... | ... |
@@ -718,562 +718,562 @@ |
718 | 718 |
map.set(a, _res_cap[_arc_idb[a]]); |
719 | 719 |
} |
720 | 720 |
} |
721 | 721 |
|
722 | 722 |
/// \brief Return the potential (dual value) of the given node. |
723 | 723 |
/// |
724 | 724 |
/// This function returns the potential (dual value) of the |
725 | 725 |
/// given node. |
726 | 726 |
/// |
727 | 727 |
/// \pre \ref run() must be called before using this function. |
728 | 728 |
Cost potential(const Node& n) const { |
729 | 729 |
return static_cast<Cost>(_pi[_node_id[n]]); |
730 | 730 |
} |
731 | 731 |
|
732 | 732 |
/// \brief Return the potential map (the dual solution). |
733 | 733 |
/// |
734 | 734 |
/// This function copies the potential (dual value) of each node |
735 | 735 |
/// into the given map. |
736 | 736 |
/// The \c Cost type of the algorithm must be convertible to the |
737 | 737 |
/// \c Value type of the map. |
738 | 738 |
/// |
739 | 739 |
/// \pre \ref run() must be called before using this function. |
740 | 740 |
template <typename PotentialMap> |
741 | 741 |
void potentialMap(PotentialMap &map) const { |
742 | 742 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
743 | 743 |
map.set(n, static_cast<Cost>(_pi[_node_id[n]])); |
744 | 744 |
} |
745 | 745 |
} |
746 | 746 |
|
747 | 747 |
/// @} |
748 | 748 |
|
749 | 749 |
private: |
750 | 750 |
|
751 | 751 |
// Initialize the algorithm |
752 | 752 |
ProblemType init() { |
753 | 753 |
if (_res_node_num <= 1) return INFEASIBLE; |
754 | 754 |
|
755 | 755 |
// Check the sum of supply values |
756 | 756 |
_sum_supply = 0; |
757 | 757 |
for (int i = 0; i != _root; ++i) { |
758 | 758 |
_sum_supply += _supply[i]; |
759 | 759 |
} |
760 | 760 |
if (_sum_supply > 0) return INFEASIBLE; |
761 | 761 |
|
762 | 762 |
|
763 | 763 |
// Initialize vectors |
764 | 764 |
for (int i = 0; i != _res_node_num; ++i) { |
765 | 765 |
_pi[i] = 0; |
766 | 766 |
_excess[i] = _supply[i]; |
767 | 767 |
} |
768 | 768 |
|
769 | 769 |
// Remove infinite upper bounds and check negative arcs |
770 | 770 |
const Value MAX = std::numeric_limits<Value>::max(); |
771 | 771 |
int last_out; |
772 | 772 |
if (_have_lower) { |
773 | 773 |
for (int i = 0; i != _root; ++i) { |
774 | 774 |
last_out = _first_out[i+1]; |
775 | 775 |
for (int j = _first_out[i]; j != last_out; ++j) { |
776 | 776 |
if (_forward[j]) { |
777 | 777 |
Value c = _scost[j] < 0 ? _upper[j] : _lower[j]; |
778 | 778 |
if (c >= MAX) return UNBOUNDED; |
779 | 779 |
_excess[i] -= c; |
780 | 780 |
_excess[_target[j]] += c; |
781 | 781 |
} |
782 | 782 |
} |
783 | 783 |
} |
784 | 784 |
} else { |
785 | 785 |
for (int i = 0; i != _root; ++i) { |
786 | 786 |
last_out = _first_out[i+1]; |
787 | 787 |
for (int j = _first_out[i]; j != last_out; ++j) { |
788 | 788 |
if (_forward[j] && _scost[j] < 0) { |
789 | 789 |
Value c = _upper[j]; |
790 | 790 |
if (c >= MAX) return UNBOUNDED; |
791 | 791 |
_excess[i] -= c; |
792 | 792 |
_excess[_target[j]] += c; |
793 | 793 |
} |
794 | 794 |
} |
795 | 795 |
} |
796 | 796 |
} |
797 | 797 |
Value ex, max_cap = 0; |
798 | 798 |
for (int i = 0; i != _res_node_num; ++i) { |
799 | 799 |
ex = _excess[i]; |
800 | 800 |
_excess[i] = 0; |
801 | 801 |
if (ex < 0) max_cap -= ex; |
802 | 802 |
} |
803 | 803 |
for (int j = 0; j != _res_arc_num; ++j) { |
804 | 804 |
if (_upper[j] >= MAX) _upper[j] = max_cap; |
805 | 805 |
} |
806 | 806 |
|
807 | 807 |
// Initialize the large cost vector and the epsilon parameter |
808 | 808 |
_epsilon = 0; |
809 | 809 |
LargeCost lc; |
810 | 810 |
for (int i = 0; i != _root; ++i) { |
811 | 811 |
last_out = _first_out[i+1]; |
812 | 812 |
for (int j = _first_out[i]; j != last_out; ++j) { |
813 | 813 |
lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha; |
814 | 814 |
_cost[j] = lc; |
815 | 815 |
if (lc > _epsilon) _epsilon = lc; |
816 | 816 |
} |
817 | 817 |
} |
818 | 818 |
_epsilon /= _alpha; |
819 | 819 |
|
820 | 820 |
// Initialize maps for Circulation and remove non-zero lower bounds |
821 | 821 |
ConstMap<Arc, Value> low(0); |
822 | 822 |
typedef typename Digraph::template ArcMap<Value> ValueArcMap; |
823 | 823 |
typedef typename Digraph::template NodeMap<Value> ValueNodeMap; |
824 | 824 |
ValueArcMap cap(_graph), flow(_graph); |
825 | 825 |
ValueNodeMap sup(_graph); |
826 | 826 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
827 | 827 |
sup[n] = _supply[_node_id[n]]; |
828 | 828 |
} |
829 | 829 |
if (_have_lower) { |
830 | 830 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
831 | 831 |
int j = _arc_idf[a]; |
832 | 832 |
Value c = _lower[j]; |
833 | 833 |
cap[a] = _upper[j] - c; |
834 | 834 |
sup[_graph.source(a)] -= c; |
835 | 835 |
sup[_graph.target(a)] += c; |
836 | 836 |
} |
837 | 837 |
} else { |
838 | 838 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
839 | 839 |
cap[a] = _upper[_arc_idf[a]]; |
840 | 840 |
} |
841 | 841 |
} |
842 | 842 |
|
843 | 843 |
_sup_node_num = 0; |
844 | 844 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
845 | 845 |
if (sup[n] > 0) ++_sup_node_num; |
846 | 846 |
} |
847 | 847 |
|
848 | 848 |
// Find a feasible flow using Circulation |
849 | 849 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap> |
850 | 850 |
circ(_graph, low, cap, sup); |
851 | 851 |
if (!circ.flowMap(flow).run()) return INFEASIBLE; |
852 | 852 |
|
853 | 853 |
// Set residual capacities and handle GEQ supply type |
854 | 854 |
if (_sum_supply < 0) { |
855 | 855 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
856 | 856 |
Value fa = flow[a]; |
857 | 857 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
858 | 858 |
_res_cap[_arc_idb[a]] = fa; |
859 | 859 |
sup[_graph.source(a)] -= fa; |
860 | 860 |
sup[_graph.target(a)] += fa; |
861 | 861 |
} |
862 | 862 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
863 | 863 |
_excess[_node_id[n]] = sup[n]; |
864 | 864 |
} |
865 | 865 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
866 | 866 |
int u = _target[a]; |
867 | 867 |
int ra = _reverse[a]; |
868 | 868 |
_res_cap[a] = -_sum_supply + 1; |
869 | 869 |
_res_cap[ra] = -_excess[u]; |
870 | 870 |
_cost[a] = 0; |
871 | 871 |
_cost[ra] = 0; |
872 | 872 |
_excess[u] = 0; |
873 | 873 |
} |
874 | 874 |
} else { |
875 | 875 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
876 | 876 |
Value fa = flow[a]; |
877 | 877 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
878 | 878 |
_res_cap[_arc_idb[a]] = fa; |
879 | 879 |
} |
880 | 880 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
881 | 881 |
int ra = _reverse[a]; |
882 | 882 |
_res_cap[a] = 0; |
883 | 883 |
_res_cap[ra] = 0; |
884 | 884 |
_cost[a] = 0; |
885 | 885 |
_cost[ra] = 0; |
886 | 886 |
} |
887 | 887 |
} |
888 | 888 |
|
889 | 889 |
return OPTIMAL; |
890 | 890 |
} |
891 | 891 |
|
892 | 892 |
// Execute the algorithm and transform the results |
893 | 893 |
void start(Method method) { |
894 | 894 |
// Maximum path length for partial augment |
895 | 895 |
const int MAX_PATH_LENGTH = 4; |
896 | 896 |
|
897 | 897 |
// Initialize data structures for buckets |
898 | 898 |
_max_rank = _alpha * _res_node_num; |
899 | 899 |
_buckets.resize(_max_rank); |
900 | 900 |
_bucket_next.resize(_res_node_num + 1); |
901 | 901 |
_bucket_prev.resize(_res_node_num + 1); |
902 | 902 |
_rank.resize(_res_node_num + 1); |
903 | 903 |
|
904 | 904 |
// Execute the algorithm |
905 | 905 |
switch (method) { |
906 | 906 |
case PUSH: |
907 | 907 |
startPush(); |
908 | 908 |
break; |
909 | 909 |
case AUGMENT: |
910 |
startAugment(); |
|
910 |
startAugment(_res_node_num - 1); |
|
911 | 911 |
break; |
912 | 912 |
case PARTIAL_AUGMENT: |
913 | 913 |
startAugment(MAX_PATH_LENGTH); |
914 | 914 |
break; |
915 | 915 |
} |
916 | 916 |
|
917 | 917 |
// Compute node potentials for the original costs |
918 | 918 |
_arc_vec.clear(); |
919 | 919 |
_cost_vec.clear(); |
920 | 920 |
for (int j = 0; j != _res_arc_num; ++j) { |
921 | 921 |
if (_res_cap[j] > 0) { |
922 | 922 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
923 | 923 |
_cost_vec.push_back(_scost[j]); |
924 | 924 |
} |
925 | 925 |
} |
926 | 926 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
927 | 927 |
|
928 | 928 |
typename BellmanFord<StaticDigraph, LargeCostArcMap> |
929 | 929 |
::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map); |
930 | 930 |
bf.distMap(_pi_map); |
931 | 931 |
bf.init(0); |
932 | 932 |
bf.start(); |
933 | 933 |
|
934 | 934 |
// Handle non-zero lower bounds |
935 | 935 |
if (_have_lower) { |
936 | 936 |
int limit = _first_out[_root]; |
937 | 937 |
for (int j = 0; j != limit; ++j) { |
938 | 938 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
939 | 939 |
} |
940 | 940 |
} |
941 | 941 |
} |
942 | 942 |
|
943 | 943 |
// Initialize a cost scaling phase |
944 | 944 |
void initPhase() { |
945 | 945 |
// Saturate arcs not satisfying the optimality condition |
946 | 946 |
for (int u = 0; u != _res_node_num; ++u) { |
947 | 947 |
int last_out = _first_out[u+1]; |
948 | 948 |
LargeCost pi_u = _pi[u]; |
949 | 949 |
for (int a = _first_out[u]; a != last_out; ++a) { |
950 | 950 |
int v = _target[a]; |
951 | 951 |
if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) { |
952 | 952 |
Value delta = _res_cap[a]; |
953 | 953 |
_excess[u] -= delta; |
954 | 954 |
_excess[v] += delta; |
955 | 955 |
_res_cap[a] = 0; |
956 | 956 |
_res_cap[_reverse[a]] += delta; |
957 | 957 |
} |
958 | 958 |
} |
959 | 959 |
} |
960 | 960 |
|
961 | 961 |
// Find active nodes (i.e. nodes with positive excess) |
962 | 962 |
for (int u = 0; u != _res_node_num; ++u) { |
963 | 963 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
964 | 964 |
} |
965 | 965 |
|
966 | 966 |
// Initialize the next arcs |
967 | 967 |
for (int u = 0; u != _res_node_num; ++u) { |
968 | 968 |
_next_out[u] = _first_out[u]; |
969 | 969 |
} |
970 | 970 |
} |
971 | 971 |
|
972 | 972 |
// Early termination heuristic |
973 | 973 |
bool earlyTermination() { |
974 | 974 |
const double EARLY_TERM_FACTOR = 3.0; |
975 | 975 |
|
976 | 976 |
// Build a static residual graph |
977 | 977 |
_arc_vec.clear(); |
978 | 978 |
_cost_vec.clear(); |
979 | 979 |
for (int j = 0; j != _res_arc_num; ++j) { |
980 | 980 |
if (_res_cap[j] > 0) { |
981 | 981 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
982 | 982 |
_cost_vec.push_back(_cost[j] + 1); |
983 | 983 |
} |
984 | 984 |
} |
985 | 985 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
986 | 986 |
|
987 | 987 |
// Run Bellman-Ford algorithm to check if the current flow is optimal |
988 | 988 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
989 | 989 |
bf.init(0); |
990 | 990 |
bool done = false; |
991 | 991 |
int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num))); |
992 | 992 |
for (int i = 0; i < K && !done; ++i) { |
993 | 993 |
done = bf.processNextWeakRound(); |
994 | 994 |
} |
995 | 995 |
return done; |
996 | 996 |
} |
997 | 997 |
|
998 | 998 |
// Global potential update heuristic |
999 | 999 |
void globalUpdate() { |
1000 | 1000 |
int bucket_end = _root + 1; |
1001 | 1001 |
|
1002 | 1002 |
// Initialize buckets |
1003 | 1003 |
for (int r = 0; r != _max_rank; ++r) { |
1004 | 1004 |
_buckets[r] = bucket_end; |
1005 | 1005 |
} |
1006 | 1006 |
Value total_excess = 0; |
1007 | 1007 |
for (int i = 0; i != _res_node_num; ++i) { |
1008 | 1008 |
if (_excess[i] < 0) { |
1009 | 1009 |
_rank[i] = 0; |
1010 | 1010 |
_bucket_next[i] = _buckets[0]; |
1011 | 1011 |
_bucket_prev[_buckets[0]] = i; |
1012 | 1012 |
_buckets[0] = i; |
1013 | 1013 |
} else { |
1014 | 1014 |
total_excess += _excess[i]; |
1015 | 1015 |
_rank[i] = _max_rank; |
1016 | 1016 |
} |
1017 | 1017 |
} |
1018 | 1018 |
if (total_excess == 0) return; |
1019 | 1019 |
|
1020 | 1020 |
// Search the buckets |
1021 | 1021 |
int r = 0; |
1022 | 1022 |
for ( ; r != _max_rank; ++r) { |
1023 | 1023 |
while (_buckets[r] != bucket_end) { |
1024 | 1024 |
// Remove the first node from the current bucket |
1025 | 1025 |
int u = _buckets[r]; |
1026 | 1026 |
_buckets[r] = _bucket_next[u]; |
1027 | 1027 |
|
1028 | 1028 |
// Search the incomming arcs of u |
1029 | 1029 |
LargeCost pi_u = _pi[u]; |
1030 | 1030 |
int last_out = _first_out[u+1]; |
1031 | 1031 |
for (int a = _first_out[u]; a != last_out; ++a) { |
1032 | 1032 |
int ra = _reverse[a]; |
1033 | 1033 |
if (_res_cap[ra] > 0) { |
1034 | 1034 |
int v = _source[ra]; |
1035 | 1035 |
int old_rank_v = _rank[v]; |
1036 | 1036 |
if (r < old_rank_v) { |
1037 | 1037 |
// Compute the new rank of v |
1038 | 1038 |
LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon; |
1039 | 1039 |
int new_rank_v = old_rank_v; |
1040 | 1040 |
if (nrc < LargeCost(_max_rank)) |
1041 | 1041 |
new_rank_v = r + 1 + int(nrc); |
1042 | 1042 |
|
1043 | 1043 |
// Change the rank of v |
1044 | 1044 |
if (new_rank_v < old_rank_v) { |
1045 | 1045 |
_rank[v] = new_rank_v; |
1046 | 1046 |
_next_out[v] = _first_out[v]; |
1047 | 1047 |
|
1048 | 1048 |
// Remove v from its old bucket |
1049 | 1049 |
if (old_rank_v < _max_rank) { |
1050 | 1050 |
if (_buckets[old_rank_v] == v) { |
1051 | 1051 |
_buckets[old_rank_v] = _bucket_next[v]; |
1052 | 1052 |
} else { |
1053 | 1053 |
_bucket_next[_bucket_prev[v]] = _bucket_next[v]; |
1054 | 1054 |
_bucket_prev[_bucket_next[v]] = _bucket_prev[v]; |
1055 | 1055 |
} |
1056 | 1056 |
} |
1057 | 1057 |
|
1058 | 1058 |
// Insert v to its new bucket |
1059 | 1059 |
_bucket_next[v] = _buckets[new_rank_v]; |
1060 | 1060 |
_bucket_prev[_buckets[new_rank_v]] = v; |
1061 | 1061 |
_buckets[new_rank_v] = v; |
1062 | 1062 |
} |
1063 | 1063 |
} |
1064 | 1064 |
} |
1065 | 1065 |
} |
1066 | 1066 |
|
1067 | 1067 |
// Finish search if there are no more active nodes |
1068 | 1068 |
if (_excess[u] > 0) { |
1069 | 1069 |
total_excess -= _excess[u]; |
1070 | 1070 |
if (total_excess <= 0) break; |
1071 | 1071 |
} |
1072 | 1072 |
} |
1073 | 1073 |
if (total_excess <= 0) break; |
1074 | 1074 |
} |
1075 | 1075 |
|
1076 | 1076 |
// Relabel nodes |
1077 | 1077 |
for (int u = 0; u != _res_node_num; ++u) { |
1078 | 1078 |
int k = std::min(_rank[u], r); |
1079 | 1079 |
if (k > 0) { |
1080 | 1080 |
_pi[u] -= _epsilon * k; |
1081 | 1081 |
_next_out[u] = _first_out[u]; |
1082 | 1082 |
} |
1083 | 1083 |
} |
1084 | 1084 |
} |
1085 | 1085 |
|
1086 | 1086 |
/// Execute the algorithm performing augment and relabel operations |
1087 |
void startAugment(int max_length |
|
1087 |
void startAugment(int max_length) { |
|
1088 | 1088 |
// Paramters for heuristics |
1089 | 1089 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
1090 | 1090 |
const double GLOBAL_UPDATE_FACTOR = 3.0; |
1091 | 1091 |
|
1092 | 1092 |
const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
1093 | 1093 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
1094 | 1094 |
int next_update_limit = global_update_freq; |
1095 | 1095 |
|
1096 | 1096 |
int relabel_cnt = 0; |
1097 | 1097 |
|
1098 | 1098 |
// Perform cost scaling phases |
1099 | 1099 |
std::vector<int> path; |
1100 | 1100 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
1101 | 1101 |
1 : _epsilon / _alpha ) |
1102 | 1102 |
{ |
1103 | 1103 |
// Early termination heuristic |
1104 | 1104 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) { |
1105 | 1105 |
if (earlyTermination()) break; |
1106 | 1106 |
} |
1107 | 1107 |
|
1108 | 1108 |
// Initialize current phase |
1109 | 1109 |
initPhase(); |
1110 | 1110 |
|
1111 | 1111 |
// Perform partial augment and relabel operations |
1112 | 1112 |
while (true) { |
1113 | 1113 |
// Select an active node (FIFO selection) |
1114 | 1114 |
while (_active_nodes.size() > 0 && |
1115 | 1115 |
_excess[_active_nodes.front()] <= 0) { |
1116 | 1116 |
_active_nodes.pop_front(); |
1117 | 1117 |
} |
1118 | 1118 |
if (_active_nodes.size() == 0) break; |
1119 | 1119 |
int start = _active_nodes.front(); |
1120 | 1120 |
|
1121 | 1121 |
// Find an augmenting path from the start node |
1122 | 1122 |
path.clear(); |
1123 | 1123 |
int tip = start; |
1124 | 1124 |
while (_excess[tip] >= 0 && int(path.size()) < max_length) { |
1125 | 1125 |
int u; |
1126 | 1126 |
LargeCost min_red_cost, rc, pi_tip = _pi[tip]; |
1127 | 1127 |
int last_out = _first_out[tip+1]; |
1128 | 1128 |
for (int a = _next_out[tip]; a != last_out; ++a) { |
1129 | 1129 |
u = _target[a]; |
1130 | 1130 |
if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) { |
1131 | 1131 |
path.push_back(a); |
1132 | 1132 |
_next_out[tip] = a; |
1133 | 1133 |
tip = u; |
1134 | 1134 |
goto next_step; |
1135 | 1135 |
} |
1136 | 1136 |
} |
1137 | 1137 |
|
1138 | 1138 |
// Relabel tip node |
1139 | 1139 |
min_red_cost = std::numeric_limits<LargeCost>::max(); |
1140 | 1140 |
if (tip != start) { |
1141 | 1141 |
int ra = _reverse[path.back()]; |
1142 | 1142 |
min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]]; |
1143 | 1143 |
} |
1144 | 1144 |
for (int a = _first_out[tip]; a != last_out; ++a) { |
1145 | 1145 |
rc = _cost[a] + pi_tip - _pi[_target[a]]; |
1146 | 1146 |
if (_res_cap[a] > 0 && rc < min_red_cost) { |
1147 | 1147 |
min_red_cost = rc; |
1148 | 1148 |
} |
1149 | 1149 |
} |
1150 | 1150 |
_pi[tip] -= min_red_cost + _epsilon; |
1151 | 1151 |
_next_out[tip] = _first_out[tip]; |
1152 | 1152 |
++relabel_cnt; |
1153 | 1153 |
|
1154 | 1154 |
// Step back |
1155 | 1155 |
if (tip != start) { |
1156 | 1156 |
tip = _source[path.back()]; |
1157 | 1157 |
path.pop_back(); |
1158 | 1158 |
} |
1159 | 1159 |
|
1160 | 1160 |
next_step: ; |
1161 | 1161 |
} |
1162 | 1162 |
|
1163 | 1163 |
// Augment along the found path (as much flow as possible) |
1164 | 1164 |
Value delta; |
1165 | 1165 |
int pa, u, v = start; |
1166 | 1166 |
for (int i = 0; i != int(path.size()); ++i) { |
1167 | 1167 |
pa = path[i]; |
1168 | 1168 |
u = v; |
1169 | 1169 |
v = _target[pa]; |
1170 | 1170 |
delta = std::min(_res_cap[pa], _excess[u]); |
1171 | 1171 |
_res_cap[pa] -= delta; |
1172 | 1172 |
_res_cap[_reverse[pa]] += delta; |
1173 | 1173 |
_excess[u] -= delta; |
1174 | 1174 |
_excess[v] += delta; |
1175 | 1175 |
if (_excess[v] > 0 && _excess[v] <= delta) |
1176 | 1176 |
_active_nodes.push_back(v); |
1177 | 1177 |
} |
1178 | 1178 |
|
1179 | 1179 |
// Global update heuristic |
1180 | 1180 |
if (relabel_cnt >= next_update_limit) { |
1181 | 1181 |
globalUpdate(); |
1182 | 1182 |
next_update_limit += global_update_freq; |
1183 | 1183 |
} |
1184 | 1184 |
} |
1185 | 1185 |
} |
1186 | 1186 |
} |
1187 | 1187 |
|
1188 | 1188 |
/// Execute the algorithm performing push and relabel operations |
1189 | 1189 |
void startPush() { |
1190 | 1190 |
// Paramters for heuristics |
1191 | 1191 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
1192 | 1192 |
const double GLOBAL_UPDATE_FACTOR = 2.0; |
1193 | 1193 |
|
1194 | 1194 |
const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
1195 | 1195 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
1196 | 1196 |
int next_update_limit = global_update_freq; |
1197 | 1197 |
|
1198 | 1198 |
int relabel_cnt = 0; |
1199 | 1199 |
|
1200 | 1200 |
// Perform cost scaling phases |
1201 | 1201 |
BoolVector hyper(_res_node_num, false); |
1202 | 1202 |
LargeCostVector hyper_cost(_res_node_num); |
1203 | 1203 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
1204 | 1204 |
1 : _epsilon / _alpha ) |
1205 | 1205 |
{ |
1206 | 1206 |
// Early termination heuristic |
1207 | 1207 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) { |
1208 | 1208 |
if (earlyTermination()) break; |
1209 | 1209 |
} |
1210 | 1210 |
|
1211 | 1211 |
// Initialize current phase |
1212 | 1212 |
initPhase(); |
1213 | 1213 |
|
1214 | 1214 |
// Perform push and relabel operations |
1215 | 1215 |
while (_active_nodes.size() > 0) { |
1216 | 1216 |
LargeCost min_red_cost, rc, pi_n; |
1217 | 1217 |
Value delta; |
1218 | 1218 |
int n, t, a, last_out = _res_arc_num; |
1219 | 1219 |
|
1220 | 1220 |
next_node: |
1221 | 1221 |
// Select an active node (FIFO selection) |
1222 | 1222 |
n = _active_nodes.front(); |
1223 | 1223 |
last_out = _first_out[n+1]; |
1224 | 1224 |
pi_n = _pi[n]; |
1225 | 1225 |
|
1226 | 1226 |
// Perform push operations if there are admissible arcs |
1227 | 1227 |
if (_excess[n] > 0) { |
1228 | 1228 |
for (a = _next_out[n]; a != last_out; ++a) { |
1229 | 1229 |
if (_res_cap[a] > 0 && |
1230 | 1230 |
_cost[a] + pi_n - _pi[_target[a]] < 0) { |
1231 | 1231 |
delta = std::min(_res_cap[a], _excess[n]); |
1232 | 1232 |
t = _target[a]; |
1233 | 1233 |
|
1234 | 1234 |
// Push-look-ahead heuristic |
1235 | 1235 |
Value ahead = -_excess[t]; |
1236 | 1236 |
int last_out_t = _first_out[t+1]; |
1237 | 1237 |
LargeCost pi_t = _pi[t]; |
1238 | 1238 |
for (int ta = _next_out[t]; ta != last_out_t; ++ta) { |
1239 | 1239 |
if (_res_cap[ta] > 0 && |
1240 | 1240 |
_cost[ta] + pi_t - _pi[_target[ta]] < 0) |
1241 | 1241 |
ahead += _res_cap[ta]; |
1242 | 1242 |
if (ahead >= delta) break; |
1243 | 1243 |
} |
1244 | 1244 |
if (ahead < 0) ahead = 0; |
1245 | 1245 |
|
1246 | 1246 |
// Push flow along the arc |
1247 | 1247 |
if (ahead < delta && !hyper[t]) { |
1248 | 1248 |
_res_cap[a] -= ahead; |
1249 | 1249 |
_res_cap[_reverse[a]] += ahead; |
1250 | 1250 |
_excess[n] -= ahead; |
1251 | 1251 |
_excess[t] += ahead; |
1252 | 1252 |
_active_nodes.push_front(t); |
1253 | 1253 |
hyper[t] = true; |
1254 | 1254 |
hyper_cost[t] = _cost[a] + pi_n - pi_t; |
1255 | 1255 |
_next_out[n] = a; |
1256 | 1256 |
goto next_node; |
1257 | 1257 |
} else { |
1258 | 1258 |
_res_cap[a] -= delta; |
1259 | 1259 |
_res_cap[_reverse[a]] += delta; |
1260 | 1260 |
_excess[n] -= delta; |
1261 | 1261 |
_excess[t] += delta; |
1262 | 1262 |
if (_excess[t] > 0 && _excess[t] <= delta) |
1263 | 1263 |
_active_nodes.push_back(t); |
1264 | 1264 |
} |
1265 | 1265 |
|
1266 | 1266 |
if (_excess[n] == 0) { |
1267 | 1267 |
_next_out[n] = a; |
1268 | 1268 |
goto remove_nodes; |
1269 | 1269 |
} |
1270 | 1270 |
} |
1271 | 1271 |
} |
1272 | 1272 |
_next_out[n] = a; |
1273 | 1273 |
} |
1274 | 1274 |
|
1275 | 1275 |
// Relabel the node if it is still active (or hyper) |
1276 | 1276 |
if (_excess[n] > 0 || hyper[n]) { |
1277 | 1277 |
min_red_cost = hyper[n] ? -hyper_cost[n] : |
1278 | 1278 |
std::numeric_limits<LargeCost>::max(); |
1279 | 1279 |
for (int a = _first_out[n]; a != last_out; ++a) { |
0 comments (0 inline)