0
15
0
2
7
2
7
1
11
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BFS_H |
| 20 | 20 |
#define LEMON_BFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief BFS algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
|
| 32 | 32 |
namespace lemon {
|
| 33 | 33 |
|
| 34 | 34 |
///Default traits class of Bfs class. |
| 35 | 35 |
|
| 36 | 36 |
///Default traits class of Bfs class. |
| 37 | 37 |
///\tparam GR Digraph type. |
| 38 | 38 |
template<class GR> |
| 39 | 39 |
struct BfsDefaultTraits |
| 40 | 40 |
{
|
| 41 | 41 |
///The type of the digraph the algorithm runs on. |
| 42 | 42 |
typedef GR Digraph; |
| 43 | 43 |
|
| 44 | 44 |
///\brief The type of the map that stores the predecessor |
| 45 | 45 |
///arcs of the shortest paths. |
| 46 | 46 |
/// |
| 47 | 47 |
///The type of the map that stores the predecessor |
| 48 | 48 |
///arcs of the shortest paths. |
| 49 | 49 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 50 | 50 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 51 | 51 |
///Instantiates a \ref PredMap. |
| 52 | 52 |
|
| 53 | 53 |
///This function instantiates a \ref PredMap. |
| 54 | 54 |
///\param g is the digraph, to which we would like to define the |
| 55 | 55 |
///\ref PredMap. |
| 56 |
///\todo The digraph alone may be insufficient to initialize |
|
| 57 | 56 |
static PredMap *createPredMap(const Digraph &g) |
| 58 | 57 |
{
|
| 59 | 58 |
return new PredMap(g); |
| 60 | 59 |
} |
| 61 | 60 |
|
| 62 | 61 |
///The type of the map that indicates which nodes are processed. |
| 63 | 62 |
|
| 64 | 63 |
///The type of the map that indicates which nodes are processed. |
| 65 | 64 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 66 |
///By default it is a NullMap. |
|
| 67 | 65 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 68 | 66 |
///Instantiates a \ref ProcessedMap. |
| 69 | 67 |
|
| 70 | 68 |
///This function instantiates a \ref ProcessedMap. |
| 71 | 69 |
///\param g is the digraph, to which |
| 72 | 70 |
///we would like to define the \ref ProcessedMap |
| 73 | 71 |
#ifdef DOXYGEN |
| 74 | 72 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 75 | 73 |
#else |
| 76 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 77 | 75 |
#endif |
| 78 | 76 |
{
|
| 79 | 77 |
return new ProcessedMap(); |
| 80 | 78 |
} |
| 81 | 79 |
|
| 82 | 80 |
///The type of the map that indicates which nodes are reached. |
| 83 | 81 |
|
| 84 | 82 |
///The type of the map that indicates which nodes are reached. |
| 85 | 83 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 86 | 84 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 87 | 85 |
///Instantiates a \ref ReachedMap. |
| 88 | 86 |
|
| 89 | 87 |
///This function instantiates a \ref ReachedMap. |
| 90 | 88 |
///\param g is the digraph, to which |
| 91 | 89 |
///we would like to define the \ref ReachedMap. |
| 92 | 90 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 93 | 91 |
{
|
| 94 | 92 |
return new ReachedMap(g); |
| 95 | 93 |
} |
| 96 | 94 |
|
| 97 | 95 |
///The type of the map that stores the distances of the nodes. |
| 98 | 96 |
|
| 99 | 97 |
///The type of the map that stores the distances of the nodes. |
| 100 | 98 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 101 | 99 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 102 | 100 |
///Instantiates a \ref DistMap. |
| 103 | 101 |
|
| 104 | 102 |
///This function instantiates a \ref DistMap. |
| 105 | 103 |
///\param g is the digraph, to which we would like to define the |
| 106 | 104 |
///\ref DistMap. |
| 107 | 105 |
static DistMap *createDistMap(const Digraph &g) |
| 108 | 106 |
{
|
| 109 | 107 |
return new DistMap(g); |
| 110 | 108 |
} |
| 111 | 109 |
}; |
| 112 | 110 |
|
| 113 | 111 |
///%BFS algorithm class. |
| 114 | 112 |
|
| 115 | 113 |
///\ingroup search |
| 116 | 114 |
///This class provides an efficient implementation of the %BFS algorithm. |
| 117 | 115 |
/// |
| 118 | 116 |
///There is also a \ref bfs() "function type interface" for the BFS |
| 119 | 117 |
///algorithm, which is convenient in the simplier cases and it can be |
| 120 | 118 |
///used easier. |
| 121 | 119 |
/// |
| 122 | 120 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 123 | 121 |
///The default value is \ref ListDigraph. The value of GR is not used |
| 124 | 122 |
///directly by \ref Bfs, it is only passed to \ref BfsDefaultTraits. |
| 125 | 123 |
///\tparam TR Traits class to set various data types used by the algorithm. |
| 126 | 124 |
///The default traits class is |
| 127 | 125 |
///\ref BfsDefaultTraits "BfsDefaultTraits<GR>". |
| 128 | 126 |
///See \ref BfsDefaultTraits for the documentation of |
| 129 | 127 |
///a Bfs traits class. |
| 130 | 128 |
#ifdef DOXYGEN |
| 131 | 129 |
template <typename GR, |
| 132 | 130 |
typename TR> |
| 133 | 131 |
#else |
| 134 | 132 |
template <typename GR=ListDigraph, |
| 135 | 133 |
typename TR=BfsDefaultTraits<GR> > |
| 136 | 134 |
#endif |
| 137 | 135 |
class Bfs {
|
| 138 | 136 |
public: |
| 139 | 137 |
///\ref Exception for uninitialized parameters. |
| 140 | 138 |
|
| 141 | 139 |
///This error represents problems in the initialization of the |
| 142 | 140 |
///parameters of the algorithm. |
| 143 | 141 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
| 144 | 142 |
public: |
| 145 | 143 |
virtual const char* what() const throw() {
|
| 146 | 144 |
return "lemon::Bfs::UninitializedParameter"; |
| 147 | 145 |
} |
| 148 | 146 |
}; |
| 149 | 147 |
|
| 150 | 148 |
///The type of the digraph the algorithm runs on. |
| 151 | 149 |
typedef typename TR::Digraph Digraph; |
| 152 | 150 |
|
| 153 | 151 |
///\brief The type of the map that stores the predecessor arcs of the |
| 154 | 152 |
///shortest paths. |
| 155 | 153 |
typedef typename TR::PredMap PredMap; |
| 156 | 154 |
///The type of the map that stores the distances of the nodes. |
| 157 | 155 |
typedef typename TR::DistMap DistMap; |
| 158 | 156 |
///The type of the map that indicates which nodes are reached. |
| 159 | 157 |
typedef typename TR::ReachedMap ReachedMap; |
| 160 | 158 |
///The type of the map that indicates which nodes are processed. |
| 161 | 159 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 162 | 160 |
///The type of the paths. |
| 163 | 161 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 164 | 162 |
|
| 165 | 163 |
///The traits class. |
| 166 | 164 |
typedef TR Traits; |
| 167 | 165 |
|
| 168 | 166 |
private: |
| 169 | 167 |
|
| 170 | 168 |
typedef typename Digraph::Node Node; |
| 171 | 169 |
typedef typename Digraph::NodeIt NodeIt; |
| 172 | 170 |
typedef typename Digraph::Arc Arc; |
| 173 | 171 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 174 | 172 |
|
| 175 | 173 |
//Pointer to the underlying digraph. |
| 176 | 174 |
const Digraph *G; |
| 177 | 175 |
//Pointer to the map of predecessor arcs. |
| 178 | 176 |
PredMap *_pred; |
| 179 | 177 |
//Indicates if _pred is locally allocated (true) or not. |
| 180 | 178 |
bool local_pred; |
| 181 | 179 |
//Pointer to the map of distances. |
| 182 | 180 |
DistMap *_dist; |
| 183 | 181 |
//Indicates if _dist is locally allocated (true) or not. |
| 184 | 182 |
bool local_dist; |
| 185 | 183 |
//Pointer to the map of reached status of the nodes. |
| 186 | 184 |
ReachedMap *_reached; |
| 187 | 185 |
//Indicates if _reached is locally allocated (true) or not. |
| 188 | 186 |
bool local_reached; |
| 189 | 187 |
//Pointer to the map of processed status of the nodes. |
| 190 | 188 |
ProcessedMap *_processed; |
| 191 | 189 |
//Indicates if _processed is locally allocated (true) or not. |
| 192 | 190 |
bool local_processed; |
| 193 | 191 |
|
| 194 | 192 |
std::vector<typename Digraph::Node> _queue; |
| 195 | 193 |
int _queue_head,_queue_tail,_queue_next_dist; |
| 196 | 194 |
int _curr_dist; |
| 197 | 195 |
|
| 198 |
///Creates the maps if necessary. |
|
| 199 |
///\todo Better memory allocation (instead of new). |
|
| 196 |
//Creates the maps if necessary. |
|
| 200 | 197 |
void create_maps() |
| 201 | 198 |
{
|
| 202 | 199 |
if(!_pred) {
|
| 203 | 200 |
local_pred = true; |
| 204 | 201 |
_pred = Traits::createPredMap(*G); |
| 205 | 202 |
} |
| 206 | 203 |
if(!_dist) {
|
| 207 | 204 |
local_dist = true; |
| 208 | 205 |
_dist = Traits::createDistMap(*G); |
| 209 | 206 |
} |
| 210 | 207 |
if(!_reached) {
|
| 211 | 208 |
local_reached = true; |
| 212 | 209 |
_reached = Traits::createReachedMap(*G); |
| 213 | 210 |
} |
| 214 | 211 |
if(!_processed) {
|
| 215 | 212 |
local_processed = true; |
| 216 | 213 |
_processed = Traits::createProcessedMap(*G); |
| 217 | 214 |
} |
| 218 | 215 |
} |
| 219 | 216 |
|
| 220 | 217 |
protected: |
| 221 | 218 |
|
| 222 | 219 |
Bfs() {}
|
| 223 | 220 |
|
| 224 | 221 |
public: |
| 225 | 222 |
|
| 226 | 223 |
typedef Bfs Create; |
| 227 | 224 |
|
| 228 | 225 |
///\name Named template parameters |
| 229 | 226 |
|
| 230 | 227 |
///@{
|
| 231 | 228 |
|
| 232 | 229 |
template <class T> |
| 233 | 230 |
struct SetPredMapTraits : public Traits {
|
| 234 | 231 |
typedef T PredMap; |
| 235 | 232 |
static PredMap *createPredMap(const Digraph &) |
| 236 | 233 |
{
|
| 237 | 234 |
throw UninitializedParameter(); |
| 238 | 235 |
} |
| 239 | 236 |
}; |
| 240 | 237 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 241 | 238 |
///\ref PredMap type. |
| 242 | 239 |
/// |
| 243 | 240 |
///\ref named-templ-param "Named parameter" for setting |
| 244 | 241 |
///\ref PredMap type. |
| 245 | 242 |
template <class T> |
| 246 | 243 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
|
| 247 | 244 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
| 248 | 245 |
}; |
| 249 | 246 |
|
| 250 | 247 |
template <class T> |
| 251 | 248 |
struct SetDistMapTraits : public Traits {
|
| 252 | 249 |
typedef T DistMap; |
| 253 | 250 |
static DistMap *createDistMap(const Digraph &) |
| 254 | 251 |
{
|
| 255 | 252 |
throw UninitializedParameter(); |
| 256 | 253 |
} |
| 257 | 254 |
}; |
| 258 | 255 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 259 | 256 |
///\ref DistMap type. |
| 260 | 257 |
/// |
| 261 | 258 |
///\ref named-templ-param "Named parameter" for setting |
| 262 | 259 |
///\ref DistMap type. |
| 263 | 260 |
template <class T> |
| 264 | 261 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
|
| 265 | 262 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
| 266 | 263 |
}; |
| 267 | 264 |
|
| 268 | 265 |
template <class T> |
| 269 | 266 |
struct SetReachedMapTraits : public Traits {
|
| 270 | 267 |
typedef T ReachedMap; |
| 271 | 268 |
static ReachedMap *createReachedMap(const Digraph &) |
| 272 | 269 |
{
|
| 273 | 270 |
throw UninitializedParameter(); |
| 274 | 271 |
} |
| 275 | 272 |
}; |
| 276 | 273 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 277 | 274 |
///\ref ReachedMap type. |
| 278 | 275 |
/// |
| 279 | 276 |
///\ref named-templ-param "Named parameter" for setting |
| 280 | 277 |
///\ref ReachedMap type. |
| 281 | 278 |
template <class T> |
| 282 | 279 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
|
| 283 | 280 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
| 284 | 281 |
}; |
| 285 | 282 |
|
| 286 | 283 |
template <class T> |
| 287 | 284 |
struct SetProcessedMapTraits : public Traits {
|
| 288 | 285 |
typedef T ProcessedMap; |
| 289 | 286 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 290 | 287 |
{
|
| 291 | 288 |
throw UninitializedParameter(); |
| 292 | 289 |
} |
| 293 | 290 |
}; |
| 294 | 291 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 295 | 292 |
///\ref ProcessedMap type. |
| 296 | 293 |
/// |
| 297 | 294 |
///\ref named-templ-param "Named parameter" for setting |
| 298 | 295 |
///\ref ProcessedMap type. |
| 299 | 296 |
template <class T> |
| 300 | 297 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
|
| 301 | 298 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 302 | 299 |
}; |
| 303 | 300 |
|
| 304 | 301 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 305 | 302 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 306 | 303 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 307 | 304 |
{
|
| 308 | 305 |
return new ProcessedMap(g); |
| 309 | 306 |
} |
| 310 | 307 |
}; |
| 311 | 308 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 312 | 309 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 313 | 310 |
/// |
| 314 | 311 |
///\ref named-templ-param "Named parameter" for setting |
| 315 | 312 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 316 | 313 |
///If you don't set it explicitly, it will be automatically allocated. |
| 317 | 314 |
struct SetStandardProcessedMap : |
| 318 | 315 |
public Bfs< Digraph, SetStandardProcessedMapTraits > {
|
| 319 | 316 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
| 320 | 317 |
}; |
| 321 | 318 |
|
| 322 | 319 |
///@} |
| 323 | 320 |
|
| 324 | 321 |
public: |
| 325 | 322 |
|
| 326 | 323 |
///Constructor. |
| 327 | 324 |
|
| 328 | 325 |
///Constructor. |
| 329 | 326 |
///\param g The digraph the algorithm runs on. |
| 330 | 327 |
Bfs(const Digraph &g) : |
| 331 | 328 |
G(&g), |
| 332 | 329 |
_pred(NULL), local_pred(false), |
| 333 | 330 |
_dist(NULL), local_dist(false), |
| 334 | 331 |
_reached(NULL), local_reached(false), |
| 335 | 332 |
_processed(NULL), local_processed(false) |
| 336 | 333 |
{ }
|
| 337 | 334 |
|
| 338 | 335 |
///Destructor. |
| 339 | 336 |
~Bfs() |
| 340 | 337 |
{
|
| 341 | 338 |
if(local_pred) delete _pred; |
| 342 | 339 |
if(local_dist) delete _dist; |
| 343 | 340 |
if(local_reached) delete _reached; |
| 344 | 341 |
if(local_processed) delete _processed; |
| 345 | 342 |
} |
| 346 | 343 |
|
| 347 | 344 |
///Sets the map that stores the predecessor arcs. |
| 348 | 345 |
|
| 349 | 346 |
///Sets the map that stores the predecessor arcs. |
| 350 | 347 |
///If you don't use this function before calling \ref run(), |
| 351 | 348 |
///it will allocate one. The destructor deallocates this |
| 352 | 349 |
///automatically allocated map, of course. |
| 353 | 350 |
///\return <tt> (*this) </tt> |
| 354 | 351 |
Bfs &predMap(PredMap &m) |
| 355 | 352 |
{
|
| 356 | 353 |
if(local_pred) {
|
| 357 | 354 |
delete _pred; |
| 358 | 355 |
local_pred=false; |
| 359 | 356 |
} |
| 360 | 357 |
_pred = &m; |
| 361 | 358 |
return *this; |
| 362 | 359 |
} |
| 363 | 360 |
|
| 364 | 361 |
///Sets the map that indicates which nodes are reached. |
| 365 | 362 |
|
| 366 | 363 |
///Sets the map that indicates which nodes are reached. |
| 367 | 364 |
///If you don't use this function before calling \ref run(), |
| 368 | 365 |
///it will allocate one. The destructor deallocates this |
| 369 | 366 |
///automatically allocated map, of course. |
| 370 | 367 |
///\return <tt> (*this) </tt> |
| 371 | 368 |
Bfs &reachedMap(ReachedMap &m) |
| 372 | 369 |
{
|
| 373 | 370 |
if(local_reached) {
|
| 374 | 371 |
delete _reached; |
| 375 | 372 |
local_reached=false; |
| 376 | 373 |
} |
| 377 | 374 |
_reached = &m; |
| 378 | 375 |
return *this; |
| 379 | 376 |
} |
| 380 | 377 |
|
| 381 | 378 |
///Sets the map that indicates which nodes are processed. |
| 382 | 379 |
|
| 383 | 380 |
///Sets the map that indicates which nodes are processed. |
| 384 | 381 |
///If you don't use this function before calling \ref run(), |
| 385 | 382 |
///it will allocate one. The destructor deallocates this |
| 386 | 383 |
///automatically allocated map, of course. |
| 387 | 384 |
///\return <tt> (*this) </tt> |
| 388 | 385 |
Bfs &processedMap(ProcessedMap &m) |
| 389 | 386 |
{
|
| 390 | 387 |
if(local_processed) {
|
| 391 | 388 |
delete _processed; |
| ... | ... |
@@ -658,385 +655,384 @@ |
| 658 | 655 |
{
|
| 659 | 656 |
Node rnode = INVALID; |
| 660 | 657 |
while ( !emptyQueue() && rnode == INVALID ) {
|
| 661 | 658 |
processNextNode(nm, rnode); |
| 662 | 659 |
} |
| 663 | 660 |
return rnode; |
| 664 | 661 |
} |
| 665 | 662 |
|
| 666 | 663 |
///Runs the algorithm from the given node. |
| 667 | 664 |
|
| 668 | 665 |
///This method runs the %BFS algorithm from node \c s |
| 669 | 666 |
///in order to compute the shortest path to each node. |
| 670 | 667 |
/// |
| 671 | 668 |
///The algorithm computes |
| 672 | 669 |
///- the shortest path tree, |
| 673 | 670 |
///- the distance of each node from the root. |
| 674 | 671 |
/// |
| 675 | 672 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 676 | 673 |
///\code |
| 677 | 674 |
/// b.init(); |
| 678 | 675 |
/// b.addSource(s); |
| 679 | 676 |
/// b.start(); |
| 680 | 677 |
///\endcode |
| 681 | 678 |
void run(Node s) {
|
| 682 | 679 |
init(); |
| 683 | 680 |
addSource(s); |
| 684 | 681 |
start(); |
| 685 | 682 |
} |
| 686 | 683 |
|
| 687 | 684 |
///Finds the shortest path between \c s and \c t. |
| 688 | 685 |
|
| 689 | 686 |
///This method runs the %BFS algorithm from node \c s |
| 690 | 687 |
///in order to compute the shortest path to \c t. |
| 691 | 688 |
/// |
| 692 | 689 |
///\return The length of the shortest <tt>s</tt>--<tt>t</tt> path, |
| 693 | 690 |
///if \c t is reachable form \c s, \c 0 otherwise. |
| 694 | 691 |
/// |
| 695 | 692 |
///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
| 696 | 693 |
///shortcut of the following code. |
| 697 | 694 |
///\code |
| 698 | 695 |
/// b.init(); |
| 699 | 696 |
/// b.addSource(s); |
| 700 | 697 |
/// b.start(t); |
| 701 | 698 |
///\endcode |
| 702 | 699 |
int run(Node s,Node t) {
|
| 703 | 700 |
init(); |
| 704 | 701 |
addSource(s); |
| 705 | 702 |
start(t); |
| 706 | 703 |
return reached(t) ? _curr_dist : 0; |
| 707 | 704 |
} |
| 708 | 705 |
|
| 709 | 706 |
///Runs the algorithm to visit all nodes in the digraph. |
| 710 | 707 |
|
| 711 | 708 |
///This method runs the %BFS algorithm in order to |
| 712 | 709 |
///compute the shortest path to each node. |
| 713 | 710 |
/// |
| 714 | 711 |
///The algorithm computes |
| 715 | 712 |
///- the shortest path tree (forest), |
| 716 | 713 |
///- the distance of each node from the root(s). |
| 717 | 714 |
/// |
| 718 | 715 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 719 | 716 |
///\code |
| 720 | 717 |
/// b.init(); |
| 721 | 718 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 722 | 719 |
/// if (!b.reached(n)) {
|
| 723 | 720 |
/// b.addSource(n); |
| 724 | 721 |
/// b.start(); |
| 725 | 722 |
/// } |
| 726 | 723 |
/// } |
| 727 | 724 |
///\endcode |
| 728 | 725 |
void run() {
|
| 729 | 726 |
init(); |
| 730 | 727 |
for (NodeIt n(*G); n != INVALID; ++n) {
|
| 731 | 728 |
if (!reached(n)) {
|
| 732 | 729 |
addSource(n); |
| 733 | 730 |
start(); |
| 734 | 731 |
} |
| 735 | 732 |
} |
| 736 | 733 |
} |
| 737 | 734 |
|
| 738 | 735 |
///@} |
| 739 | 736 |
|
| 740 | 737 |
///\name Query Functions |
| 741 | 738 |
///The result of the %BFS algorithm can be obtained using these |
| 742 | 739 |
///functions.\n |
| 743 | 740 |
///Either \ref lemon::Bfs::run() "run()" or \ref lemon::Bfs::start() |
| 744 | 741 |
///"start()" must be called before using them. |
| 745 | 742 |
|
| 746 | 743 |
///@{
|
| 747 | 744 |
|
| 748 | 745 |
///The shortest path to a node. |
| 749 | 746 |
|
| 750 | 747 |
///Returns the shortest path to a node. |
| 751 | 748 |
/// |
| 752 | 749 |
///\warning \c t should be reachable from the root(s). |
| 753 | 750 |
/// |
| 754 | 751 |
///\pre Either \ref run() or \ref start() must be called before |
| 755 | 752 |
///using this function. |
| 756 | 753 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 757 | 754 |
|
| 758 | 755 |
///The distance of a node from the root(s). |
| 759 | 756 |
|
| 760 | 757 |
///Returns the distance of a node from the root(s). |
| 761 | 758 |
/// |
| 762 | 759 |
///\warning If node \c v is not reachable from the root(s), then |
| 763 | 760 |
///the return value of this function is undefined. |
| 764 | 761 |
/// |
| 765 | 762 |
///\pre Either \ref run() or \ref start() must be called before |
| 766 | 763 |
///using this function. |
| 767 | 764 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 768 | 765 |
|
| 769 | 766 |
///Returns the 'previous arc' of the shortest path tree for a node. |
| 770 | 767 |
|
| 771 | 768 |
///This function returns the 'previous arc' of the shortest path |
| 772 | 769 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 773 | 770 |
///shortest path from the root(s) to \c v. It is \c INVALID if \c v |
| 774 | 771 |
///is not reachable from the root(s) or if \c v is a root. |
| 775 | 772 |
/// |
| 776 | 773 |
///The shortest path tree used here is equal to the shortest path |
| 777 | 774 |
///tree used in \ref predNode(). |
| 778 | 775 |
/// |
| 779 | 776 |
///\pre Either \ref run() or \ref start() must be called before |
| 780 | 777 |
///using this function. |
| 781 | 778 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 782 | 779 |
|
| 783 | 780 |
///Returns the 'previous node' of the shortest path tree for a node. |
| 784 | 781 |
|
| 785 | 782 |
///This function returns the 'previous node' of the shortest path |
| 786 | 783 |
///tree for the node \c v, i.e. it returns the last but one node |
| 787 | 784 |
///from a shortest path from the root(s) to \c v. It is \c INVALID |
| 788 | 785 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
| 789 | 786 |
/// |
| 790 | 787 |
///The shortest path tree used here is equal to the shortest path |
| 791 | 788 |
///tree used in \ref predArc(). |
| 792 | 789 |
/// |
| 793 | 790 |
///\pre Either \ref run() or \ref start() must be called before |
| 794 | 791 |
///using this function. |
| 795 | 792 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 796 | 793 |
G->source((*_pred)[v]); } |
| 797 | 794 |
|
| 798 | 795 |
///\brief Returns a const reference to the node map that stores the |
| 799 | 796 |
/// distances of the nodes. |
| 800 | 797 |
/// |
| 801 | 798 |
///Returns a const reference to the node map that stores the distances |
| 802 | 799 |
///of the nodes calculated by the algorithm. |
| 803 | 800 |
/// |
| 804 | 801 |
///\pre Either \ref run() or \ref init() |
| 805 | 802 |
///must be called before using this function. |
| 806 | 803 |
const DistMap &distMap() const { return *_dist;}
|
| 807 | 804 |
|
| 808 | 805 |
///\brief Returns a const reference to the node map that stores the |
| 809 | 806 |
///predecessor arcs. |
| 810 | 807 |
/// |
| 811 | 808 |
///Returns a const reference to the node map that stores the predecessor |
| 812 | 809 |
///arcs, which form the shortest path tree. |
| 813 | 810 |
/// |
| 814 | 811 |
///\pre Either \ref run() or \ref init() |
| 815 | 812 |
///must be called before using this function. |
| 816 | 813 |
const PredMap &predMap() const { return *_pred;}
|
| 817 | 814 |
|
| 818 | 815 |
///Checks if a node is reachable from the root(s). |
| 819 | 816 |
|
| 820 | 817 |
///Returns \c true if \c v is reachable from the root(s). |
| 821 | 818 |
///\pre Either \ref run() or \ref start() |
| 822 | 819 |
///must be called before using this function. |
| 823 | 820 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 824 | 821 |
|
| 825 | 822 |
///@} |
| 826 | 823 |
}; |
| 827 | 824 |
|
| 828 | 825 |
///Default traits class of bfs() function. |
| 829 | 826 |
|
| 830 | 827 |
///Default traits class of bfs() function. |
| 831 | 828 |
///\tparam GR Digraph type. |
| 832 | 829 |
template<class GR> |
| 833 | 830 |
struct BfsWizardDefaultTraits |
| 834 | 831 |
{
|
| 835 | 832 |
///The type of the digraph the algorithm runs on. |
| 836 | 833 |
typedef GR Digraph; |
| 837 | 834 |
|
| 838 | 835 |
///\brief The type of the map that stores the predecessor |
| 839 | 836 |
///arcs of the shortest paths. |
| 840 | 837 |
/// |
| 841 | 838 |
///The type of the map that stores the predecessor |
| 842 | 839 |
///arcs of the shortest paths. |
| 843 | 840 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 844 | 841 |
typedef NullMap<typename Digraph::Node,typename Digraph::Arc> PredMap; |
| 845 | 842 |
///Instantiates a \ref PredMap. |
| 846 | 843 |
|
| 847 | 844 |
///This function instantiates a \ref PredMap. |
| 848 | 845 |
///\param g is the digraph, to which we would like to define the |
| 849 | 846 |
///\ref PredMap. |
| 850 |
///\todo The digraph alone may be insufficient to initialize |
|
| 851 | 847 |
#ifdef DOXYGEN |
| 852 | 848 |
static PredMap *createPredMap(const Digraph &g) |
| 853 | 849 |
#else |
| 854 | 850 |
static PredMap *createPredMap(const Digraph &) |
| 855 | 851 |
#endif |
| 856 | 852 |
{
|
| 857 | 853 |
return new PredMap(); |
| 858 | 854 |
} |
| 859 | 855 |
|
| 860 | 856 |
///The type of the map that indicates which nodes are processed. |
| 861 | 857 |
|
| 862 | 858 |
///The type of the map that indicates which nodes are processed. |
| 863 | 859 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 864 | 860 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 865 | 861 |
///Instantiates a \ref ProcessedMap. |
| 866 | 862 |
|
| 867 | 863 |
///This function instantiates a \ref ProcessedMap. |
| 868 | 864 |
///\param g is the digraph, to which |
| 869 | 865 |
///we would like to define the \ref ProcessedMap. |
| 870 | 866 |
#ifdef DOXYGEN |
| 871 | 867 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 872 | 868 |
#else |
| 873 | 869 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 874 | 870 |
#endif |
| 875 | 871 |
{
|
| 876 | 872 |
return new ProcessedMap(); |
| 877 | 873 |
} |
| 878 | 874 |
|
| 879 | 875 |
///The type of the map that indicates which nodes are reached. |
| 880 | 876 |
|
| 881 | 877 |
///The type of the map that indicates which nodes are reached. |
| 882 | 878 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 883 | 879 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 884 | 880 |
///Instantiates a \ref ReachedMap. |
| 885 | 881 |
|
| 886 | 882 |
///This function instantiates a \ref ReachedMap. |
| 887 | 883 |
///\param g is the digraph, to which |
| 888 | 884 |
///we would like to define the \ref ReachedMap. |
| 889 | 885 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 890 | 886 |
{
|
| 891 | 887 |
return new ReachedMap(g); |
| 892 | 888 |
} |
| 893 | 889 |
|
| 894 | 890 |
///The type of the map that stores the distances of the nodes. |
| 895 | 891 |
|
| 896 | 892 |
///The type of the map that stores the distances of the nodes. |
| 897 | 893 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 898 | 894 |
/// |
| 899 | 895 |
typedef NullMap<typename Digraph::Node,int> DistMap; |
| 900 | 896 |
///Instantiates a \ref DistMap. |
| 901 | 897 |
|
| 902 | 898 |
///This function instantiates a \ref DistMap. |
| 903 | 899 |
///\param g is the digraph, to which we would like to define |
| 904 | 900 |
///the \ref DistMap |
| 905 | 901 |
#ifdef DOXYGEN |
| 906 | 902 |
static DistMap *createDistMap(const Digraph &g) |
| 907 | 903 |
#else |
| 908 | 904 |
static DistMap *createDistMap(const Digraph &) |
| 909 | 905 |
#endif |
| 910 | 906 |
{
|
| 911 | 907 |
return new DistMap(); |
| 912 | 908 |
} |
| 913 | 909 |
}; |
| 914 | 910 |
|
| 915 | 911 |
/// Default traits class used by \ref BfsWizard |
| 916 | 912 |
|
| 917 | 913 |
/// To make it easier to use Bfs algorithm |
| 918 | 914 |
/// we have created a wizard class. |
| 919 | 915 |
/// This \ref BfsWizard class needs default traits, |
| 920 | 916 |
/// as well as the \ref Bfs class. |
| 921 | 917 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
| 922 | 918 |
/// \ref BfsWizard class. |
| 923 | 919 |
template<class GR> |
| 924 | 920 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
| 925 | 921 |
{
|
| 926 | 922 |
|
| 927 | 923 |
typedef BfsWizardDefaultTraits<GR> Base; |
| 928 | 924 |
protected: |
| 929 | 925 |
//The type of the nodes in the digraph. |
| 930 | 926 |
typedef typename Base::Digraph::Node Node; |
| 931 | 927 |
|
| 932 | 928 |
//Pointer to the digraph the algorithm runs on. |
| 933 | 929 |
void *_g; |
| 934 | 930 |
//Pointer to the map of reached nodes. |
| 935 | 931 |
void *_reached; |
| 936 | 932 |
//Pointer to the map of processed nodes. |
| 937 | 933 |
void *_processed; |
| 938 | 934 |
//Pointer to the map of predecessors arcs. |
| 939 | 935 |
void *_pred; |
| 940 | 936 |
//Pointer to the map of distances. |
| 941 | 937 |
void *_dist; |
| 942 | 938 |
//Pointer to the source node. |
| 943 | 939 |
Node _source; |
| 944 | 940 |
|
| 945 | 941 |
public: |
| 946 | 942 |
/// Constructor. |
| 947 | 943 |
|
| 948 | 944 |
/// This constructor does not require parameters, therefore it initiates |
| 949 | 945 |
/// all of the attributes to default values (0, INVALID). |
| 950 | 946 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 951 | 947 |
_dist(0), _source(INVALID) {}
|
| 952 | 948 |
|
| 953 | 949 |
/// Constructor. |
| 954 | 950 |
|
| 955 | 951 |
/// This constructor requires some parameters, |
| 956 | 952 |
/// listed in the parameters list. |
| 957 | 953 |
/// Others are initiated to 0. |
| 958 | 954 |
/// \param g The digraph the algorithm runs on. |
| 959 | 955 |
/// \param s The source node. |
| 960 | 956 |
BfsWizardBase(const GR &g, Node s=INVALID) : |
| 961 | 957 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 962 | 958 |
_reached(0), _processed(0), _pred(0), _dist(0), _source(s) {}
|
| 963 | 959 |
|
| 964 | 960 |
}; |
| 965 | 961 |
|
| 966 | 962 |
/// Auxiliary class for the function type interface of BFS algorithm. |
| 967 | 963 |
|
| 968 | 964 |
/// This auxiliary class is created to implement the function type |
| 969 | 965 |
/// interface of \ref Bfs algorithm. It uses the functions and features |
| 970 | 966 |
/// of the plain \ref Bfs, but it is much simpler to use it. |
| 971 | 967 |
/// It should only be used through the \ref bfs() function, which makes |
| 972 | 968 |
/// it easier to use the algorithm. |
| 973 | 969 |
/// |
| 974 | 970 |
/// Simplicity means that the way to change the types defined |
| 975 | 971 |
/// in the traits class is based on functions that returns the new class |
| 976 | 972 |
/// and not on templatable built-in classes. |
| 977 | 973 |
/// When using the plain \ref Bfs |
| 978 | 974 |
/// the new class with the modified type comes from |
| 979 | 975 |
/// the original class by using the :: |
| 980 | 976 |
/// operator. In the case of \ref BfsWizard only |
| 981 | 977 |
/// a function have to be called, and it will |
| 982 | 978 |
/// return the needed class. |
| 983 | 979 |
/// |
| 984 | 980 |
/// It does not have own \ref run() method. When its \ref run() method |
| 985 | 981 |
/// is called, it initiates a plain \ref Bfs object, and calls the |
| 986 | 982 |
/// \ref Bfs::run() method of it. |
| 987 | 983 |
template<class TR> |
| 988 | 984 |
class BfsWizard : public TR |
| 989 | 985 |
{
|
| 990 | 986 |
typedef TR Base; |
| 991 | 987 |
|
| 992 | 988 |
///The type of the digraph the algorithm runs on. |
| 993 | 989 |
typedef typename TR::Digraph Digraph; |
| 994 | 990 |
|
| 995 | 991 |
typedef typename Digraph::Node Node; |
| 996 | 992 |
typedef typename Digraph::NodeIt NodeIt; |
| 997 | 993 |
typedef typename Digraph::Arc Arc; |
| 998 | 994 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 999 | 995 |
|
| 1000 | 996 |
///\brief The type of the map that stores the predecessor |
| 1001 | 997 |
///arcs of the shortest paths. |
| 1002 | 998 |
typedef typename TR::PredMap PredMap; |
| 1003 | 999 |
///\brief The type of the map that stores the distances of the nodes. |
| 1004 | 1000 |
typedef typename TR::DistMap DistMap; |
| 1005 | 1001 |
///\brief The type of the map that indicates which nodes are reached. |
| 1006 | 1002 |
typedef typename TR::ReachedMap ReachedMap; |
| 1007 | 1003 |
///\brief The type of the map that indicates which nodes are processed. |
| 1008 | 1004 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 1009 | 1005 |
|
| 1010 | 1006 |
public: |
| 1011 | 1007 |
|
| 1012 | 1008 |
/// Constructor. |
| 1013 | 1009 |
BfsWizard() : TR() {}
|
| 1014 | 1010 |
|
| 1015 | 1011 |
/// Constructor that requires parameters. |
| 1016 | 1012 |
|
| 1017 | 1013 |
/// Constructor that requires parameters. |
| 1018 | 1014 |
/// These parameters will be the default values for the traits class. |
| 1019 | 1015 |
BfsWizard(const Digraph &g, Node s=INVALID) : |
| 1020 | 1016 |
TR(g,s) {}
|
| 1021 | 1017 |
|
| 1022 | 1018 |
///Copy constructor |
| 1023 | 1019 |
BfsWizard(const TR &b) : TR(b) {}
|
| 1024 | 1020 |
|
| 1025 | 1021 |
~BfsWizard() {}
|
| 1026 | 1022 |
|
| 1027 | 1023 |
///Runs BFS algorithm from a source node. |
| 1028 | 1024 |
|
| 1029 | 1025 |
///Runs BFS algorithm from a source node. |
| 1030 | 1026 |
///The node can be given with the \ref source() function. |
| 1031 | 1027 |
void run() |
| 1032 | 1028 |
{
|
| 1033 | 1029 |
if(Base::_source==INVALID) throw UninitializedParameter(); |
| 1034 | 1030 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 1035 | 1031 |
if(Base::_reached) |
| 1036 | 1032 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 1037 | 1033 |
if(Base::_processed) |
| 1038 | 1034 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1039 | 1035 |
if(Base::_pred) |
| 1040 | 1036 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1041 | 1037 |
if(Base::_dist) |
| 1042 | 1038 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| ... | ... |
@@ -1143,386 +1139,385 @@ |
| 1143 | 1139 |
///Function type interface for Bfs algorithm. |
| 1144 | 1140 |
/// |
| 1145 | 1141 |
///This function also has several |
| 1146 | 1142 |
///\ref named-templ-func-param "named parameters", |
| 1147 | 1143 |
///they are declared as the members of class \ref BfsWizard. |
| 1148 | 1144 |
///The following |
| 1149 | 1145 |
///example shows how to use these parameters. |
| 1150 | 1146 |
///\code |
| 1151 | 1147 |
/// bfs(g,source).predMap(preds).run(); |
| 1152 | 1148 |
///\endcode |
| 1153 | 1149 |
///\warning Don't forget to put the \ref BfsWizard::run() "run()" |
| 1154 | 1150 |
///to the end of the parameter list. |
| 1155 | 1151 |
///\sa BfsWizard |
| 1156 | 1152 |
///\sa Bfs |
| 1157 | 1153 |
template<class GR> |
| 1158 | 1154 |
BfsWizard<BfsWizardBase<GR> > |
| 1159 | 1155 |
bfs(const GR &g,typename GR::Node s=INVALID) |
| 1160 | 1156 |
{
|
| 1161 | 1157 |
return BfsWizard<BfsWizardBase<GR> >(g,s); |
| 1162 | 1158 |
} |
| 1163 | 1159 |
|
| 1164 | 1160 |
#ifdef DOXYGEN |
| 1165 | 1161 |
/// \brief Visitor class for BFS. |
| 1166 | 1162 |
/// |
| 1167 | 1163 |
/// This class defines the interface of the BfsVisit events, and |
| 1168 | 1164 |
/// it could be the base of a real visitor class. |
| 1169 | 1165 |
template <typename _Digraph> |
| 1170 | 1166 |
struct BfsVisitor {
|
| 1171 | 1167 |
typedef _Digraph Digraph; |
| 1172 | 1168 |
typedef typename Digraph::Arc Arc; |
| 1173 | 1169 |
typedef typename Digraph::Node Node; |
| 1174 | 1170 |
/// \brief Called for the source node(s) of the BFS. |
| 1175 | 1171 |
/// |
| 1176 | 1172 |
/// This function is called for the source node(s) of the BFS. |
| 1177 | 1173 |
void start(const Node& node) {}
|
| 1178 | 1174 |
/// \brief Called when a node is reached first time. |
| 1179 | 1175 |
/// |
| 1180 | 1176 |
/// This function is called when a node is reached first time. |
| 1181 | 1177 |
void reach(const Node& node) {}
|
| 1182 | 1178 |
/// \brief Called when a node is processed. |
| 1183 | 1179 |
/// |
| 1184 | 1180 |
/// This function is called when a node is processed. |
| 1185 | 1181 |
void process(const Node& node) {}
|
| 1186 | 1182 |
/// \brief Called when an arc reaches a new node. |
| 1187 | 1183 |
/// |
| 1188 | 1184 |
/// This function is called when the BFS finds an arc whose target node |
| 1189 | 1185 |
/// is not reached yet. |
| 1190 | 1186 |
void discover(const Arc& arc) {}
|
| 1191 | 1187 |
/// \brief Called when an arc is examined but its target node is |
| 1192 | 1188 |
/// already discovered. |
| 1193 | 1189 |
/// |
| 1194 | 1190 |
/// This function is called when an arc is examined but its target node is |
| 1195 | 1191 |
/// already discovered. |
| 1196 | 1192 |
void examine(const Arc& arc) {}
|
| 1197 | 1193 |
}; |
| 1198 | 1194 |
#else |
| 1199 | 1195 |
template <typename _Digraph> |
| 1200 | 1196 |
struct BfsVisitor {
|
| 1201 | 1197 |
typedef _Digraph Digraph; |
| 1202 | 1198 |
typedef typename Digraph::Arc Arc; |
| 1203 | 1199 |
typedef typename Digraph::Node Node; |
| 1204 | 1200 |
void start(const Node&) {}
|
| 1205 | 1201 |
void reach(const Node&) {}
|
| 1206 | 1202 |
void process(const Node&) {}
|
| 1207 | 1203 |
void discover(const Arc&) {}
|
| 1208 | 1204 |
void examine(const Arc&) {}
|
| 1209 | 1205 |
|
| 1210 | 1206 |
template <typename _Visitor> |
| 1211 | 1207 |
struct Constraints {
|
| 1212 | 1208 |
void constraints() {
|
| 1213 | 1209 |
Arc arc; |
| 1214 | 1210 |
Node node; |
| 1215 | 1211 |
visitor.start(node); |
| 1216 | 1212 |
visitor.reach(node); |
| 1217 | 1213 |
visitor.process(node); |
| 1218 | 1214 |
visitor.discover(arc); |
| 1219 | 1215 |
visitor.examine(arc); |
| 1220 | 1216 |
} |
| 1221 | 1217 |
_Visitor& visitor; |
| 1222 | 1218 |
}; |
| 1223 | 1219 |
}; |
| 1224 | 1220 |
#endif |
| 1225 | 1221 |
|
| 1226 | 1222 |
/// \brief Default traits class of BfsVisit class. |
| 1227 | 1223 |
/// |
| 1228 | 1224 |
/// Default traits class of BfsVisit class. |
| 1229 | 1225 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
| 1230 | 1226 |
template<class _Digraph> |
| 1231 | 1227 |
struct BfsVisitDefaultTraits {
|
| 1232 | 1228 |
|
| 1233 | 1229 |
/// \brief The type of the digraph the algorithm runs on. |
| 1234 | 1230 |
typedef _Digraph Digraph; |
| 1235 | 1231 |
|
| 1236 | 1232 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1237 | 1233 |
/// |
| 1238 | 1234 |
/// The type of the map that indicates which nodes are reached. |
| 1239 | 1235 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 1240 | 1236 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1241 | 1237 |
|
| 1242 | 1238 |
/// \brief Instantiates a \ref ReachedMap. |
| 1243 | 1239 |
/// |
| 1244 | 1240 |
/// This function instantiates a \ref ReachedMap. |
| 1245 | 1241 |
/// \param digraph is the digraph, to which |
| 1246 | 1242 |
/// we would like to define the \ref ReachedMap. |
| 1247 | 1243 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1248 | 1244 |
return new ReachedMap(digraph); |
| 1249 | 1245 |
} |
| 1250 | 1246 |
|
| 1251 | 1247 |
}; |
| 1252 | 1248 |
|
| 1253 | 1249 |
/// \ingroup search |
| 1254 | 1250 |
/// |
| 1255 | 1251 |
/// \brief %BFS algorithm class with visitor interface. |
| 1256 | 1252 |
/// |
| 1257 | 1253 |
/// This class provides an efficient implementation of the %BFS algorithm |
| 1258 | 1254 |
/// with visitor interface. |
| 1259 | 1255 |
/// |
| 1260 | 1256 |
/// The %BfsVisit class provides an alternative interface to the Bfs |
| 1261 | 1257 |
/// class. It works with callback mechanism, the BfsVisit object calls |
| 1262 | 1258 |
/// the member functions of the \c Visitor class on every BFS event. |
| 1263 | 1259 |
/// |
| 1264 | 1260 |
/// This interface of the BFS algorithm should be used in special cases |
| 1265 | 1261 |
/// when extra actions have to be performed in connection with certain |
| 1266 | 1262 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
| 1267 | 1263 |
/// instead. |
| 1268 | 1264 |
/// |
| 1269 | 1265 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
| 1270 | 1266 |
/// The default value is |
| 1271 | 1267 |
/// \ref ListDigraph. The value of _Digraph is not used directly by |
| 1272 | 1268 |
/// \ref BfsVisit, it is only passed to \ref BfsVisitDefaultTraits. |
| 1273 | 1269 |
/// \tparam _Visitor The Visitor type that is used by the algorithm. |
| 1274 | 1270 |
/// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty visitor, which |
| 1275 | 1271 |
/// does not observe the BFS events. If you want to observe the BFS |
| 1276 | 1272 |
/// events, you should implement your own visitor class. |
| 1277 | 1273 |
/// \tparam _Traits Traits class to set various data types used by the |
| 1278 | 1274 |
/// algorithm. The default traits class is |
| 1279 | 1275 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>". |
| 1280 | 1276 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
| 1281 | 1277 |
/// a BFS visit traits class. |
| 1282 | 1278 |
#ifdef DOXYGEN |
| 1283 | 1279 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
| 1284 | 1280 |
#else |
| 1285 | 1281 |
template <typename _Digraph = ListDigraph, |
| 1286 | 1282 |
typename _Visitor = BfsVisitor<_Digraph>, |
| 1287 | 1283 |
typename _Traits = BfsDefaultTraits<_Digraph> > |
| 1288 | 1284 |
#endif |
| 1289 | 1285 |
class BfsVisit {
|
| 1290 | 1286 |
public: |
| 1291 | 1287 |
|
| 1292 | 1288 |
/// \brief \ref Exception for uninitialized parameters. |
| 1293 | 1289 |
/// |
| 1294 | 1290 |
/// This error represents problems in the initialization |
| 1295 | 1291 |
/// of the parameters of the algorithm. |
| 1296 | 1292 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
| 1297 | 1293 |
public: |
| 1298 | 1294 |
virtual const char* what() const throw() |
| 1299 | 1295 |
{
|
| 1300 | 1296 |
return "lemon::BfsVisit::UninitializedParameter"; |
| 1301 | 1297 |
} |
| 1302 | 1298 |
}; |
| 1303 | 1299 |
|
| 1304 | 1300 |
///The traits class. |
| 1305 | 1301 |
typedef _Traits Traits; |
| 1306 | 1302 |
|
| 1307 | 1303 |
///The type of the digraph the algorithm runs on. |
| 1308 | 1304 |
typedef typename Traits::Digraph Digraph; |
| 1309 | 1305 |
|
| 1310 | 1306 |
///The visitor type used by the algorithm. |
| 1311 | 1307 |
typedef _Visitor Visitor; |
| 1312 | 1308 |
|
| 1313 | 1309 |
///The type of the map that indicates which nodes are reached. |
| 1314 | 1310 |
typedef typename Traits::ReachedMap ReachedMap; |
| 1315 | 1311 |
|
| 1316 | 1312 |
private: |
| 1317 | 1313 |
|
| 1318 | 1314 |
typedef typename Digraph::Node Node; |
| 1319 | 1315 |
typedef typename Digraph::NodeIt NodeIt; |
| 1320 | 1316 |
typedef typename Digraph::Arc Arc; |
| 1321 | 1317 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1322 | 1318 |
|
| 1323 | 1319 |
//Pointer to the underlying digraph. |
| 1324 | 1320 |
const Digraph *_digraph; |
| 1325 | 1321 |
//Pointer to the visitor object. |
| 1326 | 1322 |
Visitor *_visitor; |
| 1327 | 1323 |
//Pointer to the map of reached status of the nodes. |
| 1328 | 1324 |
ReachedMap *_reached; |
| 1329 | 1325 |
//Indicates if _reached is locally allocated (true) or not. |
| 1330 | 1326 |
bool local_reached; |
| 1331 | 1327 |
|
| 1332 | 1328 |
std::vector<typename Digraph::Node> _list; |
| 1333 | 1329 |
int _list_front, _list_back; |
| 1334 | 1330 |
|
| 1335 |
///Creates the maps if necessary. |
|
| 1336 |
///\todo Better memory allocation (instead of new). |
|
| 1331 |
//Creates the maps if necessary. |
|
| 1337 | 1332 |
void create_maps() {
|
| 1338 | 1333 |
if(!_reached) {
|
| 1339 | 1334 |
local_reached = true; |
| 1340 | 1335 |
_reached = Traits::createReachedMap(*_digraph); |
| 1341 | 1336 |
} |
| 1342 | 1337 |
} |
| 1343 | 1338 |
|
| 1344 | 1339 |
protected: |
| 1345 | 1340 |
|
| 1346 | 1341 |
BfsVisit() {}
|
| 1347 | 1342 |
|
| 1348 | 1343 |
public: |
| 1349 | 1344 |
|
| 1350 | 1345 |
typedef BfsVisit Create; |
| 1351 | 1346 |
|
| 1352 | 1347 |
/// \name Named template parameters |
| 1353 | 1348 |
|
| 1354 | 1349 |
///@{
|
| 1355 | 1350 |
template <class T> |
| 1356 | 1351 |
struct SetReachedMapTraits : public Traits {
|
| 1357 | 1352 |
typedef T ReachedMap; |
| 1358 | 1353 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1359 | 1354 |
throw UninitializedParameter(); |
| 1360 | 1355 |
} |
| 1361 | 1356 |
}; |
| 1362 | 1357 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1363 | 1358 |
/// ReachedMap type. |
| 1364 | 1359 |
/// |
| 1365 | 1360 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
| 1366 | 1361 |
template <class T> |
| 1367 | 1362 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
| 1368 | 1363 |
SetReachedMapTraits<T> > {
|
| 1369 | 1364 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
| 1370 | 1365 |
}; |
| 1371 | 1366 |
///@} |
| 1372 | 1367 |
|
| 1373 | 1368 |
public: |
| 1374 | 1369 |
|
| 1375 | 1370 |
/// \brief Constructor. |
| 1376 | 1371 |
/// |
| 1377 | 1372 |
/// Constructor. |
| 1378 | 1373 |
/// |
| 1379 | 1374 |
/// \param digraph The digraph the algorithm runs on. |
| 1380 | 1375 |
/// \param visitor The visitor object of the algorithm. |
| 1381 | 1376 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
| 1382 | 1377 |
: _digraph(&digraph), _visitor(&visitor), |
| 1383 | 1378 |
_reached(0), local_reached(false) {}
|
| 1384 | 1379 |
|
| 1385 | 1380 |
/// \brief Destructor. |
| 1386 | 1381 |
~BfsVisit() {
|
| 1387 | 1382 |
if(local_reached) delete _reached; |
| 1388 | 1383 |
} |
| 1389 | 1384 |
|
| 1390 | 1385 |
/// \brief Sets the map that indicates which nodes are reached. |
| 1391 | 1386 |
/// |
| 1392 | 1387 |
/// Sets the map that indicates which nodes are reached. |
| 1393 | 1388 |
/// If you don't use this function before calling \ref run(), |
| 1394 | 1389 |
/// it will allocate one. The destructor deallocates this |
| 1395 | 1390 |
/// automatically allocated map, of course. |
| 1396 | 1391 |
/// \return <tt> (*this) </tt> |
| 1397 | 1392 |
BfsVisit &reachedMap(ReachedMap &m) {
|
| 1398 | 1393 |
if(local_reached) {
|
| 1399 | 1394 |
delete _reached; |
| 1400 | 1395 |
local_reached = false; |
| 1401 | 1396 |
} |
| 1402 | 1397 |
_reached = &m; |
| 1403 | 1398 |
return *this; |
| 1404 | 1399 |
} |
| 1405 | 1400 |
|
| 1406 | 1401 |
public: |
| 1407 | 1402 |
|
| 1408 | 1403 |
/// \name Execution control |
| 1409 | 1404 |
/// The simplest way to execute the algorithm is to use |
| 1410 | 1405 |
/// one of the member functions called \ref lemon::BfsVisit::run() |
| 1411 | 1406 |
/// "run()". |
| 1412 | 1407 |
/// \n |
| 1413 | 1408 |
/// If you need more control on the execution, first you must call |
| 1414 | 1409 |
/// \ref lemon::BfsVisit::init() "init()", then you can add several |
| 1415 | 1410 |
/// source nodes with \ref lemon::BfsVisit::addSource() "addSource()". |
| 1416 | 1411 |
/// Finally \ref lemon::BfsVisit::start() "start()" will perform the |
| 1417 | 1412 |
/// actual path computation. |
| 1418 | 1413 |
|
| 1419 | 1414 |
/// @{
|
| 1420 | 1415 |
|
| 1421 | 1416 |
/// \brief Initializes the internal data structures. |
| 1422 | 1417 |
/// |
| 1423 | 1418 |
/// Initializes the internal data structures. |
| 1424 | 1419 |
void init() {
|
| 1425 | 1420 |
create_maps(); |
| 1426 | 1421 |
_list.resize(countNodes(*_digraph)); |
| 1427 | 1422 |
_list_front = _list_back = -1; |
| 1428 | 1423 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
|
| 1429 | 1424 |
_reached->set(u, false); |
| 1430 | 1425 |
} |
| 1431 | 1426 |
} |
| 1432 | 1427 |
|
| 1433 | 1428 |
/// \brief Adds a new source node. |
| 1434 | 1429 |
/// |
| 1435 | 1430 |
/// Adds a new source node to the set of nodes to be processed. |
| 1436 | 1431 |
void addSource(Node s) {
|
| 1437 | 1432 |
if(!(*_reached)[s]) {
|
| 1438 | 1433 |
_reached->set(s,true); |
| 1439 | 1434 |
_visitor->start(s); |
| 1440 | 1435 |
_visitor->reach(s); |
| 1441 | 1436 |
_list[++_list_back] = s; |
| 1442 | 1437 |
} |
| 1443 | 1438 |
} |
| 1444 | 1439 |
|
| 1445 | 1440 |
/// \brief Processes the next node. |
| 1446 | 1441 |
/// |
| 1447 | 1442 |
/// Processes the next node. |
| 1448 | 1443 |
/// |
| 1449 | 1444 |
/// \return The processed node. |
| 1450 | 1445 |
/// |
| 1451 | 1446 |
/// \pre The queue must not be empty. |
| 1452 | 1447 |
Node processNextNode() {
|
| 1453 | 1448 |
Node n = _list[++_list_front]; |
| 1454 | 1449 |
_visitor->process(n); |
| 1455 | 1450 |
Arc e; |
| 1456 | 1451 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1457 | 1452 |
Node m = _digraph->target(e); |
| 1458 | 1453 |
if (!(*_reached)[m]) {
|
| 1459 | 1454 |
_visitor->discover(e); |
| 1460 | 1455 |
_visitor->reach(m); |
| 1461 | 1456 |
_reached->set(m, true); |
| 1462 | 1457 |
_list[++_list_back] = m; |
| 1463 | 1458 |
} else {
|
| 1464 | 1459 |
_visitor->examine(e); |
| 1465 | 1460 |
} |
| 1466 | 1461 |
} |
| 1467 | 1462 |
return n; |
| 1468 | 1463 |
} |
| 1469 | 1464 |
|
| 1470 | 1465 |
/// \brief Processes the next node. |
| 1471 | 1466 |
/// |
| 1472 | 1467 |
/// Processes the next node and checks if the given target node |
| 1473 | 1468 |
/// is reached. If the target node is reachable from the processed |
| 1474 | 1469 |
/// node, then the \c reach parameter will be set to \c true. |
| 1475 | 1470 |
/// |
| 1476 | 1471 |
/// \param target The target node. |
| 1477 | 1472 |
/// \retval reach Indicates if the target node is reached. |
| 1478 | 1473 |
/// It should be initially \c false. |
| 1479 | 1474 |
/// |
| 1480 | 1475 |
/// \return The processed node. |
| 1481 | 1476 |
/// |
| 1482 | 1477 |
/// \pre The queue must not be empty. |
| 1483 | 1478 |
Node processNextNode(Node target, bool& reach) {
|
| 1484 | 1479 |
Node n = _list[++_list_front]; |
| 1485 | 1480 |
_visitor->process(n); |
| 1486 | 1481 |
Arc e; |
| 1487 | 1482 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1488 | 1483 |
Node m = _digraph->target(e); |
| 1489 | 1484 |
if (!(*_reached)[m]) {
|
| 1490 | 1485 |
_visitor->discover(e); |
| 1491 | 1486 |
_visitor->reach(m); |
| 1492 | 1487 |
_reached->set(m, true); |
| 1493 | 1488 |
_list[++_list_back] = m; |
| 1494 | 1489 |
reach = reach || (target == m); |
| 1495 | 1490 |
} else {
|
| 1496 | 1491 |
_visitor->examine(e); |
| 1497 | 1492 |
} |
| 1498 | 1493 |
} |
| 1499 | 1494 |
return n; |
| 1500 | 1495 |
} |
| 1501 | 1496 |
|
| 1502 | 1497 |
/// \brief Processes the next node. |
| 1503 | 1498 |
/// |
| 1504 | 1499 |
/// Processes the next node and checks if at least one of reached |
| 1505 | 1500 |
/// nodes has \c true value in the \c nm node map. If one node |
| 1506 | 1501 |
/// with \c true value is reachable from the processed node, then the |
| 1507 | 1502 |
/// \c rnode parameter will be set to the first of such nodes. |
| 1508 | 1503 |
/// |
| 1509 | 1504 |
/// \param nm A \c bool (or convertible) node map that indicates the |
| 1510 | 1505 |
/// possible targets. |
| 1511 | 1506 |
/// \retval rnode The reached target node. |
| 1512 | 1507 |
/// It should be initially \c INVALID. |
| 1513 | 1508 |
/// |
| 1514 | 1509 |
/// \return The processed node. |
| 1515 | 1510 |
/// |
| 1516 | 1511 |
/// \pre The queue must not be empty. |
| 1517 | 1512 |
template <typename NM> |
| 1518 | 1513 |
Node processNextNode(const NM& nm, Node& rnode) {
|
| 1519 | 1514 |
Node n = _list[++_list_front]; |
| 1520 | 1515 |
_visitor->process(n); |
| 1521 | 1516 |
Arc e; |
| 1522 | 1517 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1523 | 1518 |
Node m = _digraph->target(e); |
| 1524 | 1519 |
if (!(*_reached)[m]) {
|
| 1525 | 1520 |
_visitor->discover(e); |
| 1526 | 1521 |
_visitor->reach(m); |
| 1527 | 1522 |
_reached->set(m, true); |
| 1528 | 1523 |
_list[++_list_back] = m; |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_BASE_EXTENDER_H |
| 20 | 20 |
#define LEMON_BITS_BASE_EXTENDER_H |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/error.h> |
| 24 | 24 |
|
| 25 | 25 |
#include <lemon/bits/map_extender.h> |
| 26 | 26 |
#include <lemon/bits/default_map.h> |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/concept_check.h> |
| 29 | 29 |
#include <lemon/concepts/maps.h> |
| 30 | 30 |
|
| 31 | 31 |
///\ingroup digraphbits |
| 32 | 32 |
///\file |
| 33 | 33 |
///\brief Extenders for the digraph types |
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 | 36 |
/// \ingroup digraphbits |
| 37 | 37 |
/// |
| 38 | 38 |
/// \brief BaseDigraph to BaseGraph extender |
| 39 | 39 |
template <typename Base> |
| 40 | 40 |
class UndirDigraphExtender : public Base {
|
| 41 | 41 |
|
| 42 | 42 |
public: |
| 43 | 43 |
|
| 44 | 44 |
typedef Base Parent; |
| 45 | 45 |
typedef typename Parent::Arc Edge; |
| 46 | 46 |
typedef typename Parent::Node Node; |
| 47 | 47 |
|
| 48 | 48 |
typedef True UndirectedTag; |
| 49 | 49 |
|
| 50 | 50 |
class Arc : public Edge {
|
| 51 | 51 |
friend class UndirDigraphExtender; |
| 52 | 52 |
|
| 53 | 53 |
protected: |
| 54 | 54 |
bool forward; |
| 55 | 55 |
|
| 56 | 56 |
Arc(const Edge &ue, bool _forward) : |
| 57 | 57 |
Edge(ue), forward(_forward) {}
|
| 58 | 58 |
|
| 59 | 59 |
public: |
| 60 | 60 |
Arc() {}
|
| 61 | 61 |
|
| 62 | 62 |
// Invalid arc constructor |
| 63 | 63 |
Arc(Invalid i) : Edge(i), forward(true) {}
|
| 64 | 64 |
|
| 65 | 65 |
bool operator==(const Arc &that) const {
|
| 66 | 66 |
return forward==that.forward && Edge(*this)==Edge(that); |
| 67 | 67 |
} |
| 68 | 68 |
bool operator!=(const Arc &that) const {
|
| 69 | 69 |
return forward!=that.forward || Edge(*this)!=Edge(that); |
| 70 | 70 |
} |
| 71 | 71 |
bool operator<(const Arc &that) const {
|
| 72 | 72 |
return forward<that.forward || |
| 73 | 73 |
(!(that.forward<forward) && Edge(*this)<Edge(that)); |
| 74 | 74 |
} |
| 75 | 75 |
}; |
| 76 | 76 |
|
| 77 | 77 |
/// First node of the edge |
| 78 | 78 |
Node u(const Edge &e) const {
|
| 79 | 79 |
return Parent::source(e); |
| 80 | 80 |
} |
| 81 | 81 |
|
| 82 | 82 |
/// Source of the given arc |
| 83 | 83 |
Node source(const Arc &e) const {
|
| 84 | 84 |
return e.forward ? Parent::source(e) : Parent::target(e); |
| 85 | 85 |
} |
| 86 | 86 |
|
| 87 | 87 |
/// Second node of the edge |
| 88 | 88 |
Node v(const Edge &e) const {
|
| 89 | 89 |
return Parent::target(e); |
| 90 | 90 |
} |
| 91 | 91 |
|
| 92 | 92 |
/// Target of the given arc |
| 93 | 93 |
Node target(const Arc &e) const {
|
| 94 | 94 |
return e.forward ? Parent::target(e) : Parent::source(e); |
| 95 | 95 |
} |
| 96 | 96 |
|
| 97 | 97 |
/// \brief Directed arc from an edge. |
| 98 | 98 |
/// |
| 99 | 99 |
/// Returns a directed arc corresponding to the specified edge. |
| 100 | 100 |
/// If the given bool is true, the first node of the given edge and |
| 101 | 101 |
/// the source node of the returned arc are the same. |
| 102 | 102 |
static Arc direct(const Edge &e, bool d) {
|
| 103 | 103 |
return Arc(e, d); |
| 104 | 104 |
} |
| 105 | 105 |
|
| 106 | 106 |
/// Returns whether the given directed arc has the same orientation |
| 107 | 107 |
/// as the corresponding edge. |
| 108 |
/// |
|
| 109 |
/// \todo reference to the corresponding point of the undirected digraph |
|
| 110 |
/// concept. "What does the direction of an edge mean?" |
|
| 111 | 108 |
static bool direction(const Arc &a) { return a.forward; }
|
| 112 | 109 |
|
| 113 | 110 |
using Parent::first; |
| 114 | 111 |
using Parent::next; |
| 115 | 112 |
|
| 116 | 113 |
void first(Arc &e) const {
|
| 117 | 114 |
Parent::first(e); |
| 118 | 115 |
e.forward=true; |
| 119 | 116 |
} |
| 120 | 117 |
|
| 121 | 118 |
void next(Arc &e) const {
|
| 122 | 119 |
if( e.forward ) {
|
| 123 | 120 |
e.forward = false; |
| 124 | 121 |
} |
| 125 | 122 |
else {
|
| 126 | 123 |
Parent::next(e); |
| 127 | 124 |
e.forward = true; |
| 128 | 125 |
} |
| 129 | 126 |
} |
| 130 | 127 |
|
| 131 | 128 |
void firstOut(Arc &e, const Node &n) const {
|
| 132 | 129 |
Parent::firstIn(e,n); |
| 133 | 130 |
if( Edge(e) != INVALID ) {
|
| 134 | 131 |
e.forward = false; |
| 135 | 132 |
} |
| 136 | 133 |
else {
|
| 137 | 134 |
Parent::firstOut(e,n); |
| 138 | 135 |
e.forward = true; |
| 139 | 136 |
} |
| 140 | 137 |
} |
| 141 | 138 |
void nextOut(Arc &e) const {
|
| 142 | 139 |
if( ! e.forward ) {
|
| 143 | 140 |
Node n = Parent::target(e); |
| 144 | 141 |
Parent::nextIn(e); |
| 145 | 142 |
if( Edge(e) == INVALID ) {
|
| 146 | 143 |
Parent::firstOut(e, n); |
| 147 | 144 |
e.forward = true; |
| 148 | 145 |
} |
| 149 | 146 |
} |
| 150 | 147 |
else {
|
| 151 | 148 |
Parent::nextOut(e); |
| 152 | 149 |
} |
| 153 | 150 |
} |
| 154 | 151 |
|
| 155 | 152 |
void firstIn(Arc &e, const Node &n) const {
|
| 156 | 153 |
Parent::firstOut(e,n); |
| 157 | 154 |
if( Edge(e) != INVALID ) {
|
| 158 | 155 |
e.forward = false; |
| 159 | 156 |
} |
| 160 | 157 |
else {
|
| 161 | 158 |
Parent::firstIn(e,n); |
| 162 | 159 |
e.forward = true; |
| 163 | 160 |
} |
| 164 | 161 |
} |
| 165 | 162 |
void nextIn(Arc &e) const {
|
| 166 | 163 |
if( ! e.forward ) {
|
| 167 | 164 |
Node n = Parent::source(e); |
| 168 | 165 |
Parent::nextOut(e); |
| 169 | 166 |
if( Edge(e) == INVALID ) {
|
| 170 | 167 |
Parent::firstIn(e, n); |
| 171 | 168 |
e.forward = true; |
| 172 | 169 |
} |
| 173 | 170 |
} |
| 174 | 171 |
else {
|
| 175 | 172 |
Parent::nextIn(e); |
| 176 | 173 |
} |
| 177 | 174 |
} |
| 178 | 175 |
|
| 179 | 176 |
void firstInc(Edge &e, bool &d, const Node &n) const {
|
| 180 | 177 |
d = true; |
| 181 | 178 |
Parent::firstOut(e, n); |
| 182 | 179 |
if (e != INVALID) return; |
| 183 | 180 |
d = false; |
| 184 | 181 |
Parent::firstIn(e, n); |
| 185 | 182 |
} |
| 186 | 183 |
|
| 187 | 184 |
void nextInc(Edge &e, bool &d) const {
|
| 188 | 185 |
if (d) {
|
| 189 | 186 |
Node s = Parent::source(e); |
| 190 | 187 |
Parent::nextOut(e); |
| 191 | 188 |
if (e != INVALID) return; |
| 192 | 189 |
d = false; |
| 193 | 190 |
Parent::firstIn(e, s); |
| 194 | 191 |
} else {
|
| 195 | 192 |
Parent::nextIn(e); |
| 196 | 193 |
} |
| 197 | 194 |
} |
| 198 | 195 |
|
| 199 | 196 |
Node nodeFromId(int ix) const {
|
| 200 | 197 |
return Parent::nodeFromId(ix); |
| 201 | 198 |
} |
| 202 | 199 |
|
| 203 | 200 |
Arc arcFromId(int ix) const {
|
| 204 | 201 |
return direct(Parent::arcFromId(ix >> 1), bool(ix & 1)); |
| 205 | 202 |
} |
| 206 | 203 |
|
| 207 | 204 |
Edge edgeFromId(int ix) const {
|
| 208 | 205 |
return Parent::arcFromId(ix); |
| 209 | 206 |
} |
| 210 | 207 |
|
| 211 | 208 |
int id(const Node &n) const {
|
| 212 | 209 |
return Parent::id(n); |
| 213 | 210 |
} |
| 214 | 211 |
|
| 215 | 212 |
int id(const Edge &e) const {
|
| 216 | 213 |
return Parent::id(e); |
| 217 | 214 |
} |
| 218 | 215 |
|
| 219 | 216 |
int id(const Arc &e) const {
|
| 220 | 217 |
return 2 * Parent::id(e) + int(e.forward); |
| 221 | 218 |
} |
| 222 | 219 |
|
| 223 | 220 |
int maxNodeId() const {
|
| 224 | 221 |
return Parent::maxNodeId(); |
| 225 | 222 |
} |
| 226 | 223 |
|
| 227 | 224 |
int maxArcId() const {
|
| 228 | 225 |
return 2 * Parent::maxArcId() + 1; |
| 229 | 226 |
} |
| 230 | 227 |
|
| 231 | 228 |
int maxEdgeId() const {
|
| 232 | 229 |
return Parent::maxArcId(); |
| 233 | 230 |
} |
| 234 | 231 |
|
| 235 | 232 |
int arcNum() const {
|
| 236 | 233 |
return 2 * Parent::arcNum(); |
| 237 | 234 |
} |
| 238 | 235 |
|
| 239 | 236 |
int edgeNum() const {
|
| 240 | 237 |
return Parent::arcNum(); |
| 241 | 238 |
} |
| 242 | 239 |
|
| 243 | 240 |
Arc findArc(Node s, Node t, Arc p = INVALID) const {
|
| 244 | 241 |
if (p == INVALID) {
|
| 245 | 242 |
Edge arc = Parent::findArc(s, t); |
| 246 | 243 |
if (arc != INVALID) return direct(arc, true); |
| 247 | 244 |
arc = Parent::findArc(t, s); |
| 248 | 245 |
if (arc != INVALID) return direct(arc, false); |
| 249 | 246 |
} else if (direction(p)) {
|
| 250 | 247 |
Edge arc = Parent::findArc(s, t, p); |
| 251 | 248 |
if (arc != INVALID) return direct(arc, true); |
| 252 | 249 |
arc = Parent::findArc(t, s); |
| 253 | 250 |
if (arc != INVALID) return direct(arc, false); |
| 254 | 251 |
} else {
|
| 255 | 252 |
Edge arc = Parent::findArc(t, s, p); |
| 256 | 253 |
if (arc != INVALID) return direct(arc, false); |
| 257 | 254 |
} |
| 258 | 255 |
return INVALID; |
| 259 | 256 |
} |
| 260 | 257 |
|
| 261 | 258 |
Edge findEdge(Node s, Node t, Edge p = INVALID) const {
|
| 262 | 259 |
if (s != t) {
|
| 263 | 260 |
if (p == INVALID) {
|
| 264 | 261 |
Edge arc = Parent::findArc(s, t); |
| 265 | 262 |
if (arc != INVALID) return arc; |
| 266 | 263 |
arc = Parent::findArc(t, s); |
| 267 | 264 |
if (arc != INVALID) return arc; |
| 268 | 265 |
} else if (Parent::s(p) == s) {
|
| 269 | 266 |
Edge arc = Parent::findArc(s, t, p); |
| 270 | 267 |
if (arc != INVALID) return arc; |
| 271 | 268 |
arc = Parent::findArc(t, s); |
| 272 | 269 |
if (arc != INVALID) return arc; |
| 273 | 270 |
} else {
|
| 274 | 271 |
Edge arc = Parent::findArc(t, s, p); |
| 275 | 272 |
if (arc != INVALID) return arc; |
| 276 | 273 |
} |
| 277 | 274 |
} else {
|
| 278 | 275 |
return Parent::findArc(s, t, p); |
| 279 | 276 |
} |
| 280 | 277 |
return INVALID; |
| 281 | 278 |
} |
| 282 | 279 |
}; |
| 283 | 280 |
|
| 284 | 281 |
template <typename Base> |
| 285 | 282 |
class BidirBpGraphExtender : public Base {
|
| 286 | 283 |
public: |
| 287 | 284 |
typedef Base Parent; |
| 288 | 285 |
typedef BidirBpGraphExtender Digraph; |
| 289 | 286 |
|
| 290 | 287 |
typedef typename Parent::Node Node; |
| 291 | 288 |
typedef typename Parent::Edge Edge; |
| 292 | 289 |
|
| 293 | 290 |
|
| 294 | 291 |
using Parent::first; |
| 295 | 292 |
using Parent::next; |
| 296 | 293 |
|
| 297 | 294 |
using Parent::id; |
| 298 | 295 |
|
| 299 | 296 |
class Red : public Node {
|
| 300 | 297 |
friend class BidirBpGraphExtender; |
| 301 | 298 |
public: |
| 302 | 299 |
Red() {}
|
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BITS_VECTOR_MAP_H |
| 20 | 20 |
#define LEMON_BITS_VECTOR_MAP_H |
| 21 | 21 |
|
| 22 | 22 |
#include <vector> |
| 23 | 23 |
#include <algorithm> |
| 24 | 24 |
|
| 25 | 25 |
#include <lemon/core.h> |
| 26 | 26 |
#include <lemon/bits/alteration_notifier.h> |
| 27 | 27 |
|
| 28 | 28 |
#include <lemon/concept_check.h> |
| 29 | 29 |
#include <lemon/concepts/maps.h> |
| 30 | 30 |
|
| 31 | 31 |
///\ingroup graphbits |
| 32 | 32 |
/// |
| 33 | 33 |
///\file |
| 34 | 34 |
///\brief Vector based graph maps. |
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 | 37 |
/// \ingroup graphbits |
| 38 | 38 |
/// |
| 39 | 39 |
/// \brief Graph map based on the std::vector storage. |
| 40 | 40 |
/// |
| 41 | 41 |
/// The VectorMap template class is graph map structure what |
| 42 | 42 |
/// automatically updates the map when a key is added to or erased from |
| 43 | 43 |
/// the map. This map type uses the std::vector to store the values. |
| 44 | 44 |
/// |
| 45 |
/// \tparam |
|
| 45 |
/// \tparam _Graph The graph this map is attached to. |
|
| 46 | 46 |
/// \tparam _Item The item type of the graph items. |
| 47 | 47 |
/// \tparam _Value The value type of the map. |
| 48 |
/// \todo Fix the doc: there is _Graph parameter instead of _Notifier. |
|
| 49 | 48 |
template <typename _Graph, typename _Item, typename _Value> |
| 50 | 49 |
class VectorMap |
| 51 | 50 |
: public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase {
|
| 52 | 51 |
private: |
| 53 | 52 |
|
| 54 | 53 |
/// The container type of the map. |
| 55 | 54 |
typedef std::vector<_Value> Container; |
| 56 | 55 |
|
| 57 | 56 |
public: |
| 58 | 57 |
|
| 59 | 58 |
/// The graph type of the map. |
| 60 | 59 |
typedef _Graph Graph; |
| 61 | 60 |
/// The item type of the map. |
| 62 | 61 |
typedef _Item Item; |
| 63 | 62 |
/// The reference map tag. |
| 64 | 63 |
typedef True ReferenceMapTag; |
| 65 | 64 |
|
| 66 | 65 |
/// The key type of the map. |
| 67 | 66 |
typedef _Item Key; |
| 68 | 67 |
/// The value type of the map. |
| 69 | 68 |
typedef _Value Value; |
| 70 | 69 |
|
| 71 | 70 |
/// The notifier type. |
| 72 | 71 |
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; |
| 73 | 72 |
|
| 74 | 73 |
/// The map type. |
| 75 | 74 |
typedef VectorMap Map; |
| 76 | 75 |
/// The base class of the map. |
| 77 | 76 |
typedef typename Notifier::ObserverBase Parent; |
| 78 | 77 |
|
| 79 | 78 |
/// The reference type of the map; |
| 80 | 79 |
typedef typename Container::reference Reference; |
| 81 | 80 |
/// The const reference type of the map; |
| 82 | 81 |
typedef typename Container::const_reference ConstReference; |
| 83 | 82 |
|
| 84 | 83 |
|
| 85 | 84 |
/// \brief Constructor to attach the new map into the notifier. |
| 86 | 85 |
/// |
| 87 | 86 |
/// It constructs a map and attachs it into the notifier. |
| 88 | 87 |
/// It adds all the items of the graph to the map. |
| 89 | 88 |
VectorMap(const Graph& graph) {
|
| 90 | 89 |
Parent::attach(graph.notifier(Item())); |
| 91 | 90 |
container.resize(Parent::notifier()->maxId() + 1); |
| 92 | 91 |
} |
| 93 | 92 |
|
| 94 | 93 |
/// \brief Constructor uses given value to initialize the map. |
| 95 | 94 |
/// |
| 96 | 95 |
/// It constructs a map uses a given value to initialize the map. |
| 97 | 96 |
/// It adds all the items of the graph to the map. |
| 98 | 97 |
VectorMap(const Graph& graph, const Value& value) {
|
| 99 | 98 |
Parent::attach(graph.notifier(Item())); |
| 100 | 99 |
container.resize(Parent::notifier()->maxId() + 1, value); |
| 101 | 100 |
} |
| 102 | 101 |
|
| 103 | 102 |
private: |
| 104 | 103 |
/// \brief Copy constructor |
| 105 | 104 |
/// |
| 106 | 105 |
/// Copy constructor. |
| 107 | 106 |
VectorMap(const VectorMap& _copy) : Parent() {
|
| 108 | 107 |
if (_copy.attached()) {
|
| 109 | 108 |
Parent::attach(*_copy.notifier()); |
| 110 | 109 |
container = _copy.container; |
| 111 | 110 |
} |
| 112 | 111 |
} |
| 113 | 112 |
|
| 114 | 113 |
/// \brief Assign operator. |
| 115 | 114 |
/// |
| 116 | 115 |
/// This operator assigns for each item in the map the |
| 117 | 116 |
/// value mapped to the same item in the copied map. |
| 118 | 117 |
/// The parameter map should be indiced with the same |
| 119 | 118 |
/// itemset because this assign operator does not change |
| 120 | 119 |
/// the container of the map. |
| 121 | 120 |
VectorMap& operator=(const VectorMap& cmap) {
|
| 122 | 121 |
return operator=<VectorMap>(cmap); |
| 123 | 122 |
} |
| 124 | 123 |
|
| 125 | 124 |
|
| 126 | 125 |
/// \brief Template assign operator. |
| 127 | 126 |
/// |
| 128 | 127 |
/// The given parameter should be conform to the ReadMap |
| 129 | 128 |
/// concecpt and could be indiced by the current item set of |
| 130 | 129 |
/// the NodeMap. In this case the value for each item |
| 131 | 130 |
/// is assigned by the value of the given ReadMap. |
| 132 | 131 |
template <typename CMap> |
| 133 | 132 |
VectorMap& operator=(const CMap& cmap) {
|
| 134 | 133 |
checkConcept<concepts::ReadMap<Key, _Value>, CMap>(); |
| 135 | 134 |
const typename Parent::Notifier* nf = Parent::notifier(); |
| 136 | 135 |
Item it; |
| 137 | 136 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 138 | 137 |
set(it, cmap[it]); |
| 139 | 138 |
} |
| 140 | 139 |
return *this; |
| 141 | 140 |
} |
| 142 | 141 |
|
| 143 | 142 |
public: |
| 144 | 143 |
|
| 145 | 144 |
/// \brief The subcript operator. |
| 146 | 145 |
/// |
| 147 | 146 |
/// The subscript operator. The map can be subscripted by the |
| 148 | 147 |
/// actual items of the graph. |
| 149 | 148 |
Reference operator[](const Key& key) {
|
| 150 | 149 |
return container[Parent::notifier()->id(key)]; |
| 151 | 150 |
} |
| 152 | 151 |
|
| 153 | 152 |
/// \brief The const subcript operator. |
| 154 | 153 |
/// |
| 155 | 154 |
/// The const subscript operator. The map can be subscripted by the |
| 156 | 155 |
/// actual items of the graph. |
| 157 | 156 |
ConstReference operator[](const Key& key) const {
|
| 158 | 157 |
return container[Parent::notifier()->id(key)]; |
| 159 | 158 |
} |
| 160 | 159 |
|
| 161 | 160 |
|
| 162 | 161 |
/// \brief The setter function of the map. |
| 163 | 162 |
/// |
| 164 | 163 |
/// It the same as operator[](key) = value expression. |
| 165 | 164 |
void set(const Key& key, const Value& value) {
|
| 166 | 165 |
(*this)[key] = value; |
| 167 | 166 |
} |
| 168 | 167 |
|
| 169 | 168 |
protected: |
| 170 | 169 |
|
| 171 | 170 |
/// \brief Adds a new key to the map. |
| 172 | 171 |
/// |
| 173 | 172 |
/// It adds a new key to the map. It called by the observer notifier |
| 174 | 173 |
/// and it overrides the add() member function of the observer base. |
| 175 | 174 |
virtual void add(const Key& key) {
|
| 176 | 175 |
int id = Parent::notifier()->id(key); |
| 177 | 176 |
if (id >= int(container.size())) {
|
| 178 | 177 |
container.resize(id + 1); |
| 179 | 178 |
} |
| 180 | 179 |
} |
| 181 | 180 |
|
| 182 | 181 |
/// \brief Adds more new keys to the map. |
| 183 | 182 |
/// |
| 184 | 183 |
/// It adds more new keys to the map. It called by the observer notifier |
| 185 | 184 |
/// and it overrides the add() member function of the observer base. |
| 186 | 185 |
virtual void add(const std::vector<Key>& keys) {
|
| 187 | 186 |
int max = container.size() - 1; |
| 188 | 187 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 189 | 188 |
int id = Parent::notifier()->id(keys[i]); |
| 190 | 189 |
if (id >= max) {
|
| 191 | 190 |
max = id; |
| 192 | 191 |
} |
| 193 | 192 |
} |
| 194 | 193 |
container.resize(max + 1); |
| 195 | 194 |
} |
| 196 | 195 |
|
| 197 | 196 |
/// \brief Erase a key from the map. |
| 198 | 197 |
/// |
| 199 | 198 |
/// Erase a key from the map. It called by the observer notifier |
| 200 | 199 |
/// and it overrides the erase() member function of the observer base. |
| 201 | 200 |
virtual void erase(const Key& key) {
|
| 202 | 201 |
container[Parent::notifier()->id(key)] = Value(); |
| 203 | 202 |
} |
| 204 | 203 |
|
| 205 | 204 |
/// \brief Erase more keys from the map. |
| 206 | 205 |
/// |
| 207 | 206 |
/// Erase more keys from the map. It called by the observer notifier |
| 208 | 207 |
/// and it overrides the erase() member function of the observer base. |
| 209 | 208 |
virtual void erase(const std::vector<Key>& keys) {
|
| 210 | 209 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 211 | 210 |
container[Parent::notifier()->id(keys[i])] = Value(); |
| 212 | 211 |
} |
| 213 | 212 |
} |
| 214 | 213 |
|
| 215 | 214 |
/// \brief Buildes the map. |
| 216 | 215 |
/// |
| 217 | 216 |
/// It buildes the map. It called by the observer notifier |
| 218 | 217 |
/// and it overrides the build() member function of the observer base. |
| 219 | 218 |
virtual void build() {
|
| 220 | 219 |
int size = Parent::notifier()->maxId() + 1; |
| 221 | 220 |
container.reserve(size); |
| 222 | 221 |
container.resize(size); |
| 223 | 222 |
} |
| 224 | 223 |
|
| 225 | 224 |
/// \brief Clear the map. |
| 226 | 225 |
/// |
| 227 | 226 |
/// It erase all items from the map. It called by the observer notifier |
| 228 | 227 |
/// and it overrides the clear() member function of the observer base. |
| 229 | 228 |
virtual void clear() {
|
| 230 | 229 |
container.clear(); |
| 231 | 230 |
} |
| 232 | 231 |
|
| 233 | 232 |
private: |
| 234 | 233 |
|
| 235 | 234 |
Container container; |
| 236 | 235 |
|
| 237 | 236 |
}; |
| 238 | 237 |
|
| 239 | 238 |
} |
| 240 | 239 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
// This file contains a modified version of the concept checking |
| 20 | 20 |
// utility from BOOST. |
| 21 | 21 |
// See the appropriate copyright notice below. |
| 22 | 22 |
|
| 23 | 23 |
// (C) Copyright Jeremy Siek 2000. |
| 24 | 24 |
// Distributed under the Boost Software License, Version 1.0. (See |
| 25 | 25 |
// accompanying file LICENSE_1_0.txt or copy at |
| 26 | 26 |
// http://www.boost.org/LICENSE_1_0.txt) |
| 27 | 27 |
// |
| 28 | 28 |
// Revision History: |
| 29 | 29 |
// 05 May 2001: Workarounds for HP aCC from Thomas Matelich. (Jeremy Siek) |
| 30 | 30 |
// 02 April 2001: Removed limits header altogether. (Jeremy Siek) |
| 31 | 31 |
// 01 April 2001: Modified to use new <boost/limits.hpp> header. (JMaddock) |
| 32 | 32 |
// |
| 33 | 33 |
|
| 34 | 34 |
// See http://www.boost.org/libs/concept_check for documentation. |
| 35 | 35 |
|
| 36 | 36 |
///\file |
| 37 | 37 |
///\brief Basic utilities for concept checking. |
| 38 | 38 |
/// |
| 39 |
///\todo Are we still using BOOST concept checking utility? |
|
| 40 |
///Is the BOOST copyright notice necessary? |
|
| 41 | 39 |
|
| 42 | 40 |
#ifndef LEMON_CONCEPT_CHECK_H |
| 43 | 41 |
#define LEMON_CONCEPT_CHECK_H |
| 44 | 42 |
|
| 45 | 43 |
namespace lemon {
|
| 46 | 44 |
|
| 47 | 45 |
/* |
| 48 | 46 |
"inline" is used for ignore_unused_variable_warning() |
| 49 | 47 |
and function_requires() to make sure there is no |
| 50 | 48 |
overtarget with g++. |
| 51 | 49 |
*/ |
| 52 | 50 |
|
| 53 | 51 |
template <class T> inline void ignore_unused_variable_warning(const T&) { }
|
| 54 | 52 |
|
| 55 | 53 |
///\e |
| 56 | 54 |
template <class Concept> |
| 57 | 55 |
inline void function_requires() |
| 58 | 56 |
{
|
| 59 | 57 |
#if !defined(NDEBUG) |
| 60 | 58 |
void (Concept::*x)() = & Concept::constraints; |
| 61 | 59 |
ignore_unused_variable_warning(x); |
| 62 | 60 |
#endif |
| 63 | 61 |
} |
| 64 | 62 |
|
| 65 | 63 |
///\e |
| 66 | 64 |
template <typename Concept, typename Type> |
| 67 | 65 |
inline void checkConcept() {
|
| 68 | 66 |
#if !defined(NDEBUG) |
| 69 | 67 |
typedef typename Concept::template Constraints<Type> ConceptCheck; |
| 70 | 68 |
void (ConceptCheck::*x)() = & ConceptCheck::constraints; |
| 71 | 69 |
ignore_unused_variable_warning(x); |
| 72 | 70 |
#endif |
| 73 | 71 |
} |
| 74 | 72 |
|
| 75 | 73 |
} // namespace lemon |
| 76 | 74 |
|
| 77 | 75 |
#endif // LEMON_CONCEPT_CHECK_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup concept |
| 20 | 20 |
///\file |
| 21 | 21 |
///\brief Classes for representing paths in digraphs. |
| 22 | 22 |
/// |
| 23 |
///\todo Iterators have obsolete style |
|
| 24 | 23 |
|
| 25 | 24 |
#ifndef LEMON_CONCEPT_PATH_H |
| 26 | 25 |
#define LEMON_CONCEPT_PATH_H |
| 27 | 26 |
|
| 28 | 27 |
#include <lemon/core.h> |
| 29 | 28 |
#include <lemon/concept_check.h> |
| 30 | 29 |
|
| 31 | 30 |
namespace lemon {
|
| 32 | 31 |
namespace concepts {
|
| 33 | 32 |
|
| 34 | 33 |
/// \addtogroup concept |
| 35 | 34 |
/// @{
|
| 36 | 35 |
|
| 37 | 36 |
/// \brief A skeleton structure for representing directed paths in |
| 38 | 37 |
/// a digraph. |
| 39 | 38 |
/// |
| 40 | 39 |
/// A skeleton structure for representing directed paths in a |
| 41 | 40 |
/// digraph. |
| 42 | 41 |
/// \tparam _Digraph The digraph type in which the path is. |
| 43 | 42 |
/// |
| 44 | 43 |
/// In a sense, the path can be treated as a list of arcs. The |
| 45 | 44 |
/// lemon path type stores just this list. As a consequence it |
| 46 | 45 |
/// cannot enumerate the nodes in the path and the zero length |
| 47 | 46 |
/// paths cannot store the source. |
| 48 | 47 |
/// |
| 49 | 48 |
template <typename _Digraph> |
| 50 | 49 |
class Path {
|
| 51 | 50 |
public: |
| 52 | 51 |
|
| 53 | 52 |
/// Type of the underlying digraph. |
| 54 | 53 |
typedef _Digraph Digraph; |
| 55 | 54 |
/// Arc type of the underlying digraph. |
| 56 | 55 |
typedef typename Digraph::Arc Arc; |
| 57 | 56 |
|
| 58 | 57 |
class ArcIt; |
| 59 | 58 |
|
| 60 | 59 |
/// \brief Default constructor |
| 61 | 60 |
Path() {}
|
| 62 | 61 |
|
| 63 | 62 |
/// \brief Template constructor |
| 64 | 63 |
template <typename CPath> |
| 65 | 64 |
Path(const CPath& cpath) {}
|
| 66 | 65 |
|
| 67 | 66 |
/// \brief Template assigment |
| 68 | 67 |
template <typename CPath> |
| 69 | 68 |
Path& operator=(const CPath& cpath) {}
|
| 70 | 69 |
|
| 71 | 70 |
/// Length of the path ie. the number of arcs in the path. |
| 72 | 71 |
int length() const { return 0;}
|
| 73 | 72 |
|
| 74 | 73 |
/// Returns whether the path is empty. |
| 75 | 74 |
bool empty() const { return true;}
|
| 76 | 75 |
|
| 77 | 76 |
/// Resets the path to an empty path. |
| 78 | 77 |
void clear() {}
|
| 79 | 78 |
|
| 80 | 79 |
/// \brief LEMON style iterator for path arcs |
| 81 | 80 |
/// |
| 82 | 81 |
/// This class is used to iterate on the arcs of the paths. |
| 83 | 82 |
class ArcIt {
|
| 84 | 83 |
public: |
| 85 | 84 |
/// Default constructor |
| 86 | 85 |
ArcIt() {}
|
| 87 | 86 |
/// Invalid constructor |
| 88 | 87 |
ArcIt(Invalid) {}
|
| 89 | 88 |
/// Constructor for first arc |
| 90 | 89 |
ArcIt(const Path &) {}
|
| 91 | 90 |
|
| 92 | 91 |
/// Conversion to Arc |
| 93 | 92 |
operator Arc() const { return INVALID; }
|
| 94 | 93 |
|
| 95 | 94 |
/// Next arc |
| 96 | 95 |
ArcIt& operator++() {return *this;}
|
| 97 | 96 |
|
| 98 | 97 |
/// Comparison operator |
| 99 | 98 |
bool operator==(const ArcIt&) const {return true;}
|
| 100 | 99 |
/// Comparison operator |
| 101 | 100 |
bool operator!=(const ArcIt&) const {return true;}
|
| 102 | 101 |
/// Comparison operator |
| 103 | 102 |
bool operator<(const ArcIt&) const {return false;}
|
| 104 | 103 |
|
| 105 | 104 |
}; |
| 106 | 105 |
|
| 107 | 106 |
template <typename _Path> |
| 108 | 107 |
struct Constraints {
|
| 109 | 108 |
void constraints() {
|
| 110 | 109 |
Path<Digraph> pc; |
| 111 | 110 |
_Path p, pp(pc); |
| 112 | 111 |
int l = p.length(); |
| 113 | 112 |
int e = p.empty(); |
| 114 | 113 |
p.clear(); |
| 115 | 114 |
|
| 116 | 115 |
p = pc; |
| 117 | 116 |
|
| 118 | 117 |
typename _Path::ArcIt id, ii(INVALID), i(p); |
| 119 | 118 |
|
| 120 | 119 |
++i; |
| 121 | 120 |
typename Digraph::Arc ed = i; |
| 122 | 121 |
|
| 123 | 122 |
e = (i == ii); |
| 124 | 123 |
e = (i != ii); |
| 125 | 124 |
e = (i < ii); |
| 126 | 125 |
|
| 127 | 126 |
ignore_unused_variable_warning(l); |
| 128 | 127 |
ignore_unused_variable_warning(pp); |
| 129 | 128 |
ignore_unused_variable_warning(e); |
| 130 | 129 |
ignore_unused_variable_warning(id); |
| 131 | 130 |
ignore_unused_variable_warning(ii); |
| 132 | 131 |
ignore_unused_variable_warning(ed); |
| 133 | 132 |
} |
| 134 | 133 |
}; |
| 135 | 134 |
|
| 136 | 135 |
}; |
| 137 | 136 |
|
| 138 | 137 |
namespace _path_bits {
|
| 139 | 138 |
|
| 140 | 139 |
template <typename _Digraph, typename _Path, typename RevPathTag = void> |
| 141 | 140 |
struct PathDumperConstraints {
|
| 142 | 141 |
void constraints() {
|
| 143 | 142 |
int l = p.length(); |
| 144 | 143 |
int e = p.empty(); |
| 145 | 144 |
|
| 146 | 145 |
typename _Path::ArcIt id, i(p); |
| 147 | 146 |
|
| 148 | 147 |
++i; |
| 149 | 148 |
typename _Digraph::Arc ed = i; |
| 150 | 149 |
|
| 151 | 150 |
e = (i == INVALID); |
| 152 | 151 |
e = (i != INVALID); |
| 153 | 152 |
|
| 154 | 153 |
ignore_unused_variable_warning(l); |
| 155 | 154 |
ignore_unused_variable_warning(e); |
| 156 | 155 |
ignore_unused_variable_warning(id); |
| 157 | 156 |
ignore_unused_variable_warning(ed); |
| 158 | 157 |
} |
| 159 | 158 |
_Path& p; |
| 160 | 159 |
}; |
| 161 | 160 |
|
| 162 | 161 |
template <typename _Digraph, typename _Path> |
| 163 | 162 |
struct PathDumperConstraints< |
| 164 | 163 |
_Digraph, _Path, |
| 165 | 164 |
typename enable_if<typename _Path::RevPathTag, void>::type |
| 166 | 165 |
> {
|
| 167 | 166 |
void constraints() {
|
| 168 | 167 |
int l = p.length(); |
| 169 | 168 |
int e = p.empty(); |
| 170 | 169 |
|
| 171 | 170 |
typename _Path::RevArcIt id, i(p); |
| 172 | 171 |
|
| 173 | 172 |
++i; |
| 174 | 173 |
typename _Digraph::Arc ed = i; |
| 175 | 174 |
|
| 176 | 175 |
e = (i == INVALID); |
| 177 | 176 |
e = (i != INVALID); |
| 178 | 177 |
|
| 179 | 178 |
ignore_unused_variable_warning(l); |
| 180 | 179 |
ignore_unused_variable_warning(e); |
| 181 | 180 |
ignore_unused_variable_warning(id); |
| 182 | 181 |
ignore_unused_variable_warning(ed); |
| 183 | 182 |
} |
| 184 | 183 |
_Path& p; |
| 185 | 184 |
}; |
| 186 | 185 |
|
| 187 | 186 |
} |
| 188 | 187 |
|
| 189 | 188 |
|
| 190 | 189 |
/// \brief A skeleton structure for path dumpers. |
| 191 | 190 |
/// |
| 192 | 191 |
/// A skeleton structure for path dumpers. The path dumpers are |
| 193 | 192 |
/// the generalization of the paths. The path dumpers can |
| 194 | 193 |
/// enumerate the arcs of the path wheter in forward or in |
| 195 | 194 |
/// backward order. In most time these classes are not used |
| 196 | 195 |
/// directly rather it used to assign a dumped class to a real |
| 197 | 196 |
/// path type. |
| 198 | 197 |
/// |
| 199 | 198 |
/// The main purpose of this concept is that the shortest path |
| 200 | 199 |
/// algorithms can enumerate easily the arcs in reverse order. |
| 201 | 200 |
/// If we would like to give back a real path from these |
| 202 | 201 |
/// algorithms then we should create a temporarly path object. In |
| 203 | 202 |
/// LEMON such algorithms gives back a path dumper what can |
| 204 | 203 |
/// assigned to a real path and the dumpers can be implemented as |
| 205 | 204 |
/// an adaptor class to the predecessor map. |
| 206 | 205 |
|
| 207 | 206 |
/// \tparam _Digraph The digraph type in which the path is. |
| 208 | 207 |
/// |
| 209 | 208 |
/// The paths can be constructed from any path type by a |
| 210 | 209 |
/// template constructor or a template assignment operator. |
| 211 | 210 |
/// |
| 212 | 211 |
template <typename _Digraph> |
| 213 | 212 |
class PathDumper {
|
| 214 | 213 |
public: |
| 215 | 214 |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DFS_H |
| 20 | 20 |
#define LEMON_DFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief DFS algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/assert.h> |
| 31 | 31 |
#include <lemon/maps.h> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
///Default traits class of Dfs class. |
| 36 | 36 |
|
| 37 | 37 |
///Default traits class of Dfs class. |
| 38 | 38 |
///\tparam GR Digraph type. |
| 39 | 39 |
template<class GR> |
| 40 | 40 |
struct DfsDefaultTraits |
| 41 | 41 |
{
|
| 42 | 42 |
///The type of the digraph the algorithm runs on. |
| 43 | 43 |
typedef GR Digraph; |
| 44 | 44 |
|
| 45 | 45 |
///\brief The type of the map that stores the predecessor |
| 46 | 46 |
///arcs of the %DFS paths. |
| 47 | 47 |
/// |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the %DFS paths. |
| 50 | 50 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \ref PredMap. |
| 53 | 53 |
|
| 54 | 54 |
///This function instantiates a \ref PredMap. |
| 55 | 55 |
///\param g is the digraph, to which we would like to define the |
| 56 | 56 |
///\ref PredMap. |
| 57 |
///\todo The digraph alone may be insufficient to initialize |
|
| 58 | 57 |
static PredMap *createPredMap(const Digraph &g) |
| 59 | 58 |
{
|
| 60 | 59 |
return new PredMap(g); |
| 61 | 60 |
} |
| 62 | 61 |
|
| 63 | 62 |
///The type of the map that indicates which nodes are processed. |
| 64 | 63 |
|
| 65 | 64 |
///The type of the map that indicates which nodes are processed. |
| 66 | 65 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 67 |
///By default it is a NullMap. |
|
| 68 | 66 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 69 | 67 |
///Instantiates a \ref ProcessedMap. |
| 70 | 68 |
|
| 71 | 69 |
///This function instantiates a \ref ProcessedMap. |
| 72 | 70 |
///\param g is the digraph, to which |
| 73 | 71 |
///we would like to define the \ref ProcessedMap |
| 74 | 72 |
#ifdef DOXYGEN |
| 75 | 73 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 76 | 74 |
#else |
| 77 | 75 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 78 | 76 |
#endif |
| 79 | 77 |
{
|
| 80 | 78 |
return new ProcessedMap(); |
| 81 | 79 |
} |
| 82 | 80 |
|
| 83 | 81 |
///The type of the map that indicates which nodes are reached. |
| 84 | 82 |
|
| 85 | 83 |
///The type of the map that indicates which nodes are reached. |
| 86 | 84 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 87 | 85 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 88 | 86 |
///Instantiates a \ref ReachedMap. |
| 89 | 87 |
|
| 90 | 88 |
///This function instantiates a \ref ReachedMap. |
| 91 | 89 |
///\param g is the digraph, to which |
| 92 | 90 |
///we would like to define the \ref ReachedMap. |
| 93 | 91 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 94 | 92 |
{
|
| 95 | 93 |
return new ReachedMap(g); |
| 96 | 94 |
} |
| 97 | 95 |
|
| 98 | 96 |
///The type of the map that stores the distances of the nodes. |
| 99 | 97 |
|
| 100 | 98 |
///The type of the map that stores the distances of the nodes. |
| 101 | 99 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 102 | 100 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 103 | 101 |
///Instantiates a \ref DistMap. |
| 104 | 102 |
|
| 105 | 103 |
///This function instantiates a \ref DistMap. |
| 106 | 104 |
///\param g is the digraph, to which we would like to define the |
| 107 | 105 |
///\ref DistMap. |
| 108 | 106 |
static DistMap *createDistMap(const Digraph &g) |
| 109 | 107 |
{
|
| 110 | 108 |
return new DistMap(g); |
| 111 | 109 |
} |
| 112 | 110 |
}; |
| 113 | 111 |
|
| 114 | 112 |
///%DFS algorithm class. |
| 115 | 113 |
|
| 116 | 114 |
///\ingroup search |
| 117 | 115 |
///This class provides an efficient implementation of the %DFS algorithm. |
| 118 | 116 |
/// |
| 119 | 117 |
///There is also a \ref dfs() "function type interface" for the DFS |
| 120 | 118 |
///algorithm, which is convenient in the simplier cases and it can be |
| 121 | 119 |
///used easier. |
| 122 | 120 |
/// |
| 123 | 121 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 124 | 122 |
///The default value is \ref ListDigraph. The value of GR is not used |
| 125 | 123 |
///directly by \ref Dfs, it is only passed to \ref DfsDefaultTraits. |
| 126 | 124 |
///\tparam TR Traits class to set various data types used by the algorithm. |
| 127 | 125 |
///The default traits class is |
| 128 | 126 |
///\ref DfsDefaultTraits "DfsDefaultTraits<GR>". |
| 129 | 127 |
///See \ref DfsDefaultTraits for the documentation of |
| 130 | 128 |
///a Dfs traits class. |
| 131 | 129 |
#ifdef DOXYGEN |
| 132 | 130 |
template <typename GR, |
| 133 | 131 |
typename TR> |
| 134 | 132 |
#else |
| 135 | 133 |
template <typename GR=ListDigraph, |
| 136 | 134 |
typename TR=DfsDefaultTraits<GR> > |
| 137 | 135 |
#endif |
| 138 | 136 |
class Dfs {
|
| 139 | 137 |
public: |
| 140 | 138 |
///\ref Exception for uninitialized parameters. |
| 141 | 139 |
|
| 142 | 140 |
///This error represents problems in the initialization of the |
| 143 | 141 |
///parameters of the algorithm. |
| 144 | 142 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
| 145 | 143 |
public: |
| 146 | 144 |
virtual const char* what() const throw() {
|
| 147 | 145 |
return "lemon::Dfs::UninitializedParameter"; |
| 148 | 146 |
} |
| 149 | 147 |
}; |
| 150 | 148 |
|
| 151 | 149 |
///The type of the digraph the algorithm runs on. |
| 152 | 150 |
typedef typename TR::Digraph Digraph; |
| 153 | 151 |
|
| 154 | 152 |
///\brief The type of the map that stores the predecessor arcs of the |
| 155 | 153 |
///DFS paths. |
| 156 | 154 |
typedef typename TR::PredMap PredMap; |
| 157 | 155 |
///The type of the map that stores the distances of the nodes. |
| 158 | 156 |
typedef typename TR::DistMap DistMap; |
| 159 | 157 |
///The type of the map that indicates which nodes are reached. |
| 160 | 158 |
typedef typename TR::ReachedMap ReachedMap; |
| 161 | 159 |
///The type of the map that indicates which nodes are processed. |
| 162 | 160 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 163 | 161 |
///The type of the paths. |
| 164 | 162 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 165 | 163 |
|
| 166 | 164 |
///The traits class. |
| 167 | 165 |
typedef TR Traits; |
| 168 | 166 |
|
| 169 | 167 |
private: |
| 170 | 168 |
|
| 171 | 169 |
typedef typename Digraph::Node Node; |
| 172 | 170 |
typedef typename Digraph::NodeIt NodeIt; |
| 173 | 171 |
typedef typename Digraph::Arc Arc; |
| 174 | 172 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 175 | 173 |
|
| 176 | 174 |
//Pointer to the underlying digraph. |
| 177 | 175 |
const Digraph *G; |
| 178 | 176 |
//Pointer to the map of predecessor arcs. |
| 179 | 177 |
PredMap *_pred; |
| 180 | 178 |
//Indicates if _pred is locally allocated (true) or not. |
| 181 | 179 |
bool local_pred; |
| 182 | 180 |
//Pointer to the map of distances. |
| 183 | 181 |
DistMap *_dist; |
| 184 | 182 |
//Indicates if _dist is locally allocated (true) or not. |
| 185 | 183 |
bool local_dist; |
| 186 | 184 |
//Pointer to the map of reached status of the nodes. |
| 187 | 185 |
ReachedMap *_reached; |
| 188 | 186 |
//Indicates if _reached is locally allocated (true) or not. |
| 189 | 187 |
bool local_reached; |
| 190 | 188 |
//Pointer to the map of processed status of the nodes. |
| 191 | 189 |
ProcessedMap *_processed; |
| 192 | 190 |
//Indicates if _processed is locally allocated (true) or not. |
| 193 | 191 |
bool local_processed; |
| 194 | 192 |
|
| 195 | 193 |
std::vector<typename Digraph::OutArcIt> _stack; |
| 196 | 194 |
int _stack_head; |
| 197 | 195 |
|
| 198 |
///Creates the maps if necessary. |
|
| 199 |
///\todo Better memory allocation (instead of new). |
|
| 196 |
//Creates the maps if necessary. |
|
| 200 | 197 |
void create_maps() |
| 201 | 198 |
{
|
| 202 | 199 |
if(!_pred) {
|
| 203 | 200 |
local_pred = true; |
| 204 | 201 |
_pred = Traits::createPredMap(*G); |
| 205 | 202 |
} |
| 206 | 203 |
if(!_dist) {
|
| 207 | 204 |
local_dist = true; |
| 208 | 205 |
_dist = Traits::createDistMap(*G); |
| 209 | 206 |
} |
| 210 | 207 |
if(!_reached) {
|
| 211 | 208 |
local_reached = true; |
| 212 | 209 |
_reached = Traits::createReachedMap(*G); |
| 213 | 210 |
} |
| 214 | 211 |
if(!_processed) {
|
| 215 | 212 |
local_processed = true; |
| 216 | 213 |
_processed = Traits::createProcessedMap(*G); |
| 217 | 214 |
} |
| 218 | 215 |
} |
| 219 | 216 |
|
| 220 | 217 |
protected: |
| 221 | 218 |
|
| 222 | 219 |
Dfs() {}
|
| 223 | 220 |
|
| 224 | 221 |
public: |
| 225 | 222 |
|
| 226 | 223 |
typedef Dfs Create; |
| 227 | 224 |
|
| 228 | 225 |
///\name Named template parameters |
| 229 | 226 |
|
| 230 | 227 |
///@{
|
| 231 | 228 |
|
| 232 | 229 |
template <class T> |
| 233 | 230 |
struct SetPredMapTraits : public Traits {
|
| 234 | 231 |
typedef T PredMap; |
| 235 | 232 |
static PredMap *createPredMap(const Digraph &) |
| 236 | 233 |
{
|
| 237 | 234 |
throw UninitializedParameter(); |
| 238 | 235 |
} |
| 239 | 236 |
}; |
| 240 | 237 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 241 | 238 |
///\ref PredMap type. |
| 242 | 239 |
/// |
| 243 | 240 |
///\ref named-templ-param "Named parameter" for setting |
| 244 | 241 |
///\ref PredMap type. |
| 245 | 242 |
template <class T> |
| 246 | 243 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
|
| 247 | 244 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
| 248 | 245 |
}; |
| 249 | 246 |
|
| 250 | 247 |
template <class T> |
| 251 | 248 |
struct SetDistMapTraits : public Traits {
|
| 252 | 249 |
typedef T DistMap; |
| 253 | 250 |
static DistMap *createDistMap(const Digraph &) |
| 254 | 251 |
{
|
| 255 | 252 |
throw UninitializedParameter(); |
| 256 | 253 |
} |
| 257 | 254 |
}; |
| 258 | 255 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 259 | 256 |
///\ref DistMap type. |
| 260 | 257 |
/// |
| 261 | 258 |
///\ref named-templ-param "Named parameter" for setting |
| 262 | 259 |
///\ref DistMap type. |
| 263 | 260 |
template <class T> |
| 264 | 261 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
|
| 265 | 262 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
| 266 | 263 |
}; |
| 267 | 264 |
|
| 268 | 265 |
template <class T> |
| 269 | 266 |
struct SetReachedMapTraits : public Traits {
|
| 270 | 267 |
typedef T ReachedMap; |
| 271 | 268 |
static ReachedMap *createReachedMap(const Digraph &) |
| 272 | 269 |
{
|
| 273 | 270 |
throw UninitializedParameter(); |
| 274 | 271 |
} |
| 275 | 272 |
}; |
| 276 | 273 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 277 | 274 |
///\ref ReachedMap type. |
| 278 | 275 |
/// |
| 279 | 276 |
///\ref named-templ-param "Named parameter" for setting |
| 280 | 277 |
///\ref ReachedMap type. |
| 281 | 278 |
template <class T> |
| 282 | 279 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
|
| 283 | 280 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
| 284 | 281 |
}; |
| 285 | 282 |
|
| 286 | 283 |
template <class T> |
| 287 | 284 |
struct SetProcessedMapTraits : public Traits {
|
| 288 | 285 |
typedef T ProcessedMap; |
| 289 | 286 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 290 | 287 |
{
|
| 291 | 288 |
throw UninitializedParameter(); |
| 292 | 289 |
} |
| 293 | 290 |
}; |
| 294 | 291 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 295 | 292 |
///\ref ProcessedMap type. |
| 296 | 293 |
/// |
| 297 | 294 |
///\ref named-templ-param "Named parameter" for setting |
| 298 | 295 |
///\ref ProcessedMap type. |
| 299 | 296 |
template <class T> |
| 300 | 297 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
|
| 301 | 298 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 302 | 299 |
}; |
| 303 | 300 |
|
| 304 | 301 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 305 | 302 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 306 | 303 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 307 | 304 |
{
|
| 308 | 305 |
return new ProcessedMap(g); |
| 309 | 306 |
} |
| 310 | 307 |
}; |
| 311 | 308 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 312 | 309 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 313 | 310 |
/// |
| 314 | 311 |
///\ref named-templ-param "Named parameter" for setting |
| 315 | 312 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 316 | 313 |
///If you don't set it explicitly, it will be automatically allocated. |
| 317 | 314 |
struct SetStandardProcessedMap : |
| 318 | 315 |
public Dfs< Digraph, SetStandardProcessedMapTraits > {
|
| 319 | 316 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
| 320 | 317 |
}; |
| 321 | 318 |
|
| 322 | 319 |
///@} |
| 323 | 320 |
|
| 324 | 321 |
public: |
| 325 | 322 |
|
| 326 | 323 |
///Constructor. |
| 327 | 324 |
|
| 328 | 325 |
///Constructor. |
| 329 | 326 |
///\param g The digraph the algorithm runs on. |
| 330 | 327 |
Dfs(const Digraph &g) : |
| 331 | 328 |
G(&g), |
| 332 | 329 |
_pred(NULL), local_pred(false), |
| 333 | 330 |
_dist(NULL), local_dist(false), |
| 334 | 331 |
_reached(NULL), local_reached(false), |
| 335 | 332 |
_processed(NULL), local_processed(false) |
| 336 | 333 |
{ }
|
| 337 | 334 |
|
| 338 | 335 |
///Destructor. |
| 339 | 336 |
~Dfs() |
| 340 | 337 |
{
|
| 341 | 338 |
if(local_pred) delete _pred; |
| 342 | 339 |
if(local_dist) delete _dist; |
| 343 | 340 |
if(local_reached) delete _reached; |
| 344 | 341 |
if(local_processed) delete _processed; |
| 345 | 342 |
} |
| 346 | 343 |
|
| 347 | 344 |
///Sets the map that stores the predecessor arcs. |
| 348 | 345 |
|
| 349 | 346 |
///Sets the map that stores the predecessor arcs. |
| 350 | 347 |
///If you don't use this function before calling \ref run(), |
| 351 | 348 |
///it will allocate one. The destructor deallocates this |
| 352 | 349 |
///automatically allocated map, of course. |
| 353 | 350 |
///\return <tt> (*this) </tt> |
| 354 | 351 |
Dfs &predMap(PredMap &m) |
| 355 | 352 |
{
|
| 356 | 353 |
if(local_pred) {
|
| 357 | 354 |
delete _pred; |
| 358 | 355 |
local_pred=false; |
| 359 | 356 |
} |
| 360 | 357 |
_pred = &m; |
| 361 | 358 |
return *this; |
| 362 | 359 |
} |
| 363 | 360 |
|
| 364 | 361 |
///Sets the map that indicates which nodes are reached. |
| 365 | 362 |
|
| 366 | 363 |
///Sets the map that indicates which nodes are reached. |
| 367 | 364 |
///If you don't use this function before calling \ref run(), |
| 368 | 365 |
///it will allocate one. The destructor deallocates this |
| 369 | 366 |
///automatically allocated map, of course. |
| 370 | 367 |
///\return <tt> (*this) </tt> |
| 371 | 368 |
Dfs &reachedMap(ReachedMap &m) |
| 372 | 369 |
{
|
| 373 | 370 |
if(local_reached) {
|
| 374 | 371 |
delete _reached; |
| 375 | 372 |
local_reached=false; |
| 376 | 373 |
} |
| 377 | 374 |
_reached = &m; |
| 378 | 375 |
return *this; |
| 379 | 376 |
} |
| 380 | 377 |
|
| 381 | 378 |
///Sets the map that indicates which nodes are processed. |
| 382 | 379 |
|
| 383 | 380 |
///Sets the map that indicates which nodes are processed. |
| 384 | 381 |
///If you don't use this function before calling \ref run(), |
| 385 | 382 |
///it will allocate one. The destructor deallocates this |
| 386 | 383 |
///automatically allocated map, of course. |
| 387 | 384 |
///\return <tt> (*this) </tt> |
| 388 | 385 |
Dfs &processedMap(ProcessedMap &m) |
| 389 | 386 |
{
|
| 390 | 387 |
if(local_processed) {
|
| 391 | 388 |
delete _processed; |
| ... | ... |
@@ -593,385 +590,384 @@ |
| 593 | 590 |
Arc start(const ArcBoolMap &am) |
| 594 | 591 |
{
|
| 595 | 592 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
| 596 | 593 |
processNextArc(); |
| 597 | 594 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
| 598 | 595 |
} |
| 599 | 596 |
|
| 600 | 597 |
///Runs the algorithm from the given node. |
| 601 | 598 |
|
| 602 | 599 |
///This method runs the %DFS algorithm from node \c s |
| 603 | 600 |
///in order to compute the DFS path to each node. |
| 604 | 601 |
/// |
| 605 | 602 |
///The algorithm computes |
| 606 | 603 |
///- the %DFS tree, |
| 607 | 604 |
///- the distance of each node from the root in the %DFS tree. |
| 608 | 605 |
/// |
| 609 | 606 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 610 | 607 |
///\code |
| 611 | 608 |
/// d.init(); |
| 612 | 609 |
/// d.addSource(s); |
| 613 | 610 |
/// d.start(); |
| 614 | 611 |
///\endcode |
| 615 | 612 |
void run(Node s) {
|
| 616 | 613 |
init(); |
| 617 | 614 |
addSource(s); |
| 618 | 615 |
start(); |
| 619 | 616 |
} |
| 620 | 617 |
|
| 621 | 618 |
///Finds the %DFS path between \c s and \c t. |
| 622 | 619 |
|
| 623 | 620 |
///This method runs the %DFS algorithm from node \c s |
| 624 | 621 |
///in order to compute the DFS path to \c t. |
| 625 | 622 |
/// |
| 626 | 623 |
///\return The length of the <tt>s</tt>--<tt>t</tt> DFS path, |
| 627 | 624 |
///if \c t is reachable form \c s, \c 0 otherwise. |
| 628 | 625 |
/// |
| 629 | 626 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
| 630 | 627 |
///just a shortcut of the following code. |
| 631 | 628 |
///\code |
| 632 | 629 |
/// d.init(); |
| 633 | 630 |
/// d.addSource(s); |
| 634 | 631 |
/// d.start(t); |
| 635 | 632 |
///\endcode |
| 636 | 633 |
int run(Node s,Node t) {
|
| 637 | 634 |
init(); |
| 638 | 635 |
addSource(s); |
| 639 | 636 |
start(t); |
| 640 | 637 |
return reached(t)?_stack_head+1:0; |
| 641 | 638 |
} |
| 642 | 639 |
|
| 643 | 640 |
///Runs the algorithm to visit all nodes in the digraph. |
| 644 | 641 |
|
| 645 | 642 |
///This method runs the %DFS algorithm in order to compute the |
| 646 | 643 |
///%DFS path to each node. |
| 647 | 644 |
/// |
| 648 | 645 |
///The algorithm computes |
| 649 | 646 |
///- the %DFS tree, |
| 650 | 647 |
///- the distance of each node from the root in the %DFS tree. |
| 651 | 648 |
/// |
| 652 | 649 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
| 653 | 650 |
///\code |
| 654 | 651 |
/// d.init(); |
| 655 | 652 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 656 | 653 |
/// if (!d.reached(n)) {
|
| 657 | 654 |
/// d.addSource(n); |
| 658 | 655 |
/// d.start(); |
| 659 | 656 |
/// } |
| 660 | 657 |
/// } |
| 661 | 658 |
///\endcode |
| 662 | 659 |
void run() {
|
| 663 | 660 |
init(); |
| 664 | 661 |
for (NodeIt it(*G); it != INVALID; ++it) {
|
| 665 | 662 |
if (!reached(it)) {
|
| 666 | 663 |
addSource(it); |
| 667 | 664 |
start(); |
| 668 | 665 |
} |
| 669 | 666 |
} |
| 670 | 667 |
} |
| 671 | 668 |
|
| 672 | 669 |
///@} |
| 673 | 670 |
|
| 674 | 671 |
///\name Query Functions |
| 675 | 672 |
///The result of the %DFS algorithm can be obtained using these |
| 676 | 673 |
///functions.\n |
| 677 | 674 |
///Either \ref lemon::Dfs::run() "run()" or \ref lemon::Dfs::start() |
| 678 | 675 |
///"start()" must be called before using them. |
| 679 | 676 |
|
| 680 | 677 |
///@{
|
| 681 | 678 |
|
| 682 | 679 |
///The DFS path to a node. |
| 683 | 680 |
|
| 684 | 681 |
///Returns the DFS path to a node. |
| 685 | 682 |
/// |
| 686 | 683 |
///\warning \c t should be reachable from the root. |
| 687 | 684 |
/// |
| 688 | 685 |
///\pre Either \ref run() or \ref start() must be called before |
| 689 | 686 |
///using this function. |
| 690 | 687 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 691 | 688 |
|
| 692 | 689 |
///The distance of a node from the root. |
| 693 | 690 |
|
| 694 | 691 |
///Returns the distance of a node from the root. |
| 695 | 692 |
/// |
| 696 | 693 |
///\warning If node \c v is not reachable from the root, then |
| 697 | 694 |
///the return value of this function is undefined. |
| 698 | 695 |
/// |
| 699 | 696 |
///\pre Either \ref run() or \ref start() must be called before |
| 700 | 697 |
///using this function. |
| 701 | 698 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 702 | 699 |
|
| 703 | 700 |
///Returns the 'previous arc' of the %DFS tree for a node. |
| 704 | 701 |
|
| 705 | 702 |
///This function returns the 'previous arc' of the %DFS tree for the |
| 706 | 703 |
///node \c v, i.e. it returns the last arc of a %DFS path from the |
| 707 | 704 |
///root to \c v. It is \c INVALID |
| 708 | 705 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
| 709 | 706 |
/// |
| 710 | 707 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 711 | 708 |
///\ref predNode(). |
| 712 | 709 |
/// |
| 713 | 710 |
///\pre Either \ref run() or \ref start() must be called before using |
| 714 | 711 |
///this function. |
| 715 | 712 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 716 | 713 |
|
| 717 | 714 |
///Returns the 'previous node' of the %DFS tree. |
| 718 | 715 |
|
| 719 | 716 |
///This function returns the 'previous node' of the %DFS |
| 720 | 717 |
///tree for the node \c v, i.e. it returns the last but one node |
| 721 | 718 |
///from a %DFS path from the root to \c v. It is \c INVALID |
| 722 | 719 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
| 723 | 720 |
/// |
| 724 | 721 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 725 | 722 |
///\ref predArc(). |
| 726 | 723 |
/// |
| 727 | 724 |
///\pre Either \ref run() or \ref start() must be called before |
| 728 | 725 |
///using this function. |
| 729 | 726 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 730 | 727 |
G->source((*_pred)[v]); } |
| 731 | 728 |
|
| 732 | 729 |
///\brief Returns a const reference to the node map that stores the |
| 733 | 730 |
///distances of the nodes. |
| 734 | 731 |
/// |
| 735 | 732 |
///Returns a const reference to the node map that stores the |
| 736 | 733 |
///distances of the nodes calculated by the algorithm. |
| 737 | 734 |
/// |
| 738 | 735 |
///\pre Either \ref run() or \ref init() |
| 739 | 736 |
///must be called before using this function. |
| 740 | 737 |
const DistMap &distMap() const { return *_dist;}
|
| 741 | 738 |
|
| 742 | 739 |
///\brief Returns a const reference to the node map that stores the |
| 743 | 740 |
///predecessor arcs. |
| 744 | 741 |
/// |
| 745 | 742 |
///Returns a const reference to the node map that stores the predecessor |
| 746 | 743 |
///arcs, which form the DFS tree. |
| 747 | 744 |
/// |
| 748 | 745 |
///\pre Either \ref run() or \ref init() |
| 749 | 746 |
///must be called before using this function. |
| 750 | 747 |
const PredMap &predMap() const { return *_pred;}
|
| 751 | 748 |
|
| 752 | 749 |
///Checks if a node is reachable from the root(s). |
| 753 | 750 |
|
| 754 | 751 |
///Returns \c true if \c v is reachable from the root(s). |
| 755 | 752 |
///\pre Either \ref run() or \ref start() |
| 756 | 753 |
///must be called before using this function. |
| 757 | 754 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 758 | 755 |
|
| 759 | 756 |
///@} |
| 760 | 757 |
}; |
| 761 | 758 |
|
| 762 | 759 |
///Default traits class of dfs() function. |
| 763 | 760 |
|
| 764 | 761 |
///Default traits class of dfs() function. |
| 765 | 762 |
///\tparam GR Digraph type. |
| 766 | 763 |
template<class GR> |
| 767 | 764 |
struct DfsWizardDefaultTraits |
| 768 | 765 |
{
|
| 769 | 766 |
///The type of the digraph the algorithm runs on. |
| 770 | 767 |
typedef GR Digraph; |
| 771 | 768 |
|
| 772 | 769 |
///\brief The type of the map that stores the predecessor |
| 773 | 770 |
///arcs of the %DFS paths. |
| 774 | 771 |
/// |
| 775 | 772 |
///The type of the map that stores the predecessor |
| 776 | 773 |
///arcs of the %DFS paths. |
| 777 | 774 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 778 | 775 |
/// |
| 779 | 776 |
typedef NullMap<typename Digraph::Node,typename Digraph::Arc> PredMap; |
| 780 | 777 |
///Instantiates a \ref PredMap. |
| 781 | 778 |
|
| 782 | 779 |
///This function instantiates a \ref PredMap. |
| 783 | 780 |
///\param g is the digraph, to which we would like to define the |
| 784 | 781 |
///\ref PredMap. |
| 785 |
///\todo The digraph alone may be insufficient to initialize |
|
| 786 | 782 |
#ifdef DOXYGEN |
| 787 | 783 |
static PredMap *createPredMap(const Digraph &g) |
| 788 | 784 |
#else |
| 789 | 785 |
static PredMap *createPredMap(const Digraph &) |
| 790 | 786 |
#endif |
| 791 | 787 |
{
|
| 792 | 788 |
return new PredMap(); |
| 793 | 789 |
} |
| 794 | 790 |
|
| 795 | 791 |
///The type of the map that indicates which nodes are processed. |
| 796 | 792 |
|
| 797 | 793 |
///The type of the map that indicates which nodes are processed. |
| 798 | 794 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 799 | 795 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 800 | 796 |
///Instantiates a \ref ProcessedMap. |
| 801 | 797 |
|
| 802 | 798 |
///This function instantiates a \ref ProcessedMap. |
| 803 | 799 |
///\param g is the digraph, to which |
| 804 | 800 |
///we would like to define the \ref ProcessedMap. |
| 805 | 801 |
#ifdef DOXYGEN |
| 806 | 802 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 807 | 803 |
#else |
| 808 | 804 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 809 | 805 |
#endif |
| 810 | 806 |
{
|
| 811 | 807 |
return new ProcessedMap(); |
| 812 | 808 |
} |
| 813 | 809 |
|
| 814 | 810 |
///The type of the map that indicates which nodes are reached. |
| 815 | 811 |
|
| 816 | 812 |
///The type of the map that indicates which nodes are reached. |
| 817 | 813 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 818 | 814 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 819 | 815 |
///Instantiates a \ref ReachedMap. |
| 820 | 816 |
|
| 821 | 817 |
///This function instantiates a \ref ReachedMap. |
| 822 | 818 |
///\param g is the digraph, to which |
| 823 | 819 |
///we would like to define the \ref ReachedMap. |
| 824 | 820 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 825 | 821 |
{
|
| 826 | 822 |
return new ReachedMap(g); |
| 827 | 823 |
} |
| 828 | 824 |
|
| 829 | 825 |
///The type of the map that stores the distances of the nodes. |
| 830 | 826 |
|
| 831 | 827 |
///The type of the map that stores the distances of the nodes. |
| 832 | 828 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 833 | 829 |
/// |
| 834 | 830 |
typedef NullMap<typename Digraph::Node,int> DistMap; |
| 835 | 831 |
///Instantiates a \ref DistMap. |
| 836 | 832 |
|
| 837 | 833 |
///This function instantiates a \ref DistMap. |
| 838 | 834 |
///\param g is the digraph, to which we would like to define |
| 839 | 835 |
///the \ref DistMap |
| 840 | 836 |
#ifdef DOXYGEN |
| 841 | 837 |
static DistMap *createDistMap(const Digraph &g) |
| 842 | 838 |
#else |
| 843 | 839 |
static DistMap *createDistMap(const Digraph &) |
| 844 | 840 |
#endif |
| 845 | 841 |
{
|
| 846 | 842 |
return new DistMap(); |
| 847 | 843 |
} |
| 848 | 844 |
}; |
| 849 | 845 |
|
| 850 | 846 |
/// Default traits class used by \ref DfsWizard |
| 851 | 847 |
|
| 852 | 848 |
/// To make it easier to use Dfs algorithm |
| 853 | 849 |
/// we have created a wizard class. |
| 854 | 850 |
/// This \ref DfsWizard class needs default traits, |
| 855 | 851 |
/// as well as the \ref Dfs class. |
| 856 | 852 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
| 857 | 853 |
/// \ref DfsWizard class. |
| 858 | 854 |
template<class GR> |
| 859 | 855 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
| 860 | 856 |
{
|
| 861 | 857 |
|
| 862 | 858 |
typedef DfsWizardDefaultTraits<GR> Base; |
| 863 | 859 |
protected: |
| 864 | 860 |
//The type of the nodes in the digraph. |
| 865 | 861 |
typedef typename Base::Digraph::Node Node; |
| 866 | 862 |
|
| 867 | 863 |
//Pointer to the digraph the algorithm runs on. |
| 868 | 864 |
void *_g; |
| 869 | 865 |
//Pointer to the map of reached nodes. |
| 870 | 866 |
void *_reached; |
| 871 | 867 |
//Pointer to the map of processed nodes. |
| 872 | 868 |
void *_processed; |
| 873 | 869 |
//Pointer to the map of predecessors arcs. |
| 874 | 870 |
void *_pred; |
| 875 | 871 |
//Pointer to the map of distances. |
| 876 | 872 |
void *_dist; |
| 877 | 873 |
//Pointer to the source node. |
| 878 | 874 |
Node _source; |
| 879 | 875 |
|
| 880 | 876 |
public: |
| 881 | 877 |
/// Constructor. |
| 882 | 878 |
|
| 883 | 879 |
/// This constructor does not require parameters, therefore it initiates |
| 884 | 880 |
/// all of the attributes to default values (0, INVALID). |
| 885 | 881 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 886 | 882 |
_dist(0), _source(INVALID) {}
|
| 887 | 883 |
|
| 888 | 884 |
/// Constructor. |
| 889 | 885 |
|
| 890 | 886 |
/// This constructor requires some parameters, |
| 891 | 887 |
/// listed in the parameters list. |
| 892 | 888 |
/// Others are initiated to 0. |
| 893 | 889 |
/// \param g The digraph the algorithm runs on. |
| 894 | 890 |
/// \param s The source node. |
| 895 | 891 |
DfsWizardBase(const GR &g, Node s=INVALID) : |
| 896 | 892 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 897 | 893 |
_reached(0), _processed(0), _pred(0), _dist(0), _source(s) {}
|
| 898 | 894 |
|
| 899 | 895 |
}; |
| 900 | 896 |
|
| 901 | 897 |
/// Auxiliary class for the function type interface of DFS algorithm. |
| 902 | 898 |
|
| 903 | 899 |
/// This auxiliary class is created to implement the function type |
| 904 | 900 |
/// interface of \ref Dfs algorithm. It uses the functions and features |
| 905 | 901 |
/// of the plain \ref Dfs, but it is much simpler to use it. |
| 906 | 902 |
/// It should only be used through the \ref dfs() function, which makes |
| 907 | 903 |
/// it easier to use the algorithm. |
| 908 | 904 |
/// |
| 909 | 905 |
/// Simplicity means that the way to change the types defined |
| 910 | 906 |
/// in the traits class is based on functions that returns the new class |
| 911 | 907 |
/// and not on templatable built-in classes. |
| 912 | 908 |
/// When using the plain \ref Dfs |
| 913 | 909 |
/// the new class with the modified type comes from |
| 914 | 910 |
/// the original class by using the :: |
| 915 | 911 |
/// operator. In the case of \ref DfsWizard only |
| 916 | 912 |
/// a function have to be called, and it will |
| 917 | 913 |
/// return the needed class. |
| 918 | 914 |
/// |
| 919 | 915 |
/// It does not have own \ref run() method. When its \ref run() method |
| 920 | 916 |
/// is called, it initiates a plain \ref Dfs object, and calls the |
| 921 | 917 |
/// \ref Dfs::run() method of it. |
| 922 | 918 |
template<class TR> |
| 923 | 919 |
class DfsWizard : public TR |
| 924 | 920 |
{
|
| 925 | 921 |
typedef TR Base; |
| 926 | 922 |
|
| 927 | 923 |
///The type of the digraph the algorithm runs on. |
| 928 | 924 |
typedef typename TR::Digraph Digraph; |
| 929 | 925 |
|
| 930 | 926 |
typedef typename Digraph::Node Node; |
| 931 | 927 |
typedef typename Digraph::NodeIt NodeIt; |
| 932 | 928 |
typedef typename Digraph::Arc Arc; |
| 933 | 929 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 934 | 930 |
|
| 935 | 931 |
///\brief The type of the map that stores the predecessor |
| 936 | 932 |
///arcs of the shortest paths. |
| 937 | 933 |
typedef typename TR::PredMap PredMap; |
| 938 | 934 |
///\brief The type of the map that stores the distances of the nodes. |
| 939 | 935 |
typedef typename TR::DistMap DistMap; |
| 940 | 936 |
///\brief The type of the map that indicates which nodes are reached. |
| 941 | 937 |
typedef typename TR::ReachedMap ReachedMap; |
| 942 | 938 |
///\brief The type of the map that indicates which nodes are processed. |
| 943 | 939 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 944 | 940 |
|
| 945 | 941 |
public: |
| 946 | 942 |
|
| 947 | 943 |
/// Constructor. |
| 948 | 944 |
DfsWizard() : TR() {}
|
| 949 | 945 |
|
| 950 | 946 |
/// Constructor that requires parameters. |
| 951 | 947 |
|
| 952 | 948 |
/// Constructor that requires parameters. |
| 953 | 949 |
/// These parameters will be the default values for the traits class. |
| 954 | 950 |
DfsWizard(const Digraph &g, Node s=INVALID) : |
| 955 | 951 |
TR(g,s) {}
|
| 956 | 952 |
|
| 957 | 953 |
///Copy constructor |
| 958 | 954 |
DfsWizard(const TR &b) : TR(b) {}
|
| 959 | 955 |
|
| 960 | 956 |
~DfsWizard() {}
|
| 961 | 957 |
|
| 962 | 958 |
///Runs DFS algorithm from a source node. |
| 963 | 959 |
|
| 964 | 960 |
///Runs DFS algorithm from a source node. |
| 965 | 961 |
///The node can be given with the \ref source() function. |
| 966 | 962 |
void run() |
| 967 | 963 |
{
|
| 968 | 964 |
if(Base::_source==INVALID) throw UninitializedParameter(); |
| 969 | 965 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 970 | 966 |
if(Base::_reached) |
| 971 | 967 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 972 | 968 |
if(Base::_processed) |
| 973 | 969 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 974 | 970 |
if(Base::_pred) |
| 975 | 971 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 976 | 972 |
if(Base::_dist) |
| 977 | 973 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| ... | ... |
@@ -1090,386 +1086,385 @@ |
| 1090 | 1086 |
///\sa DfsWizard |
| 1091 | 1087 |
///\sa Dfs |
| 1092 | 1088 |
template<class GR> |
| 1093 | 1089 |
DfsWizard<DfsWizardBase<GR> > |
| 1094 | 1090 |
dfs(const GR &g,typename GR::Node s=INVALID) |
| 1095 | 1091 |
{
|
| 1096 | 1092 |
return DfsWizard<DfsWizardBase<GR> >(g,s); |
| 1097 | 1093 |
} |
| 1098 | 1094 |
|
| 1099 | 1095 |
#ifdef DOXYGEN |
| 1100 | 1096 |
/// \brief Visitor class for DFS. |
| 1101 | 1097 |
/// |
| 1102 | 1098 |
/// This class defines the interface of the DfsVisit events, and |
| 1103 | 1099 |
/// it could be the base of a real visitor class. |
| 1104 | 1100 |
template <typename _Digraph> |
| 1105 | 1101 |
struct DfsVisitor {
|
| 1106 | 1102 |
typedef _Digraph Digraph; |
| 1107 | 1103 |
typedef typename Digraph::Arc Arc; |
| 1108 | 1104 |
typedef typename Digraph::Node Node; |
| 1109 | 1105 |
/// \brief Called for the source node of the DFS. |
| 1110 | 1106 |
/// |
| 1111 | 1107 |
/// This function is called for the source node of the DFS. |
| 1112 | 1108 |
void start(const Node& node) {}
|
| 1113 | 1109 |
/// \brief Called when the source node is leaved. |
| 1114 | 1110 |
/// |
| 1115 | 1111 |
/// This function is called when the source node is leaved. |
| 1116 | 1112 |
void stop(const Node& node) {}
|
| 1117 | 1113 |
/// \brief Called when a node is reached first time. |
| 1118 | 1114 |
/// |
| 1119 | 1115 |
/// This function is called when a node is reached first time. |
| 1120 | 1116 |
void reach(const Node& node) {}
|
| 1121 | 1117 |
/// \brief Called when an arc reaches a new node. |
| 1122 | 1118 |
/// |
| 1123 | 1119 |
/// This function is called when the DFS finds an arc whose target node |
| 1124 | 1120 |
/// is not reached yet. |
| 1125 | 1121 |
void discover(const Arc& arc) {}
|
| 1126 | 1122 |
/// \brief Called when an arc is examined but its target node is |
| 1127 | 1123 |
/// already discovered. |
| 1128 | 1124 |
/// |
| 1129 | 1125 |
/// This function is called when an arc is examined but its target node is |
| 1130 | 1126 |
/// already discovered. |
| 1131 | 1127 |
void examine(const Arc& arc) {}
|
| 1132 | 1128 |
/// \brief Called when the DFS steps back from a node. |
| 1133 | 1129 |
/// |
| 1134 | 1130 |
/// This function is called when the DFS steps back from a node. |
| 1135 | 1131 |
void leave(const Node& node) {}
|
| 1136 | 1132 |
/// \brief Called when the DFS steps back on an arc. |
| 1137 | 1133 |
/// |
| 1138 | 1134 |
/// This function is called when the DFS steps back on an arc. |
| 1139 | 1135 |
void backtrack(const Arc& arc) {}
|
| 1140 | 1136 |
}; |
| 1141 | 1137 |
#else |
| 1142 | 1138 |
template <typename _Digraph> |
| 1143 | 1139 |
struct DfsVisitor {
|
| 1144 | 1140 |
typedef _Digraph Digraph; |
| 1145 | 1141 |
typedef typename Digraph::Arc Arc; |
| 1146 | 1142 |
typedef typename Digraph::Node Node; |
| 1147 | 1143 |
void start(const Node&) {}
|
| 1148 | 1144 |
void stop(const Node&) {}
|
| 1149 | 1145 |
void reach(const Node&) {}
|
| 1150 | 1146 |
void discover(const Arc&) {}
|
| 1151 | 1147 |
void examine(const Arc&) {}
|
| 1152 | 1148 |
void leave(const Node&) {}
|
| 1153 | 1149 |
void backtrack(const Arc&) {}
|
| 1154 | 1150 |
|
| 1155 | 1151 |
template <typename _Visitor> |
| 1156 | 1152 |
struct Constraints {
|
| 1157 | 1153 |
void constraints() {
|
| 1158 | 1154 |
Arc arc; |
| 1159 | 1155 |
Node node; |
| 1160 | 1156 |
visitor.start(node); |
| 1161 | 1157 |
visitor.stop(arc); |
| 1162 | 1158 |
visitor.reach(node); |
| 1163 | 1159 |
visitor.discover(arc); |
| 1164 | 1160 |
visitor.examine(arc); |
| 1165 | 1161 |
visitor.leave(node); |
| 1166 | 1162 |
visitor.backtrack(arc); |
| 1167 | 1163 |
} |
| 1168 | 1164 |
_Visitor& visitor; |
| 1169 | 1165 |
}; |
| 1170 | 1166 |
}; |
| 1171 | 1167 |
#endif |
| 1172 | 1168 |
|
| 1173 | 1169 |
/// \brief Default traits class of DfsVisit class. |
| 1174 | 1170 |
/// |
| 1175 | 1171 |
/// Default traits class of DfsVisit class. |
| 1176 | 1172 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
| 1177 | 1173 |
template<class _Digraph> |
| 1178 | 1174 |
struct DfsVisitDefaultTraits {
|
| 1179 | 1175 |
|
| 1180 | 1176 |
/// \brief The type of the digraph the algorithm runs on. |
| 1181 | 1177 |
typedef _Digraph Digraph; |
| 1182 | 1178 |
|
| 1183 | 1179 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1184 | 1180 |
/// |
| 1185 | 1181 |
/// The type of the map that indicates which nodes are reached. |
| 1186 | 1182 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 1187 | 1183 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1188 | 1184 |
|
| 1189 | 1185 |
/// \brief Instantiates a \ref ReachedMap. |
| 1190 | 1186 |
/// |
| 1191 | 1187 |
/// This function instantiates a \ref ReachedMap. |
| 1192 | 1188 |
/// \param digraph is the digraph, to which |
| 1193 | 1189 |
/// we would like to define the \ref ReachedMap. |
| 1194 | 1190 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1195 | 1191 |
return new ReachedMap(digraph); |
| 1196 | 1192 |
} |
| 1197 | 1193 |
|
| 1198 | 1194 |
}; |
| 1199 | 1195 |
|
| 1200 | 1196 |
/// \ingroup search |
| 1201 | 1197 |
/// |
| 1202 | 1198 |
/// \brief %DFS algorithm class with visitor interface. |
| 1203 | 1199 |
/// |
| 1204 | 1200 |
/// This class provides an efficient implementation of the %DFS algorithm |
| 1205 | 1201 |
/// with visitor interface. |
| 1206 | 1202 |
/// |
| 1207 | 1203 |
/// The %DfsVisit class provides an alternative interface to the Dfs |
| 1208 | 1204 |
/// class. It works with callback mechanism, the DfsVisit object calls |
| 1209 | 1205 |
/// the member functions of the \c Visitor class on every DFS event. |
| 1210 | 1206 |
/// |
| 1211 | 1207 |
/// This interface of the DFS algorithm should be used in special cases |
| 1212 | 1208 |
/// when extra actions have to be performed in connection with certain |
| 1213 | 1209 |
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
| 1214 | 1210 |
/// instead. |
| 1215 | 1211 |
/// |
| 1216 | 1212 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
| 1217 | 1213 |
/// The default value is |
| 1218 | 1214 |
/// \ref ListDigraph. The value of _Digraph is not used directly by |
| 1219 | 1215 |
/// \ref DfsVisit, it is only passed to \ref DfsVisitDefaultTraits. |
| 1220 | 1216 |
/// \tparam _Visitor The Visitor type that is used by the algorithm. |
| 1221 | 1217 |
/// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty visitor, which |
| 1222 | 1218 |
/// does not observe the DFS events. If you want to observe the DFS |
| 1223 | 1219 |
/// events, you should implement your own visitor class. |
| 1224 | 1220 |
/// \tparam _Traits Traits class to set various data types used by the |
| 1225 | 1221 |
/// algorithm. The default traits class is |
| 1226 | 1222 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>". |
| 1227 | 1223 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
| 1228 | 1224 |
/// a DFS visit traits class. |
| 1229 | 1225 |
#ifdef DOXYGEN |
| 1230 | 1226 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
| 1231 | 1227 |
#else |
| 1232 | 1228 |
template <typename _Digraph = ListDigraph, |
| 1233 | 1229 |
typename _Visitor = DfsVisitor<_Digraph>, |
| 1234 | 1230 |
typename _Traits = DfsDefaultTraits<_Digraph> > |
| 1235 | 1231 |
#endif |
| 1236 | 1232 |
class DfsVisit {
|
| 1237 | 1233 |
public: |
| 1238 | 1234 |
|
| 1239 | 1235 |
/// \brief \ref Exception for uninitialized parameters. |
| 1240 | 1236 |
/// |
| 1241 | 1237 |
/// This error represents problems in the initialization |
| 1242 | 1238 |
/// of the parameters of the algorithm. |
| 1243 | 1239 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
| 1244 | 1240 |
public: |
| 1245 | 1241 |
virtual const char* what() const throw() |
| 1246 | 1242 |
{
|
| 1247 | 1243 |
return "lemon::DfsVisit::UninitializedParameter"; |
| 1248 | 1244 |
} |
| 1249 | 1245 |
}; |
| 1250 | 1246 |
|
| 1251 | 1247 |
///The traits class. |
| 1252 | 1248 |
typedef _Traits Traits; |
| 1253 | 1249 |
|
| 1254 | 1250 |
///The type of the digraph the algorithm runs on. |
| 1255 | 1251 |
typedef typename Traits::Digraph Digraph; |
| 1256 | 1252 |
|
| 1257 | 1253 |
///The visitor type used by the algorithm. |
| 1258 | 1254 |
typedef _Visitor Visitor; |
| 1259 | 1255 |
|
| 1260 | 1256 |
///The type of the map that indicates which nodes are reached. |
| 1261 | 1257 |
typedef typename Traits::ReachedMap ReachedMap; |
| 1262 | 1258 |
|
| 1263 | 1259 |
private: |
| 1264 | 1260 |
|
| 1265 | 1261 |
typedef typename Digraph::Node Node; |
| 1266 | 1262 |
typedef typename Digraph::NodeIt NodeIt; |
| 1267 | 1263 |
typedef typename Digraph::Arc Arc; |
| 1268 | 1264 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1269 | 1265 |
|
| 1270 | 1266 |
//Pointer to the underlying digraph. |
| 1271 | 1267 |
const Digraph *_digraph; |
| 1272 | 1268 |
//Pointer to the visitor object. |
| 1273 | 1269 |
Visitor *_visitor; |
| 1274 | 1270 |
//Pointer to the map of reached status of the nodes. |
| 1275 | 1271 |
ReachedMap *_reached; |
| 1276 | 1272 |
//Indicates if _reached is locally allocated (true) or not. |
| 1277 | 1273 |
bool local_reached; |
| 1278 | 1274 |
|
| 1279 | 1275 |
std::vector<typename Digraph::Arc> _stack; |
| 1280 | 1276 |
int _stack_head; |
| 1281 | 1277 |
|
| 1282 |
///Creates the maps if necessary. |
|
| 1283 |
///\todo Better memory allocation (instead of new). |
|
| 1278 |
//Creates the maps if necessary. |
|
| 1284 | 1279 |
void create_maps() {
|
| 1285 | 1280 |
if(!_reached) {
|
| 1286 | 1281 |
local_reached = true; |
| 1287 | 1282 |
_reached = Traits::createReachedMap(*_digraph); |
| 1288 | 1283 |
} |
| 1289 | 1284 |
} |
| 1290 | 1285 |
|
| 1291 | 1286 |
protected: |
| 1292 | 1287 |
|
| 1293 | 1288 |
DfsVisit() {}
|
| 1294 | 1289 |
|
| 1295 | 1290 |
public: |
| 1296 | 1291 |
|
| 1297 | 1292 |
typedef DfsVisit Create; |
| 1298 | 1293 |
|
| 1299 | 1294 |
/// \name Named template parameters |
| 1300 | 1295 |
|
| 1301 | 1296 |
///@{
|
| 1302 | 1297 |
template <class T> |
| 1303 | 1298 |
struct SetReachedMapTraits : public Traits {
|
| 1304 | 1299 |
typedef T ReachedMap; |
| 1305 | 1300 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1306 | 1301 |
throw UninitializedParameter(); |
| 1307 | 1302 |
} |
| 1308 | 1303 |
}; |
| 1309 | 1304 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1310 | 1305 |
/// ReachedMap type. |
| 1311 | 1306 |
/// |
| 1312 | 1307 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
| 1313 | 1308 |
template <class T> |
| 1314 | 1309 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
| 1315 | 1310 |
SetReachedMapTraits<T> > {
|
| 1316 | 1311 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
| 1317 | 1312 |
}; |
| 1318 | 1313 |
///@} |
| 1319 | 1314 |
|
| 1320 | 1315 |
public: |
| 1321 | 1316 |
|
| 1322 | 1317 |
/// \brief Constructor. |
| 1323 | 1318 |
/// |
| 1324 | 1319 |
/// Constructor. |
| 1325 | 1320 |
/// |
| 1326 | 1321 |
/// \param digraph The digraph the algorithm runs on. |
| 1327 | 1322 |
/// \param visitor The visitor object of the algorithm. |
| 1328 | 1323 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
| 1329 | 1324 |
: _digraph(&digraph), _visitor(&visitor), |
| 1330 | 1325 |
_reached(0), local_reached(false) {}
|
| 1331 | 1326 |
|
| 1332 | 1327 |
/// \brief Destructor. |
| 1333 | 1328 |
~DfsVisit() {
|
| 1334 | 1329 |
if(local_reached) delete _reached; |
| 1335 | 1330 |
} |
| 1336 | 1331 |
|
| 1337 | 1332 |
/// \brief Sets the map that indicates which nodes are reached. |
| 1338 | 1333 |
/// |
| 1339 | 1334 |
/// Sets the map that indicates which nodes are reached. |
| 1340 | 1335 |
/// If you don't use this function before calling \ref run(), |
| 1341 | 1336 |
/// it will allocate one. The destructor deallocates this |
| 1342 | 1337 |
/// automatically allocated map, of course. |
| 1343 | 1338 |
/// \return <tt> (*this) </tt> |
| 1344 | 1339 |
DfsVisit &reachedMap(ReachedMap &m) {
|
| 1345 | 1340 |
if(local_reached) {
|
| 1346 | 1341 |
delete _reached; |
| 1347 | 1342 |
local_reached=false; |
| 1348 | 1343 |
} |
| 1349 | 1344 |
_reached = &m; |
| 1350 | 1345 |
return *this; |
| 1351 | 1346 |
} |
| 1352 | 1347 |
|
| 1353 | 1348 |
public: |
| 1354 | 1349 |
|
| 1355 | 1350 |
/// \name Execution control |
| 1356 | 1351 |
/// The simplest way to execute the algorithm is to use |
| 1357 | 1352 |
/// one of the member functions called \ref lemon::DfsVisit::run() |
| 1358 | 1353 |
/// "run()". |
| 1359 | 1354 |
/// \n |
| 1360 | 1355 |
/// If you need more control on the execution, first you must call |
| 1361 | 1356 |
/// \ref lemon::DfsVisit::init() "init()", then you can add several |
| 1362 | 1357 |
/// source nodes with \ref lemon::DfsVisit::addSource() "addSource()". |
| 1363 | 1358 |
/// Finally \ref lemon::DfsVisit::start() "start()" will perform the |
| 1364 | 1359 |
/// actual path computation. |
| 1365 | 1360 |
|
| 1366 | 1361 |
/// @{
|
| 1367 | 1362 |
|
| 1368 | 1363 |
/// \brief Initializes the internal data structures. |
| 1369 | 1364 |
/// |
| 1370 | 1365 |
/// Initializes the internal data structures. |
| 1371 | 1366 |
void init() {
|
| 1372 | 1367 |
create_maps(); |
| 1373 | 1368 |
_stack.resize(countNodes(*_digraph)); |
| 1374 | 1369 |
_stack_head = -1; |
| 1375 | 1370 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
|
| 1376 | 1371 |
_reached->set(u, false); |
| 1377 | 1372 |
} |
| 1378 | 1373 |
} |
| 1379 | 1374 |
|
| 1380 | 1375 |
///Adds a new source node. |
| 1381 | 1376 |
|
| 1382 | 1377 |
///Adds a new source node to the set of nodes to be processed. |
| 1383 | 1378 |
/// |
| 1384 | 1379 |
///\pre The stack must be empty. (Otherwise the algorithm gives |
| 1385 | 1380 |
///false results.) |
| 1386 | 1381 |
/// |
| 1387 | 1382 |
///\warning Distances will be wrong (or at least strange) in case of |
| 1388 | 1383 |
///multiple sources. |
| 1389 | 1384 |
void addSource(Node s) |
| 1390 | 1385 |
{
|
| 1391 | 1386 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
| 1392 | 1387 |
if(!(*_reached)[s]) {
|
| 1393 | 1388 |
_reached->set(s,true); |
| 1394 | 1389 |
_visitor->start(s); |
| 1395 | 1390 |
_visitor->reach(s); |
| 1396 | 1391 |
Arc e; |
| 1397 | 1392 |
_digraph->firstOut(e, s); |
| 1398 | 1393 |
if (e != INVALID) {
|
| 1399 | 1394 |
_stack[++_stack_head] = e; |
| 1400 | 1395 |
} else {
|
| 1401 | 1396 |
_visitor->leave(s); |
| 1402 | 1397 |
} |
| 1403 | 1398 |
} |
| 1404 | 1399 |
} |
| 1405 | 1400 |
|
| 1406 | 1401 |
/// \brief Processes the next arc. |
| 1407 | 1402 |
/// |
| 1408 | 1403 |
/// Processes the next arc. |
| 1409 | 1404 |
/// |
| 1410 | 1405 |
/// \return The processed arc. |
| 1411 | 1406 |
/// |
| 1412 | 1407 |
/// \pre The stack must not be empty. |
| 1413 | 1408 |
Arc processNextArc() {
|
| 1414 | 1409 |
Arc e = _stack[_stack_head]; |
| 1415 | 1410 |
Node m = _digraph->target(e); |
| 1416 | 1411 |
if(!(*_reached)[m]) {
|
| 1417 | 1412 |
_visitor->discover(e); |
| 1418 | 1413 |
_visitor->reach(m); |
| 1419 | 1414 |
_reached->set(m, true); |
| 1420 | 1415 |
_digraph->firstOut(_stack[++_stack_head], m); |
| 1421 | 1416 |
} else {
|
| 1422 | 1417 |
_visitor->examine(e); |
| 1423 | 1418 |
m = _digraph->source(e); |
| 1424 | 1419 |
_digraph->nextOut(_stack[_stack_head]); |
| 1425 | 1420 |
} |
| 1426 | 1421 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) {
|
| 1427 | 1422 |
_visitor->leave(m); |
| 1428 | 1423 |
--_stack_head; |
| 1429 | 1424 |
if (_stack_head >= 0) {
|
| 1430 | 1425 |
_visitor->backtrack(_stack[_stack_head]); |
| 1431 | 1426 |
m = _digraph->source(_stack[_stack_head]); |
| 1432 | 1427 |
_digraph->nextOut(_stack[_stack_head]); |
| 1433 | 1428 |
} else {
|
| 1434 | 1429 |
_visitor->stop(m); |
| 1435 | 1430 |
} |
| 1436 | 1431 |
} |
| 1437 | 1432 |
return e; |
| 1438 | 1433 |
} |
| 1439 | 1434 |
|
| 1440 | 1435 |
/// \brief Next arc to be processed. |
| 1441 | 1436 |
/// |
| 1442 | 1437 |
/// Next arc to be processed. |
| 1443 | 1438 |
/// |
| 1444 | 1439 |
/// \return The next arc to be processed or INVALID if the stack is |
| 1445 | 1440 |
/// empty. |
| 1446 | 1441 |
Arc nextArc() const {
|
| 1447 | 1442 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
| 1448 | 1443 |
} |
| 1449 | 1444 |
|
| 1450 | 1445 |
/// \brief Returns \c false if there are nodes |
| 1451 | 1446 |
/// to be processed. |
| 1452 | 1447 |
/// |
| 1453 | 1448 |
/// Returns \c false if there are nodes |
| 1454 | 1449 |
/// to be processed in the queue (stack). |
| 1455 | 1450 |
bool emptyQueue() const { return _stack_head < 0; }
|
| 1456 | 1451 |
|
| 1457 | 1452 |
/// \brief Returns the number of the nodes to be processed. |
| 1458 | 1453 |
/// |
| 1459 | 1454 |
/// Returns the number of the nodes to be processed in the queue (stack). |
| 1460 | 1455 |
int queueSize() const { return _stack_head + 1; }
|
| 1461 | 1456 |
|
| 1462 | 1457 |
/// \brief Executes the algorithm. |
| 1463 | 1458 |
/// |
| 1464 | 1459 |
/// Executes the algorithm. |
| 1465 | 1460 |
/// |
| 1466 | 1461 |
/// This method runs the %DFS algorithm from the root node |
| 1467 | 1462 |
/// in order to compute the %DFS path to each node. |
| 1468 | 1463 |
/// |
| 1469 | 1464 |
/// The algorithm computes |
| 1470 | 1465 |
/// - the %DFS tree, |
| 1471 | 1466 |
/// - the distance of each node from the root in the %DFS tree. |
| 1472 | 1467 |
/// |
| 1473 | 1468 |
/// \pre init() must be called and a root node should be |
| 1474 | 1469 |
/// added with addSource() before using this function. |
| 1475 | 1470 |
/// |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
| 20 | 20 |
#define LEMON_DIJKSTRA_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup shortest_path |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Dijkstra algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <limits> |
| 27 | 27 |
#include <lemon/list_graph.h> |
| 28 | 28 |
#include <lemon/bin_heap.h> |
| 29 | 29 |
#include <lemon/bits/path_dump.h> |
| 30 | 30 |
#include <lemon/core.h> |
| 31 | 31 |
#include <lemon/error.h> |
| 32 | 32 |
#include <lemon/maps.h> |
| 33 | 33 |
|
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 | 36 |
/// \brief Default operation traits for the Dijkstra algorithm class. |
| 37 | 37 |
/// |
| 38 | 38 |
/// This operation traits class defines all computational operations and |
| 39 | 39 |
/// constants which are used in the Dijkstra algorithm. |
| 40 | 40 |
template <typename Value> |
| 41 | 41 |
struct DijkstraDefaultOperationTraits {
|
| 42 | 42 |
/// \brief Gives back the zero value of the type. |
| 43 | 43 |
static Value zero() {
|
| 44 | 44 |
return static_cast<Value>(0); |
| 45 | 45 |
} |
| 46 | 46 |
/// \brief Gives back the sum of the given two elements. |
| 47 | 47 |
static Value plus(const Value& left, const Value& right) {
|
| 48 | 48 |
return left + right; |
| 49 | 49 |
} |
| 50 | 50 |
/// \brief Gives back true only if the first value is less than the second. |
| 51 | 51 |
static bool less(const Value& left, const Value& right) {
|
| 52 | 52 |
return left < right; |
| 53 | 53 |
} |
| 54 | 54 |
}; |
| 55 | 55 |
|
| 56 | 56 |
/// \brief Widest path operation traits for the Dijkstra algorithm class. |
| 57 | 57 |
/// |
| 58 | 58 |
/// This operation traits class defines all computational operations and |
| 59 | 59 |
/// constants which are used in the Dijkstra algorithm for widest path |
| 60 | 60 |
/// computation. |
| 61 | 61 |
/// |
| 62 | 62 |
/// \see DijkstraDefaultOperationTraits |
| 63 | 63 |
template <typename Value> |
| 64 | 64 |
struct DijkstraWidestPathOperationTraits {
|
| 65 | 65 |
/// \brief Gives back the maximum value of the type. |
| 66 | 66 |
static Value zero() {
|
| 67 | 67 |
return std::numeric_limits<Value>::max(); |
| 68 | 68 |
} |
| 69 | 69 |
/// \brief Gives back the minimum of the given two elements. |
| 70 | 70 |
static Value plus(const Value& left, const Value& right) {
|
| 71 | 71 |
return std::min(left, right); |
| 72 | 72 |
} |
| 73 | 73 |
/// \brief Gives back true only if the first value is less than the second. |
| 74 | 74 |
static bool less(const Value& left, const Value& right) {
|
| 75 | 75 |
return left < right; |
| 76 | 76 |
} |
| 77 | 77 |
}; |
| 78 | 78 |
|
| 79 | 79 |
///Default traits class of Dijkstra class. |
| 80 | 80 |
|
| 81 | 81 |
///Default traits class of Dijkstra class. |
| 82 | 82 |
///\tparam GR The type of the digraph. |
| 83 | 83 |
///\tparam LM The type of the length map. |
| 84 | 84 |
template<class GR, class LM> |
| 85 | 85 |
struct DijkstraDefaultTraits |
| 86 | 86 |
{
|
| 87 | 87 |
///The type of the digraph the algorithm runs on. |
| 88 | 88 |
typedef GR Digraph; |
| 89 | 89 |
|
| 90 | 90 |
///The type of the map that stores the arc lengths. |
| 91 | 91 |
|
| 92 | 92 |
///The type of the map that stores the arc lengths. |
| 93 | 93 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 94 | 94 |
typedef LM LengthMap; |
| 95 | 95 |
///The type of the length of the arcs. |
| 96 | 96 |
typedef typename LM::Value Value; |
| 97 | 97 |
|
| 98 | 98 |
/// Operation traits for Dijkstra algorithm. |
| 99 | 99 |
|
| 100 | 100 |
/// This class defines the operations that are used in the algorithm. |
| 101 | 101 |
/// \see DijkstraDefaultOperationTraits |
| 102 | 102 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
| 103 | 103 |
|
| 104 | 104 |
/// The cross reference type used by the heap. |
| 105 | 105 |
|
| 106 | 106 |
/// The cross reference type used by the heap. |
| 107 | 107 |
/// Usually it is \c Digraph::NodeMap<int>. |
| 108 | 108 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 109 | 109 |
///Instantiates a \ref HeapCrossRef. |
| 110 | 110 |
|
| 111 | 111 |
///This function instantiates a \ref HeapCrossRef. |
| 112 | 112 |
/// \param g is the digraph, to which we would like to define the |
| 113 | 113 |
/// \ref HeapCrossRef. |
| 114 | 114 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
| 115 | 115 |
{
|
| 116 | 116 |
return new HeapCrossRef(g); |
| 117 | 117 |
} |
| 118 | 118 |
|
| 119 | 119 |
///The heap type used by the Dijkstra algorithm. |
| 120 | 120 |
|
| 121 | 121 |
///The heap type used by the Dijkstra algorithm. |
| 122 | 122 |
/// |
| 123 | 123 |
///\sa BinHeap |
| 124 | 124 |
///\sa Dijkstra |
| 125 | 125 |
typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap; |
| 126 | 126 |
///Instantiates a \ref Heap. |
| 127 | 127 |
|
| 128 | 128 |
///This function instantiates a \ref Heap. |
| 129 | 129 |
static Heap *createHeap(HeapCrossRef& r) |
| 130 | 130 |
{
|
| 131 | 131 |
return new Heap(r); |
| 132 | 132 |
} |
| 133 | 133 |
|
| 134 | 134 |
///\brief The type of the map that stores the predecessor |
| 135 | 135 |
///arcs of the shortest paths. |
| 136 | 136 |
/// |
| 137 | 137 |
///The type of the map that stores the predecessor |
| 138 | 138 |
///arcs of the shortest paths. |
| 139 | 139 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 140 | 140 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 141 | 141 |
///Instantiates a \ref PredMap. |
| 142 | 142 |
|
| 143 | 143 |
///This function instantiates a \ref PredMap. |
| 144 | 144 |
///\param g is the digraph, to which we would like to define the |
| 145 | 145 |
///\ref PredMap. |
| 146 |
///\todo The digraph alone may be insufficient for the initialization |
|
| 147 | 146 |
static PredMap *createPredMap(const Digraph &g) |
| 148 | 147 |
{
|
| 149 | 148 |
return new PredMap(g); |
| 150 | 149 |
} |
| 151 | 150 |
|
| 152 | 151 |
///The type of the map that indicates which nodes are processed. |
| 153 | 152 |
|
| 154 | 153 |
///The type of the map that indicates which nodes are processed. |
| 155 | 154 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 156 | 155 |
///By default it is a NullMap. |
| 157 |
///\todo If it is set to a real map, |
|
| 158 |
///Dijkstra::processed() should read this. |
|
| 159 | 156 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 160 | 157 |
///Instantiates a \ref ProcessedMap. |
| 161 | 158 |
|
| 162 | 159 |
///This function instantiates a \ref ProcessedMap. |
| 163 | 160 |
///\param g is the digraph, to which |
| 164 | 161 |
///we would like to define the \ref ProcessedMap |
| 165 | 162 |
#ifdef DOXYGEN |
| 166 | 163 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 167 | 164 |
#else |
| 168 | 165 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 169 | 166 |
#endif |
| 170 | 167 |
{
|
| 171 | 168 |
return new ProcessedMap(); |
| 172 | 169 |
} |
| 173 | 170 |
|
| 174 | 171 |
///The type of the map that stores the distances of the nodes. |
| 175 | 172 |
|
| 176 | 173 |
///The type of the map that stores the distances of the nodes. |
| 177 | 174 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 178 | 175 |
typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
| 179 | 176 |
///Instantiates a \ref DistMap. |
| 180 | 177 |
|
| 181 | 178 |
///This function instantiates a \ref DistMap. |
| 182 | 179 |
///\param g is the digraph, to which we would like to define |
| 183 | 180 |
///the \ref DistMap |
| 184 | 181 |
static DistMap *createDistMap(const Digraph &g) |
| 185 | 182 |
{
|
| 186 | 183 |
return new DistMap(g); |
| 187 | 184 |
} |
| 188 | 185 |
}; |
| 189 | 186 |
|
| 190 | 187 |
///%Dijkstra algorithm class. |
| 191 | 188 |
|
| 192 | 189 |
/// \ingroup shortest_path |
| 193 | 190 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
| 194 | 191 |
/// |
| 195 | 192 |
///The arc lengths are passed to the algorithm using a |
| 196 | 193 |
///\ref concepts::ReadMap "ReadMap", |
| 197 | 194 |
///so it is easy to change it to any kind of length. |
| 198 | 195 |
///The type of the length is determined by the |
| 199 | 196 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
| 200 | 197 |
///It is also possible to change the underlying priority heap. |
| 201 | 198 |
/// |
| 202 | 199 |
///There is also a \ref dijkstra() "function type interface" for the |
| 203 | 200 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
| 204 | 201 |
///it can be used easier. |
| 205 | 202 |
/// |
| 206 | 203 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 207 | 204 |
///The default value is \ref ListDigraph. |
| 208 | 205 |
///The value of GR is not used directly by \ref Dijkstra, it is only |
| 209 | 206 |
///passed to \ref DijkstraDefaultTraits. |
| 210 | 207 |
///\tparam LM A readable arc map that determines the lengths of the |
| 211 | 208 |
///arcs. It is read once for each arc, so the map may involve in |
| 212 | 209 |
///relatively time consuming process to compute the arc lengths if |
| 213 | 210 |
///it is necessary. The default map type is \ref |
| 214 | 211 |
///concepts::Digraph::ArcMap "Digraph::ArcMap<int>". |
| 215 | 212 |
///The value of LM is not used directly by \ref Dijkstra, it is only |
| 216 | 213 |
///passed to \ref DijkstraDefaultTraits. |
| 217 | 214 |
///\tparam TR Traits class to set various data types used by the algorithm. |
| 218 | 215 |
///The default traits class is \ref DijkstraDefaultTraits |
| 219 | 216 |
///"DijkstraDefaultTraits<GR,LM>". See \ref DijkstraDefaultTraits |
| 220 | 217 |
///for the documentation of a Dijkstra traits class. |
| 221 | 218 |
#ifdef DOXYGEN |
| 222 | 219 |
template <typename GR, typename LM, typename TR> |
| 223 | 220 |
#else |
| 224 | 221 |
template <typename GR=ListDigraph, |
| 225 | 222 |
typename LM=typename GR::template ArcMap<int>, |
| 226 | 223 |
typename TR=DijkstraDefaultTraits<GR,LM> > |
| 227 | 224 |
#endif |
| 228 | 225 |
class Dijkstra {
|
| 229 | 226 |
public: |
| 230 | 227 |
///\ref Exception for uninitialized parameters. |
| 231 | 228 |
|
| 232 | 229 |
///This error represents problems in the initialization of the |
| 233 | 230 |
///parameters of the algorithm. |
| 234 | 231 |
class UninitializedParameter : public lemon::UninitializedParameter {
|
| 235 | 232 |
public: |
| 236 | 233 |
virtual const char* what() const throw() {
|
| 237 | 234 |
return "lemon::Dijkstra::UninitializedParameter"; |
| 238 | 235 |
} |
| 239 | 236 |
}; |
| 240 | 237 |
|
| 241 | 238 |
///The type of the digraph the algorithm runs on. |
| 242 | 239 |
typedef typename TR::Digraph Digraph; |
| 243 | 240 |
|
| 244 | 241 |
///The type of the length of the arcs. |
| 245 | 242 |
typedef typename TR::LengthMap::Value Value; |
| 246 | 243 |
///The type of the map that stores the arc lengths. |
| 247 | 244 |
typedef typename TR::LengthMap LengthMap; |
| 248 | 245 |
///\brief The type of the map that stores the predecessor arcs of the |
| 249 | 246 |
///shortest paths. |
| 250 | 247 |
typedef typename TR::PredMap PredMap; |
| 251 | 248 |
///The type of the map that stores the distances of the nodes. |
| 252 | 249 |
typedef typename TR::DistMap DistMap; |
| 253 | 250 |
///The type of the map that indicates which nodes are processed. |
| 254 | 251 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 255 | 252 |
///The type of the paths. |
| 256 | 253 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 257 | 254 |
///The cross reference type used for the current heap. |
| 258 | 255 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
| 259 | 256 |
///The heap type used by the algorithm. |
| 260 | 257 |
typedef typename TR::Heap Heap; |
| 261 | 258 |
///The operation traits class. |
| 262 | 259 |
typedef typename TR::OperationTraits OperationTraits; |
| 263 | 260 |
|
| 264 | 261 |
///The traits class. |
| 265 | 262 |
typedef TR Traits; |
| 266 | 263 |
|
| 267 | 264 |
private: |
| 268 | 265 |
|
| 269 | 266 |
typedef typename Digraph::Node Node; |
| 270 | 267 |
typedef typename Digraph::NodeIt NodeIt; |
| 271 | 268 |
typedef typename Digraph::Arc Arc; |
| 272 | 269 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 273 | 270 |
|
| 274 | 271 |
//Pointer to the underlying digraph. |
| 275 | 272 |
const Digraph *G; |
| 276 | 273 |
//Pointer to the length map. |
| 277 | 274 |
const LengthMap *length; |
| 278 | 275 |
//Pointer to the map of predecessors arcs. |
| 279 | 276 |
PredMap *_pred; |
| 280 | 277 |
//Indicates if _pred is locally allocated (true) or not. |
| 281 | 278 |
bool local_pred; |
| 282 | 279 |
//Pointer to the map of distances. |
| 283 | 280 |
DistMap *_dist; |
| 284 | 281 |
//Indicates if _dist is locally allocated (true) or not. |
| 285 | 282 |
bool local_dist; |
| 286 | 283 |
//Pointer to the map of processed status of the nodes. |
| 287 | 284 |
ProcessedMap *_processed; |
| 288 | 285 |
//Indicates if _processed is locally allocated (true) or not. |
| 289 | 286 |
bool local_processed; |
| 290 | 287 |
//Pointer to the heap cross references. |
| 291 | 288 |
HeapCrossRef *_heap_cross_ref; |
| 292 | 289 |
//Indicates if _heap_cross_ref is locally allocated (true) or not. |
| 293 | 290 |
bool local_heap_cross_ref; |
| 294 | 291 |
//Pointer to the heap. |
| 295 | 292 |
Heap *_heap; |
| 296 | 293 |
//Indicates if _heap is locally allocated (true) or not. |
| 297 | 294 |
bool local_heap; |
| 298 | 295 |
|
| 299 |
///Creates the maps if necessary. |
|
| 300 |
///\todo Better memory allocation (instead of new). |
|
| 296 |
//Creates the maps if necessary. |
|
| 301 | 297 |
void create_maps() |
| 302 | 298 |
{
|
| 303 | 299 |
if(!_pred) {
|
| 304 | 300 |
local_pred = true; |
| 305 | 301 |
_pred = Traits::createPredMap(*G); |
| 306 | 302 |
} |
| 307 | 303 |
if(!_dist) {
|
| 308 | 304 |
local_dist = true; |
| 309 | 305 |
_dist = Traits::createDistMap(*G); |
| 310 | 306 |
} |
| 311 | 307 |
if(!_processed) {
|
| 312 | 308 |
local_processed = true; |
| 313 | 309 |
_processed = Traits::createProcessedMap(*G); |
| 314 | 310 |
} |
| 315 | 311 |
if (!_heap_cross_ref) {
|
| 316 | 312 |
local_heap_cross_ref = true; |
| 317 | 313 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
| 318 | 314 |
} |
| 319 | 315 |
if (!_heap) {
|
| 320 | 316 |
local_heap = true; |
| 321 | 317 |
_heap = Traits::createHeap(*_heap_cross_ref); |
| 322 | 318 |
} |
| 323 | 319 |
} |
| 324 | 320 |
|
| 325 | 321 |
public: |
| 326 | 322 |
|
| 327 | 323 |
typedef Dijkstra Create; |
| 328 | 324 |
|
| 329 | 325 |
///\name Named template parameters |
| 330 | 326 |
|
| 331 | 327 |
///@{
|
| 332 | 328 |
|
| 333 | 329 |
template <class T> |
| 334 | 330 |
struct SetPredMapTraits : public Traits {
|
| 335 | 331 |
typedef T PredMap; |
| 336 | 332 |
static PredMap *createPredMap(const Digraph &) |
| 337 | 333 |
{
|
| 338 | 334 |
throw UninitializedParameter(); |
| 339 | 335 |
} |
| 340 | 336 |
}; |
| 341 | 337 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 342 | 338 |
///\ref PredMap type. |
| 343 | 339 |
/// |
| 344 | 340 |
///\ref named-templ-param "Named parameter" for setting |
| 345 | 341 |
///\ref PredMap type. |
| 346 | 342 |
template <class T> |
| 347 | 343 |
struct SetPredMap |
| 348 | 344 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
|
| 349 | 345 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
| 350 | 346 |
}; |
| 351 | 347 |
|
| 352 | 348 |
template <class T> |
| 353 | 349 |
struct SetDistMapTraits : public Traits {
|
| 354 | 350 |
typedef T DistMap; |
| 355 | 351 |
static DistMap *createDistMap(const Digraph &) |
| 356 | 352 |
{
|
| 357 | 353 |
throw UninitializedParameter(); |
| 358 | 354 |
} |
| 359 | 355 |
}; |
| 360 | 356 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 361 | 357 |
///\ref DistMap type. |
| 362 | 358 |
/// |
| 363 | 359 |
///\ref named-templ-param "Named parameter" for setting |
| 364 | 360 |
///\ref DistMap type. |
| 365 | 361 |
template <class T> |
| 366 | 362 |
struct SetDistMap |
| 367 | 363 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
|
| 368 | 364 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
| 369 | 365 |
}; |
| 370 | 366 |
|
| 371 | 367 |
template <class T> |
| 372 | 368 |
struct SetProcessedMapTraits : public Traits {
|
| 373 | 369 |
typedef T ProcessedMap; |
| 374 | 370 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 375 | 371 |
{
|
| 376 | 372 |
throw UninitializedParameter(); |
| 377 | 373 |
} |
| 378 | 374 |
}; |
| 379 | 375 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 380 | 376 |
///\ref ProcessedMap type. |
| 381 | 377 |
/// |
| 382 | 378 |
///\ref named-templ-param "Named parameter" for setting |
| 383 | 379 |
///\ref ProcessedMap type. |
| 384 | 380 |
template <class T> |
| 385 | 381 |
struct SetProcessedMap |
| 386 | 382 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
|
| 387 | 383 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
| 388 | 384 |
}; |
| 389 | 385 |
|
| 390 | 386 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 391 | 387 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 392 | 388 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 393 | 389 |
{
|
| 394 | 390 |
return new ProcessedMap(g); |
| 395 | 391 |
} |
| 396 | 392 |
}; |
| 397 | 393 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 398 | 394 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 399 | 395 |
/// |
| 400 | 396 |
///\ref named-templ-param "Named parameter" for setting |
| 401 | 397 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 402 | 398 |
///If you don't set it explicitly, it will be automatically allocated. |
| 403 | 399 |
struct SetStandardProcessedMap |
| 404 | 400 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
|
| 405 | 401 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
| 406 | 402 |
Create; |
| 407 | 403 |
}; |
| 408 | 404 |
|
| 409 | 405 |
template <class H, class CR> |
| 410 | 406 |
struct SetHeapTraits : public Traits {
|
| 411 | 407 |
typedef CR HeapCrossRef; |
| 412 | 408 |
typedef H Heap; |
| 413 | 409 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) {
|
| 414 | 410 |
throw UninitializedParameter(); |
| 415 | 411 |
} |
| 416 | 412 |
static Heap *createHeap(HeapCrossRef &) |
| 417 | 413 |
{
|
| 418 | 414 |
throw UninitializedParameter(); |
| 419 | 415 |
} |
| 420 | 416 |
}; |
| 421 | 417 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 422 | 418 |
///heap and cross reference type |
| 423 | 419 |
/// |
| 424 | 420 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
| 425 | 421 |
///reference type. |
| 426 | 422 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
| 427 | 423 |
struct SetHeap |
| 428 | 424 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
|
| 429 | 425 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
| 430 | 426 |
}; |
| 431 | 427 |
|
| 432 | 428 |
template <class H, class CR> |
| 433 | 429 |
struct SetStandardHeapTraits : public Traits {
|
| 434 | 430 |
typedef CR HeapCrossRef; |
| 435 | 431 |
typedef H Heap; |
| 436 | 432 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
|
| 437 | 433 |
return new HeapCrossRef(G); |
| 438 | 434 |
} |
| 439 | 435 |
static Heap *createHeap(HeapCrossRef &R) |
| 440 | 436 |
{
|
| 441 | 437 |
return new Heap(R); |
| 442 | 438 |
} |
| 443 | 439 |
}; |
| 444 | 440 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 445 | 441 |
///heap and cross reference type with automatic allocation |
| 446 | 442 |
/// |
| 447 | 443 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
| 448 | 444 |
///reference type. It can allocate the heap and the cross reference |
| 449 | 445 |
///object if the cross reference's constructor waits for the digraph as |
| 450 | 446 |
///parameter and the heap's constructor waits for the cross reference. |
| 451 | 447 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
| 452 | 448 |
struct SetStandardHeap |
| 453 | 449 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
|
| 454 | 450 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
| 455 | 451 |
Create; |
| 456 | 452 |
}; |
| 457 | 453 |
|
| 458 | 454 |
template <class T> |
| 459 | 455 |
struct SetOperationTraitsTraits : public Traits {
|
| 460 | 456 |
typedef T OperationTraits; |
| 461 | 457 |
}; |
| 462 | 458 |
|
| 463 | 459 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 464 | 460 |
///\ref OperationTraits type |
| 465 | 461 |
/// |
| 466 | 462 |
///\ref named-templ-param "Named parameter" for setting |
| 467 | 463 |
///\ref OperationTraits type. |
| 468 | 464 |
template <class T> |
| 469 | 465 |
struct SetOperationTraits |
| 470 | 466 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
| 471 | 467 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
| 472 | 468 |
Create; |
| 473 | 469 |
}; |
| 474 | 470 |
|
| 475 | 471 |
///@} |
| 476 | 472 |
|
| 477 | 473 |
protected: |
| 478 | 474 |
|
| 479 | 475 |
Dijkstra() {}
|
| 480 | 476 |
|
| 481 | 477 |
public: |
| 482 | 478 |
|
| 483 | 479 |
///Constructor. |
| 484 | 480 |
|
| 485 | 481 |
///Constructor. |
| 486 | 482 |
///\param _g The digraph the algorithm runs on. |
| 487 | 483 |
///\param _length The length map used by the algorithm. |
| 488 | 484 |
Dijkstra(const Digraph& _g, const LengthMap& _length) : |
| 489 | 485 |
G(&_g), length(&_length), |
| 490 | 486 |
_pred(NULL), local_pred(false), |
| 491 | 487 |
_dist(NULL), local_dist(false), |
| 492 | 488 |
_processed(NULL), local_processed(false), |
| ... | ... |
@@ -768,482 +764,476 @@ |
| 768 | 764 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
| 769 | 765 |
if ( _heap->empty() ) return INVALID; |
| 770 | 766 |
finalizeNodeData(_heap->top(),_heap->prio()); |
| 771 | 767 |
return _heap->top(); |
| 772 | 768 |
} |
| 773 | 769 |
|
| 774 | 770 |
///Runs the algorithm from the given node. |
| 775 | 771 |
|
| 776 | 772 |
///This method runs the %Dijkstra algorithm from node \c s |
| 777 | 773 |
///in order to compute the shortest path to each node. |
| 778 | 774 |
/// |
| 779 | 775 |
///The algorithm computes |
| 780 | 776 |
///- the shortest path tree, |
| 781 | 777 |
///- the distance of each node from the root. |
| 782 | 778 |
/// |
| 783 | 779 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 784 | 780 |
///\code |
| 785 | 781 |
/// d.init(); |
| 786 | 782 |
/// d.addSource(s); |
| 787 | 783 |
/// d.start(); |
| 788 | 784 |
///\endcode |
| 789 | 785 |
void run(Node s) {
|
| 790 | 786 |
init(); |
| 791 | 787 |
addSource(s); |
| 792 | 788 |
start(); |
| 793 | 789 |
} |
| 794 | 790 |
|
| 795 | 791 |
///Finds the shortest path between \c s and \c t. |
| 796 | 792 |
|
| 797 | 793 |
///This method runs the %Dijkstra algorithm from node \c s |
| 798 | 794 |
///in order to compute the shortest path to \c t. |
| 799 | 795 |
/// |
| 800 | 796 |
///\return The length of the shortest <tt>s</tt>--<tt>t</tt> path, |
| 801 | 797 |
///if \c t is reachable form \c s, \c 0 otherwise. |
| 802 | 798 |
/// |
| 803 | 799 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a |
| 804 | 800 |
///shortcut of the following code. |
| 805 | 801 |
///\code |
| 806 | 802 |
/// d.init(); |
| 807 | 803 |
/// d.addSource(s); |
| 808 | 804 |
/// d.start(t); |
| 809 | 805 |
///\endcode |
| 810 | 806 |
Value run(Node s,Node t) {
|
| 811 | 807 |
init(); |
| 812 | 808 |
addSource(s); |
| 813 | 809 |
start(t); |
| 814 | 810 |
return (*_pred)[t]==INVALID?OperationTraits::zero():(*_dist)[t]; |
| 815 | 811 |
} |
| 816 | 812 |
|
| 817 | 813 |
///@} |
| 818 | 814 |
|
| 819 | 815 |
///\name Query Functions |
| 820 | 816 |
///The result of the %Dijkstra algorithm can be obtained using these |
| 821 | 817 |
///functions.\n |
| 822 | 818 |
///Either \ref lemon::Dijkstra::run() "run()" or |
| 823 | 819 |
///\ref lemon::Dijkstra::start() "start()" must be called before |
| 824 | 820 |
///using them. |
| 825 | 821 |
|
| 826 | 822 |
///@{
|
| 827 | 823 |
|
| 828 | 824 |
///The shortest path to a node. |
| 829 | 825 |
|
| 830 | 826 |
///Returns the shortest path to a node. |
| 831 | 827 |
/// |
| 832 | 828 |
///\warning \c t should be reachable from the root(s). |
| 833 | 829 |
/// |
| 834 | 830 |
///\pre Either \ref run() or \ref start() must be called before |
| 835 | 831 |
///using this function. |
| 836 | 832 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 837 | 833 |
|
| 838 | 834 |
///The distance of a node from the root(s). |
| 839 | 835 |
|
| 840 | 836 |
///Returns the distance of a node from the root(s). |
| 841 | 837 |
/// |
| 842 | 838 |
///\warning If node \c v is not reachable from the root(s), then |
| 843 | 839 |
///the return value of this function is undefined. |
| 844 | 840 |
/// |
| 845 | 841 |
///\pre Either \ref run() or \ref start() must be called before |
| 846 | 842 |
///using this function. |
| 847 | 843 |
Value dist(Node v) const { return (*_dist)[v]; }
|
| 848 | 844 |
|
| 849 | 845 |
///Returns the 'previous arc' of the shortest path tree for a node. |
| 850 | 846 |
|
| 851 | 847 |
///This function returns the 'previous arc' of the shortest path |
| 852 | 848 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 853 | 849 |
///shortest path from the root(s) to \c v. It is \c INVALID if \c v |
| 854 | 850 |
///is not reachable from the root(s) or if \c v is a root. |
| 855 | 851 |
/// |
| 856 | 852 |
///The shortest path tree used here is equal to the shortest path |
| 857 | 853 |
///tree used in \ref predNode(). |
| 858 | 854 |
/// |
| 859 | 855 |
///\pre Either \ref run() or \ref start() must be called before |
| 860 | 856 |
///using this function. |
| 861 | 857 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
| 862 | 858 |
|
| 863 | 859 |
///Returns the 'previous node' of the shortest path tree for a node. |
| 864 | 860 |
|
| 865 | 861 |
///This function returns the 'previous node' of the shortest path |
| 866 | 862 |
///tree for the node \c v, i.e. it returns the last but one node |
| 867 | 863 |
///from a shortest path from the root(s) to \c v. It is \c INVALID |
| 868 | 864 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
| 869 | 865 |
/// |
| 870 | 866 |
///The shortest path tree used here is equal to the shortest path |
| 871 | 867 |
///tree used in \ref predArc(). |
| 872 | 868 |
/// |
| 873 | 869 |
///\pre Either \ref run() or \ref start() must be called before |
| 874 | 870 |
///using this function. |
| 875 | 871 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 876 | 872 |
G->source((*_pred)[v]); } |
| 877 | 873 |
|
| 878 | 874 |
///\brief Returns a const reference to the node map that stores the |
| 879 | 875 |
///distances of the nodes. |
| 880 | 876 |
/// |
| 881 | 877 |
///Returns a const reference to the node map that stores the distances |
| 882 | 878 |
///of the nodes calculated by the algorithm. |
| 883 | 879 |
/// |
| 884 | 880 |
///\pre Either \ref run() or \ref init() |
| 885 | 881 |
///must be called before using this function. |
| 886 | 882 |
const DistMap &distMap() const { return *_dist;}
|
| 887 | 883 |
|
| 888 | 884 |
///\brief Returns a const reference to the node map that stores the |
| 889 | 885 |
///predecessor arcs. |
| 890 | 886 |
/// |
| 891 | 887 |
///Returns a const reference to the node map that stores the predecessor |
| 892 | 888 |
///arcs, which form the shortest path tree. |
| 893 | 889 |
/// |
| 894 | 890 |
///\pre Either \ref run() or \ref init() |
| 895 | 891 |
///must be called before using this function. |
| 896 | 892 |
const PredMap &predMap() const { return *_pred;}
|
| 897 | 893 |
|
| 898 | 894 |
///Checks if a node is reachable from the root(s). |
| 899 | 895 |
|
| 900 | 896 |
///Returns \c true if \c v is reachable from the root(s). |
| 901 | 897 |
///\pre Either \ref run() or \ref start() |
| 902 | 898 |
///must be called before using this function. |
| 903 | 899 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
|
| 904 | 900 |
Heap::PRE_HEAP; } |
| 905 | 901 |
|
| 906 | 902 |
///Checks if a node is processed. |
| 907 | 903 |
|
| 908 | 904 |
///Returns \c true if \c v is processed, i.e. the shortest |
| 909 | 905 |
///path to \c v has already found. |
| 910 | 906 |
///\pre Either \ref run() or \ref start() |
| 911 | 907 |
///must be called before using this function. |
| 912 | 908 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
|
| 913 | 909 |
Heap::POST_HEAP; } |
| 914 | 910 |
|
| 915 | 911 |
///The current distance of a node from the root(s). |
| 916 | 912 |
|
| 917 | 913 |
///Returns the current distance of a node from the root(s). |
| 918 | 914 |
///It may be decreased in the following processes. |
| 919 | 915 |
///\pre \c v should be reached but not processed. |
| 920 | 916 |
Value currentDist(Node v) const { return (*_heap)[v]; }
|
| 921 | 917 |
|
| 922 | 918 |
///@} |
| 923 | 919 |
}; |
| 924 | 920 |
|
| 925 | 921 |
|
| 926 | 922 |
///Default traits class of dijkstra() function. |
| 927 | 923 |
|
| 928 | 924 |
///Default traits class of dijkstra() function. |
| 929 | 925 |
///\tparam GR The type of the digraph. |
| 930 | 926 |
///\tparam LM The type of the length map. |
| 931 | 927 |
template<class GR, class LM> |
| 932 | 928 |
struct DijkstraWizardDefaultTraits |
| 933 | 929 |
{
|
| 934 | 930 |
///The type of the digraph the algorithm runs on. |
| 935 | 931 |
typedef GR Digraph; |
| 936 | 932 |
///The type of the map that stores the arc lengths. |
| 937 | 933 |
|
| 938 | 934 |
///The type of the map that stores the arc lengths. |
| 939 | 935 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
| 940 | 936 |
typedef LM LengthMap; |
| 941 | 937 |
///The type of the length of the arcs. |
| 942 | 938 |
typedef typename LM::Value Value; |
| 943 | 939 |
|
| 944 | 940 |
/// Operation traits for Dijkstra algorithm. |
| 945 | 941 |
|
| 946 | 942 |
/// This class defines the operations that are used in the algorithm. |
| 947 | 943 |
/// \see DijkstraDefaultOperationTraits |
| 948 | 944 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
| 949 | 945 |
|
| 950 | 946 |
/// The cross reference type used by the heap. |
| 951 | 947 |
|
| 952 | 948 |
/// The cross reference type used by the heap. |
| 953 | 949 |
/// Usually it is \c Digraph::NodeMap<int>. |
| 954 | 950 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 955 | 951 |
///Instantiates a \ref HeapCrossRef. |
| 956 | 952 |
|
| 957 | 953 |
///This function instantiates a \ref HeapCrossRef. |
| 958 | 954 |
/// \param g is the digraph, to which we would like to define the |
| 959 | 955 |
/// HeapCrossRef. |
| 960 |
/// \todo The digraph alone may be insufficient for the initialization |
|
| 961 | 956 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
| 962 | 957 |
{
|
| 963 | 958 |
return new HeapCrossRef(g); |
| 964 | 959 |
} |
| 965 | 960 |
|
| 966 | 961 |
///The heap type used by the Dijkstra algorithm. |
| 967 | 962 |
|
| 968 | 963 |
///The heap type used by the Dijkstra algorithm. |
| 969 | 964 |
/// |
| 970 | 965 |
///\sa BinHeap |
| 971 | 966 |
///\sa Dijkstra |
| 972 | 967 |
typedef BinHeap<Value, typename Digraph::template NodeMap<int>, |
| 973 | 968 |
std::less<Value> > Heap; |
| 974 | 969 |
|
| 975 | 970 |
///Instantiates a \ref Heap. |
| 976 | 971 |
|
| 977 | 972 |
///This function instantiates a \ref Heap. |
| 978 | 973 |
/// \param r is the HeapCrossRef which is used. |
| 979 | 974 |
static Heap *createHeap(HeapCrossRef& r) |
| 980 | 975 |
{
|
| 981 | 976 |
return new Heap(r); |
| 982 | 977 |
} |
| 983 | 978 |
|
| 984 | 979 |
///\brief The type of the map that stores the predecessor |
| 985 | 980 |
///arcs of the shortest paths. |
| 986 | 981 |
/// |
| 987 | 982 |
///The type of the map that stores the predecessor |
| 988 | 983 |
///arcs of the shortest paths. |
| 989 | 984 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 990 | 985 |
typedef NullMap <typename Digraph::Node,typename Digraph::Arc> PredMap; |
| 991 | 986 |
///Instantiates a \ref PredMap. |
| 992 | 987 |
|
| 993 | 988 |
///This function instantiates a \ref PredMap. |
| 994 | 989 |
///\param g is the digraph, to which we would like to define the |
| 995 | 990 |
///\ref PredMap. |
| 996 |
///\todo The digraph alone may be insufficient to initialize |
|
| 997 | 991 |
#ifdef DOXYGEN |
| 998 | 992 |
static PredMap *createPredMap(const Digraph &g) |
| 999 | 993 |
#else |
| 1000 | 994 |
static PredMap *createPredMap(const Digraph &) |
| 1001 | 995 |
#endif |
| 1002 | 996 |
{
|
| 1003 | 997 |
return new PredMap(); |
| 1004 | 998 |
} |
| 1005 | 999 |
|
| 1006 | 1000 |
///The type of the map that indicates which nodes are processed. |
| 1007 | 1001 |
|
| 1008 | 1002 |
///The type of the map that indicates which nodes are processed. |
| 1009 | 1003 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 1010 | 1004 |
///By default it is a NullMap. |
| 1011 |
///\todo If it is set to a real map, |
|
| 1012 |
///Dijkstra::processed() should read this. |
|
| 1013 |
///\todo named parameter to set this type, function to read and write. |
|
| 1014 | 1005 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 1015 | 1006 |
///Instantiates a \ref ProcessedMap. |
| 1016 | 1007 |
|
| 1017 | 1008 |
///This function instantiates a \ref ProcessedMap. |
| 1018 | 1009 |
///\param g is the digraph, to which |
| 1019 | 1010 |
///we would like to define the \ref ProcessedMap. |
| 1020 | 1011 |
#ifdef DOXYGEN |
| 1021 | 1012 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 1022 | 1013 |
#else |
| 1023 | 1014 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 1024 | 1015 |
#endif |
| 1025 | 1016 |
{
|
| 1026 | 1017 |
return new ProcessedMap(); |
| 1027 | 1018 |
} |
| 1028 | 1019 |
|
| 1029 | 1020 |
///The type of the map that stores the distances of the nodes. |
| 1030 | 1021 |
|
| 1031 | 1022 |
///The type of the map that stores the distances of the nodes. |
| 1032 | 1023 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
| 1033 | 1024 |
typedef NullMap<typename Digraph::Node,Value> DistMap; |
| 1034 | 1025 |
///Instantiates a \ref DistMap. |
| 1035 | 1026 |
|
| 1036 | 1027 |
///This function instantiates a \ref DistMap. |
| 1037 | 1028 |
///\param g is the digraph, to which we would like to define |
| 1038 | 1029 |
///the \ref DistMap |
| 1039 | 1030 |
#ifdef DOXYGEN |
| 1040 | 1031 |
static DistMap *createDistMap(const Digraph &g) |
| 1041 | 1032 |
#else |
| 1042 | 1033 |
static DistMap *createDistMap(const Digraph &) |
| 1043 | 1034 |
#endif |
| 1044 | 1035 |
{
|
| 1045 | 1036 |
return new DistMap(); |
| 1046 | 1037 |
} |
| 1047 | 1038 |
}; |
| 1048 | 1039 |
|
| 1049 | 1040 |
/// Default traits class used by \ref DijkstraWizard |
| 1050 | 1041 |
|
| 1051 | 1042 |
/// To make it easier to use Dijkstra algorithm |
| 1052 | 1043 |
/// we have created a wizard class. |
| 1053 | 1044 |
/// This \ref DijkstraWizard class needs default traits, |
| 1054 | 1045 |
/// as well as the \ref Dijkstra class. |
| 1055 | 1046 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
| 1056 | 1047 |
/// \ref DijkstraWizard class. |
| 1057 |
/// \todo More named parameters are required... |
|
| 1058 | 1048 |
template<class GR,class LM> |
| 1059 | 1049 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM> |
| 1060 | 1050 |
{
|
| 1061 | 1051 |
typedef DijkstraWizardDefaultTraits<GR,LM> Base; |
| 1062 | 1052 |
protected: |
| 1063 | 1053 |
//The type of the nodes in the digraph. |
| 1064 | 1054 |
typedef typename Base::Digraph::Node Node; |
| 1065 | 1055 |
|
| 1066 | 1056 |
//Pointer to the digraph the algorithm runs on. |
| 1067 | 1057 |
void *_g; |
| 1068 | 1058 |
//Pointer to the length map |
| 1069 | 1059 |
void *_length; |
| 1070 | 1060 |
//Pointer to the map of processed nodes. |
| 1071 | 1061 |
void *_processed; |
| 1072 | 1062 |
//Pointer to the map of predecessors arcs. |
| 1073 | 1063 |
void *_pred; |
| 1074 | 1064 |
//Pointer to the map of distances. |
| 1075 | 1065 |
void *_dist; |
| 1076 | 1066 |
//Pointer to the source node. |
| 1077 | 1067 |
Node _source; |
| 1078 | 1068 |
|
| 1079 | 1069 |
public: |
| 1080 | 1070 |
/// Constructor. |
| 1081 | 1071 |
|
| 1082 | 1072 |
/// This constructor does not require parameters, therefore it initiates |
| 1083 | 1073 |
/// all of the attributes to default values (0, INVALID). |
| 1084 | 1074 |
DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0), |
| 1085 | 1075 |
_dist(0), _source(INVALID) {}
|
| 1086 | 1076 |
|
| 1087 | 1077 |
/// Constructor. |
| 1088 | 1078 |
|
| 1089 | 1079 |
/// This constructor requires some parameters, |
| 1090 | 1080 |
/// listed in the parameters list. |
| 1091 | 1081 |
/// Others are initiated to 0. |
| 1092 | 1082 |
/// \param g The digraph the algorithm runs on. |
| 1093 | 1083 |
/// \param l The length map. |
| 1094 | 1084 |
/// \param s The source node. |
| 1095 | 1085 |
DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) : |
| 1096 | 1086 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 1097 | 1087 |
_length(reinterpret_cast<void*>(const_cast<LM*>(&l))), |
| 1098 | 1088 |
_processed(0), _pred(0), _dist(0), _source(s) {}
|
| 1099 | 1089 |
|
| 1100 | 1090 |
}; |
| 1101 | 1091 |
|
| 1102 | 1092 |
/// Auxiliary class for the function type interface of Dijkstra algorithm. |
| 1103 | 1093 |
|
| 1104 | 1094 |
/// This auxiliary class is created to implement the function type |
| 1105 | 1095 |
/// interface of \ref Dijkstra algorithm. It uses the functions and features |
| 1106 | 1096 |
/// of the plain \ref Dijkstra, but it is much simpler to use it. |
| 1107 | 1097 |
/// It should only be used through the \ref dijkstra() function, which makes |
| 1108 | 1098 |
/// it easier to use the algorithm. |
| 1109 | 1099 |
/// |
| 1110 | 1100 |
/// Simplicity means that the way to change the types defined |
| 1111 | 1101 |
/// in the traits class is based on functions that returns the new class |
| 1112 | 1102 |
/// and not on templatable built-in classes. |
| 1113 | 1103 |
/// When using the plain \ref Dijkstra |
| 1114 | 1104 |
/// the new class with the modified type comes from |
| 1115 | 1105 |
/// the original class by using the :: |
| 1116 | 1106 |
/// operator. In the case of \ref DijkstraWizard only |
| 1117 | 1107 |
/// a function have to be called, and it will |
| 1118 | 1108 |
/// return the needed class. |
| 1119 | 1109 |
/// |
| 1120 | 1110 |
/// It does not have own \ref run() method. When its \ref run() method |
| 1121 | 1111 |
/// is called, it initiates a plain \ref Dijkstra object, and calls the |
| 1122 | 1112 |
/// \ref Dijkstra::run() method of it. |
| 1123 | 1113 |
template<class TR> |
| 1124 | 1114 |
class DijkstraWizard : public TR |
| 1125 | 1115 |
{
|
| 1126 | 1116 |
typedef TR Base; |
| 1127 | 1117 |
|
| 1128 | 1118 |
///The type of the digraph the algorithm runs on. |
| 1129 | 1119 |
typedef typename TR::Digraph Digraph; |
| 1130 | 1120 |
|
| 1131 | 1121 |
typedef typename Digraph::Node Node; |
| 1132 | 1122 |
typedef typename Digraph::NodeIt NodeIt; |
| 1133 | 1123 |
typedef typename Digraph::Arc Arc; |
| 1134 | 1124 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1135 | 1125 |
|
| 1136 | 1126 |
///The type of the map that stores the arc lengths. |
| 1137 | 1127 |
typedef typename TR::LengthMap LengthMap; |
| 1138 | 1128 |
///The type of the length of the arcs. |
| 1139 | 1129 |
typedef typename LengthMap::Value Value; |
| 1140 | 1130 |
///\brief The type of the map that stores the predecessor |
| 1141 | 1131 |
///arcs of the shortest paths. |
| 1142 | 1132 |
typedef typename TR::PredMap PredMap; |
| 1143 | 1133 |
///The type of the map that stores the distances of the nodes. |
| 1144 | 1134 |
typedef typename TR::DistMap DistMap; |
| 1145 | 1135 |
///The type of the map that indicates which nodes are processed. |
| 1146 | 1136 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 1147 | 1137 |
///The heap type used by the dijkstra algorithm. |
| 1148 | 1138 |
typedef typename TR::Heap Heap; |
| 1149 | 1139 |
|
| 1150 | 1140 |
public: |
| 1151 | 1141 |
|
| 1152 | 1142 |
/// Constructor. |
| 1153 | 1143 |
DijkstraWizard() : TR() {}
|
| 1154 | 1144 |
|
| 1155 | 1145 |
/// Constructor that requires parameters. |
| 1156 | 1146 |
|
| 1157 | 1147 |
/// Constructor that requires parameters. |
| 1158 | 1148 |
/// These parameters will be the default values for the traits class. |
| 1159 | 1149 |
DijkstraWizard(const Digraph &g,const LengthMap &l, Node s=INVALID) : |
| 1160 | 1150 |
TR(g,l,s) {}
|
| 1161 | 1151 |
|
| 1162 | 1152 |
///Copy constructor |
| 1163 | 1153 |
DijkstraWizard(const TR &b) : TR(b) {}
|
| 1164 | 1154 |
|
| 1165 | 1155 |
~DijkstraWizard() {}
|
| 1166 | 1156 |
|
| 1167 | 1157 |
///Runs Dijkstra algorithm from a source node. |
| 1168 | 1158 |
|
| 1169 | 1159 |
///Runs Dijkstra algorithm from a source node. |
| 1170 | 1160 |
///The node can be given with the \ref source() function. |
| 1171 | 1161 |
void run() |
| 1172 | 1162 |
{
|
| 1173 | 1163 |
if(Base::_source==INVALID) throw UninitializedParameter(); |
| 1174 | 1164 |
Dijkstra<Digraph,LengthMap,TR> |
| 1175 | 1165 |
dij(*reinterpret_cast<const Digraph*>(Base::_g), |
| 1176 | 1166 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 1177 | 1167 |
if(Base::_processed) |
| 1178 | 1168 |
dij.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1179 | 1169 |
if(Base::_pred) |
| 1180 | 1170 |
dij.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1181 | 1171 |
if(Base::_dist) |
| 1182 | 1172 |
dij.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1183 | 1173 |
dij.run(Base::_source); |
| 1184 | 1174 |
} |
| 1185 | 1175 |
|
| 1186 | 1176 |
///Runs Dijkstra algorithm from the given node. |
| 1187 | 1177 |
|
| 1188 | 1178 |
///Runs Dijkstra algorithm from the given node. |
| 1189 | 1179 |
///\param s is the given source. |
| 1190 | 1180 |
void run(Node s) |
| 1191 | 1181 |
{
|
| 1192 | 1182 |
Base::_source=s; |
| 1193 | 1183 |
run(); |
| 1194 | 1184 |
} |
| 1195 | 1185 |
|
| 1196 | 1186 |
/// Sets the source node, from which the Dijkstra algorithm runs. |
| 1197 | 1187 |
|
| 1198 | 1188 |
/// Sets the source node, from which the Dijkstra algorithm runs. |
| 1199 | 1189 |
/// \param s is the source node. |
| 1200 | 1190 |
DijkstraWizard<TR> &source(Node s) |
| 1201 | 1191 |
{
|
| 1202 | 1192 |
Base::_source=s; |
| 1203 | 1193 |
return *this; |
| 1204 | 1194 |
} |
| 1205 | 1195 |
|
| 1206 | 1196 |
template<class T> |
| 1207 | 1197 |
struct SetPredMapBase : public Base {
|
| 1208 | 1198 |
typedef T PredMap; |
| 1209 | 1199 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1210 | 1200 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1211 | 1201 |
}; |
| 1212 | 1202 |
///\brief \ref named-templ-param "Named parameter" |
| 1213 | 1203 |
///for setting \ref PredMap object. |
| 1214 | 1204 |
/// |
| 1215 | 1205 |
///\ref named-templ-param "Named parameter" |
| 1216 | 1206 |
///for setting \ref PredMap object. |
| 1217 | 1207 |
template<class T> |
| 1218 | 1208 |
DijkstraWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1219 | 1209 |
{
|
| 1220 | 1210 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1221 | 1211 |
return DijkstraWizard<SetPredMapBase<T> >(*this); |
| 1222 | 1212 |
} |
| 1223 | 1213 |
|
| 1224 | 1214 |
template<class T> |
| 1225 | 1215 |
struct SetProcessedMapBase : public Base {
|
| 1226 | 1216 |
typedef T ProcessedMap; |
| 1227 | 1217 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1228 | 1218 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1229 | 1219 |
}; |
| 1230 | 1220 |
///\brief \ref named-templ-param "Named parameter" |
| 1231 | 1221 |
///for setting \ref ProcessedMap object. |
| 1232 | 1222 |
/// |
| 1233 | 1223 |
/// \ref named-templ-param "Named parameter" |
| 1234 | 1224 |
///for setting \ref ProcessedMap object. |
| 1235 | 1225 |
template<class T> |
| 1236 | 1226 |
DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1237 | 1227 |
{
|
| 1238 | 1228 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1239 | 1229 |
return DijkstraWizard<SetProcessedMapBase<T> >(*this); |
| 1240 | 1230 |
} |
| 1241 | 1231 |
|
| 1242 | 1232 |
template<class T> |
| 1243 | 1233 |
struct SetDistMapBase : public Base {
|
| 1244 | 1234 |
typedef T DistMap; |
| 1245 | 1235 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1246 | 1236 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1247 | 1237 |
}; |
| 1248 | 1238 |
///\brief \ref named-templ-param "Named parameter" |
| 1249 | 1239 |
///for setting \ref DistMap object. |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_ERROR_H |
| 20 | 20 |
#define LEMON_ERROR_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup exceptions |
| 23 | 23 |
/// \file |
| 24 | 24 |
/// \brief Basic exception classes and error handling. |
| 25 | 25 |
|
| 26 | 26 |
#include <exception> |
| 27 | 27 |
#include <string> |
| 28 | 28 |
#include <sstream> |
| 29 | 29 |
#include <iostream> |
| 30 | 30 |
#include <cstdlib> |
| 31 | 31 |
#include <memory> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
/// \addtogroup exceptions |
| 36 | 36 |
/// @{
|
| 37 | 37 |
|
| 38 | 38 |
/// \brief Exception safe wrapper class. |
| 39 | 39 |
/// |
| 40 | 40 |
/// Exception safe wrapper class to implement the members of exceptions. |
| 41 | 41 |
template <typename _Type> |
| 42 | 42 |
class ExceptionMember {
|
| 43 | 43 |
public: |
| 44 | 44 |
typedef _Type Type; |
| 45 | 45 |
|
| 46 | 46 |
ExceptionMember() throw() {
|
| 47 | 47 |
try {
|
| 48 | 48 |
ptr.reset(new Type()); |
| 49 | 49 |
} catch (...) {}
|
| 50 | 50 |
} |
| 51 | 51 |
|
| 52 | 52 |
ExceptionMember(const Type& type) throw() {
|
| 53 | 53 |
try {
|
| 54 | 54 |
ptr.reset(new Type()); |
| 55 | 55 |
if (ptr.get() == 0) return; |
| 56 | 56 |
*ptr = type; |
| 57 | 57 |
} catch (...) {}
|
| 58 | 58 |
} |
| 59 | 59 |
|
| 60 | 60 |
ExceptionMember(const ExceptionMember& copy) throw() {
|
| 61 | 61 |
try {
|
| 62 | 62 |
if (!copy.valid()) return; |
| 63 | 63 |
ptr.reset(new Type()); |
| 64 | 64 |
if (ptr.get() == 0) return; |
| 65 | 65 |
*ptr = copy.get(); |
| 66 | 66 |
} catch (...) {}
|
| 67 | 67 |
} |
| 68 | 68 |
|
| 69 | 69 |
ExceptionMember& operator=(const ExceptionMember& copy) throw() {
|
| 70 | 70 |
if (ptr.get() == 0) return; |
| 71 | 71 |
try {
|
| 72 | 72 |
if (!copy.valid()) return; |
| 73 | 73 |
*ptr = copy.get(); |
| 74 | 74 |
} catch (...) {}
|
| 75 | 75 |
} |
| 76 | 76 |
|
| 77 | 77 |
void set(const Type& type) throw() {
|
| 78 | 78 |
if (ptr.get() == 0) return; |
| 79 | 79 |
try {
|
| 80 | 80 |
*ptr = type; |
| 81 | 81 |
} catch (...) {}
|
| 82 | 82 |
} |
| 83 | 83 |
|
| 84 | 84 |
const Type& get() const {
|
| 85 | 85 |
return *ptr; |
| 86 | 86 |
} |
| 87 | 87 |
|
| 88 | 88 |
bool valid() const throw() {
|
| 89 | 89 |
return ptr.get() != 0; |
| 90 | 90 |
} |
| 91 | 91 |
|
| 92 | 92 |
private: |
| 93 | 93 |
std::auto_ptr<_Type> ptr; |
| 94 | 94 |
}; |
| 95 | 95 |
|
| 96 | 96 |
/// Exception-safe convenient error message builder class. |
| 97 | 97 |
|
| 98 | 98 |
/// Helper class which provides a convenient ostream-like (operator << |
| 99 | 99 |
/// based) interface to create a string message. Mostly useful in |
| 100 | 100 |
/// exception classes (therefore the name). |
| 101 | 101 |
class ErrorMessage {
|
| 102 | 102 |
protected: |
| 103 | 103 |
///\e |
| 104 | 104 |
|
| 105 |
///\todo The good solution is boost::shared_ptr... |
|
| 106 |
/// |
|
| 107 | 105 |
mutable std::auto_ptr<std::ostringstream> buf; |
| 108 | 106 |
|
| 109 | 107 |
///\e |
| 110 | 108 |
bool init() throw() {
|
| 111 | 109 |
try {
|
| 112 | 110 |
buf.reset(new std::ostringstream); |
| 113 | 111 |
} |
| 114 | 112 |
catch(...) {
|
| 115 | 113 |
buf.reset(); |
| 116 | 114 |
} |
| 117 | 115 |
return buf.get(); |
| 118 | 116 |
} |
| 119 | 117 |
|
| 120 | 118 |
public: |
| 121 | 119 |
|
| 122 | 120 |
///\e |
| 123 | 121 |
ErrorMessage() throw() { init(); }
|
| 124 | 122 |
|
| 125 | 123 |
ErrorMessage(const ErrorMessage& em) throw() : buf(em.buf) { }
|
| 126 | 124 |
|
| 127 | 125 |
///\e |
| 128 | 126 |
ErrorMessage(const char *msg) throw() {
|
| 129 | 127 |
init(); |
| 130 | 128 |
*this << msg; |
| 131 | 129 |
} |
| 132 | 130 |
|
| 133 | 131 |
///\e |
| 134 | 132 |
ErrorMessage(const std::string &msg) throw() {
|
| 135 | 133 |
init(); |
| 136 | 134 |
*this << msg; |
| 137 | 135 |
} |
| 138 | 136 |
|
| 139 | 137 |
///\e |
| 140 | 138 |
template <typename T> |
| 141 | 139 |
ErrorMessage& operator<<(const T &t) throw() {
|
| 142 | 140 |
if( ! buf.get() ) return *this; |
| 143 | 141 |
|
| 144 | 142 |
try {
|
| 145 | 143 |
*buf << t; |
| 146 | 144 |
} |
| 147 | 145 |
catch(...) {
|
| 148 | 146 |
buf.reset(); |
| 149 | 147 |
} |
| 150 | 148 |
return *this; |
| 151 | 149 |
} |
| 152 | 150 |
|
| 153 | 151 |
///\e |
| 154 | 152 |
const char* message() throw() {
|
| 155 | 153 |
if( ! buf.get() ) return 0; |
| 156 | 154 |
|
| 157 | 155 |
const char* mes = 0; |
| 158 | 156 |
try {
|
| 159 | 157 |
mes = buf->str().c_str(); |
| 160 | 158 |
} |
| 161 | 159 |
catch(...) {}
|
| 162 | 160 |
return mes; |
| 163 | 161 |
} |
| 164 | 162 |
|
| 165 | 163 |
}; |
| 166 | 164 |
|
| 167 | 165 |
/// Generic exception class. |
| 168 | 166 |
|
| 169 | 167 |
/// Base class for exceptions used in LEMON. |
| 170 | 168 |
/// |
| 171 | 169 |
class Exception : public std::exception {
|
| 172 | 170 |
public: |
| 173 | 171 |
///\e |
| 174 | 172 |
Exception() {}
|
| 175 | 173 |
///\e |
| 176 | 174 |
virtual ~Exception() throw() {}
|
| 177 | 175 |
///\e |
| 178 | 176 |
virtual const char* what() const throw() {
|
| 179 | 177 |
return "lemon::Exception"; |
| 180 | 178 |
} |
| 181 | 179 |
}; |
| 182 | 180 |
|
| 183 | 181 |
/// One of the two main subclasses of \ref Exception. |
| 184 | 182 |
|
| 185 | 183 |
/// Logic errors represent problems in the internal logic of a program; |
| 186 | 184 |
/// in theory, these are preventable, and even detectable before the |
| 187 | 185 |
/// program runs (e.g. violations of class invariants). |
| 188 | 186 |
/// |
| 189 | 187 |
/// A typical example for this is \ref UninitializedParameter. |
| 190 | 188 |
class LogicError : public Exception {
|
| 191 | 189 |
public: |
| 192 | 190 |
virtual const char* what() const throw() {
|
| 193 | 191 |
return "lemon::LogicError"; |
| 194 | 192 |
} |
| 195 | 193 |
}; |
| 196 | 194 |
|
| 197 | 195 |
/// \ref Exception for uninitialized parameters. |
| 198 | 196 |
|
| 199 | 197 |
/// This error represents problems in the initialization |
| 200 | 198 |
/// of the parameters of the algorithms. |
| 201 | 199 |
class UninitializedParameter : public LogicError {
|
| 202 | 200 |
public: |
| 203 | 201 |
virtual const char* what() const throw() {
|
| 204 | 202 |
return "lemon::UninitializedParameter"; |
| 205 | 203 |
} |
| 206 | 204 |
}; |
| 207 | 205 |
|
| 208 | 206 |
|
| 209 | 207 |
/// One of the two main subclasses of \ref Exception. |
| 210 | 208 |
|
| 211 | 209 |
/// Runtime errors represent problems outside the scope of a program; |
| 212 | 210 |
/// they cannot be easily predicted and can generally only be caught |
| 213 | 211 |
/// as the program executes. |
| 214 | 212 |
class RuntimeError : public Exception {
|
| 215 | 213 |
public: |
| 216 | 214 |
virtual const char* what() const throw() {
|
| 217 | 215 |
return "lemon::RuntimeError"; |
| 218 | 216 |
} |
| 219 | 217 |
}; |
| 220 | 218 |
|
| 221 | 219 |
///\e |
| 222 | 220 |
class RangeError : public RuntimeError {
|
| 223 | 221 |
public: |
| 224 | 222 |
virtual const char* what() const throw() {
|
| 225 | 223 |
return "lemon::RangeError"; |
| 226 | 224 |
} |
| 227 | 225 |
}; |
| 228 | 226 |
|
| 229 | 227 |
///\e |
| 230 | 228 |
class IoError : public RuntimeError {
|
| 231 | 229 |
public: |
| 232 | 230 |
virtual const char* what() const throw() {
|
| 233 | 231 |
return "lemon::IoError"; |
| 234 | 232 |
} |
| 235 | 233 |
}; |
| 236 | 234 |
|
| 237 | 235 |
///\e |
| 238 | 236 |
class DataFormatError : public IoError {
|
| 239 | 237 |
protected: |
| 240 | 238 |
ExceptionMember<std::string> _message; |
| 241 | 239 |
ExceptionMember<std::string> _file; |
| 242 | 240 |
int _line; |
| 243 | 241 |
|
| 244 | 242 |
mutable ExceptionMember<std::string> _message_holder; |
| 245 | 243 |
public: |
| 246 | 244 |
|
| 247 | 245 |
DataFormatError(const DataFormatError &dfe) : |
| 248 | 246 |
IoError(dfe), _message(dfe._message), _file(dfe._file), |
| 249 | 247 |
_line(dfe._line) {}
|
| 250 | 248 |
|
| 251 | 249 |
///\e |
| 252 | 250 |
explicit DataFormatError(const char *the_message) |
| 253 | 251 |
: _message(the_message), _line(0) {}
|
| 254 | 252 |
|
| 255 | 253 |
///\e |
| 256 | 254 |
DataFormatError(const std::string &file_name, int line_num, |
| 257 | 255 |
const char *the_message) |
| 258 | 256 |
: _message(the_message), _line(line_num) { file(file_name); }
|
| 259 | 257 |
|
| 260 | 258 |
///\e |
| 261 | 259 |
void line(int ln) { _line = ln; }
|
| 262 | 260 |
///\e |
| 263 | 261 |
void message(const std::string& msg) { _message.set(msg); }
|
| 264 | 262 |
///\e |
| 265 | 263 |
void file(const std::string &fl) { _file.set(fl); }
|
| 266 | 264 |
|
| 267 | 265 |
///\e |
| 268 | 266 |
int line() const { return _line; }
|
| 269 | 267 |
///\e |
| 270 | 268 |
const char* message() const {
|
| 271 | 269 |
if (_message.valid() && !_message.get().empty()) {
|
| 272 | 270 |
return _message.get().c_str(); |
| 273 | 271 |
} else {
|
| 274 | 272 |
return 0; |
| 275 | 273 |
} |
| 276 | 274 |
} |
| 277 | 275 |
|
| 278 | 276 |
/// \brief Returns the filename. |
| 279 | 277 |
/// |
| 280 | 278 |
/// Returns \e null if the filename was not specified. |
| 281 | 279 |
const char* file() const {
|
| 282 | 280 |
if (_file.valid() && !_file.get().empty()) {
|
| 283 | 281 |
return _file.get().c_str(); |
| 284 | 282 |
} else {
|
| 285 | 283 |
return 0; |
| 286 | 284 |
} |
| 287 | 285 |
} |
| 288 | 286 |
|
| 289 | 287 |
///\e |
| 290 | 288 |
virtual const char* what() const throw() {
|
| 291 | 289 |
try {
|
| 292 | 290 |
std::ostringstream ostr; |
| 293 | 291 |
ostr << "lemon:DataFormatError" << ": "; |
| 294 | 292 |
if (message()) ostr << message(); |
| 295 | 293 |
if( file() || line() != 0 ) {
|
| 296 | 294 |
ostr << " (";
|
| 297 | 295 |
if( file() ) ostr << "in file '" << file() << "'"; |
| 298 | 296 |
if( file() && line() != 0 ) ostr << " "; |
| ... | ... |
@@ -477,625 +477,620 @@ |
| 477 | 477 |
} |
| 478 | 478 |
///Sets a global scale factor for node sizes |
| 479 | 479 |
|
| 480 | 480 |
///Sets a global scale factor for node sizes. |
| 481 | 481 |
/// |
| 482 | 482 |
/// If nodeSizes() is not given, this function simply sets the node |
| 483 | 483 |
/// sizes to \c d. If nodeSizes() is given, but |
| 484 | 484 |
/// autoNodeScale() is not, then the node size given by |
| 485 | 485 |
/// nodeSizes() will be multiplied by the value \c d. |
| 486 | 486 |
/// If both nodeSizes() and autoNodeScale() are used, then the |
| 487 | 487 |
/// node sizes will be scaled in such a way that the greatest size will be |
| 488 | 488 |
/// equal to \c d. |
| 489 | 489 |
/// \sa nodeSizes() |
| 490 | 490 |
/// \sa autoNodeScale() |
| 491 | 491 |
GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;}
|
| 492 | 492 |
///Turns on/off the automatic node size scaling. |
| 493 | 493 |
|
| 494 | 494 |
///Turns on/off the automatic node size scaling. |
| 495 | 495 |
/// |
| 496 | 496 |
///\sa nodeScale() |
| 497 | 497 |
/// |
| 498 | 498 |
GraphToEps<T> &autoNodeScale(bool b=true) {
|
| 499 | 499 |
_autoNodeScale=b;return *this; |
| 500 | 500 |
} |
| 501 | 501 |
|
| 502 | 502 |
///Turns on/off the absolutematic node size scaling. |
| 503 | 503 |
|
| 504 | 504 |
///Turns on/off the absolutematic node size scaling. |
| 505 | 505 |
/// |
| 506 | 506 |
///\sa nodeScale() |
| 507 | 507 |
/// |
| 508 | 508 |
GraphToEps<T> &absoluteNodeSizes(bool b=true) {
|
| 509 | 509 |
_absoluteNodeSizes=b;return *this; |
| 510 | 510 |
} |
| 511 | 511 |
|
| 512 | 512 |
///Negates the Y coordinates. |
| 513 | 513 |
GraphToEps<T> &negateY(bool b=true) {
|
| 514 | 514 |
_negY=b;return *this; |
| 515 | 515 |
} |
| 516 | 516 |
|
| 517 | 517 |
///Turn on/off pre-scaling |
| 518 | 518 |
|
| 519 | 519 |
///By default graphToEps() rescales the whole image in order to avoid |
| 520 | 520 |
///very big or very small bounding boxes. |
| 521 | 521 |
/// |
| 522 | 522 |
///This (p)rescaling can be turned off with this function. |
| 523 | 523 |
/// |
| 524 | 524 |
GraphToEps<T> &preScale(bool b=true) {
|
| 525 | 525 |
_preScale=b;return *this; |
| 526 | 526 |
} |
| 527 | 527 |
|
| 528 | 528 |
///Sets a global scale factor for arc widths |
| 529 | 529 |
|
| 530 | 530 |
/// Sets a global scale factor for arc widths. |
| 531 | 531 |
/// |
| 532 | 532 |
/// If arcWidths() is not given, this function simply sets the arc |
| 533 | 533 |
/// widths to \c d. If arcWidths() is given, but |
| 534 | 534 |
/// autoArcWidthScale() is not, then the arc withs given by |
| 535 | 535 |
/// arcWidths() will be multiplied by the value \c d. |
| 536 | 536 |
/// If both arcWidths() and autoArcWidthScale() are used, then the |
| 537 | 537 |
/// arc withs will be scaled in such a way that the greatest width will be |
| 538 | 538 |
/// equal to \c d. |
| 539 | 539 |
GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;}
|
| 540 | 540 |
///Turns on/off the automatic arc width scaling. |
| 541 | 541 |
|
| 542 | 542 |
///Turns on/off the automatic arc width scaling. |
| 543 | 543 |
/// |
| 544 | 544 |
///\sa arcWidthScale() |
| 545 | 545 |
/// |
| 546 | 546 |
GraphToEps<T> &autoArcWidthScale(bool b=true) {
|
| 547 | 547 |
_autoArcWidthScale=b;return *this; |
| 548 | 548 |
} |
| 549 | 549 |
///Turns on/off the absolutematic arc width scaling. |
| 550 | 550 |
|
| 551 | 551 |
///Turns on/off the absolutematic arc width scaling. |
| 552 | 552 |
/// |
| 553 | 553 |
///\sa arcWidthScale() |
| 554 | 554 |
/// |
| 555 | 555 |
GraphToEps<T> &absoluteArcWidths(bool b=true) {
|
| 556 | 556 |
_absoluteArcWidths=b;return *this; |
| 557 | 557 |
} |
| 558 | 558 |
///Sets a global scale factor for the whole picture |
| 559 | 559 |
GraphToEps<T> &scale(double d) {_scale=d;return *this;}
|
| 560 | 560 |
///Sets the width of the border around the picture |
| 561 | 561 |
GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;}
|
| 562 | 562 |
///Sets the width of the border around the picture |
| 563 | 563 |
GraphToEps<T> &border(double x, double y) {
|
| 564 | 564 |
_xBorder=x;_yBorder=y;return *this; |
| 565 | 565 |
} |
| 566 | 566 |
///Sets whether to draw arrows |
| 567 | 567 |
GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;}
|
| 568 | 568 |
///Sets the length of the arrowheads |
| 569 | 569 |
GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;}
|
| 570 | 570 |
///Sets the width of the arrowheads |
| 571 | 571 |
GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;}
|
| 572 | 572 |
|
| 573 | 573 |
///Scales the drawing to fit to A4 page |
| 574 | 574 |
GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;}
|
| 575 | 575 |
|
| 576 | 576 |
///Enables parallel arcs |
| 577 | 577 |
GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;}
|
| 578 | 578 |
|
| 579 | 579 |
///Sets the distance between parallel arcs |
| 580 | 580 |
GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;}
|
| 581 | 581 |
|
| 582 | 582 |
///Hides the arcs |
| 583 | 583 |
GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;}
|
| 584 | 584 |
///Hides the nodes |
| 585 | 585 |
GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;}
|
| 586 | 586 |
|
| 587 | 587 |
///Sets the size of the node texts |
| 588 | 588 |
GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;}
|
| 589 | 589 |
|
| 590 | 590 |
///Sets the color of the node texts to be different from the node color |
| 591 | 591 |
|
| 592 | 592 |
///Sets the color of the node texts to be as different from the node color |
| 593 | 593 |
///as it is possible. |
| 594 | 594 |
GraphToEps<T> &distantColorNodeTexts() |
| 595 | 595 |
{_nodeTextColorType=DIST_COL;return *this;}
|
| 596 | 596 |
///Sets the color of the node texts to be black or white and always visible. |
| 597 | 597 |
|
| 598 | 598 |
///Sets the color of the node texts to be black or white according to |
| 599 | 599 |
///which is more different from the node color. |
| 600 | 600 |
GraphToEps<T> &distantBWNodeTexts() |
| 601 | 601 |
{_nodeTextColorType=DIST_BW;return *this;}
|
| 602 | 602 |
|
| 603 | 603 |
///Gives a preamble block for node Postscript block. |
| 604 | 604 |
|
| 605 | 605 |
///Gives a preamble block for node Postscript block. |
| 606 | 606 |
/// |
| 607 | 607 |
///\sa nodePsTexts() |
| 608 | 608 |
GraphToEps<T> & nodePsTextsPreamble(const char *str) {
|
| 609 | 609 |
_nodePsTextsPreamble=str ;return *this; |
| 610 | 610 |
} |
| 611 | 611 |
///Sets whether the graph is undirected |
| 612 | 612 |
|
| 613 | 613 |
///Sets whether the graph is undirected. |
| 614 | 614 |
/// |
| 615 | 615 |
///This setting is the default for undirected graphs. |
| 616 | 616 |
/// |
| 617 | 617 |
///\sa directed() |
| 618 | 618 |
GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;}
|
| 619 | 619 |
|
| 620 | 620 |
///Sets whether the graph is directed |
| 621 | 621 |
|
| 622 | 622 |
///Sets whether the graph is directed. |
| 623 | 623 |
///Use it to show the edges as a pair of directed ones. |
| 624 | 624 |
/// |
| 625 | 625 |
///This setting is the default for digraphs. |
| 626 | 626 |
/// |
| 627 | 627 |
///\sa undirected() |
| 628 | 628 |
GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;}
|
| 629 | 629 |
|
| 630 | 630 |
///Sets the title. |
| 631 | 631 |
|
| 632 | 632 |
///Sets the title of the generated image, |
| 633 | 633 |
///namely it inserts a <tt>%%Title:</tt> DSC field to the header of |
| 634 | 634 |
///the EPS file. |
| 635 | 635 |
GraphToEps<T> &title(const std::string &t) {_title=t;return *this;}
|
| 636 | 636 |
///Sets the copyright statement. |
| 637 | 637 |
|
| 638 | 638 |
///Sets the copyright statement of the generated image, |
| 639 | 639 |
///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of |
| 640 | 640 |
///the EPS file. |
| 641 | 641 |
GraphToEps<T> ©right(const std::string &t) {_copyright=t;return *this;}
|
| 642 | 642 |
|
| 643 | 643 |
protected: |
| 644 | 644 |
bool isInsideNode(dim2::Point<double> p, double r,int t) |
| 645 | 645 |
{
|
| 646 | 646 |
switch(t) {
|
| 647 | 647 |
case CIRCLE: |
| 648 | 648 |
case MALE: |
| 649 | 649 |
case FEMALE: |
| 650 | 650 |
return p.normSquare()<=r*r; |
| 651 | 651 |
case SQUARE: |
| 652 | 652 |
return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r; |
| 653 | 653 |
case DIAMOND: |
| 654 | 654 |
return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r; |
| 655 | 655 |
} |
| 656 | 656 |
return false; |
| 657 | 657 |
} |
| 658 | 658 |
|
| 659 | 659 |
public: |
| 660 | 660 |
~GraphToEps() { }
|
| 661 | 661 |
|
| 662 | 662 |
///Draws the graph. |
| 663 | 663 |
|
| 664 | 664 |
///Like other functions using |
| 665 | 665 |
///\ref named-templ-func-param "named template parameters", |
| 666 | 666 |
///this function calls the algorithm itself, i.e. in this case |
| 667 | 667 |
///it draws the graph. |
| 668 | 668 |
void run() {
|
| 669 |
//\todo better 'epsilon' would be nice here. |
|
| 670 | 669 |
const double EPSILON=1e-9; |
| 671 | 670 |
if(dontPrint) return; |
| 672 | 671 |
|
| 673 | 672 |
_graph_to_eps_bits::_NegY<typename T::CoordsMapType> |
| 674 | 673 |
mycoords(_coords,_negY); |
| 675 | 674 |
|
| 676 | 675 |
os << "%!PS-Adobe-2.0 EPSF-2.0\n"; |
| 677 | 676 |
if(_title.size()>0) os << "%%Title: " << _title << '\n'; |
| 678 | 677 |
if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n'; |
| 679 | 678 |
os << "%%Creator: LEMON, graphToEps()\n"; |
| 680 | 679 |
|
| 681 | 680 |
{
|
| 682 | 681 |
#ifndef WIN32 |
| 683 | 682 |
timeval tv; |
| 684 | 683 |
gettimeofday(&tv, 0); |
| 685 | 684 |
|
| 686 | 685 |
char cbuf[26]; |
| 687 | 686 |
ctime_r(&tv.tv_sec,cbuf); |
| 688 | 687 |
os << "%%CreationDate: " << cbuf; |
| 689 | 688 |
#else |
| 690 | 689 |
SYSTEMTIME time; |
| 691 | 690 |
char buf1[11], buf2[9], buf3[5]; |
| 692 | 691 |
|
| 693 | 692 |
GetSystemTime(&time); |
| 694 | 693 |
if (GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
| 695 | 694 |
"ddd MMM dd", buf1, 11) && |
| 696 | 695 |
GetTimeFormat(LOCALE_USER_DEFAULT, 0, &time, |
| 697 | 696 |
"HH':'mm':'ss", buf2, 9) && |
| 698 | 697 |
GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
| 699 | 698 |
"yyyy", buf3, 5)) {
|
| 700 | 699 |
os << "%%CreationDate: " << buf1 << ' ' |
| 701 | 700 |
<< buf2 << ' ' << buf3 << std::endl; |
| 702 | 701 |
} |
| 703 | 702 |
#endif |
| 704 | 703 |
} |
| 705 | 704 |
|
| 706 | 705 |
if (_autoArcWidthScale) {
|
| 707 | 706 |
double max_w=0; |
| 708 | 707 |
for(ArcIt e(g);e!=INVALID;++e) |
| 709 | 708 |
max_w=std::max(double(_arcWidths[e]),max_w); |
| 710 |
//\todo better 'epsilon' would be nice here. |
|
| 711 | 709 |
if(max_w>EPSILON) {
|
| 712 | 710 |
_arcWidthScale/=max_w; |
| 713 | 711 |
} |
| 714 | 712 |
} |
| 715 | 713 |
|
| 716 | 714 |
if (_autoNodeScale) {
|
| 717 | 715 |
double max_s=0; |
| 718 | 716 |
for(NodeIt n(g);n!=INVALID;++n) |
| 719 | 717 |
max_s=std::max(double(_nodeSizes[n]),max_s); |
| 720 |
//\todo better 'epsilon' would be nice here. |
|
| 721 | 718 |
if(max_s>EPSILON) {
|
| 722 | 719 |
_nodeScale/=max_s; |
| 723 | 720 |
} |
| 724 | 721 |
} |
| 725 | 722 |
|
| 726 | 723 |
double diag_len = 1; |
| 727 | 724 |
if(!(_absoluteNodeSizes&&_absoluteArcWidths)) {
|
| 728 | 725 |
dim2::Box<double> bb; |
| 729 | 726 |
for(NodeIt n(g);n!=INVALID;++n) bb.add(mycoords[n]); |
| 730 | 727 |
if (bb.empty()) {
|
| 731 | 728 |
bb = dim2::Box<double>(dim2::Point<double>(0,0)); |
| 732 | 729 |
} |
| 733 | 730 |
diag_len = std::sqrt((bb.bottomLeft()-bb.topRight()).normSquare()); |
| 734 | 731 |
if(diag_len<EPSILON) diag_len = 1; |
| 735 | 732 |
if(!_absoluteNodeSizes) _nodeScale*=diag_len; |
| 736 | 733 |
if(!_absoluteArcWidths) _arcWidthScale*=diag_len; |
| 737 | 734 |
} |
| 738 | 735 |
|
| 739 | 736 |
dim2::Box<double> bb; |
| 740 | 737 |
for(NodeIt n(g);n!=INVALID;++n) {
|
| 741 | 738 |
double ns=_nodeSizes[n]*_nodeScale; |
| 742 | 739 |
dim2::Point<double> p(ns,ns); |
| 743 | 740 |
switch(_nodeShapes[n]) {
|
| 744 | 741 |
case CIRCLE: |
| 745 | 742 |
case SQUARE: |
| 746 | 743 |
case DIAMOND: |
| 747 | 744 |
bb.add(p+mycoords[n]); |
| 748 | 745 |
bb.add(-p+mycoords[n]); |
| 749 | 746 |
break; |
| 750 | 747 |
case MALE: |
| 751 | 748 |
bb.add(-p+mycoords[n]); |
| 752 | 749 |
bb.add(dim2::Point<double>(1.5*ns,1.5*std::sqrt(3.0)*ns)+mycoords[n]); |
| 753 | 750 |
break; |
| 754 | 751 |
case FEMALE: |
| 755 | 752 |
bb.add(p+mycoords[n]); |
| 756 | 753 |
bb.add(dim2::Point<double>(-ns,-3.01*ns)+mycoords[n]); |
| 757 | 754 |
break; |
| 758 | 755 |
} |
| 759 | 756 |
} |
| 760 | 757 |
if (bb.empty()) {
|
| 761 | 758 |
bb = dim2::Box<double>(dim2::Point<double>(0,0)); |
| 762 | 759 |
} |
| 763 | 760 |
|
| 764 | 761 |
if(_scaleToA4) |
| 765 | 762 |
os <<"%%BoundingBox: 0 0 596 842\n%%DocumentPaperSizes: a4\n"; |
| 766 | 763 |
else {
|
| 767 | 764 |
if(_preScale) {
|
| 768 | 765 |
//Rescale so that BoundingBox won't be neither to big nor too small. |
| 769 | 766 |
while(bb.height()*_scale>1000||bb.width()*_scale>1000) _scale/=10; |
| 770 | 767 |
while(bb.height()*_scale<100||bb.width()*_scale<100) _scale*=10; |
| 771 | 768 |
} |
| 772 | 769 |
|
| 773 | 770 |
os << "%%BoundingBox: " |
| 774 | 771 |
<< int(floor(bb.left() * _scale - _xBorder)) << ' ' |
| 775 | 772 |
<< int(floor(bb.bottom() * _scale - _yBorder)) << ' ' |
| 776 | 773 |
<< int(ceil(bb.right() * _scale + _xBorder)) << ' ' |
| 777 | 774 |
<< int(ceil(bb.top() * _scale + _yBorder)) << '\n'; |
| 778 | 775 |
} |
| 779 | 776 |
|
| 780 | 777 |
os << "%%EndComments\n"; |
| 781 | 778 |
|
| 782 | 779 |
//x1 y1 x2 y2 x3 y3 cr cg cb w |
| 783 | 780 |
os << "/lb { setlinewidth setrgbcolor newpath moveto\n"
|
| 784 | 781 |
<< " 4 2 roll 1 index 1 index curveto stroke } bind def\n"; |
| 785 | 782 |
os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke }"
|
| 786 | 783 |
<< " bind def\n"; |
| 787 | 784 |
//x y r |
| 788 | 785 |
os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath }"
|
| 789 | 786 |
<< " bind def\n"; |
| 790 | 787 |
//x y r |
| 791 | 788 |
os << "/sq { newpath 2 index 1 index add 2 index 2 index add moveto\n"
|
| 792 | 789 |
<< " 2 index 1 index sub 2 index 2 index add lineto\n" |
| 793 | 790 |
<< " 2 index 1 index sub 2 index 2 index sub lineto\n" |
| 794 | 791 |
<< " 2 index 1 index add 2 index 2 index sub lineto\n" |
| 795 | 792 |
<< " closepath pop pop pop} bind def\n"; |
| 796 | 793 |
//x y r |
| 797 | 794 |
os << "/di { newpath 2 index 1 index add 2 index moveto\n"
|
| 798 | 795 |
<< " 2 index 2 index 2 index add lineto\n" |
| 799 | 796 |
<< " 2 index 1 index sub 2 index lineto\n" |
| 800 | 797 |
<< " 2 index 2 index 2 index sub lineto\n" |
| 801 | 798 |
<< " closepath pop pop pop} bind def\n"; |
| 802 | 799 |
// x y r cr cg cb |
| 803 | 800 |
os << "/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill\n"
|
| 804 | 801 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
| 805 | 802 |
<< " } bind def\n"; |
| 806 | 803 |
os << "/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill\n"
|
| 807 | 804 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div sq fill\n" |
| 808 | 805 |
<< " } bind def\n"; |
| 809 | 806 |
os << "/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill\n"
|
| 810 | 807 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div di fill\n" |
| 811 | 808 |
<< " } bind def\n"; |
| 812 | 809 |
os << "/nfemale { 0 0 0 setrgbcolor 3 index "
|
| 813 | 810 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
| 814 | 811 |
<< " 1.5 mul mul setlinewidth\n" |
| 815 | 812 |
<< " newpath 5 index 5 index moveto " |
| 816 | 813 |
<< "5 index 5 index 5 index 3.01 mul sub\n" |
| 817 | 814 |
<< " lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub" |
| 818 | 815 |
<< " moveto\n" |
| 819 | 816 |
<< " 5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto " |
| 820 | 817 |
<< "stroke\n" |
| 821 | 818 |
<< " 5 index 5 index 5 index c fill\n" |
| 822 | 819 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
| 823 | 820 |
<< " } bind def\n"; |
| 824 | 821 |
os << "/nmale {\n"
|
| 825 | 822 |
<< " 0 0 0 setrgbcolor 3 index " |
| 826 | 823 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
| 827 | 824 |
<<" 1.5 mul mul setlinewidth\n" |
| 828 | 825 |
<< " newpath 5 index 5 index moveto\n" |
| 829 | 826 |
<< " 5 index 4 index 1 mul 1.5 mul add\n" |
| 830 | 827 |
<< " 5 index 5 index 3 sqrt 1.5 mul mul add\n" |
| 831 | 828 |
<< " 1 index 1 index lineto\n" |
| 832 | 829 |
<< " 1 index 1 index 7 index sub moveto\n" |
| 833 | 830 |
<< " 1 index 1 index lineto\n" |
| 834 | 831 |
<< " exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub" |
| 835 | 832 |
<< " lineto\n" |
| 836 | 833 |
<< " stroke\n" |
| 837 | 834 |
<< " 5 index 5 index 5 index c fill\n" |
| 838 | 835 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
| 839 | 836 |
<< " } bind def\n"; |
| 840 | 837 |
|
| 841 | 838 |
|
| 842 | 839 |
os << "/arrl " << _arrowLength << " def\n"; |
| 843 | 840 |
os << "/arrw " << _arrowWidth << " def\n"; |
| 844 | 841 |
// l dx_norm dy_norm |
| 845 | 842 |
os << "/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def\n";
|
| 846 | 843 |
//len w dx_norm dy_norm x1 y1 cr cg cb |
| 847 | 844 |
os << "/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx "
|
| 848 | 845 |
<< "exch def\n" |
| 849 | 846 |
<< " /w exch def /len exch def\n" |
| 850 | 847 |
//<< "0.1 setlinewidth x1 y1 moveto dx len mul dy len mul rlineto stroke" |
| 851 | 848 |
<< " newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto\n" |
| 852 | 849 |
<< " len w sub arrl sub dx dy lrl\n" |
| 853 | 850 |
<< " arrw dy dx neg lrl\n" |
| 854 | 851 |
<< " dx arrl w add mul dy w 2 div arrw add mul sub\n" |
| 855 | 852 |
<< " dy arrl w add mul dx w 2 div arrw add mul add rlineto\n" |
| 856 | 853 |
<< " dx arrl w add mul neg dy w 2 div arrw add mul sub\n" |
| 857 | 854 |
<< " dy arrl w add mul neg dx w 2 div arrw add mul add rlineto\n" |
| 858 | 855 |
<< " arrw dy dx neg lrl\n" |
| 859 | 856 |
<< " len w sub arrl sub neg dx dy lrl\n" |
| 860 | 857 |
<< " closepath fill } bind def\n"; |
| 861 | 858 |
os << "/cshow { 2 index 2 index moveto dup stringwidth pop\n"
|
| 862 | 859 |
<< " neg 2 div fosi .35 mul neg rmoveto show pop pop} def\n"; |
| 863 | 860 |
|
| 864 | 861 |
os << "\ngsave\n"; |
| 865 | 862 |
if(_scaleToA4) |
| 866 | 863 |
if(bb.height()>bb.width()) {
|
| 867 | 864 |
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.height(), |
| 868 | 865 |
(A4WIDTH-2*A4BORDER)/bb.width()); |
| 869 | 866 |
os << ((A4WIDTH -2*A4BORDER)-sc*bb.width())/2 + A4BORDER << ' ' |
| 870 | 867 |
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.height())/2 + A4BORDER |
| 871 | 868 |
<< " translate\n" |
| 872 | 869 |
<< sc << " dup scale\n" |
| 873 | 870 |
<< -bb.left() << ' ' << -bb.bottom() << " translate\n"; |
| 874 | 871 |
} |
| 875 | 872 |
else {
|
| 876 |
//\todo Verify centering |
|
| 877 | 873 |
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.width(), |
| 878 | 874 |
(A4WIDTH-2*A4BORDER)/bb.height()); |
| 879 | 875 |
os << ((A4WIDTH -2*A4BORDER)-sc*bb.height())/2 + A4BORDER << ' ' |
| 880 | 876 |
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.width())/2 + A4BORDER |
| 881 | 877 |
<< " translate\n" |
| 882 | 878 |
<< sc << " dup scale\n90 rotate\n" |
| 883 | 879 |
<< -bb.left() << ' ' << -bb.top() << " translate\n"; |
| 884 | 880 |
} |
| 885 | 881 |
else if(_scale!=1.0) os << _scale << " dup scale\n"; |
| 886 | 882 |
|
| 887 | 883 |
if(_showArcs) {
|
| 888 | 884 |
os << "%Arcs:\ngsave\n"; |
| 889 | 885 |
if(_enableParallel) {
|
| 890 | 886 |
std::vector<Arc> el; |
| 891 | 887 |
for(ArcIt e(g);e!=INVALID;++e) |
| 892 | 888 |
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0 |
| 893 | 889 |
&&g.source(e)!=g.target(e)) |
| 894 | 890 |
el.push_back(e); |
| 895 | 891 |
std::sort(el.begin(),el.end(),arcLess(g)); |
| 896 | 892 |
|
| 897 | 893 |
typename std::vector<Arc>::iterator j; |
| 898 | 894 |
for(typename std::vector<Arc>::iterator i=el.begin();i!=el.end();i=j) {
|
| 899 | 895 |
for(j=i+1;j!=el.end()&&isParallel(*i,*j);++j) ; |
| 900 | 896 |
|
| 901 | 897 |
double sw=0; |
| 902 | 898 |
for(typename std::vector<Arc>::iterator e=i;e!=j;++e) |
| 903 | 899 |
sw+=_arcWidths[*e]*_arcWidthScale+_parArcDist; |
| 904 | 900 |
sw-=_parArcDist; |
| 905 | 901 |
sw/=-2.0; |
| 906 | 902 |
dim2::Point<double> |
| 907 | 903 |
dvec(mycoords[g.target(*i)]-mycoords[g.source(*i)]); |
| 908 | 904 |
double l=std::sqrt(dvec.normSquare()); |
| 909 |
//\todo better 'epsilon' would be nice here. |
|
| 910 | 905 |
dim2::Point<double> d(dvec/std::max(l,EPSILON)); |
| 911 | 906 |
dim2::Point<double> m; |
| 912 | 907 |
// m=dim2::Point<double>(mycoords[g.target(*i)]+ |
| 913 | 908 |
// mycoords[g.source(*i)])/2.0; |
| 914 | 909 |
|
| 915 | 910 |
// m=dim2::Point<double>(mycoords[g.source(*i)])+ |
| 916 | 911 |
// dvec*(double(_nodeSizes[g.source(*i)])/ |
| 917 | 912 |
// (_nodeSizes[g.source(*i)]+_nodeSizes[g.target(*i)])); |
| 918 | 913 |
|
| 919 | 914 |
m=dim2::Point<double>(mycoords[g.source(*i)])+ |
| 920 | 915 |
d*(l+_nodeSizes[g.source(*i)]-_nodeSizes[g.target(*i)])/2.0; |
| 921 | 916 |
|
| 922 | 917 |
for(typename std::vector<Arc>::iterator e=i;e!=j;++e) {
|
| 923 | 918 |
sw+=_arcWidths[*e]*_arcWidthScale/2.0; |
| 924 | 919 |
dim2::Point<double> mm=m+rot90(d)*sw/.75; |
| 925 | 920 |
if(_drawArrows) {
|
| 926 | 921 |
int node_shape; |
| 927 | 922 |
dim2::Point<double> s=mycoords[g.source(*e)]; |
| 928 | 923 |
dim2::Point<double> t=mycoords[g.target(*e)]; |
| 929 | 924 |
double rn=_nodeSizes[g.target(*e)]*_nodeScale; |
| 930 | 925 |
node_shape=_nodeShapes[g.target(*e)]; |
| 931 | 926 |
dim2::Bezier3 bez(s,mm,mm,t); |
| 932 | 927 |
double t1=0,t2=1; |
| 933 | 928 |
for(int ii=0;ii<INTERPOL_PREC;++ii) |
| 934 | 929 |
if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) t2=(t1+t2)/2; |
| 935 | 930 |
else t1=(t1+t2)/2; |
| 936 | 931 |
dim2::Point<double> apoint=bez((t1+t2)/2); |
| 937 | 932 |
rn = _arrowLength+_arcWidths[*e]*_arcWidthScale; |
| 938 | 933 |
rn*=rn; |
| 939 | 934 |
t2=(t1+t2)/2;t1=0; |
| 940 | 935 |
for(int ii=0;ii<INTERPOL_PREC;++ii) |
| 941 | 936 |
if((bez((t1+t2)/2)-apoint).normSquare()>rn) t1=(t1+t2)/2; |
| 942 | 937 |
else t2=(t1+t2)/2; |
| 943 | 938 |
dim2::Point<double> linend=bez((t1+t2)/2); |
| 944 | 939 |
bez=bez.before((t1+t2)/2); |
| 945 | 940 |
// rn=_nodeSizes[g.source(*e)]*_nodeScale; |
| 946 | 941 |
// node_shape=_nodeShapes[g.source(*e)]; |
| 947 | 942 |
// t1=0;t2=1; |
| 948 | 943 |
// for(int i=0;i<INTERPOL_PREC;++i) |
| 949 | 944 |
// if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) |
| 950 | 945 |
// t1=(t1+t2)/2; |
| 951 | 946 |
// else t2=(t1+t2)/2; |
| 952 | 947 |
// bez=bez.after((t1+t2)/2); |
| 953 | 948 |
os << _arcWidths[*e]*_arcWidthScale << " setlinewidth " |
| 954 | 949 |
<< _arcColors[*e].red() << ' ' |
| 955 | 950 |
<< _arcColors[*e].green() << ' ' |
| 956 | 951 |
<< _arcColors[*e].blue() << " setrgbcolor newpath\n" |
| 957 | 952 |
<< bez.p1.x << ' ' << bez.p1.y << " moveto\n" |
| 958 | 953 |
<< bez.p2.x << ' ' << bez.p2.y << ' ' |
| 959 | 954 |
<< bez.p3.x << ' ' << bez.p3.y << ' ' |
| 960 | 955 |
<< bez.p4.x << ' ' << bez.p4.y << " curveto stroke\n"; |
| 961 | 956 |
dim2::Point<double> dd(rot90(linend-apoint)); |
| 962 | 957 |
dd*=(.5*_arcWidths[*e]*_arcWidthScale+_arrowWidth)/ |
| 963 | 958 |
std::sqrt(dd.normSquare()); |
| 964 | 959 |
os << "newpath " << psOut(apoint) << " moveto " |
| 965 | 960 |
<< psOut(linend+dd) << " lineto " |
| 966 | 961 |
<< psOut(linend-dd) << " lineto closepath fill\n"; |
| 967 | 962 |
} |
| 968 | 963 |
else {
|
| 969 | 964 |
os << mycoords[g.source(*e)].x << ' ' |
| 970 | 965 |
<< mycoords[g.source(*e)].y << ' ' |
| 971 | 966 |
<< mm.x << ' ' << mm.y << ' ' |
| 972 | 967 |
<< mycoords[g.target(*e)].x << ' ' |
| 973 | 968 |
<< mycoords[g.target(*e)].y << ' ' |
| 974 | 969 |
<< _arcColors[*e].red() << ' ' |
| 975 | 970 |
<< _arcColors[*e].green() << ' ' |
| 976 | 971 |
<< _arcColors[*e].blue() << ' ' |
| 977 | 972 |
<< _arcWidths[*e]*_arcWidthScale << " lb\n"; |
| 978 | 973 |
} |
| 979 | 974 |
sw+=_arcWidths[*e]*_arcWidthScale/2.0+_parArcDist; |
| 980 | 975 |
} |
| 981 | 976 |
} |
| 982 | 977 |
} |
| 983 | 978 |
else for(ArcIt e(g);e!=INVALID;++e) |
| 984 | 979 |
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0 |
| 985 | 980 |
&&g.source(e)!=g.target(e)) {
|
| 986 | 981 |
if(_drawArrows) {
|
| 987 | 982 |
dim2::Point<double> d(mycoords[g.target(e)]-mycoords[g.source(e)]); |
| 988 | 983 |
double rn=_nodeSizes[g.target(e)]*_nodeScale; |
| 989 | 984 |
int node_shape=_nodeShapes[g.target(e)]; |
| 990 | 985 |
double t1=0,t2=1; |
| 991 | 986 |
for(int i=0;i<INTERPOL_PREC;++i) |
| 992 | 987 |
if(isInsideNode((-(t1+t2)/2)*d,rn,node_shape)) t1=(t1+t2)/2; |
| 993 | 988 |
else t2=(t1+t2)/2; |
| 994 | 989 |
double l=std::sqrt(d.normSquare()); |
| 995 | 990 |
d/=l; |
| 996 | 991 |
|
| 997 | 992 |
os << l*(1-(t1+t2)/2) << ' ' |
| 998 | 993 |
<< _arcWidths[e]*_arcWidthScale << ' ' |
| 999 | 994 |
<< d.x << ' ' << d.y << ' ' |
| 1000 | 995 |
<< mycoords[g.source(e)].x << ' ' |
| 1001 | 996 |
<< mycoords[g.source(e)].y << ' ' |
| 1002 | 997 |
<< _arcColors[e].red() << ' ' |
| 1003 | 998 |
<< _arcColors[e].green() << ' ' |
| 1004 | 999 |
<< _arcColors[e].blue() << " arr\n"; |
| 1005 | 1000 |
} |
| 1006 | 1001 |
else os << mycoords[g.source(e)].x << ' ' |
| 1007 | 1002 |
<< mycoords[g.source(e)].y << ' ' |
| 1008 | 1003 |
<< mycoords[g.target(e)].x << ' ' |
| 1009 | 1004 |
<< mycoords[g.target(e)].y << ' ' |
| 1010 | 1005 |
<< _arcColors[e].red() << ' ' |
| 1011 | 1006 |
<< _arcColors[e].green() << ' ' |
| 1012 | 1007 |
<< _arcColors[e].blue() << ' ' |
| 1013 | 1008 |
<< _arcWidths[e]*_arcWidthScale << " l\n"; |
| 1014 | 1009 |
} |
| 1015 | 1010 |
os << "grestore\n"; |
| 1016 | 1011 |
} |
| 1017 | 1012 |
if(_showNodes) {
|
| 1018 | 1013 |
os << "%Nodes:\ngsave\n"; |
| 1019 | 1014 |
for(NodeIt n(g);n!=INVALID;++n) {
|
| 1020 | 1015 |
os << mycoords[n].x << ' ' << mycoords[n].y << ' ' |
| 1021 | 1016 |
<< _nodeSizes[n]*_nodeScale << ' ' |
| 1022 | 1017 |
<< _nodeColors[n].red() << ' ' |
| 1023 | 1018 |
<< _nodeColors[n].green() << ' ' |
| 1024 | 1019 |
<< _nodeColors[n].blue() << ' '; |
| 1025 | 1020 |
switch(_nodeShapes[n]) {
|
| 1026 | 1021 |
case CIRCLE: |
| 1027 | 1022 |
os<< "nc";break; |
| 1028 | 1023 |
case SQUARE: |
| 1029 | 1024 |
os<< "nsq";break; |
| 1030 | 1025 |
case DIAMOND: |
| 1031 | 1026 |
os<< "ndi";break; |
| 1032 | 1027 |
case MALE: |
| 1033 | 1028 |
os<< "nmale";break; |
| 1034 | 1029 |
case FEMALE: |
| 1035 | 1030 |
os<< "nfemale";break; |
| 1036 | 1031 |
} |
| 1037 | 1032 |
os<<'\n'; |
| 1038 | 1033 |
} |
| 1039 | 1034 |
os << "grestore\n"; |
| 1040 | 1035 |
} |
| 1041 | 1036 |
if(_showNodeText) {
|
| 1042 | 1037 |
os << "%Node texts:\ngsave\n"; |
| 1043 | 1038 |
os << "/fosi " << _nodeTextSize << " def\n"; |
| 1044 | 1039 |
os << "(Helvetica) findfont fosi scalefont setfont\n"; |
| 1045 | 1040 |
for(NodeIt n(g);n!=INVALID;++n) {
|
| 1046 | 1041 |
switch(_nodeTextColorType) {
|
| 1047 | 1042 |
case DIST_COL: |
| 1048 | 1043 |
os << psOut(distantColor(_nodeColors[n])) << " setrgbcolor\n"; |
| 1049 | 1044 |
break; |
| 1050 | 1045 |
case DIST_BW: |
| 1051 | 1046 |
os << psOut(distantBW(_nodeColors[n])) << " setrgbcolor\n"; |
| 1052 | 1047 |
break; |
| 1053 | 1048 |
case CUST_COL: |
| 1054 | 1049 |
os << psOut(distantColor(_nodeTextColors[n])) << " setrgbcolor\n"; |
| 1055 | 1050 |
break; |
| 1056 | 1051 |
default: |
| 1057 | 1052 |
os << "0 0 0 setrgbcolor\n"; |
| 1058 | 1053 |
} |
| 1059 | 1054 |
os << mycoords[n].x << ' ' << mycoords[n].y |
| 1060 | 1055 |
<< " (" << _nodeTexts[n] << ") cshow\n";
|
| 1061 | 1056 |
} |
| 1062 | 1057 |
os << "grestore\n"; |
| 1063 | 1058 |
} |
| 1064 | 1059 |
if(_showNodePsText) {
|
| 1065 | 1060 |
os << "%Node PS blocks:\ngsave\n"; |
| 1066 | 1061 |
for(NodeIt n(g);n!=INVALID;++n) |
| 1067 | 1062 |
os << mycoords[n].x << ' ' << mycoords[n].y |
| 1068 | 1063 |
<< " moveto\n" << _nodePsTexts[n] << "\n"; |
| 1069 | 1064 |
os << "grestore\n"; |
| 1070 | 1065 |
} |
| 1071 | 1066 |
|
| 1072 | 1067 |
os << "grestore\nshowpage\n"; |
| 1073 | 1068 |
|
| 1074 | 1069 |
//CleanUp: |
| 1075 | 1070 |
if(_pleaseRemoveOsStream) {delete &os;}
|
| 1076 | 1071 |
} |
| 1077 | 1072 |
|
| 1078 | 1073 |
///\name Aliases |
| 1079 | 1074 |
///These are just some aliases to other parameter setting functions. |
| 1080 | 1075 |
|
| 1081 | 1076 |
///@{
|
| 1082 | 1077 |
|
| 1083 | 1078 |
///An alias for arcWidths() |
| 1084 | 1079 |
template<class X> GraphToEps<ArcWidthsTraits<X> > edgeWidths(const X &x) |
| 1085 | 1080 |
{
|
| 1086 | 1081 |
return arcWidths(x); |
| 1087 | 1082 |
} |
| 1088 | 1083 |
|
| 1089 | 1084 |
///An alias for arcColors() |
| 1090 | 1085 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
| 1091 | 1086 |
edgeColors(const X &x) |
| 1092 | 1087 |
{
|
| 1093 | 1088 |
return arcColors(x); |
| 1094 | 1089 |
} |
| 1095 | 1090 |
|
| 1096 | 1091 |
///An alias for arcWidthScale() |
| 1097 | 1092 |
GraphToEps<T> &edgeWidthScale(double d) {return arcWidthScale(d);}
|
| 1098 | 1093 |
|
| 1099 | 1094 |
///An alias for autoArcWidthScale() |
| 1100 | 1095 |
GraphToEps<T> &autoEdgeWidthScale(bool b=true) |
| 1101 | 1096 |
{
|
| ... | ... |
@@ -312,388 +312,386 @@ |
| 312 | 312 |
///A general directed graph structure. |
| 313 | 313 |
|
| 314 | 314 |
///\ref ListDigraph is a simple and fast <em>directed graph</em> |
| 315 | 315 |
///implementation based on static linked lists that are stored in |
| 316 | 316 |
///\c std::vector structures. |
| 317 | 317 |
/// |
| 318 | 318 |
///It conforms to the \ref concepts::Digraph "Digraph concept" and it |
| 319 | 319 |
///also provides several useful additional functionalities. |
| 320 | 320 |
///Most of the member functions and nested classes are documented |
| 321 | 321 |
///only in the concept class. |
| 322 | 322 |
/// |
| 323 | 323 |
///An important extra feature of this digraph implementation is that |
| 324 | 324 |
///its maps are real \ref concepts::ReferenceMap "reference map"s. |
| 325 | 325 |
/// |
| 326 | 326 |
///\sa concepts::Digraph |
| 327 | 327 |
|
| 328 | 328 |
class ListDigraph : public ExtendedListDigraphBase {
|
| 329 | 329 |
private: |
| 330 | 330 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
| 331 | 331 |
|
| 332 | 332 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
| 333 | 333 |
/// |
| 334 | 334 |
ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {};
|
| 335 | 335 |
///\brief Assignment of ListDigraph to another one is \e not allowed. |
| 336 | 336 |
///Use copyDigraph() instead. |
| 337 | 337 |
|
| 338 | 338 |
///Assignment of ListDigraph to another one is \e not allowed. |
| 339 | 339 |
///Use copyDigraph() instead. |
| 340 | 340 |
void operator=(const ListDigraph &) {}
|
| 341 | 341 |
public: |
| 342 | 342 |
|
| 343 | 343 |
typedef ExtendedListDigraphBase Parent; |
| 344 | 344 |
|
| 345 | 345 |
/// Constructor |
| 346 | 346 |
|
| 347 | 347 |
/// Constructor. |
| 348 | 348 |
/// |
| 349 | 349 |
ListDigraph() {}
|
| 350 | 350 |
|
| 351 | 351 |
///Add a new node to the digraph. |
| 352 | 352 |
|
| 353 | 353 |
///Add a new node to the digraph. |
| 354 | 354 |
///\return the new node. |
| 355 | 355 |
Node addNode() { return Parent::addNode(); }
|
| 356 | 356 |
|
| 357 | 357 |
///Add a new arc to the digraph. |
| 358 | 358 |
|
| 359 | 359 |
///Add a new arc to the digraph with source node \c s |
| 360 | 360 |
///and target node \c t. |
| 361 | 361 |
///\return the new arc. |
| 362 | 362 |
Arc addArc(const Node& s, const Node& t) {
|
| 363 | 363 |
return Parent::addArc(s, t); |
| 364 | 364 |
} |
| 365 | 365 |
|
| 366 | 366 |
///\brief Erase a node from the digraph. |
| 367 | 367 |
/// |
| 368 | 368 |
///Erase a node from the digraph. |
| 369 | 369 |
/// |
| 370 | 370 |
void erase(const Node& n) { Parent::erase(n); }
|
| 371 | 371 |
|
| 372 | 372 |
///\brief Erase an arc from the digraph. |
| 373 | 373 |
/// |
| 374 | 374 |
///Erase an arc from the digraph. |
| 375 | 375 |
/// |
| 376 | 376 |
void erase(const Arc& a) { Parent::erase(a); }
|
| 377 | 377 |
|
| 378 | 378 |
/// Node validity check |
| 379 | 379 |
|
| 380 | 380 |
/// This function gives back true if the given node is valid, |
| 381 | 381 |
/// ie. it is a real node of the graph. |
| 382 | 382 |
/// |
| 383 | 383 |
/// \warning A Node pointing to a removed item |
| 384 | 384 |
/// could become valid again later if new nodes are |
| 385 | 385 |
/// added to the graph. |
| 386 | 386 |
bool valid(Node n) const { return Parent::valid(n); }
|
| 387 | 387 |
|
| 388 | 388 |
/// Arc validity check |
| 389 | 389 |
|
| 390 | 390 |
/// This function gives back true if the given arc is valid, |
| 391 | 391 |
/// ie. it is a real arc of the graph. |
| 392 | 392 |
/// |
| 393 | 393 |
/// \warning An Arc pointing to a removed item |
| 394 | 394 |
/// could become valid again later if new nodes are |
| 395 | 395 |
/// added to the graph. |
| 396 | 396 |
bool valid(Arc a) const { return Parent::valid(a); }
|
| 397 | 397 |
|
| 398 | 398 |
/// Change the target of \c a to \c n |
| 399 | 399 |
|
| 400 | 400 |
/// Change the target of \c a to \c n |
| 401 | 401 |
/// |
| 402 | 402 |
///\note The <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s referencing |
| 403 | 403 |
///the changed arc remain valid. However <tt>InArcIt</tt>s are |
| 404 | 404 |
///invalidated. |
| 405 | 405 |
/// |
| 406 | 406 |
///\warning This functionality cannot be used together with the Snapshot |
| 407 | 407 |
///feature. |
| 408 | 408 |
void changeTarget(Arc a, Node n) {
|
| 409 | 409 |
Parent::changeTarget(a,n); |
| 410 | 410 |
} |
| 411 | 411 |
/// Change the source of \c a to \c n |
| 412 | 412 |
|
| 413 | 413 |
/// Change the source of \c a to \c n |
| 414 | 414 |
/// |
| 415 | 415 |
///\note The <tt>InArcIt</tt>s referencing the changed arc remain |
| 416 | 416 |
///valid. However the <tt>ArcIt<tt>s and <tt>OutArcIt</tt>s are |
| 417 | 417 |
///invalidated. |
| 418 | 418 |
/// |
| 419 | 419 |
///\warning This functionality cannot be used together with the Snapshot |
| 420 | 420 |
///feature. |
| 421 | 421 |
void changeSource(Arc a, Node n) {
|
| 422 | 422 |
Parent::changeSource(a,n); |
| 423 | 423 |
} |
| 424 | 424 |
|
| 425 | 425 |
/// Invert the direction of an arc. |
| 426 | 426 |
|
| 427 | 427 |
///\note The <tt>ArcIt</tt>s referencing the changed arc remain |
| 428 | 428 |
///valid. However <tt>OutArcIt</tt>s and <tt>InArcIt</tt>s are |
| 429 | 429 |
///invalidated. |
| 430 | 430 |
/// |
| 431 | 431 |
///\warning This functionality cannot be used together with the Snapshot |
| 432 | 432 |
///feature. |
| 433 | 433 |
void reverseArc(Arc e) {
|
| 434 | 434 |
Node t=target(e); |
| 435 | 435 |
changeTarget(e,source(e)); |
| 436 | 436 |
changeSource(e,t); |
| 437 | 437 |
} |
| 438 | 438 |
|
| 439 | 439 |
/// Reserve memory for nodes. |
| 440 | 440 |
|
| 441 | 441 |
/// Using this function it is possible to avoid the superfluous memory |
| 442 | 442 |
/// allocation: if you know that the digraph you want to build will |
| 443 | 443 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
| 444 | 444 |
/// then it is worth reserving space for this amount before starting |
| 445 | 445 |
/// to build the digraph. |
| 446 | 446 |
/// \sa reserveArc |
| 447 | 447 |
void reserveNode(int n) { nodes.reserve(n); };
|
| 448 | 448 |
|
| 449 | 449 |
/// Reserve memory for arcs. |
| 450 | 450 |
|
| 451 | 451 |
/// Using this function it is possible to avoid the superfluous memory |
| 452 | 452 |
/// allocation: if you know that the digraph you want to build will |
| 453 | 453 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
| 454 | 454 |
/// then it is worth reserving space for this amount before starting |
| 455 | 455 |
/// to build the digraph. |
| 456 | 456 |
/// \sa reserveNode |
| 457 | 457 |
void reserveArc(int m) { arcs.reserve(m); };
|
| 458 | 458 |
|
| 459 | 459 |
///Contract two nodes. |
| 460 | 460 |
|
| 461 | 461 |
///This function contracts two nodes. |
| 462 | 462 |
///Node \p b will be removed but instead of deleting |
| 463 | 463 |
///incident arcs, they will be joined to \p a. |
| 464 | 464 |
///The last parameter \p r controls whether to remove loops. \c true |
| 465 | 465 |
///means that loops will be removed. |
| 466 | 466 |
/// |
| 467 | 467 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
| 468 | 468 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s |
| 469 | 469 |
///may be invalidated. |
| 470 | 470 |
/// |
| 471 | 471 |
///\warning This functionality cannot be used together with the Snapshot |
| 472 | 472 |
///feature. |
| 473 | 473 |
void contract(Node a, Node b, bool r = true) |
| 474 | 474 |
{
|
| 475 | 475 |
for(OutArcIt e(*this,b);e!=INVALID;) {
|
| 476 | 476 |
OutArcIt f=e; |
| 477 | 477 |
++f; |
| 478 | 478 |
if(r && target(e)==a) erase(e); |
| 479 | 479 |
else changeSource(e,a); |
| 480 | 480 |
e=f; |
| 481 | 481 |
} |
| 482 | 482 |
for(InArcIt e(*this,b);e!=INVALID;) {
|
| 483 | 483 |
InArcIt f=e; |
| 484 | 484 |
++f; |
| 485 | 485 |
if(r && source(e)==a) erase(e); |
| 486 | 486 |
else changeTarget(e,a); |
| 487 | 487 |
e=f; |
| 488 | 488 |
} |
| 489 | 489 |
erase(b); |
| 490 | 490 |
} |
| 491 | 491 |
|
| 492 | 492 |
///Split a node. |
| 493 | 493 |
|
| 494 | 494 |
///This function splits a node. First a new node is added to the digraph, |
| 495 | 495 |
///then the source of each outgoing arc of \c n is moved to this new node. |
| 496 | 496 |
///If \c connect is \c true (this is the default value), then a new arc |
| 497 | 497 |
///from \c n to the newly created node is also added. |
| 498 | 498 |
///\return The newly created node. |
| 499 | 499 |
/// |
| 500 | 500 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
| 501 | 501 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s may |
| 502 | 502 |
///be invalidated. |
| 503 | 503 |
/// |
| 504 |
///\warning This functionality cannot be used |
|
| 504 |
///\warning This functionality cannot be used in conjunction with the |
|
| 505 | 505 |
///Snapshot feature. |
| 506 |
/// |
|
| 507 |
///\todo It could be implemented in a bit faster way. |
|
| 508 | 506 |
Node split(Node n, bool connect = true) {
|
| 509 | 507 |
Node b = addNode(); |
| 510 | 508 |
for(OutArcIt e(*this,n);e!=INVALID;) {
|
| 511 | 509 |
OutArcIt f=e; |
| 512 | 510 |
++f; |
| 513 | 511 |
changeSource(e,b); |
| 514 | 512 |
e=f; |
| 515 | 513 |
} |
| 516 | 514 |
if (connect) addArc(n,b); |
| 517 | 515 |
return b; |
| 518 | 516 |
} |
| 519 | 517 |
|
| 520 | 518 |
///Split an arc. |
| 521 | 519 |
|
| 522 | 520 |
///This function splits an arc. First a new node \c b is added to |
| 523 | 521 |
///the digraph, then the original arc is re-targeted to \c |
| 524 | 522 |
///b. Finally an arc from \c b to the original target is added. |
| 525 | 523 |
/// |
| 526 | 524 |
///\return The newly created node. |
| 527 | 525 |
/// |
| 528 | 526 |
///\warning This functionality cannot be used together with the |
| 529 | 527 |
///Snapshot feature. |
| 530 | 528 |
Node split(Arc e) {
|
| 531 | 529 |
Node b = addNode(); |
| 532 | 530 |
addArc(b,target(e)); |
| 533 | 531 |
changeTarget(e,b); |
| 534 | 532 |
return b; |
| 535 | 533 |
} |
| 536 | 534 |
|
| 537 | 535 |
/// \brief Class to make a snapshot of the digraph and restore |
| 538 | 536 |
/// it later. |
| 539 | 537 |
/// |
| 540 | 538 |
/// Class to make a snapshot of the digraph and restore it later. |
| 541 | 539 |
/// |
| 542 | 540 |
/// The newly added nodes and arcs can be removed using the |
| 543 | 541 |
/// restore() function. |
| 544 | 542 |
/// |
| 545 | 543 |
/// \warning Arc and node deletions and other modifications (e.g. |
| 546 | 544 |
/// contracting, splitting, reversing arcs or nodes) cannot be |
| 547 | 545 |
/// restored. These events invalidate the snapshot. |
| 548 | 546 |
class Snapshot {
|
| 549 | 547 |
protected: |
| 550 | 548 |
|
| 551 | 549 |
typedef Parent::NodeNotifier NodeNotifier; |
| 552 | 550 |
|
| 553 | 551 |
class NodeObserverProxy : public NodeNotifier::ObserverBase {
|
| 554 | 552 |
public: |
| 555 | 553 |
|
| 556 | 554 |
NodeObserverProxy(Snapshot& _snapshot) |
| 557 | 555 |
: snapshot(_snapshot) {}
|
| 558 | 556 |
|
| 559 | 557 |
using NodeNotifier::ObserverBase::attach; |
| 560 | 558 |
using NodeNotifier::ObserverBase::detach; |
| 561 | 559 |
using NodeNotifier::ObserverBase::attached; |
| 562 | 560 |
|
| 563 | 561 |
protected: |
| 564 | 562 |
|
| 565 | 563 |
virtual void add(const Node& node) {
|
| 566 | 564 |
snapshot.addNode(node); |
| 567 | 565 |
} |
| 568 | 566 |
virtual void add(const std::vector<Node>& nodes) {
|
| 569 | 567 |
for (int i = nodes.size() - 1; i >= 0; ++i) {
|
| 570 | 568 |
snapshot.addNode(nodes[i]); |
| 571 | 569 |
} |
| 572 | 570 |
} |
| 573 | 571 |
virtual void erase(const Node& node) {
|
| 574 | 572 |
snapshot.eraseNode(node); |
| 575 | 573 |
} |
| 576 | 574 |
virtual void erase(const std::vector<Node>& nodes) {
|
| 577 | 575 |
for (int i = 0; i < int(nodes.size()); ++i) {
|
| 578 | 576 |
snapshot.eraseNode(nodes[i]); |
| 579 | 577 |
} |
| 580 | 578 |
} |
| 581 | 579 |
virtual void build() {
|
| 582 | 580 |
Node node; |
| 583 | 581 |
std::vector<Node> nodes; |
| 584 | 582 |
for (notifier()->first(node); node != INVALID; |
| 585 | 583 |
notifier()->next(node)) {
|
| 586 | 584 |
nodes.push_back(node); |
| 587 | 585 |
} |
| 588 | 586 |
for (int i = nodes.size() - 1; i >= 0; --i) {
|
| 589 | 587 |
snapshot.addNode(nodes[i]); |
| 590 | 588 |
} |
| 591 | 589 |
} |
| 592 | 590 |
virtual void clear() {
|
| 593 | 591 |
Node node; |
| 594 | 592 |
for (notifier()->first(node); node != INVALID; |
| 595 | 593 |
notifier()->next(node)) {
|
| 596 | 594 |
snapshot.eraseNode(node); |
| 597 | 595 |
} |
| 598 | 596 |
} |
| 599 | 597 |
|
| 600 | 598 |
Snapshot& snapshot; |
| 601 | 599 |
}; |
| 602 | 600 |
|
| 603 | 601 |
class ArcObserverProxy : public ArcNotifier::ObserverBase {
|
| 604 | 602 |
public: |
| 605 | 603 |
|
| 606 | 604 |
ArcObserverProxy(Snapshot& _snapshot) |
| 607 | 605 |
: snapshot(_snapshot) {}
|
| 608 | 606 |
|
| 609 | 607 |
using ArcNotifier::ObserverBase::attach; |
| 610 | 608 |
using ArcNotifier::ObserverBase::detach; |
| 611 | 609 |
using ArcNotifier::ObserverBase::attached; |
| 612 | 610 |
|
| 613 | 611 |
protected: |
| 614 | 612 |
|
| 615 | 613 |
virtual void add(const Arc& arc) {
|
| 616 | 614 |
snapshot.addArc(arc); |
| 617 | 615 |
} |
| 618 | 616 |
virtual void add(const std::vector<Arc>& arcs) {
|
| 619 | 617 |
for (int i = arcs.size() - 1; i >= 0; ++i) {
|
| 620 | 618 |
snapshot.addArc(arcs[i]); |
| 621 | 619 |
} |
| 622 | 620 |
} |
| 623 | 621 |
virtual void erase(const Arc& arc) {
|
| 624 | 622 |
snapshot.eraseArc(arc); |
| 625 | 623 |
} |
| 626 | 624 |
virtual void erase(const std::vector<Arc>& arcs) {
|
| 627 | 625 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 628 | 626 |
snapshot.eraseArc(arcs[i]); |
| 629 | 627 |
} |
| 630 | 628 |
} |
| 631 | 629 |
virtual void build() {
|
| 632 | 630 |
Arc arc; |
| 633 | 631 |
std::vector<Arc> arcs; |
| 634 | 632 |
for (notifier()->first(arc); arc != INVALID; |
| 635 | 633 |
notifier()->next(arc)) {
|
| 636 | 634 |
arcs.push_back(arc); |
| 637 | 635 |
} |
| 638 | 636 |
for (int i = arcs.size() - 1; i >= 0; --i) {
|
| 639 | 637 |
snapshot.addArc(arcs[i]); |
| 640 | 638 |
} |
| 641 | 639 |
} |
| 642 | 640 |
virtual void clear() {
|
| 643 | 641 |
Arc arc; |
| 644 | 642 |
for (notifier()->first(arc); arc != INVALID; |
| 645 | 643 |
notifier()->next(arc)) {
|
| 646 | 644 |
snapshot.eraseArc(arc); |
| 647 | 645 |
} |
| 648 | 646 |
} |
| 649 | 647 |
|
| 650 | 648 |
Snapshot& snapshot; |
| 651 | 649 |
}; |
| 652 | 650 |
|
| 653 | 651 |
ListDigraph *digraph; |
| 654 | 652 |
|
| 655 | 653 |
NodeObserverProxy node_observer_proxy; |
| 656 | 654 |
ArcObserverProxy arc_observer_proxy; |
| 657 | 655 |
|
| 658 | 656 |
std::list<Node> added_nodes; |
| 659 | 657 |
std::list<Arc> added_arcs; |
| 660 | 658 |
|
| 661 | 659 |
|
| 662 | 660 |
void addNode(const Node& node) {
|
| 663 | 661 |
added_nodes.push_front(node); |
| 664 | 662 |
} |
| 665 | 663 |
void eraseNode(const Node& node) {
|
| 666 | 664 |
std::list<Node>::iterator it = |
| 667 | 665 |
std::find(added_nodes.begin(), added_nodes.end(), node); |
| 668 | 666 |
if (it == added_nodes.end()) {
|
| 669 | 667 |
clear(); |
| 670 | 668 |
arc_observer_proxy.detach(); |
| 671 | 669 |
throw NodeNotifier::ImmediateDetach(); |
| 672 | 670 |
} else {
|
| 673 | 671 |
added_nodes.erase(it); |
| 674 | 672 |
} |
| 675 | 673 |
} |
| 676 | 674 |
|
| 677 | 675 |
void addArc(const Arc& arc) {
|
| 678 | 676 |
added_arcs.push_front(arc); |
| 679 | 677 |
} |
| 680 | 678 |
void eraseArc(const Arc& arc) {
|
| 681 | 679 |
std::list<Arc>::iterator it = |
| 682 | 680 |
std::find(added_arcs.begin(), added_arcs.end(), arc); |
| 683 | 681 |
if (it == added_arcs.end()) {
|
| 684 | 682 |
clear(); |
| 685 | 683 |
node_observer_proxy.detach(); |
| 686 | 684 |
throw ArcNotifier::ImmediateDetach(); |
| 687 | 685 |
} else {
|
| 688 | 686 |
added_arcs.erase(it); |
| 689 | 687 |
} |
| 690 | 688 |
} |
| 691 | 689 |
|
| 692 | 690 |
void attach(ListDigraph &_digraph) {
|
| 693 | 691 |
digraph = &_digraph; |
| 694 | 692 |
node_observer_proxy.attach(digraph->notifier(Node())); |
| 695 | 693 |
arc_observer_proxy.attach(digraph->notifier(Arc())); |
| 696 | 694 |
} |
| 697 | 695 |
|
| 698 | 696 |
void detach() {
|
| 699 | 697 |
node_observer_proxy.detach(); |
| ... | ... |
@@ -295,442 +295,438 @@ |
| 295 | 295 |
|
| 296 | 296 |
public: |
| 297 | 297 |
|
| 298 | 298 |
///\e |
| 299 | 299 |
Reference operator[](const Key &k) {
|
| 300 | 300 |
return _vector[k]; |
| 301 | 301 |
} |
| 302 | 302 |
|
| 303 | 303 |
///\e |
| 304 | 304 |
ConstReference operator[](const Key &k) const {
|
| 305 | 305 |
return _vector[k]; |
| 306 | 306 |
} |
| 307 | 307 |
|
| 308 | 308 |
///\e |
| 309 | 309 |
void set(const Key &k, const Value &v) {
|
| 310 | 310 |
_vector[k] = v; |
| 311 | 311 |
} |
| 312 | 312 |
}; |
| 313 | 313 |
|
| 314 | 314 |
/// Returns a \ref RangeMap class |
| 315 | 315 |
|
| 316 | 316 |
/// This function just returns a \ref RangeMap class. |
| 317 | 317 |
/// \relates RangeMap |
| 318 | 318 |
template<typename V> |
| 319 | 319 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
|
| 320 | 320 |
return RangeMap<V>(size, value); |
| 321 | 321 |
} |
| 322 | 322 |
|
| 323 | 323 |
/// \brief Returns a \ref RangeMap class created from an appropriate |
| 324 | 324 |
/// \c std::vector |
| 325 | 325 |
|
| 326 | 326 |
/// This function just returns a \ref RangeMap class created from an |
| 327 | 327 |
/// appropriate \c std::vector. |
| 328 | 328 |
/// \relates RangeMap |
| 329 | 329 |
template<typename V> |
| 330 | 330 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
|
| 331 | 331 |
return RangeMap<V>(vector); |
| 332 | 332 |
} |
| 333 | 333 |
|
| 334 | 334 |
|
| 335 | 335 |
/// Map type based on \c std::map |
| 336 | 336 |
|
| 337 | 337 |
/// This map is essentially a wrapper for \c std::map with addition |
| 338 | 338 |
/// that you can specify a default value for the keys that are not |
| 339 | 339 |
/// stored actually. This value can be different from the default |
| 340 | 340 |
/// contructed value (i.e. \c %Value()). |
| 341 | 341 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
| 342 | 342 |
/// concept. |
| 343 | 343 |
/// |
| 344 | 344 |
/// This map is useful if a default value should be assigned to most of |
| 345 | 345 |
/// the keys and different values should be assigned only to a few |
| 346 | 346 |
/// keys (i.e. the map is "sparse"). |
| 347 | 347 |
/// The name of this type also refers to this important usage. |
| 348 | 348 |
/// |
| 349 | 349 |
/// Apart form that this map can be used in many other cases since it |
| 350 | 350 |
/// is based on \c std::map, which is a general associative container. |
| 351 | 351 |
/// However keep in mind that it is usually not as efficient as other |
| 352 | 352 |
/// maps. |
| 353 | 353 |
/// |
| 354 | 354 |
/// The simplest way of using this map is through the sparseMap() |
| 355 | 355 |
/// function. |
| 356 | 356 |
template <typename K, typename V, typename Compare = std::less<K> > |
| 357 | 357 |
class SparseMap : public MapBase<K, V> {
|
| 358 | 358 |
template <typename K1, typename V1, typename C1> |
| 359 | 359 |
friend class SparseMap; |
| 360 | 360 |
public: |
| 361 | 361 |
|
| 362 | 362 |
typedef MapBase<K, V> Parent; |
| 363 | 363 |
/// Key type |
| 364 | 364 |
typedef typename Parent::Key Key; |
| 365 | 365 |
/// Value type |
| 366 | 366 |
typedef typename Parent::Value Value; |
| 367 | 367 |
/// Reference type |
| 368 | 368 |
typedef Value& Reference; |
| 369 | 369 |
/// Const reference type |
| 370 | 370 |
typedef const Value& ConstReference; |
| 371 | 371 |
|
| 372 | 372 |
typedef True ReferenceMapTag; |
| 373 | 373 |
|
| 374 | 374 |
private: |
| 375 | 375 |
|
| 376 | 376 |
typedef std::map<K, V, Compare> Map; |
| 377 | 377 |
Map _map; |
| 378 | 378 |
Value _value; |
| 379 | 379 |
|
| 380 | 380 |
public: |
| 381 | 381 |
|
| 382 | 382 |
/// \brief Constructor with specified default value. |
| 383 | 383 |
SparseMap(const Value &value = Value()) : _value(value) {}
|
| 384 | 384 |
/// \brief Constructs the map from an appropriate \c std::map, and |
| 385 | 385 |
/// explicitly specifies a default value. |
| 386 | 386 |
template <typename V1, typename Comp1> |
| 387 | 387 |
SparseMap(const std::map<Key, V1, Comp1> &map, |
| 388 | 388 |
const Value &value = Value()) |
| 389 | 389 |
: _map(map.begin(), map.end()), _value(value) {}
|
| 390 | 390 |
|
| 391 | 391 |
/// \brief Constructs the map from another \ref SparseMap. |
| 392 | 392 |
template<typename V1, typename Comp1> |
| 393 | 393 |
SparseMap(const SparseMap<Key, V1, Comp1> &c) |
| 394 | 394 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {}
|
| 395 | 395 |
|
| 396 | 396 |
private: |
| 397 | 397 |
|
| 398 | 398 |
SparseMap& operator=(const SparseMap&); |
| 399 | 399 |
|
| 400 | 400 |
public: |
| 401 | 401 |
|
| 402 | 402 |
///\e |
| 403 | 403 |
Reference operator[](const Key &k) {
|
| 404 | 404 |
typename Map::iterator it = _map.lower_bound(k); |
| 405 | 405 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
| 406 | 406 |
return it->second; |
| 407 | 407 |
else |
| 408 | 408 |
return _map.insert(it, std::make_pair(k, _value))->second; |
| 409 | 409 |
} |
| 410 | 410 |
|
| 411 | 411 |
///\e |
| 412 | 412 |
ConstReference operator[](const Key &k) const {
|
| 413 | 413 |
typename Map::const_iterator it = _map.find(k); |
| 414 | 414 |
if (it != _map.end()) |
| 415 | 415 |
return it->second; |
| 416 | 416 |
else |
| 417 | 417 |
return _value; |
| 418 | 418 |
} |
| 419 | 419 |
|
| 420 | 420 |
///\e |
| 421 | 421 |
void set(const Key &k, const Value &v) {
|
| 422 | 422 |
typename Map::iterator it = _map.lower_bound(k); |
| 423 | 423 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
| 424 | 424 |
it->second = v; |
| 425 | 425 |
else |
| 426 | 426 |
_map.insert(it, std::make_pair(k, v)); |
| 427 | 427 |
} |
| 428 | 428 |
|
| 429 | 429 |
///\e |
| 430 | 430 |
void setAll(const Value &v) {
|
| 431 | 431 |
_value = v; |
| 432 | 432 |
_map.clear(); |
| 433 | 433 |
} |
| 434 | 434 |
}; |
| 435 | 435 |
|
| 436 | 436 |
/// Returns a \ref SparseMap class |
| 437 | 437 |
|
| 438 | 438 |
/// This function just returns a \ref SparseMap class with specified |
| 439 | 439 |
/// default value. |
| 440 | 440 |
/// \relates SparseMap |
| 441 | 441 |
template<typename K, typename V, typename Compare> |
| 442 | 442 |
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
|
| 443 | 443 |
return SparseMap<K, V, Compare>(value); |
| 444 | 444 |
} |
| 445 | 445 |
|
| 446 | 446 |
template<typename K, typename V> |
| 447 | 447 |
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
|
| 448 | 448 |
return SparseMap<K, V, std::less<K> >(value); |
| 449 | 449 |
} |
| 450 | 450 |
|
| 451 | 451 |
/// \brief Returns a \ref SparseMap class created from an appropriate |
| 452 | 452 |
/// \c std::map |
| 453 | 453 |
|
| 454 | 454 |
/// This function just returns a \ref SparseMap class created from an |
| 455 | 455 |
/// appropriate \c std::map. |
| 456 | 456 |
/// \relates SparseMap |
| 457 | 457 |
template<typename K, typename V, typename Compare> |
| 458 | 458 |
inline SparseMap<K, V, Compare> |
| 459 | 459 |
sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
| 460 | 460 |
{
|
| 461 | 461 |
return SparseMap<K, V, Compare>(map, value); |
| 462 | 462 |
} |
| 463 | 463 |
|
| 464 | 464 |
/// @} |
| 465 | 465 |
|
| 466 | 466 |
/// \addtogroup map_adaptors |
| 467 | 467 |
/// @{
|
| 468 | 468 |
|
| 469 | 469 |
/// Composition of two maps |
| 470 | 470 |
|
| 471 | 471 |
/// This \ref concepts::ReadMap "read-only map" returns the |
| 472 | 472 |
/// composition of two given maps. That is to say, if \c m1 is of |
| 473 | 473 |
/// type \c M1 and \c m2 is of \c M2, then for |
| 474 | 474 |
/// \code |
| 475 | 475 |
/// ComposeMap<M1, M2> cm(m1,m2); |
| 476 | 476 |
/// \endcode |
| 477 | 477 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
| 478 | 478 |
/// |
| 479 | 479 |
/// The \c Key type of the map is inherited from \c M2 and the |
| 480 | 480 |
/// \c Value type is from \c M1. |
| 481 | 481 |
/// \c M2::Value must be convertible to \c M1::Key. |
| 482 | 482 |
/// |
| 483 | 483 |
/// The simplest way of using this map is through the composeMap() |
| 484 | 484 |
/// function. |
| 485 | 485 |
/// |
| 486 | 486 |
/// \sa CombineMap |
| 487 |
/// |
|
| 488 |
/// \todo Check the requirements. |
|
| 489 | 487 |
template <typename M1, typename M2> |
| 490 | 488 |
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
|
| 491 | 489 |
const M1 &_m1; |
| 492 | 490 |
const M2 &_m2; |
| 493 | 491 |
public: |
| 494 | 492 |
typedef MapBase<typename M2::Key, typename M1::Value> Parent; |
| 495 | 493 |
typedef typename Parent::Key Key; |
| 496 | 494 |
typedef typename Parent::Value Value; |
| 497 | 495 |
|
| 498 | 496 |
/// Constructor |
| 499 | 497 |
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 500 | 498 |
|
| 501 | 499 |
/// \e |
| 502 | 500 |
typename MapTraits<M1>::ConstReturnValue |
| 503 | 501 |
operator[](const Key &k) const { return _m1[_m2[k]]; }
|
| 504 | 502 |
}; |
| 505 | 503 |
|
| 506 | 504 |
/// Returns a \ref ComposeMap class |
| 507 | 505 |
|
| 508 | 506 |
/// This function just returns a \ref ComposeMap class. |
| 509 | 507 |
/// |
| 510 | 508 |
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
| 511 | 509 |
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
| 512 | 510 |
/// will be equal to <tt>m1[m2[x]]</tt>. |
| 513 | 511 |
/// |
| 514 | 512 |
/// \relates ComposeMap |
| 515 | 513 |
template <typename M1, typename M2> |
| 516 | 514 |
inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
|
| 517 | 515 |
return ComposeMap<M1, M2>(m1, m2); |
| 518 | 516 |
} |
| 519 | 517 |
|
| 520 | 518 |
|
| 521 | 519 |
/// Combination of two maps using an STL (binary) functor. |
| 522 | 520 |
|
| 523 | 521 |
/// This \ref concepts::ReadMap "read-only map" takes two maps and a |
| 524 | 522 |
/// binary functor and returns the combination of the two given maps |
| 525 | 523 |
/// using the functor. |
| 526 | 524 |
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
| 527 | 525 |
/// and \c f is of \c F, then for |
| 528 | 526 |
/// \code |
| 529 | 527 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
| 530 | 528 |
/// \endcode |
| 531 | 529 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
| 532 | 530 |
/// |
| 533 | 531 |
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
| 534 | 532 |
/// must be convertible to \c M2::Key) and the \c Value type is \c V. |
| 535 | 533 |
/// \c M2::Value and \c M1::Value must be convertible to the |
| 536 | 534 |
/// corresponding input parameter of \c F and the return type of \c F |
| 537 | 535 |
/// must be convertible to \c V. |
| 538 | 536 |
/// |
| 539 | 537 |
/// The simplest way of using this map is through the combineMap() |
| 540 | 538 |
/// function. |
| 541 | 539 |
/// |
| 542 | 540 |
/// \sa ComposeMap |
| 543 |
/// |
|
| 544 |
/// \todo Check the requirements. |
|
| 545 | 541 |
template<typename M1, typename M2, typename F, |
| 546 | 542 |
typename V = typename F::result_type> |
| 547 | 543 |
class CombineMap : public MapBase<typename M1::Key, V> {
|
| 548 | 544 |
const M1 &_m1; |
| 549 | 545 |
const M2 &_m2; |
| 550 | 546 |
F _f; |
| 551 | 547 |
public: |
| 552 | 548 |
typedef MapBase<typename M1::Key, V> Parent; |
| 553 | 549 |
typedef typename Parent::Key Key; |
| 554 | 550 |
typedef typename Parent::Value Value; |
| 555 | 551 |
|
| 556 | 552 |
/// Constructor |
| 557 | 553 |
CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
| 558 | 554 |
: _m1(m1), _m2(m2), _f(f) {}
|
| 559 | 555 |
/// \e |
| 560 | 556 |
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
|
| 561 | 557 |
}; |
| 562 | 558 |
|
| 563 | 559 |
/// Returns a \ref CombineMap class |
| 564 | 560 |
|
| 565 | 561 |
/// This function just returns a \ref CombineMap class. |
| 566 | 562 |
/// |
| 567 | 563 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
| 568 | 564 |
/// values, then |
| 569 | 565 |
/// \code |
| 570 | 566 |
/// combineMap(m1,m2,std::plus<double>()) |
| 571 | 567 |
/// \endcode |
| 572 | 568 |
/// is equivalent to |
| 573 | 569 |
/// \code |
| 574 | 570 |
/// addMap(m1,m2) |
| 575 | 571 |
/// \endcode |
| 576 | 572 |
/// |
| 577 | 573 |
/// This function is specialized for adaptable binary function |
| 578 | 574 |
/// classes and C++ functions. |
| 579 | 575 |
/// |
| 580 | 576 |
/// \relates CombineMap |
| 581 | 577 |
template<typename M1, typename M2, typename F, typename V> |
| 582 | 578 |
inline CombineMap<M1, M2, F, V> |
| 583 | 579 |
combineMap(const M1 &m1, const M2 &m2, const F &f) {
|
| 584 | 580 |
return CombineMap<M1, M2, F, V>(m1,m2,f); |
| 585 | 581 |
} |
| 586 | 582 |
|
| 587 | 583 |
template<typename M1, typename M2, typename F> |
| 588 | 584 |
inline CombineMap<M1, M2, F, typename F::result_type> |
| 589 | 585 |
combineMap(const M1 &m1, const M2 &m2, const F &f) {
|
| 590 | 586 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
| 591 | 587 |
} |
| 592 | 588 |
|
| 593 | 589 |
template<typename M1, typename M2, typename K1, typename K2, typename V> |
| 594 | 590 |
inline CombineMap<M1, M2, V (*)(K1, K2), V> |
| 595 | 591 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
|
| 596 | 592 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
| 597 | 593 |
} |
| 598 | 594 |
|
| 599 | 595 |
|
| 600 | 596 |
/// Converts an STL style (unary) functor to a map |
| 601 | 597 |
|
| 602 | 598 |
/// This \ref concepts::ReadMap "read-only map" returns the value |
| 603 | 599 |
/// of a given functor. Actually, it just wraps the functor and |
| 604 | 600 |
/// provides the \c Key and \c Value typedefs. |
| 605 | 601 |
/// |
| 606 | 602 |
/// Template parameters \c K and \c V will become its \c Key and |
| 607 | 603 |
/// \c Value. In most cases they have to be given explicitly because |
| 608 | 604 |
/// a functor typically does not provide \c argument_type and |
| 609 | 605 |
/// \c result_type typedefs. |
| 610 | 606 |
/// Parameter \c F is the type of the used functor. |
| 611 | 607 |
/// |
| 612 | 608 |
/// The simplest way of using this map is through the functorToMap() |
| 613 | 609 |
/// function. |
| 614 | 610 |
/// |
| 615 | 611 |
/// \sa MapToFunctor |
| 616 | 612 |
template<typename F, |
| 617 | 613 |
typename K = typename F::argument_type, |
| 618 | 614 |
typename V = typename F::result_type> |
| 619 | 615 |
class FunctorToMap : public MapBase<K, V> {
|
| 620 | 616 |
F _f; |
| 621 | 617 |
public: |
| 622 | 618 |
typedef MapBase<K, V> Parent; |
| 623 | 619 |
typedef typename Parent::Key Key; |
| 624 | 620 |
typedef typename Parent::Value Value; |
| 625 | 621 |
|
| 626 | 622 |
/// Constructor |
| 627 | 623 |
FunctorToMap(const F &f = F()) : _f(f) {}
|
| 628 | 624 |
/// \e |
| 629 | 625 |
Value operator[](const Key &k) const { return _f(k); }
|
| 630 | 626 |
}; |
| 631 | 627 |
|
| 632 | 628 |
/// Returns a \ref FunctorToMap class |
| 633 | 629 |
|
| 634 | 630 |
/// This function just returns a \ref FunctorToMap class. |
| 635 | 631 |
/// |
| 636 | 632 |
/// This function is specialized for adaptable binary function |
| 637 | 633 |
/// classes and C++ functions. |
| 638 | 634 |
/// |
| 639 | 635 |
/// \relates FunctorToMap |
| 640 | 636 |
template<typename K, typename V, typename F> |
| 641 | 637 |
inline FunctorToMap<F, K, V> functorToMap(const F &f) {
|
| 642 | 638 |
return FunctorToMap<F, K, V>(f); |
| 643 | 639 |
} |
| 644 | 640 |
|
| 645 | 641 |
template <typename F> |
| 646 | 642 |
inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
| 647 | 643 |
functorToMap(const F &f) |
| 648 | 644 |
{
|
| 649 | 645 |
return FunctorToMap<F, typename F::argument_type, |
| 650 | 646 |
typename F::result_type>(f); |
| 651 | 647 |
} |
| 652 | 648 |
|
| 653 | 649 |
template <typename K, typename V> |
| 654 | 650 |
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
|
| 655 | 651 |
return FunctorToMap<V (*)(K), K, V>(f); |
| 656 | 652 |
} |
| 657 | 653 |
|
| 658 | 654 |
|
| 659 | 655 |
/// Converts a map to an STL style (unary) functor |
| 660 | 656 |
|
| 661 | 657 |
/// This class converts a map to an STL style (unary) functor. |
| 662 | 658 |
/// That is it provides an <tt>operator()</tt> to read its values. |
| 663 | 659 |
/// |
| 664 | 660 |
/// For the sake of convenience it also works as a usual |
| 665 | 661 |
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
| 666 | 662 |
/// and the \c Key and \c Value typedefs also exist. |
| 667 | 663 |
/// |
| 668 | 664 |
/// The simplest way of using this map is through the mapToFunctor() |
| 669 | 665 |
/// function. |
| 670 | 666 |
/// |
| 671 | 667 |
///\sa FunctorToMap |
| 672 | 668 |
template <typename M> |
| 673 | 669 |
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
|
| 674 | 670 |
const M &_m; |
| 675 | 671 |
public: |
| 676 | 672 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
| 677 | 673 |
typedef typename Parent::Key Key; |
| 678 | 674 |
typedef typename Parent::Value Value; |
| 679 | 675 |
|
| 680 | 676 |
typedef typename Parent::Key argument_type; |
| 681 | 677 |
typedef typename Parent::Value result_type; |
| 682 | 678 |
|
| 683 | 679 |
/// Constructor |
| 684 | 680 |
MapToFunctor(const M &m) : _m(m) {}
|
| 685 | 681 |
/// \e |
| 686 | 682 |
Value operator()(const Key &k) const { return _m[k]; }
|
| 687 | 683 |
/// \e |
| 688 | 684 |
Value operator[](const Key &k) const { return _m[k]; }
|
| 689 | 685 |
}; |
| 690 | 686 |
|
| 691 | 687 |
/// Returns a \ref MapToFunctor class |
| 692 | 688 |
|
| 693 | 689 |
/// This function just returns a \ref MapToFunctor class. |
| 694 | 690 |
/// \relates MapToFunctor |
| 695 | 691 |
template<typename M> |
| 696 | 692 |
inline MapToFunctor<M> mapToFunctor(const M &m) {
|
| 697 | 693 |
return MapToFunctor<M>(m); |
| 698 | 694 |
} |
| 699 | 695 |
|
| 700 | 696 |
|
| 701 | 697 |
/// \brief Map adaptor to convert the \c Value type of a map to |
| 702 | 698 |
/// another type using the default conversion. |
| 703 | 699 |
|
| 704 | 700 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
| 705 | 701 |
/// "readable map" to another type using the default conversion. |
| 706 | 702 |
/// The \c Key type of it is inherited from \c M and the \c Value |
| 707 | 703 |
/// type is \c V. |
| 708 | 704 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
| 709 | 705 |
/// |
| 710 | 706 |
/// The simplest way of using this map is through the convertMap() |
| 711 | 707 |
/// function. |
| 712 | 708 |
template <typename M, typename V> |
| 713 | 709 |
class ConvertMap : public MapBase<typename M::Key, V> {
|
| 714 | 710 |
const M &_m; |
| 715 | 711 |
public: |
| 716 | 712 |
typedef MapBase<typename M::Key, V> Parent; |
| 717 | 713 |
typedef typename Parent::Key Key; |
| 718 | 714 |
typedef typename Parent::Value Value; |
| 719 | 715 |
|
| 720 | 716 |
/// Constructor |
| 721 | 717 |
|
| 722 | 718 |
/// Constructor. |
| 723 | 719 |
/// \param m The underlying map. |
| 724 | 720 |
ConvertMap(const M &m) : _m(m) {}
|
| 725 | 721 |
|
| 726 | 722 |
/// \e |
| 727 | 723 |
Value operator[](const Key &k) const { return _m[k]; }
|
| 728 | 724 |
}; |
| 729 | 725 |
|
| 730 | 726 |
/// Returns a \ref ConvertMap class |
| 731 | 727 |
|
| 732 | 728 |
/// This function just returns a \ref ConvertMap class. |
| 733 | 729 |
/// \relates ConvertMap |
| 734 | 730 |
template<typename V, typename M> |
| 735 | 731 |
inline ConvertMap<M, V> convertMap(const M &map) {
|
| 736 | 732 |
return ConvertMap<M, V>(map); |
| ... | ... |
@@ -632,379 +632,378 @@ |
| 632 | 632 |
/// devices, <tt>/dev/random</tt> and <tt>/dev/urandom</tt> which |
| 633 | 633 |
/// could give good seed values for pseudo random generators (The |
| 634 | 634 |
/// difference between two devices is that the <tt>random</tt> may |
| 635 | 635 |
/// block the reading operation while the kernel can give good |
| 636 | 636 |
/// source of randomness, while the <tt>urandom</tt> does not |
| 637 | 637 |
/// block the input, but it could give back bytes with worse |
| 638 | 638 |
/// entropy). |
| 639 | 639 |
/// \param file The source file |
| 640 | 640 |
/// \param offset The offset, from the file read. |
| 641 | 641 |
/// \return True when the seeding successes. |
| 642 | 642 |
#ifndef WIN32 |
| 643 | 643 |
bool seedFromFile(const std::string& file = "/dev/urandom", int offset = 0) |
| 644 | 644 |
#else |
| 645 | 645 |
bool seedFromFile(const std::string& file = "", int offset = 0) |
| 646 | 646 |
#endif |
| 647 | 647 |
{
|
| 648 | 648 |
std::ifstream rs(file.c_str()); |
| 649 | 649 |
const int size = 4; |
| 650 | 650 |
Word buf[size]; |
| 651 | 651 |
if (offset != 0 && !rs.seekg(offset)) return false; |
| 652 | 652 |
if (!rs.read(reinterpret_cast<char*>(buf), sizeof(buf))) return false; |
| 653 | 653 |
seed(buf, buf + size); |
| 654 | 654 |
return true; |
| 655 | 655 |
} |
| 656 | 656 |
|
| 657 | 657 |
/// \brief Seding from process id and time |
| 658 | 658 |
/// |
| 659 | 659 |
/// Seding from process id and time. This function uses the |
| 660 | 660 |
/// current process id and the current time for initialize the |
| 661 | 661 |
/// random sequence. |
| 662 | 662 |
/// \return Currently always true. |
| 663 | 663 |
bool seedFromTime() {
|
| 664 | 664 |
#ifndef WIN32 |
| 665 | 665 |
timeval tv; |
| 666 | 666 |
gettimeofday(&tv, 0); |
| 667 | 667 |
seed(getpid() + tv.tv_sec + tv.tv_usec); |
| 668 | 668 |
#else |
| 669 | 669 |
FILETIME time; |
| 670 | 670 |
GetSystemTimeAsFileTime(&time); |
| 671 | 671 |
seed(GetCurrentProcessId() + time.dwHighDateTime + time.dwLowDateTime); |
| 672 | 672 |
#endif |
| 673 | 673 |
return true; |
| 674 | 674 |
} |
| 675 | 675 |
|
| 676 | 676 |
/// @} |
| 677 | 677 |
|
| 678 | 678 |
///\name Uniform distributions |
| 679 | 679 |
/// |
| 680 | 680 |
/// @{
|
| 681 | 681 |
|
| 682 | 682 |
/// \brief Returns a random real number from the range [0, 1) |
| 683 | 683 |
/// |
| 684 | 684 |
/// It returns a random real number from the range [0, 1). The |
| 685 | 685 |
/// default Number type is \c double. |
| 686 | 686 |
template <typename Number> |
| 687 | 687 |
Number real() {
|
| 688 | 688 |
return _random_bits::RealConversion<Number, Word>::convert(core); |
| 689 | 689 |
} |
| 690 | 690 |
|
| 691 | 691 |
double real() {
|
| 692 | 692 |
return real<double>(); |
| 693 | 693 |
} |
| 694 | 694 |
|
| 695 | 695 |
/// \brief Returns a random real number the range [0, b) |
| 696 | 696 |
/// |
| 697 | 697 |
/// It returns a random real number from the range [0, b). |
| 698 | 698 |
template <typename Number> |
| 699 | 699 |
Number real(Number b) {
|
| 700 | 700 |
return real<Number>() * b; |
| 701 | 701 |
} |
| 702 | 702 |
|
| 703 | 703 |
/// \brief Returns a random real number from the range [a, b) |
| 704 | 704 |
/// |
| 705 | 705 |
/// It returns a random real number from the range [a, b). |
| 706 | 706 |
template <typename Number> |
| 707 | 707 |
Number real(Number a, Number b) {
|
| 708 | 708 |
return real<Number>() * (b - a) + a; |
| 709 | 709 |
} |
| 710 | 710 |
|
| 711 | 711 |
/// @} |
| 712 | 712 |
|
| 713 | 713 |
///\name Uniform distributions |
| 714 | 714 |
/// |
| 715 | 715 |
/// @{
|
| 716 | 716 |
|
| 717 | 717 |
/// \brief Returns a random real number from the range [0, 1) |
| 718 | 718 |
/// |
| 719 | 719 |
/// It returns a random double from the range [0, 1). |
| 720 | 720 |
double operator()() {
|
| 721 | 721 |
return real<double>(); |
| 722 | 722 |
} |
| 723 | 723 |
|
| 724 | 724 |
/// \brief Returns a random real number from the range [0, b) |
| 725 | 725 |
/// |
| 726 | 726 |
/// It returns a random real number from the range [0, b). |
| 727 | 727 |
template <typename Number> |
| 728 | 728 |
Number operator()(Number b) {
|
| 729 | 729 |
return real<Number>() * b; |
| 730 | 730 |
} |
| 731 | 731 |
|
| 732 | 732 |
/// \brief Returns a random real number from the range [a, b) |
| 733 | 733 |
/// |
| 734 | 734 |
/// It returns a random real number from the range [a, b). |
| 735 | 735 |
template <typename Number> |
| 736 | 736 |
Number operator()(Number a, Number b) {
|
| 737 | 737 |
return real<Number>() * (b - a) + a; |
| 738 | 738 |
} |
| 739 | 739 |
|
| 740 | 740 |
/// \brief Returns a random integer from a range |
| 741 | 741 |
/// |
| 742 | 742 |
/// It returns a random integer from the range {0, 1, ..., b - 1}.
|
| 743 | 743 |
template <typename Number> |
| 744 | 744 |
Number integer(Number b) {
|
| 745 | 745 |
return _random_bits::Mapping<Number, Word>::map(core, b); |
| 746 | 746 |
} |
| 747 | 747 |
|
| 748 | 748 |
/// \brief Returns a random integer from a range |
| 749 | 749 |
/// |
| 750 | 750 |
/// It returns a random integer from the range {a, a + 1, ..., b - 1}.
|
| 751 | 751 |
template <typename Number> |
| 752 | 752 |
Number integer(Number a, Number b) {
|
| 753 | 753 |
return _random_bits::Mapping<Number, Word>::map(core, b - a) + a; |
| 754 | 754 |
} |
| 755 | 755 |
|
| 756 | 756 |
/// \brief Returns a random integer from a range |
| 757 | 757 |
/// |
| 758 | 758 |
/// It returns a random integer from the range {0, 1, ..., b - 1}.
|
| 759 | 759 |
template <typename Number> |
| 760 | 760 |
Number operator[](Number b) {
|
| 761 | 761 |
return _random_bits::Mapping<Number, Word>::map(core, b); |
| 762 | 762 |
} |
| 763 | 763 |
|
| 764 | 764 |
/// \brief Returns a random non-negative integer |
| 765 | 765 |
/// |
| 766 | 766 |
/// It returns a random non-negative integer uniformly from the |
| 767 | 767 |
/// whole range of the current \c Number type. The default result |
| 768 | 768 |
/// type of this function is <tt>unsigned int</tt>. |
| 769 | 769 |
template <typename Number> |
| 770 | 770 |
Number uinteger() {
|
| 771 | 771 |
return _random_bits::IntConversion<Number, Word>::convert(core); |
| 772 | 772 |
} |
| 773 | 773 |
|
| 774 | 774 |
/// @} |
| 775 | 775 |
|
| 776 | 776 |
unsigned int uinteger() {
|
| 777 | 777 |
return uinteger<unsigned int>(); |
| 778 | 778 |
} |
| 779 | 779 |
|
| 780 | 780 |
/// \brief Returns a random integer |
| 781 | 781 |
/// |
| 782 | 782 |
/// It returns a random integer uniformly from the whole range of |
| 783 | 783 |
/// the current \c Number type. The default result type of this |
| 784 | 784 |
/// function is \c int. |
| 785 | 785 |
template <typename Number> |
| 786 | 786 |
Number integer() {
|
| 787 | 787 |
static const int nb = std::numeric_limits<Number>::digits + |
| 788 | 788 |
(std::numeric_limits<Number>::is_signed ? 1 : 0); |
| 789 | 789 |
return _random_bits::IntConversion<Number, Word, nb>::convert(core); |
| 790 | 790 |
} |
| 791 | 791 |
|
| 792 | 792 |
int integer() {
|
| 793 | 793 |
return integer<int>(); |
| 794 | 794 |
} |
| 795 | 795 |
|
| 796 | 796 |
/// \brief Returns a random bool |
| 797 | 797 |
/// |
| 798 | 798 |
/// It returns a random bool. The generator holds a buffer for |
| 799 | 799 |
/// random bits. Every time when it become empty the generator makes |
| 800 | 800 |
/// a new random word and fill the buffer up. |
| 801 | 801 |
bool boolean() {
|
| 802 | 802 |
return bool_producer.convert(core); |
| 803 | 803 |
} |
| 804 | 804 |
|
| 805 | 805 |
/// @} |
| 806 | 806 |
|
| 807 | 807 |
///\name Non-uniform distributions |
| 808 | 808 |
/// |
| 809 | 809 |
|
| 810 | 810 |
///@{
|
| 811 | 811 |
|
| 812 | 812 |
/// \brief Returns a random bool |
| 813 | 813 |
/// |
| 814 | 814 |
/// It returns a random bool with given probability of true result. |
| 815 | 815 |
bool boolean(double p) {
|
| 816 | 816 |
return operator()() < p; |
| 817 | 817 |
} |
| 818 | 818 |
|
| 819 | 819 |
/// Standard Gauss distribution |
| 820 | 820 |
|
| 821 | 821 |
/// Standard Gauss distribution. |
| 822 | 822 |
/// \note The Cartesian form of the Box-Muller |
| 823 | 823 |
/// transformation is used to generate a random normal distribution. |
| 824 |
/// \todo Consider using the "ziggurat" method instead. |
|
| 825 | 824 |
double gauss() |
| 826 | 825 |
{
|
| 827 | 826 |
double V1,V2,S; |
| 828 | 827 |
do {
|
| 829 | 828 |
V1=2*real<double>()-1; |
| 830 | 829 |
V2=2*real<double>()-1; |
| 831 | 830 |
S=V1*V1+V2*V2; |
| 832 | 831 |
} while(S>=1); |
| 833 | 832 |
return std::sqrt(-2*std::log(S)/S)*V1; |
| 834 | 833 |
} |
| 835 | 834 |
/// Gauss distribution with given mean and standard deviation |
| 836 | 835 |
|
| 837 | 836 |
/// Gauss distribution with given mean and standard deviation. |
| 838 | 837 |
/// \sa gauss() |
| 839 | 838 |
double gauss(double mean,double std_dev) |
| 840 | 839 |
{
|
| 841 | 840 |
return gauss()*std_dev+mean; |
| 842 | 841 |
} |
| 843 | 842 |
|
| 844 | 843 |
/// Exponential distribution with given mean |
| 845 | 844 |
|
| 846 | 845 |
/// This function generates an exponential distribution random number |
| 847 | 846 |
/// with mean <tt>1/lambda</tt>. |
| 848 | 847 |
/// |
| 849 | 848 |
double exponential(double lambda=1.0) |
| 850 | 849 |
{
|
| 851 | 850 |
return -std::log(1.0-real<double>())/lambda; |
| 852 | 851 |
} |
| 853 | 852 |
|
| 854 | 853 |
/// Gamma distribution with given integer shape |
| 855 | 854 |
|
| 856 | 855 |
/// This function generates a gamma distribution random number. |
| 857 | 856 |
/// |
| 858 | 857 |
///\param k shape parameter (<tt>k>0</tt> integer) |
| 859 | 858 |
double gamma(int k) |
| 860 | 859 |
{
|
| 861 | 860 |
double s = 0; |
| 862 | 861 |
for(int i=0;i<k;i++) s-=std::log(1.0-real<double>()); |
| 863 | 862 |
return s; |
| 864 | 863 |
} |
| 865 | 864 |
|
| 866 | 865 |
/// Gamma distribution with given shape and scale parameter |
| 867 | 866 |
|
| 868 | 867 |
/// This function generates a gamma distribution random number. |
| 869 | 868 |
/// |
| 870 | 869 |
///\param k shape parameter (<tt>k>0</tt>) |
| 871 | 870 |
///\param theta scale parameter |
| 872 | 871 |
/// |
| 873 | 872 |
double gamma(double k,double theta=1.0) |
| 874 | 873 |
{
|
| 875 | 874 |
double xi,nu; |
| 876 | 875 |
const double delta = k-std::floor(k); |
| 877 | 876 |
const double v0=E/(E-delta); |
| 878 | 877 |
do {
|
| 879 | 878 |
double V0=1.0-real<double>(); |
| 880 | 879 |
double V1=1.0-real<double>(); |
| 881 | 880 |
double V2=1.0-real<double>(); |
| 882 | 881 |
if(V2<=v0) |
| 883 | 882 |
{
|
| 884 | 883 |
xi=std::pow(V1,1.0/delta); |
| 885 | 884 |
nu=V0*std::pow(xi,delta-1.0); |
| 886 | 885 |
} |
| 887 | 886 |
else |
| 888 | 887 |
{
|
| 889 | 888 |
xi=1.0-std::log(V1); |
| 890 | 889 |
nu=V0*std::exp(-xi); |
| 891 | 890 |
} |
| 892 | 891 |
} while(nu>std::pow(xi,delta-1.0)*std::exp(-xi)); |
| 893 | 892 |
return theta*(xi+gamma(int(std::floor(k)))); |
| 894 | 893 |
} |
| 895 | 894 |
|
| 896 | 895 |
/// Weibull distribution |
| 897 | 896 |
|
| 898 | 897 |
/// This function generates a Weibull distribution random number. |
| 899 | 898 |
/// |
| 900 | 899 |
///\param k shape parameter (<tt>k>0</tt>) |
| 901 | 900 |
///\param lambda scale parameter (<tt>lambda>0</tt>) |
| 902 | 901 |
/// |
| 903 | 902 |
double weibull(double k,double lambda) |
| 904 | 903 |
{
|
| 905 | 904 |
return lambda*pow(-std::log(1.0-real<double>()),1.0/k); |
| 906 | 905 |
} |
| 907 | 906 |
|
| 908 | 907 |
/// Pareto distribution |
| 909 | 908 |
|
| 910 | 909 |
/// This function generates a Pareto distribution random number. |
| 911 | 910 |
/// |
| 912 | 911 |
///\param k shape parameter (<tt>k>0</tt>) |
| 913 | 912 |
///\param x_min location parameter (<tt>x_min>0</tt>) |
| 914 | 913 |
/// |
| 915 | 914 |
double pareto(double k,double x_min) |
| 916 | 915 |
{
|
| 917 | 916 |
return exponential(gamma(k,1.0/x_min))+x_min; |
| 918 | 917 |
} |
| 919 | 918 |
|
| 920 | 919 |
/// Poisson distribution |
| 921 | 920 |
|
| 922 | 921 |
/// This function generates a Poisson distribution random number with |
| 923 | 922 |
/// parameter \c lambda. |
| 924 | 923 |
/// |
| 925 | 924 |
/// The probability mass function of this distribusion is |
| 926 | 925 |
/// \f[ \frac{e^{-\lambda}\lambda^k}{k!} \f]
|
| 927 | 926 |
/// \note The algorithm is taken from the book of Donald E. Knuth titled |
| 928 | 927 |
/// ''Seminumerical Algorithms'' (1969). Its running time is linear in the |
| 929 | 928 |
/// return value. |
| 930 | 929 |
|
| 931 | 930 |
int poisson(double lambda) |
| 932 | 931 |
{
|
| 933 | 932 |
const double l = std::exp(-lambda); |
| 934 | 933 |
int k=0; |
| 935 | 934 |
double p = 1.0; |
| 936 | 935 |
do {
|
| 937 | 936 |
k++; |
| 938 | 937 |
p*=real<double>(); |
| 939 | 938 |
} while (p>=l); |
| 940 | 939 |
return k-1; |
| 941 | 940 |
} |
| 942 | 941 |
|
| 943 | 942 |
///@} |
| 944 | 943 |
|
| 945 | 944 |
///\name Two dimensional distributions |
| 946 | 945 |
/// |
| 947 | 946 |
|
| 948 | 947 |
///@{
|
| 949 | 948 |
|
| 950 | 949 |
/// Uniform distribution on the full unit circle |
| 951 | 950 |
|
| 952 | 951 |
/// Uniform distribution on the full unit circle. |
| 953 | 952 |
/// |
| 954 | 953 |
dim2::Point<double> disc() |
| 955 | 954 |
{
|
| 956 | 955 |
double V1,V2; |
| 957 | 956 |
do {
|
| 958 | 957 |
V1=2*real<double>()-1; |
| 959 | 958 |
V2=2*real<double>()-1; |
| 960 | 959 |
|
| 961 | 960 |
} while(V1*V1+V2*V2>=1); |
| 962 | 961 |
return dim2::Point<double>(V1,V2); |
| 963 | 962 |
} |
| 964 | 963 |
/// A kind of two dimensional Gauss distribution |
| 965 | 964 |
|
| 966 | 965 |
/// This function provides a turning symmetric two-dimensional distribution. |
| 967 | 966 |
/// Both coordinates are of standard normal distribution, but they are not |
| 968 | 967 |
/// independent. |
| 969 | 968 |
/// |
| 970 | 969 |
/// \note The coordinates are the two random variables provided by |
| 971 | 970 |
/// the Box-Muller method. |
| 972 | 971 |
dim2::Point<double> gauss2() |
| 973 | 972 |
{
|
| 974 | 973 |
double V1,V2,S; |
| 975 | 974 |
do {
|
| 976 | 975 |
V1=2*real<double>()-1; |
| 977 | 976 |
V2=2*real<double>()-1; |
| 978 | 977 |
S=V1*V1+V2*V2; |
| 979 | 978 |
} while(S>=1); |
| 980 | 979 |
double W=std::sqrt(-2*std::log(S)/S); |
| 981 | 980 |
return dim2::Point<double>(W*V1,W*V2); |
| 982 | 981 |
} |
| 983 | 982 |
/// A kind of two dimensional exponential distribution |
| 984 | 983 |
|
| 985 | 984 |
/// This function provides a turning symmetric two-dimensional distribution. |
| 986 | 985 |
/// The x-coordinate is of conditionally exponential distribution |
| 987 | 986 |
/// with the condition that x is positive and y=0. If x is negative and |
| 988 | 987 |
/// y=0 then, -x is of exponential distribution. The same is true for the |
| 989 | 988 |
/// y-coordinate. |
| 990 | 989 |
dim2::Point<double> exponential2() |
| 991 | 990 |
{
|
| 992 | 991 |
double V1,V2,S; |
| 993 | 992 |
do {
|
| 994 | 993 |
V1=2*real<double>()-1; |
| 995 | 994 |
V2=2*real<double>()-1; |
| 996 | 995 |
S=V1*V1+V2*V2; |
| 997 | 996 |
} while(S>=1); |
| 998 | 997 |
double W=-std::log(S)/S; |
| 999 | 998 |
return dim2::Point<double>(W*V1,W*V2); |
| 1000 | 999 |
} |
| 1001 | 1000 |
|
| 1002 | 1001 |
///@} |
| 1003 | 1002 |
}; |
| 1004 | 1003 |
|
| 1005 | 1004 |
|
| 1006 | 1005 |
extern Random rnd; |
| 1007 | 1006 |
|
| 1008 | 1007 |
} |
| 1009 | 1008 |
|
| 1010 | 1009 |
#endif |
| ... | ... |
@@ -111,385 +111,384 @@ |
| 111 | 111 |
|
| 112 | 112 |
bool valid(Node n) const {
|
| 113 | 113 |
return n._id >= 0 && n._id < static_cast<int>(nodes.size()); |
| 114 | 114 |
} |
| 115 | 115 |
bool valid(Arc a) const {
|
| 116 | 116 |
return a._id >= 0 && a._id < static_cast<int>(arcs.size()); |
| 117 | 117 |
} |
| 118 | 118 |
|
| 119 | 119 |
class Node {
|
| 120 | 120 |
friend class SmartDigraphBase; |
| 121 | 121 |
friend class SmartDigraph; |
| 122 | 122 |
|
| 123 | 123 |
protected: |
| 124 | 124 |
int _id; |
| 125 | 125 |
explicit Node(int id) : _id(id) {}
|
| 126 | 126 |
public: |
| 127 | 127 |
Node() {}
|
| 128 | 128 |
Node (Invalid) : _id(-1) {}
|
| 129 | 129 |
bool operator==(const Node i) const {return _id == i._id;}
|
| 130 | 130 |
bool operator!=(const Node i) const {return _id != i._id;}
|
| 131 | 131 |
bool operator<(const Node i) const {return _id < i._id;}
|
| 132 | 132 |
}; |
| 133 | 133 |
|
| 134 | 134 |
|
| 135 | 135 |
class Arc {
|
| 136 | 136 |
friend class SmartDigraphBase; |
| 137 | 137 |
friend class SmartDigraph; |
| 138 | 138 |
|
| 139 | 139 |
protected: |
| 140 | 140 |
int _id; |
| 141 | 141 |
explicit Arc(int id) : _id(id) {}
|
| 142 | 142 |
public: |
| 143 | 143 |
Arc() { }
|
| 144 | 144 |
Arc (Invalid) : _id(-1) {}
|
| 145 | 145 |
bool operator==(const Arc i) const {return _id == i._id;}
|
| 146 | 146 |
bool operator!=(const Arc i) const {return _id != i._id;}
|
| 147 | 147 |
bool operator<(const Arc i) const {return _id < i._id;}
|
| 148 | 148 |
}; |
| 149 | 149 |
|
| 150 | 150 |
void first(Node& node) const {
|
| 151 | 151 |
node._id = nodes.size() - 1; |
| 152 | 152 |
} |
| 153 | 153 |
|
| 154 | 154 |
static void next(Node& node) {
|
| 155 | 155 |
--node._id; |
| 156 | 156 |
} |
| 157 | 157 |
|
| 158 | 158 |
void first(Arc& arc) const {
|
| 159 | 159 |
arc._id = arcs.size() - 1; |
| 160 | 160 |
} |
| 161 | 161 |
|
| 162 | 162 |
static void next(Arc& arc) {
|
| 163 | 163 |
--arc._id; |
| 164 | 164 |
} |
| 165 | 165 |
|
| 166 | 166 |
void firstOut(Arc& arc, const Node& node) const {
|
| 167 | 167 |
arc._id = nodes[node._id].first_out; |
| 168 | 168 |
} |
| 169 | 169 |
|
| 170 | 170 |
void nextOut(Arc& arc) const {
|
| 171 | 171 |
arc._id = arcs[arc._id].next_out; |
| 172 | 172 |
} |
| 173 | 173 |
|
| 174 | 174 |
void firstIn(Arc& arc, const Node& node) const {
|
| 175 | 175 |
arc._id = nodes[node._id].first_in; |
| 176 | 176 |
} |
| 177 | 177 |
|
| 178 | 178 |
void nextIn(Arc& arc) const {
|
| 179 | 179 |
arc._id = arcs[arc._id].next_in; |
| 180 | 180 |
} |
| 181 | 181 |
|
| 182 | 182 |
}; |
| 183 | 183 |
|
| 184 | 184 |
typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase; |
| 185 | 185 |
|
| 186 | 186 |
///\ingroup graphs |
| 187 | 187 |
/// |
| 188 | 188 |
///\brief A smart directed graph class. |
| 189 | 189 |
/// |
| 190 | 190 |
///This is a simple and fast digraph implementation. |
| 191 | 191 |
///It is also quite memory efficient, but at the price |
| 192 | 192 |
///that <b> it does support only limited (only stack-like) |
| 193 | 193 |
///node and arc deletions</b>. |
| 194 | 194 |
///It conforms to the \ref concepts::Digraph "Digraph concept" with |
| 195 | 195 |
///an important extra feature that its maps are real \ref |
| 196 | 196 |
///concepts::ReferenceMap "reference map"s. |
| 197 | 197 |
/// |
| 198 | 198 |
///\sa concepts::Digraph. |
| 199 | 199 |
class SmartDigraph : public ExtendedSmartDigraphBase {
|
| 200 | 200 |
public: |
| 201 | 201 |
|
| 202 | 202 |
typedef ExtendedSmartDigraphBase Parent; |
| 203 | 203 |
|
| 204 | 204 |
private: |
| 205 | 205 |
|
| 206 | 206 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
| 207 | 207 |
|
| 208 | 208 |
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead. |
| 209 | 209 |
/// |
| 210 | 210 |
SmartDigraph(const SmartDigraph &) : ExtendedSmartDigraphBase() {};
|
| 211 | 211 |
///\brief Assignment of SmartDigraph to another one is \e not allowed. |
| 212 | 212 |
///Use DigraphCopy() instead. |
| 213 | 213 |
|
| 214 | 214 |
///Assignment of SmartDigraph to another one is \e not allowed. |
| 215 | 215 |
///Use DigraphCopy() instead. |
| 216 | 216 |
void operator=(const SmartDigraph &) {}
|
| 217 | 217 |
|
| 218 | 218 |
public: |
| 219 | 219 |
|
| 220 | 220 |
/// Constructor |
| 221 | 221 |
|
| 222 | 222 |
/// Constructor. |
| 223 | 223 |
/// |
| 224 | 224 |
SmartDigraph() {};
|
| 225 | 225 |
|
| 226 | 226 |
///Add a new node to the digraph. |
| 227 | 227 |
|
| 228 | 228 |
/// \return the new node. |
| 229 | 229 |
/// |
| 230 | 230 |
Node addNode() { return Parent::addNode(); }
|
| 231 | 231 |
|
| 232 | 232 |
///Add a new arc to the digraph. |
| 233 | 233 |
|
| 234 | 234 |
///Add a new arc to the digraph with source node \c s |
| 235 | 235 |
///and target node \c t. |
| 236 | 236 |
///\return the new arc. |
| 237 | 237 |
Arc addArc(const Node& s, const Node& t) {
|
| 238 | 238 |
return Parent::addArc(s, t); |
| 239 | 239 |
} |
| 240 | 240 |
|
| 241 | 241 |
/// \brief Using this it is possible to avoid the superfluous memory |
| 242 | 242 |
/// allocation. |
| 243 | 243 |
|
| 244 | 244 |
/// Using this it is possible to avoid the superfluous memory |
| 245 | 245 |
/// allocation: if you know that the digraph you want to build will |
| 246 | 246 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
| 247 | 247 |
/// then it is worth reserving space for this amount before starting |
| 248 | 248 |
/// to build the digraph. |
| 249 | 249 |
/// \sa reserveArc |
| 250 | 250 |
void reserveNode(int n) { nodes.reserve(n); };
|
| 251 | 251 |
|
| 252 | 252 |
/// \brief Using this it is possible to avoid the superfluous memory |
| 253 | 253 |
/// allocation. |
| 254 | 254 |
|
| 255 | 255 |
/// Using this it is possible to avoid the superfluous memory |
| 256 | 256 |
/// allocation: if you know that the digraph you want to build will |
| 257 | 257 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
| 258 | 258 |
/// then it is worth reserving space for this amount before starting |
| 259 | 259 |
/// to build the digraph. |
| 260 | 260 |
/// \sa reserveNode |
| 261 | 261 |
void reserveArc(int m) { arcs.reserve(m); };
|
| 262 | 262 |
|
| 263 | 263 |
/// \brief Node validity check |
| 264 | 264 |
/// |
| 265 | 265 |
/// This function gives back true if the given node is valid, |
| 266 | 266 |
/// ie. it is a real node of the graph. |
| 267 | 267 |
/// |
| 268 | 268 |
/// \warning A removed node (using Snapshot) could become valid again |
| 269 | 269 |
/// when new nodes are added to the graph. |
| 270 | 270 |
bool valid(Node n) const { return Parent::valid(n); }
|
| 271 | 271 |
|
| 272 | 272 |
/// \brief Arc validity check |
| 273 | 273 |
/// |
| 274 | 274 |
/// This function gives back true if the given arc is valid, |
| 275 | 275 |
/// ie. it is a real arc of the graph. |
| 276 | 276 |
/// |
| 277 | 277 |
/// \warning A removed arc (using Snapshot) could become valid again |
| 278 | 278 |
/// when new arcs are added to the graph. |
| 279 | 279 |
bool valid(Arc a) const { return Parent::valid(a); }
|
| 280 | 280 |
|
| 281 | 281 |
///Clear the digraph. |
| 282 | 282 |
|
| 283 | 283 |
///Erase all the nodes and arcs from the digraph. |
| 284 | 284 |
/// |
| 285 | 285 |
void clear() {
|
| 286 | 286 |
Parent::clear(); |
| 287 | 287 |
} |
| 288 | 288 |
|
| 289 | 289 |
///Split a node. |
| 290 | 290 |
|
| 291 | 291 |
///This function splits a node. First a new node is added to the digraph, |
| 292 | 292 |
///then the source of each outgoing arc of \c n is moved to this new node. |
| 293 | 293 |
///If \c connect is \c true (this is the default value), then a new arc |
| 294 | 294 |
///from \c n to the newly created node is also added. |
| 295 | 295 |
///\return The newly created node. |
| 296 | 296 |
/// |
| 297 | 297 |
///\note The <tt>Arc</tt>s |
| 298 | 298 |
///referencing a moved arc remain |
| 299 | 299 |
///valid. However <tt>InArc</tt>'s and <tt>OutArc</tt>'s |
| 300 | 300 |
///may be invalidated. |
| 301 | 301 |
///\warning This functionality cannot be used together with the Snapshot |
| 302 | 302 |
///feature. |
| 303 |
///\todo It could be implemented in a bit faster way. |
|
| 304 | 303 |
Node split(Node n, bool connect = true) |
| 305 | 304 |
{
|
| 306 | 305 |
Node b = addNode(); |
| 307 | 306 |
nodes[b._id].first_out=nodes[n._id].first_out; |
| 308 | 307 |
nodes[n._id].first_out=-1; |
| 309 | 308 |
for(int i=nodes[b._id].first_out;i!=-1;i++) arcs[i].source=b._id; |
| 310 | 309 |
if(connect) addArc(n,b); |
| 311 | 310 |
return b; |
| 312 | 311 |
} |
| 313 | 312 |
|
| 314 | 313 |
public: |
| 315 | 314 |
|
| 316 | 315 |
class Snapshot; |
| 317 | 316 |
|
| 318 | 317 |
protected: |
| 319 | 318 |
|
| 320 | 319 |
void restoreSnapshot(const Snapshot &s) |
| 321 | 320 |
{
|
| 322 | 321 |
while(s.arc_num<arcs.size()) {
|
| 323 | 322 |
Arc arc = arcFromId(arcs.size()-1); |
| 324 | 323 |
Parent::notifier(Arc()).erase(arc); |
| 325 | 324 |
nodes[arcs.back().source].first_out=arcs.back().next_out; |
| 326 | 325 |
nodes[arcs.back().target].first_in=arcs.back().next_in; |
| 327 | 326 |
arcs.pop_back(); |
| 328 | 327 |
} |
| 329 | 328 |
while(s.node_num<nodes.size()) {
|
| 330 | 329 |
Node node = nodeFromId(nodes.size()-1); |
| 331 | 330 |
Parent::notifier(Node()).erase(node); |
| 332 | 331 |
nodes.pop_back(); |
| 333 | 332 |
} |
| 334 | 333 |
} |
| 335 | 334 |
|
| 336 | 335 |
public: |
| 337 | 336 |
|
| 338 | 337 |
///Class to make a snapshot of the digraph and to restrore to it later. |
| 339 | 338 |
|
| 340 | 339 |
///Class to make a snapshot of the digraph and to restrore to it later. |
| 341 | 340 |
/// |
| 342 | 341 |
///The newly added nodes and arcs can be removed using the |
| 343 | 342 |
///restore() function. |
| 344 | 343 |
///\note After you restore a state, you cannot restore |
| 345 | 344 |
///a later state, in other word you cannot add again the arcs deleted |
| 346 | 345 |
///by restore() using another one Snapshot instance. |
| 347 | 346 |
/// |
| 348 | 347 |
///\warning If you do not use correctly the snapshot that can cause |
| 349 | 348 |
///either broken program, invalid state of the digraph, valid but |
| 350 | 349 |
///not the restored digraph or no change. Because the runtime performance |
| 351 | 350 |
///the validity of the snapshot is not stored. |
| 352 | 351 |
class Snapshot |
| 353 | 352 |
{
|
| 354 | 353 |
SmartDigraph *_graph; |
| 355 | 354 |
protected: |
| 356 | 355 |
friend class SmartDigraph; |
| 357 | 356 |
unsigned int node_num; |
| 358 | 357 |
unsigned int arc_num; |
| 359 | 358 |
public: |
| 360 | 359 |
///Default constructor. |
| 361 | 360 |
|
| 362 | 361 |
///Default constructor. |
| 363 | 362 |
///To actually make a snapshot you must call save(). |
| 364 | 363 |
/// |
| 365 | 364 |
Snapshot() : _graph(0) {}
|
| 366 | 365 |
///Constructor that immediately makes a snapshot |
| 367 | 366 |
|
| 368 | 367 |
///This constructor immediately makes a snapshot of the digraph. |
| 369 | 368 |
///\param _g The digraph we make a snapshot of. |
| 370 | 369 |
Snapshot(SmartDigraph &graph) : _graph(&graph) {
|
| 371 | 370 |
node_num=_graph->nodes.size(); |
| 372 | 371 |
arc_num=_graph->arcs.size(); |
| 373 | 372 |
} |
| 374 | 373 |
|
| 375 | 374 |
///Make a snapshot. |
| 376 | 375 |
|
| 377 | 376 |
///Make a snapshot of the digraph. |
| 378 | 377 |
/// |
| 379 | 378 |
///This function can be called more than once. In case of a repeated |
| 380 | 379 |
///call, the previous snapshot gets lost. |
| 381 | 380 |
///\param _g The digraph we make the snapshot of. |
| 382 | 381 |
void save(SmartDigraph &graph) |
| 383 | 382 |
{
|
| 384 | 383 |
_graph=&graph; |
| 385 | 384 |
node_num=_graph->nodes.size(); |
| 386 | 385 |
arc_num=_graph->arcs.size(); |
| 387 | 386 |
} |
| 388 | 387 |
|
| 389 | 388 |
///Undo the changes until a snapshot. |
| 390 | 389 |
|
| 391 | 390 |
///Undo the changes until a snapshot created by save(). |
| 392 | 391 |
/// |
| 393 | 392 |
///\note After you restored a state, you cannot restore |
| 394 | 393 |
///a later state, in other word you cannot add again the arcs deleted |
| 395 | 394 |
///by restore(). |
| 396 | 395 |
void restore() |
| 397 | 396 |
{
|
| 398 | 397 |
_graph->restoreSnapshot(*this); |
| 399 | 398 |
} |
| 400 | 399 |
}; |
| 401 | 400 |
}; |
| 402 | 401 |
|
| 403 | 402 |
|
| 404 | 403 |
class SmartGraphBase {
|
| 405 | 404 |
|
| 406 | 405 |
protected: |
| 407 | 406 |
|
| 408 | 407 |
struct NodeT {
|
| 409 | 408 |
int first_out; |
| 410 | 409 |
}; |
| 411 | 410 |
|
| 412 | 411 |
struct ArcT {
|
| 413 | 412 |
int target; |
| 414 | 413 |
int next_out; |
| 415 | 414 |
}; |
| 416 | 415 |
|
| 417 | 416 |
std::vector<NodeT> nodes; |
| 418 | 417 |
std::vector<ArcT> arcs; |
| 419 | 418 |
|
| 420 | 419 |
int first_free_arc; |
| 421 | 420 |
|
| 422 | 421 |
public: |
| 423 | 422 |
|
| 424 | 423 |
typedef SmartGraphBase Digraph; |
| 425 | 424 |
|
| 426 | 425 |
class Node; |
| 427 | 426 |
class Arc; |
| 428 | 427 |
class Edge; |
| 429 | 428 |
|
| 430 | 429 |
class Node {
|
| 431 | 430 |
friend class SmartGraphBase; |
| 432 | 431 |
protected: |
| 433 | 432 |
|
| 434 | 433 |
int _id; |
| 435 | 434 |
explicit Node(int id) { _id = id;}
|
| 436 | 435 |
|
| 437 | 436 |
public: |
| 438 | 437 |
Node() {}
|
| 439 | 438 |
Node (Invalid) { _id = -1; }
|
| 440 | 439 |
bool operator==(const Node& node) const {return _id == node._id;}
|
| 441 | 440 |
bool operator!=(const Node& node) const {return _id != node._id;}
|
| 442 | 441 |
bool operator<(const Node& node) const {return _id < node._id;}
|
| 443 | 442 |
}; |
| 444 | 443 |
|
| 445 | 444 |
class Edge {
|
| 446 | 445 |
friend class SmartGraphBase; |
| 447 | 446 |
protected: |
| 448 | 447 |
|
| 449 | 448 |
int _id; |
| 450 | 449 |
explicit Edge(int id) { _id = id;}
|
| 451 | 450 |
|
| 452 | 451 |
public: |
| 453 | 452 |
Edge() {}
|
| 454 | 453 |
Edge (Invalid) { _id = -1; }
|
| 455 | 454 |
bool operator==(const Edge& arc) const {return _id == arc._id;}
|
| 456 | 455 |
bool operator!=(const Edge& arc) const {return _id != arc._id;}
|
| 457 | 456 |
bool operator<(const Edge& arc) const {return _id < arc._id;}
|
| 458 | 457 |
}; |
| 459 | 458 |
|
| 460 | 459 |
class Arc {
|
| 461 | 460 |
friend class SmartGraphBase; |
| 462 | 461 |
protected: |
| 463 | 462 |
|
| 464 | 463 |
int _id; |
| 465 | 464 |
explicit Arc(int id) { _id = id;}
|
| 466 | 465 |
|
| 467 | 466 |
public: |
| 468 | 467 |
operator Edge() const {
|
| 469 | 468 |
return _id != -1 ? edgeFromId(_id / 2) : INVALID; |
| 470 | 469 |
} |
| 471 | 470 |
|
| 472 | 471 |
Arc() {}
|
| 473 | 472 |
Arc (Invalid) { _id = -1; }
|
| 474 | 473 |
bool operator==(const Arc& arc) const {return _id == arc._id;}
|
| 475 | 474 |
bool operator!=(const Arc& arc) const {return _id != arc._id;}
|
| 476 | 475 |
bool operator<(const Arc& arc) const {return _id < arc._id;}
|
| 477 | 476 |
}; |
| 478 | 477 |
|
| 479 | 478 |
|
| 480 | 479 |
|
| 481 | 480 |
SmartGraphBase() |
| 482 | 481 |
: nodes(), arcs() {}
|
| 483 | 482 |
|
| 484 | 483 |
|
| 485 | 484 |
int maxNodeId() const { return nodes.size()-1; }
|
| 486 | 485 |
int maxEdgeId() const { return arcs.size() / 2 - 1; }
|
| 487 | 486 |
int maxArcId() const { return arcs.size()-1; }
|
| 488 | 487 |
|
| 489 | 488 |
Node source(Arc e) const { return Node(arcs[e._id ^ 1].target); }
|
| 490 | 489 |
Node target(Arc e) const { return Node(arcs[e._id].target); }
|
| 491 | 490 |
|
| 492 | 491 |
Node u(Edge e) const { return Node(arcs[2 * e._id].target); }
|
| 493 | 492 |
Node v(Edge e) const { return Node(arcs[2 * e._id + 1].target); }
|
| 494 | 493 |
|
| 495 | 494 |
static bool direction(Arc e) {
|
| ... | ... |
@@ -103,474 +103,472 @@ |
| 103 | 103 |
} else {
|
| 104 | 104 |
rtime = 0; |
| 105 | 105 |
utime = 0; |
| 106 | 106 |
stime = 0; |
| 107 | 107 |
cutime = 0; |
| 108 | 108 |
cstime = 0; |
| 109 | 109 |
} |
| 110 | 110 |
#endif |
| 111 | 111 |
} |
| 112 | 112 |
|
| 113 | 113 |
/// Constructor initializing with zero |
| 114 | 114 |
TimeStamp() |
| 115 | 115 |
{ _reset(); }
|
| 116 | 116 |
///Constructor initializing with the current time values of the process |
| 117 | 117 |
TimeStamp(void *) { stamp();}
|
| 118 | 118 |
|
| 119 | 119 |
///Set every time value to zero |
| 120 | 120 |
TimeStamp &reset() {_reset();return *this;}
|
| 121 | 121 |
|
| 122 | 122 |
///\e |
| 123 | 123 |
TimeStamp &operator+=(const TimeStamp &b) |
| 124 | 124 |
{
|
| 125 | 125 |
utime+=b.utime; |
| 126 | 126 |
stime+=b.stime; |
| 127 | 127 |
cutime+=b.cutime; |
| 128 | 128 |
cstime+=b.cstime; |
| 129 | 129 |
rtime+=b.rtime; |
| 130 | 130 |
return *this; |
| 131 | 131 |
} |
| 132 | 132 |
///\e |
| 133 | 133 |
TimeStamp operator+(const TimeStamp &b) const |
| 134 | 134 |
{
|
| 135 | 135 |
TimeStamp t(*this); |
| 136 | 136 |
return t+=b; |
| 137 | 137 |
} |
| 138 | 138 |
///\e |
| 139 | 139 |
TimeStamp &operator-=(const TimeStamp &b) |
| 140 | 140 |
{
|
| 141 | 141 |
utime-=b.utime; |
| 142 | 142 |
stime-=b.stime; |
| 143 | 143 |
cutime-=b.cutime; |
| 144 | 144 |
cstime-=b.cstime; |
| 145 | 145 |
rtime-=b.rtime; |
| 146 | 146 |
return *this; |
| 147 | 147 |
} |
| 148 | 148 |
///\e |
| 149 | 149 |
TimeStamp operator-(const TimeStamp &b) const |
| 150 | 150 |
{
|
| 151 | 151 |
TimeStamp t(*this); |
| 152 | 152 |
return t-=b; |
| 153 | 153 |
} |
| 154 | 154 |
///\e |
| 155 | 155 |
TimeStamp &operator*=(double b) |
| 156 | 156 |
{
|
| 157 | 157 |
utime*=b; |
| 158 | 158 |
stime*=b; |
| 159 | 159 |
cutime*=b; |
| 160 | 160 |
cstime*=b; |
| 161 | 161 |
rtime*=b; |
| 162 | 162 |
return *this; |
| 163 | 163 |
} |
| 164 | 164 |
///\e |
| 165 | 165 |
TimeStamp operator*(double b) const |
| 166 | 166 |
{
|
| 167 | 167 |
TimeStamp t(*this); |
| 168 | 168 |
return t*=b; |
| 169 | 169 |
} |
| 170 | 170 |
friend TimeStamp operator*(double b,const TimeStamp &t); |
| 171 | 171 |
///\e |
| 172 | 172 |
TimeStamp &operator/=(double b) |
| 173 | 173 |
{
|
| 174 | 174 |
utime/=b; |
| 175 | 175 |
stime/=b; |
| 176 | 176 |
cutime/=b; |
| 177 | 177 |
cstime/=b; |
| 178 | 178 |
rtime/=b; |
| 179 | 179 |
return *this; |
| 180 | 180 |
} |
| 181 | 181 |
///\e |
| 182 | 182 |
TimeStamp operator/(double b) const |
| 183 | 183 |
{
|
| 184 | 184 |
TimeStamp t(*this); |
| 185 | 185 |
return t/=b; |
| 186 | 186 |
} |
| 187 | 187 |
///The time ellapsed since the last call of stamp() |
| 188 | 188 |
TimeStamp ellapsed() const |
| 189 | 189 |
{
|
| 190 | 190 |
TimeStamp t(NULL); |
| 191 | 191 |
return t-*this; |
| 192 | 192 |
} |
| 193 | 193 |
|
| 194 | 194 |
friend std::ostream& operator<<(std::ostream& os,const TimeStamp &t); |
| 195 | 195 |
|
| 196 | 196 |
///Gives back the user time of the process |
| 197 | 197 |
double userTime() const |
| 198 | 198 |
{
|
| 199 | 199 |
return utime; |
| 200 | 200 |
} |
| 201 | 201 |
///Gives back the system time of the process |
| 202 | 202 |
double systemTime() const |
| 203 | 203 |
{
|
| 204 | 204 |
return stime; |
| 205 | 205 |
} |
| 206 | 206 |
///Gives back the user time of the process' children |
| 207 | 207 |
|
| 208 | 208 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
| 209 | 209 |
/// |
| 210 | 210 |
double cUserTime() const |
| 211 | 211 |
{
|
| 212 | 212 |
return cutime; |
| 213 | 213 |
} |
| 214 | 214 |
///Gives back the user time of the process' children |
| 215 | 215 |
|
| 216 | 216 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
| 217 | 217 |
/// |
| 218 | 218 |
double cSystemTime() const |
| 219 | 219 |
{
|
| 220 | 220 |
return cstime; |
| 221 | 221 |
} |
| 222 | 222 |
///Gives back the real time |
| 223 | 223 |
double realTime() const {return rtime;}
|
| 224 | 224 |
}; |
| 225 | 225 |
|
| 226 | 226 |
TimeStamp operator*(double b,const TimeStamp &t) |
| 227 | 227 |
{
|
| 228 | 228 |
return t*b; |
| 229 | 229 |
} |
| 230 | 230 |
|
| 231 | 231 |
///Prints the time counters |
| 232 | 232 |
|
| 233 | 233 |
///Prints the time counters in the following form: |
| 234 | 234 |
/// |
| 235 | 235 |
/// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt> |
| 236 | 236 |
/// |
| 237 | 237 |
/// where the values are the |
| 238 | 238 |
/// \li \c u: user cpu time, |
| 239 | 239 |
/// \li \c s: system cpu time, |
| 240 | 240 |
/// \li \c cu: user cpu time of children, |
| 241 | 241 |
/// \li \c cs: system cpu time of children, |
| 242 | 242 |
/// \li \c real: real time. |
| 243 | 243 |
/// \relates TimeStamp |
| 244 | 244 |
/// \note On <tt>WIN32</tt> platform the cummulative values are not |
| 245 | 245 |
/// calculated. |
| 246 | 246 |
inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t) |
| 247 | 247 |
{
|
| 248 | 248 |
os << "u: " << t.userTime() << |
| 249 | 249 |
"s, s: " << t.systemTime() << |
| 250 | 250 |
"s, cu: " << t.cUserTime() << |
| 251 | 251 |
"s, cs: " << t.cSystemTime() << |
| 252 | 252 |
"s, real: " << t.realTime() << "s"; |
| 253 | 253 |
return os; |
| 254 | 254 |
} |
| 255 | 255 |
|
| 256 | 256 |
///Class for measuring the cpu time and real time usage of the process |
| 257 | 257 |
|
| 258 | 258 |
///Class for measuring the cpu time and real time usage of the process. |
| 259 | 259 |
///It is quite easy-to-use, here is a short example. |
| 260 | 260 |
///\code |
| 261 | 261 |
/// #include<lemon/time_measure.h> |
| 262 | 262 |
/// #include<iostream> |
| 263 | 263 |
/// |
| 264 | 264 |
/// int main() |
| 265 | 265 |
/// {
|
| 266 | 266 |
/// |
| 267 | 267 |
/// ... |
| 268 | 268 |
/// |
| 269 | 269 |
/// Timer t; |
| 270 | 270 |
/// doSomething(); |
| 271 | 271 |
/// std::cout << t << '\n'; |
| 272 | 272 |
/// t.restart(); |
| 273 | 273 |
/// doSomethingElse(); |
| 274 | 274 |
/// std::cout << t << '\n'; |
| 275 | 275 |
/// |
| 276 | 276 |
/// ... |
| 277 | 277 |
/// |
| 278 | 278 |
/// } |
| 279 | 279 |
///\endcode |
| 280 | 280 |
/// |
| 281 | 281 |
///The \ref Timer can also be \ref stop() "stopped" and |
| 282 | 282 |
///\ref start() "started" again, so it is possible to compute collected |
| 283 | 283 |
///running times. |
| 284 | 284 |
/// |
| 285 | 285 |
///\warning Depending on the operation system and its actual configuration |
| 286 | 286 |
///the time counters have a certain (10ms on a typical Linux system) |
| 287 | 287 |
///granularity. |
| 288 | 288 |
///Therefore this tool is not appropriate to measure very short times. |
| 289 | 289 |
///Also, if you start and stop the timer very frequently, it could lead to |
| 290 | 290 |
///distorted results. |
| 291 | 291 |
/// |
| 292 | 292 |
///\note If you want to measure the running time of the execution of a certain |
| 293 | 293 |
///function, consider the usage of \ref TimeReport instead. |
| 294 | 294 |
/// |
| 295 |
///\todo This shouldn't be Unix (Linux) specific. |
|
| 296 | 295 |
///\sa TimeReport |
| 297 | 296 |
class Timer |
| 298 | 297 |
{
|
| 299 | 298 |
int _running; //Timer is running iff _running>0; (_running>=0 always holds) |
| 300 | 299 |
TimeStamp start_time; //This is the relativ start-time if the timer |
| 301 | 300 |
//is _running, the collected _running time otherwise. |
| 302 | 301 |
|
| 303 | 302 |
void _reset() {if(_running) start_time.stamp(); else start_time.reset();}
|
| 304 | 303 |
|
| 305 | 304 |
public: |
| 306 | 305 |
///Constructor. |
| 307 | 306 |
|
| 308 | 307 |
///\param run indicates whether or not the timer starts immediately. |
| 309 | 308 |
/// |
| 310 | 309 |
Timer(bool run=true) :_running(run) {_reset();}
|
| 311 | 310 |
|
| 312 | 311 |
///\name Control the state of the timer |
| 313 | 312 |
///Basically a Timer can be either running or stopped, |
| 314 | 313 |
///but it provides a bit finer control on the execution. |
| 315 | 314 |
///The \ref Timer also counts the number of \ref start() |
| 316 | 315 |
///executions, and is stops only after the same amount (or more) |
| 317 | 316 |
///\ref stop() "stop()"s. This can be useful e.g. to compute |
| 318 | 317 |
///the running time |
| 319 | 318 |
///of recursive functions. |
| 320 | 319 |
/// |
| 321 | 320 |
|
| 322 | 321 |
///@{
|
| 323 | 322 |
|
| 324 | 323 |
///Reset and stop the time counters |
| 325 | 324 |
|
| 326 | 325 |
///This function resets and stops the time counters |
| 327 | 326 |
///\sa restart() |
| 328 | 327 |
void reset() |
| 329 | 328 |
{
|
| 330 | 329 |
_running=0; |
| 331 | 330 |
_reset(); |
| 332 | 331 |
} |
| 333 | 332 |
|
| 334 | 333 |
///Start the time counters |
| 335 | 334 |
|
| 336 | 335 |
///This function starts the time counters. |
| 337 | 336 |
/// |
| 338 | 337 |
///If the timer is started more than ones, it will remain running |
| 339 | 338 |
///until the same amount of \ref stop() is called. |
| 340 | 339 |
///\sa stop() |
| 341 | 340 |
void start() |
| 342 | 341 |
{
|
| 343 | 342 |
if(_running) _running++; |
| 344 | 343 |
else {
|
| 345 | 344 |
_running=1; |
| 346 | 345 |
TimeStamp t; |
| 347 | 346 |
t.stamp(); |
| 348 | 347 |
start_time=t-start_time; |
| 349 | 348 |
} |
| 350 | 349 |
} |
| 351 | 350 |
|
| 352 | 351 |
|
| 353 | 352 |
///Stop the time counters |
| 354 | 353 |
|
| 355 | 354 |
///This function stops the time counters. If start() was executed more than |
| 356 | 355 |
///once, then the same number of stop() execution is necessary the really |
| 357 | 356 |
///stop the timer. |
| 358 | 357 |
/// |
| 359 | 358 |
///\sa halt() |
| 360 | 359 |
///\sa start() |
| 361 | 360 |
///\sa restart() |
| 362 | 361 |
///\sa reset() |
| 363 | 362 |
|
| 364 | 363 |
void stop() |
| 365 | 364 |
{
|
| 366 | 365 |
if(_running && !--_running) {
|
| 367 | 366 |
TimeStamp t; |
| 368 | 367 |
t.stamp(); |
| 369 | 368 |
start_time=t-start_time; |
| 370 | 369 |
} |
| 371 | 370 |
} |
| 372 | 371 |
|
| 373 | 372 |
///Halt (i.e stop immediately) the time counters |
| 374 | 373 |
|
| 375 | 374 |
///This function stops immediately the time counters, i.e. <tt>t.halt()</tt> |
| 376 | 375 |
///is a faster |
| 377 | 376 |
///equivalent of the following. |
| 378 | 377 |
///\code |
| 379 | 378 |
/// while(t.running()) t.stop() |
| 380 | 379 |
///\endcode |
| 381 | 380 |
/// |
| 382 | 381 |
/// |
| 383 | 382 |
///\sa stop() |
| 384 | 383 |
///\sa restart() |
| 385 | 384 |
///\sa reset() |
| 386 | 385 |
|
| 387 | 386 |
void halt() |
| 388 | 387 |
{
|
| 389 | 388 |
if(_running) {
|
| 390 | 389 |
_running=0; |
| 391 | 390 |
TimeStamp t; |
| 392 | 391 |
t.stamp(); |
| 393 | 392 |
start_time=t-start_time; |
| 394 | 393 |
} |
| 395 | 394 |
} |
| 396 | 395 |
|
| 397 | 396 |
///Returns the running state of the timer |
| 398 | 397 |
|
| 399 | 398 |
///This function returns the number of stop() exections that is |
| 400 | 399 |
///necessary to really stop the timer. |
| 401 | 400 |
///For example the timer |
| 402 | 401 |
///is running if and only if the return value is \c true |
| 403 | 402 |
///(i.e. greater than |
| 404 | 403 |
///zero). |
| 405 | 404 |
int running() { return _running; }
|
| 406 | 405 |
|
| 407 | 406 |
|
| 408 | 407 |
///Restart the time counters |
| 409 | 408 |
|
| 410 | 409 |
///This function is a shorthand for |
| 411 | 410 |
///a reset() and a start() calls. |
| 412 | 411 |
/// |
| 413 | 412 |
void restart() |
| 414 | 413 |
{
|
| 415 | 414 |
reset(); |
| 416 | 415 |
start(); |
| 417 | 416 |
} |
| 418 | 417 |
|
| 419 | 418 |
///@} |
| 420 | 419 |
|
| 421 | 420 |
///\name Query Functions for the ellapsed time |
| 422 | 421 |
|
| 423 | 422 |
///@{
|
| 424 | 423 |
|
| 425 | 424 |
///Gives back the ellapsed user time of the process |
| 426 | 425 |
double userTime() const |
| 427 | 426 |
{
|
| 428 | 427 |
return operator TimeStamp().userTime(); |
| 429 | 428 |
} |
| 430 | 429 |
///Gives back the ellapsed system time of the process |
| 431 | 430 |
double systemTime() const |
| 432 | 431 |
{
|
| 433 | 432 |
return operator TimeStamp().systemTime(); |
| 434 | 433 |
} |
| 435 | 434 |
///Gives back the ellapsed user time of the process' children |
| 436 | 435 |
|
| 437 | 436 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
| 438 | 437 |
/// |
| 439 | 438 |
double cUserTime() const |
| 440 | 439 |
{
|
| 441 | 440 |
return operator TimeStamp().cUserTime(); |
| 442 | 441 |
} |
| 443 | 442 |
///Gives back the ellapsed user time of the process' children |
| 444 | 443 |
|
| 445 | 444 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
| 446 | 445 |
/// |
| 447 | 446 |
double cSystemTime() const |
| 448 | 447 |
{
|
| 449 | 448 |
return operator TimeStamp().cSystemTime(); |
| 450 | 449 |
} |
| 451 | 450 |
///Gives back the ellapsed real time |
| 452 | 451 |
double realTime() const |
| 453 | 452 |
{
|
| 454 | 453 |
return operator TimeStamp().realTime(); |
| 455 | 454 |
} |
| 456 | 455 |
///Computes the ellapsed time |
| 457 | 456 |
|
| 458 | 457 |
///This conversion computes the ellapsed time, therefore you can print |
| 459 | 458 |
///the ellapsed time like this. |
| 460 | 459 |
///\code |
| 461 | 460 |
/// Timer t; |
| 462 | 461 |
/// doSomething(); |
| 463 | 462 |
/// std::cout << t << '\n'; |
| 464 | 463 |
///\endcode |
| 465 | 464 |
operator TimeStamp () const |
| 466 | 465 |
{
|
| 467 | 466 |
TimeStamp t; |
| 468 | 467 |
t.stamp(); |
| 469 | 468 |
return _running?t-start_time:start_time; |
| 470 | 469 |
} |
| 471 | 470 |
|
| 472 | 471 |
|
| 473 | 472 |
///@} |
| 474 | 473 |
}; |
| 475 | 474 |
|
| 476 | 475 |
///Same as \ref Timer but prints a report on destruction. |
| 477 | 476 |
|
| 478 | 477 |
///Same as \ref Timer but prints a report on destruction. |
| 479 | 478 |
///This example shows its usage. |
| 480 | 479 |
///\code |
| 481 | 480 |
/// void myAlg(ListGraph &g,int n) |
| 482 | 481 |
/// {
|
| 483 | 482 |
/// TimeReport tr("Running time of myAlg: ");
|
| 484 | 483 |
/// ... //Here comes the algorithm |
| 485 | 484 |
/// } |
| 486 | 485 |
///\endcode |
| 487 | 486 |
/// |
| 488 | 487 |
///\sa Timer |
| 489 | 488 |
///\sa NoTimeReport |
| 490 |
///\todo There is no test case for this |
|
| 491 | 489 |
class TimeReport : public Timer |
| 492 | 490 |
{
|
| 493 | 491 |
std::string _title; |
| 494 | 492 |
std::ostream &_os; |
| 495 | 493 |
public: |
| 496 | 494 |
///\e |
| 497 | 495 |
|
| 498 | 496 |
///\param title This text will be printed before the ellapsed time. |
| 499 | 497 |
///\param os The stream to print the report to. |
| 500 | 498 |
///\param run Sets whether the timer should start immediately. |
| 501 | 499 |
|
| 502 | 500 |
TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true) |
| 503 | 501 |
: Timer(run), _title(title), _os(os){}
|
| 504 | 502 |
///\e Prints the ellapsed time on destruction. |
| 505 | 503 |
~TimeReport() |
| 506 | 504 |
{
|
| 507 | 505 |
_os << _title << *this << std::endl; |
| 508 | 506 |
} |
| 509 | 507 |
}; |
| 510 | 508 |
|
| 511 | 509 |
///'Do nothing' version of \ref TimeReport |
| 512 | 510 |
|
| 513 | 511 |
///\sa TimeReport |
| 514 | 512 |
/// |
| 515 | 513 |
class NoTimeReport |
| 516 | 514 |
{
|
| 517 | 515 |
public: |
| 518 | 516 |
///\e |
| 519 | 517 |
NoTimeReport(std::string,std::ostream &,bool) {}
|
| 520 | 518 |
///\e |
| 521 | 519 |
NoTimeReport(std::string,std::ostream &) {}
|
| 522 | 520 |
///\e |
| 523 | 521 |
NoTimeReport(std::string) {}
|
| 524 | 522 |
///\e Do nothing. |
| 525 | 523 |
~NoTimeReport() {}
|
| 526 | 524 |
|
| 527 | 525 |
operator TimeStamp () const { return TimeStamp(); }
|
| 528 | 526 |
void reset() {}
|
| 529 | 527 |
void start() {}
|
| 530 | 528 |
void stop() {}
|
| 531 | 529 |
void halt() {}
|
| 532 | 530 |
int running() { return 0; }
|
| 533 | 531 |
void restart() {}
|
| 534 | 532 |
double userTime() const { return 0; }
|
| 535 | 533 |
double systemTime() const { return 0; }
|
| 536 | 534 |
double cUserTime() const { return 0; }
|
| 537 | 535 |
double cSystemTime() const { return 0; }
|
| 538 | 536 |
double realTime() const { return 0; }
|
| 539 | 537 |
}; |
| 540 | 538 |
|
| 541 | 539 |
///Tool to measure the running time more exactly. |
| 542 | 540 |
|
| 543 | 541 |
///This function calls \c f several times and returns the average |
| 544 | 542 |
///running time. The number of the executions will be choosen in such a way |
| 545 | 543 |
///that the full real running time will be roughly between \c min_time |
| 546 | 544 |
///and <tt>2*min_time</tt>. |
| 547 | 545 |
///\param f the function object to be measured. |
| 548 | 546 |
///\param min_time the minimum total running time. |
| 549 | 547 |
///\retval num if it is not \c NULL, then the actual |
| 550 | 548 |
/// number of execution of \c f will be written into <tt>*num</tt>. |
| 551 | 549 |
///\retval full_time if it is not \c NULL, then the actual |
| 552 | 550 |
/// total running time will be written into <tt>*full_time</tt>. |
| 553 | 551 |
///\return The average running time of \c f. |
| 554 | 552 |
|
| 555 | 553 |
template<class F> |
| 556 | 554 |
TimeStamp runningTimeTest(F f,double min_time=10,unsigned int *num = NULL, |
| 557 | 555 |
TimeStamp *full_time=NULL) |
| 558 | 556 |
{
|
| 559 | 557 |
TimeStamp full; |
| 560 | 558 |
unsigned int total=0; |
| 561 | 559 |
Timer t; |
| 562 | 560 |
for(unsigned int tn=1;tn <= 1U<<31 && full.realTime()<=min_time; tn*=2) {
|
| 563 | 561 |
for(;total<tn;total++) f(); |
| 564 | 562 |
full=t; |
| 565 | 563 |
} |
| 566 | 564 |
if(num) *num=total; |
| 567 | 565 |
if(full_time) *full_time=full; |
| 568 | 566 |
return full/total; |
| 569 | 567 |
} |
| 570 | 568 |
|
| 571 | 569 |
/// @} |
| 572 | 570 |
|
| 573 | 571 |
|
| 574 | 572 |
} //namespace lemon |
| 575 | 573 |
|
| 576 | 574 |
#endif //LEMON_TIME_MEASURE_H |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_TOLERANCE_H |
| 20 | 20 |
#define LEMON_TOLERANCE_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup misc |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief A basic tool to handle the anomalies of calculation with |
| 25 | 25 |
///floating point numbers. |
| 26 | 26 |
/// |
| 27 |
///\todo It should be in a module like "Basic tools" |
|
| 28 |
|
|
| 29 | 27 |
|
| 30 | 28 |
namespace lemon {
|
| 31 | 29 |
|
| 32 | 30 |
/// \addtogroup misc |
| 33 | 31 |
/// @{
|
| 34 | 32 |
|
| 35 | 33 |
///\brief A class to provide a basic way to |
| 36 | 34 |
///handle the comparison of numbers that are obtained |
| 37 | 35 |
///as a result of a probably inexact computation. |
| 38 | 36 |
/// |
| 39 | 37 |
///\ref Tolerance is a class to provide a basic way to |
| 40 | 38 |
///handle the comparison of numbers that are obtained |
| 41 | 39 |
///as a result of a probably inexact computation. |
| 42 | 40 |
/// |
| 43 | 41 |
///This is an abstract class, it should be specialized for all |
| 44 | 42 |
///numerical data types. These specialized classes like |
| 45 | 43 |
///Tolerance<double> may offer additional tuning parameters. |
| 46 | 44 |
/// |
| 47 | 45 |
///\sa Tolerance<float> |
| 48 | 46 |
///\sa Tolerance<double> |
| 49 | 47 |
///\sa Tolerance<long double> |
| 50 | 48 |
///\sa Tolerance<int> |
| 51 | 49 |
///\sa Tolerance<long long int> |
| 52 | 50 |
///\sa Tolerance<unsigned int> |
| 53 | 51 |
///\sa Tolerance<unsigned long long int> |
| 54 | 52 |
|
| 55 | 53 |
template<class T> |
| 56 | 54 |
class Tolerance |
| 57 | 55 |
{
|
| 58 | 56 |
public: |
| 59 | 57 |
typedef T Value; |
| 60 | 58 |
|
| 61 | 59 |
///\name Comparisons |
| 62 | 60 |
///The concept is that these bool functions return \c true only if |
| 63 | 61 |
///the related comparisons hold even if some numerical error appeared |
| 64 | 62 |
///during the computations. |
| 65 | 63 |
|
| 66 | 64 |
///@{
|
| 67 | 65 |
|
| 68 | 66 |
///Returns \c true if \c a is \e surely strictly less than \c b |
| 69 | 67 |
static bool less(Value a,Value b) {return false;}
|
| 70 | 68 |
///Returns \c true if \c a is \e surely different from \c b |
| 71 | 69 |
static bool different(Value a,Value b) {return false;}
|
| 72 | 70 |
///Returns \c true if \c a is \e surely positive |
| 73 | 71 |
static bool positive(Value a) {return false;}
|
| 74 | 72 |
///Returns \c true if \c a is \e surely negative |
| 75 | 73 |
static bool negative(Value a) {return false;}
|
| 76 | 74 |
///Returns \c true if \c a is \e surely non-zero |
| 77 | 75 |
static bool nonZero(Value a) {return false;}
|
| 78 | 76 |
|
| 79 | 77 |
///@} |
| 80 | 78 |
|
| 81 | 79 |
///Returns the zero value. |
| 82 | 80 |
static Value zero() {return T();}
|
| 83 | 81 |
|
| 84 | 82 |
// static bool finite(Value a) {}
|
| 85 | 83 |
// static Value big() {}
|
| 86 | 84 |
// static Value negativeBig() {}
|
| 87 | 85 |
}; |
| 88 | 86 |
|
| 89 | 87 |
|
| 90 | 88 |
///Float specialization of Tolerance. |
| 91 | 89 |
|
| 92 | 90 |
///Float specialization of Tolerance. |
| 93 | 91 |
///\sa Tolerance |
| 94 | 92 |
///\relates Tolerance |
| 95 | 93 |
template<> |
| 96 | 94 |
class Tolerance<float> |
| 97 | 95 |
{
|
| 98 | 96 |
static float def_epsilon; |
| 99 | 97 |
float _epsilon; |
| 100 | 98 |
public: |
| 101 | 99 |
///\e |
| 102 | 100 |
typedef float Value; |
| 103 | 101 |
|
| 104 | 102 |
///Constructor setting the epsilon tolerance to the default value. |
| 105 | 103 |
Tolerance() : _epsilon(def_epsilon) {}
|
| 106 | 104 |
///Constructor setting the epsilon tolerance to the given value. |
| 107 | 105 |
Tolerance(float e) : _epsilon(e) {}
|
| 108 | 106 |
|
| 109 | 107 |
///Returns the epsilon value. |
| 110 | 108 |
Value epsilon() const {return _epsilon;}
|
| 111 | 109 |
///Sets the epsilon value. |
| 112 | 110 |
void epsilon(Value e) {_epsilon=e;}
|
| 113 | 111 |
|
| 114 | 112 |
///Returns the default epsilon value. |
| 115 | 113 |
static Value defaultEpsilon() {return def_epsilon;}
|
| 116 | 114 |
///Sets the default epsilon value. |
| 117 | 115 |
static void defaultEpsilon(Value e) {def_epsilon=e;}
|
| 118 | 116 |
|
| 119 | 117 |
///\name Comparisons |
| 120 | 118 |
///See \ref lemon::Tolerance "Tolerance" for more details. |
| 121 | 119 |
|
| 122 | 120 |
///@{
|
| 123 | 121 |
|
| 124 | 122 |
///Returns \c true if \c a is \e surely strictly less than \c b |
| 125 | 123 |
bool less(Value a,Value b) const {return a+_epsilon<b;}
|
| 126 | 124 |
///Returns \c true if \c a is \e surely different from \c b |
| 127 | 125 |
bool different(Value a,Value b) const { return less(a,b)||less(b,a); }
|
| 128 | 126 |
///Returns \c true if \c a is \e surely positive |
| 129 | 127 |
bool positive(Value a) const { return _epsilon<a; }
|
| 130 | 128 |
///Returns \c true if \c a is \e surely negative |
| 131 | 129 |
bool negative(Value a) const { return -_epsilon>a; }
|
| 132 | 130 |
///Returns \c true if \c a is \e surely non-zero |
| 133 | 131 |
bool nonZero(Value a) const { return positive(a)||negative(a); }
|
| 134 | 132 |
|
| 135 | 133 |
///@} |
| 136 | 134 |
|
| 137 | 135 |
///Returns zero |
| 138 | 136 |
static Value zero() {return 0;}
|
| 139 | 137 |
}; |
| 140 | 138 |
|
| 141 | 139 |
///Double specialization of Tolerance. |
| 142 | 140 |
|
| 143 | 141 |
///Double specialization of Tolerance. |
| 144 | 142 |
///\sa Tolerance |
| 145 | 143 |
///\relates Tolerance |
| 146 | 144 |
template<> |
| 147 | 145 |
class Tolerance<double> |
| 148 | 146 |
{
|
| 149 | 147 |
static double def_epsilon; |
| 150 | 148 |
double _epsilon; |
| 151 | 149 |
public: |
| 152 | 150 |
///\e |
| 153 | 151 |
typedef double Value; |
| 154 | 152 |
|
| 155 | 153 |
///Constructor setting the epsilon tolerance to the default value. |
| 156 | 154 |
Tolerance() : _epsilon(def_epsilon) {}
|
| 157 | 155 |
///Constructor setting the epsilon tolerance to the given value. |
| 158 | 156 |
Tolerance(double e) : _epsilon(e) {}
|
| 159 | 157 |
|
| 160 | 158 |
///Returns the epsilon value. |
| 161 | 159 |
Value epsilon() const {return _epsilon;}
|
| 162 | 160 |
///Sets the epsilon value. |
| 163 | 161 |
void epsilon(Value e) {_epsilon=e;}
|
| 164 | 162 |
|
| 165 | 163 |
///Returns the default epsilon value. |
| 166 | 164 |
static Value defaultEpsilon() {return def_epsilon;}
|
| 167 | 165 |
///Sets the default epsilon value. |
| 168 | 166 |
static void defaultEpsilon(Value e) {def_epsilon=e;}
|
| 169 | 167 |
|
| 170 | 168 |
///\name Comparisons |
| 171 | 169 |
///See \ref lemon::Tolerance "Tolerance" for more details. |
| 172 | 170 |
|
| 173 | 171 |
///@{
|
| 174 | 172 |
|
| 175 | 173 |
///Returns \c true if \c a is \e surely strictly less than \c b |
| 176 | 174 |
bool less(Value a,Value b) const {return a+_epsilon<b;}
|
| 177 | 175 |
///Returns \c true if \c a is \e surely different from \c b |
| 178 | 176 |
bool different(Value a,Value b) const { return less(a,b)||less(b,a); }
|
| 179 | 177 |
///Returns \c true if \c a is \e surely positive |
| 180 | 178 |
bool positive(Value a) const { return _epsilon<a; }
|
| 181 | 179 |
///Returns \c true if \c a is \e surely negative |
| 182 | 180 |
bool negative(Value a) const { return -_epsilon>a; }
|
| 183 | 181 |
///Returns \c true if \c a is \e surely non-zero |
| 184 | 182 |
bool nonZero(Value a) const { return positive(a)||negative(a); }
|
| 185 | 183 |
|
| 186 | 184 |
///@} |
| 187 | 185 |
|
| 188 | 186 |
///Returns zero |
| 189 | 187 |
static Value zero() {return 0;}
|
| 190 | 188 |
}; |
| 191 | 189 |
|
| 192 | 190 |
///Long double specialization of Tolerance. |
| 193 | 191 |
|
| 194 | 192 |
///Long double specialization of Tolerance. |
| 195 | 193 |
///\sa Tolerance |
| 196 | 194 |
///\relates Tolerance |
| 197 | 195 |
template<> |
| 198 | 196 |
class Tolerance<long double> |
| 199 | 197 |
{
|
| 200 | 198 |
static long double def_epsilon; |
| 201 | 199 |
long double _epsilon; |
| 202 | 200 |
public: |
| 203 | 201 |
///\e |
| 204 | 202 |
typedef long double Value; |
| 205 | 203 |
|
| 206 | 204 |
///Constructor setting the epsilon tolerance to the default value. |
| 207 | 205 |
Tolerance() : _epsilon(def_epsilon) {}
|
| 208 | 206 |
///Constructor setting the epsilon tolerance to the given value. |
| 209 | 207 |
Tolerance(long double e) : _epsilon(e) {}
|
| 210 | 208 |
|
| 211 | 209 |
///Returns the epsilon value. |
| 212 | 210 |
Value epsilon() const {return _epsilon;}
|
| 213 | 211 |
///Sets the epsilon value. |
| 214 | 212 |
void epsilon(Value e) {_epsilon=e;}
|
| 215 | 213 |
|
| 216 | 214 |
///Returns the default epsilon value. |
| 217 | 215 |
static Value defaultEpsilon() {return def_epsilon;}
|
| 218 | 216 |
///Sets the default epsilon value. |
| 219 | 217 |
static void defaultEpsilon(Value e) {def_epsilon=e;}
|
| 220 | 218 |
|
0 comments (0 inline)