represented by two opposite directed arcs. |
| 200 | 200 |
class Edge : public GraphItem<'e'> {
|
| 201 | 201 |
typedef GraphItem<'e'> Parent; |
| 202 | 202 |
|
| 203 | 203 |
public: |
| 204 | 204 |
/// \brief Default constructor. |
| 205 | 205 |
/// |
| 206 | 206 |
/// Default constructor. |
| 207 | 207 |
/// \warning The default constructor is not required to set |
| 208 | 208 |
/// the item to some well-defined value. So you should consider it |
| 209 | 209 |
/// as uninitialized. |
| 210 | 210 |
Edge() {}
|
| 211 | 211 |
|
| 212 | 212 |
/// \brief Copy constructor. |
| 213 | 213 |
/// |
| 214 | 214 |
/// Copy constructor. |
| 215 | 215 |
Edge(const Edge &) : Parent() {}
|
| 216 | 216 |
|
| 217 | 217 |
/// \brief Constructor for conversion from \c INVALID. |
| 218 | 218 |
/// |
| 219 | 219 |
/// Constructor for conversion from \c INVALID. |
| 220 | 220 |
/// It initializes the item to be invalid. |
| 221 | 221 |
/// \sa Invalid for more details. |
| 222 | 222 |
Edge(Invalid) {}
|
| 223 | 223 |
|
| 224 | 224 |
/// \brief Constructor for conversion from an arc. |
| 225 | 225 |
/// |
| 226 | 226 |
/// Constructor for conversion from an arc. |
| 227 | 227 |
/// Besides the core graph item functionality each arc should |
| 228 | 228 |
/// be convertible to the represented edge. |
| 229 | 229 |
Edge(const Arc&) {}
|
| 230 | 230 |
}; |
| 231 | 231 |
|
| 232 | 232 |
/// \brief Return one end node of an edge. |
| 233 | 233 |
/// |
| 234 | 234 |
/// This function returns one end node of an edge. |
| 235 | 235 |
Node u(const Edge&) const { return INVALID; }
|
| 236 | 236 |
|
| 237 | 237 |
/// \brief Return the other end node of an edge. |
| 238 | 238 |
/// |
| 239 | 239 |
/// This function returns the other end node of an edge. |
| 240 | 240 |
Node v(const Edge&) const { return INVALID; }
|
| 241 | 241 |
|
| 242 | 242 |
/// \brief Return a directed arc related to an edge. |
| 243 | 243 |
/// |
| 244 | 244 |
/// This function returns a directed arc from its direction and the |
| 245 | 245 |
/// represented edge. |
| 246 | 246 |
Arc direct(const Edge&, bool) const { return INVALID; }
|
| 247 | 247 |
|
| 248 | 248 |
/// \brief Return a directed arc related to an edge. |
| 249 | 249 |
/// |
| 250 | 250 |
/// This function returns a directed arc from its source node and the |
| 251 | 251 |
/// represented edge. |
| 252 | 252 |
Arc direct(const Edge&, const Node&) const { return INVALID; }
|
| 253 | 253 |
|
| 254 | 254 |
/// \brief Return the direction of the arc. |
| 255 | 255 |
/// |
| 256 | 256 |
/// Returns the direction of the arc. Each arc represents an |
| 257 | 257 |
/// edge with a direction. It gives back the |
| 258 | 258 |
/// direction. |
| 259 | 259 |
bool direction(const Arc&) const { return true; }
|
| 260 | 260 |
|
| 261 | 261 |
/// \brief Return the opposite arc. |
| 262 | 262 |
/// |
| 263 | 263 |
/// This function returns the opposite arc, i.e. the arc representing |
| 264 | 264 |
/// the same edge and has opposite direction. |
| 265 | 265 |
Arc oppositeArc(const Arc&) const { return INVALID; }
|
| 266 | 266 |
|
| 267 | 267 |
template <typename _Graph> |
| 268 | 268 |
struct Constraints {
|
| 269 | 269 |
typedef typename _Graph::Node Node; |
| 270 | 270 |
typedef typename _Graph::Arc Arc; |
| 271 | 271 |
typedef typename _Graph::Edge Edge; |
| 272 | 272 |
|
| 273 | 273 |
void constraints() {
|
| 274 | 274 |
checkConcept<BaseDigraphComponent, _Graph>(); |
| 275 | 275 |
checkConcept<GraphItem<'e'>, Edge>(); |
| 276 | 276 |
{
|
| 277 | 277 |
Node n; |
| 278 | 278 |
Edge ue(INVALID); |
| 279 | 279 |
Arc e; |
| 280 | 280 |
n = graph.u(ue); |
| 281 | 281 |
n = graph.v(ue); |
| 282 | 282 |
e = graph.direct(ue, true); |
| 283 | 283 |
e = graph.direct(ue, false); |
| 284 | 284 |
e = graph.direct(ue, n); |
| 285 | 285 |
e = graph.oppositeArc(e); |
| 286 | 286 |
ue = e; |
| 287 | 287 |
bool d = graph.direction(e); |
| 288 | 288 |
ignore_unused_variable_warning(d); |
| 289 | 289 |
} |
| 290 | 290 |
} |
| 291 | 291 |
|
| 292 | 292 |
const _Graph& graph; |
| 293 | 293 |
}; |
| 294 | 294 |
|
| 295 | 295 |
}; |
| 296 | 296 |
|
| 297 | 297 |
/// \brief Skeleton class for \e idable directed graphs. |
| 298 | 298 |
/// |
| 299 | 299 |
/// This class describes the interface of \e idable directed graphs. |
| 300 | 300 |
/// It extends \ref BaseDigraphComponent with the core ID functions. |
| 301 | 301 |
/// The ids of the items must be unique and immutable. |
| 302 | 302 |
/// This concept is part of the Digraph concept. |
| 303 | 303 |
template <typename BAS = BaseDigraphComponent> |
| 304 | 304 |
class IDableDigraphComponent : public BAS {
|
| 305 | 305 |
public: |
| 306 | 306 |
|
| 307 | 307 |
typedef BAS Base; |
| 308 | 308 |
typedef typename Base::Node Node; |
| 309 | 309 |
typedef typename Base::Arc Arc; |
| 310 | 310 |
|
| 311 | 311 |
/// \brief Return a unique integer id for the given node. |
| 312 | 312 |
/// |
| 313 | 313 |
/// This function returns a unique integer id for the given node. |
| 314 | 314 |
int id(const Node&) const { return -1; }
|
| 315 | 315 |
|
| 316 | 316 |
/// \brief Return the node by its unique id. |
| 317 | 317 |
/// |
| 318 | 318 |
/// This function returns the node by its unique id. |
| 319 | 319 |
/// If the digraph does not contain a node with the given id, |
| 320 | 320 |
/// then the result of the function is undefined. |
| 321 | 321 |
Node nodeFromId(int) const { return INVALID; }
|
| 322 | 322 |
|
| 323 | 323 |
/// \brief Return a unique integer id for the given arc. |
| 324 | 324 |
/// |
| 325 | 325 |
/// This function returns a unique integer id for the given arc. |
| 326 | 326 |
int id(const Arc&) const { return -1; }
|
| 327 | 327 |
|
| 328 | 328 |
/// \brief Return the arc by its unique id. |
| 329 | 329 |
/// |
| 330 | 330 |
/// This function returns the arc by its unique id. |
| 331 | 331 |
/// If the digraph does not contain an arc with the given id, |
| 332 | 332 |
/// then the result of the function is undefined. |
| 333 | 333 |
Arc arcFromId(int) const { return INVALID; }
|
| 334 | 334 |
|
| 335 | 335 |
/// \brief Return an integer greater or equal to the maximum |
| 336 | 336 |
/// node id. |
| 337 | 337 |
/// |
| 338 | 338 |
/// This function returns an integer greater or equal to the |
| 339 | 339 |
/// maximum node id. |
| 340 | 340 |
int maxNodeId() const { return -1; }
|
| 341 | 341 |
|
| 342 | 342 |
/// \brief Return an integer greater or equal to the maximum |
| 343 | 343 |
/// arc id. |
| 344 | 344 |
/// |
| 345 | 345 |
/// This function returns an integer greater or equal to the |
| 346 | 346 |
/// maximum arc id. |
| 347 | 347 |
int maxArcId() const { return -1; }
|
| 348 | 348 |
|
| 349 | 349 |
template <typename _Digraph> |
| 350 | 350 |
struct Constraints {
|
| 351 | 351 |
|
| 352 | 352 |
void constraints() {
|
| 353 | 353 |
checkConcept<Base, _Digraph >(); |
| 354 | 354 |
typename _Digraph::Node node; |
| 355 | 355 |
node=INVALID; |
| 356 | 356 |
int nid = digraph.id(node); |
| 357 | 357 |
nid = digraph.id(node); |
| 358 | 358 |
node = digraph.nodeFromId(nid); |
| 359 | 359 |
typename _Digraph::Arc arc; |
| 360 | 360 |
arc=INVALID; |
| 361 | 361 |
int eid = digraph.id(arc); |
| 362 | 362 |
eid = digraph.id(arc); |
| 363 | 363 |
arc = digraph.arcFromId(eid); |
| 364 | 364 |
|
| 365 | 365 |
nid = digraph.maxNodeId(); |
| 366 | 366 |
ignore_unused_variable_warning(nid); |
| 367 | 367 |
eid = digraph.maxArcId(); |
| 368 | 368 |
ignore_unused_variable_warning(eid); |
| 369 | 369 |
} |
| 370 | 370 |
|
| 371 | 371 |
const _Digraph& digraph; |
| 372 | 372 |
}; |
| 373 | 373 |
}; |
| 374 | 374 |
|
| 375 | 375 |
/// \brief Skeleton class for \e idable undirected graphs. |
| 376 | 376 |
/// |
| 377 | 377 |
/// This class describes the interface of \e idable undirected |
| 378 | 378 |
/// graphs. It extends \ref IDableDigraphComponent with the core ID |
| 379 | 379 |
/// functions of undirected graphs. |
| 380 | 380 |
/// The ids of the items must be unique and immutable. |
| 381 | 381 |
/// This concept is part of the Graph concept. |
| 382 | 382 |
template <typename BAS = BaseGraphComponent> |
| 383 | 383 |
class IDableGraphComponent : public IDableDigraphComponent<BAS> {
|
| 384 | 384 |
public: |
| 385 | 385 |
|
| 386 | 386 |
typedef BAS Base; |
| 387 | 387 |
typedef typename Base::Edge Edge; |
| 388 | 388 |
|
| 389 | 389 |
using IDableDigraphComponent<Base>::id; |
| 390 | 390 |
|
| 391 | 391 |
/// \brief Return a unique integer id for the given edge. |
| 392 | 392 |
/// |
| 393 | 393 |
/// This function returns a unique integer id for the given edge. |
| 394 | 394 |
int id(const Edge&) const { return -1; }
|
| 395 | 395 |
|
| 396 | 396 |
/// \brief Return the edge by its unique id. |
| 397 | 397 |
/// |
| 398 | 398 |
/// This function returns the edge by its unique id. |
| 399 | 399 |
/// If the graph does not contain an edge with the given id, |
| 400 | 400 |
/// then the result of the function is undefined. |
| 401 | 401 |
Edge edgeFromId(int) const { return INVALID; }
|
| 402 | 402 |
|
| 403 | 403 |
/// \brief Return an integer greater or equal to the maximum |
| 404 | 404 |
/// edge id. |
| 405 | 405 |
/// |
| 406 | 406 |
/// This function returns an integer greater or equal to the |
| 407 | 407 |
/// maximum edge id. |
| 408 | 408 |
int maxEdgeId() const { return -1; }
|
| 409 | 409 |
|
| 410 | 410 |
template <typename _Graph> |
| 411 | 411 |
struct Constraints {
|
| 412 | 412 |
|
| 413 | 413 |
void constraints() {
|
| 414 | 414 |
checkConcept<IDableDigraphComponent<Base>, _Graph >(); |
| 415 | 415 |
typename _Graph::Edge edge; |
| 416 | 416 |
int ueid = graph.id(edge); |
| 417 | 417 |
ueid = graph.id(edge); |
| 418 | 418 |
edge = graph.edgeFromId(ueid); |
| 419 | 419 |
ueid = graph.maxEdgeId(); |
| 420 | 420 |
ignore_unused_variable_warning(ueid); |
| 421 | 421 |
} |
| 422 | 422 |
|
| 423 | 423 |
const _Graph& graph; |
| 424 | 424 |
}; |
| 425 | 425 |
}; |
| 426 | 426 |
|
| 427 | 427 |
/// \brief Concept class for \c NodeIt, \c ArcIt and \c EdgeIt types. |
| 428 | 428 |
/// |
| 429 | 429 |
/// This class describes the concept of \c NodeIt, \c ArcIt and |
| 430 | 430 |
/// \c EdgeIt subtypes of digraph and graph types. |
| 431 | 431 |
template <typename GR, typename Item> |
| 432 | 432 |
class GraphItemIt : public Item {
|
| 433 | 433 |
public: |
| 434 | 434 |
/// \brief Default constructor. |
| 435 | 435 |
/// |
| 436 | 436 |
/// Default constructor. |
| 437 | 437 |
/// \warning The default constructor is not required to set |
| 438 | 438 |
/// the iterator to some well-defined value. So you should consider it |
| 439 | 439 |
/// as uninitialized. |
| 440 | 440 |
GraphItemIt() {}
|
| 441 | 441 |
|
| 442 | 442 |
/// \brief Copy constructor. |
| 443 | 443 |
/// |
| 444 | 444 |
/// Copy constructor. |
| 445 | 445 |
GraphItemIt(const GraphItemIt& it) : Item(it) {}
|
| 446 | 446 |
|
| 447 | 447 |
/// \brief Constructor that sets the iterator to the first item. |
| 448 | 448 |
/// |
| 449 | 449 |
/// Constructor that sets the iterator to the first item. |
| 450 | 450 |
explicit GraphItemIt(const GR&) {}
|
| 451 | 451 |
|
| 452 | 452 |
/// \brief Constructor for conversion from \c INVALID. |
| 453 | 453 |
/// |
| 454 | 454 |
/// Constructor for conversion from \c INVALID. |
| 455 | 455 |
/// It initializes the iterator to be invalid. |
| 456 | 456 |
/// \sa Invalid for more details. |
| 457 | 457 |
GraphItemIt(Invalid) {}
|
| 458 | 458 |
|
| 459 | 459 |
/// \brief Assignment operator. |
| 460 | 460 |
/// |
| 461 | 461 |
/// Assignment operator for the iterator. |
| 462 | 462 |
GraphItemIt& operator=(const GraphItemIt&) { return *this; }
|
| 463 | 463 |
|
| 464 | 464 |
/// \brief Increment the iterator. |
| 465 | 465 |
/// |
| 466 | 466 |
/// This operator increments the iterator, i.e. assigns it to the |
| 467 | 467 |
/// next item. |
| 468 | 468 |
GraphItemIt& operator++() { return *this; }
|
| 469 | 469 |
|
| 470 | 470 |
/// \brief Equality operator |
| 471 | 471 |
/// |
| 472 | 472 |
/// Equality operator. |
| 473 | 473 |
/// Two iterators are equal if and only if they point to the |
| 474 | 474 |
/// same object or both are invalid. |
| 475 | 475 |
bool operator==(const GraphItemIt&) const { return true;}
|
| 476 | 476 |
|
| 477 | 477 |
/// \brief Inequality operator |
| 478 | 478 |
/// |
| 479 | 479 |
/// Inequality operator. |
| 480 | 480 |
/// Two iterators are equal if and only if they point to the |
| 481 | 481 |
/// same object or both are invalid. |
| 482 | 482 |
bool operator!=(const GraphItemIt&) const { return true;}
|
| 483 | 483 |
|
| 484 | 484 |
template<typename _GraphItemIt> |
| 485 | 485 |
struct Constraints {
|
| 486 | 486 |
void constraints() {
|
| 487 | 487 |
checkConcept<GraphItem<>, _GraphItemIt>(); |
| 488 | 488 |
_GraphItemIt it1(g); |
| 489 | 489 |
_GraphItemIt it2; |
| 490 | 490 |
_GraphItemIt it3 = it1; |
| 491 | 491 |
_GraphItemIt it4 = INVALID; |
| 492 | 492 |
|
| 493 | 493 |
it2 = ++it1; |
| 494 | 494 |
++it2 = it1; |
| 495 | 495 |
++(++it1); |
| 496 | 496 |
|
| 497 | 497 |
Item bi = it1; |
| 498 | 498 |
bi = it2; |
| 499 | 499 |
} |
| 500 | 500 |
const GR& g; |
| 501 | 501 |
}; |
| 502 | 502 |
}; |
| 503 | 503 |
|
| 504 | 504 |
/// \brief Concept class for \c InArcIt, \c OutArcIt and |
| 505 | 505 |
/// \c IncEdgeIt types. |
| 506 | 506 |
/// |
| 507 | 507 |
/// This class describes the concept of \c InArcIt, \c OutArcIt |
| 508 | 508 |
/// and \c IncEdgeIt subtypes of digraph and graph types. |
| 509 | 509 |
/// |
| 510 | 510 |
/// \note Since these iterator classes do not inherit from the same |
| 511 | 511 |
/// base class, there is an additional template parameter (selector) |
| 512 | 512 |
/// \c sel. For \c InArcIt you should instantiate it with character |
| 513 | 513 |
/// \c 'i', for \c OutArcIt with \c 'o' and for \c IncEdgeIt with \c 'e'. |
| 514 | 514 |
template <typename GR, |
| 515 | 515 |
typename Item = typename GR::Arc, |
| 516 | 516 |
typename Base = typename GR::Node, |
| 517 | 517 |
char sel = '0'> |
| 518 | 518 |
class GraphIncIt : public Item {
|
| 519 | 519 |
public: |
| 520 | 520 |
/// \brief Default constructor. |
| 521 | 521 |
/// |
| 522 | 522 |
/// Default constructor. |
| 523 | 523 |
/// \warning The default constructor is not required to set |
| 524 | 524 |
/// the iterator to some well-defined value. So you should consider it |
| 525 | 525 |
/// as uninitialized. |
| 526 | 526 |
GraphIncIt() {}
|
| 527 | 527 |
|
| 528 | 528 |
/// \brief Copy constructor. |
| 529 | 529 |
/// |
| 530 | 530 |
/// Copy constructor. |
| 531 | 531 |
GraphIncIt(const GraphIncIt& it) : Item(it) {}
|
| 532 | 532 |
|
| 533 | 533 |
/// \brief Constructor that sets the iterator to the first |
| 534 | 534 |
/// incoming or outgoing arc. |
| 535 | 535 |
/// |
| 536 | 536 |
/// Constructor that sets the iterator to the first arc |
| 537 | 537 |
/// incoming to or outgoing from the given node. |
| 538 | 538 |
explicit GraphIncIt(const GR&, const Base&) {}
|
| 539 | 539 |
|
| 540 | 540 |
/// \brief Constructor for conversion from \c INVALID. |
| 541 | 541 |
/// |
| 542 | 542 |
/// Constructor for conversion from \c INVALID. |
| 543 | 543 |
/// It initializes the iterator to be invalid. |
| 544 | 544 |
/// \sa Invalid for more details. |
| 545 | 545 |
GraphIncIt(Invalid) {}
|
| 546 | 546 |
|
| 547 | 547 |
/// \brief Assignment operator. |
| 548 | 548 |
/// |
| 549 | 549 |
/// Assignment operator for the iterator. |
| 550 | 550 |
GraphIncIt& operator=(const GraphIncIt&) { return *this; }
|
| 551 | 551 |
|
| 552 | 552 |
/// \brief Increment the iterator. |
| 553 | 553 |
/// |
| 554 | 554 |
/// This operator increments the iterator, i.e. assigns it to the |
| 555 | 555 |
/// next arc incoming to or outgoing from the given node. |
| 556 | 556 |
GraphIncIt& operator++() { return *this; }
|
| 557 | 557 |
|
| 558 | 558 |
/// \brief Equality operator |
| 559 | 559 |
/// |
| 560 | 560 |
/// Equality operator. |
| 561 | 561 |
/// Two iterators are equal if and only if they point to the |
| 562 | 562 |
/// same object or both are invalid. |
| 563 | 563 |
bool operator==(const GraphIncIt&) const { return true;}
|
| 564 | 564 |
|
| 565 | 565 |
/// \brief Inequality operator |
| 566 | 566 |
/// |
| 567 | 567 |
/// Inequality operator. |
| 568 | 568 |
/// Two iterators are equal if and only if they point to the |
| 569 | 569 |
/// same object or both are invalid. |
| 570 | 570 |
bool operator!=(const GraphIncIt&) const { return true;}
|
| 571 | 571 |
|
| 572 | 572 |
template <typename _GraphIncIt> |
| 573 | 573 |
struct Constraints {
|
| 574 | 574 |
void constraints() {
|
| 575 | 575 |
checkConcept<GraphItem<sel>, _GraphIncIt>(); |
| 576 | 576 |
_GraphIncIt it1(graph, node); |
| 577 | 577 |
_GraphIncIt it2; |
| 578 | 578 |
_GraphIncIt it3 = it1; |
| 579 | 579 |
_GraphIncIt it4 = INVALID; |
| 580 | 580 |
|
| 581 | 581 |
it2 = ++it1; |
| 582 | 582 |
++it2 = it1; |
| 583 | 583 |
++(++it1); |
| 584 | 584 |
Item e = it1; |
| 585 | 585 |
e = it2; |
| 586 | 586 |
} |
| 587 | 587 |
const Base& node; |
| 588 | 588 |
const GR& graph; |
| 589 | 589 |
}; |
| 590 | 590 |
}; |
| 591 | 591 |
|
| 592 | 592 |
/// \brief Skeleton class for iterable directed graphs. |
| 593 | 593 |
/// |
| 594 | 594 |
/// This class describes the interface of iterable directed |
| 595 | 595 |
/// graphs. It extends \ref BaseDigraphComponent with the core |
| 596 | 596 |
/// iterable interface. |
| 597 | 597 |
/// This concept is part of the Digraph concept. |
| 598 | 598 |
template <typename BAS = BaseDigraphComponent> |
| 599 | 599 |
class IterableDigraphComponent : public BAS {
|
| 600 | 600 |
|
| 601 | 601 |
public: |
| 602 | 602 |
|
| 603 | 603 |
typedef BAS Base; |
| 604 | 604 |
typedef typename Base::Node Node; |
| 605 | 605 |
typedef typename Base::Arc Arc; |
| 606 | 606 |
|
| 607 | 607 |
typedef IterableDigraphComponent Digraph; |
| 608 | 608 |
|
| 609 | 609 |
/// \name Base Iteration |
| 610 | 610 |
/// |
| 611 | 611 |
/// This interface provides functions for iteration on digraph items. |
| 612 | 612 |
/// |
| 613 | 613 |
/// @{
|
| 614 | 614 |
|
| 615 | 615 |
/// \brief Return the first node. |
| 616 | 616 |
/// |
| 617 | 617 |
/// This function gives back the first node in the iteration order. |
| 618 | 618 |
void first(Node&) const {}
|
| 619 | 619 |
|
| 620 | 620 |
/// \brief Return the next node. |
| 621 | 621 |
/// |
| 622 | 622 |
/// This function gives back the next node in the iteration order. |
| 623 | 623 |
void next(Node&) const {}
|
| 624 | 624 |
|
| 625 | 625 |
/// \brief Return the first arc. |
| 626 | 626 |
/// |
| 627 | 627 |
/// This function gives back the first arc in the iteration order. |
| 628 | 628 |
void first(Arc&) const {}
|
| 629 | 629 |
|
| 630 | 630 |
/// \brief Return the next arc. |
| 631 | 631 |
/// |
| 632 | 632 |
/// This function gives back the next arc in the iteration order. |
| 633 | 633 |
void next(Arc&) const {}
|
| 634 | 634 |
|
| 635 | 635 |
/// \brief Return the first arc incomming to the given node. |
| 636 | 636 |
/// |
| 637 | 637 |
/// This function gives back the first arc incomming to the |
| 638 | 638 |
/// given node. |
| 639 | 639 |
void firstIn(Arc&, const Node&) const {}
|
| 640 | 640 |
|
| 641 | 641 |
/// \brief Return the next arc incomming to the given node. |
| 642 | 642 |
/// |
| 643 | 643 |
/// This function gives back the next arc incomming to the |
| 644 | 644 |
/// given node. |
| 645 | 645 |
void nextIn(Arc&) const {}
|
| 646 | 646 |
|
| 647 | 647 |
/// \brief Return the first arc outgoing form the given node. |
| 648 | 648 |
/// |
| 649 | 649 |
/// This function gives back the first arc outgoing form the |
| 650 | 650 |
/// given node. |
| 651 | 651 |
void firstOut(Arc&, const Node&) const {}
|
| 652 | 652 |
|
| 653 | 653 |
/// \brief Return the next arc outgoing form the given node. |
| 654 | 654 |
/// |
| 655 | 655 |
/// This function gives back the next arc outgoing form the |
| 656 | 656 |
/// given node. |
| 657 | 657 |
void nextOut(Arc&) const {}
|
| 658 | 658 |
|
| 659 | 659 |
/// @} |
| 660 | 660 |
|
| 661 | 661 |
/// \name Class Based Iteration |
| 662 | 662 |
/// |
| 663 | 663 |
/// This interface provides iterator classes for digraph items. |
| 664 | 664 |
/// |
| 665 | 665 |
/// @{
|
| 666 | 666 |
|
| 667 | 667 |
/// \brief This iterator goes through each node. |
| 668 | 668 |
/// |
| 669 | 669 |
/// This iterator goes through each node. |
| 670 | 670 |
/// |
| 671 | 671 |
typedef GraphItemIt<Digraph, Node> NodeIt; |
| 672 | 672 |
|
| 673 | 673 |
/// \brief This iterator goes through each arc. |
| 674 | 674 |
/// |
| 675 | 675 |
/// This iterator goes through each arc. |
| 676 | 676 |
/// |
| 677 | 677 |
typedef GraphItemIt<Digraph, Arc> ArcIt; |
| 678 | 678 |
|
| 679 | 679 |
/// \brief This iterator goes trough the incoming arcs of a node. |
| 680 | 680 |
/// |
| 681 | 681 |
/// This iterator goes trough the \e incoming arcs of a certain node |
| 682 | 682 |
/// of a digraph. |
| 683 | 683 |
typedef GraphIncIt<Digraph, Arc, Node, 'i'> InArcIt; |
| 684 | 684 |
|
| 685 | 685 |
/// \brief This iterator goes trough the outgoing arcs of a node. |
| 686 | 686 |
/// |
| 687 | 687 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
| 688 | 688 |
/// of a digraph. |
| 689 | 689 |
typedef GraphIncIt<Digraph, Arc, Node, 'o'> OutArcIt; |
| 690 | 690 |
|
| 691 | 691 |
/// \brief The base node of the iterator. |
| 692 | 692 |
/// |
| 693 | 693 |
/// This function gives back the base node of the iterator. |
| 694 | 694 |
/// It is always the target node of the pointed arc. |
| 695 | 695 |
Node baseNode(const InArcIt&) const { return INVALID; }
|
| 696 | 696 |
|
| 697 | 697 |
/// \brief The running node of the iterator. |
| 698 | 698 |
/// |
| 699 | 699 |
/// This function gives back the running node of the iterator. |
| 700 | 700 |
/// It is always the source node of the pointed arc. |
| 701 | 701 |
Node runningNode(const InArcIt&) const { return INVALID; }
|
| 702 | 702 |
|
| 703 | 703 |
/// \brief The base node of the iterator. |
| 704 | 704 |
/// |
| 705 | 705 |
/// This function gives back the base node of the iterator. |
| 706 | 706 |
/// It is always the source node of the pointed arc. |
| 707 | 707 |
Node baseNode(const OutArcIt&) const { return INVALID; }
|
| 708 | 708 |
|
| 709 | 709 |
/// \brief The running node of the iterator. |
| 710 | 710 |
/// |
| 711 | 711 |
/// This function gives back the running node of the iterator. |
| 712 | 712 |
/// It is always the target node of the pointed arc. |
| 713 | 713 |
Node runningNode(const OutArcIt&) const { return INVALID; }
|
| 714 | 714 |
|
| 715 | 715 |
/// @} |
| 716 | 716 |
|
| 717 | 717 |
template <typename _Digraph> |
| 718 | 718 |
struct Constraints {
|
| 719 | 719 |
void constraints() {
|
| 720 | 720 |
checkConcept<Base, _Digraph>(); |
| 721 | 721 |
|
| 722 | 722 |
{
|
| 723 | 723 |
typename _Digraph::Node node(INVALID); |
| 724 | 724 |
typename _Digraph::Arc arc(INVALID); |
| 725 | 725 |
{
|
| 726 | 726 |
digraph.first(node); |
| 727 | 727 |
digraph.next(node); |
| 728 | 728 |
} |
| 729 | 729 |
{
|
| 730 | 730 |
digraph.first(arc); |
| 731 | 731 |
digraph.next(arc); |
| 732 | 732 |
} |
| 733 | 733 |
{
|
| 734 | 734 |
digraph.firstIn(arc, node); |
| 735 | 735 |
digraph.nextIn(arc); |
| 736 | 736 |
} |
| 737 | 737 |
{
|
| 738 | 738 |
digraph.firstOut(arc, node); |
| 739 | 739 |
digraph.nextOut(arc); |
| 740 | 740 |
} |
| 741 | 741 |
} |
| 742 | 742 |
|
| 743 | 743 |
{
|
| 744 | 744 |
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Arc>, |
| 745 | 745 |
typename _Digraph::ArcIt >(); |
| 746 | 746 |
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Node>, |
| 747 | 747 |
typename _Digraph::NodeIt >(); |
| 748 | 748 |
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc, |
| 749 | 749 |
typename _Digraph::Node, 'i'>, typename _Digraph::InArcIt>(); |
| 750 | 750 |
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc, |
| 751 | 751 |
typename _Digraph::Node, 'o'>, typename _Digraph::OutArcIt>(); |
| 752 | 752 |
|
| 753 | 753 |
typename _Digraph::Node n; |
| 754 | 754 |
const typename _Digraph::InArcIt iait(INVALID); |
| 755 | 755 |
const typename _Digraph::OutArcIt oait(INVALID); |
| 756 | 756 |
n = digraph.baseNode(iait); |
| 757 | 757 |
n = digraph.runningNode(iait); |
| 758 | 758 |
n = digraph.baseNode(oait); |
| 759 | 759 |
n = digraph.runningNode(oait); |
| 760 | 760 |
ignore_unused_variable_warning(n); |
| 761 | 761 |
} |
| 762 | 762 |
} |
| 763 | 763 |
|
| 764 | 764 |
const _Digraph& digraph; |
| 765 | 765 |
}; |
| 766 | 766 |
}; |
| 767 | 767 |
|
| 768 | 768 |
/// \brief Skeleton class for iterable undirected graphs. |
| 769 | 769 |
/// |
| 770 | 770 |
/// This class describes the interface of iterable undirected |
| 771 | 771 |
/// graphs. It extends \ref IterableDigraphComponent with the core |
| 772 | 772 |
/// iterable interface of undirected graphs. |
| 773 | 773 |
/// This concept is part of the Graph concept. |
| 774 | 774 |
template <typename BAS = BaseGraphComponent> |
| 775 | 775 |
class IterableGraphComponent : public IterableDigraphComponent<BAS> {
|
| 776 | 776 |
public: |
| 777 | 777 |
|
| 778 | 778 |
typedef BAS Base; |
| 779 | 779 |
typedef typename Base::Node Node; |
| 780 | 780 |
typedef typename Base::Arc Arc; |
| 781 | 781 |
typedef typename Base::Edge Edge; |
| 782 | 782 |
|
| 783 | 783 |
|
| 784 | 784 |
typedef IterableGraphComponent Graph; |
| 785 | 785 |
|
| 786 | 786 |
/// \name Base Iteration |
| 787 | 787 |
/// |
| 788 | 788 |
/// This interface provides functions for iteration on edges. |
| 789 | 789 |
/// |
| 790 | 790 |
/// @{
|
| 791 | 791 |
|
| 792 | 792 |
using IterableDigraphComponent<Base>::first; |
| 793 | 793 |
using IterableDigraphComponent<Base>::next; |
| 794 | 794 |
|
| 795 | 795 |
/// \brief Return the first edge. |
| 796 | 796 |
/// |
| 797 | 797 |
/// This function gives back the first edge in the iteration order. |
| 798 | 798 |
void first(Edge&) const {}
|
| 799 | 799 |
|
| 800 | 800 |
/// \brief Return the next edge. |
| 801 | 801 |
/// |
| 802 | 802 |
/// This function gives back the next edge in the iteration order. |
| 803 | 803 |
void next(Edge&) const {}
|
| 804 | 804 |
|
| 805 | 805 |
/// \brief Return the first edge incident to the given node. |
| 806 | 806 |
/// |
| 807 | 807 |
/// This function gives back the first edge incident to the given |
| 808 | 808 |
/// node. The bool parameter gives back the direction for which the |
| 809 | 809 |
/// source node of the directed arc representing the edge is the |
| 810 | 810 |
/// given node. |
| 811 | 811 |
void firstInc(Edge&, bool&, const Node&) const {}
|
| 812 | 812 |
|
| 813 | 813 |
/// \brief Gives back the next of the edges from the |
| 814 | 814 |
/// given node. |
| 815 | 815 |
/// |
| 816 | 816 |
/// This function gives back the next edge incident to the given |
| 817 | 817 |
/// node. The bool parameter should be used as \c firstInc() use it. |
| 818 | 818 |
void nextInc(Edge&, bool&) const {}
|
| 819 | 819 |
|
| 820 | 820 |
using IterableDigraphComponent<Base>::baseNode; |
| 821 | 821 |
using IterableDigraphComponent<Base>::runningNode; |
| 822 | 822 |
|
| 823 | 823 |
/// @} |
| 824 | 824 |
|
| 825 | 825 |
/// \name Class Based Iteration |
| 826 | 826 |
/// |
| 827 | 827 |
/// This interface provides iterator classes for edges. |
| 828 | 828 |
/// |
| 829 | 829 |
/// @{
|
| 830 | 830 |
|
| 831 | 831 |
/// \brief This iterator goes through each edge. |
| 832 | 832 |
/// |
| 833 | 833 |
/// This iterator goes through each edge. |
| 834 | 834 |
typedef GraphItemIt<Graph, Edge> EdgeIt; |
| 835 | 835 |
|
| 836 | 836 |
/// \brief This iterator goes trough the incident edges of a |
| 837 | 837 |
/// node. |
| 838 | 838 |
/// |
| 839 | 839 |
/// This iterator goes trough the incident edges of a certain |
| 840 | 840 |
/// node of a graph. |
| 841 | 841 |
typedef GraphIncIt<Graph, Edge, Node, 'e'> IncEdgeIt; |
| 842 | 842 |
|
| 843 | 843 |
/// \brief The base node of the iterator. |
| 844 | 844 |
/// |
| 845 | 845 |
/// This function gives back the base node of the iterator. |
| 846 | 846 |
Node baseNode(const IncEdgeIt&) const { return INVALID; }
|
| 847 | 847 |
|
| 848 | 848 |
/// \brief The running node of the iterator. |
| 849 | 849 |
/// |
| 850 | 850 |
/// This function gives back the running node of the iterator. |
| 851 | 851 |
Node runningNode(const IncEdgeIt&) const { return INVALID; }
|
| 852 | 852 |
|
| 853 | 853 |
/// @} |
| 854 | 854 |
|
| 855 | 855 |
template <typename _Graph> |
| 856 | 856 |
struct Constraints {
|
| 857 | 857 |
void constraints() {
|
| 858 | 858 |
checkConcept<IterableDigraphComponent<Base>, _Graph>(); |
| 859 | 859 |
|
| 860 | 860 |
{
|
| 861 | 861 |
typename _Graph::Node node(INVALID); |
| 862 | 862 |
typename _Graph::Edge edge(INVALID); |
| 863 | 863 |
bool dir; |
| 864 | 864 |
{
|
| 865 | 865 |
graph.first(edge); |
| 866 | 866 |
graph.next(edge); |
| 867 | 867 |
} |
| 868 | 868 |
{
|
| 869 | 869 |
graph.firstInc(edge, dir, node); |
| 870 | 870 |
graph.nextInc(edge, dir); |
| 871 | 871 |
} |
| 872 | 872 |
|
| 873 | 873 |
} |
| 874 | 874 |
|
| 875 | 875 |
{
|
| 876 | 876 |
checkConcept<GraphItemIt<_Graph, typename _Graph::Edge>, |
| 877 | 877 |
typename _Graph::EdgeIt >(); |
| 878 | 878 |
checkConcept<GraphIncIt<_Graph, typename _Graph::Edge, |
| 879 | 879 |
typename _Graph::Node, 'e'>, typename _Graph::IncEdgeIt>(); |
| 880 | 880 |
|
| 881 | 881 |
typename _Graph::Node n; |
| 882 | 882 |
const typename _Graph::IncEdgeIt ieit(INVALID); |
| 883 | 883 |
n = graph.baseNode(ieit); |
| 884 | 884 |
n = graph.runningNode(ieit); |
| 885 | 885 |
} |
| 886 | 886 |
} |
| 887 | 887 |
|
| 888 | 888 |
const _Graph& graph; |
| 889 | 889 |
}; |
| 890 | 890 |
}; |
| 891 | 891 |
|
| 892 | 892 |
/// \brief Skeleton class for alterable directed graphs. |
| 893 | 893 |
/// |
| 894 | 894 |
/// This class describes the interface of alterable directed |
| 895 | 895 |
/// graphs. It extends \ref BaseDigraphComponent with the alteration |
| 896 | 896 |
/// notifier interface. It implements |
| 897 | 897 |
/// an observer-notifier pattern for each digraph item. More |
| 898 | 898 |
/// obsevers can be registered into the notifier and whenever an |
| 899 | 899 |
/// alteration occured in the digraph all the observers will be |
| 900 | 900 |
/// notified about it. |
| 901 | 901 |
template <typename BAS = BaseDigraphComponent> |
| 902 | 902 |
class AlterableDigraphComponent : public BAS {
|
| 903 | 903 |
public: |
| 904 | 904 |
|
| 905 | 905 |
typedef BAS Base; |
| 906 | 906 |
typedef typename Base::Node Node; |
| 907 | 907 |
typedef typename Base::Arc Arc; |
| 908 | 908 |
|
| 909 | 909 |
|
| 910 | 910 |
/// Node alteration notifier class. |
| 911 | 911 |
typedef AlterationNotifier<AlterableDigraphComponent, Node> |
| 912 | 912 |
NodeNotifier; |
| 913 | 913 |
/// Arc alteration notifier class. |
| 914 | 914 |
typedef AlterationNotifier<AlterableDigraphComponent, Arc> |
| 915 | 915 |
ArcNotifier; |
| 916 | 916 |
|
| 917 | 917 |
/// \brief Return the node alteration notifier. |
| 918 | 918 |
/// |
| 919 | 919 |
/// This function gives back the node alteration notifier. |
| 920 | 920 |
NodeNotifier& notifier(Node) const {
|
| 921 | 921 |
return NodeNotifier(); |
| 922 | 922 |
} |
| 923 | 923 |
|
| 924 | 924 |
/// \brief Return the arc alteration notifier. |
| 925 | 925 |
/// |
| 926 | 926 |
/// This function gives back the arc alteration notifier. |
| 927 | 927 |
ArcNotifier& notifier(Arc) const {
|
| 928 | 928 |
return ArcNotifier(); |
| 929 | 929 |
} |
| 930 | 930 |
|
| 931 | 931 |
template <typename _Digraph> |
| 932 | 932 |
struct Constraints {
|
| 933 | 933 |
void constraints() {
|
| 934 | 934 |
checkConcept<Base, _Digraph>(); |
| 935 | 935 |
typename _Digraph::NodeNotifier& nn |
| 936 | 936 |
= digraph.notifier(typename _Digraph::Node()); |
| 937 | 937 |
|
| 938 | 938 |
typename _Digraph::ArcNotifier& en |
| 939 | 939 |
= digraph.notifier(typename _Digraph::Arc()); |
| 940 | 940 |
|
| 941 | 941 |
ignore_unused_variable_warning(nn); |
| 942 | 942 |
ignore_unused_variable_warning(en); |
| 943 | 943 |
} |
| 944 | 944 |
|
| 945 | 945 |
const _Digraph& digraph; |
| 946 | 946 |
}; |
| 947 | 947 |
}; |
| 948 | 948 |
|
| 949 | 949 |
/// \brief Skeleton class for alterable undirected graphs. |
| 950 | 950 |
/// |
| 951 | 951 |
/// This class describes the interface of alterable undirected |
| 952 | 952 |
/// graphs. It extends \ref AlterableDigraphComponent with the alteration |
| 953 | 953 |
/// notifier interface of undirected graphs. It implements |
| 954 | 954 |
/// an observer-notifier pattern for the edges. More |
| 955 | 955 |
/// obsevers can be registered into the notifier and whenever an |
| 956 | 956 |
/// alteration occured in the graph all the observers will be |
| 957 | 957 |
/// notified about it. |
| 958 | 958 |
template <typename BAS = BaseGraphComponent> |
| 959 | 959 |
class AlterableGraphComponent : public AlterableDigraphComponent<BAS> {
|
| 960 | 960 |
public: |
| 961 | 961 |
|
| 962 | 962 |
typedef BAS Base; |
| 963 | 963 |
typedef typename Base::Edge Edge; |
| 964 | 964 |
|
| 965 | 965 |
|
| 966 | 966 |
/// Edge alteration notifier class. |
| 967 | 967 |
typedef AlterationNotifier<AlterableGraphComponent, Edge> |
| 968 | 968 |
EdgeNotifier; |
| 969 | 969 |
|
| 970 | 970 |
/// \brief Return the edge alteration notifier. |
| 971 | 971 |
/// |
| 972 | 972 |
/// This function gives back the edge alteration notifier. |
| 973 | 973 |
EdgeNotifier& notifier(Edge) const {
|
| 974 | 974 |
return EdgeNotifier(); |
| 975 | 975 |
} |
| 976 | 976 |
|
| 977 | 977 |
template <typename _Graph> |
| 978 | 978 |
struct Constraints {
|
| 979 | 979 |
void constraints() {
|
| 980 | 980 |
checkConcept<AlterableDigraphComponent<Base>, _Graph>(); |
| 981 | 981 |
typename _Graph::EdgeNotifier& uen |
| 982 | 982 |
= graph.notifier(typename _Graph::Edge()); |
| 983 | 983 |
ignore_unused_variable_warning(uen); |
| 984 | 984 |
} |
| 985 | 985 |
|
| 986 | 986 |
const _Graph& graph; |
| 987 | 987 |
}; |
| 988 | 988 |
}; |
| 989 | 989 |
|
| 990 | 990 |
/// \brief Concept class for standard graph maps. |
| 991 | 991 |
/// |
| 992 | 992 |
/// This class describes the concept of standard graph maps, i.e. |
| 993 | 993 |
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and |
| 994 | 994 |
/// graph types, which can be used for associating data to graph items. |
| 995 | 995 |
/// The standard graph maps must conform to the ReferenceMap concept. |
| 996 | 996 |
template <typename GR, typename K, typename V> |
| 997 | 997 |
class GraphMap : public ReferenceMap<K, V, V&, const V&> {
|
| 998 | 998 |
typedef ReferenceMap<K, V, V&, const V&> Parent; |
| 999 | 999 |
|
| 1000 | 1000 |
public: |
| 1001 | 1001 |
|
| 1002 | 1002 |
/// The key type of the map. |
| 1003 | 1003 |
typedef K Key; |
| 1004 | 1004 |
/// The value type of the map. |
| 1005 | 1005 |
typedef V Value; |
| 1006 | 1006 |
/// The reference type of the map. |
| 1007 | 1007 |
typedef Value& Reference; |
| 1008 | 1008 |
/// The const reference type of the map. |
| 1009 | 1009 |
typedef const Value& ConstReference; |
| 1010 | 1010 |
|
| 1011 | 1011 |
// The reference map tag. |
| 1012 | 1012 |
typedef True ReferenceMapTag; |
| 1013 | 1013 |
|
| 1014 | 1014 |
/// \brief Construct a new map. |
| 1015 | 1015 |
/// |
| 1016 | 1016 |
/// Construct a new map for the graph. |
| 1017 | 1017 |
explicit GraphMap(const GR&) {}
|
| 1018 | 1018 |
/// \brief Construct a new map with default value. |
| 1019 | 1019 |
/// |
| 1020 | 1020 |
/// Construct a new map for the graph and initalize the values. |
| 1021 | 1021 |
GraphMap(const GR&, const Value&) {}
|
| 1022 | 1022 |
|
| 1023 | 1023 |
private: |
| 1024 | 1024 |
/// \brief Copy constructor. |
| 1025 | 1025 |
/// |
| 1026 | 1026 |
/// Copy Constructor. |
| 1027 | 1027 |
GraphMap(const GraphMap&) : Parent() {}
|
| 1028 | 1028 |
|
| 1029 | 1029 |
/// \brief Assignment operator. |
| 1030 | 1030 |
/// |
| 1031 | 1031 |
/// Assignment operator. It does not mofify the underlying graph, |
| 1032 | 1032 |
/// it just iterates on the current item set and set the map |
| 1033 | 1033 |
/// with the value returned by the assigned map. |
| 1034 | 1034 |
template <typename CMap> |
| 1035 | 1035 |
GraphMap& operator=(const CMap&) {
|
| 1036 | 1036 |
checkConcept<ReadMap<Key, Value>, CMap>(); |
| 1037 | 1037 |
return *this; |
| 1038 | 1038 |
} |
| 1039 | 1039 |
|
| 1040 | 1040 |
public: |
| 1041 | 1041 |
template<typename _Map> |
| 1042 | 1042 |
struct Constraints {
|
| 1043 | 1043 |
void constraints() {
|
| 1044 | 1044 |
checkConcept |
| 1045 | 1045 |
<ReferenceMap<Key, Value, Value&, const Value&>, _Map>(); |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_COUNTER_H |
| 20 | 20 |
#define LEMON_COUNTER_H |
| 21 | 21 |
|
| 22 | 22 |
#include <string> |
| 23 | 23 |
#include <iostream> |
| 24 | 24 |
|
| 25 | 25 |
///\ingroup timecount |
| 26 | 26 |
///\file |
| 27 | 27 |
///\brief Tools for counting steps and events |
| 28 | 28 |
|
| 29 | 29 |
namespace lemon |
| 30 | 30 |
{
|
| 31 | 31 |
|
| 32 | 32 |
template<class P> class _NoSubCounter; |
| 33 | 33 |
|
| 34 | 34 |
template<class P> |
| 35 | 35 |
class _SubCounter |
| 36 | 36 |
{
|
| 37 | 37 |
P &_parent; |
| 38 | 38 |
std::string _title; |
| 39 | 39 |
std::ostream &_os; |
| 40 | 40 |
int count; |
| 41 | 41 |
public: |
| 42 | 42 |
|
| 43 | 43 |
typedef _SubCounter<_SubCounter<P> > SubCounter; |
| 44 | 44 |
typedef _NoSubCounter<_SubCounter<P> > NoSubCounter; |
| 45 | 45 |
|
| 46 | 46 |
_SubCounter(P &parent) |
| 47 | 47 |
: _parent(parent), _title(), _os(std::cerr), count(0) {}
|
| 48 | 48 |
_SubCounter(P &parent,std::string title,std::ostream &os=std::cerr) |
| 49 | 49 |
: _parent(parent), _title(title), _os(os), count(0) {}
|
| 50 | 50 |
_SubCounter(P &parent,const char *title,std::ostream &os=std::cerr) |
| 51 | 51 |
: _parent(parent), _title(title), _os(os), count(0) {}
|
| 52 | 52 |
~_SubCounter() {
|
| 53 | 53 |
_os << _title << count <<std::endl; |
| 54 | 54 |
_parent+=count; |
| 55 | 55 |
} |
| 56 | 56 |
_SubCounter &operator++() { count++; return *this;}
|
| 57 | 57 |
int operator++(int) { return count++; }
|
| 58 | 58 |
_SubCounter &operator--() { count--; return *this;}
|
| 59 | 59 |
int operator--(int) { return count--; }
|
| 60 | 60 |
_SubCounter &operator+=(int c) { count+=c; return *this;}
|
| 61 | 61 |
_SubCounter &operator-=(int c) { count-=c; return *this;}
|
| 62 | 62 |
operator int() {return count;}
|
| 63 | 63 |
}; |
| 64 | 64 |
|
| 65 | 65 |
template<class P> |
| 66 | 66 |
class _NoSubCounter |
| 67 | 67 |
{
|
| 68 | 68 |
P &_parent; |
| 69 | 69 |
public: |
| 70 | 70 |
typedef _NoSubCounter<_NoSubCounter<P> > SubCounter; |
| 71 | 71 |
typedef _NoSubCounter<_NoSubCounter<P> > NoSubCounter; |
| 72 | 72 |
|
| 73 | 73 |
_NoSubCounter(P &parent) :_parent(parent) {}
|
| 74 | 74 |
_NoSubCounter(P &parent,std::string,std::ostream &) |
| 75 | 75 |
:_parent(parent) {}
|
| 76 | 76 |
_NoSubCounter(P &parent,std::string) |
| 77 | 77 |
:_parent(parent) {}
|
| 78 | 78 |
_NoSubCounter(P &parent,const char *,std::ostream &) |
| 79 | 79 |
:_parent(parent) {}
|
| 80 | 80 |
_NoSubCounter(P &parent,const char *) |
| 81 | 81 |
:_parent(parent) {}
|
| 82 | 82 |
~_NoSubCounter() {}
|
| 83 | 83 |
_NoSubCounter &operator++() { ++_parent; return *this;}
|
| 84 | 84 |
int operator++(int) { _parent++; return 0;}
|
| 85 | 85 |
_NoSubCounter &operator--() { --_parent; return *this;}
|
| 86 | 86 |
int operator--(int) { _parent--; return 0;}
|
| 87 | 87 |
_NoSubCounter &operator+=(int c) { _parent+=c; return *this;}
|
| 88 | 88 |
_NoSubCounter &operator-=(int c) { _parent-=c; return *this;}
|
| 89 | 89 |
operator int() {return 0;}
|
| 90 | 90 |
}; |
| 91 | 91 |
|
| 92 | 92 |
|
| 93 | 93 |
/// \addtogroup timecount |
| 94 | 94 |
/// @{
|
| 95 | 95 |
|
| 96 | 96 |
/// A counter class |
| 97 | 97 |
|
| 98 | 98 |
/// This class makes it easier to count certain events (e.g. for debug |
| 99 | 99 |
/// reasons). |
| 100 | 100 |
/// You can increment or decrement the counter using \c operator++, |
| 101 | 101 |
/// \c operator--, \c operator+= and \c operator-=. You can also |
| 102 | 102 |
/// define subcounters for the different phases of the algorithm or |
| 103 | 103 |
/// for different types of operations. |
| 104 | 104 |
/// A report containing the given title and the value of the counter |
| 105 | 105 |
/// is automatically printed on destruction. |
| 106 | 106 |
/// |
| 107 | 107 |
/// The following example shows the usage of counters and subcounters. |
| 108 | 108 |
/// \code |
| 109 | 109 |
/// // Bubble sort |
| 110 | 110 |
/// std::vector<T> v; |
| 111 | 111 |
/// ... |
| 112 | 112 |
/// Counter op("Operations: ");
|
| 113 | 113 |
/// Counter::SubCounter as(op, "Assignments: "); |
| 114 | 114 |
/// Counter::SubCounter co(op, "Comparisons: "); |
| 115 | 115 |
/// for (int i = v.size()-1; i > 0; --i) {
|
| 116 | 116 |
/// for (int j = 0; j < i; ++j) {
|
| 117 | 117 |
/// if (v[j] > v[j+1]) {
|
| 118 | 118 |
/// T tmp = v[j]; |
| 119 | 119 |
/// v[j] = v[j+1]; |
| 120 | 120 |
/// v[j+1] = tmp; |
| 121 | 121 |
/// as += 3; // three assignments |
| 122 | 122 |
/// } |
| 123 | 123 |
/// ++co; // one comparison |
| 124 | 124 |
/// } |
| 125 | 125 |
/// } |
| 126 | 126 |
/// \endcode |
| 127 | 127 |
/// |
| 128 | 128 |
/// This code prints out something like that: |
| 129 | 129 |
/// \code |
| 130 | 130 |
/// Comparisons: 45 |
| 131 | 131 |
/// Assignments: 57 |
| 132 | 132 |
/// Operations: 102 |
| 133 | 133 |
/// \endcode |
| 134 | 134 |
/// |
| 135 | 135 |
/// \sa NoCounter |
| 136 | 136 |
class Counter |
| 137 | 137 |
{
|
| 138 | 138 |
std::string _title; |
| 139 | 139 |
std::ostream &_os; |
| 140 | 140 |
int count; |
| 141 | 141 |
public: |
| 142 | 142 |
|
| 143 | 143 |
/// SubCounter class |
| 144 | 144 |
|
| 145 | 145 |
/// This class can be used to setup subcounters for a \ref Counter |
| 146 | 146 |
/// to have finer reports. A subcounter provides exactly the same |
| 147 | 147 |
/// operations as the main \ref Counter, but it also increments and |
| 148 | 148 |
/// decrements the value of its parent. |
| 149 | 149 |
/// Subcounters can also have subcounters. |
| 150 | 150 |
/// |
| 151 | 151 |
/// The parent counter must be given as the first parameter of the |
| 152 | 152 |
/// constructor. Apart from that a title and an \c ostream object |
| 153 | 153 |
/// can also be given just like for the main \ref Counter. |
| 154 | 154 |
/// |
| 155 | 155 |
/// A report containing the given title and the value of the |
| 156 | 156 |
/// subcounter is automatically printed on destruction. If you |
| 157 | 157 |
/// would like to turn off this report, use \ref NoSubCounter |
| 158 | 158 |
/// instead. |
| 159 | 159 |
/// |
| 160 | 160 |
/// \sa NoSubCounter |
| 161 | 161 |
typedef _SubCounter<Counter> SubCounter; |
| 162 | 162 |
|
| 163 | 163 |
/// SubCounter class without printing report on destruction |
| 164 | 164 |
|
| 165 | 165 |
/// This class can be used to setup subcounters for a \ref Counter. |
| 166 | 166 |
/// It is the same as \ref SubCounter but it does not print report |
| 167 | 167 |
/// on destruction. (It modifies the value of its parent, so 'No' |
| 168 | 168 |
/// only means 'do not print'.) |
| 169 | 169 |
/// |
| 170 | 170 |
/// Replacing \ref SubCounter "SubCounter"s with \ref NoSubCounter |
| 171 | 171 |
/// "NoSubCounter"s makes it possible to turn off reporting |
| 172 | 172 |
/// subcounter values without actually removing the definitions |
| 173 | 173 |
/// and the increment or decrement operators. |
| 174 | 174 |
/// |
| 175 | 175 |
/// \sa SubCounter |
| 176 | 176 |
typedef _NoSubCounter<Counter> NoSubCounter; |
| 177 | 177 |
|
| 178 | 178 |
/// Constructor. |
| 179 | 179 |
Counter() : _title(), _os(std::cerr), count(0) {}
|
| 180 | 180 |
/// Constructor. |
| 181 | 181 |
Counter(std::string title,std::ostream &os=std::cerr) |
| 182 | 182 |
: _title(title), _os(os), count(0) {}
|
| 183 | 183 |
/// Constructor. |
| 184 | 184 |
Counter(const char *title,std::ostream &os=std::cerr) |
| 185 | 185 |
: _title(title), _os(os), count(0) {}
|
| 186 | 186 |
/// Destructor. Prints the given title and the value of the counter. |
| 187 | 187 |
~Counter() {
|
| 188 | 188 |
_os << _title << count <<std::endl; |
| 189 | 189 |
} |
| 190 | 190 |
///\e |
| 191 | 191 |
Counter &operator++() { count++; return *this;}
|
| 192 | 192 |
///\e |
| 193 | 193 |
int operator++(int) { return count++;}
|
| 194 | 194 |
///\e |
| 195 | 195 |
Counter &operator--() { count--; return *this;}
|
| 196 | 196 |
///\e |
| 197 | 197 |
int operator--(int) { return count--;}
|
| 198 | 198 |
///\e |
| 199 | 199 |
Counter &operator+=(int c) { count+=c; return *this;}
|
| 200 | 200 |
///\e |
| 201 | 201 |
Counter &operator-=(int c) { count-=c; return *this;}
|
| 202 | 202 |
/// Resets the counter to the given value. |
| 203 | 203 |
|
| 204 | 204 |
/// Resets the counter to the given value. |
| 205 | 205 |
/// \note This function does not reset the values of |
| 206 | 206 |
/// \ref SubCounter "SubCounter"s but it resets \ref NoSubCounter |
| 207 | 207 |
/// "NoSubCounter"s along with the main counter. |
| 208 | 208 |
void reset(int c=0) {count=c;}
|
| 209 | 209 |
/// Returns the value of the counter. |
| 210 | 210 |
operator int() {return count;}
|
| 211 | 211 |
}; |
| 212 | 212 |
|
| 213 | 213 |
/// 'Do nothing' version of Counter. |
| 214 | 214 |
|
| 215 |
/// This class can be used in the same way as \ref Counter |
|
| 215 |
/// This class can be used in the same way as \ref Counter, but it |
|
| 216 | 216 |
/// does not count at all and does not print report on destruction. |
| 217 | 217 |
/// |
| 218 | 218 |
/// Replacing a \ref Counter with a \ref NoCounter makes it possible |
| 219 | 219 |
/// to turn off all counting and reporting (SubCounters should also |
| 220 | 220 |
/// be replaced with NoSubCounters), so it does not affect the |
| 221 | 221 |
/// efficiency of the program at all. |
| 222 | 222 |
/// |
| 223 | 223 |
/// \sa Counter |
| 224 | 224 |
class NoCounter |
| 225 | 225 |
{
|
| 226 | 226 |
public: |
| 227 | 227 |
typedef _NoSubCounter<NoCounter> SubCounter; |
| 228 | 228 |
typedef _NoSubCounter<NoCounter> NoSubCounter; |
| 229 | 229 |
|
| 230 | 230 |
NoCounter() {}
|
| 231 | 231 |
NoCounter(std::string,std::ostream &) {}
|
| 232 | 232 |
NoCounter(const char *,std::ostream &) {}
|
| 233 | 233 |
NoCounter(std::string) {}
|
| 234 | 234 |
NoCounter(const char *) {}
|
| 235 | 235 |
NoCounter &operator++() { return *this; }
|
| 236 | 236 |
int operator++(int) { return 0; }
|
| 237 | 237 |
NoCounter &operator--() { return *this; }
|
| 238 | 238 |
int operator--(int) { return 0; }
|
| 239 | 239 |
NoCounter &operator+=(int) { return *this;}
|
| 240 | 240 |
NoCounter &operator-=(int) { return *this;}
|
| 241 | 241 |
void reset(int) {}
|
| 242 | 242 |
void reset() {}
|
| 243 | 243 |
operator int() {return 0;}
|
| 244 | 244 |
}; |
| 245 | 245 |
|
| 246 | 246 |
///@} |
| 247 | 247 |
} |
| 248 | 248 |
|
| 249 | 249 |
#endif |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)