... | ... |
@@ -46,7 +46,7 @@ |
46 | 46 |
/// Note that this problem is a special case of the \ref min_cost_flow |
47 | 47 |
/// "minimum cost flow problem". This implementation is actually an |
48 | 48 |
/// efficient specialized version of the \ref CapacityScaling |
49 |
/// " |
|
49 |
/// "successive shortest path" algorithm directly for this problem. |
|
50 | 50 |
/// Therefore this class provides query functions for flow values and |
51 | 51 |
/// node potentials (the dual solution) just like the minimum cost flow |
52 | 52 |
/// algorithms. |
... | ... |
@@ -57,7 +57,7 @@ |
57 | 57 |
/// |
58 | 58 |
/// \warning Length values should be \e non-negative. |
59 | 59 |
/// |
60 |
/// \note For finding node-disjoint paths this algorithm can be used |
|
60 |
/// \note For finding \e node-disjoint paths, this algorithm can be used |
|
61 | 61 |
/// along with the \ref SplitNodes adaptor. |
62 | 62 |
#ifdef DOXYGEN |
63 | 63 |
template <typename GR, typename LEN> |
... | ... |
@@ -109,39 +109,36 @@ |
109 | 109 |
|
110 | 110 |
private: |
111 | 111 |
|
112 |
// The digraph the algorithm runs on |
|
113 | 112 |
const Digraph &_graph; |
114 |
|
|
115 |
// The main maps |
|
113 |
const LengthMap &_length; |
|
116 | 114 |
const FlowMap &_flow; |
117 |
const LengthMap &_length; |
|
118 |
PotentialMap &_potential; |
|
119 |
|
|
120 |
// The distance map |
|
121 |
PotentialMap _dist; |
|
122 |
// The pred arc map |
|
115 |
PotentialMap &_pi; |
|
123 | 116 |
PredMap &_pred; |
124 |
// The processed (i.e. permanently labeled) nodes |
|
125 |
std::vector<Node> _proc_nodes; |
|
126 |
|
|
127 | 117 |
Node _s; |
128 | 118 |
Node _t; |
129 | 119 |
|
120 |
PotentialMap _dist; |
|
121 |
std::vector<Node> _proc_nodes; |
|
122 |
|
|
130 | 123 |
public: |
131 | 124 |
|
132 |
/// Constructor. |
|
133 |
ResidualDijkstra( const Digraph &graph, |
|
134 |
const FlowMap &flow, |
|
135 |
const LengthMap &length, |
|
136 |
PotentialMap &potential, |
|
137 |
PredMap &pred, |
|
138 |
Node s, Node t ) : |
|
139 |
_graph(graph), _flow(flow), _length(length), _potential(potential), |
|
140 |
|
|
125 |
// Constructor |
|
126 |
ResidualDijkstra(Suurballe &srb) : |
|
127 |
_graph(srb._graph), _length(srb._length), |
|
128 |
_flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred), |
|
129 |
_s(srb._s), _t(srb._t), _dist(_graph) {} |
|
141 | 130 |
|
142 |
/// \brief Run the algorithm. It returns \c true if a path is found |
|
143 |
/// from the source node to the target node. |
|
144 |
|
|
131 |
// Run the algorithm and return true if a path is found |
|
132 |
// from the source node to the target node. |
|
133 |
bool run(int cnt) { |
|
134 |
return cnt == 0 ? startFirst() : start(); |
|
135 |
} |
|
136 |
|
|
137 |
private: |
|
138 |
|
|
139 |
// Execute the algorithm for the first time (the flow and potential |
|
140 |
// functions have to be identically zero). |
|
141 |
bool startFirst() { |
|
145 | 142 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
146 | 143 |
Heap heap(heap_cross_ref); |
147 | 144 |
heap.push(_s, 0); |
... | ... |
@@ -151,10 +148,55 @@ |
151 | 148 |
// Process nodes |
152 | 149 |
while (!heap.empty() && heap.top() != _t) { |
153 | 150 |
Node u = heap.top(), v; |
154 |
Length d = heap.prio() |
|
151 |
Length d = heap.prio(), dn; |
|
155 | 152 |
_dist[u] = heap.prio(); |
153 |
_proc_nodes.push_back(u); |
|
156 | 154 |
heap.pop(); |
155 |
|
|
156 |
// Traverse outgoing arcs |
|
157 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) { |
|
158 |
v = _graph.target(e); |
|
159 |
switch(heap.state(v)) { |
|
160 |
case Heap::PRE_HEAP: |
|
161 |
heap.push(v, d + _length[e]); |
|
162 |
_pred[v] = e; |
|
163 |
break; |
|
164 |
case Heap::IN_HEAP: |
|
165 |
dn = d + _length[e]; |
|
166 |
if (dn < heap[v]) { |
|
167 |
heap.decrease(v, dn); |
|
168 |
_pred[v] = e; |
|
169 |
} |
|
170 |
break; |
|
171 |
case Heap::POST_HEAP: |
|
172 |
break; |
|
173 |
} |
|
174 |
} |
|
175 |
} |
|
176 |
if (heap.empty()) return false; |
|
177 |
|
|
178 |
// Update potentials of processed nodes |
|
179 |
Length t_dist = heap.prio(); |
|
180 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
|
181 |
_pi[_proc_nodes[i]] = _dist[_proc_nodes[i]] - t_dist; |
|
182 |
return true; |
|
183 |
} |
|
184 |
|
|
185 |
// Execute the algorithm. |
|
186 |
bool start() { |
|
187 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
|
188 |
Heap heap(heap_cross_ref); |
|
189 |
heap.push(_s, 0); |
|
190 |
_pred[_s] = INVALID; |
|
191 |
_proc_nodes.clear(); |
|
192 |
|
|
193 |
// Process nodes |
|
194 |
while (!heap.empty() && heap.top() != _t) { |
|
195 |
Node u = heap.top(), v; |
|
196 |
Length d = heap.prio() + _pi[u], dn; |
|
197 |
_dist[u] = heap.prio(); |
|
157 | 198 |
_proc_nodes.push_back(u); |
199 |
heap.pop(); |
|
158 | 200 |
|
159 | 201 |
// Traverse outgoing arcs |
160 | 202 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) { |
... | ... |
@@ -162,13 +204,13 @@ |
162 | 204 |
v = _graph.target(e); |
163 | 205 |
switch(heap.state(v)) { |
164 | 206 |
case Heap::PRE_HEAP: |
165 |
heap.push(v, d + _length[e] - |
|
207 |
heap.push(v, d + _length[e] - _pi[v]); |
|
166 | 208 |
_pred[v] = e; |
167 | 209 |
break; |
168 | 210 |
case Heap::IN_HEAP: |
169 |
nd = d + _length[e] - _potential[v]; |
|
170 |
if (nd < heap[v]) { |
|
171 |
|
|
211 |
dn = d + _length[e] - _pi[v]; |
|
212 |
if (dn < heap[v]) { |
|
213 |
heap.decrease(v, dn); |
|
172 | 214 |
_pred[v] = e; |
173 | 215 |
} |
174 | 216 |
break; |
... | ... |
@@ -184,13 +226,13 @@ |
184 | 226 |
v = _graph.source(e); |
185 | 227 |
switch(heap.state(v)) { |
186 | 228 |
case Heap::PRE_HEAP: |
187 |
heap.push(v, d - _length[e] - |
|
229 |
heap.push(v, d - _length[e] - _pi[v]); |
|
188 | 230 |
_pred[v] = e; |
189 | 231 |
break; |
190 | 232 |
case Heap::IN_HEAP: |
191 |
nd = d - _length[e] - _potential[v]; |
|
192 |
if (nd < heap[v]) { |
|
193 |
|
|
233 |
dn = d - _length[e] - _pi[v]; |
|
234 |
if (dn < heap[v]) { |
|
235 |
heap.decrease(v, dn); |
|
194 | 236 |
_pred[v] = e; |
195 | 237 |
} |
196 | 238 |
break; |
... | ... |
@@ -205,7 +247,7 @@ |
205 | 247 |
// Update potentials of processed nodes |
206 | 248 |
Length t_dist = heap.prio(); |
207 | 249 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
208 |
|
|
250 |
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; |
|
209 | 251 |
return true; |
210 | 252 |
} |
211 | 253 |
|
... | ... |
@@ -226,19 +268,16 @@ |
226 | 268 |
bool _local_potential; |
227 | 269 |
|
228 | 270 |
// The source node |
229 |
Node |
|
271 |
Node _s; |
|
230 | 272 |
// The target node |
231 |
Node |
|
273 |
Node _t; |
|
232 | 274 |
|
233 | 275 |
// Container to store the found paths |
234 |
std::vector< |
|
276 |
std::vector<Path> _paths; |
|
235 | 277 |
int _path_num; |
236 | 278 |
|
237 | 279 |
// The pred arc map |
238 | 280 |
PredMap _pred; |
239 |
// Implementation of the Dijkstra algorithm for finding augmenting |
|
240 |
// shortest paths in the residual network |
|
241 |
ResidualDijkstra *_dijkstra; |
|
242 | 281 |
|
243 | 282 |
public: |
244 | 283 |
|
... | ... |
@@ -258,7 +297,6 @@ |
258 | 297 |
~Suurballe() { |
259 | 298 |
if (_local_flow) delete _flow; |
260 | 299 |
if (_local_potential) delete _potential; |
261 |
delete _dijkstra; |
|
262 | 300 |
} |
263 | 301 |
|
264 | 302 |
/// \brief Set the flow map. |
... | ... |
@@ -342,7 +380,7 @@ |
342 | 380 |
/// |
343 | 381 |
/// \param s The source node. |
344 | 382 |
void init(const Node& s) { |
345 |
|
|
383 |
_s = s; |
|
346 | 384 |
|
347 | 385 |
// Initialize maps |
348 | 386 |
if (!_flow) { |
... | ... |
@@ -372,20 +410,18 @@ |
372 | 410 |
/// |
373 | 411 |
/// \pre \ref init() must be called before using this function. |
374 | 412 |
int findFlow(const Node& t, int k = 2) { |
375 |
_target = t; |
|
376 |
_dijkstra = |
|
377 |
new ResidualDijkstra( _graph, *_flow, _length, *_potential, _pred, |
|
378 |
_source, _target ); |
|
413 |
_t = t; |
|
414 |
ResidualDijkstra dijkstra(*this); |
|
379 | 415 |
|
380 | 416 |
// Find shortest paths |
381 | 417 |
_path_num = 0; |
382 | 418 |
while (_path_num < k) { |
383 | 419 |
// Run Dijkstra |
384 |
if (! |
|
420 |
if (!dijkstra.run(_path_num)) break; |
|
385 | 421 |
++_path_num; |
386 | 422 |
|
387 | 423 |
// Set the flow along the found shortest path |
388 |
Node u = |
|
424 |
Node u = _t; |
|
389 | 425 |
Arc e; |
390 | 426 |
while ((e = _pred[u]) != INVALID) { |
391 | 427 |
if (u == _graph.target(e)) { |
... | ... |
@@ -402,8 +438,8 @@ |
402 | 438 |
|
403 | 439 |
/// \brief Compute the paths from the flow. |
404 | 440 |
/// |
405 |
/// This function computes the paths from the found minimum cost flow, |
|
406 |
/// which is the union of some arc-disjoint paths. |
|
441 |
/// This function computes arc-disjoint paths from the found minimum |
|
442 |
/// cost flow, which is the union of them. |
|
407 | 443 |
/// |
408 | 444 |
/// \pre \ref init() and \ref findFlow() must be called before using |
409 | 445 |
/// this function. |
... | ... |
@@ -411,15 +447,15 @@ |
411 | 447 |
FlowMap res_flow(_graph); |
412 | 448 |
for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a]; |
413 | 449 |
|
414 |
paths.clear(); |
|
415 |
paths.resize(_path_num); |
|
450 |
_paths.clear(); |
|
451 |
_paths.resize(_path_num); |
|
416 | 452 |
for (int i = 0; i < _path_num; ++i) { |
417 |
Node n = _source; |
|
418 |
while (n != _target) { |
|
453 |
Node n = _s; |
|
454 |
while (n != _t) { |
|
419 | 455 |
OutArcIt e(_graph, n); |
420 | 456 |
for ( ; res_flow[e] == 0; ++e) ; |
421 | 457 |
n = _graph.target(e); |
422 |
|
|
458 |
_paths[i].addBack(e); |
|
423 | 459 |
res_flow[e] = 0; |
424 | 460 |
} |
425 | 461 |
} |
... | ... |
@@ -518,7 +554,7 @@ |
518 | 554 |
/// \pre \ref run() or \ref findPaths() must be called before using |
519 | 555 |
/// this function. |
520 | 556 |
const Path& path(int i) const { |
521 |
return |
|
557 |
return _paths[i]; |
|
522 | 558 |
} |
523 | 559 |
|
524 | 560 |
/// @} |
0 comments (0 inline)