| ... | ... |
@@ -46,7 +46,7 @@ |
| 46 | 46 |
/// Note that this problem is a special case of the \ref min_cost_flow |
| 47 | 47 |
/// "minimum cost flow problem". This implementation is actually an |
| 48 | 48 |
/// efficient specialized version of the \ref CapacityScaling |
| 49 |
/// " |
|
| 49 |
/// "successive shortest path" algorithm directly for this problem. |
|
| 50 | 50 |
/// Therefore this class provides query functions for flow values and |
| 51 | 51 |
/// node potentials (the dual solution) just like the minimum cost flow |
| 52 | 52 |
/// algorithms. |
| ... | ... |
@@ -57,7 +57,7 @@ |
| 57 | 57 |
/// |
| 58 | 58 |
/// \warning Length values should be \e non-negative. |
| 59 | 59 |
/// |
| 60 |
/// \note For finding node-disjoint paths this algorithm can be used |
|
| 60 |
/// \note For finding \e node-disjoint paths, this algorithm can be used |
|
| 61 | 61 |
/// along with the \ref SplitNodes adaptor. |
| 62 | 62 |
#ifdef DOXYGEN |
| 63 | 63 |
template <typename GR, typename LEN> |
| ... | ... |
@@ -109,39 +109,36 @@ |
| 109 | 109 |
|
| 110 | 110 |
private: |
| 111 | 111 |
|
| 112 |
// The digraph the algorithm runs on |
|
| 113 | 112 |
const Digraph &_graph; |
| 114 |
|
|
| 115 |
// The main maps |
|
| 113 |
const LengthMap &_length; |
|
| 116 | 114 |
const FlowMap &_flow; |
| 117 |
const LengthMap &_length; |
|
| 118 |
PotentialMap &_potential; |
|
| 119 |
|
|
| 120 |
// The distance map |
|
| 121 |
PotentialMap _dist; |
|
| 122 |
// The pred arc map |
|
| 115 |
PotentialMap &_pi; |
|
| 123 | 116 |
PredMap &_pred; |
| 124 |
// The processed (i.e. permanently labeled) nodes |
|
| 125 |
std::vector<Node> _proc_nodes; |
|
| 126 |
|
|
| 127 | 117 |
Node _s; |
| 128 | 118 |
Node _t; |
| 129 | 119 |
|
| 120 |
PotentialMap _dist; |
|
| 121 |
std::vector<Node> _proc_nodes; |
|
| 122 |
|
|
| 130 | 123 |
public: |
| 131 | 124 |
|
| 132 |
/// Constructor. |
|
| 133 |
ResidualDijkstra( const Digraph &graph, |
|
| 134 |
const FlowMap &flow, |
|
| 135 |
const LengthMap &length, |
|
| 136 |
PotentialMap &potential, |
|
| 137 |
PredMap &pred, |
|
| 138 |
Node s, Node t ) : |
|
| 139 |
_graph(graph), _flow(flow), _length(length), _potential(potential), |
|
| 140 |
|
|
| 125 |
// Constructor |
|
| 126 |
ResidualDijkstra(Suurballe &srb) : |
|
| 127 |
_graph(srb._graph), _length(srb._length), |
|
| 128 |
_flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred), |
|
| 129 |
_s(srb._s), _t(srb._t), _dist(_graph) {}
|
|
| 141 | 130 |
|
| 142 |
/// \brief Run the algorithm. It returns \c true if a path is found |
|
| 143 |
/// from the source node to the target node. |
|
| 144 |
|
|
| 131 |
// Run the algorithm and return true if a path is found |
|
| 132 |
// from the source node to the target node. |
|
| 133 |
bool run(int cnt) {
|
|
| 134 |
return cnt == 0 ? startFirst() : start(); |
|
| 135 |
} |
|
| 136 |
|
|
| 137 |
private: |
|
| 138 |
|
|
| 139 |
// Execute the algorithm for the first time (the flow and potential |
|
| 140 |
// functions have to be identically zero). |
|
| 141 |
bool startFirst() {
|
|
| 145 | 142 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
| 146 | 143 |
Heap heap(heap_cross_ref); |
| 147 | 144 |
heap.push(_s, 0); |
| ... | ... |
@@ -151,10 +148,55 @@ |
| 151 | 148 |
// Process nodes |
| 152 | 149 |
while (!heap.empty() && heap.top() != _t) {
|
| 153 | 150 |
Node u = heap.top(), v; |
| 154 |
Length d = heap.prio() |
|
| 151 |
Length d = heap.prio(), dn; |
|
| 155 | 152 |
_dist[u] = heap.prio(); |
| 153 |
_proc_nodes.push_back(u); |
|
| 156 | 154 |
heap.pop(); |
| 155 |
|
|
| 156 |
// Traverse outgoing arcs |
|
| 157 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) {
|
|
| 158 |
v = _graph.target(e); |
|
| 159 |
switch(heap.state(v)) {
|
|
| 160 |
case Heap::PRE_HEAP: |
|
| 161 |
heap.push(v, d + _length[e]); |
|
| 162 |
_pred[v] = e; |
|
| 163 |
break; |
|
| 164 |
case Heap::IN_HEAP: |
|
| 165 |
dn = d + _length[e]; |
|
| 166 |
if (dn < heap[v]) {
|
|
| 167 |
heap.decrease(v, dn); |
|
| 168 |
_pred[v] = e; |
|
| 169 |
} |
|
| 170 |
break; |
|
| 171 |
case Heap::POST_HEAP: |
|
| 172 |
break; |
|
| 173 |
} |
|
| 174 |
} |
|
| 175 |
} |
|
| 176 |
if (heap.empty()) return false; |
|
| 177 |
|
|
| 178 |
// Update potentials of processed nodes |
|
| 179 |
Length t_dist = heap.prio(); |
|
| 180 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
|
| 181 |
_pi[_proc_nodes[i]] = _dist[_proc_nodes[i]] - t_dist; |
|
| 182 |
return true; |
|
| 183 |
} |
|
| 184 |
|
|
| 185 |
// Execute the algorithm. |
|
| 186 |
bool start() {
|
|
| 187 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
|
| 188 |
Heap heap(heap_cross_ref); |
|
| 189 |
heap.push(_s, 0); |
|
| 190 |
_pred[_s] = INVALID; |
|
| 191 |
_proc_nodes.clear(); |
|
| 192 |
|
|
| 193 |
// Process nodes |
|
| 194 |
while (!heap.empty() && heap.top() != _t) {
|
|
| 195 |
Node u = heap.top(), v; |
|
| 196 |
Length d = heap.prio() + _pi[u], dn; |
|
| 197 |
_dist[u] = heap.prio(); |
|
| 157 | 198 |
_proc_nodes.push_back(u); |
| 199 |
heap.pop(); |
|
| 158 | 200 |
|
| 159 | 201 |
// Traverse outgoing arcs |
| 160 | 202 |
for (OutArcIt e(_graph, u); e != INVALID; ++e) {
|
| ... | ... |
@@ -162,13 +204,13 @@ |
| 162 | 204 |
v = _graph.target(e); |
| 163 | 205 |
switch(heap.state(v)) {
|
| 164 | 206 |
case Heap::PRE_HEAP: |
| 165 |
heap.push(v, d + _length[e] - |
|
| 207 |
heap.push(v, d + _length[e] - _pi[v]); |
|
| 166 | 208 |
_pred[v] = e; |
| 167 | 209 |
break; |
| 168 | 210 |
case Heap::IN_HEAP: |
| 169 |
nd = d + _length[e] - _potential[v]; |
|
| 170 |
if (nd < heap[v]) {
|
|
| 171 |
|
|
| 211 |
dn = d + _length[e] - _pi[v]; |
|
| 212 |
if (dn < heap[v]) {
|
|
| 213 |
heap.decrease(v, dn); |
|
| 172 | 214 |
_pred[v] = e; |
| 173 | 215 |
} |
| 174 | 216 |
break; |
| ... | ... |
@@ -184,13 +226,13 @@ |
| 184 | 226 |
v = _graph.source(e); |
| 185 | 227 |
switch(heap.state(v)) {
|
| 186 | 228 |
case Heap::PRE_HEAP: |
| 187 |
heap.push(v, d - _length[e] - |
|
| 229 |
heap.push(v, d - _length[e] - _pi[v]); |
|
| 188 | 230 |
_pred[v] = e; |
| 189 | 231 |
break; |
| 190 | 232 |
case Heap::IN_HEAP: |
| 191 |
nd = d - _length[e] - _potential[v]; |
|
| 192 |
if (nd < heap[v]) {
|
|
| 193 |
|
|
| 233 |
dn = d - _length[e] - _pi[v]; |
|
| 234 |
if (dn < heap[v]) {
|
|
| 235 |
heap.decrease(v, dn); |
|
| 194 | 236 |
_pred[v] = e; |
| 195 | 237 |
} |
| 196 | 238 |
break; |
| ... | ... |
@@ -205,7 +247,7 @@ |
| 205 | 247 |
// Update potentials of processed nodes |
| 206 | 248 |
Length t_dist = heap.prio(); |
| 207 | 249 |
for (int i = 0; i < int(_proc_nodes.size()); ++i) |
| 208 |
|
|
| 250 |
_pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist; |
|
| 209 | 251 |
return true; |
| 210 | 252 |
} |
| 211 | 253 |
|
| ... | ... |
@@ -226,19 +268,16 @@ |
| 226 | 268 |
bool _local_potential; |
| 227 | 269 |
|
| 228 | 270 |
// The source node |
| 229 |
Node |
|
| 271 |
Node _s; |
|
| 230 | 272 |
// The target node |
| 231 |
Node |
|
| 273 |
Node _t; |
|
| 232 | 274 |
|
| 233 | 275 |
// Container to store the found paths |
| 234 |
std::vector< |
|
| 276 |
std::vector<Path> _paths; |
|
| 235 | 277 |
int _path_num; |
| 236 | 278 |
|
| 237 | 279 |
// The pred arc map |
| 238 | 280 |
PredMap _pred; |
| 239 |
// Implementation of the Dijkstra algorithm for finding augmenting |
|
| 240 |
// shortest paths in the residual network |
|
| 241 |
ResidualDijkstra *_dijkstra; |
|
| 242 | 281 |
|
| 243 | 282 |
public: |
| 244 | 283 |
|
| ... | ... |
@@ -258,7 +297,6 @@ |
| 258 | 297 |
~Suurballe() {
|
| 259 | 298 |
if (_local_flow) delete _flow; |
| 260 | 299 |
if (_local_potential) delete _potential; |
| 261 |
delete _dijkstra; |
|
| 262 | 300 |
} |
| 263 | 301 |
|
| 264 | 302 |
/// \brief Set the flow map. |
| ... | ... |
@@ -342,7 +380,7 @@ |
| 342 | 380 |
/// |
| 343 | 381 |
/// \param s The source node. |
| 344 | 382 |
void init(const Node& s) {
|
| 345 |
|
|
| 383 |
_s = s; |
|
| 346 | 384 |
|
| 347 | 385 |
// Initialize maps |
| 348 | 386 |
if (!_flow) {
|
| ... | ... |
@@ -372,20 +410,18 @@ |
| 372 | 410 |
/// |
| 373 | 411 |
/// \pre \ref init() must be called before using this function. |
| 374 | 412 |
int findFlow(const Node& t, int k = 2) {
|
| 375 |
_target = t; |
|
| 376 |
_dijkstra = |
|
| 377 |
new ResidualDijkstra( _graph, *_flow, _length, *_potential, _pred, |
|
| 378 |
_source, _target ); |
|
| 413 |
_t = t; |
|
| 414 |
ResidualDijkstra dijkstra(*this); |
|
| 379 | 415 |
|
| 380 | 416 |
// Find shortest paths |
| 381 | 417 |
_path_num = 0; |
| 382 | 418 |
while (_path_num < k) {
|
| 383 | 419 |
// Run Dijkstra |
| 384 |
if (! |
|
| 420 |
if (!dijkstra.run(_path_num)) break; |
|
| 385 | 421 |
++_path_num; |
| 386 | 422 |
|
| 387 | 423 |
// Set the flow along the found shortest path |
| 388 |
Node u = |
|
| 424 |
Node u = _t; |
|
| 389 | 425 |
Arc e; |
| 390 | 426 |
while ((e = _pred[u]) != INVALID) {
|
| 391 | 427 |
if (u == _graph.target(e)) {
|
| ... | ... |
@@ -402,8 +438,8 @@ |
| 402 | 438 |
|
| 403 | 439 |
/// \brief Compute the paths from the flow. |
| 404 | 440 |
/// |
| 405 |
/// This function computes the paths from the found minimum cost flow, |
|
| 406 |
/// which is the union of some arc-disjoint paths. |
|
| 441 |
/// This function computes arc-disjoint paths from the found minimum |
|
| 442 |
/// cost flow, which is the union of them. |
|
| 407 | 443 |
/// |
| 408 | 444 |
/// \pre \ref init() and \ref findFlow() must be called before using |
| 409 | 445 |
/// this function. |
| ... | ... |
@@ -411,15 +447,15 @@ |
| 411 | 447 |
FlowMap res_flow(_graph); |
| 412 | 448 |
for(ArcIt a(_graph); a != INVALID; ++a) res_flow[a] = (*_flow)[a]; |
| 413 | 449 |
|
| 414 |
paths.clear(); |
|
| 415 |
paths.resize(_path_num); |
|
| 450 |
_paths.clear(); |
|
| 451 |
_paths.resize(_path_num); |
|
| 416 | 452 |
for (int i = 0; i < _path_num; ++i) {
|
| 417 |
Node n = _source; |
|
| 418 |
while (n != _target) {
|
|
| 453 |
Node n = _s; |
|
| 454 |
while (n != _t) {
|
|
| 419 | 455 |
OutArcIt e(_graph, n); |
| 420 | 456 |
for ( ; res_flow[e] == 0; ++e) ; |
| 421 | 457 |
n = _graph.target(e); |
| 422 |
|
|
| 458 |
_paths[i].addBack(e); |
|
| 423 | 459 |
res_flow[e] = 0; |
| 424 | 460 |
} |
| 425 | 461 |
} |
| ... | ... |
@@ -518,7 +554,7 @@ |
| 518 | 554 |
/// \pre \ref run() or \ref findPaths() must be called before using |
| 519 | 555 |
/// this function. |
| 520 | 556 |
const Path& path(int i) const {
|
| 521 |
return |
|
| 557 |
return _paths[i]; |
|
| 522 | 558 |
} |
| 523 | 559 |
|
| 524 | 560 |
/// @} |
0 comments (0 inline)