... | ... |
@@ -736,9 +736,9 @@ |
736 | 736 |
/// with mean <tt>1/lambda</tt>. |
737 | 737 |
/// |
738 | 738 |
double exponential(double lambda=1.0) |
739 | 739 |
{ |
740 |
return -std::log(real<double>())/lambda; |
|
740 |
return -std::log(1.0-real<double>())/lambda; |
|
741 | 741 |
} |
742 | 742 |
|
743 | 743 |
/// Gamma distribution with given integer shape |
744 | 744 |
|
... | ... |
@@ -781,8 +781,35 @@ |
781 | 781 |
} while(nu>std::pow(xi,delta-1.0)*std::exp(-xi)); |
782 | 782 |
return theta*(xi-gamma(int(std::floor(k)))); |
783 | 783 |
} |
784 | 784 |
|
785 |
/// Weibull distribution |
|
786 |
|
|
787 |
/// This function generates a Weibull distribution random number. |
|
788 |
/// |
|
789 |
///\param k shape parameter (<tt>k>0</tt>) |
|
790 |
///\param lambda scale parameter (<tt>lambda>0</tt>) |
|
791 |
/// |
|
792 |
double weibull(double k,double lambda) |
|
793 |
{ |
|
794 |
return lambda*pow(-std::log(1.0-real<double>()),1.0/k); |
|
795 |
} |
|
796 |
|
|
797 |
/// Pareto distribution |
|
798 |
|
|
799 |
/// This function generates a Pareto distribution random number. |
|
800 |
/// |
|
801 |
///\param x_min location parameter (<tt>x_min>0</tt>) |
|
802 |
///\param k shape parameter (<tt>k>0</tt>) |
|
803 |
/// |
|
804 |
///\warning This function used inverse transform sampling, therefore may |
|
805 |
///suffer from numerical unstability. |
|
806 |
/// |
|
807 |
///\todo Implement a numerically stable method |
|
808 |
double pareto(double x_min,double k) |
|
809 |
{ |
|
810 |
return x_min*pow(1.0-real<double>(),1.0/k); |
|
811 |
} |
|
785 | 812 |
|
786 | 813 |
///@} |
787 | 814 |
|
788 | 815 |
///\name Two dimensional distributions |
0 comments (0 inline)