0
4
0
| ... | ... |
@@ -41,195 +41,196 @@ |
| 41 | 41 |
/// By default it is the same as \c V. |
| 42 | 42 |
template <typename GR, typename V = int, typename C = V> |
| 43 | 43 |
struct CapacityScalingDefaultTraits |
| 44 | 44 |
{
|
| 45 | 45 |
/// The type of the digraph |
| 46 | 46 |
typedef GR Digraph; |
| 47 | 47 |
/// The type of the flow amounts, capacity bounds and supply values |
| 48 | 48 |
typedef V Value; |
| 49 | 49 |
/// The type of the arc costs |
| 50 | 50 |
typedef C Cost; |
| 51 | 51 |
|
| 52 | 52 |
/// \brief The type of the heap used for internal Dijkstra computations. |
| 53 | 53 |
/// |
| 54 | 54 |
/// The type of the heap used for internal Dijkstra computations. |
| 55 | 55 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
| 56 | 56 |
/// its priority type must be \c Cost and its cross reference type |
| 57 | 57 |
/// must be \ref RangeMap "RangeMap<int>". |
| 58 | 58 |
typedef BinHeap<Cost, RangeMap<int> > Heap; |
| 59 | 59 |
}; |
| 60 | 60 |
|
| 61 | 61 |
/// \addtogroup min_cost_flow_algs |
| 62 | 62 |
/// @{
|
| 63 | 63 |
|
| 64 | 64 |
/// \brief Implementation of the Capacity Scaling algorithm for |
| 65 | 65 |
/// finding a \ref min_cost_flow "minimum cost flow". |
| 66 | 66 |
/// |
| 67 | 67 |
/// \ref CapacityScaling implements the capacity scaling version |
| 68 | 68 |
/// of the successive shortest path algorithm for finding a |
| 69 | 69 |
/// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows, |
| 70 | 70 |
/// \ref edmondskarp72theoretical. It is an efficient dual |
| 71 | 71 |
/// solution method. |
| 72 | 72 |
/// |
| 73 | 73 |
/// Most of the parameters of the problem (except for the digraph) |
| 74 | 74 |
/// can be given using separate functions, and the algorithm can be |
| 75 | 75 |
/// executed using the \ref run() function. If some parameters are not |
| 76 | 76 |
/// specified, then default values will be used. |
| 77 | 77 |
/// |
| 78 | 78 |
/// \tparam GR The digraph type the algorithm runs on. |
| 79 | 79 |
/// \tparam V The number type used for flow amounts, capacity bounds |
| 80 | 80 |
/// and supply values in the algorithm. By default it is \c int. |
| 81 | 81 |
/// \tparam C The number type used for costs and potentials in the |
| 82 | 82 |
/// algorithm. By default it is the same as \c V. |
| 83 | 83 |
/// |
| 84 | 84 |
/// \warning Both number types must be signed and all input data must |
| 85 | 85 |
/// be integer. |
| 86 | 86 |
/// \warning This algorithm does not support negative costs for such |
| 87 | 87 |
/// arcs that have infinite upper bound. |
| 88 | 88 |
#ifdef DOXYGEN |
| 89 | 89 |
template <typename GR, typename V, typename C, typename TR> |
| 90 | 90 |
#else |
| 91 | 91 |
template < typename GR, typename V = int, typename C = V, |
| 92 | 92 |
typename TR = CapacityScalingDefaultTraits<GR, V, C> > |
| 93 | 93 |
#endif |
| 94 | 94 |
class CapacityScaling |
| 95 | 95 |
{
|
| 96 | 96 |
public: |
| 97 | 97 |
|
| 98 | 98 |
/// The type of the digraph |
| 99 | 99 |
typedef typename TR::Digraph Digraph; |
| 100 | 100 |
/// The type of the flow amounts, capacity bounds and supply values |
| 101 | 101 |
typedef typename TR::Value Value; |
| 102 | 102 |
/// The type of the arc costs |
| 103 | 103 |
typedef typename TR::Cost Cost; |
| 104 | 104 |
|
| 105 | 105 |
/// The type of the heap used for internal Dijkstra computations |
| 106 | 106 |
typedef typename TR::Heap Heap; |
| 107 | 107 |
|
| 108 | 108 |
/// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm |
| 109 | 109 |
typedef TR Traits; |
| 110 | 110 |
|
| 111 | 111 |
public: |
| 112 | 112 |
|
| 113 | 113 |
/// \brief Problem type constants for the \c run() function. |
| 114 | 114 |
/// |
| 115 | 115 |
/// Enum type containing the problem type constants that can be |
| 116 | 116 |
/// returned by the \ref run() function of the algorithm. |
| 117 | 117 |
enum ProblemType {
|
| 118 | 118 |
/// The problem has no feasible solution (flow). |
| 119 | 119 |
INFEASIBLE, |
| 120 | 120 |
/// The problem has optimal solution (i.e. it is feasible and |
| 121 | 121 |
/// bounded), and the algorithm has found optimal flow and node |
| 122 | 122 |
/// potentials (primal and dual solutions). |
| 123 | 123 |
OPTIMAL, |
| 124 | 124 |
/// The digraph contains an arc of negative cost and infinite |
| 125 | 125 |
/// upper bound. It means that the objective function is unbounded |
| 126 | 126 |
/// on that arc, however, note that it could actually be bounded |
| 127 | 127 |
/// over the feasible flows, but this algroithm cannot handle |
| 128 | 128 |
/// these cases. |
| 129 | 129 |
UNBOUNDED |
| 130 | 130 |
}; |
| 131 | 131 |
|
| 132 | 132 |
private: |
| 133 | 133 |
|
| 134 | 134 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 135 | 135 |
|
| 136 | 136 |
typedef std::vector<int> IntVector; |
| 137 |
typedef std::vector<char> BoolVector; |
|
| 138 | 137 |
typedef std::vector<Value> ValueVector; |
| 139 | 138 |
typedef std::vector<Cost> CostVector; |
| 139 |
typedef std::vector<char> BoolVector; |
|
| 140 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
|
| 140 | 141 |
|
| 141 | 142 |
private: |
| 142 | 143 |
|
| 143 | 144 |
// Data related to the underlying digraph |
| 144 | 145 |
const GR &_graph; |
| 145 | 146 |
int _node_num; |
| 146 | 147 |
int _arc_num; |
| 147 | 148 |
int _res_arc_num; |
| 148 | 149 |
int _root; |
| 149 | 150 |
|
| 150 | 151 |
// Parameters of the problem |
| 151 | 152 |
bool _have_lower; |
| 152 | 153 |
Value _sum_supply; |
| 153 | 154 |
|
| 154 | 155 |
// Data structures for storing the digraph |
| 155 | 156 |
IntNodeMap _node_id; |
| 156 | 157 |
IntArcMap _arc_idf; |
| 157 | 158 |
IntArcMap _arc_idb; |
| 158 | 159 |
IntVector _first_out; |
| 159 | 160 |
BoolVector _forward; |
| 160 | 161 |
IntVector _source; |
| 161 | 162 |
IntVector _target; |
| 162 | 163 |
IntVector _reverse; |
| 163 | 164 |
|
| 164 | 165 |
// Node and arc data |
| 165 | 166 |
ValueVector _lower; |
| 166 | 167 |
ValueVector _upper; |
| 167 | 168 |
CostVector _cost; |
| 168 | 169 |
ValueVector _supply; |
| 169 | 170 |
|
| 170 | 171 |
ValueVector _res_cap; |
| 171 | 172 |
CostVector _pi; |
| 172 | 173 |
ValueVector _excess; |
| 173 | 174 |
IntVector _excess_nodes; |
| 174 | 175 |
IntVector _deficit_nodes; |
| 175 | 176 |
|
| 176 | 177 |
Value _delta; |
| 177 | 178 |
int _factor; |
| 178 | 179 |
IntVector _pred; |
| 179 | 180 |
|
| 180 | 181 |
public: |
| 181 | 182 |
|
| 182 | 183 |
/// \brief Constant for infinite upper bounds (capacities). |
| 183 | 184 |
/// |
| 184 | 185 |
/// Constant for infinite upper bounds (capacities). |
| 185 | 186 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
| 186 | 187 |
/// \c std::numeric_limits<Value>::max() otherwise. |
| 187 | 188 |
const Value INF; |
| 188 | 189 |
|
| 189 | 190 |
private: |
| 190 | 191 |
|
| 191 | 192 |
// Special implementation of the Dijkstra algorithm for finding |
| 192 | 193 |
// shortest paths in the residual network of the digraph with |
| 193 | 194 |
// respect to the reduced arc costs and modifying the node |
| 194 | 195 |
// potentials according to the found distance labels. |
| 195 | 196 |
class ResidualDijkstra |
| 196 | 197 |
{
|
| 197 | 198 |
private: |
| 198 | 199 |
|
| 199 | 200 |
int _node_num; |
| 200 | 201 |
bool _geq; |
| 201 | 202 |
const IntVector &_first_out; |
| 202 | 203 |
const IntVector &_target; |
| 203 | 204 |
const CostVector &_cost; |
| 204 | 205 |
const ValueVector &_res_cap; |
| 205 | 206 |
const ValueVector &_excess; |
| 206 | 207 |
CostVector &_pi; |
| 207 | 208 |
IntVector &_pred; |
| 208 | 209 |
|
| 209 | 210 |
IntVector _proc_nodes; |
| 210 | 211 |
CostVector _dist; |
| 211 | 212 |
|
| 212 | 213 |
public: |
| 213 | 214 |
|
| 214 | 215 |
ResidualDijkstra(CapacityScaling& cs) : |
| 215 | 216 |
_node_num(cs._node_num), _geq(cs._sum_supply < 0), |
| 216 | 217 |
_first_out(cs._first_out), _target(cs._target), _cost(cs._cost), |
| 217 | 218 |
_res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi), |
| 218 | 219 |
_pred(cs._pred), _dist(cs._node_num) |
| 219 | 220 |
{}
|
| 220 | 221 |
|
| 221 | 222 |
int run(int s, Value delta = 1) {
|
| 222 | 223 |
RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP); |
| 223 | 224 |
Heap heap(heap_cross_ref); |
| 224 | 225 |
heap.push(s, 0); |
| 225 | 226 |
_pred[s] = -1; |
| 226 | 227 |
_proc_nodes.clear(); |
| 227 | 228 |
|
| 228 | 229 |
// Process nodes |
| 229 | 230 |
while (!heap.empty() && _excess[heap.top()] > -delta) {
|
| 230 | 231 |
int u = heap.top(), v; |
| 231 | 232 |
Cost d = heap.prio() + _pi[u], dn; |
| 232 | 233 |
_dist[u] = heap.prio(); |
| 233 | 234 |
_proc_nodes.push_back(u); |
| 234 | 235 |
heap.pop(); |
| 235 | 236 |
|
| ... | ... |
@@ -671,201 +672,201 @@ |
| 671 | 672 |
template <typename PotentialMap> |
| 672 | 673 |
void potentialMap(PotentialMap &map) const {
|
| 673 | 674 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 674 | 675 |
map.set(n, _pi[_node_id[n]]); |
| 675 | 676 |
} |
| 676 | 677 |
} |
| 677 | 678 |
|
| 678 | 679 |
/// @} |
| 679 | 680 |
|
| 680 | 681 |
private: |
| 681 | 682 |
|
| 682 | 683 |
// Initialize the algorithm |
| 683 | 684 |
ProblemType init() {
|
| 684 | 685 |
if (_node_num <= 1) return INFEASIBLE; |
| 685 | 686 |
|
| 686 | 687 |
// Check the sum of supply values |
| 687 | 688 |
_sum_supply = 0; |
| 688 | 689 |
for (int i = 0; i != _root; ++i) {
|
| 689 | 690 |
_sum_supply += _supply[i]; |
| 690 | 691 |
} |
| 691 | 692 |
if (_sum_supply > 0) return INFEASIBLE; |
| 692 | 693 |
|
| 693 | 694 |
// Initialize vectors |
| 694 | 695 |
for (int i = 0; i != _root; ++i) {
|
| 695 | 696 |
_pi[i] = 0; |
| 696 | 697 |
_excess[i] = _supply[i]; |
| 697 | 698 |
} |
| 698 | 699 |
|
| 699 | 700 |
// Remove non-zero lower bounds |
| 700 | 701 |
const Value MAX = std::numeric_limits<Value>::max(); |
| 701 | 702 |
int last_out; |
| 702 | 703 |
if (_have_lower) {
|
| 703 | 704 |
for (int i = 0; i != _root; ++i) {
|
| 704 | 705 |
last_out = _first_out[i+1]; |
| 705 | 706 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 706 | 707 |
if (_forward[j]) {
|
| 707 | 708 |
Value c = _lower[j]; |
| 708 | 709 |
if (c >= 0) {
|
| 709 | 710 |
_res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF; |
| 710 | 711 |
} else {
|
| 711 | 712 |
_res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF; |
| 712 | 713 |
} |
| 713 | 714 |
_excess[i] -= c; |
| 714 | 715 |
_excess[_target[j]] += c; |
| 715 | 716 |
} else {
|
| 716 | 717 |
_res_cap[j] = 0; |
| 717 | 718 |
} |
| 718 | 719 |
} |
| 719 | 720 |
} |
| 720 | 721 |
} else {
|
| 721 | 722 |
for (int j = 0; j != _res_arc_num; ++j) {
|
| 722 | 723 |
_res_cap[j] = _forward[j] ? _upper[j] : 0; |
| 723 | 724 |
} |
| 724 | 725 |
} |
| 725 | 726 |
|
| 726 | 727 |
// Handle negative costs |
| 727 | 728 |
for (int i = 0; i != _root; ++i) {
|
| 728 | 729 |
last_out = _first_out[i+1] - 1; |
| 729 | 730 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 730 | 731 |
Value rc = _res_cap[j]; |
| 731 | 732 |
if (_cost[j] < 0 && rc > 0) {
|
| 732 | 733 |
if (rc >= MAX) return UNBOUNDED; |
| 733 | 734 |
_excess[i] -= rc; |
| 734 | 735 |
_excess[_target[j]] += rc; |
| 735 | 736 |
_res_cap[j] = 0; |
| 736 | 737 |
_res_cap[_reverse[j]] += rc; |
| 737 | 738 |
} |
| 738 | 739 |
} |
| 739 | 740 |
} |
| 740 | 741 |
|
| 741 | 742 |
// Handle GEQ supply type |
| 742 | 743 |
if (_sum_supply < 0) {
|
| 743 | 744 |
_pi[_root] = 0; |
| 744 | 745 |
_excess[_root] = -_sum_supply; |
| 745 | 746 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
| 746 | 747 |
int ra = _reverse[a]; |
| 747 | 748 |
_res_cap[a] = -_sum_supply + 1; |
| 748 | 749 |
_res_cap[ra] = 0; |
| 749 | 750 |
_cost[a] = 0; |
| 750 | 751 |
_cost[ra] = 0; |
| 751 | 752 |
} |
| 752 | 753 |
} else {
|
| 753 | 754 |
_pi[_root] = 0; |
| 754 | 755 |
_excess[_root] = 0; |
| 755 | 756 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
| 756 | 757 |
int ra = _reverse[a]; |
| 757 | 758 |
_res_cap[a] = 1; |
| 758 | 759 |
_res_cap[ra] = 0; |
| 759 | 760 |
_cost[a] = 0; |
| 760 | 761 |
_cost[ra] = 0; |
| 761 | 762 |
} |
| 762 | 763 |
} |
| 763 | 764 |
|
| 764 | 765 |
// Initialize delta value |
| 765 | 766 |
if (_factor > 1) {
|
| 766 | 767 |
// With scaling |
| 767 |
Value max_sup = 0, max_dem = 0; |
|
| 768 |
for (int i = 0; i != _node_num; ++i) {
|
|
| 768 |
Value max_sup = 0, max_dem = 0, max_cap = 0; |
|
| 769 |
for (int i = 0; i != _root; ++i) {
|
|
| 769 | 770 |
Value ex = _excess[i]; |
| 770 | 771 |
if ( ex > max_sup) max_sup = ex; |
| 771 | 772 |
if (-ex > max_dem) max_dem = -ex; |
| 772 |
} |
|
| 773 |
Value max_cap = 0; |
|
| 774 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 775 |
if (_res_cap[j] > max_cap) max_cap = _res_cap[j]; |
|
| 773 |
int last_out = _first_out[i+1] - 1; |
|
| 774 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
|
| 775 |
if (_res_cap[j] > max_cap) max_cap = _res_cap[j]; |
|
| 776 |
} |
|
| 776 | 777 |
} |
| 777 | 778 |
max_sup = std::min(std::min(max_sup, max_dem), max_cap); |
| 778 | 779 |
for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ; |
| 779 | 780 |
} else {
|
| 780 | 781 |
// Without scaling |
| 781 | 782 |
_delta = 1; |
| 782 | 783 |
} |
| 783 | 784 |
|
| 784 | 785 |
return OPTIMAL; |
| 785 | 786 |
} |
| 786 | 787 |
|
| 787 | 788 |
ProblemType start() {
|
| 788 | 789 |
// Execute the algorithm |
| 789 | 790 |
ProblemType pt; |
| 790 | 791 |
if (_delta > 1) |
| 791 | 792 |
pt = startWithScaling(); |
| 792 | 793 |
else |
| 793 | 794 |
pt = startWithoutScaling(); |
| 794 | 795 |
|
| 795 | 796 |
// Handle non-zero lower bounds |
| 796 | 797 |
if (_have_lower) {
|
| 797 | 798 |
int limit = _first_out[_root]; |
| 798 | 799 |
for (int j = 0; j != limit; ++j) {
|
| 799 | 800 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
| 800 | 801 |
} |
| 801 | 802 |
} |
| 802 | 803 |
|
| 803 | 804 |
// Shift potentials if necessary |
| 804 | 805 |
Cost pr = _pi[_root]; |
| 805 | 806 |
if (_sum_supply < 0 || pr > 0) {
|
| 806 | 807 |
for (int i = 0; i != _node_num; ++i) {
|
| 807 | 808 |
_pi[i] -= pr; |
| 808 | 809 |
} |
| 809 | 810 |
} |
| 810 | 811 |
|
| 811 | 812 |
return pt; |
| 812 | 813 |
} |
| 813 | 814 |
|
| 814 | 815 |
// Execute the capacity scaling algorithm |
| 815 | 816 |
ProblemType startWithScaling() {
|
| 816 | 817 |
// Perform capacity scaling phases |
| 817 | 818 |
int s, t; |
| 818 | 819 |
ResidualDijkstra _dijkstra(*this); |
| 819 | 820 |
while (true) {
|
| 820 | 821 |
// Saturate all arcs not satisfying the optimality condition |
| 821 | 822 |
int last_out; |
| 822 | 823 |
for (int u = 0; u != _node_num; ++u) {
|
| 823 | 824 |
last_out = _sum_supply < 0 ? |
| 824 | 825 |
_first_out[u+1] : _first_out[u+1] - 1; |
| 825 | 826 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
| 826 | 827 |
int v = _target[a]; |
| 827 | 828 |
Cost c = _cost[a] + _pi[u] - _pi[v]; |
| 828 | 829 |
Value rc = _res_cap[a]; |
| 829 | 830 |
if (c < 0 && rc >= _delta) {
|
| 830 | 831 |
_excess[u] -= rc; |
| 831 | 832 |
_excess[v] += rc; |
| 832 | 833 |
_res_cap[a] = 0; |
| 833 | 834 |
_res_cap[_reverse[a]] += rc; |
| 834 | 835 |
} |
| 835 | 836 |
} |
| 836 | 837 |
} |
| 837 | 838 |
|
| 838 | 839 |
// Find excess nodes and deficit nodes |
| 839 | 840 |
_excess_nodes.clear(); |
| 840 | 841 |
_deficit_nodes.clear(); |
| 841 | 842 |
for (int u = 0; u != _node_num; ++u) {
|
| 842 | 843 |
Value ex = _excess[u]; |
| 843 | 844 |
if (ex >= _delta) _excess_nodes.push_back(u); |
| 844 | 845 |
if (ex <= -_delta) _deficit_nodes.push_back(u); |
| 845 | 846 |
} |
| 846 | 847 |
int next_node = 0, next_def_node = 0; |
| 847 | 848 |
|
| 848 | 849 |
// Find augmenting shortest paths |
| 849 | 850 |
while (next_node < int(_excess_nodes.size())) {
|
| 850 | 851 |
// Check deficit nodes |
| 851 | 852 |
if (_delta > 1) {
|
| 852 | 853 |
bool delta_deficit = false; |
| 853 | 854 |
for ( ; next_def_node < int(_deficit_nodes.size()); |
| 854 | 855 |
++next_def_node ) {
|
| 855 | 856 |
if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
|
| 856 | 857 |
delta_deficit = true; |
| 857 | 858 |
break; |
| 858 | 859 |
} |
| 859 | 860 |
} |
| 860 | 861 |
if (!delta_deficit) break; |
| 861 | 862 |
} |
| 862 | 863 |
|
| 863 | 864 |
// Run Dijkstra in the residual network |
| 864 | 865 |
s = _excess_nodes[next_node]; |
| 865 | 866 |
if ((t = _dijkstra.run(s, _delta)) == -1) {
|
| 866 | 867 |
if (_delta > 1) {
|
| 867 | 868 |
++next_node; |
| 868 | 869 |
continue; |
| 869 | 870 |
} |
| 870 | 871 |
return INFEASIBLE; |
| 871 | 872 |
} |
| ... | ... |
@@ -104,267 +104,275 @@ |
| 104 | 104 |
/// |
| 105 | 105 |
/// \tparam GR The digraph type the algorithm runs on. |
| 106 | 106 |
/// \tparam V The number type used for flow amounts, capacity bounds |
| 107 | 107 |
/// and supply values in the algorithm. By default it is \c int. |
| 108 | 108 |
/// \tparam C The number type used for costs and potentials in the |
| 109 | 109 |
/// algorithm. By default it is the same as \c V. |
| 110 | 110 |
/// |
| 111 | 111 |
/// \warning Both number types must be signed and all input data must |
| 112 | 112 |
/// be integer. |
| 113 | 113 |
/// \warning This algorithm does not support negative costs for such |
| 114 | 114 |
/// arcs that have infinite upper bound. |
| 115 | 115 |
/// |
| 116 | 116 |
/// \note %CostScaling provides three different internal methods, |
| 117 | 117 |
/// from which the most efficient one is used by default. |
| 118 | 118 |
/// For more information, see \ref Method. |
| 119 | 119 |
#ifdef DOXYGEN |
| 120 | 120 |
template <typename GR, typename V, typename C, typename TR> |
| 121 | 121 |
#else |
| 122 | 122 |
template < typename GR, typename V = int, typename C = V, |
| 123 | 123 |
typename TR = CostScalingDefaultTraits<GR, V, C> > |
| 124 | 124 |
#endif |
| 125 | 125 |
class CostScaling |
| 126 | 126 |
{
|
| 127 | 127 |
public: |
| 128 | 128 |
|
| 129 | 129 |
/// The type of the digraph |
| 130 | 130 |
typedef typename TR::Digraph Digraph; |
| 131 | 131 |
/// The type of the flow amounts, capacity bounds and supply values |
| 132 | 132 |
typedef typename TR::Value Value; |
| 133 | 133 |
/// The type of the arc costs |
| 134 | 134 |
typedef typename TR::Cost Cost; |
| 135 | 135 |
|
| 136 | 136 |
/// \brief The large cost type |
| 137 | 137 |
/// |
| 138 | 138 |
/// The large cost type used for internal computations. |
| 139 | 139 |
/// Using the \ref CostScalingDefaultTraits "default traits class", |
| 140 | 140 |
/// it is \c long \c long if the \c Cost type is integer, |
| 141 | 141 |
/// otherwise it is \c double. |
| 142 | 142 |
typedef typename TR::LargeCost LargeCost; |
| 143 | 143 |
|
| 144 | 144 |
/// The \ref CostScalingDefaultTraits "traits class" of the algorithm |
| 145 | 145 |
typedef TR Traits; |
| 146 | 146 |
|
| 147 | 147 |
public: |
| 148 | 148 |
|
| 149 | 149 |
/// \brief Problem type constants for the \c run() function. |
| 150 | 150 |
/// |
| 151 | 151 |
/// Enum type containing the problem type constants that can be |
| 152 | 152 |
/// returned by the \ref run() function of the algorithm. |
| 153 | 153 |
enum ProblemType {
|
| 154 | 154 |
/// The problem has no feasible solution (flow). |
| 155 | 155 |
INFEASIBLE, |
| 156 | 156 |
/// The problem has optimal solution (i.e. it is feasible and |
| 157 | 157 |
/// bounded), and the algorithm has found optimal flow and node |
| 158 | 158 |
/// potentials (primal and dual solutions). |
| 159 | 159 |
OPTIMAL, |
| 160 | 160 |
/// The digraph contains an arc of negative cost and infinite |
| 161 | 161 |
/// upper bound. It means that the objective function is unbounded |
| 162 | 162 |
/// on that arc, however, note that it could actually be bounded |
| 163 | 163 |
/// over the feasible flows, but this algroithm cannot handle |
| 164 | 164 |
/// these cases. |
| 165 | 165 |
UNBOUNDED |
| 166 | 166 |
}; |
| 167 | 167 |
|
| 168 | 168 |
/// \brief Constants for selecting the internal method. |
| 169 | 169 |
/// |
| 170 | 170 |
/// Enum type containing constants for selecting the internal method |
| 171 | 171 |
/// for the \ref run() function. |
| 172 | 172 |
/// |
| 173 | 173 |
/// \ref CostScaling provides three internal methods that differ mainly |
| 174 | 174 |
/// in their base operations, which are used in conjunction with the |
| 175 | 175 |
/// relabel operation. |
| 176 | 176 |
/// By default, the so called \ref PARTIAL_AUGMENT |
| 177 | 177 |
/// "Partial Augment-Relabel" method is used, which proved to be |
| 178 | 178 |
/// the most efficient and the most robust on various test inputs. |
| 179 | 179 |
/// However, the other methods can be selected using the \ref run() |
| 180 | 180 |
/// function with the proper parameter. |
| 181 | 181 |
enum Method {
|
| 182 | 182 |
/// Local push operations are used, i.e. flow is moved only on one |
| 183 | 183 |
/// admissible arc at once. |
| 184 | 184 |
PUSH, |
| 185 | 185 |
/// Augment operations are used, i.e. flow is moved on admissible |
| 186 | 186 |
/// paths from a node with excess to a node with deficit. |
| 187 | 187 |
AUGMENT, |
| 188 | 188 |
/// Partial augment operations are used, i.e. flow is moved on |
| 189 | 189 |
/// admissible paths started from a node with excess, but the |
| 190 | 190 |
/// lengths of these paths are limited. This method can be viewed |
| 191 | 191 |
/// as a combined version of the previous two operations. |
| 192 | 192 |
PARTIAL_AUGMENT |
| 193 | 193 |
}; |
| 194 | 194 |
|
| 195 | 195 |
private: |
| 196 | 196 |
|
| 197 | 197 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 198 | 198 |
|
| 199 | 199 |
typedef std::vector<int> IntVector; |
| 200 |
typedef std::vector<char> BoolVector; |
|
| 201 | 200 |
typedef std::vector<Value> ValueVector; |
| 202 | 201 |
typedef std::vector<Cost> CostVector; |
| 203 | 202 |
typedef std::vector<LargeCost> LargeCostVector; |
| 203 |
typedef std::vector<char> BoolVector; |
|
| 204 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
|
| 204 | 205 |
|
| 205 | 206 |
private: |
| 206 | 207 |
|
| 207 | 208 |
template <typename KT, typename VT> |
| 208 | 209 |
class StaticVectorMap {
|
| 209 | 210 |
public: |
| 210 | 211 |
typedef KT Key; |
| 211 | 212 |
typedef VT Value; |
| 212 | 213 |
|
| 213 | 214 |
StaticVectorMap(std::vector<Value>& v) : _v(v) {}
|
| 214 | 215 |
|
| 215 | 216 |
const Value& operator[](const Key& key) const {
|
| 216 | 217 |
return _v[StaticDigraph::id(key)]; |
| 217 | 218 |
} |
| 218 | 219 |
|
| 219 | 220 |
Value& operator[](const Key& key) {
|
| 220 | 221 |
return _v[StaticDigraph::id(key)]; |
| 221 | 222 |
} |
| 222 | 223 |
|
| 223 | 224 |
void set(const Key& key, const Value& val) {
|
| 224 | 225 |
_v[StaticDigraph::id(key)] = val; |
| 225 | 226 |
} |
| 226 | 227 |
|
| 227 | 228 |
private: |
| 228 | 229 |
std::vector<Value>& _v; |
| 229 | 230 |
}; |
| 230 | 231 |
|
| 231 | 232 |
typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap; |
| 232 | 233 |
typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap; |
| 233 | 234 |
|
| 234 | 235 |
private: |
| 235 | 236 |
|
| 236 | 237 |
// Data related to the underlying digraph |
| 237 | 238 |
const GR &_graph; |
| 238 | 239 |
int _node_num; |
| 239 | 240 |
int _arc_num; |
| 240 | 241 |
int _res_node_num; |
| 241 | 242 |
int _res_arc_num; |
| 242 | 243 |
int _root; |
| 243 | 244 |
|
| 244 | 245 |
// Parameters of the problem |
| 245 | 246 |
bool _have_lower; |
| 246 | 247 |
Value _sum_supply; |
| 248 |
int _sup_node_num; |
|
| 247 | 249 |
|
| 248 | 250 |
// Data structures for storing the digraph |
| 249 | 251 |
IntNodeMap _node_id; |
| 250 | 252 |
IntArcMap _arc_idf; |
| 251 | 253 |
IntArcMap _arc_idb; |
| 252 | 254 |
IntVector _first_out; |
| 253 | 255 |
BoolVector _forward; |
| 254 | 256 |
IntVector _source; |
| 255 | 257 |
IntVector _target; |
| 256 | 258 |
IntVector _reverse; |
| 257 | 259 |
|
| 258 | 260 |
// Node and arc data |
| 259 | 261 |
ValueVector _lower; |
| 260 | 262 |
ValueVector _upper; |
| 261 | 263 |
CostVector _scost; |
| 262 | 264 |
ValueVector _supply; |
| 263 | 265 |
|
| 264 | 266 |
ValueVector _res_cap; |
| 265 | 267 |
LargeCostVector _cost; |
| 266 | 268 |
LargeCostVector _pi; |
| 267 | 269 |
ValueVector _excess; |
| 268 | 270 |
IntVector _next_out; |
| 269 | 271 |
std::deque<int> _active_nodes; |
| 270 | 272 |
|
| 271 | 273 |
// Data for scaling |
| 272 | 274 |
LargeCost _epsilon; |
| 273 | 275 |
int _alpha; |
| 274 | 276 |
|
| 277 |
IntVector _buckets; |
|
| 278 |
IntVector _bucket_next; |
|
| 279 |
IntVector _bucket_prev; |
|
| 280 |
IntVector _rank; |
|
| 281 |
int _max_rank; |
|
| 282 |
|
|
| 275 | 283 |
// Data for a StaticDigraph structure |
| 276 | 284 |
typedef std::pair<int, int> IntPair; |
| 277 | 285 |
StaticDigraph _sgr; |
| 278 | 286 |
std::vector<IntPair> _arc_vec; |
| 279 | 287 |
std::vector<LargeCost> _cost_vec; |
| 280 | 288 |
LargeCostArcMap _cost_map; |
| 281 | 289 |
LargeCostNodeMap _pi_map; |
| 282 | 290 |
|
| 283 | 291 |
public: |
| 284 | 292 |
|
| 285 | 293 |
/// \brief Constant for infinite upper bounds (capacities). |
| 286 | 294 |
/// |
| 287 | 295 |
/// Constant for infinite upper bounds (capacities). |
| 288 | 296 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
| 289 | 297 |
/// \c std::numeric_limits<Value>::max() otherwise. |
| 290 | 298 |
const Value INF; |
| 291 | 299 |
|
| 292 | 300 |
public: |
| 293 | 301 |
|
| 294 | 302 |
/// \name Named Template Parameters |
| 295 | 303 |
/// @{
|
| 296 | 304 |
|
| 297 | 305 |
template <typename T> |
| 298 | 306 |
struct SetLargeCostTraits : public Traits {
|
| 299 | 307 |
typedef T LargeCost; |
| 300 | 308 |
}; |
| 301 | 309 |
|
| 302 | 310 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 303 | 311 |
/// \c LargeCost type. |
| 304 | 312 |
/// |
| 305 | 313 |
/// \ref named-templ-param "Named parameter" for setting \c LargeCost |
| 306 | 314 |
/// type, which is used for internal computations in the algorithm. |
| 307 | 315 |
/// \c Cost must be convertible to \c LargeCost. |
| 308 | 316 |
template <typename T> |
| 309 | 317 |
struct SetLargeCost |
| 310 | 318 |
: public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
|
| 311 | 319 |
typedef CostScaling<GR, V, C, SetLargeCostTraits<T> > Create; |
| 312 | 320 |
}; |
| 313 | 321 |
|
| 314 | 322 |
/// @} |
| 315 | 323 |
|
| 316 | 324 |
public: |
| 317 | 325 |
|
| 318 | 326 |
/// \brief Constructor. |
| 319 | 327 |
/// |
| 320 | 328 |
/// The constructor of the class. |
| 321 | 329 |
/// |
| 322 | 330 |
/// \param graph The digraph the algorithm runs on. |
| 323 | 331 |
CostScaling(const GR& graph) : |
| 324 | 332 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
| 325 | 333 |
_cost_map(_cost_vec), _pi_map(_pi), |
| 326 | 334 |
INF(std::numeric_limits<Value>::has_infinity ? |
| 327 | 335 |
std::numeric_limits<Value>::infinity() : |
| 328 | 336 |
std::numeric_limits<Value>::max()) |
| 329 | 337 |
{
|
| 330 | 338 |
// Check the number types |
| 331 | 339 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
| 332 | 340 |
"The flow type of CostScaling must be signed"); |
| 333 | 341 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
| 334 | 342 |
"The cost type of CostScaling must be signed"); |
| 335 | 343 |
|
| 336 | 344 |
// Resize vectors |
| 337 | 345 |
_node_num = countNodes(_graph); |
| 338 | 346 |
_arc_num = countArcs(_graph); |
| 339 | 347 |
_res_node_num = _node_num + 1; |
| 340 | 348 |
_res_arc_num = 2 * (_arc_num + _node_num); |
| 341 | 349 |
_root = _node_num; |
| 342 | 350 |
|
| 343 | 351 |
_first_out.resize(_res_node_num + 1); |
| 344 | 352 |
_forward.resize(_res_arc_num); |
| 345 | 353 |
_source.resize(_res_arc_num); |
| 346 | 354 |
_target.resize(_res_arc_num); |
| 347 | 355 |
_reverse.resize(_res_arc_num); |
| 348 | 356 |
|
| 349 | 357 |
_lower.resize(_res_arc_num); |
| 350 | 358 |
_upper.resize(_res_arc_num); |
| 351 | 359 |
_scost.resize(_res_arc_num); |
| 352 | 360 |
_supply.resize(_res_node_num); |
| 353 | 361 |
|
| 354 | 362 |
_res_cap.resize(_res_arc_num); |
| 355 | 363 |
_cost.resize(_res_arc_num); |
| 356 | 364 |
_pi.resize(_res_node_num); |
| 357 | 365 |
_excess.resize(_res_node_num); |
| 358 | 366 |
_next_out.resize(_res_node_num); |
| 359 | 367 |
|
| 360 | 368 |
_arc_vec.reserve(_res_arc_num); |
| 361 | 369 |
_cost_vec.reserve(_res_arc_num); |
| 362 | 370 |
|
| 363 | 371 |
// Copy the graph |
| 364 | 372 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
| 365 | 373 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 366 | 374 |
_node_id[n] = i; |
| 367 | 375 |
} |
| 368 | 376 |
i = 0; |
| 369 | 377 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 370 | 378 |
_first_out[i] = j; |
| ... | ... |
@@ -709,462 +717,570 @@ |
| 709 | 717 |
/// @} |
| 710 | 718 |
|
| 711 | 719 |
private: |
| 712 | 720 |
|
| 713 | 721 |
// Initialize the algorithm |
| 714 | 722 |
ProblemType init() {
|
| 715 | 723 |
if (_res_node_num <= 1) return INFEASIBLE; |
| 716 | 724 |
|
| 717 | 725 |
// Check the sum of supply values |
| 718 | 726 |
_sum_supply = 0; |
| 719 | 727 |
for (int i = 0; i != _root; ++i) {
|
| 720 | 728 |
_sum_supply += _supply[i]; |
| 721 | 729 |
} |
| 722 | 730 |
if (_sum_supply > 0) return INFEASIBLE; |
| 723 | 731 |
|
| 724 | 732 |
|
| 725 | 733 |
// Initialize vectors |
| 726 | 734 |
for (int i = 0; i != _res_node_num; ++i) {
|
| 727 | 735 |
_pi[i] = 0; |
| 728 | 736 |
_excess[i] = _supply[i]; |
| 729 | 737 |
} |
| 730 | 738 |
|
| 731 | 739 |
// Remove infinite upper bounds and check negative arcs |
| 732 | 740 |
const Value MAX = std::numeric_limits<Value>::max(); |
| 733 | 741 |
int last_out; |
| 734 | 742 |
if (_have_lower) {
|
| 735 | 743 |
for (int i = 0; i != _root; ++i) {
|
| 736 | 744 |
last_out = _first_out[i+1]; |
| 737 | 745 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 738 | 746 |
if (_forward[j]) {
|
| 739 | 747 |
Value c = _scost[j] < 0 ? _upper[j] : _lower[j]; |
| 740 | 748 |
if (c >= MAX) return UNBOUNDED; |
| 741 | 749 |
_excess[i] -= c; |
| 742 | 750 |
_excess[_target[j]] += c; |
| 743 | 751 |
} |
| 744 | 752 |
} |
| 745 | 753 |
} |
| 746 | 754 |
} else {
|
| 747 | 755 |
for (int i = 0; i != _root; ++i) {
|
| 748 | 756 |
last_out = _first_out[i+1]; |
| 749 | 757 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 750 | 758 |
if (_forward[j] && _scost[j] < 0) {
|
| 751 | 759 |
Value c = _upper[j]; |
| 752 | 760 |
if (c >= MAX) return UNBOUNDED; |
| 753 | 761 |
_excess[i] -= c; |
| 754 | 762 |
_excess[_target[j]] += c; |
| 755 | 763 |
} |
| 756 | 764 |
} |
| 757 | 765 |
} |
| 758 | 766 |
} |
| 759 | 767 |
Value ex, max_cap = 0; |
| 760 | 768 |
for (int i = 0; i != _res_node_num; ++i) {
|
| 761 | 769 |
ex = _excess[i]; |
| 762 | 770 |
_excess[i] = 0; |
| 763 | 771 |
if (ex < 0) max_cap -= ex; |
| 764 | 772 |
} |
| 765 | 773 |
for (int j = 0; j != _res_arc_num; ++j) {
|
| 766 | 774 |
if (_upper[j] >= MAX) _upper[j] = max_cap; |
| 767 | 775 |
} |
| 768 | 776 |
|
| 769 | 777 |
// Initialize the large cost vector and the epsilon parameter |
| 770 | 778 |
_epsilon = 0; |
| 771 | 779 |
LargeCost lc; |
| 772 | 780 |
for (int i = 0; i != _root; ++i) {
|
| 773 | 781 |
last_out = _first_out[i+1]; |
| 774 | 782 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
| 775 | 783 |
lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha; |
| 776 | 784 |
_cost[j] = lc; |
| 777 | 785 |
if (lc > _epsilon) _epsilon = lc; |
| 778 | 786 |
} |
| 779 | 787 |
} |
| 780 | 788 |
_epsilon /= _alpha; |
| 781 | 789 |
|
| 782 | 790 |
// Initialize maps for Circulation and remove non-zero lower bounds |
| 783 | 791 |
ConstMap<Arc, Value> low(0); |
| 784 | 792 |
typedef typename Digraph::template ArcMap<Value> ValueArcMap; |
| 785 | 793 |
typedef typename Digraph::template NodeMap<Value> ValueNodeMap; |
| 786 | 794 |
ValueArcMap cap(_graph), flow(_graph); |
| 787 | 795 |
ValueNodeMap sup(_graph); |
| 788 | 796 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 789 | 797 |
sup[n] = _supply[_node_id[n]]; |
| 790 | 798 |
} |
| 791 | 799 |
if (_have_lower) {
|
| 792 | 800 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 793 | 801 |
int j = _arc_idf[a]; |
| 794 | 802 |
Value c = _lower[j]; |
| 795 | 803 |
cap[a] = _upper[j] - c; |
| 796 | 804 |
sup[_graph.source(a)] -= c; |
| 797 | 805 |
sup[_graph.target(a)] += c; |
| 798 | 806 |
} |
| 799 | 807 |
} else {
|
| 800 | 808 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 801 | 809 |
cap[a] = _upper[_arc_idf[a]]; |
| 802 | 810 |
} |
| 803 | 811 |
} |
| 804 | 812 |
|
| 813 |
_sup_node_num = 0; |
|
| 814 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
|
| 815 |
if (sup[n] > 0) ++_sup_node_num; |
|
| 816 |
} |
|
| 817 |
|
|
| 805 | 818 |
// Find a feasible flow using Circulation |
| 806 | 819 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap> |
| 807 | 820 |
circ(_graph, low, cap, sup); |
| 808 | 821 |
if (!circ.flowMap(flow).run()) return INFEASIBLE; |
| 809 | 822 |
|
| 810 | 823 |
// Set residual capacities and handle GEQ supply type |
| 811 | 824 |
if (_sum_supply < 0) {
|
| 812 | 825 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 813 | 826 |
Value fa = flow[a]; |
| 814 | 827 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
| 815 | 828 |
_res_cap[_arc_idb[a]] = fa; |
| 816 | 829 |
sup[_graph.source(a)] -= fa; |
| 817 | 830 |
sup[_graph.target(a)] += fa; |
| 818 | 831 |
} |
| 819 | 832 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 820 | 833 |
_excess[_node_id[n]] = sup[n]; |
| 821 | 834 |
} |
| 822 | 835 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
| 823 | 836 |
int u = _target[a]; |
| 824 | 837 |
int ra = _reverse[a]; |
| 825 | 838 |
_res_cap[a] = -_sum_supply + 1; |
| 826 | 839 |
_res_cap[ra] = -_excess[u]; |
| 827 | 840 |
_cost[a] = 0; |
| 828 | 841 |
_cost[ra] = 0; |
| 829 | 842 |
_excess[u] = 0; |
| 830 | 843 |
} |
| 831 | 844 |
} else {
|
| 832 | 845 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 833 | 846 |
Value fa = flow[a]; |
| 834 | 847 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
| 835 | 848 |
_res_cap[_arc_idb[a]] = fa; |
| 836 | 849 |
} |
| 837 | 850 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
| 838 | 851 |
int ra = _reverse[a]; |
| 839 |
_res_cap[a] = |
|
| 852 |
_res_cap[a] = 0; |
|
| 840 | 853 |
_res_cap[ra] = 0; |
| 841 | 854 |
_cost[a] = 0; |
| 842 | 855 |
_cost[ra] = 0; |
| 843 | 856 |
} |
| 844 | 857 |
} |
| 845 | 858 |
|
| 846 | 859 |
return OPTIMAL; |
| 847 | 860 |
} |
| 848 | 861 |
|
| 849 | 862 |
// Execute the algorithm and transform the results |
| 850 | 863 |
void start(Method method) {
|
| 851 | 864 |
// Maximum path length for partial augment |
| 852 | 865 |
const int MAX_PATH_LENGTH = 4; |
| 853 |
|
|
| 866 |
|
|
| 867 |
// Initialize data structures for buckets |
|
| 868 |
_max_rank = _alpha * _res_node_num; |
|
| 869 |
_buckets.resize(_max_rank); |
|
| 870 |
_bucket_next.resize(_res_node_num + 1); |
|
| 871 |
_bucket_prev.resize(_res_node_num + 1); |
|
| 872 |
_rank.resize(_res_node_num + 1); |
|
| 873 |
|
|
| 854 | 874 |
// Execute the algorithm |
| 855 | 875 |
switch (method) {
|
| 856 | 876 |
case PUSH: |
| 857 | 877 |
startPush(); |
| 858 | 878 |
break; |
| 859 | 879 |
case AUGMENT: |
| 860 | 880 |
startAugment(); |
| 861 | 881 |
break; |
| 862 | 882 |
case PARTIAL_AUGMENT: |
| 863 | 883 |
startAugment(MAX_PATH_LENGTH); |
| 864 | 884 |
break; |
| 865 | 885 |
} |
| 866 | 886 |
|
| 867 | 887 |
// Compute node potentials for the original costs |
| 868 | 888 |
_arc_vec.clear(); |
| 869 | 889 |
_cost_vec.clear(); |
| 870 | 890 |
for (int j = 0; j != _res_arc_num; ++j) {
|
| 871 | 891 |
if (_res_cap[j] > 0) {
|
| 872 | 892 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
| 873 | 893 |
_cost_vec.push_back(_scost[j]); |
| 874 | 894 |
} |
| 875 | 895 |
} |
| 876 | 896 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
| 877 | 897 |
|
| 878 | 898 |
typename BellmanFord<StaticDigraph, LargeCostArcMap> |
| 879 | 899 |
::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map); |
| 880 | 900 |
bf.distMap(_pi_map); |
| 881 | 901 |
bf.init(0); |
| 882 | 902 |
bf.start(); |
| 883 | 903 |
|
| 884 | 904 |
// Handle non-zero lower bounds |
| 885 | 905 |
if (_have_lower) {
|
| 886 | 906 |
int limit = _first_out[_root]; |
| 887 | 907 |
for (int j = 0; j != limit; ++j) {
|
| 888 | 908 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
| 889 | 909 |
} |
| 890 | 910 |
} |
| 891 | 911 |
} |
| 912 |
|
|
| 913 |
// Initialize a cost scaling phase |
|
| 914 |
void initPhase() {
|
|
| 915 |
// Saturate arcs not satisfying the optimality condition |
|
| 916 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 917 |
int last_out = _first_out[u+1]; |
|
| 918 |
LargeCost pi_u = _pi[u]; |
|
| 919 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
| 920 |
int v = _target[a]; |
|
| 921 |
if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) {
|
|
| 922 |
Value delta = _res_cap[a]; |
|
| 923 |
_excess[u] -= delta; |
|
| 924 |
_excess[v] += delta; |
|
| 925 |
_res_cap[a] = 0; |
|
| 926 |
_res_cap[_reverse[a]] += delta; |
|
| 927 |
} |
|
| 928 |
} |
|
| 929 |
} |
|
| 930 |
|
|
| 931 |
// Find active nodes (i.e. nodes with positive excess) |
|
| 932 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 933 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
|
| 934 |
} |
|
| 935 |
|
|
| 936 |
// Initialize the next arcs |
|
| 937 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 938 |
_next_out[u] = _first_out[u]; |
|
| 939 |
} |
|
| 940 |
} |
|
| 941 |
|
|
| 942 |
// Early termination heuristic |
|
| 943 |
bool earlyTermination() {
|
|
| 944 |
const double EARLY_TERM_FACTOR = 3.0; |
|
| 945 |
|
|
| 946 |
// Build a static residual graph |
|
| 947 |
_arc_vec.clear(); |
|
| 948 |
_cost_vec.clear(); |
|
| 949 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 950 |
if (_res_cap[j] > 0) {
|
|
| 951 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
| 952 |
_cost_vec.push_back(_cost[j] + 1); |
|
| 953 |
} |
|
| 954 |
} |
|
| 955 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
| 956 |
|
|
| 957 |
// Run Bellman-Ford algorithm to check if the current flow is optimal |
|
| 958 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
|
| 959 |
bf.init(0); |
|
| 960 |
bool done = false; |
|
| 961 |
int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num))); |
|
| 962 |
for (int i = 0; i < K && !done; ++i) {
|
|
| 963 |
done = bf.processNextWeakRound(); |
|
| 964 |
} |
|
| 965 |
return done; |
|
| 966 |
} |
|
| 967 |
|
|
| 968 |
// Global potential update heuristic |
|
| 969 |
void globalUpdate() {
|
|
| 970 |
int bucket_end = _root + 1; |
|
| 971 |
|
|
| 972 |
// Initialize buckets |
|
| 973 |
for (int r = 0; r != _max_rank; ++r) {
|
|
| 974 |
_buckets[r] = bucket_end; |
|
| 975 |
} |
|
| 976 |
Value total_excess = 0; |
|
| 977 |
for (int i = 0; i != _res_node_num; ++i) {
|
|
| 978 |
if (_excess[i] < 0) {
|
|
| 979 |
_rank[i] = 0; |
|
| 980 |
_bucket_next[i] = _buckets[0]; |
|
| 981 |
_bucket_prev[_buckets[0]] = i; |
|
| 982 |
_buckets[0] = i; |
|
| 983 |
} else {
|
|
| 984 |
total_excess += _excess[i]; |
|
| 985 |
_rank[i] = _max_rank; |
|
| 986 |
} |
|
| 987 |
} |
|
| 988 |
if (total_excess == 0) return; |
|
| 989 |
|
|
| 990 |
// Search the buckets |
|
| 991 |
int r = 0; |
|
| 992 |
for ( ; r != _max_rank; ++r) {
|
|
| 993 |
while (_buckets[r] != bucket_end) {
|
|
| 994 |
// Remove the first node from the current bucket |
|
| 995 |
int u = _buckets[r]; |
|
| 996 |
_buckets[r] = _bucket_next[u]; |
|
| 997 |
|
|
| 998 |
// Search the incomming arcs of u |
|
| 999 |
LargeCost pi_u = _pi[u]; |
|
| 1000 |
int last_out = _first_out[u+1]; |
|
| 1001 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
|
| 1002 |
int ra = _reverse[a]; |
|
| 1003 |
if (_res_cap[ra] > 0) {
|
|
| 1004 |
int v = _source[ra]; |
|
| 1005 |
int old_rank_v = _rank[v]; |
|
| 1006 |
if (r < old_rank_v) {
|
|
| 1007 |
// Compute the new rank of v |
|
| 1008 |
LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon; |
|
| 1009 |
int new_rank_v = old_rank_v; |
|
| 1010 |
if (nrc < LargeCost(_max_rank)) |
|
| 1011 |
new_rank_v = r + 1 + int(nrc); |
|
| 1012 |
|
|
| 1013 |
// Change the rank of v |
|
| 1014 |
if (new_rank_v < old_rank_v) {
|
|
| 1015 |
_rank[v] = new_rank_v; |
|
| 1016 |
_next_out[v] = _first_out[v]; |
|
| 1017 |
|
|
| 1018 |
// Remove v from its old bucket |
|
| 1019 |
if (old_rank_v < _max_rank) {
|
|
| 1020 |
if (_buckets[old_rank_v] == v) {
|
|
| 1021 |
_buckets[old_rank_v] = _bucket_next[v]; |
|
| 1022 |
} else {
|
|
| 1023 |
_bucket_next[_bucket_prev[v]] = _bucket_next[v]; |
|
| 1024 |
_bucket_prev[_bucket_next[v]] = _bucket_prev[v]; |
|
| 1025 |
} |
|
| 1026 |
} |
|
| 1027 |
|
|
| 1028 |
// Insert v to its new bucket |
|
| 1029 |
_bucket_next[v] = _buckets[new_rank_v]; |
|
| 1030 |
_bucket_prev[_buckets[new_rank_v]] = v; |
|
| 1031 |
_buckets[new_rank_v] = v; |
|
| 1032 |
} |
|
| 1033 |
} |
|
| 1034 |
} |
|
| 1035 |
} |
|
| 1036 |
|
|
| 1037 |
// Finish search if there are no more active nodes |
|
| 1038 |
if (_excess[u] > 0) {
|
|
| 1039 |
total_excess -= _excess[u]; |
|
| 1040 |
if (total_excess <= 0) break; |
|
| 1041 |
} |
|
| 1042 |
} |
|
| 1043 |
if (total_excess <= 0) break; |
|
| 1044 |
} |
|
| 1045 |
|
|
| 1046 |
// Relabel nodes |
|
| 1047 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 1048 |
int k = std::min(_rank[u], r); |
|
| 1049 |
if (k > 0) {
|
|
| 1050 |
_pi[u] -= _epsilon * k; |
|
| 1051 |
_next_out[u] = _first_out[u]; |
|
| 1052 |
} |
|
| 1053 |
} |
|
| 1054 |
} |
|
| 892 | 1055 |
|
| 893 | 1056 |
/// Execute the algorithm performing augment and relabel operations |
| 894 | 1057 |
void startAugment(int max_length = std::numeric_limits<int>::max()) {
|
| 895 | 1058 |
// Paramters for heuristics |
| 896 |
const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
|
| 897 |
const int BF_HEURISTIC_BOUND_FACTOR = 3; |
|
| 1059 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
|
| 1060 |
const double GLOBAL_UPDATE_FACTOR = 3.0; |
|
| 898 | 1061 |
|
| 1062 |
const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
|
| 1063 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
|
| 1064 |
int next_update_limit = global_update_freq; |
|
| 1065 |
|
|
| 1066 |
int relabel_cnt = 0; |
|
| 1067 |
|
|
| 899 | 1068 |
// Perform cost scaling phases |
| 900 |
IntVector pred_arc(_res_node_num); |
|
| 901 |
std::vector<int> path_nodes; |
|
| 1069 |
std::vector<int> path; |
|
| 902 | 1070 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
| 903 | 1071 |
1 : _epsilon / _alpha ) |
| 904 | 1072 |
{
|
| 905 |
// "Early Termination" heuristic: use Bellman-Ford algorithm |
|
| 906 |
// to check if the current flow is optimal |
|
| 907 |
if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
|
|
| 908 |
_arc_vec.clear(); |
|
| 909 |
_cost_vec.clear(); |
|
| 910 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 911 |
if (_res_cap[j] > 0) {
|
|
| 912 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
| 913 |
_cost_vec.push_back(_cost[j] + 1); |
|
| 914 |
} |
|
| 915 |
} |
|
| 916 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
| 917 |
|
|
| 918 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
|
| 919 |
bf.init(0); |
|
| 920 |
bool done = false; |
|
| 921 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num)); |
|
| 922 |
for (int i = 0; i < K && !done; ++i) |
|
| 923 |
done = bf.processNextWeakRound(); |
|
| 924 |
if (done) break; |
|
| 925 |
} |
|
| 926 |
|
|
| 927 |
// Saturate arcs not satisfying the optimality condition |
|
| 928 |
for (int a = 0; a != _res_arc_num; ++a) {
|
|
| 929 |
if (_res_cap[a] > 0 && |
|
| 930 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
|
|
| 931 |
Value delta = _res_cap[a]; |
|
| 932 |
_excess[_source[a]] -= delta; |
|
| 933 |
_excess[_target[a]] += delta; |
|
| 934 |
_res_cap[a] = 0; |
|
| 935 |
_res_cap[_reverse[a]] += delta; |
|
| 936 |
} |
|
| 1073 |
// Early termination heuristic |
|
| 1074 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
|
|
| 1075 |
if (earlyTermination()) break; |
|
| 937 | 1076 |
} |
| 938 | 1077 |
|
| 939 |
// Find active nodes (i.e. nodes with positive excess) |
|
| 940 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 941 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
|
| 942 |
} |
|
| 943 |
|
|
| 944 |
// Initialize the next arcs |
|
| 945 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 946 |
_next_out[u] = _first_out[u]; |
|
| 947 |
} |
|
| 948 |
|
|
| 1078 |
// Initialize current phase |
|
| 1079 |
initPhase(); |
|
| 1080 |
|
|
| 949 | 1081 |
// Perform partial augment and relabel operations |
| 950 | 1082 |
while (true) {
|
| 951 | 1083 |
// Select an active node (FIFO selection) |
| 952 | 1084 |
while (_active_nodes.size() > 0 && |
| 953 | 1085 |
_excess[_active_nodes.front()] <= 0) {
|
| 954 | 1086 |
_active_nodes.pop_front(); |
| 955 | 1087 |
} |
| 956 | 1088 |
if (_active_nodes.size() == 0) break; |
| 957 | 1089 |
int start = _active_nodes.front(); |
| 958 |
path_nodes.clear(); |
|
| 959 |
path_nodes.push_back(start); |
|
| 960 | 1090 |
|
| 961 | 1091 |
// Find an augmenting path from the start node |
| 1092 |
path.clear(); |
|
| 962 | 1093 |
int tip = start; |
| 963 |
while (_excess[tip] >= 0 && |
|
| 964 |
int(path_nodes.size()) <= max_length) {
|
|
| 1094 |
while (_excess[tip] >= 0 && int(path.size()) < max_length) {
|
|
| 965 | 1095 |
int u; |
| 966 |
LargeCost min_red_cost, rc; |
|
| 967 |
int last_out = _sum_supply < 0 ? |
|
| 968 |
|
|
| 1096 |
LargeCost min_red_cost, rc, pi_tip = _pi[tip]; |
|
| 1097 |
int last_out = _first_out[tip+1]; |
|
| 969 | 1098 |
for (int a = _next_out[tip]; a != last_out; ++a) {
|
| 970 |
if (_res_cap[a] > 0 && |
|
| 971 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
|
|
| 972 |
u = _target[a]; |
|
| 973 |
pred_arc[u] = a; |
|
| 1099 |
u = _target[a]; |
|
| 1100 |
if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) {
|
|
| 1101 |
path.push_back(a); |
|
| 974 | 1102 |
_next_out[tip] = a; |
| 975 | 1103 |
tip = u; |
| 976 |
path_nodes.push_back(tip); |
|
| 977 | 1104 |
goto next_step; |
| 978 | 1105 |
} |
| 979 | 1106 |
} |
| 980 | 1107 |
|
| 981 | 1108 |
// Relabel tip node |
| 982 |
min_red_cost = std::numeric_limits<LargeCost>::max() |
|
| 1109 |
min_red_cost = std::numeric_limits<LargeCost>::max(); |
|
| 1110 |
if (tip != start) {
|
|
| 1111 |
int ra = _reverse[path.back()]; |
|
| 1112 |
min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]]; |
|
| 1113 |
} |
|
| 983 | 1114 |
for (int a = _first_out[tip]; a != last_out; ++a) {
|
| 984 |
rc = _cost[a] + |
|
| 1115 |
rc = _cost[a] + pi_tip - _pi[_target[a]]; |
|
| 985 | 1116 |
if (_res_cap[a] > 0 && rc < min_red_cost) {
|
| 986 | 1117 |
min_red_cost = rc; |
| 987 | 1118 |
} |
| 988 | 1119 |
} |
| 989 | 1120 |
_pi[tip] -= min_red_cost + _epsilon; |
| 990 |
|
|
| 991 |
// Reset the next arc of tip |
|
| 992 | 1121 |
_next_out[tip] = _first_out[tip]; |
| 1122 |
++relabel_cnt; |
|
| 993 | 1123 |
|
| 994 | 1124 |
// Step back |
| 995 | 1125 |
if (tip != start) {
|
| 996 |
path_nodes.pop_back(); |
|
| 997 |
tip = path_nodes.back(); |
|
| 1126 |
tip = _source[path.back()]; |
|
| 1127 |
path.pop_back(); |
|
| 998 | 1128 |
} |
| 999 | 1129 |
|
| 1000 | 1130 |
next_step: ; |
| 1001 | 1131 |
} |
| 1002 | 1132 |
|
| 1003 | 1133 |
// Augment along the found path (as much flow as possible) |
| 1004 | 1134 |
Value delta; |
| 1005 |
int u, v = path_nodes.front(), pa; |
|
| 1006 |
for (int i = 1; i < int(path_nodes.size()); ++i) {
|
|
| 1135 |
int pa, u, v = start; |
|
| 1136 |
for (int i = 0; i != int(path.size()); ++i) {
|
|
| 1137 |
pa = path[i]; |
|
| 1007 | 1138 |
u = v; |
| 1008 |
v = path_nodes[i]; |
|
| 1009 |
pa = pred_arc[v]; |
|
| 1139 |
v = _target[pa]; |
|
| 1010 | 1140 |
delta = std::min(_res_cap[pa], _excess[u]); |
| 1011 | 1141 |
_res_cap[pa] -= delta; |
| 1012 | 1142 |
_res_cap[_reverse[pa]] += delta; |
| 1013 | 1143 |
_excess[u] -= delta; |
| 1014 | 1144 |
_excess[v] += delta; |
| 1015 | 1145 |
if (_excess[v] > 0 && _excess[v] <= delta) |
| 1016 | 1146 |
_active_nodes.push_back(v); |
| 1017 | 1147 |
} |
| 1148 |
|
|
| 1149 |
// Global update heuristic |
|
| 1150 |
if (relabel_cnt >= next_update_limit) {
|
|
| 1151 |
globalUpdate(); |
|
| 1152 |
next_update_limit += global_update_freq; |
|
| 1153 |
} |
|
| 1018 | 1154 |
} |
| 1019 | 1155 |
} |
| 1020 | 1156 |
} |
| 1021 | 1157 |
|
| 1022 | 1158 |
/// Execute the algorithm performing push and relabel operations |
| 1023 | 1159 |
void startPush() {
|
| 1024 | 1160 |
// Paramters for heuristics |
| 1025 |
const int BF_HEURISTIC_EPSILON_BOUND = 1000; |
|
| 1026 |
const int BF_HEURISTIC_BOUND_FACTOR = 3; |
|
| 1161 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
|
| 1162 |
const double GLOBAL_UPDATE_FACTOR = 2.0; |
|
| 1027 | 1163 |
|
| 1164 |
const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
|
| 1165 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
|
| 1166 |
int next_update_limit = global_update_freq; |
|
| 1167 |
|
|
| 1168 |
int relabel_cnt = 0; |
|
| 1169 |
|
|
| 1028 | 1170 |
// Perform cost scaling phases |
| 1029 | 1171 |
BoolVector hyper(_res_node_num, false); |
| 1172 |
LargeCostVector hyper_cost(_res_node_num); |
|
| 1030 | 1173 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
| 1031 | 1174 |
1 : _epsilon / _alpha ) |
| 1032 | 1175 |
{
|
| 1033 |
// "Early Termination" heuristic: use Bellman-Ford algorithm |
|
| 1034 |
// to check if the current flow is optimal |
|
| 1035 |
if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
|
|
| 1036 |
_arc_vec.clear(); |
|
| 1037 |
_cost_vec.clear(); |
|
| 1038 |
for (int j = 0; j != _res_arc_num; ++j) {
|
|
| 1039 |
if (_res_cap[j] > 0) {
|
|
| 1040 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
|
| 1041 |
_cost_vec.push_back(_cost[j] + 1); |
|
| 1042 |
} |
|
| 1043 |
} |
|
| 1044 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
|
| 1045 |
|
|
| 1046 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
|
| 1047 |
bf.init(0); |
|
| 1048 |
bool done = false; |
|
| 1049 |
int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num)); |
|
| 1050 |
for (int i = 0; i < K && !done; ++i) |
|
| 1051 |
done = bf.processNextWeakRound(); |
|
| 1052 |
if (done) break; |
|
| 1176 |
// Early termination heuristic |
|
| 1177 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
|
|
| 1178 |
if (earlyTermination()) break; |
|
| 1053 | 1179 |
} |
| 1054 |
|
|
| 1055 |
// Saturate arcs not satisfying the optimality condition |
|
| 1056 |
for (int a = 0; a != _res_arc_num; ++a) {
|
|
| 1057 |
if (_res_cap[a] > 0 && |
|
| 1058 |
_cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
|
|
| 1059 |
Value delta = _res_cap[a]; |
|
| 1060 |
_excess[_source[a]] -= delta; |
|
| 1061 |
_excess[_target[a]] += delta; |
|
| 1062 |
_res_cap[a] = 0; |
|
| 1063 |
_res_cap[_reverse[a]] += delta; |
|
| 1064 |
} |
|
| 1065 |
} |
|
| 1066 |
|
|
| 1067 |
// Find active nodes (i.e. nodes with positive excess) |
|
| 1068 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 1069 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
|
| 1070 |
} |
|
| 1071 |
|
|
| 1072 |
// Initialize the next arcs |
|
| 1073 |
for (int u = 0; u != _res_node_num; ++u) {
|
|
| 1074 |
_next_out[u] = _first_out[u]; |
|
| 1075 |
} |
|
| 1180 |
|
|
| 1181 |
// Initialize current phase |
|
| 1182 |
initPhase(); |
|
| 1076 | 1183 |
|
| 1077 | 1184 |
// Perform push and relabel operations |
| 1078 | 1185 |
while (_active_nodes.size() > 0) {
|
| 1079 |
LargeCost min_red_cost, rc; |
|
| 1186 |
LargeCost min_red_cost, rc, pi_n; |
|
| 1080 | 1187 |
Value delta; |
| 1081 | 1188 |
int n, t, a, last_out = _res_arc_num; |
| 1082 | 1189 |
|
| 1190 |
next_node: |
|
| 1083 | 1191 |
// Select an active node (FIFO selection) |
| 1084 |
next_node: |
|
| 1085 | 1192 |
n = _active_nodes.front(); |
| 1086 |
last_out = _sum_supply < 0 ? |
|
| 1087 |
_first_out[n+1] : _first_out[n+1] - 1; |
|
| 1088 |
|
|
| 1193 |
last_out = _first_out[n+1]; |
|
| 1194 |
pi_n = _pi[n]; |
|
| 1195 |
|
|
| 1089 | 1196 |
// Perform push operations if there are admissible arcs |
| 1090 | 1197 |
if (_excess[n] > 0) {
|
| 1091 | 1198 |
for (a = _next_out[n]; a != last_out; ++a) {
|
| 1092 | 1199 |
if (_res_cap[a] > 0 && |
| 1093 |
_cost[a] + |
|
| 1200 |
_cost[a] + pi_n - _pi[_target[a]] < 0) {
|
|
| 1094 | 1201 |
delta = std::min(_res_cap[a], _excess[n]); |
| 1095 | 1202 |
t = _target[a]; |
| 1096 | 1203 |
|
| 1097 | 1204 |
// Push-look-ahead heuristic |
| 1098 | 1205 |
Value ahead = -_excess[t]; |
| 1099 |
int last_out_t = _sum_supply < 0 ? |
|
| 1100 |
_first_out[t+1] : _first_out[t+1] - 1; |
|
| 1206 |
int last_out_t = _first_out[t+1]; |
|
| 1207 |
LargeCost pi_t = _pi[t]; |
|
| 1101 | 1208 |
for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
|
| 1102 | 1209 |
if (_res_cap[ta] > 0 && |
| 1103 |
_cost[ta] + |
|
| 1210 |
_cost[ta] + pi_t - _pi[_target[ta]] < 0) |
|
| 1104 | 1211 |
ahead += _res_cap[ta]; |
| 1105 | 1212 |
if (ahead >= delta) break; |
| 1106 | 1213 |
} |
| 1107 | 1214 |
if (ahead < 0) ahead = 0; |
| 1108 | 1215 |
|
| 1109 | 1216 |
// Push flow along the arc |
| 1110 |
if (ahead < delta) {
|
|
| 1217 |
if (ahead < delta && !hyper[t]) {
|
|
| 1111 | 1218 |
_res_cap[a] -= ahead; |
| 1112 | 1219 |
_res_cap[_reverse[a]] += ahead; |
| 1113 | 1220 |
_excess[n] -= ahead; |
| 1114 | 1221 |
_excess[t] += ahead; |
| 1115 | 1222 |
_active_nodes.push_front(t); |
| 1116 | 1223 |
hyper[t] = true; |
| 1224 |
hyper_cost[t] = _cost[a] + pi_n - pi_t; |
|
| 1117 | 1225 |
_next_out[n] = a; |
| 1118 | 1226 |
goto next_node; |
| 1119 | 1227 |
} else {
|
| 1120 | 1228 |
_res_cap[a] -= delta; |
| 1121 | 1229 |
_res_cap[_reverse[a]] += delta; |
| 1122 | 1230 |
_excess[n] -= delta; |
| 1123 | 1231 |
_excess[t] += delta; |
| 1124 | 1232 |
if (_excess[t] > 0 && _excess[t] <= delta) |
| 1125 | 1233 |
_active_nodes.push_back(t); |
| 1126 | 1234 |
} |
| 1127 | 1235 |
|
| 1128 | 1236 |
if (_excess[n] == 0) {
|
| 1129 | 1237 |
_next_out[n] = a; |
| 1130 | 1238 |
goto remove_nodes; |
| 1131 | 1239 |
} |
| 1132 | 1240 |
} |
| 1133 | 1241 |
} |
| 1134 | 1242 |
_next_out[n] = a; |
| 1135 | 1243 |
} |
| 1136 | 1244 |
|
| 1137 | 1245 |
// Relabel the node if it is still active (or hyper) |
| 1138 | 1246 |
if (_excess[n] > 0 || hyper[n]) {
|
| 1139 |
min_red_cost = |
|
| 1247 |
min_red_cost = hyper[n] ? -hyper_cost[n] : |
|
| 1248 |
std::numeric_limits<LargeCost>::max(); |
|
| 1140 | 1249 |
for (int a = _first_out[n]; a != last_out; ++a) {
|
| 1141 |
rc = _cost[a] + |
|
| 1250 |
rc = _cost[a] + pi_n - _pi[_target[a]]; |
|
| 1142 | 1251 |
if (_res_cap[a] > 0 && rc < min_red_cost) {
|
| 1143 | 1252 |
min_red_cost = rc; |
| 1144 | 1253 |
} |
| 1145 | 1254 |
} |
| 1146 | 1255 |
_pi[n] -= min_red_cost + _epsilon; |
| 1256 |
_next_out[n] = _first_out[n]; |
|
| 1147 | 1257 |
hyper[n] = false; |
| 1148 |
|
|
| 1149 |
// Reset the next arc |
|
| 1150 |
|
|
| 1258 |
++relabel_cnt; |
|
| 1151 | 1259 |
} |
| 1152 | 1260 |
|
| 1153 | 1261 |
// Remove nodes that are not active nor hyper |
| 1154 | 1262 |
remove_nodes: |
| 1155 | 1263 |
while ( _active_nodes.size() > 0 && |
| 1156 | 1264 |
_excess[_active_nodes.front()] <= 0 && |
| 1157 | 1265 |
!hyper[_active_nodes.front()] ) {
|
| 1158 | 1266 |
_active_nodes.pop_front(); |
| 1159 | 1267 |
} |
| 1268 |
|
|
| 1269 |
// Global update heuristic |
|
| 1270 |
if (relabel_cnt >= next_update_limit) {
|
|
| 1271 |
globalUpdate(); |
|
| 1272 |
for (int u = 0; u != _res_node_num; ++u) |
|
| 1273 |
hyper[u] = false; |
|
| 1274 |
next_update_limit += global_update_freq; |
|
| 1275 |
} |
|
| 1160 | 1276 |
} |
| 1161 | 1277 |
} |
| 1162 | 1278 |
} |
| 1163 | 1279 |
|
| 1164 | 1280 |
}; //class CostScaling |
| 1165 | 1281 |
|
| 1166 | 1282 |
///@} |
| 1167 | 1283 |
|
| 1168 | 1284 |
} //namespace lemon |
| 1169 | 1285 |
|
| 1170 | 1286 |
#endif //LEMON_COST_SCALING_H |
| ... | ... |
@@ -51,247 +51,248 @@ |
| 51 | 51 |
/// The most efficent one (both theoretically and practically) |
| 52 | 52 |
/// is the \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" algorithm, |
| 53 | 53 |
/// thus it is the default method. |
| 54 | 54 |
/// It is strongly polynomial, but in practice, it is typically much |
| 55 | 55 |
/// slower than the scaling algorithms and NetworkSimplex. |
| 56 | 56 |
/// |
| 57 | 57 |
/// Most of the parameters of the problem (except for the digraph) |
| 58 | 58 |
/// can be given using separate functions, and the algorithm can be |
| 59 | 59 |
/// executed using the \ref run() function. If some parameters are not |
| 60 | 60 |
/// specified, then default values will be used. |
| 61 | 61 |
/// |
| 62 | 62 |
/// \tparam GR The digraph type the algorithm runs on. |
| 63 | 63 |
/// \tparam V The number type used for flow amounts, capacity bounds |
| 64 | 64 |
/// and supply values in the algorithm. By default, it is \c int. |
| 65 | 65 |
/// \tparam C The number type used for costs and potentials in the |
| 66 | 66 |
/// algorithm. By default, it is the same as \c V. |
| 67 | 67 |
/// |
| 68 | 68 |
/// \warning Both number types must be signed and all input data must |
| 69 | 69 |
/// be integer. |
| 70 | 70 |
/// \warning This algorithm does not support negative costs for such |
| 71 | 71 |
/// arcs that have infinite upper bound. |
| 72 | 72 |
/// |
| 73 | 73 |
/// \note For more information about the three available methods, |
| 74 | 74 |
/// see \ref Method. |
| 75 | 75 |
#ifdef DOXYGEN |
| 76 | 76 |
template <typename GR, typename V, typename C> |
| 77 | 77 |
#else |
| 78 | 78 |
template <typename GR, typename V = int, typename C = V> |
| 79 | 79 |
#endif |
| 80 | 80 |
class CycleCanceling |
| 81 | 81 |
{
|
| 82 | 82 |
public: |
| 83 | 83 |
|
| 84 | 84 |
/// The type of the digraph |
| 85 | 85 |
typedef GR Digraph; |
| 86 | 86 |
/// The type of the flow amounts, capacity bounds and supply values |
| 87 | 87 |
typedef V Value; |
| 88 | 88 |
/// The type of the arc costs |
| 89 | 89 |
typedef C Cost; |
| 90 | 90 |
|
| 91 | 91 |
public: |
| 92 | 92 |
|
| 93 | 93 |
/// \brief Problem type constants for the \c run() function. |
| 94 | 94 |
/// |
| 95 | 95 |
/// Enum type containing the problem type constants that can be |
| 96 | 96 |
/// returned by the \ref run() function of the algorithm. |
| 97 | 97 |
enum ProblemType {
|
| 98 | 98 |
/// The problem has no feasible solution (flow). |
| 99 | 99 |
INFEASIBLE, |
| 100 | 100 |
/// The problem has optimal solution (i.e. it is feasible and |
| 101 | 101 |
/// bounded), and the algorithm has found optimal flow and node |
| 102 | 102 |
/// potentials (primal and dual solutions). |
| 103 | 103 |
OPTIMAL, |
| 104 | 104 |
/// The digraph contains an arc of negative cost and infinite |
| 105 | 105 |
/// upper bound. It means that the objective function is unbounded |
| 106 | 106 |
/// on that arc, however, note that it could actually be bounded |
| 107 | 107 |
/// over the feasible flows, but this algroithm cannot handle |
| 108 | 108 |
/// these cases. |
| 109 | 109 |
UNBOUNDED |
| 110 | 110 |
}; |
| 111 | 111 |
|
| 112 | 112 |
/// \brief Constants for selecting the used method. |
| 113 | 113 |
/// |
| 114 | 114 |
/// Enum type containing constants for selecting the used method |
| 115 | 115 |
/// for the \ref run() function. |
| 116 | 116 |
/// |
| 117 | 117 |
/// \ref CycleCanceling provides three different cycle-canceling |
| 118 | 118 |
/// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" |
| 119 | 119 |
/// is used, which proved to be the most efficient and the most robust |
| 120 | 120 |
/// on various test inputs. |
| 121 | 121 |
/// However, the other methods can be selected using the \ref run() |
| 122 | 122 |
/// function with the proper parameter. |
| 123 | 123 |
enum Method {
|
| 124 | 124 |
/// A simple cycle-canceling method, which uses the |
| 125 | 125 |
/// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration |
| 126 | 126 |
/// number for detecting negative cycles in the residual network. |
| 127 | 127 |
SIMPLE_CYCLE_CANCELING, |
| 128 | 128 |
/// The "Minimum Mean Cycle-Canceling" algorithm, which is a |
| 129 | 129 |
/// well-known strongly polynomial method |
| 130 | 130 |
/// \ref goldberg89cyclecanceling. It improves along a |
| 131 | 131 |
/// \ref min_mean_cycle "minimum mean cycle" in each iteration. |
| 132 | 132 |
/// Its running time complexity is O(n<sup>2</sup>m<sup>3</sup>log(n)). |
| 133 | 133 |
MINIMUM_MEAN_CYCLE_CANCELING, |
| 134 | 134 |
/// The "Cancel And Tighten" algorithm, which can be viewed as an |
| 135 | 135 |
/// improved version of the previous method |
| 136 | 136 |
/// \ref goldberg89cyclecanceling. |
| 137 | 137 |
/// It is faster both in theory and in practice, its running time |
| 138 | 138 |
/// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)). |
| 139 | 139 |
CANCEL_AND_TIGHTEN |
| 140 | 140 |
}; |
| 141 | 141 |
|
| 142 | 142 |
private: |
| 143 | 143 |
|
| 144 | 144 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 145 | 145 |
|
| 146 | 146 |
typedef std::vector<int> IntVector; |
| 147 |
typedef std::vector<char> CharVector; |
|
| 148 | 147 |
typedef std::vector<double> DoubleVector; |
| 149 | 148 |
typedef std::vector<Value> ValueVector; |
| 150 | 149 |
typedef std::vector<Cost> CostVector; |
| 150 |
typedef std::vector<char> BoolVector; |
|
| 151 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
|
| 151 | 152 |
|
| 152 | 153 |
private: |
| 153 | 154 |
|
| 154 | 155 |
template <typename KT, typename VT> |
| 155 | 156 |
class StaticVectorMap {
|
| 156 | 157 |
public: |
| 157 | 158 |
typedef KT Key; |
| 158 | 159 |
typedef VT Value; |
| 159 | 160 |
|
| 160 | 161 |
StaticVectorMap(std::vector<Value>& v) : _v(v) {}
|
| 161 | 162 |
|
| 162 | 163 |
const Value& operator[](const Key& key) const {
|
| 163 | 164 |
return _v[StaticDigraph::id(key)]; |
| 164 | 165 |
} |
| 165 | 166 |
|
| 166 | 167 |
Value& operator[](const Key& key) {
|
| 167 | 168 |
return _v[StaticDigraph::id(key)]; |
| 168 | 169 |
} |
| 169 | 170 |
|
| 170 | 171 |
void set(const Key& key, const Value& val) {
|
| 171 | 172 |
_v[StaticDigraph::id(key)] = val; |
| 172 | 173 |
} |
| 173 | 174 |
|
| 174 | 175 |
private: |
| 175 | 176 |
std::vector<Value>& _v; |
| 176 | 177 |
}; |
| 177 | 178 |
|
| 178 | 179 |
typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap; |
| 179 | 180 |
typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap; |
| 180 | 181 |
|
| 181 | 182 |
private: |
| 182 | 183 |
|
| 183 | 184 |
|
| 184 | 185 |
// Data related to the underlying digraph |
| 185 | 186 |
const GR &_graph; |
| 186 | 187 |
int _node_num; |
| 187 | 188 |
int _arc_num; |
| 188 | 189 |
int _res_node_num; |
| 189 | 190 |
int _res_arc_num; |
| 190 | 191 |
int _root; |
| 191 | 192 |
|
| 192 | 193 |
// Parameters of the problem |
| 193 | 194 |
bool _have_lower; |
| 194 | 195 |
Value _sum_supply; |
| 195 | 196 |
|
| 196 | 197 |
// Data structures for storing the digraph |
| 197 | 198 |
IntNodeMap _node_id; |
| 198 | 199 |
IntArcMap _arc_idf; |
| 199 | 200 |
IntArcMap _arc_idb; |
| 200 | 201 |
IntVector _first_out; |
| 201 |
|
|
| 202 |
BoolVector _forward; |
|
| 202 | 203 |
IntVector _source; |
| 203 | 204 |
IntVector _target; |
| 204 | 205 |
IntVector _reverse; |
| 205 | 206 |
|
| 206 | 207 |
// Node and arc data |
| 207 | 208 |
ValueVector _lower; |
| 208 | 209 |
ValueVector _upper; |
| 209 | 210 |
CostVector _cost; |
| 210 | 211 |
ValueVector _supply; |
| 211 | 212 |
|
| 212 | 213 |
ValueVector _res_cap; |
| 213 | 214 |
CostVector _pi; |
| 214 | 215 |
|
| 215 | 216 |
// Data for a StaticDigraph structure |
| 216 | 217 |
typedef std::pair<int, int> IntPair; |
| 217 | 218 |
StaticDigraph _sgr; |
| 218 | 219 |
std::vector<IntPair> _arc_vec; |
| 219 | 220 |
std::vector<Cost> _cost_vec; |
| 220 | 221 |
IntVector _id_vec; |
| 221 | 222 |
CostArcMap _cost_map; |
| 222 | 223 |
CostNodeMap _pi_map; |
| 223 | 224 |
|
| 224 | 225 |
public: |
| 225 | 226 |
|
| 226 | 227 |
/// \brief Constant for infinite upper bounds (capacities). |
| 227 | 228 |
/// |
| 228 | 229 |
/// Constant for infinite upper bounds (capacities). |
| 229 | 230 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
| 230 | 231 |
/// \c std::numeric_limits<Value>::max() otherwise. |
| 231 | 232 |
const Value INF; |
| 232 | 233 |
|
| 233 | 234 |
public: |
| 234 | 235 |
|
| 235 | 236 |
/// \brief Constructor. |
| 236 | 237 |
/// |
| 237 | 238 |
/// The constructor of the class. |
| 238 | 239 |
/// |
| 239 | 240 |
/// \param graph The digraph the algorithm runs on. |
| 240 | 241 |
CycleCanceling(const GR& graph) : |
| 241 | 242 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
| 242 | 243 |
_cost_map(_cost_vec), _pi_map(_pi), |
| 243 | 244 |
INF(std::numeric_limits<Value>::has_infinity ? |
| 244 | 245 |
std::numeric_limits<Value>::infinity() : |
| 245 | 246 |
std::numeric_limits<Value>::max()) |
| 246 | 247 |
{
|
| 247 | 248 |
// Check the number types |
| 248 | 249 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
| 249 | 250 |
"The flow type of CycleCanceling must be signed"); |
| 250 | 251 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
| 251 | 252 |
"The cost type of CycleCanceling must be signed"); |
| 252 | 253 |
|
| 253 | 254 |
// Resize vectors |
| 254 | 255 |
_node_num = countNodes(_graph); |
| 255 | 256 |
_arc_num = countArcs(_graph); |
| 256 | 257 |
_res_node_num = _node_num + 1; |
| 257 | 258 |
_res_arc_num = 2 * (_arc_num + _node_num); |
| 258 | 259 |
_root = _node_num; |
| 259 | 260 |
|
| 260 | 261 |
_first_out.resize(_res_node_num + 1); |
| 261 | 262 |
_forward.resize(_res_arc_num); |
| 262 | 263 |
_source.resize(_res_arc_num); |
| 263 | 264 |
_target.resize(_res_arc_num); |
| 264 | 265 |
_reverse.resize(_res_arc_num); |
| 265 | 266 |
|
| 266 | 267 |
_lower.resize(_res_arc_num); |
| 267 | 268 |
_upper.resize(_res_arc_num); |
| 268 | 269 |
_cost.resize(_res_arc_num); |
| 269 | 270 |
_supply.resize(_res_node_num); |
| 270 | 271 |
|
| 271 | 272 |
_res_cap.resize(_res_arc_num); |
| 272 | 273 |
_pi.resize(_res_node_num); |
| 273 | 274 |
|
| 274 | 275 |
_arc_vec.reserve(_res_arc_num); |
| 275 | 276 |
_cost_vec.reserve(_res_arc_num); |
| 276 | 277 |
_id_vec.reserve(_res_arc_num); |
| 277 | 278 |
|
| 278 | 279 |
// Copy the graph |
| 279 | 280 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
| 280 | 281 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 281 | 282 |
_node_id[n] = i; |
| 282 | 283 |
} |
| 283 | 284 |
i = 0; |
| 284 | 285 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 285 | 286 |
_first_out[i] = j; |
| 286 | 287 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
| 287 | 288 |
_arc_idf[a] = j; |
| 288 | 289 |
_forward[j] = true; |
| 289 | 290 |
_source[j] = i; |
| 290 | 291 |
_target[j] = _node_id[_graph.runningNode(a)]; |
| 291 | 292 |
} |
| 292 | 293 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
| 293 | 294 |
_arc_idb[a] = j; |
| 294 | 295 |
_forward[j] = false; |
| 295 | 296 |
_source[j] = i; |
| 296 | 297 |
_target[j] = _node_id[_graph.runningNode(a)]; |
| 297 | 298 |
} |
| ... | ... |
@@ -840,194 +841,194 @@ |
| 840 | 841 |
if (bf.processNextWeakRound()) {
|
| 841 | 842 |
real_iter_num = i; |
| 842 | 843 |
break; |
| 843 | 844 |
} |
| 844 | 845 |
} |
| 845 | 846 |
if (real_iter_num < curr_iter_num) {
|
| 846 | 847 |
// Optimal flow is found |
| 847 | 848 |
optimal = true; |
| 848 | 849 |
break; |
| 849 | 850 |
} else {
|
| 850 | 851 |
// Search for node disjoint negative cycles |
| 851 | 852 |
std::vector<int> state(_res_node_num, 0); |
| 852 | 853 |
int id = 0; |
| 853 | 854 |
for (int u = 0; u != _res_node_num; ++u) {
|
| 854 | 855 |
if (state[u] != 0) continue; |
| 855 | 856 |
++id; |
| 856 | 857 |
int v = u; |
| 857 | 858 |
for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ? |
| 858 | 859 |
-1 : rgr.id(rgr.source(pred[v]))) {
|
| 859 | 860 |
state[v] = id; |
| 860 | 861 |
} |
| 861 | 862 |
if (v != -1 && state[v] == id) {
|
| 862 | 863 |
// A negative cycle is found |
| 863 | 864 |
cycle_found = true; |
| 864 | 865 |
cycle.clear(); |
| 865 | 866 |
StaticDigraph::Arc a = pred[v]; |
| 866 | 867 |
Value d, delta = _res_cap[rgr.id(a)]; |
| 867 | 868 |
cycle.push_back(rgr.id(a)); |
| 868 | 869 |
while (rgr.id(rgr.source(a)) != v) {
|
| 869 | 870 |
a = pred_map[rgr.source(a)]; |
| 870 | 871 |
d = _res_cap[rgr.id(a)]; |
| 871 | 872 |
if (d < delta) delta = d; |
| 872 | 873 |
cycle.push_back(rgr.id(a)); |
| 873 | 874 |
} |
| 874 | 875 |
|
| 875 | 876 |
// Augment along the cycle |
| 876 | 877 |
for (int i = 0; i < int(cycle.size()); ++i) {
|
| 877 | 878 |
int j = cycle[i]; |
| 878 | 879 |
_res_cap[j] -= delta; |
| 879 | 880 |
_res_cap[_reverse[j]] += delta; |
| 880 | 881 |
} |
| 881 | 882 |
} |
| 882 | 883 |
} |
| 883 | 884 |
} |
| 884 | 885 |
|
| 885 | 886 |
// Increase iteration limit if no cycle is found |
| 886 | 887 |
if (!cycle_found) {
|
| 887 | 888 |
length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR); |
| 888 | 889 |
} |
| 889 | 890 |
} |
| 890 | 891 |
} |
| 891 | 892 |
} |
| 892 | 893 |
|
| 893 | 894 |
// Execute the "Minimum Mean Cycle Canceling" method |
| 894 | 895 |
void startMinMeanCycleCanceling() {
|
| 895 | 896 |
typedef SimplePath<StaticDigraph> SPath; |
| 896 | 897 |
typedef typename SPath::ArcIt SPathArcIt; |
| 897 | 898 |
typedef typename Howard<StaticDigraph, CostArcMap> |
| 898 | 899 |
::template SetPath<SPath>::Create MMC; |
| 899 | 900 |
|
| 900 | 901 |
SPath cycle; |
| 901 | 902 |
MMC mmc(_sgr, _cost_map); |
| 902 | 903 |
mmc.cycle(cycle); |
| 903 | 904 |
buildResidualNetwork(); |
| 904 | 905 |
while (mmc.findMinMean() && mmc.cycleLength() < 0) {
|
| 905 | 906 |
// Find the cycle |
| 906 | 907 |
mmc.findCycle(); |
| 907 | 908 |
|
| 908 | 909 |
// Compute delta value |
| 909 | 910 |
Value delta = INF; |
| 910 | 911 |
for (SPathArcIt a(cycle); a != INVALID; ++a) {
|
| 911 | 912 |
Value d = _res_cap[_id_vec[_sgr.id(a)]]; |
| 912 | 913 |
if (d < delta) delta = d; |
| 913 | 914 |
} |
| 914 | 915 |
|
| 915 | 916 |
// Augment along the cycle |
| 916 | 917 |
for (SPathArcIt a(cycle); a != INVALID; ++a) {
|
| 917 | 918 |
int j = _id_vec[_sgr.id(a)]; |
| 918 | 919 |
_res_cap[j] -= delta; |
| 919 | 920 |
_res_cap[_reverse[j]] += delta; |
| 920 | 921 |
} |
| 921 | 922 |
|
| 922 | 923 |
// Rebuild the residual network |
| 923 | 924 |
buildResidualNetwork(); |
| 924 | 925 |
} |
| 925 | 926 |
} |
| 926 | 927 |
|
| 927 | 928 |
// Execute the "Cancel And Tighten" method |
| 928 | 929 |
void startCancelAndTighten() {
|
| 929 | 930 |
// Constants for the min mean cycle computations |
| 930 | 931 |
const double LIMIT_FACTOR = 1.0; |
| 931 | 932 |
const int MIN_LIMIT = 5; |
| 932 | 933 |
|
| 933 | 934 |
// Contruct auxiliary data vectors |
| 934 | 935 |
DoubleVector pi(_res_node_num, 0.0); |
| 935 | 936 |
IntVector level(_res_node_num); |
| 936 |
CharVector reached(_res_node_num); |
|
| 937 |
CharVector processed(_res_node_num); |
|
| 937 |
BoolVector reached(_res_node_num); |
|
| 938 |
BoolVector processed(_res_node_num); |
|
| 938 | 939 |
IntVector pred_node(_res_node_num); |
| 939 | 940 |
IntVector pred_arc(_res_node_num); |
| 940 | 941 |
std::vector<int> stack(_res_node_num); |
| 941 | 942 |
std::vector<int> proc_vector(_res_node_num); |
| 942 | 943 |
|
| 943 | 944 |
// Initialize epsilon |
| 944 | 945 |
double epsilon = 0; |
| 945 | 946 |
for (int a = 0; a != _res_arc_num; ++a) {
|
| 946 | 947 |
if (_res_cap[a] > 0 && -_cost[a] > epsilon) |
| 947 | 948 |
epsilon = -_cost[a]; |
| 948 | 949 |
} |
| 949 | 950 |
|
| 950 | 951 |
// Start phases |
| 951 | 952 |
Tolerance<double> tol; |
| 952 | 953 |
tol.epsilon(1e-6); |
| 953 | 954 |
int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num))); |
| 954 | 955 |
if (limit < MIN_LIMIT) limit = MIN_LIMIT; |
| 955 | 956 |
int iter = limit; |
| 956 | 957 |
while (epsilon * _res_node_num >= 1) {
|
| 957 | 958 |
// Find and cancel cycles in the admissible network using DFS |
| 958 | 959 |
for (int u = 0; u != _res_node_num; ++u) {
|
| 959 | 960 |
reached[u] = false; |
| 960 | 961 |
processed[u] = false; |
| 961 | 962 |
} |
| 962 | 963 |
int stack_head = -1; |
| 963 | 964 |
int proc_head = -1; |
| 964 | 965 |
for (int start = 0; start != _res_node_num; ++start) {
|
| 965 | 966 |
if (reached[start]) continue; |
| 966 | 967 |
|
| 967 | 968 |
// New start node |
| 968 | 969 |
reached[start] = true; |
| 969 | 970 |
pred_arc[start] = -1; |
| 970 | 971 |
pred_node[start] = -1; |
| 971 | 972 |
|
| 972 | 973 |
// Find the first admissible outgoing arc |
| 973 | 974 |
double p = pi[start]; |
| 974 | 975 |
int a = _first_out[start]; |
| 975 | 976 |
int last_out = _first_out[start+1]; |
| 976 | 977 |
for (; a != last_out && (_res_cap[a] == 0 || |
| 977 | 978 |
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; |
| 978 | 979 |
if (a == last_out) {
|
| 979 | 980 |
processed[start] = true; |
| 980 | 981 |
proc_vector[++proc_head] = start; |
| 981 | 982 |
continue; |
| 982 | 983 |
} |
| 983 | 984 |
stack[++stack_head] = a; |
| 984 | 985 |
|
| 985 | 986 |
while (stack_head >= 0) {
|
| 986 | 987 |
int sa = stack[stack_head]; |
| 987 | 988 |
int u = _source[sa]; |
| 988 | 989 |
int v = _target[sa]; |
| 989 | 990 |
|
| 990 | 991 |
if (!reached[v]) {
|
| 991 | 992 |
// A new node is reached |
| 992 | 993 |
reached[v] = true; |
| 993 | 994 |
pred_node[v] = u; |
| 994 | 995 |
pred_arc[v] = sa; |
| 995 | 996 |
p = pi[v]; |
| 996 | 997 |
a = _first_out[v]; |
| 997 | 998 |
last_out = _first_out[v+1]; |
| 998 | 999 |
for (; a != last_out && (_res_cap[a] == 0 || |
| 999 | 1000 |
!tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; |
| 1000 | 1001 |
stack[++stack_head] = a == last_out ? -1 : a; |
| 1001 | 1002 |
} else {
|
| 1002 | 1003 |
if (!processed[v]) {
|
| 1003 | 1004 |
// A cycle is found |
| 1004 | 1005 |
int n, w = u; |
| 1005 | 1006 |
Value d, delta = _res_cap[sa]; |
| 1006 | 1007 |
for (n = u; n != v; n = pred_node[n]) {
|
| 1007 | 1008 |
d = _res_cap[pred_arc[n]]; |
| 1008 | 1009 |
if (d <= delta) {
|
| 1009 | 1010 |
delta = d; |
| 1010 | 1011 |
w = pred_node[n]; |
| 1011 | 1012 |
} |
| 1012 | 1013 |
} |
| 1013 | 1014 |
|
| 1014 | 1015 |
// Augment along the cycle |
| 1015 | 1016 |
_res_cap[sa] -= delta; |
| 1016 | 1017 |
_res_cap[_reverse[sa]] += delta; |
| 1017 | 1018 |
for (n = u; n != v; n = pred_node[n]) {
|
| 1018 | 1019 |
int pa = pred_arc[n]; |
| 1019 | 1020 |
_res_cap[pa] -= delta; |
| 1020 | 1021 |
_res_cap[_reverse[pa]] += delta; |
| 1021 | 1022 |
} |
| 1022 | 1023 |
for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
|
| 1023 | 1024 |
--stack_head; |
| 1024 | 1025 |
reached[n] = false; |
| 1025 | 1026 |
} |
| 1026 | 1027 |
u = w; |
| 1027 | 1028 |
} |
| 1028 | 1029 |
v = u; |
| 1029 | 1030 |
|
| 1030 | 1031 |
// Find the next admissible outgoing arc |
| 1031 | 1032 |
p = pi[v]; |
| 1032 | 1033 |
a = stack[stack_head] + 1; |
| 1033 | 1034 |
last_out = _first_out[v+1]; |
| ... | ... |
@@ -71,618 +71,619 @@ |
| 71 | 71 |
/// by default. For more information, see \ref PivotRule. |
| 72 | 72 |
template <typename GR, typename V = int, typename C = V> |
| 73 | 73 |
class NetworkSimplex |
| 74 | 74 |
{
|
| 75 | 75 |
public: |
| 76 | 76 |
|
| 77 | 77 |
/// The type of the flow amounts, capacity bounds and supply values |
| 78 | 78 |
typedef V Value; |
| 79 | 79 |
/// The type of the arc costs |
| 80 | 80 |
typedef C Cost; |
| 81 | 81 |
|
| 82 | 82 |
public: |
| 83 | 83 |
|
| 84 | 84 |
/// \brief Problem type constants for the \c run() function. |
| 85 | 85 |
/// |
| 86 | 86 |
/// Enum type containing the problem type constants that can be |
| 87 | 87 |
/// returned by the \ref run() function of the algorithm. |
| 88 | 88 |
enum ProblemType {
|
| 89 | 89 |
/// The problem has no feasible solution (flow). |
| 90 | 90 |
INFEASIBLE, |
| 91 | 91 |
/// The problem has optimal solution (i.e. it is feasible and |
| 92 | 92 |
/// bounded), and the algorithm has found optimal flow and node |
| 93 | 93 |
/// potentials (primal and dual solutions). |
| 94 | 94 |
OPTIMAL, |
| 95 | 95 |
/// The objective function of the problem is unbounded, i.e. |
| 96 | 96 |
/// there is a directed cycle having negative total cost and |
| 97 | 97 |
/// infinite upper bound. |
| 98 | 98 |
UNBOUNDED |
| 99 | 99 |
}; |
| 100 | 100 |
|
| 101 | 101 |
/// \brief Constants for selecting the type of the supply constraints. |
| 102 | 102 |
/// |
| 103 | 103 |
/// Enum type containing constants for selecting the supply type, |
| 104 | 104 |
/// i.e. the direction of the inequalities in the supply/demand |
| 105 | 105 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
| 106 | 106 |
/// |
| 107 | 107 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
| 108 | 108 |
/// selected using \ref supplyType(). |
| 109 | 109 |
/// The equality form is a special case of both supply types. |
| 110 | 110 |
enum SupplyType {
|
| 111 | 111 |
/// This option means that there are <em>"greater or equal"</em> |
| 112 | 112 |
/// supply/demand constraints in the definition of the problem. |
| 113 | 113 |
GEQ, |
| 114 | 114 |
/// This option means that there are <em>"less or equal"</em> |
| 115 | 115 |
/// supply/demand constraints in the definition of the problem. |
| 116 | 116 |
LEQ |
| 117 | 117 |
}; |
| 118 | 118 |
|
| 119 | 119 |
/// \brief Constants for selecting the pivot rule. |
| 120 | 120 |
/// |
| 121 | 121 |
/// Enum type containing constants for selecting the pivot rule for |
| 122 | 122 |
/// the \ref run() function. |
| 123 | 123 |
/// |
| 124 | 124 |
/// \ref NetworkSimplex provides five different pivot rule |
| 125 | 125 |
/// implementations that significantly affect the running time |
| 126 | 126 |
/// of the algorithm. |
| 127 | 127 |
/// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
| 128 | 128 |
/// proved to be the most efficient and the most robust on various |
| 129 | 129 |
/// test inputs. |
| 130 | 130 |
/// However, another pivot rule can be selected using the \ref run() |
| 131 | 131 |
/// function with the proper parameter. |
| 132 | 132 |
enum PivotRule {
|
| 133 | 133 |
|
| 134 | 134 |
/// The \e First \e Eligible pivot rule. |
| 135 | 135 |
/// The next eligible arc is selected in a wraparound fashion |
| 136 | 136 |
/// in every iteration. |
| 137 | 137 |
FIRST_ELIGIBLE, |
| 138 | 138 |
|
| 139 | 139 |
/// The \e Best \e Eligible pivot rule. |
| 140 | 140 |
/// The best eligible arc is selected in every iteration. |
| 141 | 141 |
BEST_ELIGIBLE, |
| 142 | 142 |
|
| 143 | 143 |
/// The \e Block \e Search pivot rule. |
| 144 | 144 |
/// A specified number of arcs are examined in every iteration |
| 145 | 145 |
/// in a wraparound fashion and the best eligible arc is selected |
| 146 | 146 |
/// from this block. |
| 147 | 147 |
BLOCK_SEARCH, |
| 148 | 148 |
|
| 149 | 149 |
/// The \e Candidate \e List pivot rule. |
| 150 | 150 |
/// In a major iteration a candidate list is built from eligible arcs |
| 151 | 151 |
/// in a wraparound fashion and in the following minor iterations |
| 152 | 152 |
/// the best eligible arc is selected from this list. |
| 153 | 153 |
CANDIDATE_LIST, |
| 154 | 154 |
|
| 155 | 155 |
/// The \e Altering \e Candidate \e List pivot rule. |
| 156 | 156 |
/// It is a modified version of the Candidate List method. |
| 157 | 157 |
/// It keeps only the several best eligible arcs from the former |
| 158 | 158 |
/// candidate list and extends this list in every iteration. |
| 159 | 159 |
ALTERING_LIST |
| 160 | 160 |
}; |
| 161 | 161 |
|
| 162 | 162 |
private: |
| 163 | 163 |
|
| 164 | 164 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 165 | 165 |
|
| 166 | 166 |
typedef std::vector<int> IntVector; |
| 167 |
typedef std::vector<char> CharVector; |
|
| 168 | 167 |
typedef std::vector<Value> ValueVector; |
| 169 | 168 |
typedef std::vector<Cost> CostVector; |
| 169 |
typedef std::vector<char> BoolVector; |
|
| 170 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
|
| 170 | 171 |
|
| 171 | 172 |
// State constants for arcs |
| 172 | 173 |
enum ArcStateEnum {
|
| 173 | 174 |
STATE_UPPER = -1, |
| 174 | 175 |
STATE_TREE = 0, |
| 175 | 176 |
STATE_LOWER = 1 |
| 176 | 177 |
}; |
| 177 | 178 |
|
| 178 | 179 |
private: |
| 179 | 180 |
|
| 180 | 181 |
// Data related to the underlying digraph |
| 181 | 182 |
const GR &_graph; |
| 182 | 183 |
int _node_num; |
| 183 | 184 |
int _arc_num; |
| 184 | 185 |
int _all_arc_num; |
| 185 | 186 |
int _search_arc_num; |
| 186 | 187 |
|
| 187 | 188 |
// Parameters of the problem |
| 188 | 189 |
bool _have_lower; |
| 189 | 190 |
SupplyType _stype; |
| 190 | 191 |
Value _sum_supply; |
| 191 | 192 |
|
| 192 | 193 |
// Data structures for storing the digraph |
| 193 | 194 |
IntNodeMap _node_id; |
| 194 | 195 |
IntArcMap _arc_id; |
| 195 | 196 |
IntVector _source; |
| 196 | 197 |
IntVector _target; |
| 197 | 198 |
|
| 198 | 199 |
// Node and arc data |
| 199 | 200 |
ValueVector _lower; |
| 200 | 201 |
ValueVector _upper; |
| 201 | 202 |
ValueVector _cap; |
| 202 | 203 |
CostVector _cost; |
| 203 | 204 |
ValueVector _supply; |
| 204 | 205 |
ValueVector _flow; |
| 205 | 206 |
CostVector _pi; |
| 206 | 207 |
|
| 207 | 208 |
// Data for storing the spanning tree structure |
| 208 | 209 |
IntVector _parent; |
| 209 | 210 |
IntVector _pred; |
| 210 | 211 |
IntVector _thread; |
| 211 | 212 |
IntVector _rev_thread; |
| 212 | 213 |
IntVector _succ_num; |
| 213 | 214 |
IntVector _last_succ; |
| 214 | 215 |
IntVector _dirty_revs; |
| 215 |
CharVector _forward; |
|
| 216 |
CharVector _state; |
|
| 216 |
BoolVector _forward; |
|
| 217 |
BoolVector _state; |
|
| 217 | 218 |
int _root; |
| 218 | 219 |
|
| 219 | 220 |
// Temporary data used in the current pivot iteration |
| 220 | 221 |
int in_arc, join, u_in, v_in, u_out, v_out; |
| 221 | 222 |
int first, second, right, last; |
| 222 | 223 |
int stem, par_stem, new_stem; |
| 223 | 224 |
Value delta; |
| 224 | 225 |
|
| 225 | 226 |
const Value MAX; |
| 226 | 227 |
|
| 227 | 228 |
public: |
| 228 | 229 |
|
| 229 | 230 |
/// \brief Constant for infinite upper bounds (capacities). |
| 230 | 231 |
/// |
| 231 | 232 |
/// Constant for infinite upper bounds (capacities). |
| 232 | 233 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
| 233 | 234 |
/// \c std::numeric_limits<Value>::max() otherwise. |
| 234 | 235 |
const Value INF; |
| 235 | 236 |
|
| 236 | 237 |
private: |
| 237 | 238 |
|
| 238 | 239 |
// Implementation of the First Eligible pivot rule |
| 239 | 240 |
class FirstEligiblePivotRule |
| 240 | 241 |
{
|
| 241 | 242 |
private: |
| 242 | 243 |
|
| 243 | 244 |
// References to the NetworkSimplex class |
| 244 | 245 |
const IntVector &_source; |
| 245 | 246 |
const IntVector &_target; |
| 246 | 247 |
const CostVector &_cost; |
| 247 |
const |
|
| 248 |
const BoolVector &_state; |
|
| 248 | 249 |
const CostVector &_pi; |
| 249 | 250 |
int &_in_arc; |
| 250 | 251 |
int _search_arc_num; |
| 251 | 252 |
|
| 252 | 253 |
// Pivot rule data |
| 253 | 254 |
int _next_arc; |
| 254 | 255 |
|
| 255 | 256 |
public: |
| 256 | 257 |
|
| 257 | 258 |
// Constructor |
| 258 | 259 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
| 259 | 260 |
_source(ns._source), _target(ns._target), |
| 260 | 261 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 261 | 262 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 262 | 263 |
_next_arc(0) |
| 263 | 264 |
{}
|
| 264 | 265 |
|
| 265 | 266 |
// Find next entering arc |
| 266 | 267 |
bool findEnteringArc() {
|
| 267 | 268 |
Cost c; |
| 268 |
for (int e = _next_arc; e |
|
| 269 |
for (int e = _next_arc; e != _search_arc_num; ++e) {
|
|
| 269 | 270 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 270 | 271 |
if (c < 0) {
|
| 271 | 272 |
_in_arc = e; |
| 272 | 273 |
_next_arc = e + 1; |
| 273 | 274 |
return true; |
| 274 | 275 |
} |
| 275 | 276 |
} |
| 276 |
for (int e = 0; e |
|
| 277 |
for (int e = 0; e != _next_arc; ++e) {
|
|
| 277 | 278 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 278 | 279 |
if (c < 0) {
|
| 279 | 280 |
_in_arc = e; |
| 280 | 281 |
_next_arc = e + 1; |
| 281 | 282 |
return true; |
| 282 | 283 |
} |
| 283 | 284 |
} |
| 284 | 285 |
return false; |
| 285 | 286 |
} |
| 286 | 287 |
|
| 287 | 288 |
}; //class FirstEligiblePivotRule |
| 288 | 289 |
|
| 289 | 290 |
|
| 290 | 291 |
// Implementation of the Best Eligible pivot rule |
| 291 | 292 |
class BestEligiblePivotRule |
| 292 | 293 |
{
|
| 293 | 294 |
private: |
| 294 | 295 |
|
| 295 | 296 |
// References to the NetworkSimplex class |
| 296 | 297 |
const IntVector &_source; |
| 297 | 298 |
const IntVector &_target; |
| 298 | 299 |
const CostVector &_cost; |
| 299 |
const |
|
| 300 |
const BoolVector &_state; |
|
| 300 | 301 |
const CostVector &_pi; |
| 301 | 302 |
int &_in_arc; |
| 302 | 303 |
int _search_arc_num; |
| 303 | 304 |
|
| 304 | 305 |
public: |
| 305 | 306 |
|
| 306 | 307 |
// Constructor |
| 307 | 308 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
| 308 | 309 |
_source(ns._source), _target(ns._target), |
| 309 | 310 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 310 | 311 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
| 311 | 312 |
{}
|
| 312 | 313 |
|
| 313 | 314 |
// Find next entering arc |
| 314 | 315 |
bool findEnteringArc() {
|
| 315 | 316 |
Cost c, min = 0; |
| 316 |
for (int e = 0; e |
|
| 317 |
for (int e = 0; e != _search_arc_num; ++e) {
|
|
| 317 | 318 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 318 | 319 |
if (c < min) {
|
| 319 | 320 |
min = c; |
| 320 | 321 |
_in_arc = e; |
| 321 | 322 |
} |
| 322 | 323 |
} |
| 323 | 324 |
return min < 0; |
| 324 | 325 |
} |
| 325 | 326 |
|
| 326 | 327 |
}; //class BestEligiblePivotRule |
| 327 | 328 |
|
| 328 | 329 |
|
| 329 | 330 |
// Implementation of the Block Search pivot rule |
| 330 | 331 |
class BlockSearchPivotRule |
| 331 | 332 |
{
|
| 332 | 333 |
private: |
| 333 | 334 |
|
| 334 | 335 |
// References to the NetworkSimplex class |
| 335 | 336 |
const IntVector &_source; |
| 336 | 337 |
const IntVector &_target; |
| 337 | 338 |
const CostVector &_cost; |
| 338 |
const |
|
| 339 |
const BoolVector &_state; |
|
| 339 | 340 |
const CostVector &_pi; |
| 340 | 341 |
int &_in_arc; |
| 341 | 342 |
int _search_arc_num; |
| 342 | 343 |
|
| 343 | 344 |
// Pivot rule data |
| 344 | 345 |
int _block_size; |
| 345 | 346 |
int _next_arc; |
| 346 | 347 |
|
| 347 | 348 |
public: |
| 348 | 349 |
|
| 349 | 350 |
// Constructor |
| 350 | 351 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
| 351 | 352 |
_source(ns._source), _target(ns._target), |
| 352 | 353 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 353 | 354 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 354 | 355 |
_next_arc(0) |
| 355 | 356 |
{
|
| 356 | 357 |
// The main parameters of the pivot rule |
| 357 |
const double BLOCK_SIZE_FACTOR = |
|
| 358 |
const double BLOCK_SIZE_FACTOR = 1.0; |
|
| 358 | 359 |
const int MIN_BLOCK_SIZE = 10; |
| 359 | 360 |
|
| 360 | 361 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
| 361 | 362 |
std::sqrt(double(_search_arc_num))), |
| 362 | 363 |
MIN_BLOCK_SIZE ); |
| 363 | 364 |
} |
| 364 | 365 |
|
| 365 | 366 |
// Find next entering arc |
| 366 | 367 |
bool findEnteringArc() {
|
| 367 | 368 |
Cost c, min = 0; |
| 368 | 369 |
int cnt = _block_size; |
| 369 | 370 |
int e; |
| 370 |
for (e = _next_arc; e |
|
| 371 |
for (e = _next_arc; e != _search_arc_num; ++e) {
|
|
| 371 | 372 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 372 | 373 |
if (c < min) {
|
| 373 | 374 |
min = c; |
| 374 | 375 |
_in_arc = e; |
| 375 | 376 |
} |
| 376 | 377 |
if (--cnt == 0) {
|
| 377 | 378 |
if (min < 0) goto search_end; |
| 378 | 379 |
cnt = _block_size; |
| 379 | 380 |
} |
| 380 | 381 |
} |
| 381 |
for (e = 0; e |
|
| 382 |
for (e = 0; e != _next_arc; ++e) {
|
|
| 382 | 383 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 383 | 384 |
if (c < min) {
|
| 384 | 385 |
min = c; |
| 385 | 386 |
_in_arc = e; |
| 386 | 387 |
} |
| 387 | 388 |
if (--cnt == 0) {
|
| 388 | 389 |
if (min < 0) goto search_end; |
| 389 | 390 |
cnt = _block_size; |
| 390 | 391 |
} |
| 391 | 392 |
} |
| 392 | 393 |
if (min >= 0) return false; |
| 393 | 394 |
|
| 394 | 395 |
search_end: |
| 395 | 396 |
_next_arc = e; |
| 396 | 397 |
return true; |
| 397 | 398 |
} |
| 398 | 399 |
|
| 399 | 400 |
}; //class BlockSearchPivotRule |
| 400 | 401 |
|
| 401 | 402 |
|
| 402 | 403 |
// Implementation of the Candidate List pivot rule |
| 403 | 404 |
class CandidateListPivotRule |
| 404 | 405 |
{
|
| 405 | 406 |
private: |
| 406 | 407 |
|
| 407 | 408 |
// References to the NetworkSimplex class |
| 408 | 409 |
const IntVector &_source; |
| 409 | 410 |
const IntVector &_target; |
| 410 | 411 |
const CostVector &_cost; |
| 411 |
const |
|
| 412 |
const BoolVector &_state; |
|
| 412 | 413 |
const CostVector &_pi; |
| 413 | 414 |
int &_in_arc; |
| 414 | 415 |
int _search_arc_num; |
| 415 | 416 |
|
| 416 | 417 |
// Pivot rule data |
| 417 | 418 |
IntVector _candidates; |
| 418 | 419 |
int _list_length, _minor_limit; |
| 419 | 420 |
int _curr_length, _minor_count; |
| 420 | 421 |
int _next_arc; |
| 421 | 422 |
|
| 422 | 423 |
public: |
| 423 | 424 |
|
| 424 | 425 |
/// Constructor |
| 425 | 426 |
CandidateListPivotRule(NetworkSimplex &ns) : |
| 426 | 427 |
_source(ns._source), _target(ns._target), |
| 427 | 428 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 428 | 429 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 429 | 430 |
_next_arc(0) |
| 430 | 431 |
{
|
| 431 | 432 |
// The main parameters of the pivot rule |
| 432 | 433 |
const double LIST_LENGTH_FACTOR = 0.25; |
| 433 | 434 |
const int MIN_LIST_LENGTH = 10; |
| 434 | 435 |
const double MINOR_LIMIT_FACTOR = 0.1; |
| 435 | 436 |
const int MIN_MINOR_LIMIT = 3; |
| 436 | 437 |
|
| 437 | 438 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
| 438 | 439 |
std::sqrt(double(_search_arc_num))), |
| 439 | 440 |
MIN_LIST_LENGTH ); |
| 440 | 441 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
| 441 | 442 |
MIN_MINOR_LIMIT ); |
| 442 | 443 |
_curr_length = _minor_count = 0; |
| 443 | 444 |
_candidates.resize(_list_length); |
| 444 | 445 |
} |
| 445 | 446 |
|
| 446 | 447 |
/// Find next entering arc |
| 447 | 448 |
bool findEnteringArc() {
|
| 448 | 449 |
Cost min, c; |
| 449 | 450 |
int e; |
| 450 | 451 |
if (_curr_length > 0 && _minor_count < _minor_limit) {
|
| 451 | 452 |
// Minor iteration: select the best eligible arc from the |
| 452 | 453 |
// current candidate list |
| 453 | 454 |
++_minor_count; |
| 454 | 455 |
min = 0; |
| 455 | 456 |
for (int i = 0; i < _curr_length; ++i) {
|
| 456 | 457 |
e = _candidates[i]; |
| 457 | 458 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 458 | 459 |
if (c < min) {
|
| 459 | 460 |
min = c; |
| 460 | 461 |
_in_arc = e; |
| 461 | 462 |
} |
| 462 | 463 |
else if (c >= 0) {
|
| 463 | 464 |
_candidates[i--] = _candidates[--_curr_length]; |
| 464 | 465 |
} |
| 465 | 466 |
} |
| 466 | 467 |
if (min < 0) return true; |
| 467 | 468 |
} |
| 468 | 469 |
|
| 469 | 470 |
// Major iteration: build a new candidate list |
| 470 | 471 |
min = 0; |
| 471 | 472 |
_curr_length = 0; |
| 472 |
for (e = _next_arc; e |
|
| 473 |
for (e = _next_arc; e != _search_arc_num; ++e) {
|
|
| 473 | 474 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 474 | 475 |
if (c < 0) {
|
| 475 | 476 |
_candidates[_curr_length++] = e; |
| 476 | 477 |
if (c < min) {
|
| 477 | 478 |
min = c; |
| 478 | 479 |
_in_arc = e; |
| 479 | 480 |
} |
| 480 | 481 |
if (_curr_length == _list_length) goto search_end; |
| 481 | 482 |
} |
| 482 | 483 |
} |
| 483 |
for (e = 0; e |
|
| 484 |
for (e = 0; e != _next_arc; ++e) {
|
|
| 484 | 485 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 485 | 486 |
if (c < 0) {
|
| 486 | 487 |
_candidates[_curr_length++] = e; |
| 487 | 488 |
if (c < min) {
|
| 488 | 489 |
min = c; |
| 489 | 490 |
_in_arc = e; |
| 490 | 491 |
} |
| 491 | 492 |
if (_curr_length == _list_length) goto search_end; |
| 492 | 493 |
} |
| 493 | 494 |
} |
| 494 | 495 |
if (_curr_length == 0) return false; |
| 495 | 496 |
|
| 496 | 497 |
search_end: |
| 497 | 498 |
_minor_count = 1; |
| 498 | 499 |
_next_arc = e; |
| 499 | 500 |
return true; |
| 500 | 501 |
} |
| 501 | 502 |
|
| 502 | 503 |
}; //class CandidateListPivotRule |
| 503 | 504 |
|
| 504 | 505 |
|
| 505 | 506 |
// Implementation of the Altering Candidate List pivot rule |
| 506 | 507 |
class AlteringListPivotRule |
| 507 | 508 |
{
|
| 508 | 509 |
private: |
| 509 | 510 |
|
| 510 | 511 |
// References to the NetworkSimplex class |
| 511 | 512 |
const IntVector &_source; |
| 512 | 513 |
const IntVector &_target; |
| 513 | 514 |
const CostVector &_cost; |
| 514 |
const |
|
| 515 |
const BoolVector &_state; |
|
| 515 | 516 |
const CostVector &_pi; |
| 516 | 517 |
int &_in_arc; |
| 517 | 518 |
int _search_arc_num; |
| 518 | 519 |
|
| 519 | 520 |
// Pivot rule data |
| 520 | 521 |
int _block_size, _head_length, _curr_length; |
| 521 | 522 |
int _next_arc; |
| 522 | 523 |
IntVector _candidates; |
| 523 | 524 |
CostVector _cand_cost; |
| 524 | 525 |
|
| 525 | 526 |
// Functor class to compare arcs during sort of the candidate list |
| 526 | 527 |
class SortFunc |
| 527 | 528 |
{
|
| 528 | 529 |
private: |
| 529 | 530 |
const CostVector &_map; |
| 530 | 531 |
public: |
| 531 | 532 |
SortFunc(const CostVector &map) : _map(map) {}
|
| 532 | 533 |
bool operator()(int left, int right) {
|
| 533 | 534 |
return _map[left] > _map[right]; |
| 534 | 535 |
} |
| 535 | 536 |
}; |
| 536 | 537 |
|
| 537 | 538 |
SortFunc _sort_func; |
| 538 | 539 |
|
| 539 | 540 |
public: |
| 540 | 541 |
|
| 541 | 542 |
// Constructor |
| 542 | 543 |
AlteringListPivotRule(NetworkSimplex &ns) : |
| 543 | 544 |
_source(ns._source), _target(ns._target), |
| 544 | 545 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 545 | 546 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 546 | 547 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
| 547 | 548 |
{
|
| 548 | 549 |
// The main parameters of the pivot rule |
| 549 | 550 |
const double BLOCK_SIZE_FACTOR = 1.0; |
| 550 | 551 |
const int MIN_BLOCK_SIZE = 10; |
| 551 | 552 |
const double HEAD_LENGTH_FACTOR = 0.1; |
| 552 | 553 |
const int MIN_HEAD_LENGTH = 3; |
| 553 | 554 |
|
| 554 | 555 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
| 555 | 556 |
std::sqrt(double(_search_arc_num))), |
| 556 | 557 |
MIN_BLOCK_SIZE ); |
| 557 | 558 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
| 558 | 559 |
MIN_HEAD_LENGTH ); |
| 559 | 560 |
_candidates.resize(_head_length + _block_size); |
| 560 | 561 |
_curr_length = 0; |
| 561 | 562 |
} |
| 562 | 563 |
|
| 563 | 564 |
// Find next entering arc |
| 564 | 565 |
bool findEnteringArc() {
|
| 565 | 566 |
// Check the current candidate list |
| 566 | 567 |
int e; |
| 567 |
for (int i = 0; i |
|
| 568 |
for (int i = 0; i != _curr_length; ++i) {
|
|
| 568 | 569 |
e = _candidates[i]; |
| 569 | 570 |
_cand_cost[e] = _state[e] * |
| 570 | 571 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 571 | 572 |
if (_cand_cost[e] >= 0) {
|
| 572 | 573 |
_candidates[i--] = _candidates[--_curr_length]; |
| 573 | 574 |
} |
| 574 | 575 |
} |
| 575 | 576 |
|
| 576 | 577 |
// Extend the list |
| 577 | 578 |
int cnt = _block_size; |
| 578 | 579 |
int limit = _head_length; |
| 579 | 580 |
|
| 580 |
for (e = _next_arc; e |
|
| 581 |
for (e = _next_arc; e != _search_arc_num; ++e) {
|
|
| 581 | 582 |
_cand_cost[e] = _state[e] * |
| 582 | 583 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 583 | 584 |
if (_cand_cost[e] < 0) {
|
| 584 | 585 |
_candidates[_curr_length++] = e; |
| 585 | 586 |
} |
| 586 | 587 |
if (--cnt == 0) {
|
| 587 | 588 |
if (_curr_length > limit) goto search_end; |
| 588 | 589 |
limit = 0; |
| 589 | 590 |
cnt = _block_size; |
| 590 | 591 |
} |
| 591 | 592 |
} |
| 592 |
for (e = 0; e |
|
| 593 |
for (e = 0; e != _next_arc; ++e) {
|
|
| 593 | 594 |
_cand_cost[e] = _state[e] * |
| 594 | 595 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 595 | 596 |
if (_cand_cost[e] < 0) {
|
| 596 | 597 |
_candidates[_curr_length++] = e; |
| 597 | 598 |
} |
| 598 | 599 |
if (--cnt == 0) {
|
| 599 | 600 |
if (_curr_length > limit) goto search_end; |
| 600 | 601 |
limit = 0; |
| 601 | 602 |
cnt = _block_size; |
| 602 | 603 |
} |
| 603 | 604 |
} |
| 604 | 605 |
if (_curr_length == 0) return false; |
| 605 | 606 |
|
| 606 | 607 |
search_end: |
| 607 | 608 |
|
| 608 | 609 |
// Make heap of the candidate list (approximating a partial sort) |
| 609 | 610 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 610 | 611 |
_sort_func ); |
| 611 | 612 |
|
| 612 | 613 |
// Pop the first element of the heap |
| 613 | 614 |
_in_arc = _candidates[0]; |
| 614 | 615 |
_next_arc = e; |
| 615 | 616 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
| 616 | 617 |
_sort_func ); |
| 617 | 618 |
_curr_length = std::min(_head_length, _curr_length - 1); |
| 618 | 619 |
return true; |
| 619 | 620 |
} |
| 620 | 621 |
|
| 621 | 622 |
}; //class AlteringListPivotRule |
| 622 | 623 |
|
| 623 | 624 |
public: |
| 624 | 625 |
|
| 625 | 626 |
/// \brief Constructor. |
| 626 | 627 |
/// |
| 627 | 628 |
/// The constructor of the class. |
| 628 | 629 |
/// |
| 629 | 630 |
/// \param graph The digraph the algorithm runs on. |
| 630 | 631 |
/// \param arc_mixing Indicate if the arcs have to be stored in a |
| 631 | 632 |
/// mixed order in the internal data structure. |
| 632 | 633 |
/// In special cases, it could lead to better overall performance, |
| 633 | 634 |
/// but it is usually slower. Therefore it is disabled by default. |
| 634 | 635 |
NetworkSimplex(const GR& graph, bool arc_mixing = false) : |
| 635 | 636 |
_graph(graph), _node_id(graph), _arc_id(graph), |
| 636 | 637 |
MAX(std::numeric_limits<Value>::max()), |
| 637 | 638 |
INF(std::numeric_limits<Value>::has_infinity ? |
| 638 | 639 |
std::numeric_limits<Value>::infinity() : MAX) |
| 639 | 640 |
{
|
| 640 | 641 |
// Check the number types |
| 641 | 642 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
| 642 | 643 |
"The flow type of NetworkSimplex must be signed"); |
| 643 | 644 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
| 644 | 645 |
"The cost type of NetworkSimplex must be signed"); |
| 645 | 646 |
|
| 646 | 647 |
// Resize vectors |
| 647 | 648 |
_node_num = countNodes(_graph); |
| 648 | 649 |
_arc_num = countArcs(_graph); |
| 649 | 650 |
int all_node_num = _node_num + 1; |
| 650 | 651 |
int max_arc_num = _arc_num + 2 * _node_num; |
| 651 | 652 |
|
| 652 | 653 |
_source.resize(max_arc_num); |
| 653 | 654 |
_target.resize(max_arc_num); |
| 654 | 655 |
|
| 655 | 656 |
_lower.resize(_arc_num); |
| 656 | 657 |
_upper.resize(_arc_num); |
| 657 | 658 |
_cap.resize(max_arc_num); |
| 658 | 659 |
_cost.resize(max_arc_num); |
| 659 | 660 |
_supply.resize(all_node_num); |
| 660 | 661 |
_flow.resize(max_arc_num); |
| 661 | 662 |
_pi.resize(all_node_num); |
| 662 | 663 |
|
| 663 | 664 |
_parent.resize(all_node_num); |
| 664 | 665 |
_pred.resize(all_node_num); |
| 665 | 666 |
_forward.resize(all_node_num); |
| 666 | 667 |
_thread.resize(all_node_num); |
| 667 | 668 |
_rev_thread.resize(all_node_num); |
| 668 | 669 |
_succ_num.resize(all_node_num); |
| 669 | 670 |
_last_succ.resize(all_node_num); |
| 670 | 671 |
_state.resize(max_arc_num); |
| 671 | 672 |
|
| 672 | 673 |
// Copy the graph |
| 673 | 674 |
int i = 0; |
| 674 | 675 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 675 | 676 |
_node_id[n] = i; |
| 676 | 677 |
} |
| 677 | 678 |
if (arc_mixing) {
|
| 678 | 679 |
// Store the arcs in a mixed order |
| 679 | 680 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
| 680 | 681 |
int i = 0, j = 0; |
| 681 | 682 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 682 | 683 |
_arc_id[a] = i; |
| 683 | 684 |
_source[i] = _node_id[_graph.source(a)]; |
| 684 | 685 |
_target[i] = _node_id[_graph.target(a)]; |
| 685 | 686 |
if ((i += k) >= _arc_num) i = ++j; |
| 686 | 687 |
} |
| 687 | 688 |
} else {
|
| 688 | 689 |
// Store the arcs in the original order |
| ... | ... |
@@ -1235,253 +1236,350 @@ |
| 1235 | 1236 |
} |
| 1236 | 1237 |
} |
| 1237 | 1238 |
|
| 1238 | 1239 |
if (result == 1) {
|
| 1239 | 1240 |
u_in = first; |
| 1240 | 1241 |
v_in = second; |
| 1241 | 1242 |
} else {
|
| 1242 | 1243 |
u_in = second; |
| 1243 | 1244 |
v_in = first; |
| 1244 | 1245 |
} |
| 1245 | 1246 |
return result != 0; |
| 1246 | 1247 |
} |
| 1247 | 1248 |
|
| 1248 | 1249 |
// Change _flow and _state vectors |
| 1249 | 1250 |
void changeFlow(bool change) {
|
| 1250 | 1251 |
// Augment along the cycle |
| 1251 | 1252 |
if (delta > 0) {
|
| 1252 | 1253 |
Value val = _state[in_arc] * delta; |
| 1253 | 1254 |
_flow[in_arc] += val; |
| 1254 | 1255 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) {
|
| 1255 | 1256 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
| 1256 | 1257 |
} |
| 1257 | 1258 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) {
|
| 1258 | 1259 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
| 1259 | 1260 |
} |
| 1260 | 1261 |
} |
| 1261 | 1262 |
// Update the state of the entering and leaving arcs |
| 1262 | 1263 |
if (change) {
|
| 1263 | 1264 |
_state[in_arc] = STATE_TREE; |
| 1264 | 1265 |
_state[_pred[u_out]] = |
| 1265 | 1266 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
| 1266 | 1267 |
} else {
|
| 1267 | 1268 |
_state[in_arc] = -_state[in_arc]; |
| 1268 | 1269 |
} |
| 1269 | 1270 |
} |
| 1270 | 1271 |
|
| 1271 | 1272 |
// Update the tree structure |
| 1272 | 1273 |
void updateTreeStructure() {
|
| 1273 | 1274 |
int u, w; |
| 1274 | 1275 |
int old_rev_thread = _rev_thread[u_out]; |
| 1275 | 1276 |
int old_succ_num = _succ_num[u_out]; |
| 1276 | 1277 |
int old_last_succ = _last_succ[u_out]; |
| 1277 | 1278 |
v_out = _parent[u_out]; |
| 1278 | 1279 |
|
| 1279 | 1280 |
u = _last_succ[u_in]; // the last successor of u_in |
| 1280 | 1281 |
right = _thread[u]; // the node after it |
| 1281 | 1282 |
|
| 1282 | 1283 |
// Handle the case when old_rev_thread equals to v_in |
| 1283 | 1284 |
// (it also means that join and v_out coincide) |
| 1284 | 1285 |
if (old_rev_thread == v_in) {
|
| 1285 | 1286 |
last = _thread[_last_succ[u_out]]; |
| 1286 | 1287 |
} else {
|
| 1287 | 1288 |
last = _thread[v_in]; |
| 1288 | 1289 |
} |
| 1289 | 1290 |
|
| 1290 | 1291 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
| 1291 | 1292 |
// between u_in and u_out, whose parent have to be changed) |
| 1292 | 1293 |
_thread[v_in] = stem = u_in; |
| 1293 | 1294 |
_dirty_revs.clear(); |
| 1294 | 1295 |
_dirty_revs.push_back(v_in); |
| 1295 | 1296 |
par_stem = v_in; |
| 1296 | 1297 |
while (stem != u_out) {
|
| 1297 | 1298 |
// Insert the next stem node into the thread list |
| 1298 | 1299 |
new_stem = _parent[stem]; |
| 1299 | 1300 |
_thread[u] = new_stem; |
| 1300 | 1301 |
_dirty_revs.push_back(u); |
| 1301 | 1302 |
|
| 1302 | 1303 |
// Remove the subtree of stem from the thread list |
| 1303 | 1304 |
w = _rev_thread[stem]; |
| 1304 | 1305 |
_thread[w] = right; |
| 1305 | 1306 |
_rev_thread[right] = w; |
| 1306 | 1307 |
|
| 1307 | 1308 |
// Change the parent node and shift stem nodes |
| 1308 | 1309 |
_parent[stem] = par_stem; |
| 1309 | 1310 |
par_stem = stem; |
| 1310 | 1311 |
stem = new_stem; |
| 1311 | 1312 |
|
| 1312 | 1313 |
// Update u and right |
| 1313 | 1314 |
u = _last_succ[stem] == _last_succ[par_stem] ? |
| 1314 | 1315 |
_rev_thread[par_stem] : _last_succ[stem]; |
| 1315 | 1316 |
right = _thread[u]; |
| 1316 | 1317 |
} |
| 1317 | 1318 |
_parent[u_out] = par_stem; |
| 1318 | 1319 |
_thread[u] = last; |
| 1319 | 1320 |
_rev_thread[last] = u; |
| 1320 | 1321 |
_last_succ[u_out] = u; |
| 1321 | 1322 |
|
| 1322 | 1323 |
// Remove the subtree of u_out from the thread list except for |
| 1323 | 1324 |
// the case when old_rev_thread equals to v_in |
| 1324 | 1325 |
// (it also means that join and v_out coincide) |
| 1325 | 1326 |
if (old_rev_thread != v_in) {
|
| 1326 | 1327 |
_thread[old_rev_thread] = right; |
| 1327 | 1328 |
_rev_thread[right] = old_rev_thread; |
| 1328 | 1329 |
} |
| 1329 | 1330 |
|
| 1330 | 1331 |
// Update _rev_thread using the new _thread values |
| 1331 |
for (int i = 0; i |
|
| 1332 |
for (int i = 0; i != int(_dirty_revs.size()); ++i) {
|
|
| 1332 | 1333 |
u = _dirty_revs[i]; |
| 1333 | 1334 |
_rev_thread[_thread[u]] = u; |
| 1334 | 1335 |
} |
| 1335 | 1336 |
|
| 1336 | 1337 |
// Update _pred, _forward, _last_succ and _succ_num for the |
| 1337 | 1338 |
// stem nodes from u_out to u_in |
| 1338 | 1339 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
| 1339 | 1340 |
u = u_out; |
| 1340 | 1341 |
while (u != u_in) {
|
| 1341 | 1342 |
w = _parent[u]; |
| 1342 | 1343 |
_pred[u] = _pred[w]; |
| 1343 | 1344 |
_forward[u] = !_forward[w]; |
| 1344 | 1345 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
| 1345 | 1346 |
_succ_num[u] = tmp_sc; |
| 1346 | 1347 |
_last_succ[w] = tmp_ls; |
| 1347 | 1348 |
u = w; |
| 1348 | 1349 |
} |
| 1349 | 1350 |
_pred[u_in] = in_arc; |
| 1350 | 1351 |
_forward[u_in] = (u_in == _source[in_arc]); |
| 1351 | 1352 |
_succ_num[u_in] = old_succ_num; |
| 1352 | 1353 |
|
| 1353 | 1354 |
// Set limits for updating _last_succ form v_in and v_out |
| 1354 | 1355 |
// towards the root |
| 1355 | 1356 |
int up_limit_in = -1; |
| 1356 | 1357 |
int up_limit_out = -1; |
| 1357 | 1358 |
if (_last_succ[join] == v_in) {
|
| 1358 | 1359 |
up_limit_out = join; |
| 1359 | 1360 |
} else {
|
| 1360 | 1361 |
up_limit_in = join; |
| 1361 | 1362 |
} |
| 1362 | 1363 |
|
| 1363 | 1364 |
// Update _last_succ from v_in towards the root |
| 1364 | 1365 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
| 1365 | 1366 |
u = _parent[u]) {
|
| 1366 | 1367 |
_last_succ[u] = _last_succ[u_out]; |
| 1367 | 1368 |
} |
| 1368 | 1369 |
// Update _last_succ from v_out towards the root |
| 1369 | 1370 |
if (join != old_rev_thread && v_in != old_rev_thread) {
|
| 1370 | 1371 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
| 1371 | 1372 |
u = _parent[u]) {
|
| 1372 | 1373 |
_last_succ[u] = old_rev_thread; |
| 1373 | 1374 |
} |
| 1374 | 1375 |
} else {
|
| 1375 | 1376 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
| 1376 | 1377 |
u = _parent[u]) {
|
| 1377 | 1378 |
_last_succ[u] = _last_succ[u_out]; |
| 1378 | 1379 |
} |
| 1379 | 1380 |
} |
| 1380 | 1381 |
|
| 1381 | 1382 |
// Update _succ_num from v_in to join |
| 1382 | 1383 |
for (u = v_in; u != join; u = _parent[u]) {
|
| 1383 | 1384 |
_succ_num[u] += old_succ_num; |
| 1384 | 1385 |
} |
| 1385 | 1386 |
// Update _succ_num from v_out to join |
| 1386 | 1387 |
for (u = v_out; u != join; u = _parent[u]) {
|
| 1387 | 1388 |
_succ_num[u] -= old_succ_num; |
| 1388 | 1389 |
} |
| 1389 | 1390 |
} |
| 1390 | 1391 |
|
| 1391 | 1392 |
// Update potentials |
| 1392 | 1393 |
void updatePotential() {
|
| 1393 | 1394 |
Cost sigma = _forward[u_in] ? |
| 1394 | 1395 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
| 1395 | 1396 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
| 1396 | 1397 |
// Update potentials in the subtree, which has been moved |
| 1397 | 1398 |
int end = _thread[_last_succ[u_in]]; |
| 1398 | 1399 |
for (int u = u_in; u != end; u = _thread[u]) {
|
| 1399 | 1400 |
_pi[u] += sigma; |
| 1400 | 1401 |
} |
| 1401 | 1402 |
} |
| 1402 | 1403 |
|
| 1404 |
// Heuristic initial pivots |
|
| 1405 |
bool initialPivots() {
|
|
| 1406 |
Value curr, total = 0; |
|
| 1407 |
std::vector<Node> supply_nodes, demand_nodes; |
|
| 1408 |
for (NodeIt u(_graph); u != INVALID; ++u) {
|
|
| 1409 |
curr = _supply[_node_id[u]]; |
|
| 1410 |
if (curr > 0) {
|
|
| 1411 |
total += curr; |
|
| 1412 |
supply_nodes.push_back(u); |
|
| 1413 |
} |
|
| 1414 |
else if (curr < 0) {
|
|
| 1415 |
demand_nodes.push_back(u); |
|
| 1416 |
} |
|
| 1417 |
} |
|
| 1418 |
if (_sum_supply > 0) total -= _sum_supply; |
|
| 1419 |
if (total <= 0) return true; |
|
| 1420 |
|
|
| 1421 |
IntVector arc_vector; |
|
| 1422 |
if (_sum_supply >= 0) {
|
|
| 1423 |
if (supply_nodes.size() == 1 && demand_nodes.size() == 1) {
|
|
| 1424 |
// Perform a reverse graph search from the sink to the source |
|
| 1425 |
typename GR::template NodeMap<bool> reached(_graph, false); |
|
| 1426 |
Node s = supply_nodes[0], t = demand_nodes[0]; |
|
| 1427 |
std::vector<Node> stack; |
|
| 1428 |
reached[t] = true; |
|
| 1429 |
stack.push_back(t); |
|
| 1430 |
while (!stack.empty()) {
|
|
| 1431 |
Node u, v = stack.back(); |
|
| 1432 |
stack.pop_back(); |
|
| 1433 |
if (v == s) break; |
|
| 1434 |
for (InArcIt a(_graph, v); a != INVALID; ++a) {
|
|
| 1435 |
if (reached[u = _graph.source(a)]) continue; |
|
| 1436 |
int j = _arc_id[a]; |
|
| 1437 |
if (_cap[j] >= total) {
|
|
| 1438 |
arc_vector.push_back(j); |
|
| 1439 |
reached[u] = true; |
|
| 1440 |
stack.push_back(u); |
|
| 1441 |
} |
|
| 1442 |
} |
|
| 1443 |
} |
|
| 1444 |
} else {
|
|
| 1445 |
// Find the min. cost incomming arc for each demand node |
|
| 1446 |
for (int i = 0; i != int(demand_nodes.size()); ++i) {
|
|
| 1447 |
Node v = demand_nodes[i]; |
|
| 1448 |
Cost c, min_cost = std::numeric_limits<Cost>::max(); |
|
| 1449 |
Arc min_arc = INVALID; |
|
| 1450 |
for (InArcIt a(_graph, v); a != INVALID; ++a) {
|
|
| 1451 |
c = _cost[_arc_id[a]]; |
|
| 1452 |
if (c < min_cost) {
|
|
| 1453 |
min_cost = c; |
|
| 1454 |
min_arc = a; |
|
| 1455 |
} |
|
| 1456 |
} |
|
| 1457 |
if (min_arc != INVALID) {
|
|
| 1458 |
arc_vector.push_back(_arc_id[min_arc]); |
|
| 1459 |
} |
|
| 1460 |
} |
|
| 1461 |
} |
|
| 1462 |
} else {
|
|
| 1463 |
// Find the min. cost outgoing arc for each supply node |
|
| 1464 |
for (int i = 0; i != int(supply_nodes.size()); ++i) {
|
|
| 1465 |
Node u = supply_nodes[i]; |
|
| 1466 |
Cost c, min_cost = std::numeric_limits<Cost>::max(); |
|
| 1467 |
Arc min_arc = INVALID; |
|
| 1468 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) {
|
|
| 1469 |
c = _cost[_arc_id[a]]; |
|
| 1470 |
if (c < min_cost) {
|
|
| 1471 |
min_cost = c; |
|
| 1472 |
min_arc = a; |
|
| 1473 |
} |
|
| 1474 |
} |
|
| 1475 |
if (min_arc != INVALID) {
|
|
| 1476 |
arc_vector.push_back(_arc_id[min_arc]); |
|
| 1477 |
} |
|
| 1478 |
} |
|
| 1479 |
} |
|
| 1480 |
|
|
| 1481 |
// Perform heuristic initial pivots |
|
| 1482 |
for (int i = 0; i != int(arc_vector.size()); ++i) {
|
|
| 1483 |
in_arc = arc_vector[i]; |
|
| 1484 |
if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] - |
|
| 1485 |
_pi[_target[in_arc]]) >= 0) continue; |
|
| 1486 |
findJoinNode(); |
|
| 1487 |
bool change = findLeavingArc(); |
|
| 1488 |
if (delta >= MAX) return false; |
|
| 1489 |
changeFlow(change); |
|
| 1490 |
if (change) {
|
|
| 1491 |
updateTreeStructure(); |
|
| 1492 |
updatePotential(); |
|
| 1493 |
} |
|
| 1494 |
} |
|
| 1495 |
return true; |
|
| 1496 |
} |
|
| 1497 |
|
|
| 1403 | 1498 |
// Execute the algorithm |
| 1404 | 1499 |
ProblemType start(PivotRule pivot_rule) {
|
| 1405 | 1500 |
// Select the pivot rule implementation |
| 1406 | 1501 |
switch (pivot_rule) {
|
| 1407 | 1502 |
case FIRST_ELIGIBLE: |
| 1408 | 1503 |
return start<FirstEligiblePivotRule>(); |
| 1409 | 1504 |
case BEST_ELIGIBLE: |
| 1410 | 1505 |
return start<BestEligiblePivotRule>(); |
| 1411 | 1506 |
case BLOCK_SEARCH: |
| 1412 | 1507 |
return start<BlockSearchPivotRule>(); |
| 1413 | 1508 |
case CANDIDATE_LIST: |
| 1414 | 1509 |
return start<CandidateListPivotRule>(); |
| 1415 | 1510 |
case ALTERING_LIST: |
| 1416 | 1511 |
return start<AlteringListPivotRule>(); |
| 1417 | 1512 |
} |
| 1418 | 1513 |
return INFEASIBLE; // avoid warning |
| 1419 | 1514 |
} |
| 1420 | 1515 |
|
| 1421 | 1516 |
template <typename PivotRuleImpl> |
| 1422 | 1517 |
ProblemType start() {
|
| 1423 | 1518 |
PivotRuleImpl pivot(*this); |
| 1424 | 1519 |
|
| 1520 |
// Perform heuristic initial pivots |
|
| 1521 |
if (!initialPivots()) return UNBOUNDED; |
|
| 1522 |
|
|
| 1425 | 1523 |
// Execute the Network Simplex algorithm |
| 1426 | 1524 |
while (pivot.findEnteringArc()) {
|
| 1427 | 1525 |
findJoinNode(); |
| 1428 | 1526 |
bool change = findLeavingArc(); |
| 1429 | 1527 |
if (delta >= MAX) return UNBOUNDED; |
| 1430 | 1528 |
changeFlow(change); |
| 1431 | 1529 |
if (change) {
|
| 1432 | 1530 |
updateTreeStructure(); |
| 1433 | 1531 |
updatePotential(); |
| 1434 | 1532 |
} |
| 1435 | 1533 |
} |
| 1436 | 1534 |
|
| 1437 | 1535 |
// Check feasibility |
| 1438 | 1536 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) {
|
| 1439 | 1537 |
if (_flow[e] != 0) return INFEASIBLE; |
| 1440 | 1538 |
} |
| 1441 | 1539 |
|
| 1442 | 1540 |
// Transform the solution and the supply map to the original form |
| 1443 | 1541 |
if (_have_lower) {
|
| 1444 | 1542 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1445 | 1543 |
Value c = _lower[i]; |
| 1446 | 1544 |
if (c != 0) {
|
| 1447 | 1545 |
_flow[i] += c; |
| 1448 | 1546 |
_supply[_source[i]] += c; |
| 1449 | 1547 |
_supply[_target[i]] -= c; |
| 1450 | 1548 |
} |
| 1451 | 1549 |
} |
| 1452 | 1550 |
} |
| 1453 | 1551 |
|
| 1454 | 1552 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
| 1455 | 1553 |
// optimality conditions |
| 1456 | 1554 |
if (_sum_supply == 0) {
|
| 1457 | 1555 |
if (_stype == GEQ) {
|
| 1458 | 1556 |
Cost max_pot = std::numeric_limits<Cost>::min(); |
| 1459 | 1557 |
for (int i = 0; i != _node_num; ++i) {
|
| 1460 | 1558 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
| 1461 | 1559 |
} |
| 1462 | 1560 |
if (max_pot > 0) {
|
| 1463 | 1561 |
for (int i = 0; i != _node_num; ++i) |
| 1464 | 1562 |
_pi[i] -= max_pot; |
| 1465 | 1563 |
} |
| 1466 | 1564 |
} else {
|
| 1467 | 1565 |
Cost min_pot = std::numeric_limits<Cost>::max(); |
| 1468 | 1566 |
for (int i = 0; i != _node_num; ++i) {
|
| 1469 | 1567 |
if (_pi[i] < min_pot) min_pot = _pi[i]; |
| 1470 | 1568 |
} |
| 1471 | 1569 |
if (min_pot < 0) {
|
| 1472 | 1570 |
for (int i = 0; i != _node_num; ++i) |
| 1473 | 1571 |
_pi[i] -= min_pot; |
| 1474 | 1572 |
} |
| 1475 | 1573 |
} |
| 1476 | 1574 |
} |
| 1477 | 1575 |
|
| 1478 | 1576 |
return OPTIMAL; |
| 1479 | 1577 |
} |
| 1480 | 1578 |
|
| 1481 | 1579 |
}; //class NetworkSimplex |
| 1482 | 1580 |
|
| 1483 | 1581 |
///@} |
| 1484 | 1582 |
|
| 1485 | 1583 |
} //namespace lemon |
| 1486 | 1584 |
|
| 1487 | 1585 |
#endif //LEMON_NETWORK_SIMPLEX_H |
0 comments (0 inline)