0
3
2
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
|
20 |
#define LEMON_NETWORK_SIMPLEX_H |
|
21 |
|
|
22 |
/// \ingroup min_cost_flow |
|
23 |
/// |
|
24 |
/// \file |
|
25 |
/// \brief Network simplex algorithm for finding a minimum cost flow. |
|
26 |
|
|
27 |
#include <vector> |
|
28 |
#include <limits> |
|
29 |
#include <algorithm> |
|
30 |
|
|
31 |
#include <lemon/math.h> |
|
32 |
|
|
33 |
namespace lemon { |
|
34 |
|
|
35 |
/// \addtogroup min_cost_flow |
|
36 |
/// @{ |
|
37 |
|
|
38 |
/// \brief Implementation of the primal network simplex algorithm |
|
39 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
|
40 |
/// |
|
41 |
/// \ref NetworkSimplex implements the primal network simplex algorithm |
|
42 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
|
43 |
/// |
|
44 |
/// \tparam Digraph The digraph type the algorithm runs on. |
|
45 |
/// \tparam LowerMap The type of the lower bound map. |
|
46 |
/// \tparam CapacityMap The type of the capacity (upper bound) map. |
|
47 |
/// \tparam CostMap The type of the cost (length) map. |
|
48 |
/// \tparam SupplyMap The type of the supply map. |
|
49 |
/// |
|
50 |
/// \warning |
|
51 |
/// - Arc capacities and costs should be \e non-negative \e integers. |
|
52 |
/// - Supply values should be \e signed \e integers. |
|
53 |
/// - The value types of the maps should be convertible to each other. |
|
54 |
/// - \c CostMap::Value must be signed type. |
|
55 |
/// |
|
56 |
/// \note \ref NetworkSimplex provides five different pivot rule |
|
57 |
/// implementations that significantly affect the efficiency of the |
|
58 |
/// algorithm. |
|
59 |
/// By default "Block Search" pivot rule is used, which proved to be |
|
60 |
/// by far the most efficient according to our benchmark tests. |
|
61 |
/// However another pivot rule can be selected using \ref run() |
|
62 |
/// function with the proper parameter. |
|
63 |
#ifdef DOXYGEN |
|
64 |
template < typename Digraph, |
|
65 |
typename LowerMap, |
|
66 |
typename CapacityMap, |
|
67 |
typename CostMap, |
|
68 |
typename SupplyMap > |
|
69 |
|
|
70 |
#else |
|
71 |
template < typename Digraph, |
|
72 |
typename LowerMap = typename Digraph::template ArcMap<int>, |
|
73 |
typename CapacityMap = typename Digraph::template ArcMap<int>, |
|
74 |
typename CostMap = typename Digraph::template ArcMap<int>, |
|
75 |
typename SupplyMap = typename Digraph::template NodeMap<int> > |
|
76 |
#endif |
|
77 |
class NetworkSimplex |
|
78 |
{ |
|
79 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
80 |
|
|
81 |
typedef typename CapacityMap::Value Capacity; |
|
82 |
typedef typename CostMap::Value Cost; |
|
83 |
typedef typename SupplyMap::Value Supply; |
|
84 |
|
|
85 |
typedef std::vector<Arc> ArcVector; |
|
86 |
typedef std::vector<Node> NodeVector; |
|
87 |
typedef std::vector<int> IntVector; |
|
88 |
typedef std::vector<bool> BoolVector; |
|
89 |
typedef std::vector<Capacity> CapacityVector; |
|
90 |
typedef std::vector<Cost> CostVector; |
|
91 |
typedef std::vector<Supply> SupplyVector; |
|
92 |
|
|
93 |
public: |
|
94 |
|
|
95 |
/// The type of the flow map |
|
96 |
typedef typename Digraph::template ArcMap<Capacity> FlowMap; |
|
97 |
/// The type of the potential map |
|
98 |
typedef typename Digraph::template NodeMap<Cost> PotentialMap; |
|
99 |
|
|
100 |
public: |
|
101 |
|
|
102 |
/// Enum type for selecting the pivot rule used by \ref run() |
|
103 |
enum PivotRuleEnum { |
|
104 |
FIRST_ELIGIBLE_PIVOT, |
|
105 |
BEST_ELIGIBLE_PIVOT, |
|
106 |
BLOCK_SEARCH_PIVOT, |
|
107 |
CANDIDATE_LIST_PIVOT, |
|
108 |
ALTERING_LIST_PIVOT |
|
109 |
}; |
|
110 |
|
|
111 |
private: |
|
112 |
|
|
113 |
// State constants for arcs |
|
114 |
enum ArcStateEnum { |
|
115 |
STATE_UPPER = -1, |
|
116 |
STATE_TREE = 0, |
|
117 |
STATE_LOWER = 1 |
|
118 |
}; |
|
119 |
|
|
120 |
private: |
|
121 |
|
|
122 |
// References for the original data |
|
123 |
const Digraph &_orig_graph; |
|
124 |
const LowerMap *_orig_lower; |
|
125 |
const CapacityMap &_orig_cap; |
|
126 |
const CostMap &_orig_cost; |
|
127 |
const SupplyMap *_orig_supply; |
|
128 |
Node _orig_source; |
|
129 |
Node _orig_target; |
|
130 |
Capacity _orig_flow_value; |
|
131 |
|
|
132 |
// Result maps |
|
133 |
FlowMap *_flow_result; |
|
134 |
PotentialMap *_potential_result; |
|
135 |
bool _local_flow; |
|
136 |
bool _local_potential; |
|
137 |
|
|
138 |
// Data structures for storing the graph |
|
139 |
ArcVector _arc; |
|
140 |
NodeVector _node; |
|
141 |
IntNodeMap _node_id; |
|
142 |
IntVector _source; |
|
143 |
IntVector _target; |
|
144 |
|
|
145 |
// The number of nodes and arcs in the original graph |
|
146 |
int _node_num; |
|
147 |
int _arc_num; |
|
148 |
|
|
149 |
// Node and arc maps |
|
150 |
CapacityVector _cap; |
|
151 |
CostVector _cost; |
|
152 |
CostVector _supply; |
|
153 |
CapacityVector _flow; |
|
154 |
CostVector _pi; |
|
155 |
|
|
156 |
// Node and arc maps for the spanning tree structure |
|
157 |
IntVector _depth; |
|
158 |
IntVector _parent; |
|
159 |
IntVector _pred; |
|
160 |
IntVector _thread; |
|
161 |
BoolVector _forward; |
|
162 |
IntVector _state; |
|
163 |
|
|
164 |
// The root node |
|
165 |
int _root; |
|
166 |
|
|
167 |
// The entering arc in the current pivot iteration |
|
168 |
int _in_arc; |
|
169 |
|
|
170 |
// Temporary data used in the current pivot iteration |
|
171 |
int join, u_in, v_in, u_out, v_out; |
|
172 |
int right, first, second, last; |
|
173 |
int stem, par_stem, new_stem; |
|
174 |
Capacity delta; |
|
175 |
|
|
176 |
private: |
|
177 |
|
|
178 |
/// \brief Implementation of the "First Eligible" pivot rule for the |
|
179 |
/// \ref NetworkSimplex "network simplex" algorithm. |
|
180 |
/// |
|
181 |
/// This class implements the "First Eligible" pivot rule |
|
182 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
183 |
/// |
|
184 |
/// For more information see \ref NetworkSimplex::run(). |
|
185 |
class FirstEligiblePivotRule |
|
186 |
{ |
|
187 |
private: |
|
188 |
|
|
189 |
// References to the NetworkSimplex class |
|
190 |
const ArcVector &_arc; |
|
191 |
const IntVector &_source; |
|
192 |
const IntVector &_target; |
|
193 |
const CostVector &_cost; |
|
194 |
const IntVector &_state; |
|
195 |
const CostVector &_pi; |
|
196 |
int &_in_arc; |
|
197 |
int _arc_num; |
|
198 |
|
|
199 |
// Pivot rule data |
|
200 |
int _next_arc; |
|
201 |
|
|
202 |
public: |
|
203 |
|
|
204 |
/// Constructor |
|
205 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
|
206 |
_arc(ns._arc), _source(ns._source), _target(ns._target), |
|
207 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
208 |
_in_arc(ns._in_arc), _arc_num(ns._arc_num), _next_arc(0) |
|
209 |
{} |
|
210 |
|
|
211 |
/// Find next entering arc |
|
212 |
bool findEnteringArc() { |
|
213 |
Cost c; |
|
214 |
for (int e = _next_arc; e < _arc_num; ++e) { |
|
215 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
216 |
if (c < 0) { |
|
217 |
_in_arc = e; |
|
218 |
_next_arc = e + 1; |
|
219 |
return true; |
|
220 |
} |
|
221 |
} |
|
222 |
for (int e = 0; e < _next_arc; ++e) { |
|
223 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
224 |
if (c < 0) { |
|
225 |
_in_arc = e; |
|
226 |
_next_arc = e + 1; |
|
227 |
return true; |
|
228 |
} |
|
229 |
} |
|
230 |
return false; |
|
231 |
} |
|
232 |
|
|
233 |
}; //class FirstEligiblePivotRule |
|
234 |
|
|
235 |
|
|
236 |
/// \brief Implementation of the "Best Eligible" pivot rule for the |
|
237 |
/// \ref NetworkSimplex "network simplex" algorithm. |
|
238 |
/// |
|
239 |
/// This class implements the "Best Eligible" pivot rule |
|
240 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
241 |
/// |
|
242 |
/// For more information see \ref NetworkSimplex::run(). |
|
243 |
class BestEligiblePivotRule |
|
244 |
{ |
|
245 |
private: |
|
246 |
|
|
247 |
// References to the NetworkSimplex class |
|
248 |
const ArcVector &_arc; |
|
249 |
const IntVector &_source; |
|
250 |
const IntVector &_target; |
|
251 |
const CostVector &_cost; |
|
252 |
const IntVector &_state; |
|
253 |
const CostVector &_pi; |
|
254 |
int &_in_arc; |
|
255 |
int _arc_num; |
|
256 |
|
|
257 |
public: |
|
258 |
|
|
259 |
/// Constructor |
|
260 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
|
261 |
_arc(ns._arc), _source(ns._source), _target(ns._target), |
|
262 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
263 |
_in_arc(ns._in_arc), _arc_num(ns._arc_num) |
|
264 |
{} |
|
265 |
|
|
266 |
/// Find next entering arc |
|
267 |
bool findEnteringArc() { |
|
268 |
Cost c, min = 0; |
|
269 |
for (int e = 0; e < _arc_num; ++e) { |
|
270 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
271 |
if (c < min) { |
|
272 |
min = c; |
|
273 |
_in_arc = e; |
|
274 |
} |
|
275 |
} |
|
276 |
return min < 0; |
|
277 |
} |
|
278 |
|
|
279 |
}; //class BestEligiblePivotRule |
|
280 |
|
|
281 |
|
|
282 |
/// \brief Implementation of the "Block Search" pivot rule for the |
|
283 |
/// \ref NetworkSimplex "network simplex" algorithm. |
|
284 |
/// |
|
285 |
/// This class implements the "Block Search" pivot rule |
|
286 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
287 |
/// |
|
288 |
/// For more information see \ref NetworkSimplex::run(). |
|
289 |
class BlockSearchPivotRule |
|
290 |
{ |
|
291 |
private: |
|
292 |
|
|
293 |
// References to the NetworkSimplex class |
|
294 |
const ArcVector &_arc; |
|
295 |
const IntVector &_source; |
|
296 |
const IntVector &_target; |
|
297 |
const CostVector &_cost; |
|
298 |
const IntVector &_state; |
|
299 |
const CostVector &_pi; |
|
300 |
int &_in_arc; |
|
301 |
int _arc_num; |
|
302 |
|
|
303 |
// Pivot rule data |
|
304 |
int _block_size; |
|
305 |
int _next_arc; |
|
306 |
|
|
307 |
public: |
|
308 |
|
|
309 |
/// Constructor |
|
310 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
|
311 |
_arc(ns._arc), _source(ns._source), _target(ns._target), |
|
312 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
313 |
_in_arc(ns._in_arc), _arc_num(ns._arc_num), _next_arc(0) |
|
314 |
{ |
|
315 |
// The main parameters of the pivot rule |
|
316 |
const double BLOCK_SIZE_FACTOR = 2.0; |
|
317 |
const int MIN_BLOCK_SIZE = 10; |
|
318 |
|
|
319 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)), |
|
320 |
MIN_BLOCK_SIZE ); |
|
321 |
} |
|
322 |
|
|
323 |
/// Find next entering arc |
|
324 |
bool findEnteringArc() { |
|
325 |
Cost c, min = 0; |
|
326 |
int cnt = _block_size; |
|
327 |
int e, min_arc = _next_arc; |
|
328 |
for (e = _next_arc; e < _arc_num; ++e) { |
|
329 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
330 |
if (c < min) { |
|
331 |
min = c; |
|
332 |
min_arc = e; |
|
333 |
} |
|
334 |
if (--cnt == 0) { |
|
335 |
if (min < 0) break; |
|
336 |
cnt = _block_size; |
|
337 |
} |
|
338 |
} |
|
339 |
if (min == 0 || cnt > 0) { |
|
340 |
for (e = 0; e < _next_arc; ++e) { |
|
341 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
342 |
if (c < min) { |
|
343 |
min = c; |
|
344 |
min_arc = e; |
|
345 |
} |
|
346 |
if (--cnt == 0) { |
|
347 |
if (min < 0) break; |
|
348 |
cnt = _block_size; |
|
349 |
} |
|
350 |
} |
|
351 |
} |
|
352 |
if (min >= 0) return false; |
|
353 |
_in_arc = min_arc; |
|
354 |
_next_arc = e; |
|
355 |
return true; |
|
356 |
} |
|
357 |
|
|
358 |
}; //class BlockSearchPivotRule |
|
359 |
|
|
360 |
|
|
361 |
/// \brief Implementation of the "Candidate List" pivot rule for the |
|
362 |
/// \ref NetworkSimplex "network simplex" algorithm. |
|
363 |
/// |
|
364 |
/// This class implements the "Candidate List" pivot rule |
|
365 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
366 |
/// |
|
367 |
/// For more information see \ref NetworkSimplex::run(). |
|
368 |
class CandidateListPivotRule |
|
369 |
{ |
|
370 |
private: |
|
371 |
|
|
372 |
// References to the NetworkSimplex class |
|
373 |
const ArcVector &_arc; |
|
374 |
const IntVector &_source; |
|
375 |
const IntVector &_target; |
|
376 |
const CostVector &_cost; |
|
377 |
const IntVector &_state; |
|
378 |
const CostVector &_pi; |
|
379 |
int &_in_arc; |
|
380 |
int _arc_num; |
|
381 |
|
|
382 |
// Pivot rule data |
|
383 |
IntVector _candidates; |
|
384 |
int _list_length, _minor_limit; |
|
385 |
int _curr_length, _minor_count; |
|
386 |
int _next_arc; |
|
387 |
|
|
388 |
public: |
|
389 |
|
|
390 |
/// Constructor |
|
391 |
CandidateListPivotRule(NetworkSimplex &ns) : |
|
392 |
_arc(ns._arc), _source(ns._source), _target(ns._target), |
|
393 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
394 |
_in_arc(ns._in_arc), _arc_num(ns._arc_num), _next_arc(0) |
|
395 |
{ |
|
396 |
// The main parameters of the pivot rule |
|
397 |
const double LIST_LENGTH_FACTOR = 1.0; |
|
398 |
const int MIN_LIST_LENGTH = 10; |
|
399 |
const double MINOR_LIMIT_FACTOR = 0.1; |
|
400 |
const int MIN_MINOR_LIMIT = 3; |
|
401 |
|
|
402 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * sqrt(_arc_num)), |
|
403 |
MIN_LIST_LENGTH ); |
|
404 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
|
405 |
MIN_MINOR_LIMIT ); |
|
406 |
_curr_length = _minor_count = 0; |
|
407 |
_candidates.resize(_list_length); |
|
408 |
} |
|
409 |
|
|
410 |
/// Find next entering arc |
|
411 |
bool findEnteringArc() { |
|
412 |
Cost min, c; |
|
413 |
int e, min_arc = _next_arc; |
|
414 |
if (_curr_length > 0 && _minor_count < _minor_limit) { |
|
415 |
// Minor iteration: select the best eligible arc from the |
|
416 |
// current candidate list |
|
417 |
++_minor_count; |
|
418 |
min = 0; |
|
419 |
for (int i = 0; i < _curr_length; ++i) { |
|
420 |
e = _candidates[i]; |
|
421 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
422 |
if (c < min) { |
|
423 |
min = c; |
|
424 |
min_arc = e; |
|
425 |
} |
|
426 |
if (c >= 0) { |
|
427 |
_candidates[i--] = _candidates[--_curr_length]; |
|
428 |
} |
|
429 |
} |
|
430 |
if (min < 0) { |
|
431 |
_in_arc = min_arc; |
|
432 |
return true; |
|
433 |
} |
|
434 |
} |
|
435 |
|
|
436 |
// Major iteration: build a new candidate list |
|
437 |
min = 0; |
|
438 |
_curr_length = 0; |
|
439 |
for (e = _next_arc; e < _arc_num; ++e) { |
|
440 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
441 |
if (c < 0) { |
|
442 |
_candidates[_curr_length++] = e; |
|
443 |
if (c < min) { |
|
444 |
min = c; |
|
445 |
min_arc = e; |
|
446 |
} |
|
447 |
if (_curr_length == _list_length) break; |
|
448 |
} |
|
449 |
} |
|
450 |
if (_curr_length < _list_length) { |
|
451 |
for (e = 0; e < _next_arc; ++e) { |
|
452 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
453 |
if (c < 0) { |
|
454 |
_candidates[_curr_length++] = e; |
|
455 |
if (c < min) { |
|
456 |
min = c; |
|
457 |
min_arc = e; |
|
458 |
} |
|
459 |
if (_curr_length == _list_length) break; |
|
460 |
} |
|
461 |
} |
|
462 |
} |
|
463 |
if (_curr_length == 0) return false; |
|
464 |
_minor_count = 1; |
|
465 |
_in_arc = min_arc; |
|
466 |
_next_arc = e; |
|
467 |
return true; |
|
468 |
} |
|
469 |
|
|
470 |
}; //class CandidateListPivotRule |
|
471 |
|
|
472 |
|
|
473 |
/// \brief Implementation of the "Altering Candidate List" pivot rule |
|
474 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
475 |
/// |
|
476 |
/// This class implements the "Altering Candidate List" pivot rule |
|
477 |
/// for the \ref NetworkSimplex "network simplex" algorithm. |
|
478 |
/// |
|
479 |
/// For more information see \ref NetworkSimplex::run(). |
|
480 |
class AlteringListPivotRule |
|
481 |
{ |
|
482 |
private: |
|
483 |
|
|
484 |
// References to the NetworkSimplex class |
|
485 |
const ArcVector &_arc; |
|
486 |
const IntVector &_source; |
|
487 |
const IntVector &_target; |
|
488 |
const CostVector &_cost; |
|
489 |
const IntVector &_state; |
|
490 |
const CostVector &_pi; |
|
491 |
int &_in_arc; |
|
492 |
int _arc_num; |
|
493 |
|
|
494 |
// Pivot rule data |
|
495 |
int _block_size, _head_length, _curr_length; |
|
496 |
int _next_arc; |
|
497 |
IntVector _candidates; |
|
498 |
CostVector _cand_cost; |
|
499 |
|
|
500 |
// Functor class to compare arcs during sort of the candidate list |
|
501 |
class SortFunc |
|
502 |
{ |
|
503 |
private: |
|
504 |
const CostVector &_map; |
|
505 |
public: |
|
506 |
SortFunc(const CostVector &map) : _map(map) {} |
|
507 |
bool operator()(int left, int right) { |
|
508 |
return _map[left] > _map[right]; |
|
509 |
} |
|
510 |
}; |
|
511 |
|
|
512 |
SortFunc _sort_func; |
|
513 |
|
|
514 |
public: |
|
515 |
|
|
516 |
/// Constructor |
|
517 |
AlteringListPivotRule(NetworkSimplex &ns) : |
|
518 |
_arc(ns._arc), _source(ns._source), _target(ns._target), |
|
519 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
520 |
_in_arc(ns._in_arc), _arc_num(ns._arc_num), |
|
521 |
_next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost) |
|
522 |
{ |
|
523 |
// The main parameters of the pivot rule |
|
524 |
const double BLOCK_SIZE_FACTOR = 1.5; |
|
525 |
const int MIN_BLOCK_SIZE = 10; |
|
526 |
const double HEAD_LENGTH_FACTOR = 0.1; |
|
527 |
const int MIN_HEAD_LENGTH = 3; |
|
528 |
|
|
529 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)), |
|
530 |
MIN_BLOCK_SIZE ); |
|
531 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
|
532 |
MIN_HEAD_LENGTH ); |
|
533 |
_candidates.resize(_head_length + _block_size); |
|
534 |
_curr_length = 0; |
|
535 |
} |
|
536 |
|
|
537 |
/// Find next entering arc |
|
538 |
bool findEnteringArc() { |
|
539 |
// Check the current candidate list |
|
540 |
int e; |
|
541 |
for (int i = 0; i < _curr_length; ++i) { |
|
542 |
e = _candidates[i]; |
|
543 |
_cand_cost[e] = _state[e] * |
|
544 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
545 |
if (_cand_cost[e] >= 0) { |
|
546 |
_candidates[i--] = _candidates[--_curr_length]; |
|
547 |
} |
|
548 |
} |
|
549 |
|
|
550 |
// Extend the list |
|
551 |
int cnt = _block_size; |
|
552 |
int last_edge = 0; |
|
553 |
int limit = _head_length; |
|
554 |
|
|
555 |
for (int e = _next_arc; e < _arc_num; ++e) { |
|
556 |
_cand_cost[e] = _state[e] * |
|
557 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
558 |
if (_cand_cost[e] < 0) { |
|
559 |
_candidates[_curr_length++] = e; |
|
560 |
last_edge = e; |
|
561 |
} |
|
562 |
if (--cnt == 0) { |
|
563 |
if (_curr_length > limit) break; |
|
564 |
limit = 0; |
|
565 |
cnt = _block_size; |
|
566 |
} |
|
567 |
} |
|
568 |
if (_curr_length <= limit) { |
|
569 |
for (int e = 0; e < _next_arc; ++e) { |
|
570 |
_cand_cost[e] = _state[e] * |
|
571 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
572 |
if (_cand_cost[e] < 0) { |
|
573 |
_candidates[_curr_length++] = e; |
|
574 |
last_edge = e; |
|
575 |
} |
|
576 |
if (--cnt == 0) { |
|
577 |
if (_curr_length > limit) break; |
|
578 |
limit = 0; |
|
579 |
cnt = _block_size; |
|
580 |
} |
|
581 |
} |
|
582 |
} |
|
583 |
if (_curr_length == 0) return false; |
|
584 |
_next_arc = last_edge + 1; |
|
585 |
|
|
586 |
// Make heap of the candidate list (approximating a partial sort) |
|
587 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
|
588 |
_sort_func ); |
|
589 |
|
|
590 |
// Pop the first element of the heap |
|
591 |
_in_arc = _candidates[0]; |
|
592 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
|
593 |
_sort_func ); |
|
594 |
_curr_length = std::min(_head_length, _curr_length - 1); |
|
595 |
return true; |
|
596 |
} |
|
597 |
|
|
598 |
}; //class AlteringListPivotRule |
|
599 |
|
|
600 |
public: |
|
601 |
|
|
602 |
/// \brief General constructor (with lower bounds). |
|
603 |
/// |
|
604 |
/// General constructor (with lower bounds). |
|
605 |
/// |
|
606 |
/// \param digraph The digraph the algorithm runs on. |
|
607 |
/// \param lower The lower bounds of the arcs. |
|
608 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
609 |
/// \param cost The cost (length) values of the arcs. |
|
610 |
/// \param supply The supply values of the nodes (signed). |
|
611 |
NetworkSimplex( const Digraph &digraph, |
|
612 |
const LowerMap &lower, |
|
613 |
const CapacityMap &capacity, |
|
614 |
const CostMap &cost, |
|
615 |
const SupplyMap &supply ) : |
|
616 |
_orig_graph(digraph), _orig_lower(&lower), _orig_cap(capacity), |
|
617 |
_orig_cost(cost), _orig_supply(&supply), |
|
618 |
_flow_result(NULL), _potential_result(NULL), |
|
619 |
_local_flow(false), _local_potential(false), |
|
620 |
_node_id(digraph) |
|
621 |
{} |
|
622 |
|
|
623 |
/// \brief General constructor (without lower bounds). |
|
624 |
/// |
|
625 |
/// General constructor (without lower bounds). |
|
626 |
/// |
|
627 |
/// \param digraph The digraph the algorithm runs on. |
|
628 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
629 |
/// \param cost The cost (length) values of the arcs. |
|
630 |
/// \param supply The supply values of the nodes (signed). |
|
631 |
NetworkSimplex( const Digraph &digraph, |
|
632 |
const CapacityMap &capacity, |
|
633 |
const CostMap &cost, |
|
634 |
const SupplyMap &supply ) : |
|
635 |
_orig_graph(digraph), _orig_lower(NULL), _orig_cap(capacity), |
|
636 |
_orig_cost(cost), _orig_supply(&supply), |
|
637 |
_flow_result(NULL), _potential_result(NULL), |
|
638 |
_local_flow(false), _local_potential(false), |
|
639 |
_node_id(digraph) |
|
640 |
{} |
|
641 |
|
|
642 |
/// \brief Simple constructor (with lower bounds). |
|
643 |
/// |
|
644 |
/// Simple constructor (with lower bounds). |
|
645 |
/// |
|
646 |
/// \param digraph The digraph the algorithm runs on. |
|
647 |
/// \param lower The lower bounds of the arcs. |
|
648 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
649 |
/// \param cost The cost (length) values of the arcs. |
|
650 |
/// \param s The source node. |
|
651 |
/// \param t The target node. |
|
652 |
/// \param flow_value The required amount of flow from node \c s |
|
653 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
654 |
NetworkSimplex( const Digraph &digraph, |
|
655 |
const LowerMap &lower, |
|
656 |
const CapacityMap &capacity, |
|
657 |
const CostMap &cost, |
|
658 |
Node s, Node t, |
|
659 |
Capacity flow_value ) : |
|
660 |
_orig_graph(digraph), _orig_lower(&lower), _orig_cap(capacity), |
|
661 |
_orig_cost(cost), _orig_supply(NULL), |
|
662 |
_orig_source(s), _orig_target(t), _orig_flow_value(flow_value), |
|
663 |
_flow_result(NULL), _potential_result(NULL), |
|
664 |
_local_flow(false), _local_potential(false), |
|
665 |
_node_id(digraph) |
|
666 |
{} |
|
667 |
|
|
668 |
/// \brief Simple constructor (without lower bounds). |
|
669 |
/// |
|
670 |
/// Simple constructor (without lower bounds). |
|
671 |
/// |
|
672 |
/// \param digraph The digraph the algorithm runs on. |
|
673 |
/// \param capacity The capacities (upper bounds) of the arcs. |
|
674 |
/// \param cost The cost (length) values of the arcs. |
|
675 |
/// \param s The source node. |
|
676 |
/// \param t The target node. |
|
677 |
/// \param flow_value The required amount of flow from node \c s |
|
678 |
/// to node \c t (i.e. the supply of \c s and the demand of \c t). |
|
679 |
NetworkSimplex( const Digraph &digraph, |
|
680 |
const CapacityMap &capacity, |
|
681 |
const CostMap &cost, |
|
682 |
Node s, Node t, |
|
683 |
Capacity flow_value ) : |
|
684 |
_orig_graph(digraph), _orig_lower(NULL), _orig_cap(capacity), |
|
685 |
_orig_cost(cost), _orig_supply(NULL), |
|
686 |
_orig_source(s), _orig_target(t), _orig_flow_value(flow_value), |
|
687 |
_flow_result(NULL), _potential_result(NULL), |
|
688 |
_local_flow(false), _local_potential(false), |
|
689 |
_node_id(digraph) |
|
690 |
{} |
|
691 |
|
|
692 |
/// Destructor. |
|
693 |
~NetworkSimplex() { |
|
694 |
if (_local_flow) delete _flow_result; |
|
695 |
if (_local_potential) delete _potential_result; |
|
696 |
} |
|
697 |
|
|
698 |
/// \brief Set the flow map. |
|
699 |
/// |
|
700 |
/// This function sets the flow map. |
|
701 |
/// |
|
702 |
/// \return <tt>(*this)</tt> |
|
703 |
NetworkSimplex& flowMap(FlowMap &map) { |
|
704 |
if (_local_flow) { |
|
705 |
delete _flow_result; |
|
706 |
_local_flow = false; |
|
707 |
} |
|
708 |
_flow_result = ↦ |
|
709 |
return *this; |
|
710 |
} |
|
711 |
|
|
712 |
/// \brief Set the potential map. |
|
713 |
/// |
|
714 |
/// This function sets the potential map. |
|
715 |
/// |
|
716 |
/// \return <tt>(*this)</tt> |
|
717 |
NetworkSimplex& potentialMap(PotentialMap &map) { |
|
718 |
if (_local_potential) { |
|
719 |
delete _potential_result; |
|
720 |
_local_potential = false; |
|
721 |
} |
|
722 |
_potential_result = ↦ |
|
723 |
return *this; |
|
724 |
} |
|
725 |
|
|
726 |
/// \name Execution control |
|
727 |
/// The algorithm can be executed using the |
|
728 |
/// \ref lemon::NetworkSimplex::run() "run()" function. |
|
729 |
/// @{ |
|
730 |
|
|
731 |
/// \brief Run the algorithm. |
|
732 |
/// |
|
733 |
/// This function runs the algorithm. |
|
734 |
/// |
|
735 |
/// \param pivot_rule The pivot rule that is used during the |
|
736 |
/// algorithm. |
|
737 |
/// |
|
738 |
/// The available pivot rules: |
|
739 |
/// |
|
740 |
/// - FIRST_ELIGIBLE_PIVOT The next eligible arc is selected in |
|
741 |
/// a wraparound fashion in every iteration |
|
742 |
/// (\ref FirstEligiblePivotRule). |
|
743 |
/// |
|
744 |
/// - BEST_ELIGIBLE_PIVOT The best eligible arc is selected in |
|
745 |
/// every iteration (\ref BestEligiblePivotRule). |
|
746 |
/// |
|
747 |
/// - BLOCK_SEARCH_PIVOT A specified number of arcs are examined in |
|
748 |
/// every iteration in a wraparound fashion and the best eligible |
|
749 |
/// arc is selected from this block (\ref BlockSearchPivotRule). |
|
750 |
/// |
|
751 |
/// - CANDIDATE_LIST_PIVOT In a major iteration a candidate list is |
|
752 |
/// built from eligible arcs in a wraparound fashion and in the |
|
753 |
/// following minor iterations the best eligible arc is selected |
|
754 |
/// from this list (\ref CandidateListPivotRule). |
|
755 |
/// |
|
756 |
/// - ALTERING_LIST_PIVOT It is a modified version of the |
|
757 |
/// "Candidate List" pivot rule. It keeps only the several best |
|
758 |
/// eligible arcs from the former candidate list and extends this |
|
759 |
/// list in every iteration (\ref AlteringListPivotRule). |
|
760 |
/// |
|
761 |
/// According to our comprehensive benchmark tests the "Block Search" |
|
762 |
/// pivot rule proved to be the fastest and the most robust on |
|
763 |
/// various test inputs. Thus it is the default option. |
|
764 |
/// |
|
765 |
/// \return \c true if a feasible flow can be found. |
|
766 |
bool run(PivotRuleEnum pivot_rule = BLOCK_SEARCH_PIVOT) { |
|
767 |
return init() && start(pivot_rule); |
|
768 |
} |
|
769 |
|
|
770 |
/// @} |
|
771 |
|
|
772 |
/// \name Query Functions |
|
773 |
/// The results of the algorithm can be obtained using these |
|
774 |
/// functions.\n |
|
775 |
/// \ref lemon::NetworkSimplex::run() "run()" must be called before |
|
776 |
/// using them. |
|
777 |
/// @{ |
|
778 |
|
|
779 |
/// \brief Return a const reference to the flow map. |
|
780 |
/// |
|
781 |
/// This function returns a const reference to an arc map storing |
|
782 |
/// the found flow. |
|
783 |
/// |
|
784 |
/// \pre \ref run() must be called before using this function. |
|
785 |
const FlowMap& flowMap() const { |
|
786 |
return *_flow_result; |
|
787 |
} |
|
788 |
|
|
789 |
/// \brief Return a const reference to the potential map |
|
790 |
/// (the dual solution). |
|
791 |
/// |
|
792 |
/// This function returns a const reference to a node map storing |
|
793 |
/// the found potentials (the dual solution). |
|
794 |
/// |
|
795 |
/// \pre \ref run() must be called before using this function. |
|
796 |
const PotentialMap& potentialMap() const { |
|
797 |
return *_potential_result; |
|
798 |
} |
|
799 |
|
|
800 |
/// \brief Return the flow on the given arc. |
|
801 |
/// |
|
802 |
/// This function returns the flow on the given arc. |
|
803 |
/// |
|
804 |
/// \pre \ref run() must be called before using this function. |
|
805 |
Capacity flow(const Arc& arc) const { |
|
806 |
return (*_flow_result)[arc]; |
|
807 |
} |
|
808 |
|
|
809 |
/// \brief Return the potential of the given node. |
|
810 |
/// |
|
811 |
/// This function returns the potential of the given node. |
|
812 |
/// |
|
813 |
/// \pre \ref run() must be called before using this function. |
|
814 |
Cost potential(const Node& node) const { |
|
815 |
return (*_potential_result)[node]; |
|
816 |
} |
|
817 |
|
|
818 |
/// \brief Return the total cost of the found flow. |
|
819 |
/// |
|
820 |
/// This function returns the total cost of the found flow. |
|
821 |
/// The complexity of the function is \f$ O(e) \f$. |
|
822 |
/// |
|
823 |
/// \pre \ref run() must be called before using this function. |
|
824 |
Cost totalCost() const { |
|
825 |
Cost c = 0; |
|
826 |
for (ArcIt e(_orig_graph); e != INVALID; ++e) |
|
827 |
c += (*_flow_result)[e] * _orig_cost[e]; |
|
828 |
return c; |
|
829 |
} |
|
830 |
|
|
831 |
/// @} |
|
832 |
|
|
833 |
private: |
|
834 |
|
|
835 |
// Initialize internal data structures |
|
836 |
bool init() { |
|
837 |
// Initialize result maps |
|
838 |
if (!_flow_result) { |
|
839 |
_flow_result = new FlowMap(_orig_graph); |
|
840 |
_local_flow = true; |
|
841 |
} |
|
842 |
if (!_potential_result) { |
|
843 |
_potential_result = new PotentialMap(_orig_graph); |
|
844 |
_local_potential = true; |
|
845 |
} |
|
846 |
|
|
847 |
// Initialize vectors |
|
848 |
_node_num = countNodes(_orig_graph); |
|
849 |
_arc_num = countArcs(_orig_graph); |
|
850 |
int all_node_num = _node_num + 1; |
|
851 |
int all_edge_num = _arc_num + _node_num; |
|
852 |
|
|
853 |
_arc.resize(_arc_num); |
|
854 |
_node.reserve(_node_num); |
|
855 |
_source.resize(all_edge_num); |
|
856 |
_target.resize(all_edge_num); |
|
857 |
|
|
858 |
_cap.resize(all_edge_num); |
|
859 |
_cost.resize(all_edge_num); |
|
860 |
_supply.resize(all_node_num); |
|
861 |
_flow.resize(all_edge_num, 0); |
|
862 |
_pi.resize(all_node_num, 0); |
|
863 |
|
|
864 |
_depth.resize(all_node_num); |
|
865 |
_parent.resize(all_node_num); |
|
866 |
_pred.resize(all_node_num); |
|
867 |
_thread.resize(all_node_num); |
|
868 |
_forward.resize(all_node_num); |
|
869 |
_state.resize(all_edge_num, STATE_LOWER); |
|
870 |
|
|
871 |
// Initialize node related data |
|
872 |
bool valid_supply = true; |
|
873 |
if (_orig_supply) { |
|
874 |
Supply sum = 0; |
|
875 |
int i = 0; |
|
876 |
for (NodeIt n(_orig_graph); n != INVALID; ++n, ++i) { |
|
877 |
_node.push_back(n); |
|
878 |
_node_id[n] = i; |
|
879 |
_supply[i] = (*_orig_supply)[n]; |
|
880 |
sum += _supply[i]; |
|
881 |
} |
|
882 |
valid_supply = (sum == 0); |
|
883 |
} else { |
|
884 |
int i = 0; |
|
885 |
for (NodeIt n(_orig_graph); n != INVALID; ++n, ++i) { |
|
886 |
_node.push_back(n); |
|
887 |
_node_id[n] = i; |
|
888 |
_supply[i] = 0; |
|
889 |
} |
|
890 |
_supply[_node_id[_orig_source]] = _orig_flow_value; |
|
891 |
_supply[_node_id[_orig_target]] = -_orig_flow_value; |
|
892 |
} |
|
893 |
if (!valid_supply) return false; |
|
894 |
|
|
895 |
// Set data for the artificial root node |
|
896 |
_root = _node_num; |
|
897 |
_depth[_root] = 0; |
|
898 |
_parent[_root] = -1; |
|
899 |
_pred[_root] = -1; |
|
900 |
_thread[_root] = 0; |
|
901 |
_supply[_root] = 0; |
|
902 |
_pi[_root] = 0; |
|
903 |
|
|
904 |
// Store the arcs in a mixed order |
|
905 |
int k = std::max(int(sqrt(_arc_num)), 10); |
|
906 |
int i = 0; |
|
907 |
for (ArcIt e(_orig_graph); e != INVALID; ++e) { |
|
908 |
_arc[i] = e; |
|
909 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
|
910 |
} |
|
911 |
|
|
912 |
// Initialize arc maps |
|
913 |
for (int i = 0; i != _arc_num; ++i) { |
|
914 |
Arc e = _arc[i]; |
|
915 |
_source[i] = _node_id[_orig_graph.source(e)]; |
|
916 |
_target[i] = _node_id[_orig_graph.target(e)]; |
|
917 |
_cost[i] = _orig_cost[e]; |
|
918 |
_cap[i] = _orig_cap[e]; |
|
919 |
} |
|
920 |
|
|
921 |
// Remove non-zero lower bounds |
|
922 |
if (_orig_lower) { |
|
923 |
for (int i = 0; i != _arc_num; ++i) { |
|
924 |
Capacity c = (*_orig_lower)[_arc[i]]; |
|
925 |
if (c != 0) { |
|
926 |
_cap[i] -= c; |
|
927 |
_supply[_source[i]] -= c; |
|
928 |
_supply[_target[i]] += c; |
|
929 |
} |
|
930 |
} |
|
931 |
} |
|
932 |
|
|
933 |
// Add artificial arcs and initialize the spanning tree data structure |
|
934 |
Cost max_cost = std::numeric_limits<Cost>::max() / 4; |
|
935 |
Capacity max_cap = std::numeric_limits<Capacity>::max(); |
|
936 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
937 |
_thread[u] = u + 1; |
|
938 |
_depth[u] = 1; |
|
939 |
_parent[u] = _root; |
|
940 |
_pred[u] = e; |
|
941 |
if (_supply[u] >= 0) { |
|
942 |
_flow[e] = _supply[u]; |
|
943 |
_forward[u] = true; |
|
944 |
_pi[u] = -max_cost; |
|
945 |
} else { |
|
946 |
_flow[e] = -_supply[u]; |
|
947 |
_forward[u] = false; |
|
948 |
_pi[u] = max_cost; |
|
949 |
} |
|
950 |
_cost[e] = max_cost; |
|
951 |
_cap[e] = max_cap; |
|
952 |
_state[e] = STATE_TREE; |
|
953 |
} |
|
954 |
|
|
955 |
return true; |
|
956 |
} |
|
957 |
|
|
958 |
// Find the join node |
|
959 |
void findJoinNode() { |
|
960 |
int u = _source[_in_arc]; |
|
961 |
int v = _target[_in_arc]; |
|
962 |
while (_depth[u] > _depth[v]) u = _parent[u]; |
|
963 |
while (_depth[v] > _depth[u]) v = _parent[v]; |
|
964 |
while (u != v) { |
|
965 |
u = _parent[u]; |
|
966 |
v = _parent[v]; |
|
967 |
} |
|
968 |
join = u; |
|
969 |
} |
|
970 |
|
|
971 |
// Find the leaving arc of the cycle and returns true if the |
|
972 |
// leaving arc is not the same as the entering arc |
|
973 |
bool findLeavingArc() { |
|
974 |
// Initialize first and second nodes according to the direction |
|
975 |
// of the cycle |
|
976 |
if (_state[_in_arc] == STATE_LOWER) { |
|
977 |
first = _source[_in_arc]; |
|
978 |
second = _target[_in_arc]; |
|
979 |
} else { |
|
980 |
first = _target[_in_arc]; |
|
981 |
second = _source[_in_arc]; |
|
982 |
} |
|
983 |
delta = _cap[_in_arc]; |
|
984 |
int result = 0; |
|
985 |
Capacity d; |
|
986 |
int e; |
|
987 |
|
|
988 |
// Search the cycle along the path form the first node to the root |
|
989 |
for (int u = first; u != join; u = _parent[u]) { |
|
990 |
e = _pred[u]; |
|
991 |
d = _forward[u] ? _flow[e] : _cap[e] - _flow[e]; |
|
992 |
if (d < delta) { |
|
993 |
delta = d; |
|
994 |
u_out = u; |
|
995 |
result = 1; |
|
996 |
} |
|
997 |
} |
|
998 |
// Search the cycle along the path form the second node to the root |
|
999 |
for (int u = second; u != join; u = _parent[u]) { |
|
1000 |
e = _pred[u]; |
|
1001 |
d = _forward[u] ? _cap[e] - _flow[e] : _flow[e]; |
|
1002 |
if (d <= delta) { |
|
1003 |
delta = d; |
|
1004 |
u_out = u; |
|
1005 |
result = 2; |
|
1006 |
} |
|
1007 |
} |
|
1008 |
|
|
1009 |
if (result == 1) { |
|
1010 |
u_in = first; |
|
1011 |
v_in = second; |
|
1012 |
} else { |
|
1013 |
u_in = second; |
|
1014 |
v_in = first; |
|
1015 |
} |
|
1016 |
return result != 0; |
|
1017 |
} |
|
1018 |
|
|
1019 |
// Change _flow and _state vectors |
|
1020 |
void changeFlow(bool change) { |
|
1021 |
// Augment along the cycle |
|
1022 |
if (delta > 0) { |
|
1023 |
Capacity val = _state[_in_arc] * delta; |
|
1024 |
_flow[_in_arc] += val; |
|
1025 |
for (int u = _source[_in_arc]; u != join; u = _parent[u]) { |
|
1026 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
|
1027 |
} |
|
1028 |
for (int u = _target[_in_arc]; u != join; u = _parent[u]) { |
|
1029 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
|
1030 |
} |
|
1031 |
} |
|
1032 |
// Update the state of the entering and leaving arcs |
|
1033 |
if (change) { |
|
1034 |
_state[_in_arc] = STATE_TREE; |
|
1035 |
_state[_pred[u_out]] = |
|
1036 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
|
1037 |
} else { |
|
1038 |
_state[_in_arc] = -_state[_in_arc]; |
|
1039 |
} |
|
1040 |
} |
|
1041 |
|
|
1042 |
// Update _thread and _parent vectors |
|
1043 |
void updateThreadParent() { |
|
1044 |
int u; |
|
1045 |
v_out = _parent[u_out]; |
|
1046 |
|
|
1047 |
// Handle the case when join and v_out coincide |
|
1048 |
bool par_first = false; |
|
1049 |
if (join == v_out) { |
|
1050 |
for (u = join; u != u_in && u != v_in; u = _thread[u]) ; |
|
1051 |
if (u == v_in) { |
|
1052 |
par_first = true; |
|
1053 |
while (_thread[u] != u_out) u = _thread[u]; |
|
1054 |
first = u; |
|
1055 |
} |
|
1056 |
} |
|
1057 |
|
|
1058 |
// Find the last successor of u_in (u) and the node after it (right) |
|
1059 |
// according to the thread index |
|
1060 |
for (u = u_in; _depth[_thread[u]] > _depth[u_in]; u = _thread[u]) ; |
|
1061 |
right = _thread[u]; |
|
1062 |
if (_thread[v_in] == u_out) { |
|
1063 |
for (last = u; _depth[last] > _depth[u_out]; last = _thread[last]) ; |
|
1064 |
if (last == u_out) last = _thread[last]; |
|
1065 |
} |
|
1066 |
else last = _thread[v_in]; |
|
1067 |
|
|
1068 |
// Update stem nodes |
|
1069 |
_thread[v_in] = stem = u_in; |
|
1070 |
par_stem = v_in; |
|
1071 |
while (stem != u_out) { |
|
1072 |
_thread[u] = new_stem = _parent[stem]; |
|
1073 |
|
|
1074 |
// Find the node just before the stem node (u) according to |
|
1075 |
// the original thread index |
|
1076 |
for (u = new_stem; _thread[u] != stem; u = _thread[u]) ; |
|
1077 |
_thread[u] = right; |
|
1078 |
|
|
1079 |
// Change the parent node of stem and shift stem and par_stem nodes |
|
1080 |
_parent[stem] = par_stem; |
|
1081 |
par_stem = stem; |
|
1082 |
stem = new_stem; |
|
1083 |
|
|
1084 |
// Find the last successor of stem (u) and the node after it (right) |
|
1085 |
// according to the thread index |
|
1086 |
for (u = stem; _depth[_thread[u]] > _depth[stem]; u = _thread[u]) ; |
|
1087 |
right = _thread[u]; |
|
1088 |
} |
|
1089 |
_parent[u_out] = par_stem; |
|
1090 |
_thread[u] = last; |
|
1091 |
|
|
1092 |
if (join == v_out && par_first) { |
|
1093 |
if (first != v_in) _thread[first] = right; |
|
1094 |
} else { |
|
1095 |
for (u = v_out; _thread[u] != u_out; u = _thread[u]) ; |
|
1096 |
_thread[u] = right; |
|
1097 |
} |
|
1098 |
} |
|
1099 |
|
|
1100 |
// Update _pred and _forward vectors |
|
1101 |
void updatePredArc() { |
|
1102 |
int u = u_out, v; |
|
1103 |
while (u != u_in) { |
|
1104 |
v = _parent[u]; |
|
1105 |
_pred[u] = _pred[v]; |
|
1106 |
_forward[u] = !_forward[v]; |
|
1107 |
u = v; |
|
1108 |
} |
|
1109 |
_pred[u_in] = _in_arc; |
|
1110 |
_forward[u_in] = (u_in == _source[_in_arc]); |
|
1111 |
} |
|
1112 |
|
|
1113 |
// Update _depth and _potential vectors |
|
1114 |
void updateDepthPotential() { |
|
1115 |
_depth[u_in] = _depth[v_in] + 1; |
|
1116 |
Cost sigma = _forward[u_in] ? |
|
1117 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
|
1118 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
|
1119 |
_pi[u_in] += sigma; |
|
1120 |
for(int u = _thread[u_in]; _parent[u] != -1; u = _thread[u]) { |
|
1121 |
_depth[u] = _depth[_parent[u]] + 1; |
|
1122 |
if (_depth[u] <= _depth[u_in]) break; |
|
1123 |
_pi[u] += sigma; |
|
1124 |
} |
|
1125 |
} |
|
1126 |
|
|
1127 |
// Execute the algorithm |
|
1128 |
bool start(PivotRuleEnum pivot_rule) { |
|
1129 |
// Select the pivot rule implementation |
|
1130 |
switch (pivot_rule) { |
|
1131 |
case FIRST_ELIGIBLE_PIVOT: |
|
1132 |
return start<FirstEligiblePivotRule>(); |
|
1133 |
case BEST_ELIGIBLE_PIVOT: |
|
1134 |
return start<BestEligiblePivotRule>(); |
|
1135 |
case BLOCK_SEARCH_PIVOT: |
|
1136 |
return start<BlockSearchPivotRule>(); |
|
1137 |
case CANDIDATE_LIST_PIVOT: |
|
1138 |
return start<CandidateListPivotRule>(); |
|
1139 |
case ALTERING_LIST_PIVOT: |
|
1140 |
return start<AlteringListPivotRule>(); |
|
1141 |
} |
|
1142 |
return false; |
|
1143 |
} |
|
1144 |
|
|
1145 |
template<class PivotRuleImplementation> |
|
1146 |
bool start() { |
|
1147 |
PivotRuleImplementation pivot(*this); |
|
1148 |
|
|
1149 |
// Execute the network simplex algorithm |
|
1150 |
while (pivot.findEnteringArc()) { |
|
1151 |
findJoinNode(); |
|
1152 |
bool change = findLeavingArc(); |
|
1153 |
changeFlow(change); |
|
1154 |
if (change) { |
|
1155 |
updateThreadParent(); |
|
1156 |
updatePredArc(); |
|
1157 |
updateDepthPotential(); |
|
1158 |
} |
|
1159 |
} |
|
1160 |
|
|
1161 |
// Check if the flow amount equals zero on all the artificial arcs |
|
1162 |
for (int e = _arc_num; e != _arc_num + _node_num; ++e) { |
|
1163 |
if (_flow[e] > 0) return false; |
|
1164 |
} |
|
1165 |
|
|
1166 |
// Copy flow values to _flow_result |
|
1167 |
if (_orig_lower) { |
|
1168 |
for (int i = 0; i != _arc_num; ++i) { |
|
1169 |
Arc e = _arc[i]; |
|
1170 |
(*_flow_result)[e] = (*_orig_lower)[e] + _flow[i]; |
|
1171 |
} |
|
1172 |
} else { |
|
1173 |
for (int i = 0; i != _arc_num; ++i) { |
|
1174 |
(*_flow_result)[_arc[i]] = _flow[i]; |
|
1175 |
} |
|
1176 |
} |
|
1177 |
// Copy potential values to _potential_result |
|
1178 |
for (int i = 0; i != _node_num; ++i) { |
|
1179 |
(*_potential_result)[_node[i]] = _pi[i]; |
|
1180 |
} |
|
1181 |
|
|
1182 |
return true; |
|
1183 |
} |
|
1184 |
|
|
1185 |
}; //class NetworkSimplex |
|
1186 |
|
|
1187 |
///@} |
|
1188 |
|
|
1189 |
} //namespace lemon |
|
1190 |
|
|
1191 |
#endif //LEMON_NETWORK_SIMPLEX_H |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#include <iostream> |
|
20 |
#include <fstream> |
|
21 |
|
|
22 |
#include <lemon/list_graph.h> |
|
23 |
#include <lemon/smart_graph.h> |
|
24 |
#include <lemon/lgf_reader.h> |
|
25 |
|
|
26 |
//#include <lemon/cycle_canceling.h> |
|
27 |
//#include <lemon/capacity_scaling.h> |
|
28 |
//#include <lemon/cost_scaling.h> |
|
29 |
#include <lemon/network_simplex.h> |
|
30 |
//#include <lemon/min_cost_flow.h> |
|
31 |
//#include <lemon/min_cost_max_flow.h> |
|
32 |
|
|
33 |
#include <lemon/concepts/digraph.h> |
|
34 |
#include <lemon/concept_check.h> |
|
35 |
|
|
36 |
#include "test_tools.h" |
|
37 |
|
|
38 |
using namespace lemon; |
|
39 |
|
|
40 |
char test_lgf[] = |
|
41 |
"@nodes\n" |
|
42 |
"label sup1 sup2 sup3\n" |
|
43 |
" 1 20 27 0\n" |
|
44 |
" 2 -4 0 0\n" |
|
45 |
" 3 0 0 0\n" |
|
46 |
" 4 0 0 0\n" |
|
47 |
" 5 9 0 0\n" |
|
48 |
" 6 -6 0 0\n" |
|
49 |
" 7 0 0 0\n" |
|
50 |
" 8 0 0 0\n" |
|
51 |
" 9 3 0 0\n" |
|
52 |
" 10 -2 0 0\n" |
|
53 |
" 11 0 0 0\n" |
|
54 |
" 12 -20 -27 0\n" |
|
55 |
"\n" |
|
56 |
"@arcs\n" |
|
57 |
" cost cap low1 low2\n" |
|
58 |
" 1 2 70 11 0 8\n" |
|
59 |
" 1 3 150 3 0 1\n" |
|
60 |
" 1 4 80 15 0 2\n" |
|
61 |
" 2 8 80 12 0 0\n" |
|
62 |
" 3 5 140 5 0 3\n" |
|
63 |
" 4 6 60 10 0 1\n" |
|
64 |
" 4 7 80 2 0 0\n" |
|
65 |
" 4 8 110 3 0 0\n" |
|
66 |
" 5 7 60 14 0 0\n" |
|
67 |
" 5 11 120 12 0 0\n" |
|
68 |
" 6 3 0 3 0 0\n" |
|
69 |
" 6 9 140 4 0 0\n" |
|
70 |
" 6 10 90 8 0 0\n" |
|
71 |
" 7 1 30 5 0 0\n" |
|
72 |
" 8 12 60 16 0 4\n" |
|
73 |
" 9 12 50 6 0 0\n" |
|
74 |
"10 12 70 13 0 5\n" |
|
75 |
"10 2 100 7 0 0\n" |
|
76 |
"10 7 60 10 0 0\n" |
|
77 |
"11 10 20 14 0 6\n" |
|
78 |
"12 11 30 10 0 0\n" |
|
79 |
"\n" |
|
80 |
"@attributes\n" |
|
81 |
"source 1\n" |
|
82 |
"target 12\n"; |
|
83 |
|
|
84 |
|
|
85 |
// Check the interface of an MCF algorithm |
|
86 |
template <typename GR, typename Value> |
|
87 |
class McfClassConcept |
|
88 |
{ |
|
89 |
public: |
|
90 |
|
|
91 |
template <typename MCF> |
|
92 |
struct Constraints { |
|
93 |
void constraints() { |
|
94 |
checkConcept<concepts::Digraph, GR>(); |
|
95 |
|
|
96 |
MCF mcf_test1(g, lower, upper, cost, sup); |
|
97 |
MCF mcf_test2(g, upper, cost, sup); |
|
98 |
MCF mcf_test3(g, lower, upper, cost, n, n, k); |
|
99 |
MCF mcf_test4(g, upper, cost, n, n, k); |
|
100 |
|
|
101 |
// TODO: This part should be enabled and the next part |
|
102 |
// should be removed if map copying is supported |
|
103 |
/* |
|
104 |
flow = mcf_test1.flowMap(); |
|
105 |
mcf_test1.flowMap(flow); |
|
106 |
|
|
107 |
pot = mcf_test1.potentialMap(); |
|
108 |
mcf_test1.potentialMap(pot); |
|
109 |
*/ |
|
110 |
/**/ |
|
111 |
const typename MCF::FlowMap &fm = |
|
112 |
mcf_test1.flowMap(); |
|
113 |
mcf_test1.flowMap(flow); |
|
114 |
const typename MCF::PotentialMap &pm = |
|
115 |
mcf_test1.potentialMap(); |
|
116 |
mcf_test1.potentialMap(pot); |
|
117 |
ignore_unused_variable_warning(fm); |
|
118 |
ignore_unused_variable_warning(pm); |
|
119 |
/**/ |
|
120 |
|
|
121 |
mcf_test1.run(); |
|
122 |
|
|
123 |
v = mcf_test1.totalCost(); |
|
124 |
v = mcf_test1.flow(a); |
|
125 |
v = mcf_test1.potential(n); |
|
126 |
} |
|
127 |
|
|
128 |
typedef typename GR::Node Node; |
|
129 |
typedef typename GR::Arc Arc; |
|
130 |
typedef concepts::ReadMap<Node, Value> NM; |
|
131 |
typedef concepts::ReadMap<Arc, Value> AM; |
|
132 |
|
|
133 |
const GR &g; |
|
134 |
const AM &lower; |
|
135 |
const AM &upper; |
|
136 |
const AM &cost; |
|
137 |
const NM ⊃ |
|
138 |
const Node &n; |
|
139 |
const Arc &a; |
|
140 |
const Value &k; |
|
141 |
Value v; |
|
142 |
|
|
143 |
typename MCF::FlowMap &flow; |
|
144 |
typename MCF::PotentialMap &pot; |
|
145 |
}; |
|
146 |
|
|
147 |
}; |
|
148 |
|
|
149 |
|
|
150 |
// Check the feasibility of the given flow (primal soluiton) |
|
151 |
template < typename GR, typename LM, typename UM, |
|
152 |
typename SM, typename FM > |
|
153 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
|
154 |
const SM& supply, const FM& flow ) |
|
155 |
{ |
|
156 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
157 |
|
|
158 |
for (ArcIt e(gr); e != INVALID; ++e) { |
|
159 |
if (flow[e] < lower[e] || flow[e] > upper[e]) return false; |
|
160 |
} |
|
161 |
|
|
162 |
for (NodeIt n(gr); n != INVALID; ++n) { |
|
163 |
typename SM::Value sum = 0; |
|
164 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
|
165 |
sum += flow[e]; |
|
166 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
|
167 |
sum -= flow[e]; |
|
168 |
if (sum != supply[n]) return false; |
|
169 |
} |
|
170 |
|
|
171 |
return true; |
|
172 |
} |
|
173 |
|
|
174 |
// Check the feasibility of the given potentials (dual soluiton) |
|
175 |
// using the Complementary Slackness optimality condition |
|
176 |
template < typename GR, typename LM, typename UM, |
|
177 |
typename CM, typename FM, typename PM > |
|
178 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
|
179 |
const CM& cost, const FM& flow, const PM& pi ) |
|
180 |
{ |
|
181 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
182 |
|
|
183 |
bool opt = true; |
|
184 |
for (ArcIt e(gr); opt && e != INVALID; ++e) { |
|
185 |
typename CM::Value red_cost = |
|
186 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
|
187 |
opt = red_cost == 0 || |
|
188 |
(red_cost > 0 && flow[e] == lower[e]) || |
|
189 |
(red_cost < 0 && flow[e] == upper[e]); |
|
190 |
} |
|
191 |
return opt; |
|
192 |
} |
|
193 |
|
|
194 |
// Run a minimum cost flow algorithm and check the results |
|
195 |
template < typename MCF, typename GR, |
|
196 |
typename LM, typename UM, |
|
197 |
typename CM, typename SM > |
|
198 |
void checkMcf( const MCF& mcf, bool mcf_result, |
|
199 |
const GR& gr, const LM& lower, const UM& upper, |
|
200 |
const CM& cost, const SM& supply, |
|
201 |
bool result, typename CM::Value total, |
|
202 |
const std::string &test_id = "" ) |
|
203 |
{ |
|
204 |
check(mcf_result == result, "Wrong result " + test_id); |
|
205 |
if (result) { |
|
206 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap()), |
|
207 |
"The flow is not feasible " + test_id); |
|
208 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
|
209 |
check(checkPotential(gr, lower, upper, cost, mcf.flowMap(), |
|
210 |
mcf.potentialMap()), |
|
211 |
"Wrong potentials " + test_id); |
|
212 |
} |
|
213 |
} |
|
214 |
|
|
215 |
int main() |
|
216 |
{ |
|
217 |
// Check the interfaces |
|
218 |
{ |
|
219 |
typedef int Value; |
|
220 |
// This typedef should be enabled if the standard maps are |
|
221 |
// reference maps in the graph concepts |
|
222 |
//typedef concepts::Digraph GR; |
|
223 |
typedef ListDigraph GR; |
|
224 |
typedef concepts::ReadMap<GR::Node, Value> NM; |
|
225 |
typedef concepts::ReadMap<GR::Arc, Value> AM; |
|
226 |
|
|
227 |
//checkConcept< McfClassConcept<GR, Value>, |
|
228 |
// CycleCanceling<GR, AM, AM, AM, NM> >(); |
|
229 |
//checkConcept< McfClassConcept<GR, Value>, |
|
230 |
// CapacityScaling<GR, AM, AM, AM, NM> >(); |
|
231 |
//checkConcept< McfClassConcept<GR, Value>, |
|
232 |
// CostScaling<GR, AM, AM, AM, NM> >(); |
|
233 |
checkConcept< McfClassConcept<GR, Value>, |
|
234 |
NetworkSimplex<GR, AM, AM, AM, NM> >(); |
|
235 |
//checkConcept< MinCostFlow<GR, Value>, |
|
236 |
// NetworkSimplex<GR, AM, AM, AM, NM> >(); |
|
237 |
} |
|
238 |
|
|
239 |
// Run various MCF tests |
|
240 |
typedef ListDigraph Digraph; |
|
241 |
DIGRAPH_TYPEDEFS(ListDigraph); |
|
242 |
|
|
243 |
// Read the test digraph |
|
244 |
Digraph gr; |
|
245 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
|
246 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr); |
|
247 |
Node v, w; |
|
248 |
|
|
249 |
std::istringstream input(test_lgf); |
|
250 |
DigraphReader<Digraph>(gr, input) |
|
251 |
.arcMap("cost", c) |
|
252 |
.arcMap("cap", u) |
|
253 |
.arcMap("low1", l1) |
|
254 |
.arcMap("low2", l2) |
|
255 |
.nodeMap("sup1", s1) |
|
256 |
.nodeMap("sup2", s2) |
|
257 |
.nodeMap("sup3", s3) |
|
258 |
.node("source", v) |
|
259 |
.node("target", w) |
|
260 |
.run(); |
|
261 |
|
|
262 |
/* |
|
263 |
// A. Test CapacityScaling with scaling |
|
264 |
{ |
|
265 |
CapacityScaling<Digraph> mcf1(gr, u, c, s1); |
|
266 |
CapacityScaling<Digraph> mcf2(gr, u, c, v, w, 27); |
|
267 |
CapacityScaling<Digraph> mcf3(gr, u, c, s3); |
|
268 |
CapacityScaling<Digraph> mcf4(gr, l2, u, c, s1); |
|
269 |
CapacityScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
270 |
CapacityScaling<Digraph> mcf6(gr, l2, u, c, s3); |
|
271 |
|
|
272 |
checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true, 5240, "#A1"); |
|
273 |
checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true, 7620, "#A2"); |
|
274 |
checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true, 0, "#A3"); |
|
275 |
checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true, 5970, "#A4"); |
|
276 |
checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true, 8010, "#A5"); |
|
277 |
checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false, 0, "#A6"); |
|
278 |
} |
|
279 |
|
|
280 |
// B. Test CapacityScaling without scaling |
|
281 |
{ |
|
282 |
CapacityScaling<Digraph> mcf1(gr, u, c, s1); |
|
283 |
CapacityScaling<Digraph> mcf2(gr, u, c, v, w, 27); |
|
284 |
CapacityScaling<Digraph> mcf3(gr, u, c, s3); |
|
285 |
CapacityScaling<Digraph> mcf4(gr, l2, u, c, s1); |
|
286 |
CapacityScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
287 |
CapacityScaling<Digraph> mcf6(gr, l2, u, c, s3); |
|
288 |
|
|
289 |
checkMcf(mcf1, mcf1.run(false), gr, l1, u, c, s1, true, 5240, "#B1"); |
|
290 |
checkMcf(mcf2, mcf2.run(false), gr, l1, u, c, s2, true, 7620, "#B2"); |
|
291 |
checkMcf(mcf3, mcf3.run(false), gr, l1, u, c, s3, true, 0, "#B3"); |
|
292 |
checkMcf(mcf4, mcf4.run(false), gr, l2, u, c, s1, true, 5970, "#B4"); |
|
293 |
checkMcf(mcf5, mcf5.run(false), gr, l2, u, c, s2, true, 8010, "#B5"); |
|
294 |
checkMcf(mcf6, mcf6.run(false), gr, l2, u, c, s3, false, 0, "#B6"); |
|
295 |
} |
|
296 |
|
|
297 |
// C. Test CostScaling using partial augment-relabel method |
|
298 |
{ |
|
299 |
CostScaling<Digraph> mcf1(gr, u, c, s1); |
|
300 |
CostScaling<Digraph> mcf2(gr, u, c, v, w, 27); |
|
301 |
CostScaling<Digraph> mcf3(gr, u, c, s3); |
|
302 |
CostScaling<Digraph> mcf4(gr, l2, u, c, s1); |
|
303 |
CostScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
304 |
CostScaling<Digraph> mcf6(gr, l2, u, c, s3); |
|
305 |
|
|
306 |
checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true, 5240, "#C1"); |
|
307 |
checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true, 7620, "#C2"); |
|
308 |
checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true, 0, "#C3"); |
|
309 |
checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true, 5970, "#C4"); |
|
310 |
checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true, 8010, "#C5"); |
|
311 |
checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false, 0, "#C6"); |
|
312 |
} |
|
313 |
|
|
314 |
// D. Test CostScaling using push-relabel method |
|
315 |
{ |
|
316 |
CostScaling<Digraph> mcf1(gr, u, c, s1); |
|
317 |
CostScaling<Digraph> mcf2(gr, u, c, v, w, 27); |
|
318 |
CostScaling<Digraph> mcf3(gr, u, c, s3); |
|
319 |
CostScaling<Digraph> mcf4(gr, l2, u, c, s1); |
|
320 |
CostScaling<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
321 |
CostScaling<Digraph> mcf6(gr, l2, u, c, s3); |
|
322 |
|
|
323 |
checkMcf(mcf1, mcf1.run(false), gr, l1, u, c, s1, true, 5240, "#D1"); |
|
324 |
checkMcf(mcf2, mcf2.run(false), gr, l1, u, c, s2, true, 7620, "#D2"); |
|
325 |
checkMcf(mcf3, mcf3.run(false), gr, l1, u, c, s3, true, 0, "#D3"); |
|
326 |
checkMcf(mcf4, mcf4.run(false), gr, l2, u, c, s1, true, 5970, "#D4"); |
|
327 |
checkMcf(mcf5, mcf5.run(false), gr, l2, u, c, s2, true, 8010, "#D5"); |
|
328 |
checkMcf(mcf6, mcf6.run(false), gr, l2, u, c, s3, false, 0, "#D6"); |
|
329 |
} |
|
330 |
*/ |
|
331 |
|
|
332 |
// E. Test NetworkSimplex with FIRST_ELIGIBLE_PIVOT |
|
333 |
{ |
|
334 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
335 |
NetworkSimplex<Digraph>::FIRST_ELIGIBLE_PIVOT; |
|
336 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
337 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
338 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
339 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
340 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
341 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
342 |
|
|
343 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#E1"); |
|
344 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#E2"); |
|
345 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#E3"); |
|
346 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#E4"); |
|
347 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#E5"); |
|
348 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#E6"); |
|
349 |
} |
|
350 |
|
|
351 |
// F. Test NetworkSimplex with BEST_ELIGIBLE_PIVOT |
|
352 |
{ |
|
353 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
354 |
NetworkSimplex<Digraph>::BEST_ELIGIBLE_PIVOT; |
|
355 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
356 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
357 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
358 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
359 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
360 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
361 |
|
|
362 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#F1"); |
|
363 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#F2"); |
|
364 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#F3"); |
|
365 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#F4"); |
|
366 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#F5"); |
|
367 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#F6"); |
|
368 |
} |
|
369 |
|
|
370 |
// G. Test NetworkSimplex with BLOCK_SEARCH_PIVOT |
|
371 |
{ |
|
372 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
373 |
NetworkSimplex<Digraph>::BLOCK_SEARCH_PIVOT; |
|
374 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
375 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
376 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
377 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
378 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
379 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
380 |
|
|
381 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#G1"); |
|
382 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#G2"); |
|
383 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#G3"); |
|
384 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#G4"); |
|
385 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#G5"); |
|
386 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#G6"); |
|
387 |
} |
|
388 |
|
|
389 |
// H. Test NetworkSimplex with CANDIDATE_LIST_PIVOT |
|
390 |
{ |
|
391 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
392 |
NetworkSimplex<Digraph>::CANDIDATE_LIST_PIVOT; |
|
393 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
394 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
395 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
396 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
397 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
398 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
399 |
|
|
400 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#H1"); |
|
401 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#H2"); |
|
402 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#H3"); |
|
403 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#H4"); |
|
404 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#H5"); |
|
405 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#H6"); |
|
406 |
} |
|
407 |
|
|
408 |
// I. Test NetworkSimplex with ALTERING_LIST_PIVOT |
|
409 |
{ |
|
410 |
NetworkSimplex<Digraph>::PivotRuleEnum pr = |
|
411 |
NetworkSimplex<Digraph>::ALTERING_LIST_PIVOT; |
|
412 |
NetworkSimplex<Digraph> mcf1(gr, u, c, s1); |
|
413 |
NetworkSimplex<Digraph> mcf2(gr, u, c, v, w, 27); |
|
414 |
NetworkSimplex<Digraph> mcf3(gr, u, c, s3); |
|
415 |
NetworkSimplex<Digraph> mcf4(gr, l2, u, c, s1); |
|
416 |
NetworkSimplex<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
417 |
NetworkSimplex<Digraph> mcf6(gr, l2, u, c, s3); |
|
418 |
|
|
419 |
checkMcf(mcf1, mcf1.run(pr), gr, l1, u, c, s1, true, 5240, "#I1"); |
|
420 |
checkMcf(mcf2, mcf2.run(pr), gr, l1, u, c, s2, true, 7620, "#I2"); |
|
421 |
checkMcf(mcf3, mcf3.run(pr), gr, l1, u, c, s3, true, 0, "#I3"); |
|
422 |
checkMcf(mcf4, mcf4.run(pr), gr, l2, u, c, s1, true, 5970, "#I4"); |
|
423 |
checkMcf(mcf5, mcf5.run(pr), gr, l2, u, c, s2, true, 8010, "#I5"); |
|
424 |
checkMcf(mcf6, mcf6.run(pr), gr, l2, u, c, s3, false, 0, "#I6"); |
|
425 |
} |
|
426 |
|
|
427 |
/* |
|
428 |
// J. Test MinCostFlow |
|
429 |
{ |
|
430 |
MinCostFlow<Digraph> mcf1(gr, u, c, s1); |
|
431 |
MinCostFlow<Digraph> mcf2(gr, u, c, v, w, 27); |
|
432 |
MinCostFlow<Digraph> mcf3(gr, u, c, s3); |
|
433 |
MinCostFlow<Digraph> mcf4(gr, l2, u, c, s1); |
|
434 |
MinCostFlow<Digraph> mcf5(gr, l2, u, c, v, w, 27); |
|
435 |
MinCostFlow<Digraph> mcf6(gr, l2, u, c, s3); |
|
436 |
|
|
437 |
checkMcf(mcf1, mcf1.run(), gr, l1, u, c, s1, true, 5240, "#J1"); |
|
438 |
checkMcf(mcf2, mcf2.run(), gr, l1, u, c, s2, true, 7620, "#J2"); |
|
439 |
checkMcf(mcf3, mcf3.run(), gr, l1, u, c, s3, true, 0, "#J3"); |
|
440 |
checkMcf(mcf4, mcf4.run(), gr, l2, u, c, s1, true, 5970, "#J4"); |
|
441 |
checkMcf(mcf5, mcf5.run(), gr, l2, u, c, s2, true, 8010, "#J5"); |
|
442 |
checkMcf(mcf6, mcf6.run(), gr, l2, u, c, s3, false, 0, "#J6"); |
|
443 |
} |
|
444 |
*/ |
|
445 |
/* |
|
446 |
// K. Test MinCostMaxFlow |
|
447 |
{ |
|
448 |
MinCostMaxFlow<Digraph> mcmf(gr, u, c, v, w); |
|
449 |
mcmf.run(); |
|
450 |
checkMcf(mcmf, true, gr, l1, u, c, s3, true, 7620, "#K1"); |
|
451 |
} |
|
452 |
*/ |
|
453 |
|
|
454 |
return 0; |
|
455 |
} |
... | ... |
@@ -82,12 +82,13 @@ |
82 | 82 |
lemon/list_graph.h \ |
83 | 83 |
lemon/maps.h \ |
84 | 84 |
lemon/math.h \ |
85 | 85 |
lemon/max_matching.h \ |
86 | 86 |
lemon/min_cost_arborescence.h \ |
87 | 87 |
lemon/nauty_reader.h \ |
88 |
lemon/network_simplex.h \ |
|
88 | 89 |
lemon/path.h \ |
89 | 90 |
lemon/preflow.h \ |
90 | 91 |
lemon/radix_sort.h \ |
91 | 92 |
lemon/random.h \ |
92 | 93 |
lemon/smart_graph.h \ |
93 | 94 |
lemon/soplex.h \ |
... | ... |
@@ -23,12 +23,13 @@ |
23 | 23 |
test/hao_orlin_test \ |
24 | 24 |
test/heap_test \ |
25 | 25 |
test/kruskal_test \ |
26 | 26 |
test/maps_test \ |
27 | 27 |
test/max_matching_test \ |
28 | 28 |
test/min_cost_arborescence_test \ |
29 |
test/min_cost_flow_test \ |
|
29 | 30 |
test/path_test \ |
30 | 31 |
test/preflow_test \ |
31 | 32 |
test/radix_sort_test \ |
32 | 33 |
test/random_test \ |
33 | 34 |
test/suurballe_test \ |
34 | 35 |
test/test_tools_fail \ |
... | ... |
@@ -65,12 +66,13 @@ |
65 | 66 |
test_hao_orlin_test_SOURCES = test/hao_orlin_test.cc |
66 | 67 |
test_lp_test_SOURCES = test/lp_test.cc |
67 | 68 |
test_maps_test_SOURCES = test/maps_test.cc |
68 | 69 |
test_mip_test_SOURCES = test/mip_test.cc |
69 | 70 |
test_max_matching_test_SOURCES = test/max_matching_test.cc |
70 | 71 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
72 |
test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc |
|
71 | 73 |
test_path_test_SOURCES = test/path_test.cc |
72 | 74 |
test_preflow_test_SOURCES = test/preflow_test.cc |
73 | 75 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
74 | 76 |
test_suurballe_test_SOURCES = test/suurballe_test.cc |
75 | 77 |
test_random_test_SOURCES = test/random_test.cc |
76 | 78 |
test_test_tools_fail_SOURCES = test/test_tools_fail.cc |
0 comments (0 inline)