gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Bug fix in CostScaling (#417)
0 1 0
default
1 file changed with 2 insertions and 2 deletions:
↑ Collapse diff ↑
Ignore white space 768 line context
... ...
@@ -526,791 +526,791 @@
526 526
    /// \ref resetParams() or \ref reset() is used.
527 527
    /// If the underlying digraph was also modified after the construction
528 528
    /// of the class or the last \ref reset() call, then the \ref reset()
529 529
    /// function must be used, otherwise \ref resetParams() is sufficient.
530 530
    ///
531 531
    /// For example,
532 532
    /// \code
533 533
    ///   CostScaling<ListDigraph> cs(graph);
534 534
    ///
535 535
    ///   // First run
536 536
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
537 537
    ///     .supplyMap(sup).run();
538 538
    ///
539 539
    ///   // Run again with modified cost map (resetParams() is not called,
540 540
    ///   // so only the cost map have to be set again)
541 541
    ///   cost[e] += 100;
542 542
    ///   cs.costMap(cost).run();
543 543
    ///
544 544
    ///   // Run again from scratch using resetParams()
545 545
    ///   // (the lower bounds will be set to zero on all arcs)
546 546
    ///   cs.resetParams();
547 547
    ///   cs.upperMap(capacity).costMap(cost)
548 548
    ///     .supplyMap(sup).run();
549 549
    /// \endcode
550 550
    ///
551 551
    /// \return <tt>(*this)</tt>
552 552
    ///
553 553
    /// \see reset(), run()
554 554
    CostScaling& resetParams() {
555 555
      for (int i = 0; i != _res_node_num; ++i) {
556 556
        _supply[i] = 0;
557 557
      }
558 558
      int limit = _first_out[_root];
559 559
      for (int j = 0; j != limit; ++j) {
560 560
        _lower[j] = 0;
561 561
        _upper[j] = INF;
562 562
        _scost[j] = _forward[j] ? 1 : -1;
563 563
      }
564 564
      for (int j = limit; j != _res_arc_num; ++j) {
565 565
        _lower[j] = 0;
566 566
        _upper[j] = INF;
567 567
        _scost[j] = 0;
568 568
        _scost[_reverse[j]] = 0;
569 569
      }
570 570
      _have_lower = false;
571 571
      return *this;
572 572
    }
573 573

	
574 574
    /// \brief Reset all the parameters that have been given before.
575 575
    ///
576 576
    /// This function resets all the paramaters that have been given
577 577
    /// before using functions \ref lowerMap(), \ref upperMap(),
578 578
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
579 579
    ///
580 580
    /// It is useful for multiple run() calls. If this function is not
581 581
    /// used, all the parameters given before are kept for the next
582 582
    /// \ref run() call.
583 583
    /// However, the underlying digraph must not be modified after this
584 584
    /// class have been constructed, since it copies and extends the graph.
585 585
    /// \return <tt>(*this)</tt>
586 586
    CostScaling& reset() {
587 587
      // Resize vectors
588 588
      _node_num = countNodes(_graph);
589 589
      _arc_num = countArcs(_graph);
590 590
      _res_node_num = _node_num + 1;
591 591
      _res_arc_num = 2 * (_arc_num + _node_num);
592 592
      _root = _node_num;
593 593

	
594 594
      _first_out.resize(_res_node_num + 1);
595 595
      _forward.resize(_res_arc_num);
596 596
      _source.resize(_res_arc_num);
597 597
      _target.resize(_res_arc_num);
598 598
      _reverse.resize(_res_arc_num);
599 599

	
600 600
      _lower.resize(_res_arc_num);
601 601
      _upper.resize(_res_arc_num);
602 602
      _scost.resize(_res_arc_num);
603 603
      _supply.resize(_res_node_num);
604 604

	
605 605
      _res_cap.resize(_res_arc_num);
606 606
      _cost.resize(_res_arc_num);
607 607
      _pi.resize(_res_node_num);
608 608
      _excess.resize(_res_node_num);
609 609
      _next_out.resize(_res_node_num);
610 610

	
611 611
      _arc_vec.reserve(_res_arc_num);
612 612
      _cost_vec.reserve(_res_arc_num);
613 613

	
614 614
      // Copy the graph
615 615
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
616 616
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
617 617
        _node_id[n] = i;
618 618
      }
619 619
      i = 0;
620 620
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
621 621
        _first_out[i] = j;
622 622
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
623 623
          _arc_idf[a] = j;
624 624
          _forward[j] = true;
625 625
          _source[j] = i;
626 626
          _target[j] = _node_id[_graph.runningNode(a)];
627 627
        }
628 628
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
629 629
          _arc_idb[a] = j;
630 630
          _forward[j] = false;
631 631
          _source[j] = i;
632 632
          _target[j] = _node_id[_graph.runningNode(a)];
633 633
        }
634 634
        _forward[j] = false;
635 635
        _source[j] = i;
636 636
        _target[j] = _root;
637 637
        _reverse[j] = k;
638 638
        _forward[k] = true;
639 639
        _source[k] = _root;
640 640
        _target[k] = i;
641 641
        _reverse[k] = j;
642 642
        ++j; ++k;
643 643
      }
644 644
      _first_out[i] = j;
645 645
      _first_out[_res_node_num] = k;
646 646
      for (ArcIt a(_graph); a != INVALID; ++a) {
647 647
        int fi = _arc_idf[a];
648 648
        int bi = _arc_idb[a];
649 649
        _reverse[fi] = bi;
650 650
        _reverse[bi] = fi;
651 651
      }
652 652

	
653 653
      // Reset parameters
654 654
      resetParams();
655 655
      return *this;
656 656
    }
657 657

	
658 658
    /// @}
659 659

	
660 660
    /// \name Query Functions
661 661
    /// The results of the algorithm can be obtained using these
662 662
    /// functions.\n
663 663
    /// The \ref run() function must be called before using them.
664 664

	
665 665
    /// @{
666 666

	
667 667
    /// \brief Return the total cost of the found flow.
668 668
    ///
669 669
    /// This function returns the total cost of the found flow.
670 670
    /// Its complexity is O(e).
671 671
    ///
672 672
    /// \note The return type of the function can be specified as a
673 673
    /// template parameter. For example,
674 674
    /// \code
675 675
    ///   cs.totalCost<double>();
676 676
    /// \endcode
677 677
    /// It is useful if the total cost cannot be stored in the \c Cost
678 678
    /// type of the algorithm, which is the default return type of the
679 679
    /// function.
680 680
    ///
681 681
    /// \pre \ref run() must be called before using this function.
682 682
    template <typename Number>
683 683
    Number totalCost() const {
684 684
      Number c = 0;
685 685
      for (ArcIt a(_graph); a != INVALID; ++a) {
686 686
        int i = _arc_idb[a];
687 687
        c += static_cast<Number>(_res_cap[i]) *
688 688
             (-static_cast<Number>(_scost[i]));
689 689
      }
690 690
      return c;
691 691
    }
692 692

	
693 693
#ifndef DOXYGEN
694 694
    Cost totalCost() const {
695 695
      return totalCost<Cost>();
696 696
    }
697 697
#endif
698 698

	
699 699
    /// \brief Return the flow on the given arc.
700 700
    ///
701 701
    /// This function returns the flow on the given arc.
702 702
    ///
703 703
    /// \pre \ref run() must be called before using this function.
704 704
    Value flow(const Arc& a) const {
705 705
      return _res_cap[_arc_idb[a]];
706 706
    }
707 707

	
708 708
    /// \brief Return the flow map (the primal solution).
709 709
    ///
710 710
    /// This function copies the flow value on each arc into the given
711 711
    /// map. The \c Value type of the algorithm must be convertible to
712 712
    /// the \c Value type of the map.
713 713
    ///
714 714
    /// \pre \ref run() must be called before using this function.
715 715
    template <typename FlowMap>
716 716
    void flowMap(FlowMap &map) const {
717 717
      for (ArcIt a(_graph); a != INVALID; ++a) {
718 718
        map.set(a, _res_cap[_arc_idb[a]]);
719 719
      }
720 720
    }
721 721

	
722 722
    /// \brief Return the potential (dual value) of the given node.
723 723
    ///
724 724
    /// This function returns the potential (dual value) of the
725 725
    /// given node.
726 726
    ///
727 727
    /// \pre \ref run() must be called before using this function.
728 728
    Cost potential(const Node& n) const {
729 729
      return static_cast<Cost>(_pi[_node_id[n]]);
730 730
    }
731 731

	
732 732
    /// \brief Return the potential map (the dual solution).
733 733
    ///
734 734
    /// This function copies the potential (dual value) of each node
735 735
    /// into the given map.
736 736
    /// The \c Cost type of the algorithm must be convertible to the
737 737
    /// \c Value type of the map.
738 738
    ///
739 739
    /// \pre \ref run() must be called before using this function.
740 740
    template <typename PotentialMap>
741 741
    void potentialMap(PotentialMap &map) const {
742 742
      for (NodeIt n(_graph); n != INVALID; ++n) {
743 743
        map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
744 744
      }
745 745
    }
746 746

	
747 747
    /// @}
748 748

	
749 749
  private:
750 750

	
751 751
    // Initialize the algorithm
752 752
    ProblemType init() {
753 753
      if (_res_node_num <= 1) return INFEASIBLE;
754 754

	
755 755
      // Check the sum of supply values
756 756
      _sum_supply = 0;
757 757
      for (int i = 0; i != _root; ++i) {
758 758
        _sum_supply += _supply[i];
759 759
      }
760 760
      if (_sum_supply > 0) return INFEASIBLE;
761 761

	
762 762

	
763 763
      // Initialize vectors
764 764
      for (int i = 0; i != _res_node_num; ++i) {
765 765
        _pi[i] = 0;
766 766
        _excess[i] = _supply[i];
767 767
      }
768 768

	
769 769
      // Remove infinite upper bounds and check negative arcs
770 770
      const Value MAX = std::numeric_limits<Value>::max();
771 771
      int last_out;
772 772
      if (_have_lower) {
773 773
        for (int i = 0; i != _root; ++i) {
774 774
          last_out = _first_out[i+1];
775 775
          for (int j = _first_out[i]; j != last_out; ++j) {
776 776
            if (_forward[j]) {
777 777
              Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
778 778
              if (c >= MAX) return UNBOUNDED;
779 779
              _excess[i] -= c;
780 780
              _excess[_target[j]] += c;
781 781
            }
782 782
          }
783 783
        }
784 784
      } else {
785 785
        for (int i = 0; i != _root; ++i) {
786 786
          last_out = _first_out[i+1];
787 787
          for (int j = _first_out[i]; j != last_out; ++j) {
788 788
            if (_forward[j] && _scost[j] < 0) {
789 789
              Value c = _upper[j];
790 790
              if (c >= MAX) return UNBOUNDED;
791 791
              _excess[i] -= c;
792 792
              _excess[_target[j]] += c;
793 793
            }
794 794
          }
795 795
        }
796 796
      }
797 797
      Value ex, max_cap = 0;
798 798
      for (int i = 0; i != _res_node_num; ++i) {
799 799
        ex = _excess[i];
800 800
        _excess[i] = 0;
801 801
        if (ex < 0) max_cap -= ex;
802 802
      }
803 803
      for (int j = 0; j != _res_arc_num; ++j) {
804 804
        if (_upper[j] >= MAX) _upper[j] = max_cap;
805 805
      }
806 806

	
807 807
      // Initialize the large cost vector and the epsilon parameter
808 808
      _epsilon = 0;
809 809
      LargeCost lc;
810 810
      for (int i = 0; i != _root; ++i) {
811 811
        last_out = _first_out[i+1];
812 812
        for (int j = _first_out[i]; j != last_out; ++j) {
813 813
          lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
814 814
          _cost[j] = lc;
815 815
          if (lc > _epsilon) _epsilon = lc;
816 816
        }
817 817
      }
818 818
      _epsilon /= _alpha;
819 819

	
820 820
      // Initialize maps for Circulation and remove non-zero lower bounds
821 821
      ConstMap<Arc, Value> low(0);
822 822
      typedef typename Digraph::template ArcMap<Value> ValueArcMap;
823 823
      typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
824 824
      ValueArcMap cap(_graph), flow(_graph);
825 825
      ValueNodeMap sup(_graph);
826 826
      for (NodeIt n(_graph); n != INVALID; ++n) {
827 827
        sup[n] = _supply[_node_id[n]];
828 828
      }
829 829
      if (_have_lower) {
830 830
        for (ArcIt a(_graph); a != INVALID; ++a) {
831 831
          int j = _arc_idf[a];
832 832
          Value c = _lower[j];
833 833
          cap[a] = _upper[j] - c;
834 834
          sup[_graph.source(a)] -= c;
835 835
          sup[_graph.target(a)] += c;
836 836
        }
837 837
      } else {
838 838
        for (ArcIt a(_graph); a != INVALID; ++a) {
839 839
          cap[a] = _upper[_arc_idf[a]];
840 840
        }
841 841
      }
842 842

	
843 843
      _sup_node_num = 0;
844 844
      for (NodeIt n(_graph); n != INVALID; ++n) {
845 845
        if (sup[n] > 0) ++_sup_node_num;
846 846
      }
847 847

	
848 848
      // Find a feasible flow using Circulation
849 849
      Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
850 850
        circ(_graph, low, cap, sup);
851 851
      if (!circ.flowMap(flow).run()) return INFEASIBLE;
852 852

	
853 853
      // Set residual capacities and handle GEQ supply type
854 854
      if (_sum_supply < 0) {
855 855
        for (ArcIt a(_graph); a != INVALID; ++a) {
856 856
          Value fa = flow[a];
857 857
          _res_cap[_arc_idf[a]] = cap[a] - fa;
858 858
          _res_cap[_arc_idb[a]] = fa;
859 859
          sup[_graph.source(a)] -= fa;
860 860
          sup[_graph.target(a)] += fa;
861 861
        }
862 862
        for (NodeIt n(_graph); n != INVALID; ++n) {
863 863
          _excess[_node_id[n]] = sup[n];
864 864
        }
865 865
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
866 866
          int u = _target[a];
867 867
          int ra = _reverse[a];
868 868
          _res_cap[a] = -_sum_supply + 1;
869 869
          _res_cap[ra] = -_excess[u];
870 870
          _cost[a] = 0;
871 871
          _cost[ra] = 0;
872 872
          _excess[u] = 0;
873 873
        }
874 874
      } else {
875 875
        for (ArcIt a(_graph); a != INVALID; ++a) {
876 876
          Value fa = flow[a];
877 877
          _res_cap[_arc_idf[a]] = cap[a] - fa;
878 878
          _res_cap[_arc_idb[a]] = fa;
879 879
        }
880 880
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
881 881
          int ra = _reverse[a];
882 882
          _res_cap[a] = 0;
883 883
          _res_cap[ra] = 0;
884 884
          _cost[a] = 0;
885 885
          _cost[ra] = 0;
886 886
        }
887 887
      }
888 888

	
889 889
      return OPTIMAL;
890 890
    }
891 891

	
892 892
    // Execute the algorithm and transform the results
893 893
    void start(Method method) {
894 894
      // Maximum path length for partial augment
895 895
      const int MAX_PATH_LENGTH = 4;
896 896

	
897 897
      // Initialize data structures for buckets
898 898
      _max_rank = _alpha * _res_node_num;
899 899
      _buckets.resize(_max_rank);
900 900
      _bucket_next.resize(_res_node_num + 1);
901 901
      _bucket_prev.resize(_res_node_num + 1);
902 902
      _rank.resize(_res_node_num + 1);
903 903

	
904 904
      // Execute the algorithm
905 905
      switch (method) {
906 906
        case PUSH:
907 907
          startPush();
908 908
          break;
909 909
        case AUGMENT:
910
          startAugment();
910
          startAugment(_res_node_num - 1);
911 911
          break;
912 912
        case PARTIAL_AUGMENT:
913 913
          startAugment(MAX_PATH_LENGTH);
914 914
          break;
915 915
      }
916 916

	
917 917
      // Compute node potentials for the original costs
918 918
      _arc_vec.clear();
919 919
      _cost_vec.clear();
920 920
      for (int j = 0; j != _res_arc_num; ++j) {
921 921
        if (_res_cap[j] > 0) {
922 922
          _arc_vec.push_back(IntPair(_source[j], _target[j]));
923 923
          _cost_vec.push_back(_scost[j]);
924 924
        }
925 925
      }
926 926
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
927 927

	
928 928
      typename BellmanFord<StaticDigraph, LargeCostArcMap>
929 929
        ::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map);
930 930
      bf.distMap(_pi_map);
931 931
      bf.init(0);
932 932
      bf.start();
933 933

	
934 934
      // Handle non-zero lower bounds
935 935
      if (_have_lower) {
936 936
        int limit = _first_out[_root];
937 937
        for (int j = 0; j != limit; ++j) {
938 938
          if (!_forward[j]) _res_cap[j] += _lower[j];
939 939
        }
940 940
      }
941 941
    }
942 942

	
943 943
    // Initialize a cost scaling phase
944 944
    void initPhase() {
945 945
      // Saturate arcs not satisfying the optimality condition
946 946
      for (int u = 0; u != _res_node_num; ++u) {
947 947
        int last_out = _first_out[u+1];
948 948
        LargeCost pi_u = _pi[u];
949 949
        for (int a = _first_out[u]; a != last_out; ++a) {
950 950
          int v = _target[a];
951 951
          if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) {
952 952
            Value delta = _res_cap[a];
953 953
            _excess[u] -= delta;
954 954
            _excess[v] += delta;
955 955
            _res_cap[a] = 0;
956 956
            _res_cap[_reverse[a]] += delta;
957 957
          }
958 958
        }
959 959
      }
960 960

	
961 961
      // Find active nodes (i.e. nodes with positive excess)
962 962
      for (int u = 0; u != _res_node_num; ++u) {
963 963
        if (_excess[u] > 0) _active_nodes.push_back(u);
964 964
      }
965 965

	
966 966
      // Initialize the next arcs
967 967
      for (int u = 0; u != _res_node_num; ++u) {
968 968
        _next_out[u] = _first_out[u];
969 969
      }
970 970
    }
971 971

	
972 972
    // Early termination heuristic
973 973
    bool earlyTermination() {
974 974
      const double EARLY_TERM_FACTOR = 3.0;
975 975

	
976 976
      // Build a static residual graph
977 977
      _arc_vec.clear();
978 978
      _cost_vec.clear();
979 979
      for (int j = 0; j != _res_arc_num; ++j) {
980 980
        if (_res_cap[j] > 0) {
981 981
          _arc_vec.push_back(IntPair(_source[j], _target[j]));
982 982
          _cost_vec.push_back(_cost[j] + 1);
983 983
        }
984 984
      }
985 985
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
986 986

	
987 987
      // Run Bellman-Ford algorithm to check if the current flow is optimal
988 988
      BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
989 989
      bf.init(0);
990 990
      bool done = false;
991 991
      int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num)));
992 992
      for (int i = 0; i < K && !done; ++i) {
993 993
        done = bf.processNextWeakRound();
994 994
      }
995 995
      return done;
996 996
    }
997 997

	
998 998
    // Global potential update heuristic
999 999
    void globalUpdate() {
1000 1000
      int bucket_end = _root + 1;
1001 1001

	
1002 1002
      // Initialize buckets
1003 1003
      for (int r = 0; r != _max_rank; ++r) {
1004 1004
        _buckets[r] = bucket_end;
1005 1005
      }
1006 1006
      Value total_excess = 0;
1007 1007
      for (int i = 0; i != _res_node_num; ++i) {
1008 1008
        if (_excess[i] < 0) {
1009 1009
          _rank[i] = 0;
1010 1010
          _bucket_next[i] = _buckets[0];
1011 1011
          _bucket_prev[_buckets[0]] = i;
1012 1012
          _buckets[0] = i;
1013 1013
        } else {
1014 1014
          total_excess += _excess[i];
1015 1015
          _rank[i] = _max_rank;
1016 1016
        }
1017 1017
      }
1018 1018
      if (total_excess == 0) return;
1019 1019

	
1020 1020
      // Search the buckets
1021 1021
      int r = 0;
1022 1022
      for ( ; r != _max_rank; ++r) {
1023 1023
        while (_buckets[r] != bucket_end) {
1024 1024
          // Remove the first node from the current bucket
1025 1025
          int u = _buckets[r];
1026 1026
          _buckets[r] = _bucket_next[u];
1027 1027

	
1028 1028
          // Search the incomming arcs of u
1029 1029
          LargeCost pi_u = _pi[u];
1030 1030
          int last_out = _first_out[u+1];
1031 1031
          for (int a = _first_out[u]; a != last_out; ++a) {
1032 1032
            int ra = _reverse[a];
1033 1033
            if (_res_cap[ra] > 0) {
1034 1034
              int v = _source[ra];
1035 1035
              int old_rank_v = _rank[v];
1036 1036
              if (r < old_rank_v) {
1037 1037
                // Compute the new rank of v
1038 1038
                LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
1039 1039
                int new_rank_v = old_rank_v;
1040 1040
                if (nrc < LargeCost(_max_rank))
1041 1041
                  new_rank_v = r + 1 + int(nrc);
1042 1042

	
1043 1043
                // Change the rank of v
1044 1044
                if (new_rank_v < old_rank_v) {
1045 1045
                  _rank[v] = new_rank_v;
1046 1046
                  _next_out[v] = _first_out[v];
1047 1047

	
1048 1048
                  // Remove v from its old bucket
1049 1049
                  if (old_rank_v < _max_rank) {
1050 1050
                    if (_buckets[old_rank_v] == v) {
1051 1051
                      _buckets[old_rank_v] = _bucket_next[v];
1052 1052
                    } else {
1053 1053
                      _bucket_next[_bucket_prev[v]] = _bucket_next[v];
1054 1054
                      _bucket_prev[_bucket_next[v]] = _bucket_prev[v];
1055 1055
                    }
1056 1056
                  }
1057 1057

	
1058 1058
                  // Insert v to its new bucket
1059 1059
                  _bucket_next[v] = _buckets[new_rank_v];
1060 1060
                  _bucket_prev[_buckets[new_rank_v]] = v;
1061 1061
                  _buckets[new_rank_v] = v;
1062 1062
                }
1063 1063
              }
1064 1064
            }
1065 1065
          }
1066 1066

	
1067 1067
          // Finish search if there are no more active nodes
1068 1068
          if (_excess[u] > 0) {
1069 1069
            total_excess -= _excess[u];
1070 1070
            if (total_excess <= 0) break;
1071 1071
          }
1072 1072
        }
1073 1073
        if (total_excess <= 0) break;
1074 1074
      }
1075 1075

	
1076 1076
      // Relabel nodes
1077 1077
      for (int u = 0; u != _res_node_num; ++u) {
1078 1078
        int k = std::min(_rank[u], r);
1079 1079
        if (k > 0) {
1080 1080
          _pi[u] -= _epsilon * k;
1081 1081
          _next_out[u] = _first_out[u];
1082 1082
        }
1083 1083
      }
1084 1084
    }
1085 1085

	
1086 1086
    /// Execute the algorithm performing augment and relabel operations
1087
    void startAugment(int max_length = std::numeric_limits<int>::max()) {
1087
    void startAugment(int max_length) {
1088 1088
      // Paramters for heuristics
1089 1089
      const int EARLY_TERM_EPSILON_LIMIT = 1000;
1090 1090
      const double GLOBAL_UPDATE_FACTOR = 3.0;
1091 1091

	
1092 1092
      const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1093 1093
        (_res_node_num + _sup_node_num * _sup_node_num));
1094 1094
      int next_update_limit = global_update_freq;
1095 1095

	
1096 1096
      int relabel_cnt = 0;
1097 1097

	
1098 1098
      // Perform cost scaling phases
1099 1099
      std::vector<int> path;
1100 1100
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1101 1101
                                        1 : _epsilon / _alpha )
1102 1102
      {
1103 1103
        // Early termination heuristic
1104 1104
        if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1105 1105
          if (earlyTermination()) break;
1106 1106
        }
1107 1107

	
1108 1108
        // Initialize current phase
1109 1109
        initPhase();
1110 1110

	
1111 1111
        // Perform partial augment and relabel operations
1112 1112
        while (true) {
1113 1113
          // Select an active node (FIFO selection)
1114 1114
          while (_active_nodes.size() > 0 &&
1115 1115
                 _excess[_active_nodes.front()] <= 0) {
1116 1116
            _active_nodes.pop_front();
1117 1117
          }
1118 1118
          if (_active_nodes.size() == 0) break;
1119 1119
          int start = _active_nodes.front();
1120 1120

	
1121 1121
          // Find an augmenting path from the start node
1122 1122
          path.clear();
1123 1123
          int tip = start;
1124 1124
          while (_excess[tip] >= 0 && int(path.size()) < max_length) {
1125 1125
            int u;
1126 1126
            LargeCost min_red_cost, rc, pi_tip = _pi[tip];
1127 1127
            int last_out = _first_out[tip+1];
1128 1128
            for (int a = _next_out[tip]; a != last_out; ++a) {
1129 1129
              u = _target[a];
1130 1130
              if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) {
1131 1131
                path.push_back(a);
1132 1132
                _next_out[tip] = a;
1133 1133
                tip = u;
1134 1134
                goto next_step;
1135 1135
              }
1136 1136
            }
1137 1137

	
1138 1138
            // Relabel tip node
1139 1139
            min_red_cost = std::numeric_limits<LargeCost>::max();
1140 1140
            if (tip != start) {
1141 1141
              int ra = _reverse[path.back()];
1142 1142
              min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]];
1143 1143
            }
1144 1144
            for (int a = _first_out[tip]; a != last_out; ++a) {
1145 1145
              rc = _cost[a] + pi_tip - _pi[_target[a]];
1146 1146
              if (_res_cap[a] > 0 && rc < min_red_cost) {
1147 1147
                min_red_cost = rc;
1148 1148
              }
1149 1149
            }
1150 1150
            _pi[tip] -= min_red_cost + _epsilon;
1151 1151
            _next_out[tip] = _first_out[tip];
1152 1152
            ++relabel_cnt;
1153 1153

	
1154 1154
            // Step back
1155 1155
            if (tip != start) {
1156 1156
              tip = _source[path.back()];
1157 1157
              path.pop_back();
1158 1158
            }
1159 1159

	
1160 1160
          next_step: ;
1161 1161
          }
1162 1162

	
1163 1163
          // Augment along the found path (as much flow as possible)
1164 1164
          Value delta;
1165 1165
          int pa, u, v = start;
1166 1166
          for (int i = 0; i != int(path.size()); ++i) {
1167 1167
            pa = path[i];
1168 1168
            u = v;
1169 1169
            v = _target[pa];
1170 1170
            delta = std::min(_res_cap[pa], _excess[u]);
1171 1171
            _res_cap[pa] -= delta;
1172 1172
            _res_cap[_reverse[pa]] += delta;
1173 1173
            _excess[u] -= delta;
1174 1174
            _excess[v] += delta;
1175 1175
            if (_excess[v] > 0 && _excess[v] <= delta)
1176 1176
              _active_nodes.push_back(v);
1177 1177
          }
1178 1178

	
1179 1179
          // Global update heuristic
1180 1180
          if (relabel_cnt >= next_update_limit) {
1181 1181
            globalUpdate();
1182 1182
            next_update_limit += global_update_freq;
1183 1183
          }
1184 1184
        }
1185 1185
      }
1186 1186
    }
1187 1187

	
1188 1188
    /// Execute the algorithm performing push and relabel operations
1189 1189
    void startPush() {
1190 1190
      // Paramters for heuristics
1191 1191
      const int EARLY_TERM_EPSILON_LIMIT = 1000;
1192 1192
      const double GLOBAL_UPDATE_FACTOR = 2.0;
1193 1193

	
1194 1194
      const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1195 1195
        (_res_node_num + _sup_node_num * _sup_node_num));
1196 1196
      int next_update_limit = global_update_freq;
1197 1197

	
1198 1198
      int relabel_cnt = 0;
1199 1199

	
1200 1200
      // Perform cost scaling phases
1201 1201
      BoolVector hyper(_res_node_num, false);
1202 1202
      LargeCostVector hyper_cost(_res_node_num);
1203 1203
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1204 1204
                                        1 : _epsilon / _alpha )
1205 1205
      {
1206 1206
        // Early termination heuristic
1207 1207
        if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1208 1208
          if (earlyTermination()) break;
1209 1209
        }
1210 1210

	
1211 1211
        // Initialize current phase
1212 1212
        initPhase();
1213 1213

	
1214 1214
        // Perform push and relabel operations
1215 1215
        while (_active_nodes.size() > 0) {
1216 1216
          LargeCost min_red_cost, rc, pi_n;
1217 1217
          Value delta;
1218 1218
          int n, t, a, last_out = _res_arc_num;
1219 1219

	
1220 1220
        next_node:
1221 1221
          // Select an active node (FIFO selection)
1222 1222
          n = _active_nodes.front();
1223 1223
          last_out = _first_out[n+1];
1224 1224
          pi_n = _pi[n];
1225 1225

	
1226 1226
          // Perform push operations if there are admissible arcs
1227 1227
          if (_excess[n] > 0) {
1228 1228
            for (a = _next_out[n]; a != last_out; ++a) {
1229 1229
              if (_res_cap[a] > 0 &&
1230 1230
                  _cost[a] + pi_n - _pi[_target[a]] < 0) {
1231 1231
                delta = std::min(_res_cap[a], _excess[n]);
1232 1232
                t = _target[a];
1233 1233

	
1234 1234
                // Push-look-ahead heuristic
1235 1235
                Value ahead = -_excess[t];
1236 1236
                int last_out_t = _first_out[t+1];
1237 1237
                LargeCost pi_t = _pi[t];
1238 1238
                for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
1239 1239
                  if (_res_cap[ta] > 0 &&
1240 1240
                      _cost[ta] + pi_t - _pi[_target[ta]] < 0)
1241 1241
                    ahead += _res_cap[ta];
1242 1242
                  if (ahead >= delta) break;
1243 1243
                }
1244 1244
                if (ahead < 0) ahead = 0;
1245 1245

	
1246 1246
                // Push flow along the arc
1247 1247
                if (ahead < delta && !hyper[t]) {
1248 1248
                  _res_cap[a] -= ahead;
1249 1249
                  _res_cap[_reverse[a]] += ahead;
1250 1250
                  _excess[n] -= ahead;
1251 1251
                  _excess[t] += ahead;
1252 1252
                  _active_nodes.push_front(t);
1253 1253
                  hyper[t] = true;
1254 1254
                  hyper_cost[t] = _cost[a] + pi_n - pi_t;
1255 1255
                  _next_out[n] = a;
1256 1256
                  goto next_node;
1257 1257
                } else {
1258 1258
                  _res_cap[a] -= delta;
1259 1259
                  _res_cap[_reverse[a]] += delta;
1260 1260
                  _excess[n] -= delta;
1261 1261
                  _excess[t] += delta;
1262 1262
                  if (_excess[t] > 0 && _excess[t] <= delta)
1263 1263
                    _active_nodes.push_back(t);
1264 1264
                }
1265 1265

	
1266 1266
                if (_excess[n] == 0) {
1267 1267
                  _next_out[n] = a;
1268 1268
                  goto remove_nodes;
1269 1269
                }
1270 1270
              }
1271 1271
            }
1272 1272
            _next_out[n] = a;
1273 1273
          }
1274 1274

	
1275 1275
          // Relabel the node if it is still active (or hyper)
1276 1276
          if (_excess[n] > 0 || hyper[n]) {
1277 1277
             min_red_cost = hyper[n] ? -hyper_cost[n] :
1278 1278
               std::numeric_limits<LargeCost>::max();
1279 1279
            for (int a = _first_out[n]; a != last_out; ++a) {
1280 1280
              rc = _cost[a] + pi_n - _pi[_target[a]];
1281 1281
              if (_res_cap[a] > 0 && rc < min_red_cost) {
1282 1282
                min_red_cost = rc;
1283 1283
              }
1284 1284
            }
1285 1285
            _pi[n] -= min_red_cost + _epsilon;
1286 1286
            _next_out[n] = _first_out[n];
1287 1287
            hyper[n] = false;
1288 1288
            ++relabel_cnt;
1289 1289
          }
1290 1290

	
1291 1291
          // Remove nodes that are not active nor hyper
1292 1292
        remove_nodes:
1293 1293
          while ( _active_nodes.size() > 0 &&
1294 1294
                  _excess[_active_nodes.front()] <= 0 &&
1295 1295
                  !hyper[_active_nodes.front()] ) {
1296 1296
            _active_nodes.pop_front();
1297 1297
          }
1298 1298

	
1299 1299
          // Global update heuristic
1300 1300
          if (relabel_cnt >= next_update_limit) {
1301 1301
            globalUpdate();
1302 1302
            for (int u = 0; u != _res_node_num; ++u)
1303 1303
              hyper[u] = false;
1304 1304
            next_update_limit += global_update_freq;
1305 1305
          }
1306 1306
        }
1307 1307
      }
1308 1308
    }
1309 1309

	
1310 1310
  }; //class CostScaling
1311 1311

	
1312 1312
  ///@}
1313 1313

	
1314 1314
} //namespace lemon
1315 1315

	
1316 1316
#endif //LEMON_COST_SCALING_H
0 comments (0 inline)