gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge
0 4 1
merge default
2 files changed with 504 insertions and 10 deletions:
↑ Collapse diff ↑
Ignore white space 128 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef HYPERCUBE_GRAPH_H
20
#define HYPERCUBE_GRAPH_H
21

	
22
#include <vector>
23
#include <lemon/core.h>
24
#include <lemon/assert.h>
25
#include <lemon/bits/graph_extender.h>
26

	
27
///\ingroup graphs
28
///\file
29
///\brief HypercubeGraph class.
30

	
31
namespace lemon {
32

	
33
  class HypercubeGraphBase {
34

	
35
  public:
36

	
37
    typedef HypercubeGraphBase Graph;
38

	
39
    class Node;
40
    class Edge;
41
    class Arc;
42

	
43
  public:
44

	
45
    HypercubeGraphBase() {}
46

	
47
  protected:
48

	
49
    void construct(int dim) {
50
      LEMON_ASSERT(dim >= 1, "The number of dimensions must be at least 1.");
51
      _dim = dim;
52
      _node_num = 1 << dim;
53
      _edge_num = dim * (1 << dim-1);
54
    }
55

	
56
  public:
57

	
58
    typedef True NodeNumTag;
59
    typedef True EdgeNumTag;
60
    typedef True ArcNumTag;
61

	
62
    int nodeNum() const { return _node_num; }
63
    int edgeNum() const { return _edge_num; }
64
    int arcNum() const { return 2 * _edge_num; }
65

	
66
    int maxNodeId() const { return _node_num - 1; }
67
    int maxEdgeId() const { return _edge_num - 1; }
68
    int maxArcId() const { return 2 * _edge_num - 1; }
69

	
70
    static Node nodeFromId(int id) { return Node(id); }
71
    static Edge edgeFromId(int id) { return Edge(id); }
72
    static Arc arcFromId(int id) { return Arc(id); }
73

	
74
    static int id(Node node) { return node._id; }
75
    static int id(Edge edge) { return edge._id; }
76
    static int id(Arc arc) { return arc._id; }
77

	
78
    Node u(Edge edge) const {
79
      int base = edge._id & ((1 << _dim-1) - 1);
80
      int k = edge._id >> _dim-1;
81
      return ((base >> k) << k+1) | (base & ((1 << k) - 1));
82
    }
83

	
84
    Node v(Edge edge) const {
85
      int base = edge._id & ((1 << _dim-1) - 1);
86
      int k = edge._id >> _dim-1;
87
      return ((base >> k) << k+1) | (base & ((1 << k) - 1)) | (1 << k);
88
    }
89

	
90
    Node source(Arc arc) const {
91
      return (arc._id & 1) == 1 ? u(arc) : v(arc);
92
    }
93

	
94
    Node target(Arc arc) const {
95
      return (arc._id & 1) == 1 ? v(arc) : u(arc);
96
    }
97

	
98
    typedef True FindEdgeTag;
99
    typedef True FindArcTag;
100

	
101
    Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
102
      if (prev != INVALID) return INVALID;
103
      int d = u._id ^ v._id;
104
      int k = 0;
105
      if (d == 0) return INVALID;
106
      for ( ; (d & 1) == 0; d >>= 1) ++k;
107
      if (d >> 1 != 0) return INVALID;
108
      return (k << _dim-1) | ((u._id >> k+1) << k) | (u._id & ((1 << k) - 1));
109
    }
110

	
111
    Arc findArc(Node u, Node v, Arc prev = INVALID) const {
112
      Edge edge = findEdge(u, v, prev);
113
      if (edge == INVALID) return INVALID;
114
      int k = edge._id >> _dim-1;
115
      return ((u._id >> k) & 1) == 1 ? edge._id << 1 : (edge._id << 1) | 1;
116
    }
117

	
118
    class Node {
119
      friend class HypercubeGraphBase;
120

	
121
    protected:
122
      int _id;
123
      Node(int id) : _id(id) {}
124
    public:
125
      Node() {}
126
      Node (Invalid) : _id(-1) {}
127
      bool operator==(const Node node) const {return _id == node._id;}
128
      bool operator!=(const Node node) const {return _id != node._id;}
129
      bool operator<(const Node node) const {return _id < node._id;}
130
    };
131

	
132
    class Edge {
133
      friend class HypercubeGraphBase;
134
      friend class Arc;
135

	
136
    protected:
137
      int _id;
138

	
139
      Edge(int id) : _id(id) {}
140

	
141
    public:
142
      Edge() {}
143
      Edge (Invalid) : _id(-1) {}
144
      bool operator==(const Edge edge) const {return _id == edge._id;}
145
      bool operator!=(const Edge edge) const {return _id != edge._id;}
146
      bool operator<(const Edge edge) const {return _id < edge._id;}
147
    };
148

	
149
    class Arc {
150
      friend class HypercubeGraphBase;
151

	
152
    protected:
153
      int _id;
154

	
155
      Arc(int id) : _id(id) {}
156

	
157
    public:
158
      Arc() {}
159
      Arc (Invalid) : _id(-1) {}
160
      operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; }
161
      bool operator==(const Arc arc) const {return _id == arc._id;}
162
      bool operator!=(const Arc arc) const {return _id != arc._id;}
163
      bool operator<(const Arc arc) const {return _id < arc._id;}
164
    };
165

	
166
    void first(Node& node) const {
167
      node._id = _node_num - 1;
168
    }
169

	
170
    static void next(Node& node) {
171
      --node._id;
172
    }
173

	
174
    void first(Edge& edge) const {
175
      edge._id = _edge_num - 1;
176
    }
177

	
178
    static void next(Edge& edge) {
179
      --edge._id;
180
    }
181

	
182
    void first(Arc& arc) const {
183
      arc._id = 2 * _edge_num - 1;
184
    }
185

	
186
    static void next(Arc& arc) {
187
      --arc._id;
188
    }
189

	
190
    void firstInc(Edge& edge, bool& dir, const Node& node) const {
191
      edge._id = node._id >> 1;
192
      dir = (node._id & 1) == 0;
193
    }
194

	
195
    void nextInc(Edge& edge, bool& dir) const {
196
      Node n = dir ? u(edge) : v(edge);
197
      int k = (edge._id >> _dim-1) + 1;
198
      if (k < _dim) {
199
        edge._id = (k << _dim-1) |
200
                   ((n._id >> k+1) << k) | (n._id & ((1 << k) - 1));
201
        dir = ((n._id >> k) & 1) == 0;
202
      } else {
203
        edge._id = -1;
204
        dir = true;
205
      }
206
    }
207

	
208
    void firstOut(Arc& arc, const Node& node) const {
209
      arc._id = ((node._id >> 1) << 1) | (~node._id & 1);
210
    }
211

	
212
    void nextOut(Arc& arc) const {
213
      Node n = (arc._id & 1) == 1 ? u(arc) : v(arc);
214
      int k = (arc._id >> _dim) + 1;
215
      if (k < _dim) {
216
        arc._id = (k << _dim-1) |
217
                  ((n._id >> k+1) << k) | (n._id & ((1 << k) - 1));
218
        arc._id = (arc._id << 1) | (~(n._id >> k) & 1);
219
      } else {
220
        arc._id = -1;
221
      }
222
    }
223

	
224
    void firstIn(Arc& arc, const Node& node) const {
225
      arc._id = ((node._id >> 1) << 1) | (node._id & 1);
226
    }
227

	
228
    void nextIn(Arc& arc) const {
229
      Node n = (arc._id & 1) == 1 ? v(arc) : u(arc);
230
      int k = (arc._id >> _dim) + 1;
231
      if (k < _dim) {
232
        arc._id = (k << _dim-1) |
233
                  ((n._id >> k+1) << k) | (n._id & ((1 << k) - 1));
234
        arc._id = (arc._id << 1) | ((n._id >> k) & 1);
235
      } else {
236
        arc._id = -1;
237
      }
238
    }
239

	
240
    static bool direction(Arc arc) {
241
      return (arc._id & 1) == 1;
242
    }
243

	
244
    static Arc direct(Edge edge, bool dir) {
245
      return Arc((edge._id << 1) | (dir ? 1 : 0));
246
    }
247

	
248
    int dimension() const {
249
      return _dim;
250
    }
251

	
252
    bool projection(Node node, int n) const {
253
      return static_cast<bool>(node._id & (1 << n));
254
    }
255

	
256
    int dimension(Edge edge) const {
257
      return edge._id >> _dim-1;
258
    }
259

	
260
    int dimension(Arc arc) const {
261
      return arc._id >> _dim;
262
    }
263

	
264
    int index(Node node) const {
265
      return node._id;
266
    }
267

	
268
    Node operator()(int ix) const {
269
      return Node(ix);
270
    }
271

	
272
  private:
273
    int _dim;
274
    int _node_num, _edge_num;
275
  };
276

	
277

	
278
  typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase;
279

	
280
  /// \ingroup graphs
281
  ///
282
  /// \brief Hypercube graph class
283
  ///
284
  /// This class implements a special graph type. The nodes of the graph
285
  /// are indiced with integers with at most \c dim binary digits.
286
  /// Two nodes are connected in the graph if and only if their indices
287
  /// differ only on one position in the binary form.
288
  ///
289
  /// \note The type of the indices is chosen to \c int for efficiency
290
  /// reasons. Thus the maximum dimension of this implementation is 26
291
  /// (assuming that the size of \c int is 32 bit).
292
  ///
293
  /// This graph type is fully conform to the \ref concepts::Graph
294
  /// "Graph" concept, and it also has an important extra feature
295
  /// that its maps are real \ref concepts::ReferenceMap
296
  /// "reference map"s.
297
  class HypercubeGraph : public ExtendedHypercubeGraphBase {
298
  public:
299

	
300
    typedef ExtendedHypercubeGraphBase Parent;
301

	
302
    /// \brief Constructs a hypercube graph with \c dim dimensions.
303
    ///
304
    /// Constructs a hypercube graph with \c dim dimensions.
305
    HypercubeGraph(int dim) { construct(dim); }
306

	
307
    /// \brief The number of dimensions.
308
    ///
309
    /// Gives back the number of dimensions.
310
    int dimension() const {
311
      return Parent::dimension();
312
    }
313

	
314
    /// \brief Returns \c true if the n'th bit of the node is one.
315
    ///
316
    /// Returns \c true if the n'th bit of the node is one.
317
    bool projection(Node node, int n) const {
318
      return Parent::projection(node, n);
319
    }
320

	
321
    /// \brief The dimension id of an edge.
322
    ///
323
    /// Gives back the dimension id of the given edge.
324
    /// It is in the [0..dim-1] range.
325
    int dimension(Edge edge) const {
326
      return Parent::dimension(edge);
327
    }
328

	
329
    /// \brief The dimension id of an arc.
330
    ///
331
    /// Gives back the dimension id of the given arc.
332
    /// It is in the [0..dim-1] range.
333
    int dimension(Arc arc) const {
334
      return Parent::dimension(arc);
335
    }
336

	
337
    /// \brief The index of a node.
338
    ///
339
    /// Gives back the index of the given node.
340
    /// The lower bits of the integer describes the node.
341
    int index(Node node) const {
342
      return Parent::index(node);
343
    }
344

	
345
    /// \brief Gives back a node by its index.
346
    ///
347
    /// Gives back a node by its index.
348
    Node operator()(int ix) const {
349
      return Parent::operator()(ix);
350
    }
351

	
352
    /// \brief Number of nodes.
353
    int nodeNum() const { return Parent::nodeNum(); }
354
    /// \brief Number of edges.
355
    int edgeNum() const { return Parent::edgeNum(); }
356
    /// \brief Number of arcs.
357
    int arcNum() const { return Parent::arcNum(); }
358

	
359
    /// \brief Linear combination map.
360
    ///
361
    /// This map makes possible to give back a linear combination
362
    /// for each node. It works like the \c std::accumulate function,
363
    /// so it accumulates the \c bf binary function with the \c fv first
364
    /// value. The map accumulates only on that positions (dimensions)
365
    /// where the index of the node is one. The values that have to be
366
    /// accumulated should be given by the \c begin and \c end iterators
367
    /// and the length of this range should be equal to the dimension
368
    /// number of the graph.
369
    ///
370
    ///\code
371
    /// const int DIM = 3;
372
    /// HypercubeGraph graph(DIM);
373
    /// dim2::Point<double> base[DIM];
374
    /// for (int k = 0; k < DIM; ++k) {
375
    ///   base[k].x = rnd();
376
    ///   base[k].y = rnd();
377
    /// }
378
    /// HypercubeGraph::HyperMap<dim2::Point<double> >
379
    ///   pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
380
    ///\endcode
381
    ///
382
    /// \see HypercubeGraph
383
    template <typename T, typename BF = std::plus<T> >
384
    class HyperMap {
385
    public:
386

	
387
      /// \brief The key type of the map
388
      typedef Node Key;
389
      /// \brief The value type of the map
390
      typedef T Value;
391

	
392
      /// \brief Constructor for HyperMap.
393
      ///
394
      /// Construct a HyperMap for the given graph. The values that have
395
      /// to be accumulated should be given by the \c begin and \c end
396
      /// iterators and the length of this range should be equal to the
397
      /// dimension number of the graph.
398
      ///
399
      /// This map accumulates the \c bf binary function with the \c fv
400
      /// first value on that positions (dimensions) where the index of
401
      /// the node is one.
402
      template <typename It>
403
      HyperMap(const Graph& graph, It begin, It end,
404
               T fv = 0, const BF& bf = BF())
405
        : _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf)
406
      {
407
        LEMON_ASSERT(_values.size() == graph.dimension(),
408
                     "Wrong size of range");
409
      }
410

	
411
      /// \brief The partial accumulated value.
412
      ///
413
      /// Gives back the partial accumulated value.
414
      Value operator[](const Key& k) const {
415
        Value val = _first_value;
416
        int id = _graph.index(k);
417
        int n = 0;
418
        while (id != 0) {
419
          if (id & 1) {
420
            val = _bin_func(val, _values[n]);
421
          }
422
          id >>= 1;
423
          ++n;
424
        }
425
        return val;
426
      }
427

	
428
    private:
429
      const Graph& _graph;
430
      std::vector<T> _values;
431
      T _first_value;
432
      BF _bin_func;
433
    };
434

	
435
  };
436

	
437
}
438

	
439
#endif
Ignore white space 6 line context
1 1
EXTRA_DIST += \
2 2
	lemon/lemon.pc.in \
3 3
	lemon/CMakeLists.txt
4 4

	
5 5
pkgconfig_DATA += lemon/lemon.pc
6 6

	
7 7
lib_LTLIBRARIES += lemon/libemon.la
8 8

	
9 9
lemon_libemon_la_SOURCES = \
10 10
        lemon/arg_parser.cc \
11 11
        lemon/base.cc \
12 12
        lemon/color.cc \
13 13
        lemon/random.cc
14 14

	
15 15
#lemon_libemon_la_CXXFLAGS = $(GLPK_CFLAGS) $(CPLEX_CFLAGS) $(SOPLEX_CXXFLAGS) $(AM_CXXFLAGS)
16 16
#lemon_libemon_la_LDFLAGS = $(GLPK_LIBS) $(CPLEX_LIBS) $(SOPLEX_LIBS)
17 17

	
18 18
lemon_HEADERS += \
19 19
        lemon/arg_parser.h \
20 20
	lemon/assert.h \
21 21
        lemon/bfs.h \
22 22
        lemon/bin_heap.h \
23 23
        lemon/color.h \
24 24
	lemon/concept_check.h \
25 25
        lemon/counter.h \
26 26
	lemon/core.h \
27 27
        lemon/dfs.h \
28 28
        lemon/dijkstra.h \
29 29
        lemon/dim2.h \
30 30
	lemon/error.h \
31 31
	lemon/full_graph.h \
32 32
        lemon/graph_to_eps.h \
33 33
        lemon/grid_graph.h \
34
	lemon/hypercube_graph.h \
34 35
	lemon/kruskal.h \
35 36
	lemon/lgf_reader.h \
36 37
	lemon/lgf_writer.h \
37 38
	lemon/list_graph.h \
38 39
	lemon/maps.h \
39 40
	lemon/math.h \
40 41
	lemon/max_matching.h \
41 42
	lemon/nauty_reader.h \
42 43
	lemon/path.h \
43 44
        lemon/random.h \
44 45
	lemon/smart_graph.h \
45 46
	lemon/suurballe.h \
46 47
        lemon/time_measure.h \
47 48
        lemon/tolerance.h \
48 49
	lemon/unionfind.h
49 50

	
50 51
bits_HEADERS += \
51 52
	lemon/bits/alteration_notifier.h \
52 53
	lemon/bits/array_map.h \
53 54
	lemon/bits/base_extender.h \
54 55
        lemon/bits/bezier.h \
55 56
	lemon/bits/default_map.h \
56 57
        lemon/bits/enable_if.h \
57 58
	lemon/bits/graph_extender.h \
58 59
	lemon/bits/map_extender.h \
59 60
	lemon/bits/path_dump.h \
60 61
	lemon/bits/traits.h \
61 62
	lemon/bits/vector_map.h
62 63

	
63 64
concept_HEADERS += \
64 65
	lemon/concepts/digraph.h \
65 66
	lemon/concepts/graph.h \
66 67
	lemon/concepts/graph_components.h \
67 68
	lemon/concepts/heap.h \
68 69
	lemon/concepts/maps.h \
69 70
	lemon/concepts/path.h
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <lemon/concepts/digraph.h>
20 20
#include <lemon/list_graph.h>
21 21
#include <lemon/smart_graph.h>
22 22
#include <lemon/full_graph.h>
23
//#include <lemon/hypercube_graph.h>
24 23

	
25 24
#include "test_tools.h"
26 25
#include "graph_test.h"
27 26

	
28 27
using namespace lemon;
29 28
using namespace lemon::concepts;
30 29

	
31 30
template <class Digraph>
32 31
void checkDigraph() {
33 32
  TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
34 33
  Digraph G;
35 34

	
36 35
  checkGraphNodeList(G, 0);
37 36
  checkGraphArcList(G, 0);
38 37

	
39 38
  Node
40 39
    n1 = G.addNode(),
41 40
    n2 = G.addNode(),
42 41
    n3 = G.addNode();
43 42
  checkGraphNodeList(G, 3);
44 43
  checkGraphArcList(G, 0);
45 44

	
46 45
  Arc a1 = G.addArc(n1, n2);
47 46
  check(G.source(a1) == n1 && G.target(a1) == n2, "Wrong arc");
48 47
  checkGraphNodeList(G, 3);
49 48
  checkGraphArcList(G, 1);
50 49

	
51 50
  checkGraphOutArcList(G, n1, 1);
52 51
  checkGraphOutArcList(G, n2, 0);
53 52
  checkGraphOutArcList(G, n3, 0);
54 53

	
55 54
  checkGraphInArcList(G, n1, 0);
56 55
  checkGraphInArcList(G, n2, 1);
57 56
  checkGraphInArcList(G, n3, 0);
58 57

	
59 58
  checkGraphConArcList(G, 1);
60 59

	
61 60
  Arc a2 = G.addArc(n2, n1), a3 = G.addArc(n2, n3), a4 = G.addArc(n2, n3);
62 61
  checkGraphNodeList(G, 3);
63 62
  checkGraphArcList(G, 4);
64 63

	
65 64
  checkGraphOutArcList(G, n1, 1);
66 65
  checkGraphOutArcList(G, n2, 3);
67 66
  checkGraphOutArcList(G, n3, 0);
68 67

	
69 68
  checkGraphInArcList(G, n1, 1);
70 69
  checkGraphInArcList(G, n2, 1);
71 70
  checkGraphInArcList(G, n3, 2);
72 71

	
73 72
  checkGraphConArcList(G, 4);
74 73

	
75 74
  checkNodeIds(G);
76 75
  checkArcIds(G);
77 76
  checkGraphNodeMap(G);
78 77
  checkGraphArcMap(G);
79 78

	
80 79
}
81 80

	
82 81
void checkFullDigraph(int num) {
83 82
  typedef FullDigraph Digraph;
84 83
  DIGRAPH_TYPEDEFS(Digraph);
85 84
  Digraph G(num);
86 85

	
87 86
  checkGraphNodeList(G, num);
88 87
  checkGraphArcList(G, num * num);
89 88

	
90 89
  for (NodeIt n(G); n != INVALID; ++n) {
91 90
    checkGraphOutArcList(G, n, num);
92 91
    checkGraphInArcList(G, n, num);
93 92
  }
94 93

	
95 94
  checkGraphConArcList(G, num * num);
96 95

	
97 96
  checkNodeIds(G);
98 97
  checkArcIds(G);
99 98
  checkGraphNodeMap(G);
100 99
  checkGraphArcMap(G);
101 100

	
102 101
  for (int i = 0; i < G.nodeNum(); ++i) {
103 102
    check(G.index(G(i)) == i, "Wrong index");
104 103
  }
105 104

	
106 105
  for (NodeIt s(G); s != INVALID; ++s) {
107 106
    for (NodeIt t(G); t != INVALID; ++t) {
108 107
      Arc a = G.arc(s, t);
109 108
      check(G.source(a) == s && G.target(a) == t, "Wrong arc lookup");
110 109
    }
111 110
  }
112 111

	
113 112
}
114 113

	
115

	
116 114
void checkConcepts() {
117 115
  { // Checking digraph components
118 116
    checkConcept<BaseDigraphComponent, BaseDigraphComponent >();
119 117

	
120 118
    checkConcept<IDableDigraphComponent<>,
121 119
      IDableDigraphComponent<> >();
122 120

	
123 121
    checkConcept<IterableDigraphComponent<>,
124 122
      IterableDigraphComponent<> >();
125 123

	
126 124
    checkConcept<MappableDigraphComponent<>,
127 125
      MappableDigraphComponent<> >();
128 126
  }
129 127
  { // Checking skeleton digraph
130 128
    checkConcept<Digraph, Digraph>();
131 129
  }
132 130
  { // Checking ListDigraph
133 131
    checkConcept<Digraph, ListDigraph>();
134 132
    checkConcept<AlterableDigraphComponent<>, ListDigraph>();
135 133
    checkConcept<ExtendableDigraphComponent<>, ListDigraph>();
136 134
    checkConcept<ClearableDigraphComponent<>, ListDigraph>();
137 135
    checkConcept<ErasableDigraphComponent<>, ListDigraph>();
138 136
  }
139 137
  { // Checking SmartDigraph
140 138
    checkConcept<Digraph, SmartDigraph>();
141 139
    checkConcept<AlterableDigraphComponent<>, SmartDigraph>();
142 140
    checkConcept<ExtendableDigraphComponent<>, SmartDigraph>();
143 141
    checkConcept<ClearableDigraphComponent<>, SmartDigraph>();
144 142
  }
145 143
  { // Checking FullDigraph
146 144
    checkConcept<Digraph, FullDigraph>();
147 145
  }
148
//  { // Checking HyperCubeDigraph
149
//    checkConcept<Digraph, HyperCubeDigraph>();
150
//  }
151 146
}
152 147

	
153 148
template <typename Digraph>
154 149
void checkDigraphValidity() {
155 150
  TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
156 151
  Digraph g;
157 152

	
158 153
  Node
159 154
    n1 = g.addNode(),
160 155
    n2 = g.addNode(),
161 156
    n3 = g.addNode();
162 157

	
163 158
  Arc
164 159
    e1 = g.addArc(n1, n2),
165 160
    e2 = g.addArc(n2, n3);
166 161

	
167 162
  check(g.valid(n1), "Wrong validity check");
168 163
  check(g.valid(e1), "Wrong validity check");
169 164

	
170 165
  check(!g.valid(g.nodeFromId(-1)), "Wrong validity check");
171 166
  check(!g.valid(g.arcFromId(-1)), "Wrong validity check");
172 167
}
173 168

	
174 169
template <typename Digraph>
175 170
void checkDigraphValidityErase() {
176 171
  TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
177 172
  Digraph g;
178 173

	
179 174
  Node
180 175
    n1 = g.addNode(),
181 176
    n2 = g.addNode(),
182 177
    n3 = g.addNode();
183 178

	
184 179
  Arc
185 180
    e1 = g.addArc(n1, n2),
186 181
    e2 = g.addArc(n2, n3);
187 182

	
188 183
  check(g.valid(n1), "Wrong validity check");
189 184
  check(g.valid(e1), "Wrong validity check");
190 185

	
191 186
  g.erase(n1);
192 187

	
193 188
  check(!g.valid(n1), "Wrong validity check");
194 189
  check(g.valid(n2), "Wrong validity check");
195 190
  check(g.valid(n3), "Wrong validity check");
196 191
  check(!g.valid(e1), "Wrong validity check");
197 192
  check(g.valid(e2), "Wrong validity check");
198 193

	
199 194
  check(!g.valid(g.nodeFromId(-1)), "Wrong validity check");
200 195
  check(!g.valid(g.arcFromId(-1)), "Wrong validity check");
201 196
}
202 197

	
203 198
void checkDigraphs() {
204 199
  { // Checking ListDigraph
205 200
    checkDigraph<ListDigraph>();
206 201
    checkDigraphValidityErase<ListDigraph>();
207 202
  }
208 203
  { // Checking SmartDigraph
209 204
    checkDigraph<SmartDigraph>();
210 205
    checkDigraphValidity<SmartDigraph>();
211 206
  }
212 207
  { // Checking FullDigraph
213 208
    checkFullDigraph(8);
214 209
  }
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <lemon/concepts/graph.h>
20 20
#include <lemon/list_graph.h>
21 21
#include <lemon/smart_graph.h>
22 22
#include <lemon/full_graph.h>
23 23
#include <lemon/grid_graph.h>
24
#include <lemon/hypercube_graph.h>
24 25

	
25 26
#include "test_tools.h"
26 27
#include "graph_test.h"
27 28

	
28 29
using namespace lemon;
29 30
using namespace lemon::concepts;
30 31

	
31 32
template <class Graph>
32 33
void checkGraph() {
33 34
  TEMPLATE_GRAPH_TYPEDEFS(Graph);
34 35

	
35 36
  Graph G;
36 37
  checkGraphNodeList(G, 0);
37 38
  checkGraphEdgeList(G, 0);
38 39

	
39 40
  Node
40 41
    n1 = G.addNode(),
41 42
    n2 = G.addNode(),
42 43
    n3 = G.addNode();
43 44
  checkGraphNodeList(G, 3);
44 45
  checkGraphEdgeList(G, 0);
45 46

	
46 47
  Edge e1 = G.addEdge(n1, n2);
47 48
  check((G.u(e1) == n1 && G.v(e1) == n2) || (G.u(e1) == n2 && G.v(e1) == n1),
48 49
        "Wrong edge");
49 50
  checkGraphNodeList(G, 3);
50 51
  checkGraphArcList(G, 2);
51 52
  checkGraphEdgeList(G, 1);
52 53

	
53 54
  checkGraphOutArcList(G, n1, 1);
54 55
  checkGraphOutArcList(G, n2, 1);
55 56
  checkGraphOutArcList(G, n3, 0);
56 57

	
57 58
  checkGraphInArcList(G, n1, 1);
58 59
  checkGraphInArcList(G, n2, 1);
59 60
  checkGraphInArcList(G, n3, 0);
60 61

	
61 62
  checkGraphIncEdgeList(G, n1, 1);
62 63
  checkGraphIncEdgeList(G, n2, 1);
63 64
  checkGraphIncEdgeList(G, n3, 0);
64 65

	
65 66
  checkGraphConArcList(G, 2);
66 67
  checkGraphConEdgeList(G, 1);
67 68

	
68 69
  Edge e2 = G.addEdge(n2, n1), e3 = G.addEdge(n2, n3);
69 70
  checkGraphNodeList(G, 3);
70 71
  checkGraphArcList(G, 6);
71 72
  checkGraphEdgeList(G, 3);
72 73

	
73 74
  checkGraphOutArcList(G, n1, 2);
74 75
  checkGraphOutArcList(G, n2, 3);
75 76
  checkGraphOutArcList(G, n3, 1);
76 77

	
77 78
  checkGraphInArcList(G, n1, 2);
78 79
  checkGraphInArcList(G, n2, 3);
79 80
  checkGraphInArcList(G, n3, 1);
80 81

	
81 82
  checkGraphIncEdgeList(G, n1, 2);
82 83
  checkGraphIncEdgeList(G, n2, 3);
83 84
  checkGraphIncEdgeList(G, n3, 1);
84 85

	
85 86
  checkGraphConArcList(G, 6);
86 87
  checkGraphConEdgeList(G, 3);
87 88

	
88 89
  checkArcDirections(G);
89 90

	
90 91
  checkNodeIds(G);
91 92
  checkArcIds(G);
92 93
  checkEdgeIds(G);
93 94
  checkGraphNodeMap(G);
94 95
  checkGraphArcMap(G);
95 96
  checkGraphEdgeMap(G);
96 97
}
97 98

	
98 99
void checkFullGraph(int num) {
99 100
  typedef FullGraph Graph;
100 101
  GRAPH_TYPEDEFS(Graph);
101 102

	
102 103
  Graph G(num);
103 104
  checkGraphNodeList(G, num);
104 105
  checkGraphEdgeList(G, num * (num - 1) / 2);
105 106

	
106 107
  for (NodeIt n(G); n != INVALID; ++n) {
107
    checkGraphOutArcList(G, n, num - 1);    
108
    checkGraphInArcList(G, n, num - 1);    
109
    checkGraphIncEdgeList(G, n, num - 1);    
108
    checkGraphOutArcList(G, n, num - 1);
109
    checkGraphInArcList(G, n, num - 1);
110
    checkGraphIncEdgeList(G, n, num - 1);
110 111
  }
111 112

	
112 113
  checkGraphConArcList(G, num * (num - 1));
113 114
  checkGraphConEdgeList(G, num * (num - 1) / 2);
114 115

	
115 116
  checkArcDirections(G);
116 117

	
117 118
  checkNodeIds(G);
118 119
  checkArcIds(G);
119 120
  checkEdgeIds(G);
120 121
  checkGraphNodeMap(G);
121 122
  checkGraphArcMap(G);
122 123
  checkGraphEdgeMap(G);
123 124

	
124
  
125

	
125 126
  for (int i = 0; i < G.nodeNum(); ++i) {
126 127
    check(G.index(G(i)) == i, "Wrong index");
127 128
  }
128 129

	
129 130
  for (NodeIt u(G); u != INVALID; ++u) {
130 131
    for (NodeIt v(G); v != INVALID; ++v) {
131 132
      Edge e = G.edge(u, v);
132 133
      Arc a = G.arc(u, v);
133 134
      if (u == v) {
134 135
        check(e == INVALID, "Wrong edge lookup");
135 136
        check(a == INVALID, "Wrong arc lookup");
136 137
      } else {
137 138
        check((G.u(e) == u && G.v(e) == v) ||
138 139
              (G.u(e) == v && G.v(e) == u), "Wrong edge lookup");
139 140
        check(G.source(a) == u && G.target(a) == v, "Wrong arc lookup");
140 141
      }
141 142
    }
142 143
  }
143 144
}
144 145

	
145 146
void checkConcepts() {
146 147
  { // Checking graph components
147 148
    checkConcept<BaseGraphComponent, BaseGraphComponent >();
148 149

	
149 150
    checkConcept<IDableGraphComponent<>,
150 151
      IDableGraphComponent<> >();
151 152

	
152 153
    checkConcept<IterableGraphComponent<>,
153 154
      IterableGraphComponent<> >();
154 155

	
155 156
    checkConcept<MappableGraphComponent<>,
156 157
      MappableGraphComponent<> >();
157 158
  }
158 159
  { // Checking skeleton graph
159 160
    checkConcept<Graph, Graph>();
160 161
  }
161 162
  { // Checking ListGraph
162 163
    checkConcept<Graph, ListGraph>();
163 164
    checkConcept<AlterableGraphComponent<>, ListGraph>();
164 165
    checkConcept<ExtendableGraphComponent<>, ListGraph>();
165 166
    checkConcept<ClearableGraphComponent<>, ListGraph>();
166 167
    checkConcept<ErasableGraphComponent<>, ListGraph>();
167 168
  }
168 169
  { // Checking SmartGraph
169 170
    checkConcept<Graph, SmartGraph>();
170 171
    checkConcept<AlterableGraphComponent<>, SmartGraph>();
171 172
    checkConcept<ExtendableGraphComponent<>, SmartGraph>();
172 173
    checkConcept<ClearableGraphComponent<>, SmartGraph>();
173 174
  }
174 175
  { // Checking FullGraph
175 176
    checkConcept<Graph, FullGraph>();
176 177
  }
177 178
  { // Checking GridGraph
178 179
    checkConcept<Graph, GridGraph>();
179 180
  }
181
  { // Checking HypercubeGraph
182
    checkConcept<Graph, HypercubeGraph>();
183
  }
180 184
}
181 185

	
182 186
template <typename Graph>
183 187
void checkGraphValidity() {
184 188
  TEMPLATE_GRAPH_TYPEDEFS(Graph);
185 189
  Graph g;
186 190

	
187 191
  Node
188 192
    n1 = g.addNode(),
189 193
    n2 = g.addNode(),
190 194
    n3 = g.addNode();
191 195

	
192 196
  Edge
193 197
    e1 = g.addEdge(n1, n2),
194 198
    e2 = g.addEdge(n2, n3);
195 199

	
196 200
  check(g.valid(n1), "Wrong validity check");
197 201
  check(g.valid(e1), "Wrong validity check");
198 202
  check(g.valid(g.direct(e1, true)), "Wrong validity check");
199 203

	
200 204
  check(!g.valid(g.nodeFromId(-1)), "Wrong validity check");
201 205
  check(!g.valid(g.edgeFromId(-1)), "Wrong validity check");
202 206
  check(!g.valid(g.arcFromId(-1)), "Wrong validity check");
203 207
}
204 208

	
205 209
template <typename Graph>
206 210
void checkGraphValidityErase() {
207 211
  TEMPLATE_GRAPH_TYPEDEFS(Graph);
208 212
  Graph g;
209 213

	
210 214
  Node
211 215
    n1 = g.addNode(),
212 216
    n2 = g.addNode(),
213 217
    n3 = g.addNode();
214 218

	
215 219
  Edge
216 220
    e1 = g.addEdge(n1, n2),
217 221
    e2 = g.addEdge(n2, n3);
218 222

	
219 223
  check(g.valid(n1), "Wrong validity check");
220 224
  check(g.valid(e1), "Wrong validity check");
221 225
  check(g.valid(g.direct(e1, true)), "Wrong validity check");
222 226

	
223 227
  g.erase(n1);
224 228

	
225 229
  check(!g.valid(n1), "Wrong validity check");
226 230
  check(g.valid(n2), "Wrong validity check");
227 231
  check(g.valid(n3), "Wrong validity check");
228 232
  check(!g.valid(e1), "Wrong validity check");
229 233
  check(g.valid(e2), "Wrong validity check");
230 234

	
231 235
  check(!g.valid(g.nodeFromId(-1)), "Wrong validity check");
232 236
  check(!g.valid(g.edgeFromId(-1)), "Wrong validity check");
233 237
  check(!g.valid(g.arcFromId(-1)), "Wrong validity check");
234 238
}
235 239

	
236 240
void checkGridGraph(int width, int height) {
237 241
  typedef GridGraph Graph;
238 242
  GRAPH_TYPEDEFS(Graph);
239 243
  Graph G(width, height);
240 244

	
241 245
  check(G.width() == width, "Wrong column number");
242 246
  check(G.height() == height, "Wrong row number");
243 247

	
... ...
@@ -251,91 +255,145 @@
251 255
  }
252 256

	
253 257
  for (int j = 0; j < height; ++j) {
254 258
    for (int i = 0; i < width - 1; ++i) {
255 259
      check(G.source(G.right(G(i, j))) == G(i, j), "Wrong right");
256 260
      check(G.target(G.right(G(i, j))) == G(i + 1, j), "Wrong right");
257 261
    }
258 262
    check(G.right(G(width - 1, j)) == INVALID, "Wrong right");
259 263
  }
260 264

	
261 265
  for (int j = 0; j < height; ++j) {
262 266
    for (int i = 1; i < width; ++i) {
263 267
      check(G.source(G.left(G(i, j))) == G(i, j), "Wrong left");
264 268
      check(G.target(G.left(G(i, j))) == G(i - 1, j), "Wrong left");
265 269
    }
266 270
    check(G.left(G(0, j)) == INVALID, "Wrong left");
267 271
  }
268 272

	
269 273
  for (int i = 0; i < width; ++i) {
270 274
    for (int j = 0; j < height - 1; ++j) {
271 275
      check(G.source(G.up(G(i, j))) == G(i, j), "Wrong up");
272 276
      check(G.target(G.up(G(i, j))) == G(i, j + 1), "Wrong up");
273 277
    }
274 278
    check(G.up(G(i, height - 1)) == INVALID, "Wrong up");
275 279
  }
276 280

	
277 281
  for (int i = 0; i < width; ++i) {
278 282
    for (int j = 1; j < height; ++j) {
279 283
      check(G.source(G.down(G(i, j))) == G(i, j), "Wrong down");
280 284
      check(G.target(G.down(G(i, j))) == G(i, j - 1), "Wrong down");
281 285
    }
282 286
    check(G.down(G(i, 0)) == INVALID, "Wrong down");
283 287
  }
284 288

	
285 289
  checkGraphNodeList(G, width * height);
286 290
  checkGraphEdgeList(G, width * (height - 1) + (width - 1) * height);
287 291
  checkGraphArcList(G, 2 * (width * (height - 1) + (width - 1) * height));
288 292

	
289 293
  for (NodeIt n(G); n != INVALID; ++n) {
290 294
    int nb = 4;
291 295
    if (G.col(n) == 0) --nb;
292 296
    if (G.col(n) == width - 1) --nb;
293 297
    if (G.row(n) == 0) --nb;
294 298
    if (G.row(n) == height - 1) --nb;
295 299

	
296 300
    checkGraphOutArcList(G, n, nb);
297 301
    checkGraphInArcList(G, n, nb);
298 302
    checkGraphIncEdgeList(G, n, nb);
299 303
  }
300 304

	
301 305
  checkArcDirections(G);
302 306

	
303 307
  checkGraphConArcList(G, 2 * (width * (height - 1) + (width - 1) * height));
304 308
  checkGraphConEdgeList(G, width * (height - 1) + (width - 1) * height);
305 309

	
306 310
  checkNodeIds(G);
307 311
  checkArcIds(G);
308 312
  checkEdgeIds(G);
309 313
  checkGraphNodeMap(G);
310 314
  checkGraphArcMap(G);
311 315
  checkGraphEdgeMap(G);
312 316

	
313 317
}
314 318

	
319
void checkHypercubeGraph(int dim) {
320
  GRAPH_TYPEDEFS(HypercubeGraph);
321

	
322
  HypercubeGraph G(dim);
323
  checkGraphNodeList(G, 1 << dim);
324
  checkGraphEdgeList(G, dim * (1 << dim-1));
325
  checkGraphArcList(G, dim * (1 << dim));
326

	
327
  Node n = G.nodeFromId(dim);
328

	
329
  for (NodeIt n(G); n != INVALID; ++n) {
330
    checkGraphIncEdgeList(G, n, dim);
331
    for (IncEdgeIt e(G, n); e != INVALID; ++e) {
332
      check( (G.u(e) == n &&
333
              G.id(G.v(e)) == G.id(n) ^ (1 << G.dimension(e))) ||
334
             (G.v(e) == n &&
335
              G.id(G.u(e)) == G.id(n) ^ (1 << G.dimension(e))),
336
             "Wrong edge or wrong dimension");
337
    }
338

	
339
    checkGraphOutArcList(G, n, dim);
340
    for (OutArcIt a(G, n); a != INVALID; ++a) {
341
      check(G.source(a) == n &&
342
            G.id(G.target(a)) == G.id(n) ^ (1 << G.dimension(a)),
343
            "Wrong arc or wrong dimension");
344
    }
345

	
346
    checkGraphInArcList(G, n, dim);
347
    for (InArcIt a(G, n); a != INVALID; ++a) {
348
      check(G.target(a) == n &&
349
            G.id(G.source(a)) == G.id(n) ^ (1 << G.dimension(a)),
350
            "Wrong arc or wrong dimension");
351
    }
352
  }
353

	
354
  checkGraphConArcList(G, (1 << dim) * dim);
355
  checkGraphConEdgeList(G, dim * (1 << dim-1));
356

	
357
  checkArcDirections(G);
358

	
359
  checkNodeIds(G);
360
  checkArcIds(G);
361
  checkEdgeIds(G);
362
  checkGraphNodeMap(G);
363
  checkGraphArcMap(G);
364
  checkGraphEdgeMap(G);
365
}
366

	
315 367
void checkGraphs() {
316 368
  { // Checking ListGraph
317 369
    checkGraph<ListGraph>();
318 370
    checkGraphValidityErase<ListGraph>();
319 371
  }
320 372
  { // Checking SmartGraph
321 373
    checkGraph<SmartGraph>();
322 374
    checkGraphValidity<SmartGraph>();
323 375
  }
324
  { // Checking FullGraph   
376
  { // Checking FullGraph
325 377
    checkFullGraph(7);
326 378
    checkFullGraph(8);
327 379
  }
328 380
  { // Checking GridGraph
329 381
    checkGridGraph(5, 8);
330 382
    checkGridGraph(8, 5);
331 383
    checkGridGraph(5, 5);
332 384
    checkGridGraph(0, 0);
333 385
    checkGridGraph(1, 1);
334 386
  }
387
  { // Checking HypercubeGraph
388
    checkHypercubeGraph(1);
389
    checkHypercubeGraph(2);
390
    checkHypercubeGraph(3);
391
    checkHypercubeGraph(4);
392
  }
335 393
}
336 394

	
337 395
int main() {
338 396
  checkConcepts();
339 397
  checkGraphs();
340 398
  return 0;
341 399
}
Ignore white space 6 line context
... ...
@@ -20,77 +20,78 @@
20 20
        -e "s/\<directed graphs\>/_digr_aph_label_s/g"\
21 21
        -e "s/\<directed edge\>/_ar_c_label_/g"\
22 22
        -e "s/\<directed edges\>/_ar_c_label_s/g"\
23 23
        -e "s/UGraph/_Gr_aph_label_/g"\
24 24
        -e "s/u[Gg]raph/_gr_aph_label_/g"\
25 25
        -e "s/\<Graph\>/_Digr_aph_label_/g"\
26 26
        -e "s/\<graph\>/_digr_aph_label_/g"\
27 27
        -e "s/\<Graphs\>/_Digr_aph_label_s/g"\
28 28
        -e "s/\<graphs\>/_digr_aph_label_s/g"\
29 29
        -e "s/_Graph/__Gr_aph_label_/g"\
30 30
        -e "s/\([Gg]\)raph\([a-z_]\)/_\1r_aph_label_\2/g"\
31 31
        -e "s/\([a-z_]\)graph/\1_gr_aph_label_/g"\
32 32
        -e "s/Graph/_Digr_aph_label_/g"\
33 33
        -e "s/graph/_digr_aph_label_/g"\
34 34
        -e "s/UEdge/_Ed_ge_label_/g"\
35 35
        -e "s/u[Ee]dge/_ed_ge_label_/g"\
36 36
        -e "s/IncEdgeIt/_In_cEd_geIt_label_/g"\
37 37
        -e "s/\<Edge\>/_Ar_c_label_/g"\
38 38
        -e "s/\<edge\>/_ar_c_label_/g"\
39 39
        -e "s/\<Edges\>/_Ar_c_label_s/g"\
40 40
        -e "s/\<edges\>/_ar_c_label_s/g"\
41 41
        -e "s/_Edge/__Ed_ge_label_/g"\
42 42
        -e "s/Edge\([a-z_]\)/_Ed_ge_label_\1/g"\
43 43
        -e "s/edge\([a-z_]\)/_ed_ge_label_\1/g"\
44 44
        -e "s/\([a-z_]\)edge/\1_ed_ge_label_/g"\
45 45
        -e "s/Edge/_Ar_c_label_/g"\
46 46
        -e "s/edge/_ar_c_label_/g"\
47 47
        -e "s/A[Nn]ode/_Re_d_label_/g"\
48 48
        -e "s/B[Nn]ode/_Blu_e_label_/g"\
49 49
        -e "s/A-[Nn]ode/_Re_d_label_/g"\
50 50
        -e "s/B-[Nn]ode/_Blu_e_label_/g"\
51 51
        -e "s/a[Nn]ode/_re_d_label_/g"\
52 52
        -e "s/b[Nn]ode/_blu_e_label_/g"\
53 53
        -e "s/\<UGRAPH_TYPEDEFS\([ \t]*([ \t]*\)typename[ \t]/TEMPLATE__GR_APH_TY_PEDE_FS_label_\1/g"\
54 54
        -e "s/\<GRAPH_TYPEDEFS\([ \t]*([ \t]*\)typename[ \t]/TEMPLATE__DIGR_APH_TY_PEDE_FS_label_\1/g"\
55 55
        -e "s/\<UGRAPH_TYPEDEFS\>/_GR_APH_TY_PEDE_FS_label_/g"\
56 56
        -e "s/\<GRAPH_TYPEDEFS\>/_DIGR_APH_TY_PEDE_FS_label_/g"\
57 57
        -e "s/_Digr_aph_label_/Digraph/g"\
58 58
        -e "s/_digr_aph_label_/digraph/g"\
59 59
        -e "s/_Gr_aph_label_/Graph/g"\
60 60
        -e "s/_gr_aph_label_/graph/g"\
61 61
        -e "s/_Ar_c_label_/Arc/g"\
62 62
        -e "s/_ar_c_label_/arc/g"\
63 63
        -e "s/_Ed_ge_label_/Edge/g"\
64 64
        -e "s/_ed_ge_label_/edge/g"\
65 65
        -e "s/_In_cEd_geIt_label_/IncEdgeIt/g"\
66 66
        -e "s/_Re_d_label_/Red/g"\
67 67
        -e "s/_Blu_e_label_/Blue/g"\
68 68
        -e "s/_re_d_label_/red/g"\
69 69
        -e "s/_blu_e_label_/blue/g"\
70 70
        -e "s/_GR_APH_TY_PEDE_FS_label_/GRAPH_TYPEDEFS/g"\
71 71
        -e "s/_DIGR_APH_TY_PEDE_FS_label_/DIGRAPH_TYPEDEFS/g"\
72 72
        -e "s/DigraphToEps/GraphToEps/g"\
73 73
        -e "s/digraphToEps/graphToEps/g"\
74 74
        -e "s/\<DefPredMap\>/SetPredMap/g"\
75 75
        -e "s/\<DefDistMap\>/SetDistMap/g"\
76 76
        -e "s/\<DefReachedMap\>/SetReachedMap/g"\
77 77
        -e "s/\<DefProcessedMap\>/SetProcessedMap/g"\
78 78
        -e "s/\<DefHeap\>/SetHeap/g"\
79 79
        -e "s/\<DefStandardHeap\>/SetStandradHeap/g"\
80 80
        -e "s/\<DefOperationTraits\>/SetOperationTraits/g"\
81 81
        -e "s/\<DefProcessedMapToBeDefaultMap\>/SetStandardProcessedMap/g"\
82 82
        -e "s/\<copyGraph\>/graphCopy/g"\
83 83
        -e "s/\<copyDigraph\>/digraphCopy/g"\
84
        -e "s/\<HyperCubeDigraph\>/HypercubeGraph/g"\
84 85
        -e "s/\<IntegerMap\>/RangeMap/g"\
85 86
        -e "s/\<integerMap\>/rangeMap/g"\
86 87
        -e "s/\<\([sS]\)tdMap\>/\1parseMap/g"\
87 88
        -e "s/\<\([Ff]\)unctorMap\>/\1unctorToMap/g"\
88 89
        -e "s/\<\([Mm]\)apFunctor\>/\1apToFunctor/g"\
89 90
        -e "s/\<\([Ff]\)orkWriteMap\>/\1orkMap/g"\
90 91
        -e "s/\<StoreBoolMap\>/LoggerBoolMap/g"\
91 92
        -e "s/\<storeBoolMap\>/loggerBoolMap/g"\
92 93
        -e "s/\<BoundingBox\>/Box/g"\
93 94
        -e "s/\<readNauty\>/readNautyGraph/g"\
94 95
    <$i > $TMP
95 96
    mv $TMP $i
96 97
done
0 comments (0 inline)