0
4
0
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_BFS_H |
| 20 | 20 |
#define LEMON_BFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief BFS algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
#include <lemon/path.h> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
///Default traits class of Bfs class. |
| 36 | 36 |
|
| 37 | 37 |
///Default traits class of Bfs class. |
| 38 | 38 |
///\tparam GR Digraph type. |
| 39 | 39 |
template<class GR> |
| 40 | 40 |
struct BfsDefaultTraits |
| 41 | 41 |
{
|
| 42 | 42 |
///The type of the digraph the algorithm runs on. |
| 43 | 43 |
typedef GR Digraph; |
| 44 | 44 |
|
| 45 | 45 |
///\brief The type of the map that stores the predecessor |
| 46 | 46 |
///arcs of the shortest paths. |
| 47 | 47 |
/// |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the shortest paths. |
| 50 |
///It must |
|
| 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \c PredMap. |
| 53 | 53 |
|
| 54 | 54 |
///This function instantiates a \ref PredMap. |
| 55 | 55 |
///\param g is the digraph, to which we would like to define the |
| 56 | 56 |
///\ref PredMap. |
| 57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
| 58 | 58 |
{
|
| 59 | 59 |
return new PredMap(g); |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 | 62 |
///The type of the map that indicates which nodes are processed. |
| 63 | 63 |
|
| 64 | 64 |
///The type of the map that indicates which nodes are processed. |
| 65 |
///It must |
|
| 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 66 |
///By default it is a NullMap. |
|
| 66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 67 | 68 |
///Instantiates a \c ProcessedMap. |
| 68 | 69 |
|
| 69 | 70 |
///This function instantiates a \ref ProcessedMap. |
| 70 | 71 |
///\param g is the digraph, to which |
| 71 | 72 |
///we would like to define the \ref ProcessedMap |
| 72 | 73 |
#ifdef DOXYGEN |
| 73 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 74 | 75 |
#else |
| 75 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 76 | 77 |
#endif |
| 77 | 78 |
{
|
| 78 | 79 |
return new ProcessedMap(); |
| 79 | 80 |
} |
| 80 | 81 |
|
| 81 | 82 |
///The type of the map that indicates which nodes are reached. |
| 82 | 83 |
|
| 83 | 84 |
///The type of the map that indicates which nodes are reached. |
| 84 |
///It must |
|
| 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 86 | 87 |
///Instantiates a \c ReachedMap. |
| 87 | 88 |
|
| 88 | 89 |
///This function instantiates a \ref ReachedMap. |
| 89 | 90 |
///\param g is the digraph, to which |
| 90 | 91 |
///we would like to define the \ref ReachedMap. |
| 91 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 92 | 93 |
{
|
| 93 | 94 |
return new ReachedMap(g); |
| 94 | 95 |
} |
| 95 | 96 |
|
| 96 | 97 |
///The type of the map that stores the distances of the nodes. |
| 97 | 98 |
|
| 98 | 99 |
///The type of the map that stores the distances of the nodes. |
| 99 |
///It must |
|
| 100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 101 | 102 |
///Instantiates a \c DistMap. |
| 102 | 103 |
|
| 103 | 104 |
///This function instantiates a \ref DistMap. |
| 104 | 105 |
///\param g is the digraph, to which we would like to define the |
| 105 | 106 |
///\ref DistMap. |
| 106 | 107 |
static DistMap *createDistMap(const Digraph &g) |
| 107 | 108 |
{
|
| 108 | 109 |
return new DistMap(g); |
| 109 | 110 |
} |
| 110 | 111 |
}; |
| 111 | 112 |
|
| 112 | 113 |
///%BFS algorithm class. |
| 113 | 114 |
|
| 114 | 115 |
///\ingroup search |
| 115 | 116 |
///This class provides an efficient implementation of the %BFS algorithm. |
| 116 | 117 |
/// |
| 117 | 118 |
///There is also a \ref bfs() "function-type interface" for the BFS |
| 118 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
| 119 | 120 |
///used easier. |
| 120 | 121 |
/// |
| 121 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 122 | 123 |
///The default type is \ref ListDigraph. |
| 123 | 124 |
#ifdef DOXYGEN |
| 124 | 125 |
template <typename GR, |
| 125 | 126 |
typename TR> |
| 126 | 127 |
#else |
| 127 | 128 |
template <typename GR=ListDigraph, |
| 128 | 129 |
typename TR=BfsDefaultTraits<GR> > |
| 129 | 130 |
#endif |
| 130 | 131 |
class Bfs {
|
| 131 | 132 |
public: |
| 132 | 133 |
|
| 133 | 134 |
///The type of the digraph the algorithm runs on. |
| 134 | 135 |
typedef typename TR::Digraph Digraph; |
| 135 | 136 |
|
| 136 | 137 |
///\brief The type of the map that stores the predecessor arcs of the |
| 137 | 138 |
///shortest paths. |
| 138 | 139 |
typedef typename TR::PredMap PredMap; |
| 139 | 140 |
///The type of the map that stores the distances of the nodes. |
| 140 | 141 |
typedef typename TR::DistMap DistMap; |
| 141 | 142 |
///The type of the map that indicates which nodes are reached. |
| 142 | 143 |
typedef typename TR::ReachedMap ReachedMap; |
| 143 | 144 |
///The type of the map that indicates which nodes are processed. |
| 144 | 145 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 145 | 146 |
///The type of the paths. |
| 146 | 147 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 147 | 148 |
|
| 148 | 149 |
///The \ref BfsDefaultTraits "traits class" of the algorithm. |
| 149 | 150 |
typedef TR Traits; |
| 150 | 151 |
|
| 151 | 152 |
private: |
| 152 | 153 |
|
| 153 | 154 |
typedef typename Digraph::Node Node; |
| 154 | 155 |
typedef typename Digraph::NodeIt NodeIt; |
| 155 | 156 |
typedef typename Digraph::Arc Arc; |
| 156 | 157 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 157 | 158 |
|
| 158 | 159 |
//Pointer to the underlying digraph. |
| 159 | 160 |
const Digraph *G; |
| 160 | 161 |
//Pointer to the map of predecessor arcs. |
| 161 | 162 |
PredMap *_pred; |
| 162 | 163 |
//Indicates if _pred is locally allocated (true) or not. |
| 163 | 164 |
bool local_pred; |
| 164 | 165 |
//Pointer to the map of distances. |
| 165 | 166 |
DistMap *_dist; |
| 166 | 167 |
//Indicates if _dist is locally allocated (true) or not. |
| 167 | 168 |
bool local_dist; |
| 168 | 169 |
//Pointer to the map of reached status of the nodes. |
| 169 | 170 |
ReachedMap *_reached; |
| 170 | 171 |
//Indicates if _reached is locally allocated (true) or not. |
| 171 | 172 |
bool local_reached; |
| 172 | 173 |
//Pointer to the map of processed status of the nodes. |
| 173 | 174 |
ProcessedMap *_processed; |
| 174 | 175 |
//Indicates if _processed is locally allocated (true) or not. |
| 175 | 176 |
bool local_processed; |
| 176 | 177 |
|
| 177 | 178 |
std::vector<typename Digraph::Node> _queue; |
| 178 | 179 |
int _queue_head,_queue_tail,_queue_next_dist; |
| 179 | 180 |
int _curr_dist; |
| 180 | 181 |
|
| 181 | 182 |
//Creates the maps if necessary. |
| 182 | 183 |
void create_maps() |
| 183 | 184 |
{
|
| 184 | 185 |
if(!_pred) {
|
| 185 | 186 |
local_pred = true; |
| 186 | 187 |
_pred = Traits::createPredMap(*G); |
| 187 | 188 |
} |
| 188 | 189 |
if(!_dist) {
|
| 189 | 190 |
local_dist = true; |
| 190 | 191 |
_dist = Traits::createDistMap(*G); |
| 191 | 192 |
} |
| 192 | 193 |
if(!_reached) {
|
| 193 | 194 |
local_reached = true; |
| 194 | 195 |
_reached = Traits::createReachedMap(*G); |
| 195 | 196 |
} |
| 196 | 197 |
if(!_processed) {
|
| 197 | 198 |
local_processed = true; |
| 198 | 199 |
_processed = Traits::createProcessedMap(*G); |
| 199 | 200 |
} |
| 200 | 201 |
} |
| 201 | 202 |
|
| 202 | 203 |
protected: |
| 203 | 204 |
|
| 204 | 205 |
Bfs() {}
|
| 205 | 206 |
|
| 206 | 207 |
public: |
| 207 | 208 |
|
| 208 | 209 |
typedef Bfs Create; |
| 209 | 210 |
|
| 210 | 211 |
///\name Named Template Parameters |
| 211 | 212 |
|
| 212 | 213 |
///@{
|
| 213 | 214 |
|
| 214 | 215 |
template <class T> |
| 215 | 216 |
struct SetPredMapTraits : public Traits {
|
| 216 | 217 |
typedef T PredMap; |
| 217 | 218 |
static PredMap *createPredMap(const Digraph &) |
| 218 | 219 |
{
|
| 219 | 220 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 220 | 221 |
return 0; // ignore warnings |
| 221 | 222 |
} |
| 222 | 223 |
}; |
| 223 | 224 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 224 | 225 |
///\c PredMap type. |
| 225 | 226 |
/// |
| 226 | 227 |
///\ref named-templ-param "Named parameter" for setting |
| 227 | 228 |
///\c PredMap type. |
| 228 |
///It must |
|
| 229 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 229 | 230 |
template <class T> |
| 230 | 231 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
|
| 231 | 232 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
| 232 | 233 |
}; |
| 233 | 234 |
|
| 234 | 235 |
template <class T> |
| 235 | 236 |
struct SetDistMapTraits : public Traits {
|
| 236 | 237 |
typedef T DistMap; |
| 237 | 238 |
static DistMap *createDistMap(const Digraph &) |
| 238 | 239 |
{
|
| 239 | 240 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 240 | 241 |
return 0; // ignore warnings |
| 241 | 242 |
} |
| 242 | 243 |
}; |
| 243 | 244 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 244 | 245 |
///\c DistMap type. |
| 245 | 246 |
/// |
| 246 | 247 |
///\ref named-templ-param "Named parameter" for setting |
| 247 | 248 |
///\c DistMap type. |
| 248 |
///It must |
|
| 249 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 249 | 250 |
template <class T> |
| 250 | 251 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
|
| 251 | 252 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
| 252 | 253 |
}; |
| 253 | 254 |
|
| 254 | 255 |
template <class T> |
| 255 | 256 |
struct SetReachedMapTraits : public Traits {
|
| 256 | 257 |
typedef T ReachedMap; |
| 257 | 258 |
static ReachedMap *createReachedMap(const Digraph &) |
| 258 | 259 |
{
|
| 259 | 260 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 260 | 261 |
return 0; // ignore warnings |
| 261 | 262 |
} |
| 262 | 263 |
}; |
| 263 | 264 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 264 | 265 |
///\c ReachedMap type. |
| 265 | 266 |
/// |
| 266 | 267 |
///\ref named-templ-param "Named parameter" for setting |
| 267 | 268 |
///\c ReachedMap type. |
| 268 |
///It must |
|
| 269 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 269 | 270 |
template <class T> |
| 270 | 271 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
|
| 271 | 272 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
| 272 | 273 |
}; |
| 273 | 274 |
|
| 274 | 275 |
template <class T> |
| 275 | 276 |
struct SetProcessedMapTraits : public Traits {
|
| 276 | 277 |
typedef T ProcessedMap; |
| 277 | 278 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 278 | 279 |
{
|
| 279 | 280 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
| 280 | 281 |
return 0; // ignore warnings |
| 281 | 282 |
} |
| 282 | 283 |
}; |
| 283 | 284 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 284 | 285 |
///\c ProcessedMap type. |
| 285 | 286 |
/// |
| 286 | 287 |
///\ref named-templ-param "Named parameter" for setting |
| 287 | 288 |
///\c ProcessedMap type. |
| 288 |
///It must |
|
| 289 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 289 | 290 |
template <class T> |
| 290 | 291 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
|
| 291 | 292 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 292 | 293 |
}; |
| 293 | 294 |
|
| 294 | 295 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 295 | 296 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 296 | 297 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 297 | 298 |
{
|
| 298 | 299 |
return new ProcessedMap(g); |
| 299 | 300 |
return 0; // ignore warnings |
| 300 | 301 |
} |
| 301 | 302 |
}; |
| 302 | 303 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 303 | 304 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 304 | 305 |
/// |
| 305 | 306 |
///\ref named-templ-param "Named parameter" for setting |
| 306 | 307 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 307 | 308 |
///If you don't set it explicitly, it will be automatically allocated. |
| 308 | 309 |
struct SetStandardProcessedMap : |
| 309 | 310 |
public Bfs< Digraph, SetStandardProcessedMapTraits > {
|
| 310 | 311 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
| 311 | 312 |
}; |
| 312 | 313 |
|
| 313 | 314 |
///@} |
| 314 | 315 |
|
| 315 | 316 |
public: |
| 316 | 317 |
|
| 317 | 318 |
///Constructor. |
| 318 | 319 |
|
| 319 | 320 |
///Constructor. |
| 320 | 321 |
///\param g The digraph the algorithm runs on. |
| 321 | 322 |
Bfs(const Digraph &g) : |
| 322 | 323 |
G(&g), |
| 323 | 324 |
_pred(NULL), local_pred(false), |
| 324 | 325 |
_dist(NULL), local_dist(false), |
| 325 | 326 |
_reached(NULL), local_reached(false), |
| 326 | 327 |
_processed(NULL), local_processed(false) |
| 327 | 328 |
{ }
|
| 328 | 329 |
|
| 329 | 330 |
///Destructor. |
| 330 | 331 |
~Bfs() |
| 331 | 332 |
{
|
| 332 | 333 |
if(local_pred) delete _pred; |
| 333 | 334 |
if(local_dist) delete _dist; |
| 334 | 335 |
if(local_reached) delete _reached; |
| 335 | 336 |
if(local_processed) delete _processed; |
| 336 | 337 |
} |
| 337 | 338 |
|
| 338 | 339 |
///Sets the map that stores the predecessor arcs. |
| 339 | 340 |
|
| 340 | 341 |
///Sets the map that stores the predecessor arcs. |
| 341 | 342 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 342 | 343 |
///or \ref init(), an instance will be allocated automatically. |
| 343 | 344 |
///The destructor deallocates this automatically allocated map, |
| 344 | 345 |
///of course. |
| 345 | 346 |
///\return <tt> (*this) </tt> |
| 346 | 347 |
Bfs &predMap(PredMap &m) |
| 347 | 348 |
{
|
| 348 | 349 |
if(local_pred) {
|
| 349 | 350 |
delete _pred; |
| 350 | 351 |
local_pred=false; |
| 351 | 352 |
} |
| 352 | 353 |
_pred = &m; |
| 353 | 354 |
return *this; |
| 354 | 355 |
} |
| 355 | 356 |
|
| 356 | 357 |
///Sets the map that indicates which nodes are reached. |
| 357 | 358 |
|
| 358 | 359 |
///Sets the map that indicates which nodes are reached. |
| 359 | 360 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 360 | 361 |
///or \ref init(), an instance will be allocated automatically. |
| 361 | 362 |
///The destructor deallocates this automatically allocated map, |
| 362 | 363 |
///of course. |
| 363 | 364 |
///\return <tt> (*this) </tt> |
| 364 | 365 |
Bfs &reachedMap(ReachedMap &m) |
| 365 | 366 |
{
|
| 366 | 367 |
if(local_reached) {
|
| 367 | 368 |
delete _reached; |
| 368 | 369 |
local_reached=false; |
| 369 | 370 |
} |
| 370 | 371 |
_reached = &m; |
| 371 | 372 |
return *this; |
| 372 | 373 |
} |
| 373 | 374 |
|
| 374 | 375 |
///Sets the map that indicates which nodes are processed. |
| 375 | 376 |
|
| 376 | 377 |
///Sets the map that indicates which nodes are processed. |
| 377 | 378 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 378 | 379 |
///or \ref init(), an instance will be allocated automatically. |
| 379 | 380 |
///The destructor deallocates this automatically allocated map, |
| 380 | 381 |
///of course. |
| 381 | 382 |
///\return <tt> (*this) </tt> |
| 382 | 383 |
Bfs &processedMap(ProcessedMap &m) |
| 383 | 384 |
{
|
| 384 | 385 |
if(local_processed) {
|
| 385 | 386 |
delete _processed; |
| 386 | 387 |
local_processed=false; |
| 387 | 388 |
} |
| 388 | 389 |
_processed = &m; |
| 389 | 390 |
return *this; |
| 390 | 391 |
} |
| 391 | 392 |
|
| 392 | 393 |
///Sets the map that stores the distances of the nodes. |
| 393 | 394 |
|
| 394 | 395 |
///Sets the map that stores the distances of the nodes calculated by |
| 395 | 396 |
///the algorithm. |
| 396 | 397 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 397 | 398 |
///or \ref init(), an instance will be allocated automatically. |
| 398 | 399 |
///The destructor deallocates this automatically allocated map, |
| 399 | 400 |
///of course. |
| 400 | 401 |
///\return <tt> (*this) </tt> |
| 401 | 402 |
Bfs &distMap(DistMap &m) |
| 402 | 403 |
{
|
| 403 | 404 |
if(local_dist) {
|
| 404 | 405 |
delete _dist; |
| 405 | 406 |
local_dist=false; |
| 406 | 407 |
} |
| 407 | 408 |
_dist = &m; |
| 408 | 409 |
return *this; |
| 409 | 410 |
} |
| 410 | 411 |
|
| 411 | 412 |
public: |
| 412 | 413 |
|
| 413 | 414 |
///\name Execution Control |
| 414 | 415 |
///The simplest way to execute the BFS algorithm is to use one of the |
| 415 | 416 |
///member functions called \ref run(Node) "run()".\n |
| 416 | 417 |
///If you need more control on the execution, first you have to call |
| 417 | 418 |
///\ref init(), then you can add several source nodes with |
| 418 | 419 |
///\ref addSource(). Finally the actual path computation can be |
| 419 | 420 |
///performed with one of the \ref start() functions. |
| 420 | 421 |
|
| 421 | 422 |
///@{
|
| 422 | 423 |
|
| 423 | 424 |
///\brief Initializes the internal data structures. |
| 424 | 425 |
/// |
| 425 | 426 |
///Initializes the internal data structures. |
| 426 | 427 |
void init() |
| 427 | 428 |
{
|
| 428 | 429 |
create_maps(); |
| 429 | 430 |
_queue.resize(countNodes(*G)); |
| 430 | 431 |
_queue_head=_queue_tail=0; |
| 431 | 432 |
_curr_dist=1; |
| 432 | 433 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 433 | 434 |
_pred->set(u,INVALID); |
| 434 | 435 |
_reached->set(u,false); |
| 435 | 436 |
_processed->set(u,false); |
| 436 | 437 |
} |
| 437 | 438 |
} |
| 438 | 439 |
|
| 439 | 440 |
///Adds a new source node. |
| 440 | 441 |
|
| 441 | 442 |
///Adds a new source node to the set of nodes to be processed. |
| 442 | 443 |
/// |
| 443 | 444 |
void addSource(Node s) |
| 444 | 445 |
{
|
| 445 | 446 |
if(!(*_reached)[s]) |
| 446 | 447 |
{
|
| 447 | 448 |
_reached->set(s,true); |
| 448 | 449 |
_pred->set(s,INVALID); |
| 449 | 450 |
_dist->set(s,0); |
| 450 | 451 |
_queue[_queue_head++]=s; |
| 451 | 452 |
_queue_next_dist=_queue_head; |
| 452 | 453 |
} |
| 453 | 454 |
} |
| 454 | 455 |
|
| 455 | 456 |
///Processes the next node. |
| 456 | 457 |
|
| 457 | 458 |
///Processes the next node. |
| 458 | 459 |
/// |
| 459 | 460 |
///\return The processed node. |
| 460 | 461 |
/// |
| 461 | 462 |
///\pre The queue must not be empty. |
| 462 | 463 |
Node processNextNode() |
| 463 | 464 |
{
|
| 464 | 465 |
if(_queue_tail==_queue_next_dist) {
|
| 465 | 466 |
_curr_dist++; |
| 466 | 467 |
_queue_next_dist=_queue_head; |
| 467 | 468 |
} |
| 468 | 469 |
Node n=_queue[_queue_tail++]; |
| 469 | 470 |
_processed->set(n,true); |
| 470 | 471 |
Node m; |
| 471 | 472 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 472 | 473 |
if(!(*_reached)[m=G->target(e)]) {
|
| 473 | 474 |
_queue[_queue_head++]=m; |
| 474 | 475 |
_reached->set(m,true); |
| 475 | 476 |
_pred->set(m,e); |
| 476 | 477 |
_dist->set(m,_curr_dist); |
| 477 | 478 |
} |
| 478 | 479 |
return n; |
| 479 | 480 |
} |
| 480 | 481 |
|
| 481 | 482 |
///Processes the next node. |
| 482 | 483 |
|
| 483 | 484 |
///Processes the next node and checks if the given target node |
| 484 | 485 |
///is reached. If the target node is reachable from the processed |
| 485 | 486 |
///node, then the \c reach parameter will be set to \c true. |
| 486 | 487 |
/// |
| 487 | 488 |
///\param target The target node. |
| 488 | 489 |
///\retval reach Indicates if the target node is reached. |
| 489 | 490 |
///It should be initially \c false. |
| 490 | 491 |
/// |
| 491 | 492 |
///\return The processed node. |
| 492 | 493 |
/// |
| 493 | 494 |
///\pre The queue must not be empty. |
| 494 | 495 |
Node processNextNode(Node target, bool& reach) |
| 495 | 496 |
{
|
| 496 | 497 |
if(_queue_tail==_queue_next_dist) {
|
| 497 | 498 |
_curr_dist++; |
| 498 | 499 |
_queue_next_dist=_queue_head; |
| 499 | 500 |
} |
| 500 | 501 |
Node n=_queue[_queue_tail++]; |
| 501 | 502 |
_processed->set(n,true); |
| 502 | 503 |
Node m; |
| 503 | 504 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 504 | 505 |
if(!(*_reached)[m=G->target(e)]) {
|
| 505 | 506 |
_queue[_queue_head++]=m; |
| 506 | 507 |
_reached->set(m,true); |
| 507 | 508 |
_pred->set(m,e); |
| 508 | 509 |
_dist->set(m,_curr_dist); |
| 509 | 510 |
reach = reach || (target == m); |
| 510 | 511 |
} |
| 511 | 512 |
return n; |
| 512 | 513 |
} |
| 513 | 514 |
|
| 514 | 515 |
///Processes the next node. |
| 515 | 516 |
|
| 516 | 517 |
///Processes the next node and checks if at least one of reached |
| 517 | 518 |
///nodes has \c true value in the \c nm node map. If one node |
| 518 | 519 |
///with \c true value is reachable from the processed node, then the |
| 519 | 520 |
///\c rnode parameter will be set to the first of such nodes. |
| 520 | 521 |
/// |
| 521 | 522 |
///\param nm A \c bool (or convertible) node map that indicates the |
| 522 | 523 |
///possible targets. |
| 523 | 524 |
///\retval rnode The reached target node. |
| 524 | 525 |
///It should be initially \c INVALID. |
| 525 | 526 |
/// |
| 526 | 527 |
///\return The processed node. |
| 527 | 528 |
/// |
| 528 | 529 |
///\pre The queue must not be empty. |
| 529 | 530 |
template<class NM> |
| 530 | 531 |
Node processNextNode(const NM& nm, Node& rnode) |
| 531 | 532 |
{
|
| 532 | 533 |
if(_queue_tail==_queue_next_dist) {
|
| 533 | 534 |
_curr_dist++; |
| 534 | 535 |
_queue_next_dist=_queue_head; |
| 535 | 536 |
} |
| 536 | 537 |
Node n=_queue[_queue_tail++]; |
| 537 | 538 |
_processed->set(n,true); |
| 538 | 539 |
Node m; |
| 539 | 540 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
| 540 | 541 |
if(!(*_reached)[m=G->target(e)]) {
|
| 541 | 542 |
_queue[_queue_head++]=m; |
| 542 | 543 |
_reached->set(m,true); |
| 543 | 544 |
_pred->set(m,e); |
| 544 | 545 |
_dist->set(m,_curr_dist); |
| 545 | 546 |
if (nm[m] && rnode == INVALID) rnode = m; |
| 546 | 547 |
} |
| 547 | 548 |
return n; |
| 548 | 549 |
} |
| 549 | 550 |
|
| 550 | 551 |
///The next node to be processed. |
| 551 | 552 |
|
| 552 | 553 |
///Returns the next node to be processed or \c INVALID if the queue |
| 553 | 554 |
///is empty. |
| 554 | 555 |
Node nextNode() const |
| 555 | 556 |
{
|
| 556 | 557 |
return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
| 557 | 558 |
} |
| 558 | 559 |
|
| 559 | 560 |
///Returns \c false if there are nodes to be processed. |
| 560 | 561 |
|
| 561 | 562 |
///Returns \c false if there are nodes to be processed |
| 562 | 563 |
///in the queue. |
| 563 | 564 |
bool emptyQueue() const { return _queue_tail==_queue_head; }
|
| 564 | 565 |
|
| 565 | 566 |
///Returns the number of the nodes to be processed. |
| 566 | 567 |
|
| 567 | 568 |
///Returns the number of the nodes to be processed |
| 568 | 569 |
///in the queue. |
| 569 | 570 |
int queueSize() const { return _queue_head-_queue_tail; }
|
| 570 | 571 |
|
| 571 | 572 |
///Executes the algorithm. |
| 572 | 573 |
|
| 573 | 574 |
///Executes the algorithm. |
| 574 | 575 |
/// |
| 575 | 576 |
///This method runs the %BFS algorithm from the root node(s) |
| 576 | 577 |
///in order to compute the shortest path to each node. |
| 577 | 578 |
/// |
| 578 | 579 |
///The algorithm computes |
| 579 | 580 |
///- the shortest path tree (forest), |
| 580 | 581 |
///- the distance of each node from the root(s). |
| 581 | 582 |
/// |
| 582 | 583 |
///\pre init() must be called and at least one root node should be |
| 583 | 584 |
///added with addSource() before using this function. |
| 584 | 585 |
/// |
| 585 | 586 |
///\note <tt>b.start()</tt> is just a shortcut of the following code. |
| 586 | 587 |
///\code |
| 587 | 588 |
/// while ( !b.emptyQueue() ) {
|
| 588 | 589 |
/// b.processNextNode(); |
| 589 | 590 |
/// } |
| 590 | 591 |
///\endcode |
| 591 | 592 |
void start() |
| 592 | 593 |
{
|
| 593 | 594 |
while ( !emptyQueue() ) processNextNode(); |
| 594 | 595 |
} |
| 595 | 596 |
|
| 596 | 597 |
///Executes the algorithm until the given target node is reached. |
| 597 | 598 |
|
| 598 | 599 |
///Executes the algorithm until the given target node is reached. |
| 599 | 600 |
/// |
| 600 | 601 |
///This method runs the %BFS algorithm from the root node(s) |
| 601 | 602 |
///in order to compute the shortest path to \c t. |
| 602 | 603 |
/// |
| 603 | 604 |
///The algorithm computes |
| 604 | 605 |
///- the shortest path to \c t, |
| 605 | 606 |
///- the distance of \c t from the root(s). |
| 606 | 607 |
/// |
| 607 | 608 |
///\pre init() must be called and at least one root node should be |
| 608 | 609 |
///added with addSource() before using this function. |
| 609 | 610 |
/// |
| 610 | 611 |
///\note <tt>b.start(t)</tt> is just a shortcut of the following code. |
| 611 | 612 |
///\code |
| 612 | 613 |
/// bool reach = false; |
| 613 | 614 |
/// while ( !b.emptyQueue() && !reach ) {
|
| 614 | 615 |
/// b.processNextNode(t, reach); |
| 615 | 616 |
/// } |
| 616 | 617 |
///\endcode |
| 617 | 618 |
void start(Node t) |
| 618 | 619 |
{
|
| 619 | 620 |
bool reach = false; |
| 620 | 621 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
| 621 | 622 |
} |
| 622 | 623 |
|
| 623 | 624 |
///Executes the algorithm until a condition is met. |
| 624 | 625 |
|
| 625 | 626 |
///Executes the algorithm until a condition is met. |
| 626 | 627 |
/// |
| 627 | 628 |
///This method runs the %BFS algorithm from the root node(s) in |
| 628 | 629 |
///order to compute the shortest path to a node \c v with |
| 629 | 630 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 630 | 631 |
/// |
| 631 | 632 |
///\param nm A \c bool (or convertible) node map. The algorithm |
| 632 | 633 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
| 633 | 634 |
/// |
| 634 | 635 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
| 635 | 636 |
///\c INVALID if no such node was found. |
| 636 | 637 |
/// |
| 637 | 638 |
///\pre init() must be called and at least one root node should be |
| 638 | 639 |
///added with addSource() before using this function. |
| 639 | 640 |
/// |
| 640 | 641 |
///\note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
| 641 | 642 |
///\code |
| 642 | 643 |
/// Node rnode = INVALID; |
| 643 | 644 |
/// while ( !b.emptyQueue() && rnode == INVALID ) {
|
| 644 | 645 |
/// b.processNextNode(nm, rnode); |
| 645 | 646 |
/// } |
| 646 | 647 |
/// return rnode; |
| 647 | 648 |
///\endcode |
| 648 | 649 |
template<class NodeBoolMap> |
| 649 | 650 |
Node start(const NodeBoolMap &nm) |
| 650 | 651 |
{
|
| 651 | 652 |
Node rnode = INVALID; |
| 652 | 653 |
while ( !emptyQueue() && rnode == INVALID ) {
|
| 653 | 654 |
processNextNode(nm, rnode); |
| 654 | 655 |
} |
| 655 | 656 |
return rnode; |
| 656 | 657 |
} |
| 657 | 658 |
|
| 658 | 659 |
///Runs the algorithm from the given source node. |
| 659 | 660 |
|
| 660 | 661 |
///This method runs the %BFS algorithm from node \c s |
| 661 | 662 |
///in order to compute the shortest path to each node. |
| 662 | 663 |
/// |
| 663 | 664 |
///The algorithm computes |
| 664 | 665 |
///- the shortest path tree, |
| 665 | 666 |
///- the distance of each node from the root. |
| 666 | 667 |
/// |
| 667 | 668 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 668 | 669 |
///\code |
| 669 | 670 |
/// b.init(); |
| 670 | 671 |
/// b.addSource(s); |
| 671 | 672 |
/// b.start(); |
| 672 | 673 |
///\endcode |
| 673 | 674 |
void run(Node s) {
|
| 674 | 675 |
init(); |
| 675 | 676 |
addSource(s); |
| 676 | 677 |
start(); |
| 677 | 678 |
} |
| 678 | 679 |
|
| 679 | 680 |
///Finds the shortest path between \c s and \c t. |
| 680 | 681 |
|
| 681 | 682 |
///This method runs the %BFS algorithm from node \c s |
| 682 | 683 |
///in order to compute the shortest path to node \c t |
| 683 | 684 |
///(it stops searching when \c t is processed). |
| 684 | 685 |
/// |
| 685 | 686 |
///\return \c true if \c t is reachable form \c s. |
| 686 | 687 |
/// |
| 687 | 688 |
///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
| 688 | 689 |
///shortcut of the following code. |
| 689 | 690 |
///\code |
| 690 | 691 |
/// b.init(); |
| 691 | 692 |
/// b.addSource(s); |
| 692 | 693 |
/// b.start(t); |
| 693 | 694 |
///\endcode |
| 694 | 695 |
bool run(Node s,Node t) {
|
| 695 | 696 |
init(); |
| 696 | 697 |
addSource(s); |
| 697 | 698 |
start(t); |
| 698 | 699 |
return reached(t); |
| 699 | 700 |
} |
| 700 | 701 |
|
| 701 | 702 |
///Runs the algorithm to visit all nodes in the digraph. |
| 702 | 703 |
|
| 703 | 704 |
///This method runs the %BFS algorithm in order to |
| 704 | 705 |
///compute the shortest path to each node. |
| 705 | 706 |
/// |
| 706 | 707 |
///The algorithm computes |
| 707 | 708 |
///- the shortest path tree (forest), |
| 708 | 709 |
///- the distance of each node from the root(s). |
| 709 | 710 |
/// |
| 710 | 711 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 711 | 712 |
///\code |
| 712 | 713 |
/// b.init(); |
| 713 | 714 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 714 | 715 |
/// if (!b.reached(n)) {
|
| 715 | 716 |
/// b.addSource(n); |
| 716 | 717 |
/// b.start(); |
| 717 | 718 |
/// } |
| 718 | 719 |
/// } |
| 719 | 720 |
///\endcode |
| 720 | 721 |
void run() {
|
| 721 | 722 |
init(); |
| 722 | 723 |
for (NodeIt n(*G); n != INVALID; ++n) {
|
| 723 | 724 |
if (!reached(n)) {
|
| 724 | 725 |
addSource(n); |
| 725 | 726 |
start(); |
| 726 | 727 |
} |
| 727 | 728 |
} |
| 728 | 729 |
} |
| 729 | 730 |
|
| 730 | 731 |
///@} |
| 731 | 732 |
|
| 732 | 733 |
///\name Query Functions |
| 733 | 734 |
///The results of the BFS algorithm can be obtained using these |
| 734 | 735 |
///functions.\n |
| 735 | 736 |
///Either \ref run(Node) "run()" or \ref start() should be called |
| 736 | 737 |
///before using them. |
| 737 | 738 |
|
| 738 | 739 |
///@{
|
| 739 | 740 |
|
| 740 |
///The shortest path to |
|
| 741 |
///The shortest path to the given node. |
|
| 741 | 742 |
|
| 742 |
///Returns the shortest path to |
|
| 743 |
///Returns the shortest path to the given node from the root(s). |
|
| 743 | 744 |
/// |
| 744 | 745 |
///\warning \c t should be reached from the root(s). |
| 745 | 746 |
/// |
| 746 | 747 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 747 | 748 |
///must be called before using this function. |
| 748 | 749 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 749 | 750 |
|
| 750 |
///The distance of |
|
| 751 |
///The distance of the given node from the root(s). |
|
| 751 | 752 |
|
| 752 |
///Returns the distance of |
|
| 753 |
///Returns the distance of the given node from the root(s). |
|
| 753 | 754 |
/// |
| 754 | 755 |
///\warning If node \c v is not reached from the root(s), then |
| 755 | 756 |
///the return value of this function is undefined. |
| 756 | 757 |
/// |
| 757 | 758 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 758 | 759 |
///must be called before using this function. |
| 759 | 760 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 760 | 761 |
|
| 761 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
| 762 |
|
|
| 762 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
| 763 |
///the given node. |
|
| 764 |
/// |
|
| 763 | 765 |
///This function returns the 'previous arc' of the shortest path |
| 764 | 766 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 765 | 767 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
| 766 | 768 |
///is not reached from the root(s) or if \c v is a root. |
| 767 | 769 |
/// |
| 768 | 770 |
///The shortest path tree used here is equal to the shortest path |
| 769 |
///tree used in \ref predNode(). |
|
| 771 |
///tree used in \ref predNode() and \ref predMap(). |
|
| 770 | 772 |
/// |
| 771 | 773 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 772 | 774 |
///must be called before using this function. |
| 773 | 775 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 774 | 776 |
|
| 775 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
| 776 |
|
|
| 777 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
| 778 |
///the given node. |
|
| 779 |
/// |
|
| 777 | 780 |
///This function returns the 'previous node' of the shortest path |
| 778 | 781 |
///tree for the node \c v, i.e. it returns the last but one node |
| 779 |
/// |
|
| 782 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
| 780 | 783 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 781 | 784 |
/// |
| 782 | 785 |
///The shortest path tree used here is equal to the shortest path |
| 783 |
///tree used in \ref predArc(). |
|
| 786 |
///tree used in \ref predArc() and \ref predMap(). |
|
| 784 | 787 |
/// |
| 785 | 788 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 786 | 789 |
///must be called before using this function. |
| 787 | 790 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 788 | 791 |
G->source((*_pred)[v]); } |
| 789 | 792 |
|
| 790 | 793 |
///\brief Returns a const reference to the node map that stores the |
| 791 | 794 |
/// distances of the nodes. |
| 792 | 795 |
/// |
| 793 | 796 |
///Returns a const reference to the node map that stores the distances |
| 794 | 797 |
///of the nodes calculated by the algorithm. |
| 795 | 798 |
/// |
| 796 | 799 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 797 | 800 |
///must be called before using this function. |
| 798 | 801 |
const DistMap &distMap() const { return *_dist;}
|
| 799 | 802 |
|
| 800 | 803 |
///\brief Returns a const reference to the node map that stores the |
| 801 | 804 |
///predecessor arcs. |
| 802 | 805 |
/// |
| 803 | 806 |
///Returns a const reference to the node map that stores the predecessor |
| 804 |
///arcs, which form the shortest path tree. |
|
| 807 |
///arcs, which form the shortest path tree (forest). |
|
| 805 | 808 |
/// |
| 806 | 809 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 807 | 810 |
///must be called before using this function. |
| 808 | 811 |
const PredMap &predMap() const { return *_pred;}
|
| 809 | 812 |
|
| 810 |
///Checks if |
|
| 813 |
///Checks if the given node is reached from the root(s). |
|
| 811 | 814 |
|
| 812 | 815 |
///Returns \c true if \c v is reached from the root(s). |
| 813 | 816 |
/// |
| 814 | 817 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 815 | 818 |
///must be called before using this function. |
| 816 | 819 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 817 | 820 |
|
| 818 | 821 |
///@} |
| 819 | 822 |
}; |
| 820 | 823 |
|
| 821 | 824 |
///Default traits class of bfs() function. |
| 822 | 825 |
|
| 823 | 826 |
///Default traits class of bfs() function. |
| 824 | 827 |
///\tparam GR Digraph type. |
| 825 | 828 |
template<class GR> |
| 826 | 829 |
struct BfsWizardDefaultTraits |
| 827 | 830 |
{
|
| 828 | 831 |
///The type of the digraph the algorithm runs on. |
| 829 | 832 |
typedef GR Digraph; |
| 830 | 833 |
|
| 831 | 834 |
///\brief The type of the map that stores the predecessor |
| 832 | 835 |
///arcs of the shortest paths. |
| 833 | 836 |
/// |
| 834 | 837 |
///The type of the map that stores the predecessor |
| 835 | 838 |
///arcs of the shortest paths. |
| 836 |
///It must |
|
| 839 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 837 | 840 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 838 | 841 |
///Instantiates a PredMap. |
| 839 | 842 |
|
| 840 | 843 |
///This function instantiates a PredMap. |
| 841 | 844 |
///\param g is the digraph, to which we would like to define the |
| 842 | 845 |
///PredMap. |
| 843 | 846 |
static PredMap *createPredMap(const Digraph &g) |
| 844 | 847 |
{
|
| 845 | 848 |
return new PredMap(g); |
| 846 | 849 |
} |
| 847 | 850 |
|
| 848 | 851 |
///The type of the map that indicates which nodes are processed. |
| 849 | 852 |
|
| 850 | 853 |
///The type of the map that indicates which nodes are processed. |
| 851 |
///It must |
|
| 854 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 852 | 855 |
///By default it is a NullMap. |
| 853 | 856 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 854 | 857 |
///Instantiates a ProcessedMap. |
| 855 | 858 |
|
| 856 | 859 |
///This function instantiates a ProcessedMap. |
| 857 | 860 |
///\param g is the digraph, to which |
| 858 | 861 |
///we would like to define the ProcessedMap. |
| 859 | 862 |
#ifdef DOXYGEN |
| 860 | 863 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 861 | 864 |
#else |
| 862 | 865 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 863 | 866 |
#endif |
| 864 | 867 |
{
|
| 865 | 868 |
return new ProcessedMap(); |
| 866 | 869 |
} |
| 867 | 870 |
|
| 868 | 871 |
///The type of the map that indicates which nodes are reached. |
| 869 | 872 |
|
| 870 | 873 |
///The type of the map that indicates which nodes are reached. |
| 871 |
///It must |
|
| 874 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 872 | 875 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 873 | 876 |
///Instantiates a ReachedMap. |
| 874 | 877 |
|
| 875 | 878 |
///This function instantiates a ReachedMap. |
| 876 | 879 |
///\param g is the digraph, to which |
| 877 | 880 |
///we would like to define the ReachedMap. |
| 878 | 881 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 879 | 882 |
{
|
| 880 | 883 |
return new ReachedMap(g); |
| 881 | 884 |
} |
| 882 | 885 |
|
| 883 | 886 |
///The type of the map that stores the distances of the nodes. |
| 884 | 887 |
|
| 885 | 888 |
///The type of the map that stores the distances of the nodes. |
| 886 |
///It must |
|
| 889 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 887 | 890 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 888 | 891 |
///Instantiates a DistMap. |
| 889 | 892 |
|
| 890 | 893 |
///This function instantiates a DistMap. |
| 891 | 894 |
///\param g is the digraph, to which we would like to define |
| 892 | 895 |
///the DistMap |
| 893 | 896 |
static DistMap *createDistMap(const Digraph &g) |
| 894 | 897 |
{
|
| 895 | 898 |
return new DistMap(g); |
| 896 | 899 |
} |
| 897 | 900 |
|
| 898 | 901 |
///The type of the shortest paths. |
| 899 | 902 |
|
| 900 | 903 |
///The type of the shortest paths. |
| 901 |
///It must |
|
| 904 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 902 | 905 |
typedef lemon::Path<Digraph> Path; |
| 903 | 906 |
}; |
| 904 | 907 |
|
| 905 | 908 |
/// Default traits class used by BfsWizard |
| 906 | 909 |
|
| 907 |
/// To make it easier to use Bfs algorithm |
|
| 908 |
/// we have created a wizard class. |
|
| 909 |
/// This \ref BfsWizard class needs default traits, |
|
| 910 |
/// as well as the \ref Bfs class. |
|
| 911 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
|
| 912 |
/// \ref BfsWizard class. |
|
| 910 |
/// Default traits class used by BfsWizard. |
|
| 911 |
/// \tparam GR The type of the digraph. |
|
| 913 | 912 |
template<class GR> |
| 914 | 913 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
| 915 | 914 |
{
|
| 916 | 915 |
|
| 917 | 916 |
typedef BfsWizardDefaultTraits<GR> Base; |
| 918 | 917 |
protected: |
| 919 | 918 |
//The type of the nodes in the digraph. |
| 920 | 919 |
typedef typename Base::Digraph::Node Node; |
| 921 | 920 |
|
| 922 | 921 |
//Pointer to the digraph the algorithm runs on. |
| 923 | 922 |
void *_g; |
| 924 | 923 |
//Pointer to the map of reached nodes. |
| 925 | 924 |
void *_reached; |
| 926 | 925 |
//Pointer to the map of processed nodes. |
| 927 | 926 |
void *_processed; |
| 928 | 927 |
//Pointer to the map of predecessors arcs. |
| 929 | 928 |
void *_pred; |
| 930 | 929 |
//Pointer to the map of distances. |
| 931 | 930 |
void *_dist; |
| 932 | 931 |
//Pointer to the shortest path to the target node. |
| 933 | 932 |
void *_path; |
| 934 | 933 |
//Pointer to the distance of the target node. |
| 935 | 934 |
int *_di; |
| 936 | 935 |
|
| 937 | 936 |
public: |
| 938 | 937 |
/// Constructor. |
| 939 | 938 |
|
| 940 |
/// This constructor does not require parameters, |
|
| 939 |
/// This constructor does not require parameters, it initiates |
|
| 941 | 940 |
/// all of the attributes to \c 0. |
| 942 | 941 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 943 | 942 |
_dist(0), _path(0), _di(0) {}
|
| 944 | 943 |
|
| 945 | 944 |
/// Constructor. |
| 946 | 945 |
|
| 947 | 946 |
/// This constructor requires one parameter, |
| 948 | 947 |
/// others are initiated to \c 0. |
| 949 | 948 |
/// \param g The digraph the algorithm runs on. |
| 950 | 949 |
BfsWizardBase(const GR &g) : |
| 951 | 950 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 952 | 951 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 953 | 952 |
|
| 954 | 953 |
}; |
| 955 | 954 |
|
| 956 | 955 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
| 957 | 956 |
|
| 958 | 957 |
/// This auxiliary class is created to implement the |
| 959 | 958 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
| 960 | 959 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 961 | 960 |
/// functions and features of the plain \ref Bfs. |
| 962 | 961 |
/// |
| 963 | 962 |
/// This class should only be used through the \ref bfs() function, |
| 964 | 963 |
/// which makes it easier to use the algorithm. |
| 965 | 964 |
template<class TR> |
| 966 | 965 |
class BfsWizard : public TR |
| 967 | 966 |
{
|
| 968 | 967 |
typedef TR Base; |
| 969 | 968 |
|
| 970 |
///The type of the digraph the algorithm runs on. |
|
| 971 | 969 |
typedef typename TR::Digraph Digraph; |
| 972 | 970 |
|
| 973 | 971 |
typedef typename Digraph::Node Node; |
| 974 | 972 |
typedef typename Digraph::NodeIt NodeIt; |
| 975 | 973 |
typedef typename Digraph::Arc Arc; |
| 976 | 974 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 977 | 975 |
|
| 978 |
///\brief The type of the map that stores the predecessor |
|
| 979 |
///arcs of the shortest paths. |
|
| 980 | 976 |
typedef typename TR::PredMap PredMap; |
| 981 |
///\brief The type of the map that stores the distances of the nodes. |
|
| 982 | 977 |
typedef typename TR::DistMap DistMap; |
| 983 |
///\brief The type of the map that indicates which nodes are reached. |
|
| 984 | 978 |
typedef typename TR::ReachedMap ReachedMap; |
| 985 |
///\brief The type of the map that indicates which nodes are processed. |
|
| 986 | 979 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 987 |
///The type of the shortest paths |
|
| 988 | 980 |
typedef typename TR::Path Path; |
| 989 | 981 |
|
| 990 | 982 |
public: |
| 991 | 983 |
|
| 992 | 984 |
/// Constructor. |
| 993 | 985 |
BfsWizard() : TR() {}
|
| 994 | 986 |
|
| 995 | 987 |
/// Constructor that requires parameters. |
| 996 | 988 |
|
| 997 | 989 |
/// Constructor that requires parameters. |
| 998 | 990 |
/// These parameters will be the default values for the traits class. |
| 999 | 991 |
/// \param g The digraph the algorithm runs on. |
| 1000 | 992 |
BfsWizard(const Digraph &g) : |
| 1001 | 993 |
TR(g) {}
|
| 1002 | 994 |
|
| 1003 | 995 |
///Copy constructor |
| 1004 | 996 |
BfsWizard(const TR &b) : TR(b) {}
|
| 1005 | 997 |
|
| 1006 | 998 |
~BfsWizard() {}
|
| 1007 | 999 |
|
| 1008 | 1000 |
///Runs BFS algorithm from the given source node. |
| 1009 | 1001 |
|
| 1010 | 1002 |
///This method runs BFS algorithm from node \c s |
| 1011 | 1003 |
///in order to compute the shortest path to each node. |
| 1012 | 1004 |
void run(Node s) |
| 1013 | 1005 |
{
|
| 1014 | 1006 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 1015 | 1007 |
if (Base::_pred) |
| 1016 | 1008 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1017 | 1009 |
if (Base::_dist) |
| 1018 | 1010 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1019 | 1011 |
if (Base::_reached) |
| 1020 | 1012 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 1021 | 1013 |
if (Base::_processed) |
| 1022 | 1014 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1023 | 1015 |
if (s!=INVALID) |
| 1024 | 1016 |
alg.run(s); |
| 1025 | 1017 |
else |
| 1026 | 1018 |
alg.run(); |
| 1027 | 1019 |
} |
| 1028 | 1020 |
|
| 1029 | 1021 |
///Finds the shortest path between \c s and \c t. |
| 1030 | 1022 |
|
| 1031 | 1023 |
///This method runs BFS algorithm from node \c s |
| 1032 | 1024 |
///in order to compute the shortest path to node \c t |
| 1033 | 1025 |
///(it stops searching when \c t is processed). |
| 1034 | 1026 |
/// |
| 1035 | 1027 |
///\return \c true if \c t is reachable form \c s. |
| 1036 | 1028 |
bool run(Node s, Node t) |
| 1037 | 1029 |
{
|
| 1038 | 1030 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 1039 | 1031 |
if (Base::_pred) |
| 1040 | 1032 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1041 | 1033 |
if (Base::_dist) |
| 1042 | 1034 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1043 | 1035 |
if (Base::_reached) |
| 1044 | 1036 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 1045 | 1037 |
if (Base::_processed) |
| 1046 | 1038 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1047 | 1039 |
alg.run(s,t); |
| 1048 | 1040 |
if (Base::_path) |
| 1049 | 1041 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
| 1050 | 1042 |
if (Base::_di) |
| 1051 | 1043 |
*Base::_di = alg.dist(t); |
| 1052 | 1044 |
return alg.reached(t); |
| 1053 | 1045 |
} |
| 1054 | 1046 |
|
| 1055 | 1047 |
///Runs BFS algorithm to visit all nodes in the digraph. |
| 1056 | 1048 |
|
| 1057 | 1049 |
///This method runs BFS algorithm in order to compute |
| 1058 | 1050 |
///the shortest path to each node. |
| 1059 | 1051 |
void run() |
| 1060 | 1052 |
{
|
| 1061 | 1053 |
run(INVALID); |
| 1062 | 1054 |
} |
| 1063 | 1055 |
|
| 1064 | 1056 |
template<class T> |
| 1065 | 1057 |
struct SetPredMapBase : public Base {
|
| 1066 | 1058 |
typedef T PredMap; |
| 1067 | 1059 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1068 | 1060 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1069 | 1061 |
}; |
| 1070 |
///\brief \ref named-func-param "Named parameter" |
|
| 1071 |
///for setting PredMap object. |
|
| 1062 |
|
|
| 1063 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1064 |
///the predecessor map. |
|
| 1072 | 1065 |
/// |
| 1073 |
///\ref named-func-param "Named parameter" |
|
| 1074 |
///for setting PredMap object. |
|
| 1066 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1067 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1075 | 1068 |
template<class T> |
| 1076 | 1069 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1077 | 1070 |
{
|
| 1078 | 1071 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1079 | 1072 |
return BfsWizard<SetPredMapBase<T> >(*this); |
| 1080 | 1073 |
} |
| 1081 | 1074 |
|
| 1082 | 1075 |
template<class T> |
| 1083 | 1076 |
struct SetReachedMapBase : public Base {
|
| 1084 | 1077 |
typedef T ReachedMap; |
| 1085 | 1078 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
|
| 1086 | 1079 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1087 | 1080 |
}; |
| 1088 |
///\brief \ref named-func-param "Named parameter" |
|
| 1089 |
///for setting ReachedMap object. |
|
| 1081 |
|
|
| 1082 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1083 |
///the reached map. |
|
| 1090 | 1084 |
/// |
| 1091 |
/// \ref named-func-param "Named parameter" |
|
| 1092 |
///for setting ReachedMap object. |
|
| 1085 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1086 |
///the map that indicates which nodes are reached. |
|
| 1093 | 1087 |
template<class T> |
| 1094 | 1088 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| 1095 | 1089 |
{
|
| 1096 | 1090 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1097 | 1091 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
| 1098 | 1092 |
} |
| 1099 | 1093 |
|
| 1100 | 1094 |
template<class T> |
| 1101 | 1095 |
struct SetDistMapBase : public Base {
|
| 1102 | 1096 |
typedef T DistMap; |
| 1103 | 1097 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1104 | 1098 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1105 | 1099 |
}; |
| 1106 |
///\brief \ref named-func-param "Named parameter" |
|
| 1107 |
///for setting DistMap object. |
|
| 1100 |
|
|
| 1101 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1102 |
///the distance map. |
|
| 1108 | 1103 |
/// |
| 1109 |
/// \ref named-func-param "Named parameter" |
|
| 1110 |
///for setting DistMap object. |
|
| 1104 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1105 |
///the map that stores the distances of the nodes calculated |
|
| 1106 |
///by the algorithm. |
|
| 1111 | 1107 |
template<class T> |
| 1112 | 1108 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1113 | 1109 |
{
|
| 1114 | 1110 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1115 | 1111 |
return BfsWizard<SetDistMapBase<T> >(*this); |
| 1116 | 1112 |
} |
| 1117 | 1113 |
|
| 1118 | 1114 |
template<class T> |
| 1119 | 1115 |
struct SetProcessedMapBase : public Base {
|
| 1120 | 1116 |
typedef T ProcessedMap; |
| 1121 | 1117 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1122 | 1118 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1123 | 1119 |
}; |
| 1124 |
///\brief \ref named-func-param "Named parameter" |
|
| 1125 |
///for setting ProcessedMap object. |
|
| 1120 |
|
|
| 1121 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1122 |
///the processed map. |
|
| 1126 | 1123 |
/// |
| 1127 |
/// \ref named-func-param "Named parameter" |
|
| 1128 |
///for setting ProcessedMap object. |
|
| 1124 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1125 |
///the map that indicates which nodes are processed. |
|
| 1129 | 1126 |
template<class T> |
| 1130 | 1127 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1131 | 1128 |
{
|
| 1132 | 1129 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1133 | 1130 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
| 1134 | 1131 |
} |
| 1135 | 1132 |
|
| 1136 | 1133 |
template<class T> |
| 1137 | 1134 |
struct SetPathBase : public Base {
|
| 1138 | 1135 |
typedef T Path; |
| 1139 | 1136 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1140 | 1137 |
}; |
| 1141 | 1138 |
///\brief \ref named-func-param "Named parameter" |
| 1142 | 1139 |
///for getting the shortest path to the target node. |
| 1143 | 1140 |
/// |
| 1144 | 1141 |
///\ref named-func-param "Named parameter" |
| 1145 | 1142 |
///for getting the shortest path to the target node. |
| 1146 | 1143 |
template<class T> |
| 1147 | 1144 |
BfsWizard<SetPathBase<T> > path(const T &t) |
| 1148 | 1145 |
{
|
| 1149 | 1146 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1150 | 1147 |
return BfsWizard<SetPathBase<T> >(*this); |
| 1151 | 1148 |
} |
| 1152 | 1149 |
|
| 1153 | 1150 |
///\brief \ref named-func-param "Named parameter" |
| 1154 | 1151 |
///for getting the distance of the target node. |
| 1155 | 1152 |
/// |
| 1156 | 1153 |
///\ref named-func-param "Named parameter" |
| 1157 | 1154 |
///for getting the distance of the target node. |
| 1158 | 1155 |
BfsWizard dist(const int &d) |
| 1159 | 1156 |
{
|
| 1160 | 1157 |
Base::_di=const_cast<int*>(&d); |
| 1161 | 1158 |
return *this; |
| 1162 | 1159 |
} |
| 1163 | 1160 |
|
| 1164 | 1161 |
}; |
| 1165 | 1162 |
|
| 1166 | 1163 |
///Function-type interface for BFS algorithm. |
| 1167 | 1164 |
|
| 1168 | 1165 |
/// \ingroup search |
| 1169 | 1166 |
///Function-type interface for BFS algorithm. |
| 1170 | 1167 |
/// |
| 1171 | 1168 |
///This function also has several \ref named-func-param "named parameters", |
| 1172 | 1169 |
///they are declared as the members of class \ref BfsWizard. |
| 1173 | 1170 |
///The following examples show how to use these parameters. |
| 1174 | 1171 |
///\code |
| 1175 | 1172 |
/// // Compute shortest path from node s to each node |
| 1176 | 1173 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
| 1177 | 1174 |
/// |
| 1178 | 1175 |
/// // Compute shortest path from s to t |
| 1179 | 1176 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
| 1180 | 1177 |
///\endcode |
| 1181 | 1178 |
///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()" |
| 1182 | 1179 |
///to the end of the parameter list. |
| 1183 | 1180 |
///\sa BfsWizard |
| 1184 | 1181 |
///\sa Bfs |
| 1185 | 1182 |
template<class GR> |
| 1186 | 1183 |
BfsWizard<BfsWizardBase<GR> > |
| 1187 | 1184 |
bfs(const GR &digraph) |
| 1188 | 1185 |
{
|
| 1189 | 1186 |
return BfsWizard<BfsWizardBase<GR> >(digraph); |
| 1190 | 1187 |
} |
| 1191 | 1188 |
|
| 1192 | 1189 |
#ifdef DOXYGEN |
| 1193 | 1190 |
/// \brief Visitor class for BFS. |
| 1194 | 1191 |
/// |
| 1195 | 1192 |
/// This class defines the interface of the BfsVisit events, and |
| 1196 | 1193 |
/// it could be the base of a real visitor class. |
| 1197 | 1194 |
template <typename GR> |
| 1198 | 1195 |
struct BfsVisitor {
|
| 1199 | 1196 |
typedef GR Digraph; |
| 1200 | 1197 |
typedef typename Digraph::Arc Arc; |
| 1201 | 1198 |
typedef typename Digraph::Node Node; |
| 1202 | 1199 |
/// \brief Called for the source node(s) of the BFS. |
| 1203 | 1200 |
/// |
| 1204 | 1201 |
/// This function is called for the source node(s) of the BFS. |
| 1205 | 1202 |
void start(const Node& node) {}
|
| 1206 | 1203 |
/// \brief Called when a node is reached first time. |
| 1207 | 1204 |
/// |
| 1208 | 1205 |
/// This function is called when a node is reached first time. |
| 1209 | 1206 |
void reach(const Node& node) {}
|
| 1210 | 1207 |
/// \brief Called when a node is processed. |
| 1211 | 1208 |
/// |
| 1212 | 1209 |
/// This function is called when a node is processed. |
| 1213 | 1210 |
void process(const Node& node) {}
|
| 1214 | 1211 |
/// \brief Called when an arc reaches a new node. |
| 1215 | 1212 |
/// |
| 1216 | 1213 |
/// This function is called when the BFS finds an arc whose target node |
| 1217 | 1214 |
/// is not reached yet. |
| 1218 | 1215 |
void discover(const Arc& arc) {}
|
| 1219 | 1216 |
/// \brief Called when an arc is examined but its target node is |
| 1220 | 1217 |
/// already discovered. |
| 1221 | 1218 |
/// |
| 1222 | 1219 |
/// This function is called when an arc is examined but its target node is |
| 1223 | 1220 |
/// already discovered. |
| 1224 | 1221 |
void examine(const Arc& arc) {}
|
| 1225 | 1222 |
}; |
| 1226 | 1223 |
#else |
| 1227 | 1224 |
template <typename GR> |
| 1228 | 1225 |
struct BfsVisitor {
|
| 1229 | 1226 |
typedef GR Digraph; |
| 1230 | 1227 |
typedef typename Digraph::Arc Arc; |
| 1231 | 1228 |
typedef typename Digraph::Node Node; |
| 1232 | 1229 |
void start(const Node&) {}
|
| 1233 | 1230 |
void reach(const Node&) {}
|
| 1234 | 1231 |
void process(const Node&) {}
|
| 1235 | 1232 |
void discover(const Arc&) {}
|
| 1236 | 1233 |
void examine(const Arc&) {}
|
| 1237 | 1234 |
|
| 1238 | 1235 |
template <typename _Visitor> |
| 1239 | 1236 |
struct Constraints {
|
| 1240 | 1237 |
void constraints() {
|
| 1241 | 1238 |
Arc arc; |
| 1242 | 1239 |
Node node; |
| 1243 | 1240 |
visitor.start(node); |
| 1244 | 1241 |
visitor.reach(node); |
| 1245 | 1242 |
visitor.process(node); |
| 1246 | 1243 |
visitor.discover(arc); |
| 1247 | 1244 |
visitor.examine(arc); |
| 1248 | 1245 |
} |
| 1249 | 1246 |
_Visitor& visitor; |
| 1250 | 1247 |
}; |
| 1251 | 1248 |
}; |
| 1252 | 1249 |
#endif |
| 1253 | 1250 |
|
| 1254 | 1251 |
/// \brief Default traits class of BfsVisit class. |
| 1255 | 1252 |
/// |
| 1256 | 1253 |
/// Default traits class of BfsVisit class. |
| 1257 | 1254 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1258 | 1255 |
template<class GR> |
| 1259 | 1256 |
struct BfsVisitDefaultTraits {
|
| 1260 | 1257 |
|
| 1261 | 1258 |
/// \brief The type of the digraph the algorithm runs on. |
| 1262 | 1259 |
typedef GR Digraph; |
| 1263 | 1260 |
|
| 1264 | 1261 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1265 | 1262 |
/// |
| 1266 | 1263 |
/// The type of the map that indicates which nodes are reached. |
| 1267 |
/// It must |
|
| 1264 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 1268 | 1265 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1269 | 1266 |
|
| 1270 | 1267 |
/// \brief Instantiates a ReachedMap. |
| 1271 | 1268 |
/// |
| 1272 | 1269 |
/// This function instantiates a ReachedMap. |
| 1273 | 1270 |
/// \param digraph is the digraph, to which |
| 1274 | 1271 |
/// we would like to define the ReachedMap. |
| 1275 | 1272 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1276 | 1273 |
return new ReachedMap(digraph); |
| 1277 | 1274 |
} |
| 1278 | 1275 |
|
| 1279 | 1276 |
}; |
| 1280 | 1277 |
|
| 1281 | 1278 |
/// \ingroup search |
| 1282 | 1279 |
/// |
| 1283 | 1280 |
/// \brief BFS algorithm class with visitor interface. |
| 1284 | 1281 |
/// |
| 1285 | 1282 |
/// This class provides an efficient implementation of the BFS algorithm |
| 1286 | 1283 |
/// with visitor interface. |
| 1287 | 1284 |
/// |
| 1288 | 1285 |
/// The BfsVisit class provides an alternative interface to the Bfs |
| 1289 | 1286 |
/// class. It works with callback mechanism, the BfsVisit object calls |
| 1290 | 1287 |
/// the member functions of the \c Visitor class on every BFS event. |
| 1291 | 1288 |
/// |
| 1292 | 1289 |
/// This interface of the BFS algorithm should be used in special cases |
| 1293 | 1290 |
/// when extra actions have to be performed in connection with certain |
| 1294 | 1291 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
| 1295 | 1292 |
/// instead. |
| 1296 | 1293 |
/// |
| 1297 | 1294 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1298 | 1295 |
/// The default type is \ref ListDigraph. |
| 1299 | 1296 |
/// The value of GR is not used directly by \ref BfsVisit, |
| 1300 | 1297 |
/// it is only passed to \ref BfsVisitDefaultTraits. |
| 1301 | 1298 |
/// \tparam VS The Visitor type that is used by the algorithm. |
| 1302 | 1299 |
/// \ref BfsVisitor "BfsVisitor<GR>" is an empty visitor, which |
| 1303 | 1300 |
/// does not observe the BFS events. If you want to observe the BFS |
| 1304 | 1301 |
/// events, you should implement your own visitor class. |
| 1305 | 1302 |
/// \tparam TR Traits class to set various data types used by the |
| 1306 | 1303 |
/// algorithm. The default traits class is |
| 1307 | 1304 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<GR>". |
| 1308 | 1305 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
| 1309 | 1306 |
/// a BFS visit traits class. |
| 1310 | 1307 |
#ifdef DOXYGEN |
| 1311 | 1308 |
template <typename GR, typename VS, typename TR> |
| 1312 | 1309 |
#else |
| 1313 | 1310 |
template <typename GR = ListDigraph, |
| 1314 | 1311 |
typename VS = BfsVisitor<GR>, |
| 1315 | 1312 |
typename TR = BfsVisitDefaultTraits<GR> > |
| 1316 | 1313 |
#endif |
| 1317 | 1314 |
class BfsVisit {
|
| 1318 | 1315 |
public: |
| 1319 | 1316 |
|
| 1320 | 1317 |
///The traits class. |
| 1321 | 1318 |
typedef TR Traits; |
| 1322 | 1319 |
|
| 1323 | 1320 |
///The type of the digraph the algorithm runs on. |
| 1324 | 1321 |
typedef typename Traits::Digraph Digraph; |
| 1325 | 1322 |
|
| 1326 | 1323 |
///The visitor type used by the algorithm. |
| 1327 | 1324 |
typedef VS Visitor; |
| 1328 | 1325 |
|
| 1329 | 1326 |
///The type of the map that indicates which nodes are reached. |
| 1330 | 1327 |
typedef typename Traits::ReachedMap ReachedMap; |
| 1331 | 1328 |
|
| 1332 | 1329 |
private: |
| 1333 | 1330 |
|
| 1334 | 1331 |
typedef typename Digraph::Node Node; |
| 1335 | 1332 |
typedef typename Digraph::NodeIt NodeIt; |
| 1336 | 1333 |
typedef typename Digraph::Arc Arc; |
| 1337 | 1334 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1338 | 1335 |
|
| 1339 | 1336 |
//Pointer to the underlying digraph. |
| 1340 | 1337 |
const Digraph *_digraph; |
| 1341 | 1338 |
//Pointer to the visitor object. |
| 1342 | 1339 |
Visitor *_visitor; |
| 1343 | 1340 |
//Pointer to the map of reached status of the nodes. |
| 1344 | 1341 |
ReachedMap *_reached; |
| 1345 | 1342 |
//Indicates if _reached is locally allocated (true) or not. |
| 1346 | 1343 |
bool local_reached; |
| 1347 | 1344 |
|
| 1348 | 1345 |
std::vector<typename Digraph::Node> _list; |
| 1349 | 1346 |
int _list_front, _list_back; |
| 1350 | 1347 |
|
| 1351 | 1348 |
//Creates the maps if necessary. |
| 1352 | 1349 |
void create_maps() {
|
| 1353 | 1350 |
if(!_reached) {
|
| 1354 | 1351 |
local_reached = true; |
| 1355 | 1352 |
_reached = Traits::createReachedMap(*_digraph); |
| 1356 | 1353 |
} |
| 1357 | 1354 |
} |
| 1358 | 1355 |
|
| 1359 | 1356 |
protected: |
| 1360 | 1357 |
|
| 1361 | 1358 |
BfsVisit() {}
|
| 1362 | 1359 |
|
| 1363 | 1360 |
public: |
| 1364 | 1361 |
|
| 1365 | 1362 |
typedef BfsVisit Create; |
| 1366 | 1363 |
|
| 1367 | 1364 |
/// \name Named Template Parameters |
| 1368 | 1365 |
|
| 1369 | 1366 |
///@{
|
| 1370 | 1367 |
template <class T> |
| 1371 | 1368 |
struct SetReachedMapTraits : public Traits {
|
| 1372 | 1369 |
typedef T ReachedMap; |
| 1373 | 1370 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1374 | 1371 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 1375 | 1372 |
return 0; // ignore warnings |
| 1376 | 1373 |
} |
| 1377 | 1374 |
}; |
| 1378 | 1375 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1379 | 1376 |
/// ReachedMap type. |
| 1380 | 1377 |
/// |
| 1381 | 1378 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
| 1382 | 1379 |
template <class T> |
| 1383 | 1380 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
| 1384 | 1381 |
SetReachedMapTraits<T> > {
|
| 1385 | 1382 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
| 1386 | 1383 |
}; |
| 1387 | 1384 |
///@} |
| 1388 | 1385 |
|
| 1389 | 1386 |
public: |
| 1390 | 1387 |
|
| 1391 | 1388 |
/// \brief Constructor. |
| 1392 | 1389 |
/// |
| 1393 | 1390 |
/// Constructor. |
| 1394 | 1391 |
/// |
| 1395 | 1392 |
/// \param digraph The digraph the algorithm runs on. |
| 1396 | 1393 |
/// \param visitor The visitor object of the algorithm. |
| 1397 | 1394 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
| 1398 | 1395 |
: _digraph(&digraph), _visitor(&visitor), |
| 1399 | 1396 |
_reached(0), local_reached(false) {}
|
| 1400 | 1397 |
|
| 1401 | 1398 |
/// \brief Destructor. |
| 1402 | 1399 |
~BfsVisit() {
|
| 1403 | 1400 |
if(local_reached) delete _reached; |
| 1404 | 1401 |
} |
| 1405 | 1402 |
|
| 1406 | 1403 |
/// \brief Sets the map that indicates which nodes are reached. |
| 1407 | 1404 |
/// |
| 1408 | 1405 |
/// Sets the map that indicates which nodes are reached. |
| 1409 | 1406 |
/// If you don't use this function before calling \ref run(Node) "run()" |
| 1410 | 1407 |
/// or \ref init(), an instance will be allocated automatically. |
| 1411 | 1408 |
/// The destructor deallocates this automatically allocated map, |
| 1412 | 1409 |
/// of course. |
| 1413 | 1410 |
/// \return <tt> (*this) </tt> |
| 1414 | 1411 |
BfsVisit &reachedMap(ReachedMap &m) {
|
| 1415 | 1412 |
if(local_reached) {
|
| 1416 | 1413 |
delete _reached; |
| 1417 | 1414 |
local_reached = false; |
| 1418 | 1415 |
} |
| 1419 | 1416 |
_reached = &m; |
| 1420 | 1417 |
return *this; |
| 1421 | 1418 |
} |
| 1422 | 1419 |
|
| 1423 | 1420 |
public: |
| 1424 | 1421 |
|
| 1425 | 1422 |
/// \name Execution Control |
| 1426 | 1423 |
/// The simplest way to execute the BFS algorithm is to use one of the |
| 1427 | 1424 |
/// member functions called \ref run(Node) "run()".\n |
| 1428 | 1425 |
/// If you need more control on the execution, first you have to call |
| 1429 | 1426 |
/// \ref init(), then you can add several source nodes with |
| 1430 | 1427 |
/// \ref addSource(). Finally the actual path computation can be |
| 1431 | 1428 |
/// performed with one of the \ref start() functions. |
| 1432 | 1429 |
|
| 1433 | 1430 |
/// @{
|
| 1434 | 1431 |
|
| 1435 | 1432 |
/// \brief Initializes the internal data structures. |
| 1436 | 1433 |
/// |
| 1437 | 1434 |
/// Initializes the internal data structures. |
| 1438 | 1435 |
void init() {
|
| 1439 | 1436 |
create_maps(); |
| 1440 | 1437 |
_list.resize(countNodes(*_digraph)); |
| 1441 | 1438 |
_list_front = _list_back = -1; |
| 1442 | 1439 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
|
| 1443 | 1440 |
_reached->set(u, false); |
| 1444 | 1441 |
} |
| 1445 | 1442 |
} |
| 1446 | 1443 |
|
| 1447 | 1444 |
/// \brief Adds a new source node. |
| 1448 | 1445 |
/// |
| 1449 | 1446 |
/// Adds a new source node to the set of nodes to be processed. |
| 1450 | 1447 |
void addSource(Node s) {
|
| 1451 | 1448 |
if(!(*_reached)[s]) {
|
| 1452 | 1449 |
_reached->set(s,true); |
| 1453 | 1450 |
_visitor->start(s); |
| 1454 | 1451 |
_visitor->reach(s); |
| 1455 | 1452 |
_list[++_list_back] = s; |
| 1456 | 1453 |
} |
| 1457 | 1454 |
} |
| 1458 | 1455 |
|
| 1459 | 1456 |
/// \brief Processes the next node. |
| 1460 | 1457 |
/// |
| 1461 | 1458 |
/// Processes the next node. |
| 1462 | 1459 |
/// |
| 1463 | 1460 |
/// \return The processed node. |
| 1464 | 1461 |
/// |
| 1465 | 1462 |
/// \pre The queue must not be empty. |
| 1466 | 1463 |
Node processNextNode() {
|
| 1467 | 1464 |
Node n = _list[++_list_front]; |
| 1468 | 1465 |
_visitor->process(n); |
| 1469 | 1466 |
Arc e; |
| 1470 | 1467 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1471 | 1468 |
Node m = _digraph->target(e); |
| 1472 | 1469 |
if (!(*_reached)[m]) {
|
| 1473 | 1470 |
_visitor->discover(e); |
| 1474 | 1471 |
_visitor->reach(m); |
| 1475 | 1472 |
_reached->set(m, true); |
| 1476 | 1473 |
_list[++_list_back] = m; |
| 1477 | 1474 |
} else {
|
| 1478 | 1475 |
_visitor->examine(e); |
| 1479 | 1476 |
} |
| 1480 | 1477 |
} |
| 1481 | 1478 |
return n; |
| 1482 | 1479 |
} |
| 1483 | 1480 |
|
| 1484 | 1481 |
/// \brief Processes the next node. |
| 1485 | 1482 |
/// |
| 1486 | 1483 |
/// Processes the next node and checks if the given target node |
| 1487 | 1484 |
/// is reached. If the target node is reachable from the processed |
| 1488 | 1485 |
/// node, then the \c reach parameter will be set to \c true. |
| 1489 | 1486 |
/// |
| 1490 | 1487 |
/// \param target The target node. |
| 1491 | 1488 |
/// \retval reach Indicates if the target node is reached. |
| 1492 | 1489 |
/// It should be initially \c false. |
| 1493 | 1490 |
/// |
| 1494 | 1491 |
/// \return The processed node. |
| 1495 | 1492 |
/// |
| 1496 | 1493 |
/// \pre The queue must not be empty. |
| 1497 | 1494 |
Node processNextNode(Node target, bool& reach) {
|
| 1498 | 1495 |
Node n = _list[++_list_front]; |
| 1499 | 1496 |
_visitor->process(n); |
| 1500 | 1497 |
Arc e; |
| 1501 | 1498 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1502 | 1499 |
Node m = _digraph->target(e); |
| 1503 | 1500 |
if (!(*_reached)[m]) {
|
| 1504 | 1501 |
_visitor->discover(e); |
| 1505 | 1502 |
_visitor->reach(m); |
| 1506 | 1503 |
_reached->set(m, true); |
| 1507 | 1504 |
_list[++_list_back] = m; |
| 1508 | 1505 |
reach = reach || (target == m); |
| 1509 | 1506 |
} else {
|
| 1510 | 1507 |
_visitor->examine(e); |
| 1511 | 1508 |
} |
| 1512 | 1509 |
} |
| 1513 | 1510 |
return n; |
| 1514 | 1511 |
} |
| 1515 | 1512 |
|
| 1516 | 1513 |
/// \brief Processes the next node. |
| 1517 | 1514 |
/// |
| 1518 | 1515 |
/// Processes the next node and checks if at least one of reached |
| 1519 | 1516 |
/// nodes has \c true value in the \c nm node map. If one node |
| 1520 | 1517 |
/// with \c true value is reachable from the processed node, then the |
| 1521 | 1518 |
/// \c rnode parameter will be set to the first of such nodes. |
| 1522 | 1519 |
/// |
| 1523 | 1520 |
/// \param nm A \c bool (or convertible) node map that indicates the |
| 1524 | 1521 |
/// possible targets. |
| 1525 | 1522 |
/// \retval rnode The reached target node. |
| 1526 | 1523 |
/// It should be initially \c INVALID. |
| 1527 | 1524 |
/// |
| 1528 | 1525 |
/// \return The processed node. |
| 1529 | 1526 |
/// |
| 1530 | 1527 |
/// \pre The queue must not be empty. |
| 1531 | 1528 |
template <typename NM> |
| 1532 | 1529 |
Node processNextNode(const NM& nm, Node& rnode) {
|
| 1533 | 1530 |
Node n = _list[++_list_front]; |
| 1534 | 1531 |
_visitor->process(n); |
| 1535 | 1532 |
Arc e; |
| 1536 | 1533 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
|
| 1537 | 1534 |
Node m = _digraph->target(e); |
| 1538 | 1535 |
if (!(*_reached)[m]) {
|
| 1539 | 1536 |
_visitor->discover(e); |
| 1540 | 1537 |
_visitor->reach(m); |
| 1541 | 1538 |
_reached->set(m, true); |
| 1542 | 1539 |
_list[++_list_back] = m; |
| 1543 | 1540 |
if (nm[m] && rnode == INVALID) rnode = m; |
| 1544 | 1541 |
} else {
|
| 1545 | 1542 |
_visitor->examine(e); |
| 1546 | 1543 |
} |
| 1547 | 1544 |
} |
| 1548 | 1545 |
return n; |
| 1549 | 1546 |
} |
| 1550 | 1547 |
|
| 1551 | 1548 |
/// \brief The next node to be processed. |
| 1552 | 1549 |
/// |
| 1553 | 1550 |
/// Returns the next node to be processed or \c INVALID if the queue |
| 1554 | 1551 |
/// is empty. |
| 1555 | 1552 |
Node nextNode() const {
|
| 1556 | 1553 |
return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
| 1557 | 1554 |
} |
| 1558 | 1555 |
|
| 1559 | 1556 |
/// \brief Returns \c false if there are nodes |
| 1560 | 1557 |
/// to be processed. |
| 1561 | 1558 |
/// |
| 1562 | 1559 |
/// Returns \c false if there are nodes |
| 1563 | 1560 |
/// to be processed in the queue. |
| 1564 | 1561 |
bool emptyQueue() const { return _list_front == _list_back; }
|
| 1565 | 1562 |
|
| 1566 | 1563 |
/// \brief Returns the number of the nodes to be processed. |
| 1567 | 1564 |
/// |
| 1568 | 1565 |
/// Returns the number of the nodes to be processed in the queue. |
| 1569 | 1566 |
int queueSize() const { return _list_back - _list_front; }
|
| 1570 | 1567 |
|
| 1571 | 1568 |
/// \brief Executes the algorithm. |
| 1572 | 1569 |
/// |
| 1573 | 1570 |
/// Executes the algorithm. |
| 1574 | 1571 |
/// |
| 1575 | 1572 |
/// This method runs the %BFS algorithm from the root node(s) |
| 1576 | 1573 |
/// in order to compute the shortest path to each node. |
| 1577 | 1574 |
/// |
| 1578 | 1575 |
/// The algorithm computes |
| 1579 | 1576 |
/// - the shortest path tree (forest), |
| 1580 | 1577 |
/// - the distance of each node from the root(s). |
| 1581 | 1578 |
/// |
| 1582 | 1579 |
/// \pre init() must be called and at least one root node should be added |
| 1583 | 1580 |
/// with addSource() before using this function. |
| 1584 | 1581 |
/// |
| 1585 | 1582 |
/// \note <tt>b.start()</tt> is just a shortcut of the following code. |
| 1586 | 1583 |
/// \code |
| 1587 | 1584 |
/// while ( !b.emptyQueue() ) {
|
| 1588 | 1585 |
/// b.processNextNode(); |
| 1589 | 1586 |
/// } |
| 1590 | 1587 |
/// \endcode |
| 1591 | 1588 |
void start() {
|
| 1592 | 1589 |
while ( !emptyQueue() ) processNextNode(); |
| 1593 | 1590 |
} |
| 1594 | 1591 |
|
| 1595 | 1592 |
/// \brief Executes the algorithm until the given target node is reached. |
| 1596 | 1593 |
/// |
| 1597 | 1594 |
/// Executes the algorithm until the given target node is reached. |
| 1598 | 1595 |
/// |
| 1599 | 1596 |
/// This method runs the %BFS algorithm from the root node(s) |
| 1600 | 1597 |
/// in order to compute the shortest path to \c t. |
| 1601 | 1598 |
/// |
| 1602 | 1599 |
/// The algorithm computes |
| 1603 | 1600 |
/// - the shortest path to \c t, |
| 1604 | 1601 |
/// - the distance of \c t from the root(s). |
| 1605 | 1602 |
/// |
| 1606 | 1603 |
/// \pre init() must be called and at least one root node should be |
| 1607 | 1604 |
/// added with addSource() before using this function. |
| 1608 | 1605 |
/// |
| 1609 | 1606 |
/// \note <tt>b.start(t)</tt> is just a shortcut of the following code. |
| 1610 | 1607 |
/// \code |
| 1611 | 1608 |
/// bool reach = false; |
| 1612 | 1609 |
/// while ( !b.emptyQueue() && !reach ) {
|
| 1613 | 1610 |
/// b.processNextNode(t, reach); |
| 1614 | 1611 |
/// } |
| 1615 | 1612 |
/// \endcode |
| 1616 | 1613 |
void start(Node t) {
|
| 1617 | 1614 |
bool reach = false; |
| 1618 | 1615 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
| 1619 | 1616 |
} |
| 1620 | 1617 |
|
| 1621 | 1618 |
/// \brief Executes the algorithm until a condition is met. |
| 1622 | 1619 |
/// |
| 1623 | 1620 |
/// Executes the algorithm until a condition is met. |
| 1624 | 1621 |
/// |
| 1625 | 1622 |
/// This method runs the %BFS algorithm from the root node(s) in |
| 1626 | 1623 |
/// order to compute the shortest path to a node \c v with |
| 1627 | 1624 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 1628 | 1625 |
/// |
| 1629 | 1626 |
/// \param nm must be a bool (or convertible) node map. The |
| 1630 | 1627 |
/// algorithm will stop when it reaches a node \c v with |
| 1631 | 1628 |
/// <tt>nm[v]</tt> true. |
| 1632 | 1629 |
/// |
| 1633 | 1630 |
/// \return The reached node \c v with <tt>nm[v]</tt> true or |
| 1634 | 1631 |
/// \c INVALID if no such node was found. |
| 1635 | 1632 |
/// |
| 1636 | 1633 |
/// \pre init() must be called and at least one root node should be |
| 1637 | 1634 |
/// added with addSource() before using this function. |
| 1638 | 1635 |
/// |
| 1639 | 1636 |
/// \note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
| 1640 | 1637 |
/// \code |
| 1641 | 1638 |
/// Node rnode = INVALID; |
| 1642 | 1639 |
/// while ( !b.emptyQueue() && rnode == INVALID ) {
|
| 1643 | 1640 |
/// b.processNextNode(nm, rnode); |
| 1644 | 1641 |
/// } |
| 1645 | 1642 |
/// return rnode; |
| 1646 | 1643 |
/// \endcode |
| 1647 | 1644 |
template <typename NM> |
| 1648 | 1645 |
Node start(const NM &nm) {
|
| 1649 | 1646 |
Node rnode = INVALID; |
| 1650 | 1647 |
while ( !emptyQueue() && rnode == INVALID ) {
|
| 1651 | 1648 |
processNextNode(nm, rnode); |
| 1652 | 1649 |
} |
| 1653 | 1650 |
return rnode; |
| 1654 | 1651 |
} |
| 1655 | 1652 |
|
| 1656 | 1653 |
/// \brief Runs the algorithm from the given source node. |
| 1657 | 1654 |
/// |
| 1658 | 1655 |
/// This method runs the %BFS algorithm from node \c s |
| 1659 | 1656 |
/// in order to compute the shortest path to each node. |
| 1660 | 1657 |
/// |
| 1661 | 1658 |
/// The algorithm computes |
| 1662 | 1659 |
/// - the shortest path tree, |
| 1663 | 1660 |
/// - the distance of each node from the root. |
| 1664 | 1661 |
/// |
| 1665 | 1662 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 1666 | 1663 |
///\code |
| 1667 | 1664 |
/// b.init(); |
| 1668 | 1665 |
/// b.addSource(s); |
| 1669 | 1666 |
/// b.start(); |
| 1670 | 1667 |
///\endcode |
| 1671 | 1668 |
void run(Node s) {
|
| 1672 | 1669 |
init(); |
| 1673 | 1670 |
addSource(s); |
| 1674 | 1671 |
start(); |
| 1675 | 1672 |
} |
| 1676 | 1673 |
|
| 1677 | 1674 |
/// \brief Finds the shortest path between \c s and \c t. |
| 1678 | 1675 |
/// |
| 1679 | 1676 |
/// This method runs the %BFS algorithm from node \c s |
| 1680 | 1677 |
/// in order to compute the shortest path to node \c t |
| 1681 | 1678 |
/// (it stops searching when \c t is processed). |
| 1682 | 1679 |
/// |
| 1683 | 1680 |
/// \return \c true if \c t is reachable form \c s. |
| 1684 | 1681 |
/// |
| 1685 | 1682 |
/// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
| 1686 | 1683 |
/// shortcut of the following code. |
| 1687 | 1684 |
///\code |
| 1688 | 1685 |
/// b.init(); |
| 1689 | 1686 |
/// b.addSource(s); |
| 1690 | 1687 |
/// b.start(t); |
| 1691 | 1688 |
///\endcode |
| 1692 | 1689 |
bool run(Node s,Node t) {
|
| 1693 | 1690 |
init(); |
| 1694 | 1691 |
addSource(s); |
| 1695 | 1692 |
start(t); |
| 1696 | 1693 |
return reached(t); |
| 1697 | 1694 |
} |
| 1698 | 1695 |
|
| 1699 | 1696 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1700 | 1697 |
/// |
| 1701 | 1698 |
/// This method runs the %BFS algorithm in order to |
| 1702 | 1699 |
/// compute the shortest path to each node. |
| 1703 | 1700 |
/// |
| 1704 | 1701 |
/// The algorithm computes |
| 1705 | 1702 |
/// - the shortest path tree (forest), |
| 1706 | 1703 |
/// - the distance of each node from the root(s). |
| 1707 | 1704 |
/// |
| 1708 | 1705 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 1709 | 1706 |
///\code |
| 1710 | 1707 |
/// b.init(); |
| 1711 | 1708 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 1712 | 1709 |
/// if (!b.reached(n)) {
|
| 1713 | 1710 |
/// b.addSource(n); |
| 1714 | 1711 |
/// b.start(); |
| 1715 | 1712 |
/// } |
| 1716 | 1713 |
/// } |
| 1717 | 1714 |
///\endcode |
| 1718 | 1715 |
void run() {
|
| 1719 | 1716 |
init(); |
| 1720 | 1717 |
for (NodeIt it(*_digraph); it != INVALID; ++it) {
|
| 1721 | 1718 |
if (!reached(it)) {
|
| 1722 | 1719 |
addSource(it); |
| 1723 | 1720 |
start(); |
| 1724 | 1721 |
} |
| 1725 | 1722 |
} |
| 1726 | 1723 |
} |
| 1727 | 1724 |
|
| 1728 | 1725 |
///@} |
| 1729 | 1726 |
|
| 1730 | 1727 |
/// \name Query Functions |
| 1731 | 1728 |
/// The results of the BFS algorithm can be obtained using these |
| 1732 | 1729 |
/// functions.\n |
| 1733 | 1730 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
| 1734 | 1731 |
/// before using them. |
| 1735 | 1732 |
|
| 1736 | 1733 |
///@{
|
| 1737 | 1734 |
|
| 1738 |
/// \brief Checks if |
|
| 1735 |
/// \brief Checks if the given node is reached from the root(s). |
|
| 1739 | 1736 |
/// |
| 1740 | 1737 |
/// Returns \c true if \c v is reached from the root(s). |
| 1741 | 1738 |
/// |
| 1742 | 1739 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
| 1743 | 1740 |
/// must be called before using this function. |
| 1744 | 1741 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 1745 | 1742 |
|
| 1746 | 1743 |
///@} |
| 1747 | 1744 |
|
| 1748 | 1745 |
}; |
| 1749 | 1746 |
|
| 1750 | 1747 |
} //END OF NAMESPACE LEMON |
| 1751 | 1748 |
|
| 1752 | 1749 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DFS_H |
| 20 | 20 |
#define LEMON_DFS_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup search |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief DFS algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/list_graph.h> |
| 27 | 27 |
#include <lemon/bits/path_dump.h> |
| 28 | 28 |
#include <lemon/core.h> |
| 29 | 29 |
#include <lemon/error.h> |
| 30 | 30 |
#include <lemon/maps.h> |
| 31 | 31 |
#include <lemon/path.h> |
| 32 | 32 |
|
| 33 | 33 |
namespace lemon {
|
| 34 | 34 |
|
| 35 | 35 |
///Default traits class of Dfs class. |
| 36 | 36 |
|
| 37 | 37 |
///Default traits class of Dfs class. |
| 38 | 38 |
///\tparam GR Digraph type. |
| 39 | 39 |
template<class GR> |
| 40 | 40 |
struct DfsDefaultTraits |
| 41 | 41 |
{
|
| 42 | 42 |
///The type of the digraph the algorithm runs on. |
| 43 | 43 |
typedef GR Digraph; |
| 44 | 44 |
|
| 45 | 45 |
///\brief The type of the map that stores the predecessor |
| 46 | 46 |
///arcs of the %DFS paths. |
| 47 | 47 |
/// |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the %DFS paths. |
| 50 |
///It must |
|
| 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \c PredMap. |
| 53 | 53 |
|
| 54 | 54 |
///This function instantiates a \ref PredMap. |
| 55 | 55 |
///\param g is the digraph, to which we would like to define the |
| 56 | 56 |
///\ref PredMap. |
| 57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
| 58 | 58 |
{
|
| 59 | 59 |
return new PredMap(g); |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 | 62 |
///The type of the map that indicates which nodes are processed. |
| 63 | 63 |
|
| 64 | 64 |
///The type of the map that indicates which nodes are processed. |
| 65 |
///It must |
|
| 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 66 |
///By default it is a NullMap. |
|
| 66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 67 | 68 |
///Instantiates a \c ProcessedMap. |
| 68 | 69 |
|
| 69 | 70 |
///This function instantiates a \ref ProcessedMap. |
| 70 | 71 |
///\param g is the digraph, to which |
| 71 | 72 |
///we would like to define the \ref ProcessedMap. |
| 72 | 73 |
#ifdef DOXYGEN |
| 73 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 74 | 75 |
#else |
| 75 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 76 | 77 |
#endif |
| 77 | 78 |
{
|
| 78 | 79 |
return new ProcessedMap(); |
| 79 | 80 |
} |
| 80 | 81 |
|
| 81 | 82 |
///The type of the map that indicates which nodes are reached. |
| 82 | 83 |
|
| 83 | 84 |
///The type of the map that indicates which nodes are reached. |
| 84 |
///It must |
|
| 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 86 | 87 |
///Instantiates a \c ReachedMap. |
| 87 | 88 |
|
| 88 | 89 |
///This function instantiates a \ref ReachedMap. |
| 89 | 90 |
///\param g is the digraph, to which |
| 90 | 91 |
///we would like to define the \ref ReachedMap. |
| 91 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 92 | 93 |
{
|
| 93 | 94 |
return new ReachedMap(g); |
| 94 | 95 |
} |
| 95 | 96 |
|
| 96 | 97 |
///The type of the map that stores the distances of the nodes. |
| 97 | 98 |
|
| 98 | 99 |
///The type of the map that stores the distances of the nodes. |
| 99 |
///It must |
|
| 100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 101 | 102 |
///Instantiates a \c DistMap. |
| 102 | 103 |
|
| 103 | 104 |
///This function instantiates a \ref DistMap. |
| 104 | 105 |
///\param g is the digraph, to which we would like to define the |
| 105 | 106 |
///\ref DistMap. |
| 106 | 107 |
static DistMap *createDistMap(const Digraph &g) |
| 107 | 108 |
{
|
| 108 | 109 |
return new DistMap(g); |
| 109 | 110 |
} |
| 110 | 111 |
}; |
| 111 | 112 |
|
| 112 | 113 |
///%DFS algorithm class. |
| 113 | 114 |
|
| 114 | 115 |
///\ingroup search |
| 115 | 116 |
///This class provides an efficient implementation of the %DFS algorithm. |
| 116 | 117 |
/// |
| 117 | 118 |
///There is also a \ref dfs() "function-type interface" for the DFS |
| 118 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
| 119 | 120 |
///used easier. |
| 120 | 121 |
/// |
| 121 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 122 | 123 |
///The default type is \ref ListDigraph. |
| 123 | 124 |
#ifdef DOXYGEN |
| 124 | 125 |
template <typename GR, |
| 125 | 126 |
typename TR> |
| 126 | 127 |
#else |
| 127 | 128 |
template <typename GR=ListDigraph, |
| 128 | 129 |
typename TR=DfsDefaultTraits<GR> > |
| 129 | 130 |
#endif |
| 130 | 131 |
class Dfs {
|
| 131 | 132 |
public: |
| 132 | 133 |
|
| 133 | 134 |
///The type of the digraph the algorithm runs on. |
| 134 | 135 |
typedef typename TR::Digraph Digraph; |
| 135 | 136 |
|
| 136 | 137 |
///\brief The type of the map that stores the predecessor arcs of the |
| 137 | 138 |
///DFS paths. |
| 138 | 139 |
typedef typename TR::PredMap PredMap; |
| 139 | 140 |
///The type of the map that stores the distances of the nodes. |
| 140 | 141 |
typedef typename TR::DistMap DistMap; |
| 141 | 142 |
///The type of the map that indicates which nodes are reached. |
| 142 | 143 |
typedef typename TR::ReachedMap ReachedMap; |
| 143 | 144 |
///The type of the map that indicates which nodes are processed. |
| 144 | 145 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 145 | 146 |
///The type of the paths. |
| 146 | 147 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 147 | 148 |
|
| 148 | 149 |
///The \ref DfsDefaultTraits "traits class" of the algorithm. |
| 149 | 150 |
typedef TR Traits; |
| 150 | 151 |
|
| 151 | 152 |
private: |
| 152 | 153 |
|
| 153 | 154 |
typedef typename Digraph::Node Node; |
| 154 | 155 |
typedef typename Digraph::NodeIt NodeIt; |
| 155 | 156 |
typedef typename Digraph::Arc Arc; |
| 156 | 157 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 157 | 158 |
|
| 158 | 159 |
//Pointer to the underlying digraph. |
| 159 | 160 |
const Digraph *G; |
| 160 | 161 |
//Pointer to the map of predecessor arcs. |
| 161 | 162 |
PredMap *_pred; |
| 162 | 163 |
//Indicates if _pred is locally allocated (true) or not. |
| 163 | 164 |
bool local_pred; |
| 164 | 165 |
//Pointer to the map of distances. |
| 165 | 166 |
DistMap *_dist; |
| 166 | 167 |
//Indicates if _dist is locally allocated (true) or not. |
| 167 | 168 |
bool local_dist; |
| 168 | 169 |
//Pointer to the map of reached status of the nodes. |
| 169 | 170 |
ReachedMap *_reached; |
| 170 | 171 |
//Indicates if _reached is locally allocated (true) or not. |
| 171 | 172 |
bool local_reached; |
| 172 | 173 |
//Pointer to the map of processed status of the nodes. |
| 173 | 174 |
ProcessedMap *_processed; |
| 174 | 175 |
//Indicates if _processed is locally allocated (true) or not. |
| 175 | 176 |
bool local_processed; |
| 176 | 177 |
|
| 177 | 178 |
std::vector<typename Digraph::OutArcIt> _stack; |
| 178 | 179 |
int _stack_head; |
| 179 | 180 |
|
| 180 | 181 |
//Creates the maps if necessary. |
| 181 | 182 |
void create_maps() |
| 182 | 183 |
{
|
| 183 | 184 |
if(!_pred) {
|
| 184 | 185 |
local_pred = true; |
| 185 | 186 |
_pred = Traits::createPredMap(*G); |
| 186 | 187 |
} |
| 187 | 188 |
if(!_dist) {
|
| 188 | 189 |
local_dist = true; |
| 189 | 190 |
_dist = Traits::createDistMap(*G); |
| 190 | 191 |
} |
| 191 | 192 |
if(!_reached) {
|
| 192 | 193 |
local_reached = true; |
| 193 | 194 |
_reached = Traits::createReachedMap(*G); |
| 194 | 195 |
} |
| 195 | 196 |
if(!_processed) {
|
| 196 | 197 |
local_processed = true; |
| 197 | 198 |
_processed = Traits::createProcessedMap(*G); |
| 198 | 199 |
} |
| 199 | 200 |
} |
| 200 | 201 |
|
| 201 | 202 |
protected: |
| 202 | 203 |
|
| 203 | 204 |
Dfs() {}
|
| 204 | 205 |
|
| 205 | 206 |
public: |
| 206 | 207 |
|
| 207 | 208 |
typedef Dfs Create; |
| 208 | 209 |
|
| 209 | 210 |
///\name Named Template Parameters |
| 210 | 211 |
|
| 211 | 212 |
///@{
|
| 212 | 213 |
|
| 213 | 214 |
template <class T> |
| 214 | 215 |
struct SetPredMapTraits : public Traits {
|
| 215 | 216 |
typedef T PredMap; |
| 216 | 217 |
static PredMap *createPredMap(const Digraph &) |
| 217 | 218 |
{
|
| 218 | 219 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 219 | 220 |
return 0; // ignore warnings |
| 220 | 221 |
} |
| 221 | 222 |
}; |
| 222 | 223 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 223 | 224 |
///\c PredMap type. |
| 224 | 225 |
/// |
| 225 | 226 |
///\ref named-templ-param "Named parameter" for setting |
| 226 | 227 |
///\c PredMap type. |
| 227 |
///It must |
|
| 228 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 228 | 229 |
template <class T> |
| 229 | 230 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
|
| 230 | 231 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
| 231 | 232 |
}; |
| 232 | 233 |
|
| 233 | 234 |
template <class T> |
| 234 | 235 |
struct SetDistMapTraits : public Traits {
|
| 235 | 236 |
typedef T DistMap; |
| 236 | 237 |
static DistMap *createDistMap(const Digraph &) |
| 237 | 238 |
{
|
| 238 | 239 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 239 | 240 |
return 0; // ignore warnings |
| 240 | 241 |
} |
| 241 | 242 |
}; |
| 242 | 243 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 243 | 244 |
///\c DistMap type. |
| 244 | 245 |
/// |
| 245 | 246 |
///\ref named-templ-param "Named parameter" for setting |
| 246 | 247 |
///\c DistMap type. |
| 247 |
///It must |
|
| 248 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 248 | 249 |
template <class T> |
| 249 | 250 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
|
| 250 | 251 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
| 251 | 252 |
}; |
| 252 | 253 |
|
| 253 | 254 |
template <class T> |
| 254 | 255 |
struct SetReachedMapTraits : public Traits {
|
| 255 | 256 |
typedef T ReachedMap; |
| 256 | 257 |
static ReachedMap *createReachedMap(const Digraph &) |
| 257 | 258 |
{
|
| 258 | 259 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 259 | 260 |
return 0; // ignore warnings |
| 260 | 261 |
} |
| 261 | 262 |
}; |
| 262 | 263 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 263 | 264 |
///\c ReachedMap type. |
| 264 | 265 |
/// |
| 265 | 266 |
///\ref named-templ-param "Named parameter" for setting |
| 266 | 267 |
///\c ReachedMap type. |
| 267 |
///It must |
|
| 268 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 268 | 269 |
template <class T> |
| 269 | 270 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
|
| 270 | 271 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
| 271 | 272 |
}; |
| 272 | 273 |
|
| 273 | 274 |
template <class T> |
| 274 | 275 |
struct SetProcessedMapTraits : public Traits {
|
| 275 | 276 |
typedef T ProcessedMap; |
| 276 | 277 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 277 | 278 |
{
|
| 278 | 279 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
| 279 | 280 |
return 0; // ignore warnings |
| 280 | 281 |
} |
| 281 | 282 |
}; |
| 282 | 283 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 283 | 284 |
///\c ProcessedMap type. |
| 284 | 285 |
/// |
| 285 | 286 |
///\ref named-templ-param "Named parameter" for setting |
| 286 | 287 |
///\c ProcessedMap type. |
| 287 |
///It must |
|
| 288 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 288 | 289 |
template <class T> |
| 289 | 290 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
|
| 290 | 291 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 291 | 292 |
}; |
| 292 | 293 |
|
| 293 | 294 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 294 | 295 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 295 | 296 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 296 | 297 |
{
|
| 297 | 298 |
return new ProcessedMap(g); |
| 298 | 299 |
} |
| 299 | 300 |
}; |
| 300 | 301 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 301 | 302 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 302 | 303 |
/// |
| 303 | 304 |
///\ref named-templ-param "Named parameter" for setting |
| 304 | 305 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 305 | 306 |
///If you don't set it explicitly, it will be automatically allocated. |
| 306 | 307 |
struct SetStandardProcessedMap : |
| 307 | 308 |
public Dfs< Digraph, SetStandardProcessedMapTraits > {
|
| 308 | 309 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
| 309 | 310 |
}; |
| 310 | 311 |
|
| 311 | 312 |
///@} |
| 312 | 313 |
|
| 313 | 314 |
public: |
| 314 | 315 |
|
| 315 | 316 |
///Constructor. |
| 316 | 317 |
|
| 317 | 318 |
///Constructor. |
| 318 | 319 |
///\param g The digraph the algorithm runs on. |
| 319 | 320 |
Dfs(const Digraph &g) : |
| 320 | 321 |
G(&g), |
| 321 | 322 |
_pred(NULL), local_pred(false), |
| 322 | 323 |
_dist(NULL), local_dist(false), |
| 323 | 324 |
_reached(NULL), local_reached(false), |
| 324 | 325 |
_processed(NULL), local_processed(false) |
| 325 | 326 |
{ }
|
| 326 | 327 |
|
| 327 | 328 |
///Destructor. |
| 328 | 329 |
~Dfs() |
| 329 | 330 |
{
|
| 330 | 331 |
if(local_pred) delete _pred; |
| 331 | 332 |
if(local_dist) delete _dist; |
| 332 | 333 |
if(local_reached) delete _reached; |
| 333 | 334 |
if(local_processed) delete _processed; |
| 334 | 335 |
} |
| 335 | 336 |
|
| 336 | 337 |
///Sets the map that stores the predecessor arcs. |
| 337 | 338 |
|
| 338 | 339 |
///Sets the map that stores the predecessor arcs. |
| 339 | 340 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 340 | 341 |
///or \ref init(), an instance will be allocated automatically. |
| 341 | 342 |
///The destructor deallocates this automatically allocated map, |
| 342 | 343 |
///of course. |
| 343 | 344 |
///\return <tt> (*this) </tt> |
| 344 | 345 |
Dfs &predMap(PredMap &m) |
| 345 | 346 |
{
|
| 346 | 347 |
if(local_pred) {
|
| 347 | 348 |
delete _pred; |
| 348 | 349 |
local_pred=false; |
| 349 | 350 |
} |
| 350 | 351 |
_pred = &m; |
| 351 | 352 |
return *this; |
| 352 | 353 |
} |
| 353 | 354 |
|
| 354 | 355 |
///Sets the map that indicates which nodes are reached. |
| 355 | 356 |
|
| 356 | 357 |
///Sets the map that indicates which nodes are reached. |
| 357 | 358 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 358 | 359 |
///or \ref init(), an instance will be allocated automatically. |
| 359 | 360 |
///The destructor deallocates this automatically allocated map, |
| 360 | 361 |
///of course. |
| 361 | 362 |
///\return <tt> (*this) </tt> |
| 362 | 363 |
Dfs &reachedMap(ReachedMap &m) |
| 363 | 364 |
{
|
| 364 | 365 |
if(local_reached) {
|
| 365 | 366 |
delete _reached; |
| 366 | 367 |
local_reached=false; |
| 367 | 368 |
} |
| 368 | 369 |
_reached = &m; |
| 369 | 370 |
return *this; |
| 370 | 371 |
} |
| 371 | 372 |
|
| 372 | 373 |
///Sets the map that indicates which nodes are processed. |
| 373 | 374 |
|
| 374 | 375 |
///Sets the map that indicates which nodes are processed. |
| 375 | 376 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 376 | 377 |
///or \ref init(), an instance will be allocated automatically. |
| 377 | 378 |
///The destructor deallocates this automatically allocated map, |
| 378 | 379 |
///of course. |
| 379 | 380 |
///\return <tt> (*this) </tt> |
| 380 | 381 |
Dfs &processedMap(ProcessedMap &m) |
| 381 | 382 |
{
|
| 382 | 383 |
if(local_processed) {
|
| 383 | 384 |
delete _processed; |
| 384 | 385 |
local_processed=false; |
| 385 | 386 |
} |
| 386 | 387 |
_processed = &m; |
| 387 | 388 |
return *this; |
| 388 | 389 |
} |
| 389 | 390 |
|
| 390 | 391 |
///Sets the map that stores the distances of the nodes. |
| 391 | 392 |
|
| 392 | 393 |
///Sets the map that stores the distances of the nodes calculated by |
| 393 | 394 |
///the algorithm. |
| 394 | 395 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 395 | 396 |
///or \ref init(), an instance will be allocated automatically. |
| 396 | 397 |
///The destructor deallocates this automatically allocated map, |
| 397 | 398 |
///of course. |
| 398 | 399 |
///\return <tt> (*this) </tt> |
| 399 | 400 |
Dfs &distMap(DistMap &m) |
| 400 | 401 |
{
|
| 401 | 402 |
if(local_dist) {
|
| 402 | 403 |
delete _dist; |
| 403 | 404 |
local_dist=false; |
| 404 | 405 |
} |
| 405 | 406 |
_dist = &m; |
| 406 | 407 |
return *this; |
| 407 | 408 |
} |
| 408 | 409 |
|
| 409 | 410 |
public: |
| 410 | 411 |
|
| 411 | 412 |
///\name Execution Control |
| 412 | 413 |
///The simplest way to execute the DFS algorithm is to use one of the |
| 413 | 414 |
///member functions called \ref run(Node) "run()".\n |
| 414 | 415 |
///If you need more control on the execution, first you have to call |
| 415 | 416 |
///\ref init(), then you can add a source node with \ref addSource() |
| 416 | 417 |
///and perform the actual computation with \ref start(). |
| 417 | 418 |
///This procedure can be repeated if there are nodes that have not |
| 418 | 419 |
///been reached. |
| 419 | 420 |
|
| 420 | 421 |
///@{
|
| 421 | 422 |
|
| 422 | 423 |
///\brief Initializes the internal data structures. |
| 423 | 424 |
/// |
| 424 | 425 |
///Initializes the internal data structures. |
| 425 | 426 |
void init() |
| 426 | 427 |
{
|
| 427 | 428 |
create_maps(); |
| 428 | 429 |
_stack.resize(countNodes(*G)); |
| 429 | 430 |
_stack_head=-1; |
| 430 | 431 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 431 | 432 |
_pred->set(u,INVALID); |
| 432 | 433 |
_reached->set(u,false); |
| 433 | 434 |
_processed->set(u,false); |
| 434 | 435 |
} |
| 435 | 436 |
} |
| 436 | 437 |
|
| 437 | 438 |
///Adds a new source node. |
| 438 | 439 |
|
| 439 | 440 |
///Adds a new source node to the set of nodes to be processed. |
| 440 | 441 |
/// |
| 441 | 442 |
///\pre The stack must be empty. Otherwise the algorithm gives |
| 442 | 443 |
///wrong results. (One of the outgoing arcs of all the source nodes |
| 443 | 444 |
///except for the last one will not be visited and distances will |
| 444 | 445 |
///also be wrong.) |
| 445 | 446 |
void addSource(Node s) |
| 446 | 447 |
{
|
| 447 | 448 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
| 448 | 449 |
if(!(*_reached)[s]) |
| 449 | 450 |
{
|
| 450 | 451 |
_reached->set(s,true); |
| 451 | 452 |
_pred->set(s,INVALID); |
| 452 | 453 |
OutArcIt e(*G,s); |
| 453 | 454 |
if(e!=INVALID) {
|
| 454 | 455 |
_stack[++_stack_head]=e; |
| 455 | 456 |
_dist->set(s,_stack_head); |
| 456 | 457 |
} |
| 457 | 458 |
else {
|
| 458 | 459 |
_processed->set(s,true); |
| 459 | 460 |
_dist->set(s,0); |
| 460 | 461 |
} |
| 461 | 462 |
} |
| 462 | 463 |
} |
| 463 | 464 |
|
| 464 | 465 |
///Processes the next arc. |
| 465 | 466 |
|
| 466 | 467 |
///Processes the next arc. |
| 467 | 468 |
/// |
| 468 | 469 |
///\return The processed arc. |
| 469 | 470 |
/// |
| 470 | 471 |
///\pre The stack must not be empty. |
| 471 | 472 |
Arc processNextArc() |
| 472 | 473 |
{
|
| 473 | 474 |
Node m; |
| 474 | 475 |
Arc e=_stack[_stack_head]; |
| 475 | 476 |
if(!(*_reached)[m=G->target(e)]) {
|
| 476 | 477 |
_pred->set(m,e); |
| 477 | 478 |
_reached->set(m,true); |
| 478 | 479 |
++_stack_head; |
| 479 | 480 |
_stack[_stack_head] = OutArcIt(*G, m); |
| 480 | 481 |
_dist->set(m,_stack_head); |
| 481 | 482 |
} |
| 482 | 483 |
else {
|
| 483 | 484 |
m=G->source(e); |
| 484 | 485 |
++_stack[_stack_head]; |
| 485 | 486 |
} |
| 486 | 487 |
while(_stack_head>=0 && _stack[_stack_head]==INVALID) {
|
| 487 | 488 |
_processed->set(m,true); |
| 488 | 489 |
--_stack_head; |
| 489 | 490 |
if(_stack_head>=0) {
|
| 490 | 491 |
m=G->source(_stack[_stack_head]); |
| 491 | 492 |
++_stack[_stack_head]; |
| 492 | 493 |
} |
| 493 | 494 |
} |
| 494 | 495 |
return e; |
| 495 | 496 |
} |
| 496 | 497 |
|
| 497 | 498 |
///Next arc to be processed. |
| 498 | 499 |
|
| 499 | 500 |
///Next arc to be processed. |
| 500 | 501 |
/// |
| 501 | 502 |
///\return The next arc to be processed or \c INVALID if the stack |
| 502 | 503 |
///is empty. |
| 503 | 504 |
OutArcIt nextArc() const |
| 504 | 505 |
{
|
| 505 | 506 |
return _stack_head>=0?_stack[_stack_head]:INVALID; |
| 506 | 507 |
} |
| 507 | 508 |
|
| 508 | 509 |
///Returns \c false if there are nodes to be processed. |
| 509 | 510 |
|
| 510 | 511 |
///Returns \c false if there are nodes to be processed |
| 511 | 512 |
///in the queue (stack). |
| 512 | 513 |
bool emptyQueue() const { return _stack_head<0; }
|
| 513 | 514 |
|
| 514 | 515 |
///Returns the number of the nodes to be processed. |
| 515 | 516 |
|
| 516 | 517 |
///Returns the number of the nodes to be processed |
| 517 | 518 |
///in the queue (stack). |
| 518 | 519 |
int queueSize() const { return _stack_head+1; }
|
| 519 | 520 |
|
| 520 | 521 |
///Executes the algorithm. |
| 521 | 522 |
|
| 522 | 523 |
///Executes the algorithm. |
| 523 | 524 |
/// |
| 524 | 525 |
///This method runs the %DFS algorithm from the root node |
| 525 | 526 |
///in order to compute the DFS path to each node. |
| 526 | 527 |
/// |
| 527 | 528 |
/// The algorithm computes |
| 528 | 529 |
///- the %DFS tree, |
| 529 | 530 |
///- the distance of each node from the root in the %DFS tree. |
| 530 | 531 |
/// |
| 531 | 532 |
///\pre init() must be called and a root node should be |
| 532 | 533 |
///added with addSource() before using this function. |
| 533 | 534 |
/// |
| 534 | 535 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
| 535 | 536 |
///\code |
| 536 | 537 |
/// while ( !d.emptyQueue() ) {
|
| 537 | 538 |
/// d.processNextArc(); |
| 538 | 539 |
/// } |
| 539 | 540 |
///\endcode |
| 540 | 541 |
void start() |
| 541 | 542 |
{
|
| 542 | 543 |
while ( !emptyQueue() ) processNextArc(); |
| 543 | 544 |
} |
| 544 | 545 |
|
| 545 | 546 |
///Executes the algorithm until the given target node is reached. |
| 546 | 547 |
|
| 547 | 548 |
///Executes the algorithm until the given target node is reached. |
| 548 | 549 |
/// |
| 549 | 550 |
///This method runs the %DFS algorithm from the root node |
| 550 | 551 |
///in order to compute the DFS path to \c t. |
| 551 | 552 |
/// |
| 552 | 553 |
///The algorithm computes |
| 553 | 554 |
///- the %DFS path to \c t, |
| 554 | 555 |
///- the distance of \c t from the root in the %DFS tree. |
| 555 | 556 |
/// |
| 556 | 557 |
///\pre init() must be called and a root node should be |
| 557 | 558 |
///added with addSource() before using this function. |
| 558 | 559 |
void start(Node t) |
| 559 | 560 |
{
|
| 560 | 561 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!=t ) |
| 561 | 562 |
processNextArc(); |
| 562 | 563 |
} |
| 563 | 564 |
|
| 564 | 565 |
///Executes the algorithm until a condition is met. |
| 565 | 566 |
|
| 566 | 567 |
///Executes the algorithm until a condition is met. |
| 567 | 568 |
/// |
| 568 | 569 |
///This method runs the %DFS algorithm from the root node |
| 569 | 570 |
///until an arc \c a with <tt>am[a]</tt> true is found. |
| 570 | 571 |
/// |
| 571 | 572 |
///\param am A \c bool (or convertible) arc map. The algorithm |
| 572 | 573 |
///will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
| 573 | 574 |
/// |
| 574 | 575 |
///\return The reached arc \c a with <tt>am[a]</tt> true or |
| 575 | 576 |
///\c INVALID if no such arc was found. |
| 576 | 577 |
/// |
| 577 | 578 |
///\pre init() must be called and a root node should be |
| 578 | 579 |
///added with addSource() before using this function. |
| 579 | 580 |
/// |
| 580 | 581 |
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
| 581 | 582 |
///not a node map. |
| 582 | 583 |
template<class ArcBoolMap> |
| 583 | 584 |
Arc start(const ArcBoolMap &am) |
| 584 | 585 |
{
|
| 585 | 586 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
| 586 | 587 |
processNextArc(); |
| 587 | 588 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
| 588 | 589 |
} |
| 589 | 590 |
|
| 590 | 591 |
///Runs the algorithm from the given source node. |
| 591 | 592 |
|
| 592 | 593 |
///This method runs the %DFS algorithm from node \c s |
| 593 | 594 |
///in order to compute the DFS path to each node. |
| 594 | 595 |
/// |
| 595 | 596 |
///The algorithm computes |
| 596 | 597 |
///- the %DFS tree, |
| 597 | 598 |
///- the distance of each node from the root in the %DFS tree. |
| 598 | 599 |
/// |
| 599 | 600 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 600 | 601 |
///\code |
| 601 | 602 |
/// d.init(); |
| 602 | 603 |
/// d.addSource(s); |
| 603 | 604 |
/// d.start(); |
| 604 | 605 |
///\endcode |
| 605 | 606 |
void run(Node s) {
|
| 606 | 607 |
init(); |
| 607 | 608 |
addSource(s); |
| 608 | 609 |
start(); |
| 609 | 610 |
} |
| 610 | 611 |
|
| 611 | 612 |
///Finds the %DFS path between \c s and \c t. |
| 612 | 613 |
|
| 613 | 614 |
///This method runs the %DFS algorithm from node \c s |
| 614 | 615 |
///in order to compute the DFS path to node \c t |
| 615 | 616 |
///(it stops searching when \c t is processed) |
| 616 | 617 |
/// |
| 617 | 618 |
///\return \c true if \c t is reachable form \c s. |
| 618 | 619 |
/// |
| 619 | 620 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
| 620 | 621 |
///just a shortcut of the following code. |
| 621 | 622 |
///\code |
| 622 | 623 |
/// d.init(); |
| 623 | 624 |
/// d.addSource(s); |
| 624 | 625 |
/// d.start(t); |
| 625 | 626 |
///\endcode |
| 626 | 627 |
bool run(Node s,Node t) {
|
| 627 | 628 |
init(); |
| 628 | 629 |
addSource(s); |
| 629 | 630 |
start(t); |
| 630 | 631 |
return reached(t); |
| 631 | 632 |
} |
| 632 | 633 |
|
| 633 | 634 |
///Runs the algorithm to visit all nodes in the digraph. |
| 634 | 635 |
|
| 635 | 636 |
///This method runs the %DFS algorithm in order to compute the |
| 636 | 637 |
///%DFS path to each node. |
| 637 | 638 |
/// |
| 638 | 639 |
///The algorithm computes |
| 639 | 640 |
///- the %DFS tree (forest), |
| 640 | 641 |
///- the distance of each node from the root(s) in the %DFS tree. |
| 641 | 642 |
/// |
| 642 | 643 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
| 643 | 644 |
///\code |
| 644 | 645 |
/// d.init(); |
| 645 | 646 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 646 | 647 |
/// if (!d.reached(n)) {
|
| 647 | 648 |
/// d.addSource(n); |
| 648 | 649 |
/// d.start(); |
| 649 | 650 |
/// } |
| 650 | 651 |
/// } |
| 651 | 652 |
///\endcode |
| 652 | 653 |
void run() {
|
| 653 | 654 |
init(); |
| 654 | 655 |
for (NodeIt it(*G); it != INVALID; ++it) {
|
| 655 | 656 |
if (!reached(it)) {
|
| 656 | 657 |
addSource(it); |
| 657 | 658 |
start(); |
| 658 | 659 |
} |
| 659 | 660 |
} |
| 660 | 661 |
} |
| 661 | 662 |
|
| 662 | 663 |
///@} |
| 663 | 664 |
|
| 664 | 665 |
///\name Query Functions |
| 665 | 666 |
///The results of the DFS algorithm can be obtained using these |
| 666 | 667 |
///functions.\n |
| 667 | 668 |
///Either \ref run(Node) "run()" or \ref start() should be called |
| 668 | 669 |
///before using them. |
| 669 | 670 |
|
| 670 | 671 |
///@{
|
| 671 | 672 |
|
| 672 |
///The DFS path to |
|
| 673 |
///The DFS path to the given node. |
|
| 673 | 674 |
|
| 674 |
///Returns the DFS path to |
|
| 675 |
///Returns the DFS path to the given node from the root(s). |
|
| 675 | 676 |
/// |
| 676 | 677 |
///\warning \c t should be reached from the root(s). |
| 677 | 678 |
/// |
| 678 | 679 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 679 | 680 |
///must be called before using this function. |
| 680 | 681 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 681 | 682 |
|
| 682 |
///The distance of |
|
| 683 |
///The distance of the given node from the root(s). |
|
| 683 | 684 |
|
| 684 |
///Returns the distance of |
|
| 685 |
///Returns the distance of the given node from the root(s). |
|
| 685 | 686 |
/// |
| 686 | 687 |
///\warning If node \c v is not reached from the root(s), then |
| 687 | 688 |
///the return value of this function is undefined. |
| 688 | 689 |
/// |
| 689 | 690 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 690 | 691 |
///must be called before using this function. |
| 691 | 692 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 692 | 693 |
|
| 693 |
///Returns the 'previous arc' of the %DFS tree for |
|
| 694 |
///Returns the 'previous arc' of the %DFS tree for the given node. |
|
| 694 | 695 |
|
| 695 | 696 |
///This function returns the 'previous arc' of the %DFS tree for the |
| 696 | 697 |
///node \c v, i.e. it returns the last arc of a %DFS path from a |
| 697 | 698 |
///root to \c v. It is \c INVALID if \c v is not reached from the |
| 698 | 699 |
///root(s) or if \c v is a root. |
| 699 | 700 |
/// |
| 700 | 701 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 701 |
///\ref predNode(). |
|
| 702 |
///\ref predNode() and \ref predMap(). |
|
| 702 | 703 |
/// |
| 703 | 704 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 704 | 705 |
///must be called before using this function. |
| 705 | 706 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 706 | 707 |
|
| 707 |
///Returns the 'previous node' of the %DFS tree. |
|
| 708 |
///Returns the 'previous node' of the %DFS tree for the given node. |
|
| 708 | 709 |
|
| 709 | 710 |
///This function returns the 'previous node' of the %DFS |
| 710 | 711 |
///tree for the node \c v, i.e. it returns the last but one node |
| 711 |
/// |
|
| 712 |
///of a %DFS path from a root to \c v. It is \c INVALID |
|
| 712 | 713 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 713 | 714 |
/// |
| 714 | 715 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 715 |
///\ref predArc(). |
|
| 716 |
///\ref predArc() and \ref predMap(). |
|
| 716 | 717 |
/// |
| 717 | 718 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 718 | 719 |
///must be called before using this function. |
| 719 | 720 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 720 | 721 |
G->source((*_pred)[v]); } |
| 721 | 722 |
|
| 722 | 723 |
///\brief Returns a const reference to the node map that stores the |
| 723 | 724 |
///distances of the nodes. |
| 724 | 725 |
/// |
| 725 | 726 |
///Returns a const reference to the node map that stores the |
| 726 | 727 |
///distances of the nodes calculated by the algorithm. |
| 727 | 728 |
/// |
| 728 | 729 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 729 | 730 |
///must be called before using this function. |
| 730 | 731 |
const DistMap &distMap() const { return *_dist;}
|
| 731 | 732 |
|
| 732 | 733 |
///\brief Returns a const reference to the node map that stores the |
| 733 | 734 |
///predecessor arcs. |
| 734 | 735 |
/// |
| 735 | 736 |
///Returns a const reference to the node map that stores the predecessor |
| 736 |
///arcs, which form the DFS tree. |
|
| 737 |
///arcs, which form the DFS tree (forest). |
|
| 737 | 738 |
/// |
| 738 | 739 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 739 | 740 |
///must be called before using this function. |
| 740 | 741 |
const PredMap &predMap() const { return *_pred;}
|
| 741 | 742 |
|
| 742 |
///Checks if |
|
| 743 |
///Checks if the given node. node is reached from the root(s). |
|
| 743 | 744 |
|
| 744 | 745 |
///Returns \c true if \c v is reached from the root(s). |
| 745 | 746 |
/// |
| 746 | 747 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 747 | 748 |
///must be called before using this function. |
| 748 | 749 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 749 | 750 |
|
| 750 | 751 |
///@} |
| 751 | 752 |
}; |
| 752 | 753 |
|
| 753 | 754 |
///Default traits class of dfs() function. |
| 754 | 755 |
|
| 755 | 756 |
///Default traits class of dfs() function. |
| 756 | 757 |
///\tparam GR Digraph type. |
| 757 | 758 |
template<class GR> |
| 758 | 759 |
struct DfsWizardDefaultTraits |
| 759 | 760 |
{
|
| 760 | 761 |
///The type of the digraph the algorithm runs on. |
| 761 | 762 |
typedef GR Digraph; |
| 762 | 763 |
|
| 763 | 764 |
///\brief The type of the map that stores the predecessor |
| 764 | 765 |
///arcs of the %DFS paths. |
| 765 | 766 |
/// |
| 766 | 767 |
///The type of the map that stores the predecessor |
| 767 | 768 |
///arcs of the %DFS paths. |
| 768 |
///It must |
|
| 769 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 769 | 770 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 770 | 771 |
///Instantiates a PredMap. |
| 771 | 772 |
|
| 772 | 773 |
///This function instantiates a PredMap. |
| 773 | 774 |
///\param g is the digraph, to which we would like to define the |
| 774 | 775 |
///PredMap. |
| 775 | 776 |
static PredMap *createPredMap(const Digraph &g) |
| 776 | 777 |
{
|
| 777 | 778 |
return new PredMap(g); |
| 778 | 779 |
} |
| 779 | 780 |
|
| 780 | 781 |
///The type of the map that indicates which nodes are processed. |
| 781 | 782 |
|
| 782 | 783 |
///The type of the map that indicates which nodes are processed. |
| 783 |
///It must |
|
| 784 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 784 | 785 |
///By default it is a NullMap. |
| 785 | 786 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 786 | 787 |
///Instantiates a ProcessedMap. |
| 787 | 788 |
|
| 788 | 789 |
///This function instantiates a ProcessedMap. |
| 789 | 790 |
///\param g is the digraph, to which |
| 790 | 791 |
///we would like to define the ProcessedMap. |
| 791 | 792 |
#ifdef DOXYGEN |
| 792 | 793 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 793 | 794 |
#else |
| 794 | 795 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 795 | 796 |
#endif |
| 796 | 797 |
{
|
| 797 | 798 |
return new ProcessedMap(); |
| 798 | 799 |
} |
| 799 | 800 |
|
| 800 | 801 |
///The type of the map that indicates which nodes are reached. |
| 801 | 802 |
|
| 802 | 803 |
///The type of the map that indicates which nodes are reached. |
| 803 |
///It must |
|
| 804 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 804 | 805 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 805 | 806 |
///Instantiates a ReachedMap. |
| 806 | 807 |
|
| 807 | 808 |
///This function instantiates a ReachedMap. |
| 808 | 809 |
///\param g is the digraph, to which |
| 809 | 810 |
///we would like to define the ReachedMap. |
| 810 | 811 |
static ReachedMap *createReachedMap(const Digraph &g) |
| 811 | 812 |
{
|
| 812 | 813 |
return new ReachedMap(g); |
| 813 | 814 |
} |
| 814 | 815 |
|
| 815 | 816 |
///The type of the map that stores the distances of the nodes. |
| 816 | 817 |
|
| 817 | 818 |
///The type of the map that stores the distances of the nodes. |
| 818 |
///It must |
|
| 819 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 819 | 820 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 820 | 821 |
///Instantiates a DistMap. |
| 821 | 822 |
|
| 822 | 823 |
///This function instantiates a DistMap. |
| 823 | 824 |
///\param g is the digraph, to which we would like to define |
| 824 | 825 |
///the DistMap |
| 825 | 826 |
static DistMap *createDistMap(const Digraph &g) |
| 826 | 827 |
{
|
| 827 | 828 |
return new DistMap(g); |
| 828 | 829 |
} |
| 829 | 830 |
|
| 830 | 831 |
///The type of the DFS paths. |
| 831 | 832 |
|
| 832 | 833 |
///The type of the DFS paths. |
| 833 |
///It must |
|
| 834 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 834 | 835 |
typedef lemon::Path<Digraph> Path; |
| 835 | 836 |
}; |
| 836 | 837 |
|
| 837 | 838 |
/// Default traits class used by DfsWizard |
| 838 | 839 |
|
| 839 |
/// To make it easier to use Dfs algorithm |
|
| 840 |
/// we have created a wizard class. |
|
| 841 |
/// This \ref DfsWizard class needs default traits, |
|
| 842 |
/// as well as the \ref Dfs class. |
|
| 843 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
|
| 844 |
/// \ref DfsWizard class. |
|
| 840 |
/// Default traits class used by DfsWizard. |
|
| 841 |
/// \tparam GR The type of the digraph. |
|
| 845 | 842 |
template<class GR> |
| 846 | 843 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
| 847 | 844 |
{
|
| 848 | 845 |
|
| 849 | 846 |
typedef DfsWizardDefaultTraits<GR> Base; |
| 850 | 847 |
protected: |
| 851 | 848 |
//The type of the nodes in the digraph. |
| 852 | 849 |
typedef typename Base::Digraph::Node Node; |
| 853 | 850 |
|
| 854 | 851 |
//Pointer to the digraph the algorithm runs on. |
| 855 | 852 |
void *_g; |
| 856 | 853 |
//Pointer to the map of reached nodes. |
| 857 | 854 |
void *_reached; |
| 858 | 855 |
//Pointer to the map of processed nodes. |
| 859 | 856 |
void *_processed; |
| 860 | 857 |
//Pointer to the map of predecessors arcs. |
| 861 | 858 |
void *_pred; |
| 862 | 859 |
//Pointer to the map of distances. |
| 863 | 860 |
void *_dist; |
| 864 | 861 |
//Pointer to the DFS path to the target node. |
| 865 | 862 |
void *_path; |
| 866 | 863 |
//Pointer to the distance of the target node. |
| 867 | 864 |
int *_di; |
| 868 | 865 |
|
| 869 | 866 |
public: |
| 870 | 867 |
/// Constructor. |
| 871 | 868 |
|
| 872 |
/// This constructor does not require parameters, |
|
| 869 |
/// This constructor does not require parameters, it initiates |
|
| 873 | 870 |
/// all of the attributes to \c 0. |
| 874 | 871 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 875 | 872 |
_dist(0), _path(0), _di(0) {}
|
| 876 | 873 |
|
| 877 | 874 |
/// Constructor. |
| 878 | 875 |
|
| 879 | 876 |
/// This constructor requires one parameter, |
| 880 | 877 |
/// others are initiated to \c 0. |
| 881 | 878 |
/// \param g The digraph the algorithm runs on. |
| 882 | 879 |
DfsWizardBase(const GR &g) : |
| 883 | 880 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 884 | 881 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 885 | 882 |
|
| 886 | 883 |
}; |
| 887 | 884 |
|
| 888 | 885 |
/// Auxiliary class for the function-type interface of DFS algorithm. |
| 889 | 886 |
|
| 890 | 887 |
/// This auxiliary class is created to implement the |
| 891 | 888 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
| 892 | 889 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 893 | 890 |
/// functions and features of the plain \ref Dfs. |
| 894 | 891 |
/// |
| 895 | 892 |
/// This class should only be used through the \ref dfs() function, |
| 896 | 893 |
/// which makes it easier to use the algorithm. |
| 897 | 894 |
template<class TR> |
| 898 | 895 |
class DfsWizard : public TR |
| 899 | 896 |
{
|
| 900 | 897 |
typedef TR Base; |
| 901 | 898 |
|
| 902 |
///The type of the digraph the algorithm runs on. |
|
| 903 | 899 |
typedef typename TR::Digraph Digraph; |
| 904 | 900 |
|
| 905 | 901 |
typedef typename Digraph::Node Node; |
| 906 | 902 |
typedef typename Digraph::NodeIt NodeIt; |
| 907 | 903 |
typedef typename Digraph::Arc Arc; |
| 908 | 904 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 909 | 905 |
|
| 910 |
///\brief The type of the map that stores the predecessor |
|
| 911 |
///arcs of the DFS paths. |
|
| 912 | 906 |
typedef typename TR::PredMap PredMap; |
| 913 |
///\brief The type of the map that stores the distances of the nodes. |
|
| 914 | 907 |
typedef typename TR::DistMap DistMap; |
| 915 |
///\brief The type of the map that indicates which nodes are reached. |
|
| 916 | 908 |
typedef typename TR::ReachedMap ReachedMap; |
| 917 |
///\brief The type of the map that indicates which nodes are processed. |
|
| 918 | 909 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 919 |
///The type of the DFS paths |
|
| 920 | 910 |
typedef typename TR::Path Path; |
| 921 | 911 |
|
| 922 | 912 |
public: |
| 923 | 913 |
|
| 924 | 914 |
/// Constructor. |
| 925 | 915 |
DfsWizard() : TR() {}
|
| 926 | 916 |
|
| 927 | 917 |
/// Constructor that requires parameters. |
| 928 | 918 |
|
| 929 | 919 |
/// Constructor that requires parameters. |
| 930 | 920 |
/// These parameters will be the default values for the traits class. |
| 931 | 921 |
/// \param g The digraph the algorithm runs on. |
| 932 | 922 |
DfsWizard(const Digraph &g) : |
| 933 | 923 |
TR(g) {}
|
| 934 | 924 |
|
| 935 | 925 |
///Copy constructor |
| 936 | 926 |
DfsWizard(const TR &b) : TR(b) {}
|
| 937 | 927 |
|
| 938 | 928 |
~DfsWizard() {}
|
| 939 | 929 |
|
| 940 | 930 |
///Runs DFS algorithm from the given source node. |
| 941 | 931 |
|
| 942 | 932 |
///This method runs DFS algorithm from node \c s |
| 943 | 933 |
///in order to compute the DFS path to each node. |
| 944 | 934 |
void run(Node s) |
| 945 | 935 |
{
|
| 946 | 936 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 947 | 937 |
if (Base::_pred) |
| 948 | 938 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 949 | 939 |
if (Base::_dist) |
| 950 | 940 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 951 | 941 |
if (Base::_reached) |
| 952 | 942 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 953 | 943 |
if (Base::_processed) |
| 954 | 944 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 955 | 945 |
if (s!=INVALID) |
| 956 | 946 |
alg.run(s); |
| 957 | 947 |
else |
| 958 | 948 |
alg.run(); |
| 959 | 949 |
} |
| 960 | 950 |
|
| 961 | 951 |
///Finds the DFS path between \c s and \c t. |
| 962 | 952 |
|
| 963 | 953 |
///This method runs DFS algorithm from node \c s |
| 964 | 954 |
///in order to compute the DFS path to node \c t |
| 965 | 955 |
///(it stops searching when \c t is processed). |
| 966 | 956 |
/// |
| 967 | 957 |
///\return \c true if \c t is reachable form \c s. |
| 968 | 958 |
bool run(Node s, Node t) |
| 969 | 959 |
{
|
| 970 | 960 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
| 971 | 961 |
if (Base::_pred) |
| 972 | 962 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 973 | 963 |
if (Base::_dist) |
| 974 | 964 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 975 | 965 |
if (Base::_reached) |
| 976 | 966 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
| 977 | 967 |
if (Base::_processed) |
| 978 | 968 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 979 | 969 |
alg.run(s,t); |
| 980 | 970 |
if (Base::_path) |
| 981 | 971 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
| 982 | 972 |
if (Base::_di) |
| 983 | 973 |
*Base::_di = alg.dist(t); |
| 984 | 974 |
return alg.reached(t); |
| 985 | 975 |
} |
| 986 | 976 |
|
| 987 | 977 |
///Runs DFS algorithm to visit all nodes in the digraph. |
| 988 | 978 |
|
| 989 | 979 |
///This method runs DFS algorithm in order to compute |
| 990 | 980 |
///the DFS path to each node. |
| 991 | 981 |
void run() |
| 992 | 982 |
{
|
| 993 | 983 |
run(INVALID); |
| 994 | 984 |
} |
| 995 | 985 |
|
| 996 | 986 |
template<class T> |
| 997 | 987 |
struct SetPredMapBase : public Base {
|
| 998 | 988 |
typedef T PredMap; |
| 999 | 989 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1000 | 990 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1001 | 991 |
}; |
| 1002 |
///\brief \ref named-func-param "Named parameter" |
|
| 1003 |
///for setting PredMap object. |
|
| 992 |
|
|
| 993 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 994 |
///the predecessor map. |
|
| 1004 | 995 |
/// |
| 1005 |
///\ref named-func-param "Named parameter" |
|
| 1006 |
///for setting PredMap object. |
|
| 996 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 997 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1007 | 998 |
template<class T> |
| 1008 | 999 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1009 | 1000 |
{
|
| 1010 | 1001 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1011 | 1002 |
return DfsWizard<SetPredMapBase<T> >(*this); |
| 1012 | 1003 |
} |
| 1013 | 1004 |
|
| 1014 | 1005 |
template<class T> |
| 1015 | 1006 |
struct SetReachedMapBase : public Base {
|
| 1016 | 1007 |
typedef T ReachedMap; |
| 1017 | 1008 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
|
| 1018 | 1009 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1019 | 1010 |
}; |
| 1020 |
///\brief \ref named-func-param "Named parameter" |
|
| 1021 |
///for setting ReachedMap object. |
|
| 1011 |
|
|
| 1012 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1013 |
///the reached map. |
|
| 1022 | 1014 |
/// |
| 1023 |
/// \ref named-func-param "Named parameter" |
|
| 1024 |
///for setting ReachedMap object. |
|
| 1015 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1016 |
///the map that indicates which nodes are reached. |
|
| 1025 | 1017 |
template<class T> |
| 1026 | 1018 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| 1027 | 1019 |
{
|
| 1028 | 1020 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1029 | 1021 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
| 1030 | 1022 |
} |
| 1031 | 1023 |
|
| 1032 | 1024 |
template<class T> |
| 1033 | 1025 |
struct SetDistMapBase : public Base {
|
| 1034 | 1026 |
typedef T DistMap; |
| 1035 | 1027 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1036 | 1028 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1037 | 1029 |
}; |
| 1038 |
///\brief \ref named-func-param "Named parameter" |
|
| 1039 |
///for setting DistMap object. |
|
| 1030 |
|
|
| 1031 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1032 |
///the distance map. |
|
| 1040 | 1033 |
/// |
| 1041 |
/// \ref named-func-param "Named parameter" |
|
| 1042 |
///for setting DistMap object. |
|
| 1034 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1035 |
///the map that stores the distances of the nodes calculated |
|
| 1036 |
///by the algorithm. |
|
| 1043 | 1037 |
template<class T> |
| 1044 | 1038 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1045 | 1039 |
{
|
| 1046 | 1040 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1047 | 1041 |
return DfsWizard<SetDistMapBase<T> >(*this); |
| 1048 | 1042 |
} |
| 1049 | 1043 |
|
| 1050 | 1044 |
template<class T> |
| 1051 | 1045 |
struct SetProcessedMapBase : public Base {
|
| 1052 | 1046 |
typedef T ProcessedMap; |
| 1053 | 1047 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1054 | 1048 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1055 | 1049 |
}; |
| 1056 |
///\brief \ref named-func-param "Named parameter" |
|
| 1057 |
///for setting ProcessedMap object. |
|
| 1050 |
|
|
| 1051 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1052 |
///the processed map. |
|
| 1058 | 1053 |
/// |
| 1059 |
/// \ref named-func-param "Named parameter" |
|
| 1060 |
///for setting ProcessedMap object. |
|
| 1054 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1055 |
///the map that indicates which nodes are processed. |
|
| 1061 | 1056 |
template<class T> |
| 1062 | 1057 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1063 | 1058 |
{
|
| 1064 | 1059 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1065 | 1060 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
| 1066 | 1061 |
} |
| 1067 | 1062 |
|
| 1068 | 1063 |
template<class T> |
| 1069 | 1064 |
struct SetPathBase : public Base {
|
| 1070 | 1065 |
typedef T Path; |
| 1071 | 1066 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1072 | 1067 |
}; |
| 1073 | 1068 |
///\brief \ref named-func-param "Named parameter" |
| 1074 | 1069 |
///for getting the DFS path to the target node. |
| 1075 | 1070 |
/// |
| 1076 | 1071 |
///\ref named-func-param "Named parameter" |
| 1077 | 1072 |
///for getting the DFS path to the target node. |
| 1078 | 1073 |
template<class T> |
| 1079 | 1074 |
DfsWizard<SetPathBase<T> > path(const T &t) |
| 1080 | 1075 |
{
|
| 1081 | 1076 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1082 | 1077 |
return DfsWizard<SetPathBase<T> >(*this); |
| 1083 | 1078 |
} |
| 1084 | 1079 |
|
| 1085 | 1080 |
///\brief \ref named-func-param "Named parameter" |
| 1086 | 1081 |
///for getting the distance of the target node. |
| 1087 | 1082 |
/// |
| 1088 | 1083 |
///\ref named-func-param "Named parameter" |
| 1089 | 1084 |
///for getting the distance of the target node. |
| 1090 | 1085 |
DfsWizard dist(const int &d) |
| 1091 | 1086 |
{
|
| 1092 | 1087 |
Base::_di=const_cast<int*>(&d); |
| 1093 | 1088 |
return *this; |
| 1094 | 1089 |
} |
| 1095 | 1090 |
|
| 1096 | 1091 |
}; |
| 1097 | 1092 |
|
| 1098 | 1093 |
///Function-type interface for DFS algorithm. |
| 1099 | 1094 |
|
| 1100 | 1095 |
///\ingroup search |
| 1101 | 1096 |
///Function-type interface for DFS algorithm. |
| 1102 | 1097 |
/// |
| 1103 | 1098 |
///This function also has several \ref named-func-param "named parameters", |
| 1104 | 1099 |
///they are declared as the members of class \ref DfsWizard. |
| 1105 | 1100 |
///The following examples show how to use these parameters. |
| 1106 | 1101 |
///\code |
| 1107 | 1102 |
/// // Compute the DFS tree |
| 1108 | 1103 |
/// dfs(g).predMap(preds).distMap(dists).run(s); |
| 1109 | 1104 |
/// |
| 1110 | 1105 |
/// // Compute the DFS path from s to t |
| 1111 | 1106 |
/// bool reached = dfs(g).path(p).dist(d).run(s,t); |
| 1112 | 1107 |
///\endcode |
| 1113 | 1108 |
///\warning Don't forget to put the \ref DfsWizard::run(Node) "run()" |
| 1114 | 1109 |
///to the end of the parameter list. |
| 1115 | 1110 |
///\sa DfsWizard |
| 1116 | 1111 |
///\sa Dfs |
| 1117 | 1112 |
template<class GR> |
| 1118 | 1113 |
DfsWizard<DfsWizardBase<GR> > |
| 1119 | 1114 |
dfs(const GR &digraph) |
| 1120 | 1115 |
{
|
| 1121 | 1116 |
return DfsWizard<DfsWizardBase<GR> >(digraph); |
| 1122 | 1117 |
} |
| 1123 | 1118 |
|
| 1124 | 1119 |
#ifdef DOXYGEN |
| 1125 | 1120 |
/// \brief Visitor class for DFS. |
| 1126 | 1121 |
/// |
| 1127 | 1122 |
/// This class defines the interface of the DfsVisit events, and |
| 1128 | 1123 |
/// it could be the base of a real visitor class. |
| 1129 | 1124 |
template <typename GR> |
| 1130 | 1125 |
struct DfsVisitor {
|
| 1131 | 1126 |
typedef GR Digraph; |
| 1132 | 1127 |
typedef typename Digraph::Arc Arc; |
| 1133 | 1128 |
typedef typename Digraph::Node Node; |
| 1134 | 1129 |
/// \brief Called for the source node of the DFS. |
| 1135 | 1130 |
/// |
| 1136 | 1131 |
/// This function is called for the source node of the DFS. |
| 1137 | 1132 |
void start(const Node& node) {}
|
| 1138 | 1133 |
/// \brief Called when the source node is leaved. |
| 1139 | 1134 |
/// |
| 1140 | 1135 |
/// This function is called when the source node is leaved. |
| 1141 | 1136 |
void stop(const Node& node) {}
|
| 1142 | 1137 |
/// \brief Called when a node is reached first time. |
| 1143 | 1138 |
/// |
| 1144 | 1139 |
/// This function is called when a node is reached first time. |
| 1145 | 1140 |
void reach(const Node& node) {}
|
| 1146 | 1141 |
/// \brief Called when an arc reaches a new node. |
| 1147 | 1142 |
/// |
| 1148 | 1143 |
/// This function is called when the DFS finds an arc whose target node |
| 1149 | 1144 |
/// is not reached yet. |
| 1150 | 1145 |
void discover(const Arc& arc) {}
|
| 1151 | 1146 |
/// \brief Called when an arc is examined but its target node is |
| 1152 | 1147 |
/// already discovered. |
| 1153 | 1148 |
/// |
| 1154 | 1149 |
/// This function is called when an arc is examined but its target node is |
| 1155 | 1150 |
/// already discovered. |
| 1156 | 1151 |
void examine(const Arc& arc) {}
|
| 1157 | 1152 |
/// \brief Called when the DFS steps back from a node. |
| 1158 | 1153 |
/// |
| 1159 | 1154 |
/// This function is called when the DFS steps back from a node. |
| 1160 | 1155 |
void leave(const Node& node) {}
|
| 1161 | 1156 |
/// \brief Called when the DFS steps back on an arc. |
| 1162 | 1157 |
/// |
| 1163 | 1158 |
/// This function is called when the DFS steps back on an arc. |
| 1164 | 1159 |
void backtrack(const Arc& arc) {}
|
| 1165 | 1160 |
}; |
| 1166 | 1161 |
#else |
| 1167 | 1162 |
template <typename GR> |
| 1168 | 1163 |
struct DfsVisitor {
|
| 1169 | 1164 |
typedef GR Digraph; |
| 1170 | 1165 |
typedef typename Digraph::Arc Arc; |
| 1171 | 1166 |
typedef typename Digraph::Node Node; |
| 1172 | 1167 |
void start(const Node&) {}
|
| 1173 | 1168 |
void stop(const Node&) {}
|
| 1174 | 1169 |
void reach(const Node&) {}
|
| 1175 | 1170 |
void discover(const Arc&) {}
|
| 1176 | 1171 |
void examine(const Arc&) {}
|
| 1177 | 1172 |
void leave(const Node&) {}
|
| 1178 | 1173 |
void backtrack(const Arc&) {}
|
| 1179 | 1174 |
|
| 1180 | 1175 |
template <typename _Visitor> |
| 1181 | 1176 |
struct Constraints {
|
| 1182 | 1177 |
void constraints() {
|
| 1183 | 1178 |
Arc arc; |
| 1184 | 1179 |
Node node; |
| 1185 | 1180 |
visitor.start(node); |
| 1186 | 1181 |
visitor.stop(arc); |
| 1187 | 1182 |
visitor.reach(node); |
| 1188 | 1183 |
visitor.discover(arc); |
| 1189 | 1184 |
visitor.examine(arc); |
| 1190 | 1185 |
visitor.leave(node); |
| 1191 | 1186 |
visitor.backtrack(arc); |
| 1192 | 1187 |
} |
| 1193 | 1188 |
_Visitor& visitor; |
| 1194 | 1189 |
}; |
| 1195 | 1190 |
}; |
| 1196 | 1191 |
#endif |
| 1197 | 1192 |
|
| 1198 | 1193 |
/// \brief Default traits class of DfsVisit class. |
| 1199 | 1194 |
/// |
| 1200 | 1195 |
/// Default traits class of DfsVisit class. |
| 1201 | 1196 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
| 1202 | 1197 |
template<class GR> |
| 1203 | 1198 |
struct DfsVisitDefaultTraits {
|
| 1204 | 1199 |
|
| 1205 | 1200 |
/// \brief The type of the digraph the algorithm runs on. |
| 1206 | 1201 |
typedef GR Digraph; |
| 1207 | 1202 |
|
| 1208 | 1203 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1209 | 1204 |
/// |
| 1210 | 1205 |
/// The type of the map that indicates which nodes are reached. |
| 1211 |
/// It must |
|
| 1206 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 1212 | 1207 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1213 | 1208 |
|
| 1214 | 1209 |
/// \brief Instantiates a ReachedMap. |
| 1215 | 1210 |
/// |
| 1216 | 1211 |
/// This function instantiates a ReachedMap. |
| 1217 | 1212 |
/// \param digraph is the digraph, to which |
| 1218 | 1213 |
/// we would like to define the ReachedMap. |
| 1219 | 1214 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1220 | 1215 |
return new ReachedMap(digraph); |
| 1221 | 1216 |
} |
| 1222 | 1217 |
|
| 1223 | 1218 |
}; |
| 1224 | 1219 |
|
| 1225 | 1220 |
/// \ingroup search |
| 1226 | 1221 |
/// |
| 1227 | 1222 |
/// \brief DFS algorithm class with visitor interface. |
| 1228 | 1223 |
/// |
| 1229 | 1224 |
/// This class provides an efficient implementation of the DFS algorithm |
| 1230 | 1225 |
/// with visitor interface. |
| 1231 | 1226 |
/// |
| 1232 | 1227 |
/// The DfsVisit class provides an alternative interface to the Dfs |
| 1233 | 1228 |
/// class. It works with callback mechanism, the DfsVisit object calls |
| 1234 | 1229 |
/// the member functions of the \c Visitor class on every DFS event. |
| 1235 | 1230 |
/// |
| 1236 | 1231 |
/// This interface of the DFS algorithm should be used in special cases |
| 1237 | 1232 |
/// when extra actions have to be performed in connection with certain |
| 1238 | 1233 |
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
| 1239 | 1234 |
/// instead. |
| 1240 | 1235 |
/// |
| 1241 | 1236 |
/// \tparam GR The type of the digraph the algorithm runs on. |
| 1242 | 1237 |
/// The default type is \ref ListDigraph. |
| 1243 | 1238 |
/// The value of GR is not used directly by \ref DfsVisit, |
| 1244 | 1239 |
/// it is only passed to \ref DfsVisitDefaultTraits. |
| 1245 | 1240 |
/// \tparam VS The Visitor type that is used by the algorithm. |
| 1246 | 1241 |
/// \ref DfsVisitor "DfsVisitor<GR>" is an empty visitor, which |
| 1247 | 1242 |
/// does not observe the DFS events. If you want to observe the DFS |
| 1248 | 1243 |
/// events, you should implement your own visitor class. |
| 1249 | 1244 |
/// \tparam TR Traits class to set various data types used by the |
| 1250 | 1245 |
/// algorithm. The default traits class is |
| 1251 | 1246 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<GR>". |
| 1252 | 1247 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
| 1253 | 1248 |
/// a DFS visit traits class. |
| 1254 | 1249 |
#ifdef DOXYGEN |
| 1255 | 1250 |
template <typename GR, typename VS, typename TR> |
| 1256 | 1251 |
#else |
| 1257 | 1252 |
template <typename GR = ListDigraph, |
| 1258 | 1253 |
typename VS = DfsVisitor<GR>, |
| 1259 | 1254 |
typename TR = DfsVisitDefaultTraits<GR> > |
| 1260 | 1255 |
#endif |
| 1261 | 1256 |
class DfsVisit {
|
| 1262 | 1257 |
public: |
| 1263 | 1258 |
|
| 1264 | 1259 |
///The traits class. |
| 1265 | 1260 |
typedef TR Traits; |
| 1266 | 1261 |
|
| 1267 | 1262 |
///The type of the digraph the algorithm runs on. |
| 1268 | 1263 |
typedef typename Traits::Digraph Digraph; |
| 1269 | 1264 |
|
| 1270 | 1265 |
///The visitor type used by the algorithm. |
| 1271 | 1266 |
typedef VS Visitor; |
| 1272 | 1267 |
|
| 1273 | 1268 |
///The type of the map that indicates which nodes are reached. |
| 1274 | 1269 |
typedef typename Traits::ReachedMap ReachedMap; |
| 1275 | 1270 |
|
| 1276 | 1271 |
private: |
| 1277 | 1272 |
|
| 1278 | 1273 |
typedef typename Digraph::Node Node; |
| 1279 | 1274 |
typedef typename Digraph::NodeIt NodeIt; |
| 1280 | 1275 |
typedef typename Digraph::Arc Arc; |
| 1281 | 1276 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1282 | 1277 |
|
| 1283 | 1278 |
//Pointer to the underlying digraph. |
| 1284 | 1279 |
const Digraph *_digraph; |
| 1285 | 1280 |
//Pointer to the visitor object. |
| 1286 | 1281 |
Visitor *_visitor; |
| 1287 | 1282 |
//Pointer to the map of reached status of the nodes. |
| 1288 | 1283 |
ReachedMap *_reached; |
| 1289 | 1284 |
//Indicates if _reached is locally allocated (true) or not. |
| 1290 | 1285 |
bool local_reached; |
| 1291 | 1286 |
|
| 1292 | 1287 |
std::vector<typename Digraph::Arc> _stack; |
| 1293 | 1288 |
int _stack_head; |
| 1294 | 1289 |
|
| 1295 | 1290 |
//Creates the maps if necessary. |
| 1296 | 1291 |
void create_maps() {
|
| 1297 | 1292 |
if(!_reached) {
|
| 1298 | 1293 |
local_reached = true; |
| 1299 | 1294 |
_reached = Traits::createReachedMap(*_digraph); |
| 1300 | 1295 |
} |
| 1301 | 1296 |
} |
| 1302 | 1297 |
|
| 1303 | 1298 |
protected: |
| 1304 | 1299 |
|
| 1305 | 1300 |
DfsVisit() {}
|
| 1306 | 1301 |
|
| 1307 | 1302 |
public: |
| 1308 | 1303 |
|
| 1309 | 1304 |
typedef DfsVisit Create; |
| 1310 | 1305 |
|
| 1311 | 1306 |
/// \name Named Template Parameters |
| 1312 | 1307 |
|
| 1313 | 1308 |
///@{
|
| 1314 | 1309 |
template <class T> |
| 1315 | 1310 |
struct SetReachedMapTraits : public Traits {
|
| 1316 | 1311 |
typedef T ReachedMap; |
| 1317 | 1312 |
static ReachedMap *createReachedMap(const Digraph &digraph) {
|
| 1318 | 1313 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
| 1319 | 1314 |
return 0; // ignore warnings |
| 1320 | 1315 |
} |
| 1321 | 1316 |
}; |
| 1322 | 1317 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 1323 | 1318 |
/// ReachedMap type. |
| 1324 | 1319 |
/// |
| 1325 | 1320 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
| 1326 | 1321 |
template <class T> |
| 1327 | 1322 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
| 1328 | 1323 |
SetReachedMapTraits<T> > {
|
| 1329 | 1324 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
| 1330 | 1325 |
}; |
| 1331 | 1326 |
///@} |
| 1332 | 1327 |
|
| 1333 | 1328 |
public: |
| 1334 | 1329 |
|
| 1335 | 1330 |
/// \brief Constructor. |
| 1336 | 1331 |
/// |
| 1337 | 1332 |
/// Constructor. |
| 1338 | 1333 |
/// |
| 1339 | 1334 |
/// \param digraph The digraph the algorithm runs on. |
| 1340 | 1335 |
/// \param visitor The visitor object of the algorithm. |
| 1341 | 1336 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
| 1342 | 1337 |
: _digraph(&digraph), _visitor(&visitor), |
| 1343 | 1338 |
_reached(0), local_reached(false) {}
|
| 1344 | 1339 |
|
| 1345 | 1340 |
/// \brief Destructor. |
| 1346 | 1341 |
~DfsVisit() {
|
| 1347 | 1342 |
if(local_reached) delete _reached; |
| 1348 | 1343 |
} |
| 1349 | 1344 |
|
| 1350 | 1345 |
/// \brief Sets the map that indicates which nodes are reached. |
| 1351 | 1346 |
/// |
| 1352 | 1347 |
/// Sets the map that indicates which nodes are reached. |
| 1353 | 1348 |
/// If you don't use this function before calling \ref run(Node) "run()" |
| 1354 | 1349 |
/// or \ref init(), an instance will be allocated automatically. |
| 1355 | 1350 |
/// The destructor deallocates this automatically allocated map, |
| 1356 | 1351 |
/// of course. |
| 1357 | 1352 |
/// \return <tt> (*this) </tt> |
| 1358 | 1353 |
DfsVisit &reachedMap(ReachedMap &m) {
|
| 1359 | 1354 |
if(local_reached) {
|
| 1360 | 1355 |
delete _reached; |
| 1361 | 1356 |
local_reached=false; |
| 1362 | 1357 |
} |
| 1363 | 1358 |
_reached = &m; |
| 1364 | 1359 |
return *this; |
| 1365 | 1360 |
} |
| 1366 | 1361 |
|
| 1367 | 1362 |
public: |
| 1368 | 1363 |
|
| 1369 | 1364 |
/// \name Execution Control |
| 1370 | 1365 |
/// The simplest way to execute the DFS algorithm is to use one of the |
| 1371 | 1366 |
/// member functions called \ref run(Node) "run()".\n |
| 1372 | 1367 |
/// If you need more control on the execution, first you have to call |
| 1373 | 1368 |
/// \ref init(), then you can add a source node with \ref addSource() |
| 1374 | 1369 |
/// and perform the actual computation with \ref start(). |
| 1375 | 1370 |
/// This procedure can be repeated if there are nodes that have not |
| 1376 | 1371 |
/// been reached. |
| 1377 | 1372 |
|
| 1378 | 1373 |
/// @{
|
| 1379 | 1374 |
|
| 1380 | 1375 |
/// \brief Initializes the internal data structures. |
| 1381 | 1376 |
/// |
| 1382 | 1377 |
/// Initializes the internal data structures. |
| 1383 | 1378 |
void init() {
|
| 1384 | 1379 |
create_maps(); |
| 1385 | 1380 |
_stack.resize(countNodes(*_digraph)); |
| 1386 | 1381 |
_stack_head = -1; |
| 1387 | 1382 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
|
| 1388 | 1383 |
_reached->set(u, false); |
| 1389 | 1384 |
} |
| 1390 | 1385 |
} |
| 1391 | 1386 |
|
| 1392 | 1387 |
/// \brief Adds a new source node. |
| 1393 | 1388 |
/// |
| 1394 | 1389 |
/// Adds a new source node to the set of nodes to be processed. |
| 1395 | 1390 |
/// |
| 1396 | 1391 |
/// \pre The stack must be empty. Otherwise the algorithm gives |
| 1397 | 1392 |
/// wrong results. (One of the outgoing arcs of all the source nodes |
| 1398 | 1393 |
/// except for the last one will not be visited and distances will |
| 1399 | 1394 |
/// also be wrong.) |
| 1400 | 1395 |
void addSource(Node s) |
| 1401 | 1396 |
{
|
| 1402 | 1397 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
| 1403 | 1398 |
if(!(*_reached)[s]) {
|
| 1404 | 1399 |
_reached->set(s,true); |
| 1405 | 1400 |
_visitor->start(s); |
| 1406 | 1401 |
_visitor->reach(s); |
| 1407 | 1402 |
Arc e; |
| 1408 | 1403 |
_digraph->firstOut(e, s); |
| 1409 | 1404 |
if (e != INVALID) {
|
| 1410 | 1405 |
_stack[++_stack_head] = e; |
| 1411 | 1406 |
} else {
|
| 1412 | 1407 |
_visitor->leave(s); |
| 1413 | 1408 |
_visitor->stop(s); |
| 1414 | 1409 |
} |
| 1415 | 1410 |
} |
| 1416 | 1411 |
} |
| 1417 | 1412 |
|
| 1418 | 1413 |
/// \brief Processes the next arc. |
| 1419 | 1414 |
/// |
| 1420 | 1415 |
/// Processes the next arc. |
| 1421 | 1416 |
/// |
| 1422 | 1417 |
/// \return The processed arc. |
| 1423 | 1418 |
/// |
| 1424 | 1419 |
/// \pre The stack must not be empty. |
| 1425 | 1420 |
Arc processNextArc() {
|
| 1426 | 1421 |
Arc e = _stack[_stack_head]; |
| 1427 | 1422 |
Node m = _digraph->target(e); |
| 1428 | 1423 |
if(!(*_reached)[m]) {
|
| 1429 | 1424 |
_visitor->discover(e); |
| 1430 | 1425 |
_visitor->reach(m); |
| 1431 | 1426 |
_reached->set(m, true); |
| 1432 | 1427 |
_digraph->firstOut(_stack[++_stack_head], m); |
| 1433 | 1428 |
} else {
|
| 1434 | 1429 |
_visitor->examine(e); |
| 1435 | 1430 |
m = _digraph->source(e); |
| 1436 | 1431 |
_digraph->nextOut(_stack[_stack_head]); |
| 1437 | 1432 |
} |
| 1438 | 1433 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) {
|
| 1439 | 1434 |
_visitor->leave(m); |
| 1440 | 1435 |
--_stack_head; |
| 1441 | 1436 |
if (_stack_head >= 0) {
|
| 1442 | 1437 |
_visitor->backtrack(_stack[_stack_head]); |
| 1443 | 1438 |
m = _digraph->source(_stack[_stack_head]); |
| 1444 | 1439 |
_digraph->nextOut(_stack[_stack_head]); |
| 1445 | 1440 |
} else {
|
| 1446 | 1441 |
_visitor->stop(m); |
| 1447 | 1442 |
} |
| 1448 | 1443 |
} |
| 1449 | 1444 |
return e; |
| 1450 | 1445 |
} |
| 1451 | 1446 |
|
| 1452 | 1447 |
/// \brief Next arc to be processed. |
| 1453 | 1448 |
/// |
| 1454 | 1449 |
/// Next arc to be processed. |
| 1455 | 1450 |
/// |
| 1456 | 1451 |
/// \return The next arc to be processed or INVALID if the stack is |
| 1457 | 1452 |
/// empty. |
| 1458 | 1453 |
Arc nextArc() const {
|
| 1459 | 1454 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
| 1460 | 1455 |
} |
| 1461 | 1456 |
|
| 1462 | 1457 |
/// \brief Returns \c false if there are nodes |
| 1463 | 1458 |
/// to be processed. |
| 1464 | 1459 |
/// |
| 1465 | 1460 |
/// Returns \c false if there are nodes |
| 1466 | 1461 |
/// to be processed in the queue (stack). |
| 1467 | 1462 |
bool emptyQueue() const { return _stack_head < 0; }
|
| 1468 | 1463 |
|
| 1469 | 1464 |
/// \brief Returns the number of the nodes to be processed. |
| 1470 | 1465 |
/// |
| 1471 | 1466 |
/// Returns the number of the nodes to be processed in the queue (stack). |
| 1472 | 1467 |
int queueSize() const { return _stack_head + 1; }
|
| 1473 | 1468 |
|
| 1474 | 1469 |
/// \brief Executes the algorithm. |
| 1475 | 1470 |
/// |
| 1476 | 1471 |
/// Executes the algorithm. |
| 1477 | 1472 |
/// |
| 1478 | 1473 |
/// This method runs the %DFS algorithm from the root node |
| 1479 | 1474 |
/// in order to compute the %DFS path to each node. |
| 1480 | 1475 |
/// |
| 1481 | 1476 |
/// The algorithm computes |
| 1482 | 1477 |
/// - the %DFS tree, |
| 1483 | 1478 |
/// - the distance of each node from the root in the %DFS tree. |
| 1484 | 1479 |
/// |
| 1485 | 1480 |
/// \pre init() must be called and a root node should be |
| 1486 | 1481 |
/// added with addSource() before using this function. |
| 1487 | 1482 |
/// |
| 1488 | 1483 |
/// \note <tt>d.start()</tt> is just a shortcut of the following code. |
| 1489 | 1484 |
/// \code |
| 1490 | 1485 |
/// while ( !d.emptyQueue() ) {
|
| 1491 | 1486 |
/// d.processNextArc(); |
| 1492 | 1487 |
/// } |
| 1493 | 1488 |
/// \endcode |
| 1494 | 1489 |
void start() {
|
| 1495 | 1490 |
while ( !emptyQueue() ) processNextArc(); |
| 1496 | 1491 |
} |
| 1497 | 1492 |
|
| 1498 | 1493 |
/// \brief Executes the algorithm until the given target node is reached. |
| 1499 | 1494 |
/// |
| 1500 | 1495 |
/// Executes the algorithm until the given target node is reached. |
| 1501 | 1496 |
/// |
| 1502 | 1497 |
/// This method runs the %DFS algorithm from the root node |
| 1503 | 1498 |
/// in order to compute the DFS path to \c t. |
| 1504 | 1499 |
/// |
| 1505 | 1500 |
/// The algorithm computes |
| 1506 | 1501 |
/// - the %DFS path to \c t, |
| 1507 | 1502 |
/// - the distance of \c t from the root in the %DFS tree. |
| 1508 | 1503 |
/// |
| 1509 | 1504 |
/// \pre init() must be called and a root node should be added |
| 1510 | 1505 |
/// with addSource() before using this function. |
| 1511 | 1506 |
void start(Node t) {
|
| 1512 | 1507 |
while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != t ) |
| 1513 | 1508 |
processNextArc(); |
| 1514 | 1509 |
} |
| 1515 | 1510 |
|
| 1516 | 1511 |
/// \brief Executes the algorithm until a condition is met. |
| 1517 | 1512 |
/// |
| 1518 | 1513 |
/// Executes the algorithm until a condition is met. |
| 1519 | 1514 |
/// |
| 1520 | 1515 |
/// This method runs the %DFS algorithm from the root node |
| 1521 | 1516 |
/// until an arc \c a with <tt>am[a]</tt> true is found. |
| 1522 | 1517 |
/// |
| 1523 | 1518 |
/// \param am A \c bool (or convertible) arc map. The algorithm |
| 1524 | 1519 |
/// will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
| 1525 | 1520 |
/// |
| 1526 | 1521 |
/// \return The reached arc \c a with <tt>am[a]</tt> true or |
| 1527 | 1522 |
/// \c INVALID if no such arc was found. |
| 1528 | 1523 |
/// |
| 1529 | 1524 |
/// \pre init() must be called and a root node should be added |
| 1530 | 1525 |
/// with addSource() before using this function. |
| 1531 | 1526 |
/// |
| 1532 | 1527 |
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
| 1533 | 1528 |
/// not a node map. |
| 1534 | 1529 |
template <typename AM> |
| 1535 | 1530 |
Arc start(const AM &am) {
|
| 1536 | 1531 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
| 1537 | 1532 |
processNextArc(); |
| 1538 | 1533 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
| 1539 | 1534 |
} |
| 1540 | 1535 |
|
| 1541 | 1536 |
/// \brief Runs the algorithm from the given source node. |
| 1542 | 1537 |
/// |
| 1543 | 1538 |
/// This method runs the %DFS algorithm from node \c s. |
| 1544 | 1539 |
/// in order to compute the DFS path to each node. |
| 1545 | 1540 |
/// |
| 1546 | 1541 |
/// The algorithm computes |
| 1547 | 1542 |
/// - the %DFS tree, |
| 1548 | 1543 |
/// - the distance of each node from the root in the %DFS tree. |
| 1549 | 1544 |
/// |
| 1550 | 1545 |
/// \note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 1551 | 1546 |
///\code |
| 1552 | 1547 |
/// d.init(); |
| 1553 | 1548 |
/// d.addSource(s); |
| 1554 | 1549 |
/// d.start(); |
| 1555 | 1550 |
///\endcode |
| 1556 | 1551 |
void run(Node s) {
|
| 1557 | 1552 |
init(); |
| 1558 | 1553 |
addSource(s); |
| 1559 | 1554 |
start(); |
| 1560 | 1555 |
} |
| 1561 | 1556 |
|
| 1562 | 1557 |
/// \brief Finds the %DFS path between \c s and \c t. |
| 1563 | 1558 |
|
| 1564 | 1559 |
/// This method runs the %DFS algorithm from node \c s |
| 1565 | 1560 |
/// in order to compute the DFS path to node \c t |
| 1566 | 1561 |
/// (it stops searching when \c t is processed). |
| 1567 | 1562 |
/// |
| 1568 | 1563 |
/// \return \c true if \c t is reachable form \c s. |
| 1569 | 1564 |
/// |
| 1570 | 1565 |
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is |
| 1571 | 1566 |
/// just a shortcut of the following code. |
| 1572 | 1567 |
///\code |
| 1573 | 1568 |
/// d.init(); |
| 1574 | 1569 |
/// d.addSource(s); |
| 1575 | 1570 |
/// d.start(t); |
| 1576 | 1571 |
///\endcode |
| 1577 | 1572 |
bool run(Node s,Node t) {
|
| 1578 | 1573 |
init(); |
| 1579 | 1574 |
addSource(s); |
| 1580 | 1575 |
start(t); |
| 1581 | 1576 |
return reached(t); |
| 1582 | 1577 |
} |
| 1583 | 1578 |
|
| 1584 | 1579 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1585 | 1580 |
|
| 1586 | 1581 |
/// This method runs the %DFS algorithm in order to |
| 1587 | 1582 |
/// compute the %DFS path to each node. |
| 1588 | 1583 |
/// |
| 1589 | 1584 |
/// The algorithm computes |
| 1590 | 1585 |
/// - the %DFS tree (forest), |
| 1591 | 1586 |
/// - the distance of each node from the root(s) in the %DFS tree. |
| 1592 | 1587 |
/// |
| 1593 | 1588 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
| 1594 | 1589 |
///\code |
| 1595 | 1590 |
/// d.init(); |
| 1596 | 1591 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 1597 | 1592 |
/// if (!d.reached(n)) {
|
| 1598 | 1593 |
/// d.addSource(n); |
| 1599 | 1594 |
/// d.start(); |
| 1600 | 1595 |
/// } |
| 1601 | 1596 |
/// } |
| 1602 | 1597 |
///\endcode |
| 1603 | 1598 |
void run() {
|
| 1604 | 1599 |
init(); |
| 1605 | 1600 |
for (NodeIt it(*_digraph); it != INVALID; ++it) {
|
| 1606 | 1601 |
if (!reached(it)) {
|
| 1607 | 1602 |
addSource(it); |
| 1608 | 1603 |
start(); |
| 1609 | 1604 |
} |
| 1610 | 1605 |
} |
| 1611 | 1606 |
} |
| 1612 | 1607 |
|
| 1613 | 1608 |
///@} |
| 1614 | 1609 |
|
| 1615 | 1610 |
/// \name Query Functions |
| 1616 | 1611 |
/// The results of the DFS algorithm can be obtained using these |
| 1617 | 1612 |
/// functions.\n |
| 1618 | 1613 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
| 1619 | 1614 |
/// before using them. |
| 1620 | 1615 |
|
| 1621 | 1616 |
///@{
|
| 1622 | 1617 |
|
| 1623 |
/// \brief Checks if |
|
| 1618 |
/// \brief Checks if the given node is reached from the root(s). |
|
| 1624 | 1619 |
/// |
| 1625 | 1620 |
/// Returns \c true if \c v is reached from the root(s). |
| 1626 | 1621 |
/// |
| 1627 | 1622 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
| 1628 | 1623 |
/// must be called before using this function. |
| 1629 | 1624 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| 1630 | 1625 |
|
| 1631 | 1626 |
///@} |
| 1632 | 1627 |
|
| 1633 | 1628 |
}; |
| 1634 | 1629 |
|
| 1635 | 1630 |
} //END OF NAMESPACE LEMON |
| 1636 | 1631 |
|
| 1637 | 1632 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
| 20 | 20 |
#define LEMON_DIJKSTRA_H |
| 21 | 21 |
|
| 22 | 22 |
///\ingroup shortest_path |
| 23 | 23 |
///\file |
| 24 | 24 |
///\brief Dijkstra algorithm. |
| 25 | 25 |
|
| 26 | 26 |
#include <limits> |
| 27 | 27 |
#include <lemon/list_graph.h> |
| 28 | 28 |
#include <lemon/bin_heap.h> |
| 29 | 29 |
#include <lemon/bits/path_dump.h> |
| 30 | 30 |
#include <lemon/core.h> |
| 31 | 31 |
#include <lemon/error.h> |
| 32 | 32 |
#include <lemon/maps.h> |
| 33 | 33 |
#include <lemon/path.h> |
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 | 37 |
/// \brief Default operation traits for the Dijkstra algorithm class. |
| 38 | 38 |
/// |
| 39 | 39 |
/// This operation traits class defines all computational operations and |
| 40 | 40 |
/// constants which are used in the Dijkstra algorithm. |
| 41 | 41 |
template <typename V> |
| 42 | 42 |
struct DijkstraDefaultOperationTraits {
|
| 43 | 43 |
/// \e |
| 44 | 44 |
typedef V Value; |
| 45 | 45 |
/// \brief Gives back the zero value of the type. |
| 46 | 46 |
static Value zero() {
|
| 47 | 47 |
return static_cast<Value>(0); |
| 48 | 48 |
} |
| 49 | 49 |
/// \brief Gives back the sum of the given two elements. |
| 50 | 50 |
static Value plus(const Value& left, const Value& right) {
|
| 51 | 51 |
return left + right; |
| 52 | 52 |
} |
| 53 | 53 |
/// \brief Gives back true only if the first value is less than the second. |
| 54 | 54 |
static bool less(const Value& left, const Value& right) {
|
| 55 | 55 |
return left < right; |
| 56 | 56 |
} |
| 57 | 57 |
}; |
| 58 | 58 |
|
| 59 | 59 |
///Default traits class of Dijkstra class. |
| 60 | 60 |
|
| 61 | 61 |
///Default traits class of Dijkstra class. |
| 62 | 62 |
///\tparam GR The type of the digraph. |
| 63 | 63 |
///\tparam LEN The type of the length map. |
| 64 | 64 |
template<typename GR, typename LEN> |
| 65 | 65 |
struct DijkstraDefaultTraits |
| 66 | 66 |
{
|
| 67 | 67 |
///The type of the digraph the algorithm runs on. |
| 68 | 68 |
typedef GR Digraph; |
| 69 | 69 |
|
| 70 | 70 |
///The type of the map that stores the arc lengths. |
| 71 | 71 |
|
| 72 | 72 |
///The type of the map that stores the arc lengths. |
| 73 |
///It must |
|
| 73 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 74 | 74 |
typedef LEN LengthMap; |
| 75 |
///The type of the |
|
| 75 |
///The type of the arc lengths. |
|
| 76 | 76 |
typedef typename LEN::Value Value; |
| 77 | 77 |
|
| 78 | 78 |
/// Operation traits for %Dijkstra algorithm. |
| 79 | 79 |
|
| 80 | 80 |
/// This class defines the operations that are used in the algorithm. |
| 81 | 81 |
/// \see DijkstraDefaultOperationTraits |
| 82 | 82 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
| 83 | 83 |
|
| 84 | 84 |
/// The cross reference type used by the heap. |
| 85 | 85 |
|
| 86 | 86 |
/// The cross reference type used by the heap. |
| 87 | 87 |
/// Usually it is \c Digraph::NodeMap<int>. |
| 88 | 88 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 89 | 89 |
///Instantiates a \c HeapCrossRef. |
| 90 | 90 |
|
| 91 | 91 |
///This function instantiates a \ref HeapCrossRef. |
| 92 | 92 |
/// \param g is the digraph, to which we would like to define the |
| 93 | 93 |
/// \ref HeapCrossRef. |
| 94 | 94 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
| 95 | 95 |
{
|
| 96 | 96 |
return new HeapCrossRef(g); |
| 97 | 97 |
} |
| 98 | 98 |
|
| 99 | 99 |
///The heap type used by the %Dijkstra algorithm. |
| 100 | 100 |
|
| 101 | 101 |
///The heap type used by the Dijkstra algorithm. |
| 102 | 102 |
/// |
| 103 | 103 |
///\sa BinHeap |
| 104 | 104 |
///\sa Dijkstra |
| 105 | 105 |
typedef BinHeap<typename LEN::Value, HeapCrossRef, std::less<Value> > Heap; |
| 106 | 106 |
///Instantiates a \c Heap. |
| 107 | 107 |
|
| 108 | 108 |
///This function instantiates a \ref Heap. |
| 109 | 109 |
static Heap *createHeap(HeapCrossRef& r) |
| 110 | 110 |
{
|
| 111 | 111 |
return new Heap(r); |
| 112 | 112 |
} |
| 113 | 113 |
|
| 114 | 114 |
///\brief The type of the map that stores the predecessor |
| 115 | 115 |
///arcs of the shortest paths. |
| 116 | 116 |
/// |
| 117 | 117 |
///The type of the map that stores the predecessor |
| 118 | 118 |
///arcs of the shortest paths. |
| 119 |
///It must |
|
| 119 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 120 | 120 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 121 | 121 |
///Instantiates a \c PredMap. |
| 122 | 122 |
|
| 123 | 123 |
///This function instantiates a \ref PredMap. |
| 124 | 124 |
///\param g is the digraph, to which we would like to define the |
| 125 | 125 |
///\ref PredMap. |
| 126 | 126 |
static PredMap *createPredMap(const Digraph &g) |
| 127 | 127 |
{
|
| 128 | 128 |
return new PredMap(g); |
| 129 | 129 |
} |
| 130 | 130 |
|
| 131 | 131 |
///The type of the map that indicates which nodes are processed. |
| 132 | 132 |
|
| 133 | 133 |
///The type of the map that indicates which nodes are processed. |
| 134 |
///It must |
|
| 134 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 135 | 135 |
///By default it is a NullMap. |
| 136 | 136 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 137 | 137 |
///Instantiates a \c ProcessedMap. |
| 138 | 138 |
|
| 139 | 139 |
///This function instantiates a \ref ProcessedMap. |
| 140 | 140 |
///\param g is the digraph, to which |
| 141 | 141 |
///we would like to define the \ref ProcessedMap. |
| 142 | 142 |
#ifdef DOXYGEN |
| 143 | 143 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 144 | 144 |
#else |
| 145 | 145 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 146 | 146 |
#endif |
| 147 | 147 |
{
|
| 148 | 148 |
return new ProcessedMap(); |
| 149 | 149 |
} |
| 150 | 150 |
|
| 151 | 151 |
///The type of the map that stores the distances of the nodes. |
| 152 | 152 |
|
| 153 | 153 |
///The type of the map that stores the distances of the nodes. |
| 154 |
///It must |
|
| 154 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 155 | 155 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
| 156 | 156 |
///Instantiates a \c DistMap. |
| 157 | 157 |
|
| 158 | 158 |
///This function instantiates a \ref DistMap. |
| 159 | 159 |
///\param g is the digraph, to which we would like to define |
| 160 | 160 |
///the \ref DistMap. |
| 161 | 161 |
static DistMap *createDistMap(const Digraph &g) |
| 162 | 162 |
{
|
| 163 | 163 |
return new DistMap(g); |
| 164 | 164 |
} |
| 165 | 165 |
}; |
| 166 | 166 |
|
| 167 | 167 |
///%Dijkstra algorithm class. |
| 168 | 168 |
|
| 169 | 169 |
/// \ingroup shortest_path |
| 170 | 170 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
| 171 | 171 |
/// |
| 172 |
///The %Dijkstra algorithm solves the single-source shortest path problem |
|
| 173 |
///when all arc lengths are non-negative. If there are negative lengths, |
|
| 174 |
///the BellmanFord algorithm should be used instead. |
|
| 175 |
/// |
|
| 172 | 176 |
///The arc lengths are passed to the algorithm using a |
| 173 | 177 |
///\ref concepts::ReadMap "ReadMap", |
| 174 | 178 |
///so it is easy to change it to any kind of length. |
| 175 | 179 |
///The type of the length is determined by the |
| 176 | 180 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
| 177 | 181 |
///It is also possible to change the underlying priority heap. |
| 178 | 182 |
/// |
| 179 | 183 |
///There is also a \ref dijkstra() "function-type interface" for the |
| 180 | 184 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
| 181 | 185 |
///it can be used easier. |
| 182 | 186 |
/// |
| 183 | 187 |
///\tparam GR The type of the digraph the algorithm runs on. |
| 184 | 188 |
///The default type is \ref ListDigraph. |
| 185 | 189 |
///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
| 186 | 190 |
///the lengths of the arcs. |
| 187 | 191 |
///It is read once for each arc, so the map may involve in |
| 188 | 192 |
///relatively time consuming process to compute the arc lengths if |
| 189 | 193 |
///it is necessary. The default map type is \ref |
| 190 | 194 |
///concepts::Digraph::ArcMap "GR::ArcMap<int>". |
| 191 | 195 |
#ifdef DOXYGEN |
| 192 | 196 |
template <typename GR, typename LEN, typename TR> |
| 193 | 197 |
#else |
| 194 | 198 |
template <typename GR=ListDigraph, |
| 195 | 199 |
typename LEN=typename GR::template ArcMap<int>, |
| 196 | 200 |
typename TR=DijkstraDefaultTraits<GR,LEN> > |
| 197 | 201 |
#endif |
| 198 | 202 |
class Dijkstra {
|
| 199 | 203 |
public: |
| 200 | 204 |
|
| 201 | 205 |
///The type of the digraph the algorithm runs on. |
| 202 | 206 |
typedef typename TR::Digraph Digraph; |
| 203 | 207 |
|
| 204 |
///The type of the |
|
| 208 |
///The type of the arc lengths. |
|
| 205 | 209 |
typedef typename TR::LengthMap::Value Value; |
| 206 | 210 |
///The type of the map that stores the arc lengths. |
| 207 | 211 |
typedef typename TR::LengthMap LengthMap; |
| 208 | 212 |
///\brief The type of the map that stores the predecessor arcs of the |
| 209 | 213 |
///shortest paths. |
| 210 | 214 |
typedef typename TR::PredMap PredMap; |
| 211 | 215 |
///The type of the map that stores the distances of the nodes. |
| 212 | 216 |
typedef typename TR::DistMap DistMap; |
| 213 | 217 |
///The type of the map that indicates which nodes are processed. |
| 214 | 218 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 215 | 219 |
///The type of the paths. |
| 216 | 220 |
typedef PredMapPath<Digraph, PredMap> Path; |
| 217 | 221 |
///The cross reference type used for the current heap. |
| 218 | 222 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
| 219 | 223 |
///The heap type used by the algorithm. |
| 220 | 224 |
typedef typename TR::Heap Heap; |
| 221 | 225 |
///\brief The \ref DijkstraDefaultOperationTraits "operation traits class" |
| 222 | 226 |
///of the algorithm. |
| 223 | 227 |
typedef typename TR::OperationTraits OperationTraits; |
| 224 | 228 |
|
| 225 | 229 |
///The \ref DijkstraDefaultTraits "traits class" of the algorithm. |
| 226 | 230 |
typedef TR Traits; |
| 227 | 231 |
|
| 228 | 232 |
private: |
| 229 | 233 |
|
| 230 | 234 |
typedef typename Digraph::Node Node; |
| 231 | 235 |
typedef typename Digraph::NodeIt NodeIt; |
| 232 | 236 |
typedef typename Digraph::Arc Arc; |
| 233 | 237 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 234 | 238 |
|
| 235 | 239 |
//Pointer to the underlying digraph. |
| 236 | 240 |
const Digraph *G; |
| 237 | 241 |
//Pointer to the length map. |
| 238 | 242 |
const LengthMap *_length; |
| 239 | 243 |
//Pointer to the map of predecessors arcs. |
| 240 | 244 |
PredMap *_pred; |
| 241 | 245 |
//Indicates if _pred is locally allocated (true) or not. |
| 242 | 246 |
bool local_pred; |
| 243 | 247 |
//Pointer to the map of distances. |
| 244 | 248 |
DistMap *_dist; |
| 245 | 249 |
//Indicates if _dist is locally allocated (true) or not. |
| 246 | 250 |
bool local_dist; |
| 247 | 251 |
//Pointer to the map of processed status of the nodes. |
| 248 | 252 |
ProcessedMap *_processed; |
| 249 | 253 |
//Indicates if _processed is locally allocated (true) or not. |
| 250 | 254 |
bool local_processed; |
| 251 | 255 |
//Pointer to the heap cross references. |
| 252 | 256 |
HeapCrossRef *_heap_cross_ref; |
| 253 | 257 |
//Indicates if _heap_cross_ref is locally allocated (true) or not. |
| 254 | 258 |
bool local_heap_cross_ref; |
| 255 | 259 |
//Pointer to the heap. |
| 256 | 260 |
Heap *_heap; |
| 257 | 261 |
//Indicates if _heap is locally allocated (true) or not. |
| 258 | 262 |
bool local_heap; |
| 259 | 263 |
|
| 260 | 264 |
//Creates the maps if necessary. |
| 261 | 265 |
void create_maps() |
| 262 | 266 |
{
|
| 263 | 267 |
if(!_pred) {
|
| 264 | 268 |
local_pred = true; |
| 265 | 269 |
_pred = Traits::createPredMap(*G); |
| 266 | 270 |
} |
| 267 | 271 |
if(!_dist) {
|
| 268 | 272 |
local_dist = true; |
| 269 | 273 |
_dist = Traits::createDistMap(*G); |
| 270 | 274 |
} |
| 271 | 275 |
if(!_processed) {
|
| 272 | 276 |
local_processed = true; |
| 273 | 277 |
_processed = Traits::createProcessedMap(*G); |
| 274 | 278 |
} |
| 275 | 279 |
if (!_heap_cross_ref) {
|
| 276 | 280 |
local_heap_cross_ref = true; |
| 277 | 281 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
| 278 | 282 |
} |
| 279 | 283 |
if (!_heap) {
|
| 280 | 284 |
local_heap = true; |
| 281 | 285 |
_heap = Traits::createHeap(*_heap_cross_ref); |
| 282 | 286 |
} |
| 283 | 287 |
} |
| 284 | 288 |
|
| 285 | 289 |
public: |
| 286 | 290 |
|
| 287 | 291 |
typedef Dijkstra Create; |
| 288 | 292 |
|
| 289 | 293 |
///\name Named Template Parameters |
| 290 | 294 |
|
| 291 | 295 |
///@{
|
| 292 | 296 |
|
| 293 | 297 |
template <class T> |
| 294 | 298 |
struct SetPredMapTraits : public Traits {
|
| 295 | 299 |
typedef T PredMap; |
| 296 | 300 |
static PredMap *createPredMap(const Digraph &) |
| 297 | 301 |
{
|
| 298 | 302 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
| 299 | 303 |
return 0; // ignore warnings |
| 300 | 304 |
} |
| 301 | 305 |
}; |
| 302 | 306 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 303 | 307 |
///\c PredMap type. |
| 304 | 308 |
/// |
| 305 | 309 |
///\ref named-templ-param "Named parameter" for setting |
| 306 | 310 |
///\c PredMap type. |
| 307 |
///It must |
|
| 311 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 308 | 312 |
template <class T> |
| 309 | 313 |
struct SetPredMap |
| 310 | 314 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
|
| 311 | 315 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
| 312 | 316 |
}; |
| 313 | 317 |
|
| 314 | 318 |
template <class T> |
| 315 | 319 |
struct SetDistMapTraits : public Traits {
|
| 316 | 320 |
typedef T DistMap; |
| 317 | 321 |
static DistMap *createDistMap(const Digraph &) |
| 318 | 322 |
{
|
| 319 | 323 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
| 320 | 324 |
return 0; // ignore warnings |
| 321 | 325 |
} |
| 322 | 326 |
}; |
| 323 | 327 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 324 | 328 |
///\c DistMap type. |
| 325 | 329 |
/// |
| 326 | 330 |
///\ref named-templ-param "Named parameter" for setting |
| 327 | 331 |
///\c DistMap type. |
| 328 |
///It must |
|
| 332 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 329 | 333 |
template <class T> |
| 330 | 334 |
struct SetDistMap |
| 331 | 335 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
|
| 332 | 336 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
| 333 | 337 |
}; |
| 334 | 338 |
|
| 335 | 339 |
template <class T> |
| 336 | 340 |
struct SetProcessedMapTraits : public Traits {
|
| 337 | 341 |
typedef T ProcessedMap; |
| 338 | 342 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 339 | 343 |
{
|
| 340 | 344 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
| 341 | 345 |
return 0; // ignore warnings |
| 342 | 346 |
} |
| 343 | 347 |
}; |
| 344 | 348 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 345 | 349 |
///\c ProcessedMap type. |
| 346 | 350 |
/// |
| 347 | 351 |
///\ref named-templ-param "Named parameter" for setting |
| 348 | 352 |
///\c ProcessedMap type. |
| 349 |
///It must |
|
| 353 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 350 | 354 |
template <class T> |
| 351 | 355 |
struct SetProcessedMap |
| 352 | 356 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
|
| 353 | 357 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
| 354 | 358 |
}; |
| 355 | 359 |
|
| 356 | 360 |
struct SetStandardProcessedMapTraits : public Traits {
|
| 357 | 361 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
| 358 | 362 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 359 | 363 |
{
|
| 360 | 364 |
return new ProcessedMap(g); |
| 361 | 365 |
} |
| 362 | 366 |
}; |
| 363 | 367 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 364 | 368 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 365 | 369 |
/// |
| 366 | 370 |
///\ref named-templ-param "Named parameter" for setting |
| 367 | 371 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
| 368 | 372 |
///If you don't set it explicitly, it will be automatically allocated. |
| 369 | 373 |
struct SetStandardProcessedMap |
| 370 | 374 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
|
| 371 | 375 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
| 372 | 376 |
Create; |
| 373 | 377 |
}; |
| 374 | 378 |
|
| 375 | 379 |
template <class H, class CR> |
| 376 | 380 |
struct SetHeapTraits : public Traits {
|
| 377 | 381 |
typedef CR HeapCrossRef; |
| 378 | 382 |
typedef H Heap; |
| 379 | 383 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) {
|
| 380 | 384 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
| 381 | 385 |
return 0; // ignore warnings |
| 382 | 386 |
} |
| 383 | 387 |
static Heap *createHeap(HeapCrossRef &) |
| 384 | 388 |
{
|
| 385 | 389 |
LEMON_ASSERT(false, "Heap is not initialized"); |
| 386 | 390 |
return 0; // ignore warnings |
| 387 | 391 |
} |
| 388 | 392 |
}; |
| 389 | 393 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 390 | 394 |
///heap and cross reference types |
| 391 | 395 |
/// |
| 392 | 396 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
| 393 | 397 |
///reference types. If this named parameter is used, then external |
| 394 | 398 |
///heap and cross reference objects must be passed to the algorithm |
| 395 | 399 |
///using the \ref heap() function before calling \ref run(Node) "run()" |
| 396 | 400 |
///or \ref init(). |
| 397 | 401 |
///\sa SetStandardHeap |
| 398 | 402 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
| 399 | 403 |
struct SetHeap |
| 400 | 404 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > {
|
| 401 | 405 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
| 402 | 406 |
}; |
| 403 | 407 |
|
| 404 | 408 |
template <class H, class CR> |
| 405 | 409 |
struct SetStandardHeapTraits : public Traits {
|
| 406 | 410 |
typedef CR HeapCrossRef; |
| 407 | 411 |
typedef H Heap; |
| 408 | 412 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) {
|
| 409 | 413 |
return new HeapCrossRef(G); |
| 410 | 414 |
} |
| 411 | 415 |
static Heap *createHeap(HeapCrossRef &R) |
| 412 | 416 |
{
|
| 413 | 417 |
return new Heap(R); |
| 414 | 418 |
} |
| 415 | 419 |
}; |
| 416 | 420 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 417 | 421 |
///heap and cross reference types with automatic allocation |
| 418 | 422 |
/// |
| 419 | 423 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
| 420 | 424 |
///reference types with automatic allocation. |
| 421 | 425 |
///They should have standard constructor interfaces to be able to |
| 422 | 426 |
///automatically created by the algorithm (i.e. the digraph should be |
| 423 | 427 |
///passed to the constructor of the cross reference and the cross |
| 424 | 428 |
///reference should be passed to the constructor of the heap). |
| 425 | 429 |
///However external heap and cross reference objects could also be |
| 426 | 430 |
///passed to the algorithm using the \ref heap() function before |
| 427 | 431 |
///calling \ref run(Node) "run()" or \ref init(). |
| 428 | 432 |
///\sa SetHeap |
| 429 | 433 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
| 430 | 434 |
struct SetStandardHeap |
| 431 | 435 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
|
| 432 | 436 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
| 433 | 437 |
Create; |
| 434 | 438 |
}; |
| 435 | 439 |
|
| 436 | 440 |
template <class T> |
| 437 | 441 |
struct SetOperationTraitsTraits : public Traits {
|
| 438 | 442 |
typedef T OperationTraits; |
| 439 | 443 |
}; |
| 440 | 444 |
|
| 441 | 445 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 442 | 446 |
///\c OperationTraits type |
| 443 | 447 |
/// |
| 444 | 448 |
///\ref named-templ-param "Named parameter" for setting |
| 445 | 449 |
///\c OperationTraits type. |
| 450 |
/// For more information see \ref DijkstraDefaultOperationTraits. |
|
| 446 | 451 |
template <class T> |
| 447 | 452 |
struct SetOperationTraits |
| 448 | 453 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
| 449 | 454 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
| 450 | 455 |
Create; |
| 451 | 456 |
}; |
| 452 | 457 |
|
| 453 | 458 |
///@} |
| 454 | 459 |
|
| 455 | 460 |
protected: |
| 456 | 461 |
|
| 457 | 462 |
Dijkstra() {}
|
| 458 | 463 |
|
| 459 | 464 |
public: |
| 460 | 465 |
|
| 461 | 466 |
///Constructor. |
| 462 | 467 |
|
| 463 | 468 |
///Constructor. |
| 464 | 469 |
///\param g The digraph the algorithm runs on. |
| 465 | 470 |
///\param length The length map used by the algorithm. |
| 466 | 471 |
Dijkstra(const Digraph& g, const LengthMap& length) : |
| 467 | 472 |
G(&g), _length(&length), |
| 468 | 473 |
_pred(NULL), local_pred(false), |
| 469 | 474 |
_dist(NULL), local_dist(false), |
| 470 | 475 |
_processed(NULL), local_processed(false), |
| 471 | 476 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
| 472 | 477 |
_heap(NULL), local_heap(false) |
| 473 | 478 |
{ }
|
| 474 | 479 |
|
| 475 | 480 |
///Destructor. |
| 476 | 481 |
~Dijkstra() |
| 477 | 482 |
{
|
| 478 | 483 |
if(local_pred) delete _pred; |
| 479 | 484 |
if(local_dist) delete _dist; |
| 480 | 485 |
if(local_processed) delete _processed; |
| 481 | 486 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
| 482 | 487 |
if(local_heap) delete _heap; |
| 483 | 488 |
} |
| 484 | 489 |
|
| 485 | 490 |
///Sets the length map. |
| 486 | 491 |
|
| 487 | 492 |
///Sets the length map. |
| 488 | 493 |
///\return <tt> (*this) </tt> |
| 489 | 494 |
Dijkstra &lengthMap(const LengthMap &m) |
| 490 | 495 |
{
|
| 491 | 496 |
_length = &m; |
| 492 | 497 |
return *this; |
| 493 | 498 |
} |
| 494 | 499 |
|
| 495 | 500 |
///Sets the map that stores the predecessor arcs. |
| 496 | 501 |
|
| 497 | 502 |
///Sets the map that stores the predecessor arcs. |
| 498 | 503 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 499 | 504 |
///or \ref init(), an instance will be allocated automatically. |
| 500 | 505 |
///The destructor deallocates this automatically allocated map, |
| 501 | 506 |
///of course. |
| 502 | 507 |
///\return <tt> (*this) </tt> |
| 503 | 508 |
Dijkstra &predMap(PredMap &m) |
| 504 | 509 |
{
|
| 505 | 510 |
if(local_pred) {
|
| 506 | 511 |
delete _pred; |
| 507 | 512 |
local_pred=false; |
| 508 | 513 |
} |
| 509 | 514 |
_pred = &m; |
| 510 | 515 |
return *this; |
| 511 | 516 |
} |
| 512 | 517 |
|
| 513 | 518 |
///Sets the map that indicates which nodes are processed. |
| 514 | 519 |
|
| 515 | 520 |
///Sets the map that indicates which nodes are processed. |
| 516 | 521 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 517 | 522 |
///or \ref init(), an instance will be allocated automatically. |
| 518 | 523 |
///The destructor deallocates this automatically allocated map, |
| 519 | 524 |
///of course. |
| 520 | 525 |
///\return <tt> (*this) </tt> |
| 521 | 526 |
Dijkstra &processedMap(ProcessedMap &m) |
| 522 | 527 |
{
|
| 523 | 528 |
if(local_processed) {
|
| 524 | 529 |
delete _processed; |
| 525 | 530 |
local_processed=false; |
| 526 | 531 |
} |
| 527 | 532 |
_processed = &m; |
| 528 | 533 |
return *this; |
| 529 | 534 |
} |
| 530 | 535 |
|
| 531 | 536 |
///Sets the map that stores the distances of the nodes. |
| 532 | 537 |
|
| 533 | 538 |
///Sets the map that stores the distances of the nodes calculated by the |
| 534 | 539 |
///algorithm. |
| 535 | 540 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 536 | 541 |
///or \ref init(), an instance will be allocated automatically. |
| 537 | 542 |
///The destructor deallocates this automatically allocated map, |
| 538 | 543 |
///of course. |
| 539 | 544 |
///\return <tt> (*this) </tt> |
| 540 | 545 |
Dijkstra &distMap(DistMap &m) |
| 541 | 546 |
{
|
| 542 | 547 |
if(local_dist) {
|
| 543 | 548 |
delete _dist; |
| 544 | 549 |
local_dist=false; |
| 545 | 550 |
} |
| 546 | 551 |
_dist = &m; |
| 547 | 552 |
return *this; |
| 548 | 553 |
} |
| 549 | 554 |
|
| 550 | 555 |
///Sets the heap and the cross reference used by algorithm. |
| 551 | 556 |
|
| 552 | 557 |
///Sets the heap and the cross reference used by algorithm. |
| 553 | 558 |
///If you don't use this function before calling \ref run(Node) "run()" |
| 554 | 559 |
///or \ref init(), heap and cross reference instances will be |
| 555 | 560 |
///allocated automatically. |
| 556 | 561 |
///The destructor deallocates these automatically allocated objects, |
| 557 | 562 |
///of course. |
| 558 | 563 |
///\return <tt> (*this) </tt> |
| 559 | 564 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
| 560 | 565 |
{
|
| 561 | 566 |
if(local_heap_cross_ref) {
|
| 562 | 567 |
delete _heap_cross_ref; |
| 563 | 568 |
local_heap_cross_ref=false; |
| 564 | 569 |
} |
| 565 | 570 |
_heap_cross_ref = &cr; |
| 566 | 571 |
if(local_heap) {
|
| 567 | 572 |
delete _heap; |
| 568 | 573 |
local_heap=false; |
| 569 | 574 |
} |
| 570 | 575 |
_heap = &hp; |
| 571 | 576 |
return *this; |
| 572 | 577 |
} |
| 573 | 578 |
|
| 574 | 579 |
private: |
| 575 | 580 |
|
| 576 | 581 |
void finalizeNodeData(Node v,Value dst) |
| 577 | 582 |
{
|
| 578 | 583 |
_processed->set(v,true); |
| 579 | 584 |
_dist->set(v, dst); |
| 580 | 585 |
} |
| 581 | 586 |
|
| 582 | 587 |
public: |
| 583 | 588 |
|
| 584 | 589 |
///\name Execution Control |
| 585 | 590 |
///The simplest way to execute the %Dijkstra algorithm is to use |
| 586 | 591 |
///one of the member functions called \ref run(Node) "run()".\n |
| 587 | 592 |
///If you need more control on the execution, first you have to call |
| 588 | 593 |
///\ref init(), then you can add several source nodes with |
| 589 | 594 |
///\ref addSource(). Finally the actual path computation can be |
| 590 | 595 |
///performed with one of the \ref start() functions. |
| 591 | 596 |
|
| 592 | 597 |
///@{
|
| 593 | 598 |
|
| 594 | 599 |
///\brief Initializes the internal data structures. |
| 595 | 600 |
/// |
| 596 | 601 |
///Initializes the internal data structures. |
| 597 | 602 |
void init() |
| 598 | 603 |
{
|
| 599 | 604 |
create_maps(); |
| 600 | 605 |
_heap->clear(); |
| 601 | 606 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
|
| 602 | 607 |
_pred->set(u,INVALID); |
| 603 | 608 |
_processed->set(u,false); |
| 604 | 609 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
| 605 | 610 |
} |
| 606 | 611 |
} |
| 607 | 612 |
|
| 608 | 613 |
///Adds a new source node. |
| 609 | 614 |
|
| 610 | 615 |
///Adds a new source node to the priority heap. |
| 611 | 616 |
///The optional second parameter is the initial distance of the node. |
| 612 | 617 |
/// |
| 613 | 618 |
///The function checks if the node has already been added to the heap and |
| 614 | 619 |
///it is pushed to the heap only if either it was not in the heap |
| 615 | 620 |
///or the shortest path found till then is shorter than \c dst. |
| 616 | 621 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
| 617 | 622 |
{
|
| 618 | 623 |
if(_heap->state(s) != Heap::IN_HEAP) {
|
| 619 | 624 |
_heap->push(s,dst); |
| 620 | 625 |
} else if(OperationTraits::less((*_heap)[s], dst)) {
|
| 621 | 626 |
_heap->set(s,dst); |
| 622 | 627 |
_pred->set(s,INVALID); |
| 623 | 628 |
} |
| 624 | 629 |
} |
| 625 | 630 |
|
| 626 | 631 |
///Processes the next node in the priority heap |
| 627 | 632 |
|
| 628 | 633 |
///Processes the next node in the priority heap. |
| 629 | 634 |
/// |
| 630 | 635 |
///\return The processed node. |
| 631 | 636 |
/// |
| 632 | 637 |
///\warning The priority heap must not be empty. |
| 633 | 638 |
Node processNextNode() |
| 634 | 639 |
{
|
| 635 | 640 |
Node v=_heap->top(); |
| 636 | 641 |
Value oldvalue=_heap->prio(); |
| 637 | 642 |
_heap->pop(); |
| 638 | 643 |
finalizeNodeData(v,oldvalue); |
| 639 | 644 |
|
| 640 | 645 |
for(OutArcIt e(*G,v); e!=INVALID; ++e) {
|
| 641 | 646 |
Node w=G->target(e); |
| 642 | 647 |
switch(_heap->state(w)) {
|
| 643 | 648 |
case Heap::PRE_HEAP: |
| 644 | 649 |
_heap->push(w,OperationTraits::plus(oldvalue, (*_length)[e])); |
| 645 | 650 |
_pred->set(w,e); |
| 646 | 651 |
break; |
| 647 | 652 |
case Heap::IN_HEAP: |
| 648 | 653 |
{
|
| 649 | 654 |
Value newvalue = OperationTraits::plus(oldvalue, (*_length)[e]); |
| 650 | 655 |
if ( OperationTraits::less(newvalue, (*_heap)[w]) ) {
|
| 651 | 656 |
_heap->decrease(w, newvalue); |
| 652 | 657 |
_pred->set(w,e); |
| 653 | 658 |
} |
| 654 | 659 |
} |
| 655 | 660 |
break; |
| 656 | 661 |
case Heap::POST_HEAP: |
| 657 | 662 |
break; |
| 658 | 663 |
} |
| 659 | 664 |
} |
| 660 | 665 |
return v; |
| 661 | 666 |
} |
| 662 | 667 |
|
| 663 | 668 |
///The next node to be processed. |
| 664 | 669 |
|
| 665 | 670 |
///Returns the next node to be processed or \c INVALID if the |
| 666 | 671 |
///priority heap is empty. |
| 667 | 672 |
Node nextNode() const |
| 668 | 673 |
{
|
| 669 | 674 |
return !_heap->empty()?_heap->top():INVALID; |
| 670 | 675 |
} |
| 671 | 676 |
|
| 672 | 677 |
///Returns \c false if there are nodes to be processed. |
| 673 | 678 |
|
| 674 | 679 |
///Returns \c false if there are nodes to be processed |
| 675 | 680 |
///in the priority heap. |
| 676 | 681 |
bool emptyQueue() const { return _heap->empty(); }
|
| 677 | 682 |
|
| 678 | 683 |
///Returns the number of the nodes to be processed. |
| 679 | 684 |
|
| 680 | 685 |
///Returns the number of the nodes to be processed |
| 681 | 686 |
///in the priority heap. |
| 682 | 687 |
int queueSize() const { return _heap->size(); }
|
| 683 | 688 |
|
| 684 | 689 |
///Executes the algorithm. |
| 685 | 690 |
|
| 686 | 691 |
///Executes the algorithm. |
| 687 | 692 |
/// |
| 688 | 693 |
///This method runs the %Dijkstra algorithm from the root node(s) |
| 689 | 694 |
///in order to compute the shortest path to each node. |
| 690 | 695 |
/// |
| 691 | 696 |
///The algorithm computes |
| 692 | 697 |
///- the shortest path tree (forest), |
| 693 | 698 |
///- the distance of each node from the root(s). |
| 694 | 699 |
/// |
| 695 | 700 |
///\pre init() must be called and at least one root node should be |
| 696 | 701 |
///added with addSource() before using this function. |
| 697 | 702 |
/// |
| 698 | 703 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
| 699 | 704 |
///\code |
| 700 | 705 |
/// while ( !d.emptyQueue() ) {
|
| 701 | 706 |
/// d.processNextNode(); |
| 702 | 707 |
/// } |
| 703 | 708 |
///\endcode |
| 704 | 709 |
void start() |
| 705 | 710 |
{
|
| 706 | 711 |
while ( !emptyQueue() ) processNextNode(); |
| 707 | 712 |
} |
| 708 | 713 |
|
| 709 | 714 |
///Executes the algorithm until the given target node is processed. |
| 710 | 715 |
|
| 711 | 716 |
///Executes the algorithm until the given target node is processed. |
| 712 | 717 |
/// |
| 713 | 718 |
///This method runs the %Dijkstra algorithm from the root node(s) |
| 714 | 719 |
///in order to compute the shortest path to \c t. |
| 715 | 720 |
/// |
| 716 | 721 |
///The algorithm computes |
| 717 | 722 |
///- the shortest path to \c t, |
| 718 | 723 |
///- the distance of \c t from the root(s). |
| 719 | 724 |
/// |
| 720 | 725 |
///\pre init() must be called and at least one root node should be |
| 721 | 726 |
///added with addSource() before using this function. |
| 722 | 727 |
void start(Node t) |
| 723 | 728 |
{
|
| 724 | 729 |
while ( !_heap->empty() && _heap->top()!=t ) processNextNode(); |
| 725 | 730 |
if ( !_heap->empty() ) {
|
| 726 | 731 |
finalizeNodeData(_heap->top(),_heap->prio()); |
| 727 | 732 |
_heap->pop(); |
| 728 | 733 |
} |
| 729 | 734 |
} |
| 730 | 735 |
|
| 731 | 736 |
///Executes the algorithm until a condition is met. |
| 732 | 737 |
|
| 733 | 738 |
///Executes the algorithm until a condition is met. |
| 734 | 739 |
/// |
| 735 | 740 |
///This method runs the %Dijkstra algorithm from the root node(s) in |
| 736 | 741 |
///order to compute the shortest path to a node \c v with |
| 737 | 742 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
| 738 | 743 |
/// |
| 739 | 744 |
///\param nm A \c bool (or convertible) node map. The algorithm |
| 740 | 745 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
| 741 | 746 |
/// |
| 742 | 747 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
| 743 | 748 |
///\c INVALID if no such node was found. |
| 744 | 749 |
/// |
| 745 | 750 |
///\pre init() must be called and at least one root node should be |
| 746 | 751 |
///added with addSource() before using this function. |
| 747 | 752 |
template<class NodeBoolMap> |
| 748 | 753 |
Node start(const NodeBoolMap &nm) |
| 749 | 754 |
{
|
| 750 | 755 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
| 751 | 756 |
if ( _heap->empty() ) return INVALID; |
| 752 | 757 |
finalizeNodeData(_heap->top(),_heap->prio()); |
| 753 | 758 |
return _heap->top(); |
| 754 | 759 |
} |
| 755 | 760 |
|
| 756 | 761 |
///Runs the algorithm from the given source node. |
| 757 | 762 |
|
| 758 | 763 |
///This method runs the %Dijkstra algorithm from node \c s |
| 759 | 764 |
///in order to compute the shortest path to each node. |
| 760 | 765 |
/// |
| 761 | 766 |
///The algorithm computes |
| 762 | 767 |
///- the shortest path tree, |
| 763 | 768 |
///- the distance of each node from the root. |
| 764 | 769 |
/// |
| 765 | 770 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
| 766 | 771 |
///\code |
| 767 | 772 |
/// d.init(); |
| 768 | 773 |
/// d.addSource(s); |
| 769 | 774 |
/// d.start(); |
| 770 | 775 |
///\endcode |
| 771 | 776 |
void run(Node s) {
|
| 772 | 777 |
init(); |
| 773 | 778 |
addSource(s); |
| 774 | 779 |
start(); |
| 775 | 780 |
} |
| 776 | 781 |
|
| 777 | 782 |
///Finds the shortest path between \c s and \c t. |
| 778 | 783 |
|
| 779 | 784 |
///This method runs the %Dijkstra algorithm from node \c s |
| 780 | 785 |
///in order to compute the shortest path to node \c t |
| 781 | 786 |
///(it stops searching when \c t is processed). |
| 782 | 787 |
/// |
| 783 | 788 |
///\return \c true if \c t is reachable form \c s. |
| 784 | 789 |
/// |
| 785 | 790 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a |
| 786 | 791 |
///shortcut of the following code. |
| 787 | 792 |
///\code |
| 788 | 793 |
/// d.init(); |
| 789 | 794 |
/// d.addSource(s); |
| 790 | 795 |
/// d.start(t); |
| 791 | 796 |
///\endcode |
| 792 | 797 |
bool run(Node s,Node t) {
|
| 793 | 798 |
init(); |
| 794 | 799 |
addSource(s); |
| 795 | 800 |
start(t); |
| 796 | 801 |
return (*_heap_cross_ref)[t] == Heap::POST_HEAP; |
| 797 | 802 |
} |
| 798 | 803 |
|
| 799 | 804 |
///@} |
| 800 | 805 |
|
| 801 | 806 |
///\name Query Functions |
| 802 | 807 |
///The results of the %Dijkstra algorithm can be obtained using these |
| 803 | 808 |
///functions.\n |
| 804 |
///Either \ref run(Node) "run()" or \ref |
|
| 809 |
///Either \ref run(Node) "run()" or \ref init() should be called |
|
| 805 | 810 |
///before using them. |
| 806 | 811 |
|
| 807 | 812 |
///@{
|
| 808 | 813 |
|
| 809 |
///The shortest path to |
|
| 814 |
///The shortest path to the given node. |
|
| 810 | 815 |
|
| 811 |
///Returns the shortest path to |
|
| 816 |
///Returns the shortest path to the given node from the root(s). |
|
| 812 | 817 |
/// |
| 813 | 818 |
///\warning \c t should be reached from the root(s). |
| 814 | 819 |
/// |
| 815 | 820 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 816 | 821 |
///must be called before using this function. |
| 817 | 822 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 818 | 823 |
|
| 819 |
///The distance of |
|
| 824 |
///The distance of the given node from the root(s). |
|
| 820 | 825 |
|
| 821 |
///Returns the distance of |
|
| 826 |
///Returns the distance of the given node from the root(s). |
|
| 822 | 827 |
/// |
| 823 | 828 |
///\warning If node \c v is not reached from the root(s), then |
| 824 | 829 |
///the return value of this function is undefined. |
| 825 | 830 |
/// |
| 826 | 831 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 827 | 832 |
///must be called before using this function. |
| 828 | 833 |
Value dist(Node v) const { return (*_dist)[v]; }
|
| 829 | 834 |
|
| 830 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
| 831 |
|
|
| 835 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
| 836 |
///the given node. |
|
| 837 |
/// |
|
| 832 | 838 |
///This function returns the 'previous arc' of the shortest path |
| 833 | 839 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 834 | 840 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
| 835 | 841 |
///is not reached from the root(s) or if \c v is a root. |
| 836 | 842 |
/// |
| 837 | 843 |
///The shortest path tree used here is equal to the shortest path |
| 838 |
///tree used in \ref predNode(). |
|
| 844 |
///tree used in \ref predNode() and \ref predMap(). |
|
| 839 | 845 |
/// |
| 840 | 846 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 841 | 847 |
///must be called before using this function. |
| 842 | 848 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
| 843 | 849 |
|
| 844 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
| 845 |
|
|
| 850 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
| 851 |
///the given node. |
|
| 852 |
/// |
|
| 846 | 853 |
///This function returns the 'previous node' of the shortest path |
| 847 | 854 |
///tree for the node \c v, i.e. it returns the last but one node |
| 848 |
/// |
|
| 855 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
| 849 | 856 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 850 | 857 |
/// |
| 851 | 858 |
///The shortest path tree used here is equal to the shortest path |
| 852 |
///tree used in \ref predArc(). |
|
| 859 |
///tree used in \ref predArc() and \ref predMap(). |
|
| 853 | 860 |
/// |
| 854 | 861 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 855 | 862 |
///must be called before using this function. |
| 856 | 863 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 857 | 864 |
G->source((*_pred)[v]); } |
| 858 | 865 |
|
| 859 | 866 |
///\brief Returns a const reference to the node map that stores the |
| 860 | 867 |
///distances of the nodes. |
| 861 | 868 |
/// |
| 862 | 869 |
///Returns a const reference to the node map that stores the distances |
| 863 | 870 |
///of the nodes calculated by the algorithm. |
| 864 | 871 |
/// |
| 865 | 872 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 866 | 873 |
///must be called before using this function. |
| 867 | 874 |
const DistMap &distMap() const { return *_dist;}
|
| 868 | 875 |
|
| 869 | 876 |
///\brief Returns a const reference to the node map that stores the |
| 870 | 877 |
///predecessor arcs. |
| 871 | 878 |
/// |
| 872 | 879 |
///Returns a const reference to the node map that stores the predecessor |
| 873 |
///arcs, which form the shortest path tree. |
|
| 880 |
///arcs, which form the shortest path tree (forest). |
|
| 874 | 881 |
/// |
| 875 | 882 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 876 | 883 |
///must be called before using this function. |
| 877 | 884 |
const PredMap &predMap() const { return *_pred;}
|
| 878 | 885 |
|
| 879 |
///Checks if |
|
| 886 |
///Checks if the given node is reached from the root(s). |
|
| 880 | 887 |
|
| 881 | 888 |
///Returns \c true if \c v is reached from the root(s). |
| 882 | 889 |
/// |
| 883 | 890 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 884 | 891 |
///must be called before using this function. |
| 885 | 892 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
|
| 886 | 893 |
Heap::PRE_HEAP; } |
| 887 | 894 |
|
| 888 | 895 |
///Checks if a node is processed. |
| 889 | 896 |
|
| 890 | 897 |
///Returns \c true if \c v is processed, i.e. the shortest |
| 891 | 898 |
///path to \c v has already found. |
| 892 | 899 |
/// |
| 893 | 900 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 894 | 901 |
///must be called before using this function. |
| 895 | 902 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
|
| 896 | 903 |
Heap::POST_HEAP; } |
| 897 | 904 |
|
| 898 |
///The current distance of |
|
| 905 |
///The current distance of the given node from the root(s). |
|
| 899 | 906 |
|
| 900 |
///Returns the current distance of |
|
| 907 |
///Returns the current distance of the given node from the root(s). |
|
| 901 | 908 |
///It may be decreased in the following processes. |
| 902 | 909 |
/// |
| 903 | 910 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 904 | 911 |
///must be called before using this function and |
| 905 | 912 |
///node \c v must be reached but not necessarily processed. |
| 906 | 913 |
Value currentDist(Node v) const {
|
| 907 | 914 |
return processed(v) ? (*_dist)[v] : (*_heap)[v]; |
| 908 | 915 |
} |
| 909 | 916 |
|
| 910 | 917 |
///@} |
| 911 | 918 |
}; |
| 912 | 919 |
|
| 913 | 920 |
|
| 914 | 921 |
///Default traits class of dijkstra() function. |
| 915 | 922 |
|
| 916 | 923 |
///Default traits class of dijkstra() function. |
| 917 | 924 |
///\tparam GR The type of the digraph. |
| 918 | 925 |
///\tparam LEN The type of the length map. |
| 919 | 926 |
template<class GR, class LEN> |
| 920 | 927 |
struct DijkstraWizardDefaultTraits |
| 921 | 928 |
{
|
| 922 | 929 |
///The type of the digraph the algorithm runs on. |
| 923 | 930 |
typedef GR Digraph; |
| 924 | 931 |
///The type of the map that stores the arc lengths. |
| 925 | 932 |
|
| 926 | 933 |
///The type of the map that stores the arc lengths. |
| 927 |
///It must |
|
| 934 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 928 | 935 |
typedef LEN LengthMap; |
| 929 |
///The type of the |
|
| 936 |
///The type of the arc lengths. |
|
| 930 | 937 |
typedef typename LEN::Value Value; |
| 931 | 938 |
|
| 932 | 939 |
/// Operation traits for Dijkstra algorithm. |
| 933 | 940 |
|
| 934 | 941 |
/// This class defines the operations that are used in the algorithm. |
| 935 | 942 |
/// \see DijkstraDefaultOperationTraits |
| 936 | 943 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
| 937 | 944 |
|
| 938 | 945 |
/// The cross reference type used by the heap. |
| 939 | 946 |
|
| 940 | 947 |
/// The cross reference type used by the heap. |
| 941 | 948 |
/// Usually it is \c Digraph::NodeMap<int>. |
| 942 | 949 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
| 943 | 950 |
///Instantiates a \ref HeapCrossRef. |
| 944 | 951 |
|
| 945 | 952 |
///This function instantiates a \ref HeapCrossRef. |
| 946 | 953 |
/// \param g is the digraph, to which we would like to define the |
| 947 | 954 |
/// HeapCrossRef. |
| 948 | 955 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
| 949 | 956 |
{
|
| 950 | 957 |
return new HeapCrossRef(g); |
| 951 | 958 |
} |
| 952 | 959 |
|
| 953 | 960 |
///The heap type used by the Dijkstra algorithm. |
| 954 | 961 |
|
| 955 | 962 |
///The heap type used by the Dijkstra algorithm. |
| 956 | 963 |
/// |
| 957 | 964 |
///\sa BinHeap |
| 958 | 965 |
///\sa Dijkstra |
| 959 | 966 |
typedef BinHeap<Value, typename Digraph::template NodeMap<int>, |
| 960 | 967 |
std::less<Value> > Heap; |
| 961 | 968 |
|
| 962 | 969 |
///Instantiates a \ref Heap. |
| 963 | 970 |
|
| 964 | 971 |
///This function instantiates a \ref Heap. |
| 965 | 972 |
/// \param r is the HeapCrossRef which is used. |
| 966 | 973 |
static Heap *createHeap(HeapCrossRef& r) |
| 967 | 974 |
{
|
| 968 | 975 |
return new Heap(r); |
| 969 | 976 |
} |
| 970 | 977 |
|
| 971 | 978 |
///\brief The type of the map that stores the predecessor |
| 972 | 979 |
///arcs of the shortest paths. |
| 973 | 980 |
/// |
| 974 | 981 |
///The type of the map that stores the predecessor |
| 975 | 982 |
///arcs of the shortest paths. |
| 976 |
///It must |
|
| 983 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 977 | 984 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 978 | 985 |
///Instantiates a PredMap. |
| 979 | 986 |
|
| 980 | 987 |
///This function instantiates a PredMap. |
| 981 | 988 |
///\param g is the digraph, to which we would like to define the |
| 982 | 989 |
///PredMap. |
| 983 | 990 |
static PredMap *createPredMap(const Digraph &g) |
| 984 | 991 |
{
|
| 985 | 992 |
return new PredMap(g); |
| 986 | 993 |
} |
| 987 | 994 |
|
| 988 | 995 |
///The type of the map that indicates which nodes are processed. |
| 989 | 996 |
|
| 990 | 997 |
///The type of the map that indicates which nodes are processed. |
| 991 |
///It must |
|
| 998 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 992 | 999 |
///By default it is a NullMap. |
| 993 | 1000 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 994 | 1001 |
///Instantiates a ProcessedMap. |
| 995 | 1002 |
|
| 996 | 1003 |
///This function instantiates a ProcessedMap. |
| 997 | 1004 |
///\param g is the digraph, to which |
| 998 | 1005 |
///we would like to define the ProcessedMap. |
| 999 | 1006 |
#ifdef DOXYGEN |
| 1000 | 1007 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
| 1001 | 1008 |
#else |
| 1002 | 1009 |
static ProcessedMap *createProcessedMap(const Digraph &) |
| 1003 | 1010 |
#endif |
| 1004 | 1011 |
{
|
| 1005 | 1012 |
return new ProcessedMap(); |
| 1006 | 1013 |
} |
| 1007 | 1014 |
|
| 1008 | 1015 |
///The type of the map that stores the distances of the nodes. |
| 1009 | 1016 |
|
| 1010 | 1017 |
///The type of the map that stores the distances of the nodes. |
| 1011 |
///It must |
|
| 1018 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 1012 | 1019 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
| 1013 | 1020 |
///Instantiates a DistMap. |
| 1014 | 1021 |
|
| 1015 | 1022 |
///This function instantiates a DistMap. |
| 1016 | 1023 |
///\param g is the digraph, to which we would like to define |
| 1017 | 1024 |
///the DistMap |
| 1018 | 1025 |
static DistMap *createDistMap(const Digraph &g) |
| 1019 | 1026 |
{
|
| 1020 | 1027 |
return new DistMap(g); |
| 1021 | 1028 |
} |
| 1022 | 1029 |
|
| 1023 | 1030 |
///The type of the shortest paths. |
| 1024 | 1031 |
|
| 1025 | 1032 |
///The type of the shortest paths. |
| 1026 |
///It must |
|
| 1033 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 1027 | 1034 |
typedef lemon::Path<Digraph> Path; |
| 1028 | 1035 |
}; |
| 1029 | 1036 |
|
| 1030 | 1037 |
/// Default traits class used by DijkstraWizard |
| 1031 | 1038 |
|
| 1032 |
/// To make it easier to use Dijkstra algorithm |
|
| 1033 |
/// we have created a wizard class. |
|
| 1034 |
/// This \ref DijkstraWizard class needs default traits, |
|
| 1035 |
/// as well as the \ref Dijkstra class. |
|
| 1036 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
|
| 1037 |
/// \ref DijkstraWizard class. |
|
| 1039 |
/// Default traits class used by DijkstraWizard. |
|
| 1040 |
/// \tparam GR The type of the digraph. |
|
| 1041 |
/// \tparam LEN The type of the length map. |
|
| 1038 | 1042 |
template<typename GR, typename LEN> |
| 1039 | 1043 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN> |
| 1040 | 1044 |
{
|
| 1041 | 1045 |
typedef DijkstraWizardDefaultTraits<GR,LEN> Base; |
| 1042 | 1046 |
protected: |
| 1043 | 1047 |
//The type of the nodes in the digraph. |
| 1044 | 1048 |
typedef typename Base::Digraph::Node Node; |
| 1045 | 1049 |
|
| 1046 | 1050 |
//Pointer to the digraph the algorithm runs on. |
| 1047 | 1051 |
void *_g; |
| 1048 | 1052 |
//Pointer to the length map. |
| 1049 | 1053 |
void *_length; |
| 1050 | 1054 |
//Pointer to the map of processed nodes. |
| 1051 | 1055 |
void *_processed; |
| 1052 | 1056 |
//Pointer to the map of predecessors arcs. |
| 1053 | 1057 |
void *_pred; |
| 1054 | 1058 |
//Pointer to the map of distances. |
| 1055 | 1059 |
void *_dist; |
| 1056 | 1060 |
//Pointer to the shortest path to the target node. |
| 1057 | 1061 |
void *_path; |
| 1058 | 1062 |
//Pointer to the distance of the target node. |
| 1059 | 1063 |
void *_di; |
| 1060 | 1064 |
|
| 1061 | 1065 |
public: |
| 1062 | 1066 |
/// Constructor. |
| 1063 | 1067 |
|
| 1064 | 1068 |
/// This constructor does not require parameters, therefore it initiates |
| 1065 | 1069 |
/// all of the attributes to \c 0. |
| 1066 | 1070 |
DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0), |
| 1067 | 1071 |
_dist(0), _path(0), _di(0) {}
|
| 1068 | 1072 |
|
| 1069 | 1073 |
/// Constructor. |
| 1070 | 1074 |
|
| 1071 | 1075 |
/// This constructor requires two parameters, |
| 1072 | 1076 |
/// others are initiated to \c 0. |
| 1073 | 1077 |
/// \param g The digraph the algorithm runs on. |
| 1074 | 1078 |
/// \param l The length map. |
| 1075 | 1079 |
DijkstraWizardBase(const GR &g,const LEN &l) : |
| 1076 | 1080 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
| 1077 | 1081 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&l))), |
| 1078 | 1082 |
_processed(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
| 1079 | 1083 |
|
| 1080 | 1084 |
}; |
| 1081 | 1085 |
|
| 1082 | 1086 |
/// Auxiliary class for the function-type interface of Dijkstra algorithm. |
| 1083 | 1087 |
|
| 1084 | 1088 |
/// This auxiliary class is created to implement the |
| 1085 | 1089 |
/// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm. |
| 1086 | 1090 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
| 1087 | 1091 |
/// functions and features of the plain \ref Dijkstra. |
| 1088 | 1092 |
/// |
| 1089 | 1093 |
/// This class should only be used through the \ref dijkstra() function, |
| 1090 | 1094 |
/// which makes it easier to use the algorithm. |
| 1091 | 1095 |
template<class TR> |
| 1092 | 1096 |
class DijkstraWizard : public TR |
| 1093 | 1097 |
{
|
| 1094 | 1098 |
typedef TR Base; |
| 1095 | 1099 |
|
| 1096 |
///The type of the digraph the algorithm runs on. |
|
| 1097 | 1100 |
typedef typename TR::Digraph Digraph; |
| 1098 | 1101 |
|
| 1099 | 1102 |
typedef typename Digraph::Node Node; |
| 1100 | 1103 |
typedef typename Digraph::NodeIt NodeIt; |
| 1101 | 1104 |
typedef typename Digraph::Arc Arc; |
| 1102 | 1105 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1103 | 1106 |
|
| 1104 |
///The type of the map that stores the arc lengths. |
|
| 1105 | 1107 |
typedef typename TR::LengthMap LengthMap; |
| 1106 |
///The type of the length of the arcs. |
|
| 1107 | 1108 |
typedef typename LengthMap::Value Value; |
| 1108 |
///\brief The type of the map that stores the predecessor |
|
| 1109 |
///arcs of the shortest paths. |
|
| 1110 | 1109 |
typedef typename TR::PredMap PredMap; |
| 1111 |
///The type of the map that stores the distances of the nodes. |
|
| 1112 | 1110 |
typedef typename TR::DistMap DistMap; |
| 1113 |
///The type of the map that indicates which nodes are processed. |
|
| 1114 | 1111 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 1115 |
///The type of the shortest paths |
|
| 1116 | 1112 |
typedef typename TR::Path Path; |
| 1117 |
///The heap type used by the dijkstra algorithm. |
|
| 1118 | 1113 |
typedef typename TR::Heap Heap; |
| 1119 | 1114 |
|
| 1120 | 1115 |
public: |
| 1121 | 1116 |
|
| 1122 | 1117 |
/// Constructor. |
| 1123 | 1118 |
DijkstraWizard() : TR() {}
|
| 1124 | 1119 |
|
| 1125 | 1120 |
/// Constructor that requires parameters. |
| 1126 | 1121 |
|
| 1127 | 1122 |
/// Constructor that requires parameters. |
| 1128 | 1123 |
/// These parameters will be the default values for the traits class. |
| 1129 | 1124 |
/// \param g The digraph the algorithm runs on. |
| 1130 | 1125 |
/// \param l The length map. |
| 1131 | 1126 |
DijkstraWizard(const Digraph &g, const LengthMap &l) : |
| 1132 | 1127 |
TR(g,l) {}
|
| 1133 | 1128 |
|
| 1134 | 1129 |
///Copy constructor |
| 1135 | 1130 |
DijkstraWizard(const TR &b) : TR(b) {}
|
| 1136 | 1131 |
|
| 1137 | 1132 |
~DijkstraWizard() {}
|
| 1138 | 1133 |
|
| 1139 | 1134 |
///Runs Dijkstra algorithm from the given source node. |
| 1140 | 1135 |
|
| 1141 | 1136 |
///This method runs %Dijkstra algorithm from the given source node |
| 1142 | 1137 |
///in order to compute the shortest path to each node. |
| 1143 | 1138 |
void run(Node s) |
| 1144 | 1139 |
{
|
| 1145 | 1140 |
Dijkstra<Digraph,LengthMap,TR> |
| 1146 | 1141 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
| 1147 | 1142 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 1148 | 1143 |
if (Base::_pred) |
| 1149 | 1144 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1150 | 1145 |
if (Base::_dist) |
| 1151 | 1146 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1152 | 1147 |
if (Base::_processed) |
| 1153 | 1148 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1154 | 1149 |
dijk.run(s); |
| 1155 | 1150 |
} |
| 1156 | 1151 |
|
| 1157 | 1152 |
///Finds the shortest path between \c s and \c t. |
| 1158 | 1153 |
|
| 1159 | 1154 |
///This method runs the %Dijkstra algorithm from node \c s |
| 1160 | 1155 |
///in order to compute the shortest path to node \c t |
| 1161 | 1156 |
///(it stops searching when \c t is processed). |
| 1162 | 1157 |
/// |
| 1163 | 1158 |
///\return \c true if \c t is reachable form \c s. |
| 1164 | 1159 |
bool run(Node s, Node t) |
| 1165 | 1160 |
{
|
| 1166 | 1161 |
Dijkstra<Digraph,LengthMap,TR> |
| 1167 | 1162 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
| 1168 | 1163 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
| 1169 | 1164 |
if (Base::_pred) |
| 1170 | 1165 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
| 1171 | 1166 |
if (Base::_dist) |
| 1172 | 1167 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
| 1173 | 1168 |
if (Base::_processed) |
| 1174 | 1169 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
| 1175 | 1170 |
dijk.run(s,t); |
| 1176 | 1171 |
if (Base::_path) |
| 1177 | 1172 |
*reinterpret_cast<Path*>(Base::_path) = dijk.path(t); |
| 1178 | 1173 |
if (Base::_di) |
| 1179 | 1174 |
*reinterpret_cast<Value*>(Base::_di) = dijk.dist(t); |
| 1180 | 1175 |
return dijk.reached(t); |
| 1181 | 1176 |
} |
| 1182 | 1177 |
|
| 1183 | 1178 |
template<class T> |
| 1184 | 1179 |
struct SetPredMapBase : public Base {
|
| 1185 | 1180 |
typedef T PredMap; |
| 1186 | 1181 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1187 | 1182 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1188 | 1183 |
}; |
| 1189 |
///\brief \ref named-func-param "Named parameter" |
|
| 1190 |
///for setting PredMap object. |
|
| 1184 |
|
|
| 1185 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1186 |
///the predecessor map. |
|
| 1191 | 1187 |
/// |
| 1192 |
///\ref named-func-param "Named parameter" |
|
| 1193 |
///for setting PredMap object. |
|
| 1188 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1189 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1194 | 1190 |
template<class T> |
| 1195 | 1191 |
DijkstraWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1196 | 1192 |
{
|
| 1197 | 1193 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1198 | 1194 |
return DijkstraWizard<SetPredMapBase<T> >(*this); |
| 1199 | 1195 |
} |
| 1200 | 1196 |
|
| 1201 | 1197 |
template<class T> |
| 1202 | 1198 |
struct SetDistMapBase : public Base {
|
| 1203 | 1199 |
typedef T DistMap; |
| 1204 | 1200 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1205 | 1201 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1206 | 1202 |
}; |
| 1207 |
///\brief \ref named-func-param "Named parameter" |
|
| 1208 |
///for setting DistMap object. |
|
| 1203 |
|
|
| 1204 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1205 |
///the distance map. |
|
| 1209 | 1206 |
/// |
| 1210 |
///\ref named-func-param "Named parameter" |
|
| 1211 |
///for setting DistMap object. |
|
| 1207 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1208 |
///the map that stores the distances of the nodes calculated |
|
| 1209 |
///by the algorithm. |
|
| 1212 | 1210 |
template<class T> |
| 1213 | 1211 |
DijkstraWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1214 | 1212 |
{
|
| 1215 | 1213 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1216 | 1214 |
return DijkstraWizard<SetDistMapBase<T> >(*this); |
| 1217 | 1215 |
} |
| 1218 | 1216 |
|
| 1219 | 1217 |
template<class T> |
| 1220 | 1218 |
struct SetProcessedMapBase : public Base {
|
| 1221 | 1219 |
typedef T ProcessedMap; |
| 1222 | 1220 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1223 | 1221 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1224 | 1222 |
}; |
| 1225 |
///\brief \ref named-func-param "Named parameter" |
|
| 1226 |
///for setting ProcessedMap object. |
|
| 1223 |
|
|
| 1224 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1225 |
///the processed map. |
|
| 1227 | 1226 |
/// |
| 1228 |
/// \ref named-func-param "Named parameter" |
|
| 1229 |
///for setting ProcessedMap object. |
|
| 1227 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1228 |
///the map that indicates which nodes are processed. |
|
| 1230 | 1229 |
template<class T> |
| 1231 | 1230 |
DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1232 | 1231 |
{
|
| 1233 | 1232 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1234 | 1233 |
return DijkstraWizard<SetProcessedMapBase<T> >(*this); |
| 1235 | 1234 |
} |
| 1236 | 1235 |
|
| 1237 | 1236 |
template<class T> |
| 1238 | 1237 |
struct SetPathBase : public Base {
|
| 1239 | 1238 |
typedef T Path; |
| 1240 | 1239 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1241 | 1240 |
}; |
| 1241 |
|
|
| 1242 | 1242 |
///\brief \ref named-func-param "Named parameter" |
| 1243 | 1243 |
///for getting the shortest path to the target node. |
| 1244 | 1244 |
/// |
| 1245 | 1245 |
///\ref named-func-param "Named parameter" |
| 1246 | 1246 |
///for getting the shortest path to the target node. |
| 1247 | 1247 |
template<class T> |
| 1248 | 1248 |
DijkstraWizard<SetPathBase<T> > path(const T &t) |
| 1249 | 1249 |
{
|
| 1250 | 1250 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1251 | 1251 |
return DijkstraWizard<SetPathBase<T> >(*this); |
| 1252 | 1252 |
} |
| 1253 | 1253 |
|
| 1254 | 1254 |
///\brief \ref named-func-param "Named parameter" |
| 1255 | 1255 |
///for getting the distance of the target node. |
| 1256 | 1256 |
/// |
| 1257 | 1257 |
///\ref named-func-param "Named parameter" |
| 1258 | 1258 |
///for getting the distance of the target node. |
| 1259 | 1259 |
DijkstraWizard dist(const Value &d) |
| 1260 | 1260 |
{
|
| 1261 | 1261 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
| 1262 | 1262 |
return *this; |
| 1263 | 1263 |
} |
| 1264 | 1264 |
|
| 1265 | 1265 |
}; |
| 1266 | 1266 |
|
| 1267 | 1267 |
///Function-type interface for Dijkstra algorithm. |
| 1268 | 1268 |
|
| 1269 | 1269 |
/// \ingroup shortest_path |
| 1270 | 1270 |
///Function-type interface for Dijkstra algorithm. |
| 1271 | 1271 |
/// |
| 1272 | 1272 |
///This function also has several \ref named-func-param "named parameters", |
| 1273 | 1273 |
///they are declared as the members of class \ref DijkstraWizard. |
| 1274 | 1274 |
///The following examples show how to use these parameters. |
| 1275 | 1275 |
///\code |
| 1276 | 1276 |
/// // Compute shortest path from node s to each node |
| 1277 | 1277 |
/// dijkstra(g,length).predMap(preds).distMap(dists).run(s); |
| 1278 | 1278 |
/// |
| 1279 | 1279 |
/// // Compute shortest path from s to t |
| 1280 | 1280 |
/// bool reached = dijkstra(g,length).path(p).dist(d).run(s,t); |
| 1281 | 1281 |
///\endcode |
| 1282 | 1282 |
///\warning Don't forget to put the \ref DijkstraWizard::run(Node) "run()" |
| 1283 | 1283 |
///to the end of the parameter list. |
| 1284 | 1284 |
///\sa DijkstraWizard |
| 1285 | 1285 |
///\sa Dijkstra |
| 1286 | 1286 |
template<typename GR, typename LEN> |
| 1287 | 1287 |
DijkstraWizard<DijkstraWizardBase<GR,LEN> > |
| 1288 | 1288 |
dijkstra(const GR &digraph, const LEN &length) |
| 1289 | 1289 |
{
|
| 1290 | 1290 |
return DijkstraWizard<DijkstraWizardBase<GR,LEN> >(digraph,length); |
| 1291 | 1291 |
} |
| 1292 | 1292 |
|
| 1293 | 1293 |
} //END OF NAMESPACE LEMON |
| 1294 | 1294 |
|
| 1295 | 1295 |
#endif |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_MAPS_H |
| 20 | 20 |
#define LEMON_MAPS_H |
| 21 | 21 |
|
| 22 | 22 |
#include <iterator> |
| 23 | 23 |
#include <functional> |
| 24 | 24 |
#include <vector> |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
|
| 28 | 28 |
///\file |
| 29 | 29 |
///\ingroup maps |
| 30 | 30 |
///\brief Miscellaneous property maps |
| 31 | 31 |
|
| 32 | 32 |
#include <map> |
| 33 | 33 |
|
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 | 36 |
/// \addtogroup maps |
| 37 | 37 |
/// @{
|
| 38 | 38 |
|
| 39 | 39 |
/// Base class of maps. |
| 40 | 40 |
|
| 41 | 41 |
/// Base class of maps. It provides the necessary type definitions |
| 42 | 42 |
/// required by the map %concepts. |
| 43 | 43 |
template<typename K, typename V> |
| 44 | 44 |
class MapBase {
|
| 45 | 45 |
public: |
| 46 | 46 |
/// \brief The key type of the map. |
| 47 | 47 |
typedef K Key; |
| 48 | 48 |
/// \brief The value type of the map. |
| 49 | 49 |
/// (The type of objects associated with the keys). |
| 50 | 50 |
typedef V Value; |
| 51 | 51 |
}; |
| 52 | 52 |
|
| 53 | 53 |
|
| 54 | 54 |
/// Null map. (a.k.a. DoNothingMap) |
| 55 | 55 |
|
| 56 | 56 |
/// This map can be used if you have to provide a map only for |
| 57 | 57 |
/// its type definitions, or if you have to provide a writable map, |
| 58 | 58 |
/// but data written to it is not required (i.e. it will be sent to |
| 59 | 59 |
/// <tt>/dev/null</tt>). |
| 60 | 60 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
| 61 | 61 |
/// |
| 62 | 62 |
/// \sa ConstMap |
| 63 | 63 |
template<typename K, typename V> |
| 64 | 64 |
class NullMap : public MapBase<K, V> {
|
| 65 | 65 |
public: |
| 66 | 66 |
///\e |
| 67 | 67 |
typedef K Key; |
| 68 | 68 |
///\e |
| 69 | 69 |
typedef V Value; |
| 70 | 70 |
|
| 71 | 71 |
/// Gives back a default constructed element. |
| 72 | 72 |
Value operator[](const Key&) const { return Value(); }
|
| 73 | 73 |
/// Absorbs the value. |
| 74 | 74 |
void set(const Key&, const Value&) {}
|
| 75 | 75 |
}; |
| 76 | 76 |
|
| 77 | 77 |
/// Returns a \c NullMap class |
| 78 | 78 |
|
| 79 | 79 |
/// This function just returns a \c NullMap class. |
| 80 | 80 |
/// \relates NullMap |
| 81 | 81 |
template <typename K, typename V> |
| 82 | 82 |
NullMap<K, V> nullMap() {
|
| 83 | 83 |
return NullMap<K, V>(); |
| 84 | 84 |
} |
| 85 | 85 |
|
| 86 | 86 |
|
| 87 | 87 |
/// Constant map. |
| 88 | 88 |
|
| 89 | 89 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
| 90 | 90 |
/// value to each key. |
| 91 | 91 |
/// |
| 92 | 92 |
/// In other aspects it is equivalent to \c NullMap. |
| 93 | 93 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
| 94 | 94 |
/// concept, but it absorbs the data written to it. |
| 95 | 95 |
/// |
| 96 | 96 |
/// The simplest way of using this map is through the constMap() |
| 97 | 97 |
/// function. |
| 98 | 98 |
/// |
| 99 | 99 |
/// \sa NullMap |
| 100 | 100 |
/// \sa IdentityMap |
| 101 | 101 |
template<typename K, typename V> |
| 102 | 102 |
class ConstMap : public MapBase<K, V> {
|
| 103 | 103 |
private: |
| 104 | 104 |
V _value; |
| 105 | 105 |
public: |
| 106 | 106 |
///\e |
| 107 | 107 |
typedef K Key; |
| 108 | 108 |
///\e |
| 109 | 109 |
typedef V Value; |
| 110 | 110 |
|
| 111 | 111 |
/// Default constructor |
| 112 | 112 |
|
| 113 | 113 |
/// Default constructor. |
| 114 | 114 |
/// The value of the map will be default constructed. |
| 115 | 115 |
ConstMap() {}
|
| 116 | 116 |
|
| 117 | 117 |
/// Constructor with specified initial value |
| 118 | 118 |
|
| 119 | 119 |
/// Constructor with specified initial value. |
| 120 | 120 |
/// \param v The initial value of the map. |
| 121 | 121 |
ConstMap(const Value &v) : _value(v) {}
|
| 122 | 122 |
|
| 123 | 123 |
/// Gives back the specified value. |
| 124 | 124 |
Value operator[](const Key&) const { return _value; }
|
| 125 | 125 |
|
| 126 | 126 |
/// Absorbs the value. |
| 127 | 127 |
void set(const Key&, const Value&) {}
|
| 128 | 128 |
|
| 129 | 129 |
/// Sets the value that is assigned to each key. |
| 130 | 130 |
void setAll(const Value &v) {
|
| 131 | 131 |
_value = v; |
| 132 | 132 |
} |
| 133 | 133 |
|
| 134 | 134 |
template<typename V1> |
| 135 | 135 |
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
|
| 136 | 136 |
}; |
| 137 | 137 |
|
| 138 | 138 |
/// Returns a \c ConstMap class |
| 139 | 139 |
|
| 140 | 140 |
/// This function just returns a \c ConstMap class. |
| 141 | 141 |
/// \relates ConstMap |
| 142 | 142 |
template<typename K, typename V> |
| 143 | 143 |
inline ConstMap<K, V> constMap(const V &v) {
|
| 144 | 144 |
return ConstMap<K, V>(v); |
| 145 | 145 |
} |
| 146 | 146 |
|
| 147 | 147 |
template<typename K, typename V> |
| 148 | 148 |
inline ConstMap<K, V> constMap() {
|
| 149 | 149 |
return ConstMap<K, V>(); |
| 150 | 150 |
} |
| 151 | 151 |
|
| 152 | 152 |
|
| 153 | 153 |
template<typename T, T v> |
| 154 | 154 |
struct Const {};
|
| 155 | 155 |
|
| 156 | 156 |
/// Constant map with inlined constant value. |
| 157 | 157 |
|
| 158 | 158 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
| 159 | 159 |
/// value to each key. |
| 160 | 160 |
/// |
| 161 | 161 |
/// In other aspects it is equivalent to \c NullMap. |
| 162 | 162 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
| 163 | 163 |
/// concept, but it absorbs the data written to it. |
| 164 | 164 |
/// |
| 165 | 165 |
/// The simplest way of using this map is through the constMap() |
| 166 | 166 |
/// function. |
| 167 | 167 |
/// |
| 168 | 168 |
/// \sa NullMap |
| 169 | 169 |
/// \sa IdentityMap |
| 170 | 170 |
template<typename K, typename V, V v> |
| 171 | 171 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
|
| 172 | 172 |
public: |
| 173 | 173 |
///\e |
| 174 | 174 |
typedef K Key; |
| 175 | 175 |
///\e |
| 176 | 176 |
typedef V Value; |
| 177 | 177 |
|
| 178 | 178 |
/// Constructor. |
| 179 | 179 |
ConstMap() {}
|
| 180 | 180 |
|
| 181 | 181 |
/// Gives back the specified value. |
| 182 | 182 |
Value operator[](const Key&) const { return v; }
|
| 183 | 183 |
|
| 184 | 184 |
/// Absorbs the value. |
| 185 | 185 |
void set(const Key&, const Value&) {}
|
| 186 | 186 |
}; |
| 187 | 187 |
|
| 188 | 188 |
/// Returns a \c ConstMap class with inlined constant value |
| 189 | 189 |
|
| 190 | 190 |
/// This function just returns a \c ConstMap class with inlined |
| 191 | 191 |
/// constant value. |
| 192 | 192 |
/// \relates ConstMap |
| 193 | 193 |
template<typename K, typename V, V v> |
| 194 | 194 |
inline ConstMap<K, Const<V, v> > constMap() {
|
| 195 | 195 |
return ConstMap<K, Const<V, v> >(); |
| 196 | 196 |
} |
| 197 | 197 |
|
| 198 | 198 |
|
| 199 | 199 |
/// Identity map. |
| 200 | 200 |
|
| 201 | 201 |
/// This \ref concepts::ReadMap "read-only map" gives back the given |
| 202 | 202 |
/// key as value without any modification. |
| 203 | 203 |
/// |
| 204 | 204 |
/// \sa ConstMap |
| 205 | 205 |
template <typename T> |
| 206 | 206 |
class IdentityMap : public MapBase<T, T> {
|
| 207 | 207 |
public: |
| 208 | 208 |
///\e |
| 209 | 209 |
typedef T Key; |
| 210 | 210 |
///\e |
| 211 | 211 |
typedef T Value; |
| 212 | 212 |
|
| 213 | 213 |
/// Gives back the given value without any modification. |
| 214 | 214 |
Value operator[](const Key &k) const {
|
| 215 | 215 |
return k; |
| 216 | 216 |
} |
| 217 | 217 |
}; |
| 218 | 218 |
|
| 219 | 219 |
/// Returns an \c IdentityMap class |
| 220 | 220 |
|
| 221 | 221 |
/// This function just returns an \c IdentityMap class. |
| 222 | 222 |
/// \relates IdentityMap |
| 223 | 223 |
template<typename T> |
| 224 | 224 |
inline IdentityMap<T> identityMap() {
|
| 225 | 225 |
return IdentityMap<T>(); |
| 226 | 226 |
} |
| 227 | 227 |
|
| 228 | 228 |
|
| 229 | 229 |
/// \brief Map for storing values for integer keys from the range |
| 230 | 230 |
/// <tt>[0..size-1]</tt>. |
| 231 | 231 |
/// |
| 232 | 232 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
| 233 | 233 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
| 234 | 234 |
/// It can be used with some data structures, for example |
| 235 | 235 |
/// \c UnionFind, \c BinHeap, when the used items are small |
| 236 | 236 |
/// integers. This map conforms the \ref concepts::ReferenceMap |
| 237 | 237 |
/// "ReferenceMap" concept. |
| 238 | 238 |
/// |
| 239 | 239 |
/// The simplest way of using this map is through the rangeMap() |
| 240 | 240 |
/// function. |
| 241 | 241 |
template <typename V> |
| 242 | 242 |
class RangeMap : public MapBase<int, V> {
|
| 243 | 243 |
template <typename V1> |
| 244 | 244 |
friend class RangeMap; |
| 245 | 245 |
private: |
| 246 | 246 |
|
| 247 | 247 |
typedef std::vector<V> Vector; |
| 248 | 248 |
Vector _vector; |
| 249 | 249 |
|
| 250 | 250 |
public: |
| 251 | 251 |
|
| 252 | 252 |
/// Key type |
| 253 | 253 |
typedef int Key; |
| 254 | 254 |
/// Value type |
| 255 | 255 |
typedef V Value; |
| 256 | 256 |
/// Reference type |
| 257 | 257 |
typedef typename Vector::reference Reference; |
| 258 | 258 |
/// Const reference type |
| 259 | 259 |
typedef typename Vector::const_reference ConstReference; |
| 260 | 260 |
|
| 261 | 261 |
typedef True ReferenceMapTag; |
| 262 | 262 |
|
| 263 | 263 |
public: |
| 264 | 264 |
|
| 265 | 265 |
/// Constructor with specified default value. |
| 266 | 266 |
RangeMap(int size = 0, const Value &value = Value()) |
| 267 | 267 |
: _vector(size, value) {}
|
| 268 | 268 |
|
| 269 | 269 |
/// Constructs the map from an appropriate \c std::vector. |
| 270 | 270 |
template <typename V1> |
| 271 | 271 |
RangeMap(const std::vector<V1>& vector) |
| 272 | 272 |
: _vector(vector.begin(), vector.end()) {}
|
| 273 | 273 |
|
| 274 | 274 |
/// Constructs the map from another \c RangeMap. |
| 275 | 275 |
template <typename V1> |
| 276 | 276 |
RangeMap(const RangeMap<V1> &c) |
| 277 | 277 |
: _vector(c._vector.begin(), c._vector.end()) {}
|
| 278 | 278 |
|
| 279 | 279 |
/// Returns the size of the map. |
| 280 | 280 |
int size() {
|
| 281 | 281 |
return _vector.size(); |
| 282 | 282 |
} |
| 283 | 283 |
|
| 284 | 284 |
/// Resizes the map. |
| 285 | 285 |
|
| 286 | 286 |
/// Resizes the underlying \c std::vector container, so changes the |
| 287 | 287 |
/// keyset of the map. |
| 288 | 288 |
/// \param size The new size of the map. The new keyset will be the |
| 289 | 289 |
/// range <tt>[0..size-1]</tt>. |
| 290 | 290 |
/// \param value The default value to assign to the new keys. |
| 291 | 291 |
void resize(int size, const Value &value = Value()) {
|
| 292 | 292 |
_vector.resize(size, value); |
| 293 | 293 |
} |
| 294 | 294 |
|
| 295 | 295 |
private: |
| 296 | 296 |
|
| 297 | 297 |
RangeMap& operator=(const RangeMap&); |
| 298 | 298 |
|
| 299 | 299 |
public: |
| 300 | 300 |
|
| 301 | 301 |
///\e |
| 302 | 302 |
Reference operator[](const Key &k) {
|
| 303 | 303 |
return _vector[k]; |
| 304 | 304 |
} |
| 305 | 305 |
|
| 306 | 306 |
///\e |
| 307 | 307 |
ConstReference operator[](const Key &k) const {
|
| 308 | 308 |
return _vector[k]; |
| 309 | 309 |
} |
| 310 | 310 |
|
| 311 | 311 |
///\e |
| 312 | 312 |
void set(const Key &k, const Value &v) {
|
| 313 | 313 |
_vector[k] = v; |
| 314 | 314 |
} |
| 315 | 315 |
}; |
| 316 | 316 |
|
| 317 | 317 |
/// Returns a \c RangeMap class |
| 318 | 318 |
|
| 319 | 319 |
/// This function just returns a \c RangeMap class. |
| 320 | 320 |
/// \relates RangeMap |
| 321 | 321 |
template<typename V> |
| 322 | 322 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
|
| 323 | 323 |
return RangeMap<V>(size, value); |
| 324 | 324 |
} |
| 325 | 325 |
|
| 326 | 326 |
/// \brief Returns a \c RangeMap class created from an appropriate |
| 327 | 327 |
/// \c std::vector |
| 328 | 328 |
|
| 329 | 329 |
/// This function just returns a \c RangeMap class created from an |
| 330 | 330 |
/// appropriate \c std::vector. |
| 331 | 331 |
/// \relates RangeMap |
| 332 | 332 |
template<typename V> |
| 333 | 333 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
|
| 334 | 334 |
return RangeMap<V>(vector); |
| 335 | 335 |
} |
| 336 | 336 |
|
| 337 | 337 |
|
| 338 | 338 |
/// Map type based on \c std::map |
| 339 | 339 |
|
| 340 | 340 |
/// This map is essentially a wrapper for \c std::map with addition |
| 341 | 341 |
/// that you can specify a default value for the keys that are not |
| 342 | 342 |
/// stored actually. This value can be different from the default |
| 343 | 343 |
/// contructed value (i.e. \c %Value()). |
| 344 | 344 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
| 345 | 345 |
/// concept. |
| 346 | 346 |
/// |
| 347 | 347 |
/// This map is useful if a default value should be assigned to most of |
| 348 | 348 |
/// the keys and different values should be assigned only to a few |
| 349 | 349 |
/// keys (i.e. the map is "sparse"). |
| 350 | 350 |
/// The name of this type also refers to this important usage. |
| 351 | 351 |
/// |
| 352 | 352 |
/// Apart form that this map can be used in many other cases since it |
| 353 | 353 |
/// is based on \c std::map, which is a general associative container. |
| 354 | 354 |
/// However keep in mind that it is usually not as efficient as other |
| 355 | 355 |
/// maps. |
| 356 | 356 |
/// |
| 357 | 357 |
/// The simplest way of using this map is through the sparseMap() |
| 358 | 358 |
/// function. |
| 359 | 359 |
template <typename K, typename V, typename Comp = std::less<K> > |
| 360 | 360 |
class SparseMap : public MapBase<K, V> {
|
| 361 | 361 |
template <typename K1, typename V1, typename C1> |
| 362 | 362 |
friend class SparseMap; |
| 363 | 363 |
public: |
| 364 | 364 |
|
| 365 | 365 |
/// Key type |
| 366 | 366 |
typedef K Key; |
| 367 | 367 |
/// Value type |
| 368 | 368 |
typedef V Value; |
| 369 | 369 |
/// Reference type |
| 370 | 370 |
typedef Value& Reference; |
| 371 | 371 |
/// Const reference type |
| 372 | 372 |
typedef const Value& ConstReference; |
| 373 | 373 |
|
| 374 | 374 |
typedef True ReferenceMapTag; |
| 375 | 375 |
|
| 376 | 376 |
private: |
| 377 | 377 |
|
| 378 | 378 |
typedef std::map<K, V, Comp> Map; |
| 379 | 379 |
Map _map; |
| 380 | 380 |
Value _value; |
| 381 | 381 |
|
| 382 | 382 |
public: |
| 383 | 383 |
|
| 384 | 384 |
/// \brief Constructor with specified default value. |
| 385 | 385 |
SparseMap(const Value &value = Value()) : _value(value) {}
|
| 386 | 386 |
/// \brief Constructs the map from an appropriate \c std::map, and |
| 387 | 387 |
/// explicitly specifies a default value. |
| 388 | 388 |
template <typename V1, typename Comp1> |
| 389 | 389 |
SparseMap(const std::map<Key, V1, Comp1> &map, |
| 390 | 390 |
const Value &value = Value()) |
| 391 | 391 |
: _map(map.begin(), map.end()), _value(value) {}
|
| 392 | 392 |
|
| 393 | 393 |
/// \brief Constructs the map from another \c SparseMap. |
| 394 | 394 |
template<typename V1, typename Comp1> |
| 395 | 395 |
SparseMap(const SparseMap<Key, V1, Comp1> &c) |
| 396 | 396 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {}
|
| 397 | 397 |
|
| 398 | 398 |
private: |
| 399 | 399 |
|
| 400 | 400 |
SparseMap& operator=(const SparseMap&); |
| 401 | 401 |
|
| 402 | 402 |
public: |
| 403 | 403 |
|
| 404 | 404 |
///\e |
| 405 | 405 |
Reference operator[](const Key &k) {
|
| 406 | 406 |
typename Map::iterator it = _map.lower_bound(k); |
| 407 | 407 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
| 408 | 408 |
return it->second; |
| 409 | 409 |
else |
| 410 | 410 |
return _map.insert(it, std::make_pair(k, _value))->second; |
| 411 | 411 |
} |
| 412 | 412 |
|
| 413 | 413 |
///\e |
| 414 | 414 |
ConstReference operator[](const Key &k) const {
|
| 415 | 415 |
typename Map::const_iterator it = _map.find(k); |
| 416 | 416 |
if (it != _map.end()) |
| 417 | 417 |
return it->second; |
| 418 | 418 |
else |
| 419 | 419 |
return _value; |
| 420 | 420 |
} |
| 421 | 421 |
|
| 422 | 422 |
///\e |
| 423 | 423 |
void set(const Key &k, const Value &v) {
|
| 424 | 424 |
typename Map::iterator it = _map.lower_bound(k); |
| 425 | 425 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
| 426 | 426 |
it->second = v; |
| 427 | 427 |
else |
| 428 | 428 |
_map.insert(it, std::make_pair(k, v)); |
| 429 | 429 |
} |
| 430 | 430 |
|
| 431 | 431 |
///\e |
| 432 | 432 |
void setAll(const Value &v) {
|
| 433 | 433 |
_value = v; |
| 434 | 434 |
_map.clear(); |
| 435 | 435 |
} |
| 436 | 436 |
}; |
| 437 | 437 |
|
| 438 | 438 |
/// Returns a \c SparseMap class |
| 439 | 439 |
|
| 440 | 440 |
/// This function just returns a \c SparseMap class with specified |
| 441 | 441 |
/// default value. |
| 442 | 442 |
/// \relates SparseMap |
| 443 | 443 |
template<typename K, typename V, typename Compare> |
| 444 | 444 |
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
|
| 445 | 445 |
return SparseMap<K, V, Compare>(value); |
| 446 | 446 |
} |
| 447 | 447 |
|
| 448 | 448 |
template<typename K, typename V> |
| 449 | 449 |
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
|
| 450 | 450 |
return SparseMap<K, V, std::less<K> >(value); |
| 451 | 451 |
} |
| 452 | 452 |
|
| 453 | 453 |
/// \brief Returns a \c SparseMap class created from an appropriate |
| 454 | 454 |
/// \c std::map |
| 455 | 455 |
|
| 456 | 456 |
/// This function just returns a \c SparseMap class created from an |
| 457 | 457 |
/// appropriate \c std::map. |
| 458 | 458 |
/// \relates SparseMap |
| 459 | 459 |
template<typename K, typename V, typename Compare> |
| 460 | 460 |
inline SparseMap<K, V, Compare> |
| 461 | 461 |
sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
| 462 | 462 |
{
|
| 463 | 463 |
return SparseMap<K, V, Compare>(map, value); |
| 464 | 464 |
} |
| 465 | 465 |
|
| 466 | 466 |
/// @} |
| 467 | 467 |
|
| 468 | 468 |
/// \addtogroup map_adaptors |
| 469 | 469 |
/// @{
|
| 470 | 470 |
|
| 471 | 471 |
/// Composition of two maps |
| 472 | 472 |
|
| 473 | 473 |
/// This \ref concepts::ReadMap "read-only map" returns the |
| 474 | 474 |
/// composition of two given maps. That is to say, if \c m1 is of |
| 475 | 475 |
/// type \c M1 and \c m2 is of \c M2, then for |
| 476 | 476 |
/// \code |
| 477 | 477 |
/// ComposeMap<M1, M2> cm(m1,m2); |
| 478 | 478 |
/// \endcode |
| 479 | 479 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
| 480 | 480 |
/// |
| 481 | 481 |
/// The \c Key type of the map is inherited from \c M2 and the |
| 482 | 482 |
/// \c Value type is from \c M1. |
| 483 | 483 |
/// \c M2::Value must be convertible to \c M1::Key. |
| 484 | 484 |
/// |
| 485 | 485 |
/// The simplest way of using this map is through the composeMap() |
| 486 | 486 |
/// function. |
| 487 | 487 |
/// |
| 488 | 488 |
/// \sa CombineMap |
| 489 | 489 |
template <typename M1, typename M2> |
| 490 | 490 |
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
|
| 491 | 491 |
const M1 &_m1; |
| 492 | 492 |
const M2 &_m2; |
| 493 | 493 |
public: |
| 494 | 494 |
///\e |
| 495 | 495 |
typedef typename M2::Key Key; |
| 496 | 496 |
///\e |
| 497 | 497 |
typedef typename M1::Value Value; |
| 498 | 498 |
|
| 499 | 499 |
/// Constructor |
| 500 | 500 |
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 501 | 501 |
|
| 502 | 502 |
///\e |
| 503 | 503 |
typename MapTraits<M1>::ConstReturnValue |
| 504 | 504 |
operator[](const Key &k) const { return _m1[_m2[k]]; }
|
| 505 | 505 |
}; |
| 506 | 506 |
|
| 507 | 507 |
/// Returns a \c ComposeMap class |
| 508 | 508 |
|
| 509 | 509 |
/// This function just returns a \c ComposeMap class. |
| 510 | 510 |
/// |
| 511 | 511 |
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
| 512 | 512 |
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
| 513 | 513 |
/// will be equal to <tt>m1[m2[x]]</tt>. |
| 514 | 514 |
/// |
| 515 | 515 |
/// \relates ComposeMap |
| 516 | 516 |
template <typename M1, typename M2> |
| 517 | 517 |
inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
|
| 518 | 518 |
return ComposeMap<M1, M2>(m1, m2); |
| 519 | 519 |
} |
| 520 | 520 |
|
| 521 | 521 |
|
| 522 | 522 |
/// Combination of two maps using an STL (binary) functor. |
| 523 | 523 |
|
| 524 | 524 |
/// This \ref concepts::ReadMap "read-only map" takes two maps and a |
| 525 | 525 |
/// binary functor and returns the combination of the two given maps |
| 526 | 526 |
/// using the functor. |
| 527 | 527 |
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
| 528 | 528 |
/// and \c f is of \c F, then for |
| 529 | 529 |
/// \code |
| 530 | 530 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
| 531 | 531 |
/// \endcode |
| 532 | 532 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
| 533 | 533 |
/// |
| 534 | 534 |
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
| 535 | 535 |
/// must be convertible to \c M2::Key) and the \c Value type is \c V. |
| 536 | 536 |
/// \c M2::Value and \c M1::Value must be convertible to the |
| 537 | 537 |
/// corresponding input parameter of \c F and the return type of \c F |
| 538 | 538 |
/// must be convertible to \c V. |
| 539 | 539 |
/// |
| 540 | 540 |
/// The simplest way of using this map is through the combineMap() |
| 541 | 541 |
/// function. |
| 542 | 542 |
/// |
| 543 | 543 |
/// \sa ComposeMap |
| 544 | 544 |
template<typename M1, typename M2, typename F, |
| 545 | 545 |
typename V = typename F::result_type> |
| 546 | 546 |
class CombineMap : public MapBase<typename M1::Key, V> {
|
| 547 | 547 |
const M1 &_m1; |
| 548 | 548 |
const M2 &_m2; |
| 549 | 549 |
F _f; |
| 550 | 550 |
public: |
| 551 | 551 |
///\e |
| 552 | 552 |
typedef typename M1::Key Key; |
| 553 | 553 |
///\e |
| 554 | 554 |
typedef V Value; |
| 555 | 555 |
|
| 556 | 556 |
/// Constructor |
| 557 | 557 |
CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
| 558 | 558 |
: _m1(m1), _m2(m2), _f(f) {}
|
| 559 | 559 |
///\e |
| 560 | 560 |
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
|
| 561 | 561 |
}; |
| 562 | 562 |
|
| 563 | 563 |
/// Returns a \c CombineMap class |
| 564 | 564 |
|
| 565 | 565 |
/// This function just returns a \c CombineMap class. |
| 566 | 566 |
/// |
| 567 | 567 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
| 568 | 568 |
/// values, then |
| 569 | 569 |
/// \code |
| 570 | 570 |
/// combineMap(m1,m2,std::plus<double>()) |
| 571 | 571 |
/// \endcode |
| 572 | 572 |
/// is equivalent to |
| 573 | 573 |
/// \code |
| 574 | 574 |
/// addMap(m1,m2) |
| 575 | 575 |
/// \endcode |
| 576 | 576 |
/// |
| 577 | 577 |
/// This function is specialized for adaptable binary function |
| 578 | 578 |
/// classes and C++ functions. |
| 579 | 579 |
/// |
| 580 | 580 |
/// \relates CombineMap |
| 581 | 581 |
template<typename M1, typename M2, typename F, typename V> |
| 582 | 582 |
inline CombineMap<M1, M2, F, V> |
| 583 | 583 |
combineMap(const M1 &m1, const M2 &m2, const F &f) {
|
| 584 | 584 |
return CombineMap<M1, M2, F, V>(m1,m2,f); |
| 585 | 585 |
} |
| 586 | 586 |
|
| 587 | 587 |
template<typename M1, typename M2, typename F> |
| 588 | 588 |
inline CombineMap<M1, M2, F, typename F::result_type> |
| 589 | 589 |
combineMap(const M1 &m1, const M2 &m2, const F &f) {
|
| 590 | 590 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
| 591 | 591 |
} |
| 592 | 592 |
|
| 593 | 593 |
template<typename M1, typename M2, typename K1, typename K2, typename V> |
| 594 | 594 |
inline CombineMap<M1, M2, V (*)(K1, K2), V> |
| 595 | 595 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
|
| 596 | 596 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
| 597 | 597 |
} |
| 598 | 598 |
|
| 599 | 599 |
|
| 600 | 600 |
/// Converts an STL style (unary) functor to a map |
| 601 | 601 |
|
| 602 | 602 |
/// This \ref concepts::ReadMap "read-only map" returns the value |
| 603 | 603 |
/// of a given functor. Actually, it just wraps the functor and |
| 604 | 604 |
/// provides the \c Key and \c Value typedefs. |
| 605 | 605 |
/// |
| 606 | 606 |
/// Template parameters \c K and \c V will become its \c Key and |
| 607 | 607 |
/// \c Value. In most cases they have to be given explicitly because |
| 608 | 608 |
/// a functor typically does not provide \c argument_type and |
| 609 | 609 |
/// \c result_type typedefs. |
| 610 | 610 |
/// Parameter \c F is the type of the used functor. |
| 611 | 611 |
/// |
| 612 | 612 |
/// The simplest way of using this map is through the functorToMap() |
| 613 | 613 |
/// function. |
| 614 | 614 |
/// |
| 615 | 615 |
/// \sa MapToFunctor |
| 616 | 616 |
template<typename F, |
| 617 | 617 |
typename K = typename F::argument_type, |
| 618 | 618 |
typename V = typename F::result_type> |
| 619 | 619 |
class FunctorToMap : public MapBase<K, V> {
|
| 620 | 620 |
F _f; |
| 621 | 621 |
public: |
| 622 | 622 |
///\e |
| 623 | 623 |
typedef K Key; |
| 624 | 624 |
///\e |
| 625 | 625 |
typedef V Value; |
| 626 | 626 |
|
| 627 | 627 |
/// Constructor |
| 628 | 628 |
FunctorToMap(const F &f = F()) : _f(f) {}
|
| 629 | 629 |
///\e |
| 630 | 630 |
Value operator[](const Key &k) const { return _f(k); }
|
| 631 | 631 |
}; |
| 632 | 632 |
|
| 633 | 633 |
/// Returns a \c FunctorToMap class |
| 634 | 634 |
|
| 635 | 635 |
/// This function just returns a \c FunctorToMap class. |
| 636 | 636 |
/// |
| 637 | 637 |
/// This function is specialized for adaptable binary function |
| 638 | 638 |
/// classes and C++ functions. |
| 639 | 639 |
/// |
| 640 | 640 |
/// \relates FunctorToMap |
| 641 | 641 |
template<typename K, typename V, typename F> |
| 642 | 642 |
inline FunctorToMap<F, K, V> functorToMap(const F &f) {
|
| 643 | 643 |
return FunctorToMap<F, K, V>(f); |
| 644 | 644 |
} |
| 645 | 645 |
|
| 646 | 646 |
template <typename F> |
| 647 | 647 |
inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
| 648 | 648 |
functorToMap(const F &f) |
| 649 | 649 |
{
|
| 650 | 650 |
return FunctorToMap<F, typename F::argument_type, |
| 651 | 651 |
typename F::result_type>(f); |
| 652 | 652 |
} |
| 653 | 653 |
|
| 654 | 654 |
template <typename K, typename V> |
| 655 | 655 |
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
|
| 656 | 656 |
return FunctorToMap<V (*)(K), K, V>(f); |
| 657 | 657 |
} |
| 658 | 658 |
|
| 659 | 659 |
|
| 660 | 660 |
/// Converts a map to an STL style (unary) functor |
| 661 | 661 |
|
| 662 | 662 |
/// This class converts a map to an STL style (unary) functor. |
| 663 | 663 |
/// That is it provides an <tt>operator()</tt> to read its values. |
| 664 | 664 |
/// |
| 665 | 665 |
/// For the sake of convenience it also works as a usual |
| 666 | 666 |
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
| 667 | 667 |
/// and the \c Key and \c Value typedefs also exist. |
| 668 | 668 |
/// |
| 669 | 669 |
/// The simplest way of using this map is through the mapToFunctor() |
| 670 | 670 |
/// function. |
| 671 | 671 |
/// |
| 672 | 672 |
///\sa FunctorToMap |
| 673 | 673 |
template <typename M> |
| 674 | 674 |
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
|
| 675 | 675 |
const M &_m; |
| 676 | 676 |
public: |
| 677 | 677 |
///\e |
| 678 | 678 |
typedef typename M::Key Key; |
| 679 | 679 |
///\e |
| 680 | 680 |
typedef typename M::Value Value; |
| 681 | 681 |
|
| 682 | 682 |
typedef typename M::Key argument_type; |
| 683 | 683 |
typedef typename M::Value result_type; |
| 684 | 684 |
|
| 685 | 685 |
/// Constructor |
| 686 | 686 |
MapToFunctor(const M &m) : _m(m) {}
|
| 687 | 687 |
///\e |
| 688 | 688 |
Value operator()(const Key &k) const { return _m[k]; }
|
| 689 | 689 |
///\e |
| 690 | 690 |
Value operator[](const Key &k) const { return _m[k]; }
|
| 691 | 691 |
}; |
| 692 | 692 |
|
| 693 | 693 |
/// Returns a \c MapToFunctor class |
| 694 | 694 |
|
| 695 | 695 |
/// This function just returns a \c MapToFunctor class. |
| 696 | 696 |
/// \relates MapToFunctor |
| 697 | 697 |
template<typename M> |
| 698 | 698 |
inline MapToFunctor<M> mapToFunctor(const M &m) {
|
| 699 | 699 |
return MapToFunctor<M>(m); |
| 700 | 700 |
} |
| 701 | 701 |
|
| 702 | 702 |
|
| 703 | 703 |
/// \brief Map adaptor to convert the \c Value type of a map to |
| 704 | 704 |
/// another type using the default conversion. |
| 705 | 705 |
|
| 706 | 706 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
| 707 | 707 |
/// "readable map" to another type using the default conversion. |
| 708 | 708 |
/// The \c Key type of it is inherited from \c M and the \c Value |
| 709 | 709 |
/// type is \c V. |
| 710 | 710 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
| 711 | 711 |
/// |
| 712 | 712 |
/// The simplest way of using this map is through the convertMap() |
| 713 | 713 |
/// function. |
| 714 | 714 |
template <typename M, typename V> |
| 715 | 715 |
class ConvertMap : public MapBase<typename M::Key, V> {
|
| 716 | 716 |
const M &_m; |
| 717 | 717 |
public: |
| 718 | 718 |
///\e |
| 719 | 719 |
typedef typename M::Key Key; |
| 720 | 720 |
///\e |
| 721 | 721 |
typedef V Value; |
| 722 | 722 |
|
| 723 | 723 |
/// Constructor |
| 724 | 724 |
|
| 725 | 725 |
/// Constructor. |
| 726 | 726 |
/// \param m The underlying map. |
| 727 | 727 |
ConvertMap(const M &m) : _m(m) {}
|
| 728 | 728 |
|
| 729 | 729 |
///\e |
| 730 | 730 |
Value operator[](const Key &k) const { return _m[k]; }
|
| 731 | 731 |
}; |
| 732 | 732 |
|
| 733 | 733 |
/// Returns a \c ConvertMap class |
| 734 | 734 |
|
| 735 | 735 |
/// This function just returns a \c ConvertMap class. |
| 736 | 736 |
/// \relates ConvertMap |
| 737 | 737 |
template<typename V, typename M> |
| 738 | 738 |
inline ConvertMap<M, V> convertMap(const M &map) {
|
| 739 | 739 |
return ConvertMap<M, V>(map); |
| 740 | 740 |
} |
| 741 | 741 |
|
| 742 | 742 |
|
| 743 | 743 |
/// Applies all map setting operations to two maps |
| 744 | 744 |
|
| 745 | 745 |
/// This map has two \ref concepts::WriteMap "writable map" parameters |
| 746 | 746 |
/// and each write request will be passed to both of them. |
| 747 | 747 |
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
| 748 | 748 |
/// operations will return the corresponding values of \c M1. |
| 749 | 749 |
/// |
| 750 | 750 |
/// The \c Key and \c Value types are inherited from \c M1. |
| 751 | 751 |
/// The \c Key and \c Value of \c M2 must be convertible from those |
| 752 | 752 |
/// of \c M1. |
| 753 | 753 |
/// |
| 754 | 754 |
/// The simplest way of using this map is through the forkMap() |
| 755 | 755 |
/// function. |
| 756 | 756 |
template<typename M1, typename M2> |
| 757 | 757 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 758 | 758 |
M1 &_m1; |
| 759 | 759 |
M2 &_m2; |
| 760 | 760 |
public: |
| 761 | 761 |
///\e |
| 762 | 762 |
typedef typename M1::Key Key; |
| 763 | 763 |
///\e |
| 764 | 764 |
typedef typename M1::Value Value; |
| 765 | 765 |
|
| 766 | 766 |
/// Constructor |
| 767 | 767 |
ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
|
| 768 | 768 |
/// Returns the value associated with the given key in the first map. |
| 769 | 769 |
Value operator[](const Key &k) const { return _m1[k]; }
|
| 770 | 770 |
/// Sets the value associated with the given key in both maps. |
| 771 | 771 |
void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
|
| 772 | 772 |
}; |
| 773 | 773 |
|
| 774 | 774 |
/// Returns a \c ForkMap class |
| 775 | 775 |
|
| 776 | 776 |
/// This function just returns a \c ForkMap class. |
| 777 | 777 |
/// \relates ForkMap |
| 778 | 778 |
template <typename M1, typename M2> |
| 779 | 779 |
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
|
| 780 | 780 |
return ForkMap<M1,M2>(m1,m2); |
| 781 | 781 |
} |
| 782 | 782 |
|
| 783 | 783 |
|
| 784 | 784 |
/// Sum of two maps |
| 785 | 785 |
|
| 786 | 786 |
/// This \ref concepts::ReadMap "read-only map" returns the sum |
| 787 | 787 |
/// of the values of the two given maps. |
| 788 | 788 |
/// Its \c Key and \c Value types are inherited from \c M1. |
| 789 | 789 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
| 790 | 790 |
/// \c M1. |
| 791 | 791 |
/// |
| 792 | 792 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 793 | 793 |
/// \code |
| 794 | 794 |
/// AddMap<M1,M2> am(m1,m2); |
| 795 | 795 |
/// \endcode |
| 796 | 796 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
| 797 | 797 |
/// |
| 798 | 798 |
/// The simplest way of using this map is through the addMap() |
| 799 | 799 |
/// function. |
| 800 | 800 |
/// |
| 801 | 801 |
/// \sa SubMap, MulMap, DivMap |
| 802 | 802 |
/// \sa ShiftMap, ShiftWriteMap |
| 803 | 803 |
template<typename M1, typename M2> |
| 804 | 804 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 805 | 805 |
const M1 &_m1; |
| 806 | 806 |
const M2 &_m2; |
| 807 | 807 |
public: |
| 808 | 808 |
///\e |
| 809 | 809 |
typedef typename M1::Key Key; |
| 810 | 810 |
///\e |
| 811 | 811 |
typedef typename M1::Value Value; |
| 812 | 812 |
|
| 813 | 813 |
/// Constructor |
| 814 | 814 |
AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 815 | 815 |
///\e |
| 816 | 816 |
Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
|
| 817 | 817 |
}; |
| 818 | 818 |
|
| 819 | 819 |
/// Returns an \c AddMap class |
| 820 | 820 |
|
| 821 | 821 |
/// This function just returns an \c AddMap class. |
| 822 | 822 |
/// |
| 823 | 823 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
| 824 | 824 |
/// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to |
| 825 | 825 |
/// <tt>m1[x]+m2[x]</tt>. |
| 826 | 826 |
/// |
| 827 | 827 |
/// \relates AddMap |
| 828 | 828 |
template<typename M1, typename M2> |
| 829 | 829 |
inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
|
| 830 | 830 |
return AddMap<M1, M2>(m1,m2); |
| 831 | 831 |
} |
| 832 | 832 |
|
| 833 | 833 |
|
| 834 | 834 |
/// Difference of two maps |
| 835 | 835 |
|
| 836 | 836 |
/// This \ref concepts::ReadMap "read-only map" returns the difference |
| 837 | 837 |
/// of the values of the two given maps. |
| 838 | 838 |
/// Its \c Key and \c Value types are inherited from \c M1. |
| 839 | 839 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
| 840 | 840 |
/// \c M1. |
| 841 | 841 |
/// |
| 842 | 842 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 843 | 843 |
/// \code |
| 844 | 844 |
/// SubMap<M1,M2> sm(m1,m2); |
| 845 | 845 |
/// \endcode |
| 846 | 846 |
/// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>. |
| 847 | 847 |
/// |
| 848 | 848 |
/// The simplest way of using this map is through the subMap() |
| 849 | 849 |
/// function. |
| 850 | 850 |
/// |
| 851 | 851 |
/// \sa AddMap, MulMap, DivMap |
| 852 | 852 |
template<typename M1, typename M2> |
| 853 | 853 |
class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 854 | 854 |
const M1 &_m1; |
| 855 | 855 |
const M2 &_m2; |
| 856 | 856 |
public: |
| 857 | 857 |
///\e |
| 858 | 858 |
typedef typename M1::Key Key; |
| 859 | 859 |
///\e |
| 860 | 860 |
typedef typename M1::Value Value; |
| 861 | 861 |
|
| 862 | 862 |
/// Constructor |
| 863 | 863 |
SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 864 | 864 |
///\e |
| 865 | 865 |
Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
|
| 866 | 866 |
}; |
| 867 | 867 |
|
| 868 | 868 |
/// Returns a \c SubMap class |
| 869 | 869 |
|
| 870 | 870 |
/// This function just returns a \c SubMap class. |
| 871 | 871 |
/// |
| 872 | 872 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
| 873 | 873 |
/// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to |
| 874 | 874 |
/// <tt>m1[x]-m2[x]</tt>. |
| 875 | 875 |
/// |
| 876 | 876 |
/// \relates SubMap |
| 877 | 877 |
template<typename M1, typename M2> |
| 878 | 878 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
|
| 879 | 879 |
return SubMap<M1, M2>(m1,m2); |
| 880 | 880 |
} |
| 881 | 881 |
|
| 882 | 882 |
|
| 883 | 883 |
/// Product of two maps |
| 884 | 884 |
|
| 885 | 885 |
/// This \ref concepts::ReadMap "read-only map" returns the product |
| 886 | 886 |
/// of the values of the two given maps. |
| 887 | 887 |
/// Its \c Key and \c Value types are inherited from \c M1. |
| 888 | 888 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
| 889 | 889 |
/// \c M1. |
| 890 | 890 |
/// |
| 891 | 891 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 892 | 892 |
/// \code |
| 893 | 893 |
/// MulMap<M1,M2> mm(m1,m2); |
| 894 | 894 |
/// \endcode |
| 895 | 895 |
/// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>. |
| 896 | 896 |
/// |
| 897 | 897 |
/// The simplest way of using this map is through the mulMap() |
| 898 | 898 |
/// function. |
| 899 | 899 |
/// |
| 900 | 900 |
/// \sa AddMap, SubMap, DivMap |
| 901 | 901 |
/// \sa ScaleMap, ScaleWriteMap |
| 902 | 902 |
template<typename M1, typename M2> |
| 903 | 903 |
class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 904 | 904 |
const M1 &_m1; |
| 905 | 905 |
const M2 &_m2; |
| 906 | 906 |
public: |
| 907 | 907 |
///\e |
| 908 | 908 |
typedef typename M1::Key Key; |
| 909 | 909 |
///\e |
| 910 | 910 |
typedef typename M1::Value Value; |
| 911 | 911 |
|
| 912 | 912 |
/// Constructor |
| 913 | 913 |
MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 914 | 914 |
///\e |
| 915 | 915 |
Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
|
| 916 | 916 |
}; |
| 917 | 917 |
|
| 918 | 918 |
/// Returns a \c MulMap class |
| 919 | 919 |
|
| 920 | 920 |
/// This function just returns a \c MulMap class. |
| 921 | 921 |
/// |
| 922 | 922 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
| 923 | 923 |
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to |
| 924 | 924 |
/// <tt>m1[x]*m2[x]</tt>. |
| 925 | 925 |
/// |
| 926 | 926 |
/// \relates MulMap |
| 927 | 927 |
template<typename M1, typename M2> |
| 928 | 928 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
|
| 929 | 929 |
return MulMap<M1, M2>(m1,m2); |
| 930 | 930 |
} |
| 931 | 931 |
|
| 932 | 932 |
|
| 933 | 933 |
/// Quotient of two maps |
| 934 | 934 |
|
| 935 | 935 |
/// This \ref concepts::ReadMap "read-only map" returns the quotient |
| 936 | 936 |
/// of the values of the two given maps. |
| 937 | 937 |
/// Its \c Key and \c Value types are inherited from \c M1. |
| 938 | 938 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
| 939 | 939 |
/// \c M1. |
| 940 | 940 |
/// |
| 941 | 941 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 942 | 942 |
/// \code |
| 943 | 943 |
/// DivMap<M1,M2> dm(m1,m2); |
| 944 | 944 |
/// \endcode |
| 945 | 945 |
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>. |
| 946 | 946 |
/// |
| 947 | 947 |
/// The simplest way of using this map is through the divMap() |
| 948 | 948 |
/// function. |
| 949 | 949 |
/// |
| 950 | 950 |
/// \sa AddMap, SubMap, MulMap |
| 951 | 951 |
template<typename M1, typename M2> |
| 952 | 952 |
class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
|
| 953 | 953 |
const M1 &_m1; |
| 954 | 954 |
const M2 &_m2; |
| 955 | 955 |
public: |
| 956 | 956 |
///\e |
| 957 | 957 |
typedef typename M1::Key Key; |
| 958 | 958 |
///\e |
| 959 | 959 |
typedef typename M1::Value Value; |
| 960 | 960 |
|
| 961 | 961 |
/// Constructor |
| 962 | 962 |
DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 963 | 963 |
///\e |
| 964 | 964 |
Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
|
| 965 | 965 |
}; |
| 966 | 966 |
|
| 967 | 967 |
/// Returns a \c DivMap class |
| 968 | 968 |
|
| 969 | 969 |
/// This function just returns a \c DivMap class. |
| 970 | 970 |
/// |
| 971 | 971 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
| 972 | 972 |
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to |
| 973 | 973 |
/// <tt>m1[x]/m2[x]</tt>. |
| 974 | 974 |
/// |
| 975 | 975 |
/// \relates DivMap |
| 976 | 976 |
template<typename M1, typename M2> |
| 977 | 977 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
|
| 978 | 978 |
return DivMap<M1, M2>(m1,m2); |
| 979 | 979 |
} |
| 980 | 980 |
|
| 981 | 981 |
|
| 982 | 982 |
/// Shifts a map with a constant. |
| 983 | 983 |
|
| 984 | 984 |
/// This \ref concepts::ReadMap "read-only map" returns the sum of |
| 985 | 985 |
/// the given map and a constant value (i.e. it shifts the map with |
| 986 | 986 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
| 987 | 987 |
/// |
| 988 | 988 |
/// Actually, |
| 989 | 989 |
/// \code |
| 990 | 990 |
/// ShiftMap<M> sh(m,v); |
| 991 | 991 |
/// \endcode |
| 992 | 992 |
/// is equivalent to |
| 993 | 993 |
/// \code |
| 994 | 994 |
/// ConstMap<M::Key, M::Value> cm(v); |
| 995 | 995 |
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm); |
| 996 | 996 |
/// \endcode |
| 997 | 997 |
/// |
| 998 | 998 |
/// The simplest way of using this map is through the shiftMap() |
| 999 | 999 |
/// function. |
| 1000 | 1000 |
/// |
| 1001 | 1001 |
/// \sa ShiftWriteMap |
| 1002 | 1002 |
template<typename M, typename C = typename M::Value> |
| 1003 | 1003 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1004 | 1004 |
const M &_m; |
| 1005 | 1005 |
C _v; |
| 1006 | 1006 |
public: |
| 1007 | 1007 |
///\e |
| 1008 | 1008 |
typedef typename M::Key Key; |
| 1009 | 1009 |
///\e |
| 1010 | 1010 |
typedef typename M::Value Value; |
| 1011 | 1011 |
|
| 1012 | 1012 |
/// Constructor |
| 1013 | 1013 |
|
| 1014 | 1014 |
/// Constructor. |
| 1015 | 1015 |
/// \param m The undelying map. |
| 1016 | 1016 |
/// \param v The constant value. |
| 1017 | 1017 |
ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
|
| 1018 | 1018 |
///\e |
| 1019 | 1019 |
Value operator[](const Key &k) const { return _m[k]+_v; }
|
| 1020 | 1020 |
}; |
| 1021 | 1021 |
|
| 1022 | 1022 |
/// Shifts a map with a constant (read-write version). |
| 1023 | 1023 |
|
| 1024 | 1024 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the sum |
| 1025 | 1025 |
/// of the given map and a constant value (i.e. it shifts the map with |
| 1026 | 1026 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
| 1027 | 1027 |
/// It makes also possible to write the map. |
| 1028 | 1028 |
/// |
| 1029 | 1029 |
/// The simplest way of using this map is through the shiftWriteMap() |
| 1030 | 1030 |
/// function. |
| 1031 | 1031 |
/// |
| 1032 | 1032 |
/// \sa ShiftMap |
| 1033 | 1033 |
template<typename M, typename C = typename M::Value> |
| 1034 | 1034 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1035 | 1035 |
M &_m; |
| 1036 | 1036 |
C _v; |
| 1037 | 1037 |
public: |
| 1038 | 1038 |
///\e |
| 1039 | 1039 |
typedef typename M::Key Key; |
| 1040 | 1040 |
///\e |
| 1041 | 1041 |
typedef typename M::Value Value; |
| 1042 | 1042 |
|
| 1043 | 1043 |
/// Constructor |
| 1044 | 1044 |
|
| 1045 | 1045 |
/// Constructor. |
| 1046 | 1046 |
/// \param m The undelying map. |
| 1047 | 1047 |
/// \param v The constant value. |
| 1048 | 1048 |
ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
|
| 1049 | 1049 |
///\e |
| 1050 | 1050 |
Value operator[](const Key &k) const { return _m[k]+_v; }
|
| 1051 | 1051 |
///\e |
| 1052 | 1052 |
void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
|
| 1053 | 1053 |
}; |
| 1054 | 1054 |
|
| 1055 | 1055 |
/// Returns a \c ShiftMap class |
| 1056 | 1056 |
|
| 1057 | 1057 |
/// This function just returns a \c ShiftMap class. |
| 1058 | 1058 |
/// |
| 1059 | 1059 |
/// For example, if \c m is a map with \c double values and \c v is |
| 1060 | 1060 |
/// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to |
| 1061 | 1061 |
/// <tt>m[x]+v</tt>. |
| 1062 | 1062 |
/// |
| 1063 | 1063 |
/// \relates ShiftMap |
| 1064 | 1064 |
template<typename M, typename C> |
| 1065 | 1065 |
inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
|
| 1066 | 1066 |
return ShiftMap<M, C>(m,v); |
| 1067 | 1067 |
} |
| 1068 | 1068 |
|
| 1069 | 1069 |
/// Returns a \c ShiftWriteMap class |
| 1070 | 1070 |
|
| 1071 | 1071 |
/// This function just returns a \c ShiftWriteMap class. |
| 1072 | 1072 |
/// |
| 1073 | 1073 |
/// For example, if \c m is a map with \c double values and \c v is |
| 1074 | 1074 |
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to |
| 1075 | 1075 |
/// <tt>m[x]+v</tt>. |
| 1076 | 1076 |
/// Moreover it makes also possible to write the map. |
| 1077 | 1077 |
/// |
| 1078 | 1078 |
/// \relates ShiftWriteMap |
| 1079 | 1079 |
template<typename M, typename C> |
| 1080 | 1080 |
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
|
| 1081 | 1081 |
return ShiftWriteMap<M, C>(m,v); |
| 1082 | 1082 |
} |
| 1083 | 1083 |
|
| 1084 | 1084 |
|
| 1085 | 1085 |
/// Scales a map with a constant. |
| 1086 | 1086 |
|
| 1087 | 1087 |
/// This \ref concepts::ReadMap "read-only map" returns the value of |
| 1088 | 1088 |
/// the given map multiplied from the left side with a constant value. |
| 1089 | 1089 |
/// Its \c Key and \c Value are inherited from \c M. |
| 1090 | 1090 |
/// |
| 1091 | 1091 |
/// Actually, |
| 1092 | 1092 |
/// \code |
| 1093 | 1093 |
/// ScaleMap<M> sc(m,v); |
| 1094 | 1094 |
/// \endcode |
| 1095 | 1095 |
/// is equivalent to |
| 1096 | 1096 |
/// \code |
| 1097 | 1097 |
/// ConstMap<M::Key, M::Value> cm(v); |
| 1098 | 1098 |
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
| 1099 | 1099 |
/// \endcode |
| 1100 | 1100 |
/// |
| 1101 | 1101 |
/// The simplest way of using this map is through the scaleMap() |
| 1102 | 1102 |
/// function. |
| 1103 | 1103 |
/// |
| 1104 | 1104 |
/// \sa ScaleWriteMap |
| 1105 | 1105 |
template<typename M, typename C = typename M::Value> |
| 1106 | 1106 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1107 | 1107 |
const M &_m; |
| 1108 | 1108 |
C _v; |
| 1109 | 1109 |
public: |
| 1110 | 1110 |
///\e |
| 1111 | 1111 |
typedef typename M::Key Key; |
| 1112 | 1112 |
///\e |
| 1113 | 1113 |
typedef typename M::Value Value; |
| 1114 | 1114 |
|
| 1115 | 1115 |
/// Constructor |
| 1116 | 1116 |
|
| 1117 | 1117 |
/// Constructor. |
| 1118 | 1118 |
/// \param m The undelying map. |
| 1119 | 1119 |
/// \param v The constant value. |
| 1120 | 1120 |
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
|
| 1121 | 1121 |
///\e |
| 1122 | 1122 |
Value operator[](const Key &k) const { return _v*_m[k]; }
|
| 1123 | 1123 |
}; |
| 1124 | 1124 |
|
| 1125 | 1125 |
/// Scales a map with a constant (read-write version). |
| 1126 | 1126 |
|
| 1127 | 1127 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of |
| 1128 | 1128 |
/// the given map multiplied from the left side with a constant value. |
| 1129 | 1129 |
/// Its \c Key and \c Value are inherited from \c M. |
| 1130 | 1130 |
/// It can also be used as write map if the \c / operator is defined |
| 1131 | 1131 |
/// between \c Value and \c C and the given multiplier is not zero. |
| 1132 | 1132 |
/// |
| 1133 | 1133 |
/// The simplest way of using this map is through the scaleWriteMap() |
| 1134 | 1134 |
/// function. |
| 1135 | 1135 |
/// |
| 1136 | 1136 |
/// \sa ScaleMap |
| 1137 | 1137 |
template<typename M, typename C = typename M::Value> |
| 1138 | 1138 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1139 | 1139 |
M &_m; |
| 1140 | 1140 |
C _v; |
| 1141 | 1141 |
public: |
| 1142 | 1142 |
///\e |
| 1143 | 1143 |
typedef typename M::Key Key; |
| 1144 | 1144 |
///\e |
| 1145 | 1145 |
typedef typename M::Value Value; |
| 1146 | 1146 |
|
| 1147 | 1147 |
/// Constructor |
| 1148 | 1148 |
|
| 1149 | 1149 |
/// Constructor. |
| 1150 | 1150 |
/// \param m The undelying map. |
| 1151 | 1151 |
/// \param v The constant value. |
| 1152 | 1152 |
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
|
| 1153 | 1153 |
///\e |
| 1154 | 1154 |
Value operator[](const Key &k) const { return _v*_m[k]; }
|
| 1155 | 1155 |
///\e |
| 1156 | 1156 |
void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
|
| 1157 | 1157 |
}; |
| 1158 | 1158 |
|
| 1159 | 1159 |
/// Returns a \c ScaleMap class |
| 1160 | 1160 |
|
| 1161 | 1161 |
/// This function just returns a \c ScaleMap class. |
| 1162 | 1162 |
/// |
| 1163 | 1163 |
/// For example, if \c m is a map with \c double values and \c v is |
| 1164 | 1164 |
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to |
| 1165 | 1165 |
/// <tt>v*m[x]</tt>. |
| 1166 | 1166 |
/// |
| 1167 | 1167 |
/// \relates ScaleMap |
| 1168 | 1168 |
template<typename M, typename C> |
| 1169 | 1169 |
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
|
| 1170 | 1170 |
return ScaleMap<M, C>(m,v); |
| 1171 | 1171 |
} |
| 1172 | 1172 |
|
| 1173 | 1173 |
/// Returns a \c ScaleWriteMap class |
| 1174 | 1174 |
|
| 1175 | 1175 |
/// This function just returns a \c ScaleWriteMap class. |
| 1176 | 1176 |
/// |
| 1177 | 1177 |
/// For example, if \c m is a map with \c double values and \c v is |
| 1178 | 1178 |
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to |
| 1179 | 1179 |
/// <tt>v*m[x]</tt>. |
| 1180 | 1180 |
/// Moreover it makes also possible to write the map. |
| 1181 | 1181 |
/// |
| 1182 | 1182 |
/// \relates ScaleWriteMap |
| 1183 | 1183 |
template<typename M, typename C> |
| 1184 | 1184 |
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
|
| 1185 | 1185 |
return ScaleWriteMap<M, C>(m,v); |
| 1186 | 1186 |
} |
| 1187 | 1187 |
|
| 1188 | 1188 |
|
| 1189 | 1189 |
/// Negative of a map |
| 1190 | 1190 |
|
| 1191 | 1191 |
/// This \ref concepts::ReadMap "read-only map" returns the negative |
| 1192 | 1192 |
/// of the values of the given map (using the unary \c - operator). |
| 1193 | 1193 |
/// Its \c Key and \c Value are inherited from \c M. |
| 1194 | 1194 |
/// |
| 1195 | 1195 |
/// If M::Value is \c int, \c double etc., then |
| 1196 | 1196 |
/// \code |
| 1197 | 1197 |
/// NegMap<M> neg(m); |
| 1198 | 1198 |
/// \endcode |
| 1199 | 1199 |
/// is equivalent to |
| 1200 | 1200 |
/// \code |
| 1201 | 1201 |
/// ScaleMap<M> neg(m,-1); |
| 1202 | 1202 |
/// \endcode |
| 1203 | 1203 |
/// |
| 1204 | 1204 |
/// The simplest way of using this map is through the negMap() |
| 1205 | 1205 |
/// function. |
| 1206 | 1206 |
/// |
| 1207 | 1207 |
/// \sa NegWriteMap |
| 1208 | 1208 |
template<typename M> |
| 1209 | 1209 |
class NegMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1210 | 1210 |
const M& _m; |
| 1211 | 1211 |
public: |
| 1212 | 1212 |
///\e |
| 1213 | 1213 |
typedef typename M::Key Key; |
| 1214 | 1214 |
///\e |
| 1215 | 1215 |
typedef typename M::Value Value; |
| 1216 | 1216 |
|
| 1217 | 1217 |
/// Constructor |
| 1218 | 1218 |
NegMap(const M &m) : _m(m) {}
|
| 1219 | 1219 |
///\e |
| 1220 | 1220 |
Value operator[](const Key &k) const { return -_m[k]; }
|
| 1221 | 1221 |
}; |
| 1222 | 1222 |
|
| 1223 | 1223 |
/// Negative of a map (read-write version) |
| 1224 | 1224 |
|
| 1225 | 1225 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
| 1226 | 1226 |
/// negative of the values of the given map (using the unary \c - |
| 1227 | 1227 |
/// operator). |
| 1228 | 1228 |
/// Its \c Key and \c Value are inherited from \c M. |
| 1229 | 1229 |
/// It makes also possible to write the map. |
| 1230 | 1230 |
/// |
| 1231 | 1231 |
/// If M::Value is \c int, \c double etc., then |
| 1232 | 1232 |
/// \code |
| 1233 | 1233 |
/// NegWriteMap<M> neg(m); |
| 1234 | 1234 |
/// \endcode |
| 1235 | 1235 |
/// is equivalent to |
| 1236 | 1236 |
/// \code |
| 1237 | 1237 |
/// ScaleWriteMap<M> neg(m,-1); |
| 1238 | 1238 |
/// \endcode |
| 1239 | 1239 |
/// |
| 1240 | 1240 |
/// The simplest way of using this map is through the negWriteMap() |
| 1241 | 1241 |
/// function. |
| 1242 | 1242 |
/// |
| 1243 | 1243 |
/// \sa NegMap |
| 1244 | 1244 |
template<typename M> |
| 1245 | 1245 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1246 | 1246 |
M &_m; |
| 1247 | 1247 |
public: |
| 1248 | 1248 |
///\e |
| 1249 | 1249 |
typedef typename M::Key Key; |
| 1250 | 1250 |
///\e |
| 1251 | 1251 |
typedef typename M::Value Value; |
| 1252 | 1252 |
|
| 1253 | 1253 |
/// Constructor |
| 1254 | 1254 |
NegWriteMap(M &m) : _m(m) {}
|
| 1255 | 1255 |
///\e |
| 1256 | 1256 |
Value operator[](const Key &k) const { return -_m[k]; }
|
| 1257 | 1257 |
///\e |
| 1258 | 1258 |
void set(const Key &k, const Value &v) { _m.set(k, -v); }
|
| 1259 | 1259 |
}; |
| 1260 | 1260 |
|
| 1261 | 1261 |
/// Returns a \c NegMap class |
| 1262 | 1262 |
|
| 1263 | 1263 |
/// This function just returns a \c NegMap class. |
| 1264 | 1264 |
/// |
| 1265 | 1265 |
/// For example, if \c m is a map with \c double values, then |
| 1266 | 1266 |
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
| 1267 | 1267 |
/// |
| 1268 | 1268 |
/// \relates NegMap |
| 1269 | 1269 |
template <typename M> |
| 1270 | 1270 |
inline NegMap<M> negMap(const M &m) {
|
| 1271 | 1271 |
return NegMap<M>(m); |
| 1272 | 1272 |
} |
| 1273 | 1273 |
|
| 1274 | 1274 |
/// Returns a \c NegWriteMap class |
| 1275 | 1275 |
|
| 1276 | 1276 |
/// This function just returns a \c NegWriteMap class. |
| 1277 | 1277 |
/// |
| 1278 | 1278 |
/// For example, if \c m is a map with \c double values, then |
| 1279 | 1279 |
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
| 1280 | 1280 |
/// Moreover it makes also possible to write the map. |
| 1281 | 1281 |
/// |
| 1282 | 1282 |
/// \relates NegWriteMap |
| 1283 | 1283 |
template <typename M> |
| 1284 | 1284 |
inline NegWriteMap<M> negWriteMap(M &m) {
|
| 1285 | 1285 |
return NegWriteMap<M>(m); |
| 1286 | 1286 |
} |
| 1287 | 1287 |
|
| 1288 | 1288 |
|
| 1289 | 1289 |
/// Absolute value of a map |
| 1290 | 1290 |
|
| 1291 | 1291 |
/// This \ref concepts::ReadMap "read-only map" returns the absolute |
| 1292 | 1292 |
/// value of the values of the given map. |
| 1293 | 1293 |
/// Its \c Key and \c Value are inherited from \c M. |
| 1294 | 1294 |
/// \c Value must be comparable to \c 0 and the unary \c - |
| 1295 | 1295 |
/// operator must be defined for it, of course. |
| 1296 | 1296 |
/// |
| 1297 | 1297 |
/// The simplest way of using this map is through the absMap() |
| 1298 | 1298 |
/// function. |
| 1299 | 1299 |
template<typename M> |
| 1300 | 1300 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1301 | 1301 |
const M &_m; |
| 1302 | 1302 |
public: |
| 1303 | 1303 |
///\e |
| 1304 | 1304 |
typedef typename M::Key Key; |
| 1305 | 1305 |
///\e |
| 1306 | 1306 |
typedef typename M::Value Value; |
| 1307 | 1307 |
|
| 1308 | 1308 |
/// Constructor |
| 1309 | 1309 |
AbsMap(const M &m) : _m(m) {}
|
| 1310 | 1310 |
///\e |
| 1311 | 1311 |
Value operator[](const Key &k) const {
|
| 1312 | 1312 |
Value tmp = _m[k]; |
| 1313 | 1313 |
return tmp >= 0 ? tmp : -tmp; |
| 1314 | 1314 |
} |
| 1315 | 1315 |
|
| 1316 | 1316 |
}; |
| 1317 | 1317 |
|
| 1318 | 1318 |
/// Returns an \c AbsMap class |
| 1319 | 1319 |
|
| 1320 | 1320 |
/// This function just returns an \c AbsMap class. |
| 1321 | 1321 |
/// |
| 1322 | 1322 |
/// For example, if \c m is a map with \c double values, then |
| 1323 | 1323 |
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
| 1324 | 1324 |
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
| 1325 | 1325 |
/// negative. |
| 1326 | 1326 |
/// |
| 1327 | 1327 |
/// \relates AbsMap |
| 1328 | 1328 |
template<typename M> |
| 1329 | 1329 |
inline AbsMap<M> absMap(const M &m) {
|
| 1330 | 1330 |
return AbsMap<M>(m); |
| 1331 | 1331 |
} |
| 1332 | 1332 |
|
| 1333 | 1333 |
/// @} |
| 1334 | 1334 |
|
| 1335 | 1335 |
// Logical maps and map adaptors: |
| 1336 | 1336 |
|
| 1337 | 1337 |
/// \addtogroup maps |
| 1338 | 1338 |
/// @{
|
| 1339 | 1339 |
|
| 1340 | 1340 |
/// Constant \c true map. |
| 1341 | 1341 |
|
| 1342 | 1342 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
| 1343 | 1343 |
/// each key. |
| 1344 | 1344 |
/// |
| 1345 | 1345 |
/// Note that |
| 1346 | 1346 |
/// \code |
| 1347 | 1347 |
/// TrueMap<K> tm; |
| 1348 | 1348 |
/// \endcode |
| 1349 | 1349 |
/// is equivalent to |
| 1350 | 1350 |
/// \code |
| 1351 | 1351 |
/// ConstMap<K,bool> tm(true); |
| 1352 | 1352 |
/// \endcode |
| 1353 | 1353 |
/// |
| 1354 | 1354 |
/// \sa FalseMap |
| 1355 | 1355 |
/// \sa ConstMap |
| 1356 | 1356 |
template <typename K> |
| 1357 | 1357 |
class TrueMap : public MapBase<K, bool> {
|
| 1358 | 1358 |
public: |
| 1359 | 1359 |
///\e |
| 1360 | 1360 |
typedef K Key; |
| 1361 | 1361 |
///\e |
| 1362 | 1362 |
typedef bool Value; |
| 1363 | 1363 |
|
| 1364 | 1364 |
/// Gives back \c true. |
| 1365 | 1365 |
Value operator[](const Key&) const { return true; }
|
| 1366 | 1366 |
}; |
| 1367 | 1367 |
|
| 1368 | 1368 |
/// Returns a \c TrueMap class |
| 1369 | 1369 |
|
| 1370 | 1370 |
/// This function just returns a \c TrueMap class. |
| 1371 | 1371 |
/// \relates TrueMap |
| 1372 | 1372 |
template<typename K> |
| 1373 | 1373 |
inline TrueMap<K> trueMap() {
|
| 1374 | 1374 |
return TrueMap<K>(); |
| 1375 | 1375 |
} |
| 1376 | 1376 |
|
| 1377 | 1377 |
|
| 1378 | 1378 |
/// Constant \c false map. |
| 1379 | 1379 |
|
| 1380 | 1380 |
/// This \ref concepts::ReadMap "read-only map" assigns \c false to |
| 1381 | 1381 |
/// each key. |
| 1382 | 1382 |
/// |
| 1383 | 1383 |
/// Note that |
| 1384 | 1384 |
/// \code |
| 1385 | 1385 |
/// FalseMap<K> fm; |
| 1386 | 1386 |
/// \endcode |
| 1387 | 1387 |
/// is equivalent to |
| 1388 | 1388 |
/// \code |
| 1389 | 1389 |
/// ConstMap<K,bool> fm(false); |
| 1390 | 1390 |
/// \endcode |
| 1391 | 1391 |
/// |
| 1392 | 1392 |
/// \sa TrueMap |
| 1393 | 1393 |
/// \sa ConstMap |
| 1394 | 1394 |
template <typename K> |
| 1395 | 1395 |
class FalseMap : public MapBase<K, bool> {
|
| 1396 | 1396 |
public: |
| 1397 | 1397 |
///\e |
| 1398 | 1398 |
typedef K Key; |
| 1399 | 1399 |
///\e |
| 1400 | 1400 |
typedef bool Value; |
| 1401 | 1401 |
|
| 1402 | 1402 |
/// Gives back \c false. |
| 1403 | 1403 |
Value operator[](const Key&) const { return false; }
|
| 1404 | 1404 |
}; |
| 1405 | 1405 |
|
| 1406 | 1406 |
/// Returns a \c FalseMap class |
| 1407 | 1407 |
|
| 1408 | 1408 |
/// This function just returns a \c FalseMap class. |
| 1409 | 1409 |
/// \relates FalseMap |
| 1410 | 1410 |
template<typename K> |
| 1411 | 1411 |
inline FalseMap<K> falseMap() {
|
| 1412 | 1412 |
return FalseMap<K>(); |
| 1413 | 1413 |
} |
| 1414 | 1414 |
|
| 1415 | 1415 |
/// @} |
| 1416 | 1416 |
|
| 1417 | 1417 |
/// \addtogroup map_adaptors |
| 1418 | 1418 |
/// @{
|
| 1419 | 1419 |
|
| 1420 | 1420 |
/// Logical 'and' of two maps |
| 1421 | 1421 |
|
| 1422 | 1422 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
| 1423 | 1423 |
/// 'and' of the values of the two given maps. |
| 1424 | 1424 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
| 1425 | 1425 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
| 1426 | 1426 |
/// |
| 1427 | 1427 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 1428 | 1428 |
/// \code |
| 1429 | 1429 |
/// AndMap<M1,M2> am(m1,m2); |
| 1430 | 1430 |
/// \endcode |
| 1431 | 1431 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>. |
| 1432 | 1432 |
/// |
| 1433 | 1433 |
/// The simplest way of using this map is through the andMap() |
| 1434 | 1434 |
/// function. |
| 1435 | 1435 |
/// |
| 1436 | 1436 |
/// \sa OrMap |
| 1437 | 1437 |
/// \sa NotMap, NotWriteMap |
| 1438 | 1438 |
template<typename M1, typename M2> |
| 1439 | 1439 |
class AndMap : public MapBase<typename M1::Key, bool> {
|
| 1440 | 1440 |
const M1 &_m1; |
| 1441 | 1441 |
const M2 &_m2; |
| 1442 | 1442 |
public: |
| 1443 | 1443 |
///\e |
| 1444 | 1444 |
typedef typename M1::Key Key; |
| 1445 | 1445 |
///\e |
| 1446 | 1446 |
typedef bool Value; |
| 1447 | 1447 |
|
| 1448 | 1448 |
/// Constructor |
| 1449 | 1449 |
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1450 | 1450 |
///\e |
| 1451 | 1451 |
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
|
| 1452 | 1452 |
}; |
| 1453 | 1453 |
|
| 1454 | 1454 |
/// Returns an \c AndMap class |
| 1455 | 1455 |
|
| 1456 | 1456 |
/// This function just returns an \c AndMap class. |
| 1457 | 1457 |
/// |
| 1458 | 1458 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
| 1459 | 1459 |
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to |
| 1460 | 1460 |
/// <tt>m1[x]&&m2[x]</tt>. |
| 1461 | 1461 |
/// |
| 1462 | 1462 |
/// \relates AndMap |
| 1463 | 1463 |
template<typename M1, typename M2> |
| 1464 | 1464 |
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
|
| 1465 | 1465 |
return AndMap<M1, M2>(m1,m2); |
| 1466 | 1466 |
} |
| 1467 | 1467 |
|
| 1468 | 1468 |
|
| 1469 | 1469 |
/// Logical 'or' of two maps |
| 1470 | 1470 |
|
| 1471 | 1471 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
| 1472 | 1472 |
/// 'or' of the values of the two given maps. |
| 1473 | 1473 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
| 1474 | 1474 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
| 1475 | 1475 |
/// |
| 1476 | 1476 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 1477 | 1477 |
/// \code |
| 1478 | 1478 |
/// OrMap<M1,M2> om(m1,m2); |
| 1479 | 1479 |
/// \endcode |
| 1480 | 1480 |
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>. |
| 1481 | 1481 |
/// |
| 1482 | 1482 |
/// The simplest way of using this map is through the orMap() |
| 1483 | 1483 |
/// function. |
| 1484 | 1484 |
/// |
| 1485 | 1485 |
/// \sa AndMap |
| 1486 | 1486 |
/// \sa NotMap, NotWriteMap |
| 1487 | 1487 |
template<typename M1, typename M2> |
| 1488 | 1488 |
class OrMap : public MapBase<typename M1::Key, bool> {
|
| 1489 | 1489 |
const M1 &_m1; |
| 1490 | 1490 |
const M2 &_m2; |
| 1491 | 1491 |
public: |
| 1492 | 1492 |
///\e |
| 1493 | 1493 |
typedef typename M1::Key Key; |
| 1494 | 1494 |
///\e |
| 1495 | 1495 |
typedef bool Value; |
| 1496 | 1496 |
|
| 1497 | 1497 |
/// Constructor |
| 1498 | 1498 |
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1499 | 1499 |
///\e |
| 1500 | 1500 |
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
|
| 1501 | 1501 |
}; |
| 1502 | 1502 |
|
| 1503 | 1503 |
/// Returns an \c OrMap class |
| 1504 | 1504 |
|
| 1505 | 1505 |
/// This function just returns an \c OrMap class. |
| 1506 | 1506 |
/// |
| 1507 | 1507 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
| 1508 | 1508 |
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to |
| 1509 | 1509 |
/// <tt>m1[x]||m2[x]</tt>. |
| 1510 | 1510 |
/// |
| 1511 | 1511 |
/// \relates OrMap |
| 1512 | 1512 |
template<typename M1, typename M2> |
| 1513 | 1513 |
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
|
| 1514 | 1514 |
return OrMap<M1, M2>(m1,m2); |
| 1515 | 1515 |
} |
| 1516 | 1516 |
|
| 1517 | 1517 |
|
| 1518 | 1518 |
/// Logical 'not' of a map |
| 1519 | 1519 |
|
| 1520 | 1520 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
| 1521 | 1521 |
/// negation of the values of the given map. |
| 1522 | 1522 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
| 1523 | 1523 |
/// |
| 1524 | 1524 |
/// The simplest way of using this map is through the notMap() |
| 1525 | 1525 |
/// function. |
| 1526 | 1526 |
/// |
| 1527 | 1527 |
/// \sa NotWriteMap |
| 1528 | 1528 |
template <typename M> |
| 1529 | 1529 |
class NotMap : public MapBase<typename M::Key, bool> {
|
| 1530 | 1530 |
const M &_m; |
| 1531 | 1531 |
public: |
| 1532 | 1532 |
///\e |
| 1533 | 1533 |
typedef typename M::Key Key; |
| 1534 | 1534 |
///\e |
| 1535 | 1535 |
typedef bool Value; |
| 1536 | 1536 |
|
| 1537 | 1537 |
/// Constructor |
| 1538 | 1538 |
NotMap(const M &m) : _m(m) {}
|
| 1539 | 1539 |
///\e |
| 1540 | 1540 |
Value operator[](const Key &k) const { return !_m[k]; }
|
| 1541 | 1541 |
}; |
| 1542 | 1542 |
|
| 1543 | 1543 |
/// Logical 'not' of a map (read-write version) |
| 1544 | 1544 |
|
| 1545 | 1545 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
| 1546 | 1546 |
/// logical negation of the values of the given map. |
| 1547 | 1547 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
| 1548 | 1548 |
/// It makes also possible to write the map. When a value is set, |
| 1549 | 1549 |
/// the opposite value is set to the original map. |
| 1550 | 1550 |
/// |
| 1551 | 1551 |
/// The simplest way of using this map is through the notWriteMap() |
| 1552 | 1552 |
/// function. |
| 1553 | 1553 |
/// |
| 1554 | 1554 |
/// \sa NotMap |
| 1555 | 1555 |
template <typename M> |
| 1556 | 1556 |
class NotWriteMap : public MapBase<typename M::Key, bool> {
|
| 1557 | 1557 |
M &_m; |
| 1558 | 1558 |
public: |
| 1559 | 1559 |
///\e |
| 1560 | 1560 |
typedef typename M::Key Key; |
| 1561 | 1561 |
///\e |
| 1562 | 1562 |
typedef bool Value; |
| 1563 | 1563 |
|
| 1564 | 1564 |
/// Constructor |
| 1565 | 1565 |
NotWriteMap(M &m) : _m(m) {}
|
| 1566 | 1566 |
///\e |
| 1567 | 1567 |
Value operator[](const Key &k) const { return !_m[k]; }
|
| 1568 | 1568 |
///\e |
| 1569 | 1569 |
void set(const Key &k, bool v) { _m.set(k, !v); }
|
| 1570 | 1570 |
}; |
| 1571 | 1571 |
|
| 1572 | 1572 |
/// Returns a \c NotMap class |
| 1573 | 1573 |
|
| 1574 | 1574 |
/// This function just returns a \c NotMap class. |
| 1575 | 1575 |
/// |
| 1576 | 1576 |
/// For example, if \c m is a map with \c bool values, then |
| 1577 | 1577 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
| 1578 | 1578 |
/// |
| 1579 | 1579 |
/// \relates NotMap |
| 1580 | 1580 |
template <typename M> |
| 1581 | 1581 |
inline NotMap<M> notMap(const M &m) {
|
| 1582 | 1582 |
return NotMap<M>(m); |
| 1583 | 1583 |
} |
| 1584 | 1584 |
|
| 1585 | 1585 |
/// Returns a \c NotWriteMap class |
| 1586 | 1586 |
|
| 1587 | 1587 |
/// This function just returns a \c NotWriteMap class. |
| 1588 | 1588 |
/// |
| 1589 | 1589 |
/// For example, if \c m is a map with \c bool values, then |
| 1590 | 1590 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
| 1591 | 1591 |
/// Moreover it makes also possible to write the map. |
| 1592 | 1592 |
/// |
| 1593 | 1593 |
/// \relates NotWriteMap |
| 1594 | 1594 |
template <typename M> |
| 1595 | 1595 |
inline NotWriteMap<M> notWriteMap(M &m) {
|
| 1596 | 1596 |
return NotWriteMap<M>(m); |
| 1597 | 1597 |
} |
| 1598 | 1598 |
|
| 1599 | 1599 |
|
| 1600 | 1600 |
/// Combination of two maps using the \c == operator |
| 1601 | 1601 |
|
| 1602 | 1602 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
| 1603 | 1603 |
/// the keys for which the corresponding values of the two maps are |
| 1604 | 1604 |
/// equal. |
| 1605 | 1605 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
| 1606 | 1606 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
| 1607 | 1607 |
/// |
| 1608 | 1608 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 1609 | 1609 |
/// \code |
| 1610 | 1610 |
/// EqualMap<M1,M2> em(m1,m2); |
| 1611 | 1611 |
/// \endcode |
| 1612 | 1612 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
| 1613 | 1613 |
/// |
| 1614 | 1614 |
/// The simplest way of using this map is through the equalMap() |
| 1615 | 1615 |
/// function. |
| 1616 | 1616 |
/// |
| 1617 | 1617 |
/// \sa LessMap |
| 1618 | 1618 |
template<typename M1, typename M2> |
| 1619 | 1619 |
class EqualMap : public MapBase<typename M1::Key, bool> {
|
| 1620 | 1620 |
const M1 &_m1; |
| 1621 | 1621 |
const M2 &_m2; |
| 1622 | 1622 |
public: |
| 1623 | 1623 |
///\e |
| 1624 | 1624 |
typedef typename M1::Key Key; |
| 1625 | 1625 |
///\e |
| 1626 | 1626 |
typedef bool Value; |
| 1627 | 1627 |
|
| 1628 | 1628 |
/// Constructor |
| 1629 | 1629 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1630 | 1630 |
///\e |
| 1631 | 1631 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
|
| 1632 | 1632 |
}; |
| 1633 | 1633 |
|
| 1634 | 1634 |
/// Returns an \c EqualMap class |
| 1635 | 1635 |
|
| 1636 | 1636 |
/// This function just returns an \c EqualMap class. |
| 1637 | 1637 |
/// |
| 1638 | 1638 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
| 1639 | 1639 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
| 1640 | 1640 |
/// <tt>m1[x]==m2[x]</tt>. |
| 1641 | 1641 |
/// |
| 1642 | 1642 |
/// \relates EqualMap |
| 1643 | 1643 |
template<typename M1, typename M2> |
| 1644 | 1644 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
|
| 1645 | 1645 |
return EqualMap<M1, M2>(m1,m2); |
| 1646 | 1646 |
} |
| 1647 | 1647 |
|
| 1648 | 1648 |
|
| 1649 | 1649 |
/// Combination of two maps using the \c < operator |
| 1650 | 1650 |
|
| 1651 | 1651 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
| 1652 | 1652 |
/// the keys for which the corresponding value of the first map is |
| 1653 | 1653 |
/// less then the value of the second map. |
| 1654 | 1654 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
| 1655 | 1655 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
| 1656 | 1656 |
/// |
| 1657 | 1657 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
| 1658 | 1658 |
/// \code |
| 1659 | 1659 |
/// LessMap<M1,M2> lm(m1,m2); |
| 1660 | 1660 |
/// \endcode |
| 1661 | 1661 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
| 1662 | 1662 |
/// |
| 1663 | 1663 |
/// The simplest way of using this map is through the lessMap() |
| 1664 | 1664 |
/// function. |
| 1665 | 1665 |
/// |
| 1666 | 1666 |
/// \sa EqualMap |
| 1667 | 1667 |
template<typename M1, typename M2> |
| 1668 | 1668 |
class LessMap : public MapBase<typename M1::Key, bool> {
|
| 1669 | 1669 |
const M1 &_m1; |
| 1670 | 1670 |
const M2 &_m2; |
| 1671 | 1671 |
public: |
| 1672 | 1672 |
///\e |
| 1673 | 1673 |
typedef typename M1::Key Key; |
| 1674 | 1674 |
///\e |
| 1675 | 1675 |
typedef bool Value; |
| 1676 | 1676 |
|
| 1677 | 1677 |
/// Constructor |
| 1678 | 1678 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
| 1679 | 1679 |
///\e |
| 1680 | 1680 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
|
| 1681 | 1681 |
}; |
| 1682 | 1682 |
|
| 1683 | 1683 |
/// Returns an \c LessMap class |
| 1684 | 1684 |
|
| 1685 | 1685 |
/// This function just returns an \c LessMap class. |
| 1686 | 1686 |
/// |
| 1687 | 1687 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
| 1688 | 1688 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
| 1689 | 1689 |
/// <tt>m1[x]<m2[x]</tt>. |
| 1690 | 1690 |
/// |
| 1691 | 1691 |
/// \relates LessMap |
| 1692 | 1692 |
template<typename M1, typename M2> |
| 1693 | 1693 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
|
| 1694 | 1694 |
return LessMap<M1, M2>(m1,m2); |
| 1695 | 1695 |
} |
| 1696 | 1696 |
|
| 1697 | 1697 |
namespace _maps_bits {
|
| 1698 | 1698 |
|
| 1699 | 1699 |
template <typename _Iterator, typename Enable = void> |
| 1700 | 1700 |
struct IteratorTraits {
|
| 1701 | 1701 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
| 1702 | 1702 |
}; |
| 1703 | 1703 |
|
| 1704 | 1704 |
template <typename _Iterator> |
| 1705 | 1705 |
struct IteratorTraits<_Iterator, |
| 1706 | 1706 |
typename exists<typename _Iterator::container_type>::type> |
| 1707 | 1707 |
{
|
| 1708 | 1708 |
typedef typename _Iterator::container_type::value_type Value; |
| 1709 | 1709 |
}; |
| 1710 | 1710 |
|
| 1711 | 1711 |
} |
| 1712 | 1712 |
|
| 1713 | 1713 |
/// @} |
| 1714 | 1714 |
|
| 1715 | 1715 |
/// \addtogroup maps |
| 1716 | 1716 |
/// @{
|
| 1717 | 1717 |
|
| 1718 | 1718 |
/// \brief Writable bool map for logging each \c true assigned element |
| 1719 | 1719 |
/// |
| 1720 | 1720 |
/// A \ref concepts::WriteMap "writable" bool map for logging |
| 1721 | 1721 |
/// each \c true assigned element, i.e it copies subsequently each |
| 1722 | 1722 |
/// keys set to \c true to the given iterator. |
| 1723 | 1723 |
/// The most important usage of it is storing certain nodes or arcs |
| 1724 | 1724 |
/// that were marked \c true by an algorithm. |
| 1725 | 1725 |
/// |
| 1726 | 1726 |
/// There are several algorithms that provide solutions through bool |
| 1727 | 1727 |
/// maps and most of them assign \c true at most once for each key. |
| 1728 | 1728 |
/// In these cases it is a natural request to store each \c true |
| 1729 | 1729 |
/// assigned elements (in order of the assignment), which can be |
| 1730 | 1730 |
/// easily done with LoggerBoolMap. |
| 1731 | 1731 |
/// |
| 1732 | 1732 |
/// The simplest way of using this map is through the loggerBoolMap() |
| 1733 | 1733 |
/// function. |
| 1734 | 1734 |
/// |
| 1735 | 1735 |
/// \tparam IT The type of the iterator. |
| 1736 | 1736 |
/// \tparam KEY The key type of the map. The default value set |
| 1737 | 1737 |
/// according to the iterator type should work in most cases. |
| 1738 | 1738 |
/// |
| 1739 | 1739 |
/// \note The container of the iterator must contain enough space |
| 1740 | 1740 |
/// for the elements or the iterator should be an inserter iterator. |
| 1741 | 1741 |
#ifdef DOXYGEN |
| 1742 | 1742 |
template <typename IT, typename KEY> |
| 1743 | 1743 |
#else |
| 1744 | 1744 |
template <typename IT, |
| 1745 | 1745 |
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value> |
| 1746 | 1746 |
#endif |
| 1747 | 1747 |
class LoggerBoolMap : public MapBase<KEY, bool> {
|
| 1748 | 1748 |
public: |
| 1749 | 1749 |
|
| 1750 | 1750 |
///\e |
| 1751 | 1751 |
typedef KEY Key; |
| 1752 | 1752 |
///\e |
| 1753 | 1753 |
typedef bool Value; |
| 1754 | 1754 |
///\e |
| 1755 | 1755 |
typedef IT Iterator; |
| 1756 | 1756 |
|
| 1757 | 1757 |
/// Constructor |
| 1758 | 1758 |
LoggerBoolMap(Iterator it) |
| 1759 | 1759 |
: _begin(it), _end(it) {}
|
| 1760 | 1760 |
|
| 1761 | 1761 |
/// Gives back the given iterator set for the first key |
| 1762 | 1762 |
Iterator begin() const {
|
| 1763 | 1763 |
return _begin; |
| 1764 | 1764 |
} |
| 1765 | 1765 |
|
| 1766 | 1766 |
/// Gives back the the 'after the last' iterator |
| 1767 | 1767 |
Iterator end() const {
|
| 1768 | 1768 |
return _end; |
| 1769 | 1769 |
} |
| 1770 | 1770 |
|
| 1771 | 1771 |
/// The set function of the map |
| 1772 | 1772 |
void set(const Key& key, Value value) {
|
| 1773 | 1773 |
if (value) {
|
| 1774 | 1774 |
*_end++ = key; |
| 1775 | 1775 |
} |
| 1776 | 1776 |
} |
| 1777 | 1777 |
|
| 1778 | 1778 |
private: |
| 1779 | 1779 |
Iterator _begin; |
| 1780 | 1780 |
Iterator _end; |
| 1781 | 1781 |
}; |
| 1782 | 1782 |
|
| 1783 | 1783 |
/// Returns a \c LoggerBoolMap class |
| 1784 | 1784 |
|
| 1785 | 1785 |
/// This function just returns a \c LoggerBoolMap class. |
| 1786 | 1786 |
/// |
| 1787 | 1787 |
/// The most important usage of it is storing certain nodes or arcs |
| 1788 | 1788 |
/// that were marked \c true by an algorithm. |
| 1789 | 1789 |
/// For example it makes easier to store the nodes in the processing |
| 1790 | 1790 |
/// order of Dfs algorithm, as the following examples show. |
| 1791 | 1791 |
/// \code |
| 1792 | 1792 |
/// std::vector<Node> v; |
| 1793 |
/// dfs(g |
|
| 1793 |
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s); |
|
| 1794 | 1794 |
/// \endcode |
| 1795 | 1795 |
/// \code |
| 1796 | 1796 |
/// std::vector<Node> v(countNodes(g)); |
| 1797 |
/// dfs(g |
|
| 1797 |
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s); |
|
| 1798 | 1798 |
/// \endcode |
| 1799 | 1799 |
/// |
| 1800 | 1800 |
/// \note The container of the iterator must contain enough space |
| 1801 | 1801 |
/// for the elements or the iterator should be an inserter iterator. |
| 1802 | 1802 |
/// |
| 1803 | 1803 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
| 1804 | 1804 |
/// it cannot be used when a readable map is needed, for example as |
| 1805 | 1805 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
| 1806 | 1806 |
/// |
| 1807 | 1807 |
/// \relates LoggerBoolMap |
| 1808 | 1808 |
template<typename Iterator> |
| 1809 | 1809 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
|
| 1810 | 1810 |
return LoggerBoolMap<Iterator>(it); |
| 1811 | 1811 |
} |
| 1812 | 1812 |
|
| 1813 | 1813 |
/// @} |
| 1814 | 1814 |
|
| 1815 | 1815 |
/// \addtogroup graph_maps |
| 1816 | 1816 |
/// @{
|
| 1817 | 1817 |
|
| 1818 | 1818 |
/// \brief Provides an immutable and unique id for each item in a graph. |
| 1819 | 1819 |
/// |
| 1820 | 1820 |
/// IdMap provides a unique and immutable id for each item of the |
| 1821 | 1821 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
| 1822 | 1822 |
/// - \b unique: different items get different ids, |
| 1823 | 1823 |
/// - \b immutable: the id of an item does not change (even if you |
| 1824 | 1824 |
/// delete other nodes). |
| 1825 | 1825 |
/// |
| 1826 | 1826 |
/// Using this map you get access (i.e. can read) the inner id values of |
| 1827 | 1827 |
/// the items stored in the graph, which is returned by the \c id() |
| 1828 | 1828 |
/// function of the graph. This map can be inverted with its member |
| 1829 | 1829 |
/// class \c InverseMap or with the \c operator() member. |
| 1830 | 1830 |
/// |
| 1831 | 1831 |
/// \tparam GR The graph type. |
| 1832 | 1832 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| 1833 | 1833 |
/// \c GR::Edge). |
| 1834 | 1834 |
/// |
| 1835 | 1835 |
/// \see RangeIdMap |
| 1836 | 1836 |
template <typename GR, typename K> |
| 1837 | 1837 |
class IdMap : public MapBase<K, int> {
|
| 1838 | 1838 |
public: |
| 1839 | 1839 |
/// The graph type of IdMap. |
| 1840 | 1840 |
typedef GR Graph; |
| 1841 | 1841 |
typedef GR Digraph; |
| 1842 | 1842 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
| 1843 | 1843 |
typedef K Item; |
| 1844 | 1844 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
| 1845 | 1845 |
typedef K Key; |
| 1846 | 1846 |
/// The value type of IdMap. |
| 1847 | 1847 |
typedef int Value; |
| 1848 | 1848 |
|
| 1849 | 1849 |
/// \brief Constructor. |
| 1850 | 1850 |
/// |
| 1851 | 1851 |
/// Constructor of the map. |
| 1852 | 1852 |
explicit IdMap(const Graph& graph) : _graph(&graph) {}
|
| 1853 | 1853 |
|
| 1854 | 1854 |
/// \brief Gives back the \e id of the item. |
| 1855 | 1855 |
/// |
| 1856 | 1856 |
/// Gives back the immutable and unique \e id of the item. |
| 1857 | 1857 |
int operator[](const Item& item) const { return _graph->id(item);}
|
| 1858 | 1858 |
|
| 1859 | 1859 |
/// \brief Gives back the \e item by its id. |
| 1860 | 1860 |
/// |
| 1861 | 1861 |
/// Gives back the \e item by its id. |
| 1862 | 1862 |
Item operator()(int id) { return _graph->fromId(id, Item()); }
|
| 1863 | 1863 |
|
| 1864 | 1864 |
private: |
| 1865 | 1865 |
const Graph* _graph; |
| 1866 | 1866 |
|
| 1867 | 1867 |
public: |
| 1868 | 1868 |
|
| 1869 | 1869 |
/// \brief This class represents the inverse of its owner (IdMap). |
| 1870 | 1870 |
/// |
| 1871 | 1871 |
/// This class represents the inverse of its owner (IdMap). |
| 1872 | 1872 |
/// \see inverse() |
| 1873 | 1873 |
class InverseMap {
|
| 1874 | 1874 |
public: |
| 1875 | 1875 |
|
| 1876 | 1876 |
/// \brief Constructor. |
| 1877 | 1877 |
/// |
| 1878 | 1878 |
/// Constructor for creating an id-to-item map. |
| 1879 | 1879 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {}
|
| 1880 | 1880 |
|
| 1881 | 1881 |
/// \brief Constructor. |
| 1882 | 1882 |
/// |
| 1883 | 1883 |
/// Constructor for creating an id-to-item map. |
| 1884 | 1884 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
|
| 1885 | 1885 |
|
| 1886 | 1886 |
/// \brief Gives back the given item from its id. |
| 1887 | 1887 |
/// |
| 1888 | 1888 |
/// Gives back the given item from its id. |
| 1889 | 1889 |
Item operator[](int id) const { return _graph->fromId(id, Item());}
|
| 1890 | 1890 |
|
| 1891 | 1891 |
private: |
| 1892 | 1892 |
const Graph* _graph; |
| 1893 | 1893 |
}; |
| 1894 | 1894 |
|
| 1895 | 1895 |
/// \brief Gives back the inverse of the map. |
| 1896 | 1896 |
/// |
| 1897 | 1897 |
/// Gives back the inverse of the IdMap. |
| 1898 | 1898 |
InverseMap inverse() const { return InverseMap(*_graph);}
|
| 1899 | 1899 |
}; |
| 1900 | 1900 |
|
| 1901 | 1901 |
|
| 1902 | 1902 |
/// \brief General cross reference graph map type. |
| 1903 | 1903 |
|
| 1904 | 1904 |
/// This class provides simple invertable graph maps. |
| 1905 | 1905 |
/// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap" |
| 1906 | 1906 |
/// and if a key is set to a new value then store it |
| 1907 | 1907 |
/// in the inverse map. |
| 1908 | 1908 |
/// |
| 1909 | 1909 |
/// The values of the map can be accessed |
| 1910 | 1910 |
/// with stl compatible forward iterator. |
| 1911 | 1911 |
/// |
| 1912 | 1912 |
/// \tparam GR The graph type. |
| 1913 | 1913 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| 1914 | 1914 |
/// \c GR::Edge). |
| 1915 | 1915 |
/// \tparam V The value type of the map. |
| 1916 | 1916 |
/// |
| 1917 | 1917 |
/// \see IterableValueMap |
| 1918 | 1918 |
template <typename GR, typename K, typename V> |
| 1919 | 1919 |
class CrossRefMap |
| 1920 | 1920 |
: protected ItemSetTraits<GR, K>::template Map<V>::Type {
|
| 1921 | 1921 |
private: |
| 1922 | 1922 |
|
| 1923 | 1923 |
typedef typename ItemSetTraits<GR, K>:: |
| 1924 | 1924 |
template Map<V>::Type Map; |
| 1925 | 1925 |
|
| 1926 | 1926 |
typedef std::map<V, K> Container; |
| 1927 | 1927 |
Container _inv_map; |
| 1928 | 1928 |
|
| 1929 | 1929 |
public: |
| 1930 | 1930 |
|
| 1931 | 1931 |
/// The graph type of CrossRefMap. |
| 1932 | 1932 |
typedef GR Graph; |
| 1933 | 1933 |
typedef GR Digraph; |
| 1934 | 1934 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
| 1935 | 1935 |
typedef K Item; |
| 1936 | 1936 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
| 1937 | 1937 |
typedef K Key; |
| 1938 | 1938 |
/// The value type of CrossRefMap. |
| 1939 | 1939 |
typedef V Value; |
| 1940 | 1940 |
|
| 1941 | 1941 |
/// \brief Constructor. |
| 1942 | 1942 |
/// |
| 1943 | 1943 |
/// Construct a new CrossRefMap for the given graph. |
| 1944 | 1944 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {}
|
| 1945 | 1945 |
|
| 1946 | 1946 |
/// \brief Forward iterator for values. |
| 1947 | 1947 |
/// |
| 1948 | 1948 |
/// This iterator is an stl compatible forward |
| 1949 | 1949 |
/// iterator on the values of the map. The values can |
| 1950 | 1950 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
| 1951 | 1951 |
class ValueIterator |
| 1952 | 1952 |
: public std::iterator<std::forward_iterator_tag, Value> {
|
| 1953 | 1953 |
friend class CrossRefMap; |
| 1954 | 1954 |
private: |
| 1955 | 1955 |
ValueIterator(typename Container::const_iterator _it) |
| 1956 | 1956 |
: it(_it) {}
|
| 1957 | 1957 |
public: |
| 1958 | 1958 |
|
| 1959 | 1959 |
ValueIterator() {}
|
| 1960 | 1960 |
|
| 1961 | 1961 |
ValueIterator& operator++() { ++it; return *this; }
|
| 1962 | 1962 |
ValueIterator operator++(int) {
|
| 1963 | 1963 |
ValueIterator tmp(*this); |
| 1964 | 1964 |
operator++(); |
| 1965 | 1965 |
return tmp; |
| 1966 | 1966 |
} |
| 1967 | 1967 |
|
| 1968 | 1968 |
const Value& operator*() const { return it->first; }
|
| 1969 | 1969 |
const Value* operator->() const { return &(it->first); }
|
| 1970 | 1970 |
|
| 1971 | 1971 |
bool operator==(ValueIterator jt) const { return it == jt.it; }
|
| 1972 | 1972 |
bool operator!=(ValueIterator jt) const { return it != jt.it; }
|
| 1973 | 1973 |
|
| 1974 | 1974 |
private: |
| 1975 | 1975 |
typename Container::const_iterator it; |
| 1976 | 1976 |
}; |
| 1977 | 1977 |
|
| 1978 | 1978 |
/// \brief Returns an iterator to the first value. |
| 1979 | 1979 |
/// |
| 1980 | 1980 |
/// Returns an stl compatible iterator to the |
| 1981 | 1981 |
/// first value of the map. The values of the |
| 1982 | 1982 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
| 1983 | 1983 |
/// range. |
| 1984 | 1984 |
ValueIterator beginValue() const {
|
| 1985 | 1985 |
return ValueIterator(_inv_map.begin()); |
| 1986 | 1986 |
} |
| 1987 | 1987 |
|
| 1988 | 1988 |
/// \brief Returns an iterator after the last value. |
| 1989 | 1989 |
/// |
| 1990 | 1990 |
/// Returns an stl compatible iterator after the |
| 1991 | 1991 |
/// last value of the map. The values of the |
| 1992 | 1992 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
| 1993 | 1993 |
/// range. |
| 1994 | 1994 |
ValueIterator endValue() const {
|
| 1995 | 1995 |
return ValueIterator(_inv_map.end()); |
| 1996 | 1996 |
} |
| 1997 | 1997 |
|
| 1998 | 1998 |
/// \brief Sets the value associated with the given key. |
| 1999 | 1999 |
/// |
| 2000 | 2000 |
/// Sets the value associated with the given key. |
| 2001 | 2001 |
void set(const Key& key, const Value& val) {
|
| 2002 | 2002 |
Value oldval = Map::operator[](key); |
| 2003 | 2003 |
typename Container::iterator it = _inv_map.find(oldval); |
| 2004 | 2004 |
if (it != _inv_map.end() && it->second == key) {
|
| 2005 | 2005 |
_inv_map.erase(it); |
| 2006 | 2006 |
} |
| 2007 | 2007 |
_inv_map.insert(make_pair(val, key)); |
| 2008 | 2008 |
Map::set(key, val); |
| 2009 | 2009 |
} |
| 2010 | 2010 |
|
| 2011 | 2011 |
/// \brief Returns the value associated with the given key. |
| 2012 | 2012 |
/// |
| 2013 | 2013 |
/// Returns the value associated with the given key. |
| 2014 | 2014 |
typename MapTraits<Map>::ConstReturnValue |
| 2015 | 2015 |
operator[](const Key& key) const {
|
| 2016 | 2016 |
return Map::operator[](key); |
| 2017 | 2017 |
} |
| 2018 | 2018 |
|
| 2019 | 2019 |
/// \brief Gives back the item by its value. |
| 2020 | 2020 |
/// |
| 2021 | 2021 |
/// Gives back the item by its value. |
| 2022 | 2022 |
Key operator()(const Value& key) const {
|
| 2023 | 2023 |
typename Container::const_iterator it = _inv_map.find(key); |
| 2024 | 2024 |
return it != _inv_map.end() ? it->second : INVALID; |
| 2025 | 2025 |
} |
| 2026 | 2026 |
|
| 2027 | 2027 |
protected: |
| 2028 | 2028 |
|
| 2029 | 2029 |
/// \brief Erase the key from the map and the inverse map. |
| 2030 | 2030 |
/// |
| 2031 | 2031 |
/// Erase the key from the map and the inverse map. It is called by the |
| 2032 | 2032 |
/// \c AlterationNotifier. |
| 2033 | 2033 |
virtual void erase(const Key& key) {
|
| 2034 | 2034 |
Value val = Map::operator[](key); |
| 2035 | 2035 |
typename Container::iterator it = _inv_map.find(val); |
| 2036 | 2036 |
if (it != _inv_map.end() && it->second == key) {
|
| 2037 | 2037 |
_inv_map.erase(it); |
| 2038 | 2038 |
} |
| 2039 | 2039 |
Map::erase(key); |
| 2040 | 2040 |
} |
| 2041 | 2041 |
|
| 2042 | 2042 |
/// \brief Erase more keys from the map and the inverse map. |
| 2043 | 2043 |
/// |
| 2044 | 2044 |
/// Erase more keys from the map and the inverse map. It is called by the |
| 2045 | 2045 |
/// \c AlterationNotifier. |
| 2046 | 2046 |
virtual void erase(const std::vector<Key>& keys) {
|
| 2047 | 2047 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 2048 | 2048 |
Value val = Map::operator[](keys[i]); |
| 2049 | 2049 |
typename Container::iterator it = _inv_map.find(val); |
| 2050 | 2050 |
if (it != _inv_map.end() && it->second == keys[i]) {
|
| 2051 | 2051 |
_inv_map.erase(it); |
| 2052 | 2052 |
} |
| 2053 | 2053 |
} |
| 2054 | 2054 |
Map::erase(keys); |
| 2055 | 2055 |
} |
| 2056 | 2056 |
|
| 2057 | 2057 |
/// \brief Clear the keys from the map and the inverse map. |
| 2058 | 2058 |
/// |
| 2059 | 2059 |
/// Clear the keys from the map and the inverse map. It is called by the |
| 2060 | 2060 |
/// \c AlterationNotifier. |
| 2061 | 2061 |
virtual void clear() {
|
| 2062 | 2062 |
_inv_map.clear(); |
| 2063 | 2063 |
Map::clear(); |
| 2064 | 2064 |
} |
| 2065 | 2065 |
|
| 2066 | 2066 |
public: |
| 2067 | 2067 |
|
| 2068 | 2068 |
/// \brief The inverse map type. |
| 2069 | 2069 |
/// |
| 2070 | 2070 |
/// The inverse of this map. The subscript operator of the map |
| 2071 | 2071 |
/// gives back the item that was last assigned to the value. |
| 2072 | 2072 |
class InverseMap {
|
| 2073 | 2073 |
public: |
| 2074 | 2074 |
/// \brief Constructor |
| 2075 | 2075 |
/// |
| 2076 | 2076 |
/// Constructor of the InverseMap. |
| 2077 | 2077 |
explicit InverseMap(const CrossRefMap& inverted) |
| 2078 | 2078 |
: _inverted(inverted) {}
|
| 2079 | 2079 |
|
| 2080 | 2080 |
/// The value type of the InverseMap. |
| 2081 | 2081 |
typedef typename CrossRefMap::Key Value; |
| 2082 | 2082 |
/// The key type of the InverseMap. |
| 2083 | 2083 |
typedef typename CrossRefMap::Value Key; |
| 2084 | 2084 |
|
| 2085 | 2085 |
/// \brief Subscript operator. |
| 2086 | 2086 |
/// |
| 2087 | 2087 |
/// Subscript operator. It gives back the item |
| 2088 | 2088 |
/// that was last assigned to the given value. |
| 2089 | 2089 |
Value operator[](const Key& key) const {
|
| 2090 | 2090 |
return _inverted(key); |
| 2091 | 2091 |
} |
| 2092 | 2092 |
|
| 2093 | 2093 |
private: |
| 2094 | 2094 |
const CrossRefMap& _inverted; |
| 2095 | 2095 |
}; |
| 2096 | 2096 |
|
| 2097 | 2097 |
/// \brief It gives back the read-only inverse map. |
| 2098 | 2098 |
/// |
| 2099 | 2099 |
/// It gives back the read-only inverse map. |
| 2100 | 2100 |
InverseMap inverse() const {
|
| 2101 | 2101 |
return InverseMap(*this); |
| 2102 | 2102 |
} |
| 2103 | 2103 |
|
| 2104 | 2104 |
}; |
| 2105 | 2105 |
|
| 2106 | 2106 |
/// \brief Provides continuous and unique ID for the |
| 2107 | 2107 |
/// items of a graph. |
| 2108 | 2108 |
/// |
| 2109 | 2109 |
/// RangeIdMap provides a unique and continuous |
| 2110 | 2110 |
/// ID for each item of a given type (\c Node, \c Arc or |
| 2111 | 2111 |
/// \c Edge) in a graph. This id is |
| 2112 | 2112 |
/// - \b unique: different items get different ids, |
| 2113 | 2113 |
/// - \b continuous: the range of the ids is the set of integers |
| 2114 | 2114 |
/// between 0 and \c n-1, where \c n is the number of the items of |
| 2115 | 2115 |
/// this type (\c Node, \c Arc or \c Edge). |
| 2116 | 2116 |
/// - So, the ids can change when deleting an item of the same type. |
| 2117 | 2117 |
/// |
| 2118 | 2118 |
/// Thus this id is not (necessarily) the same as what can get using |
| 2119 | 2119 |
/// the \c id() function of the graph or \ref IdMap. |
| 2120 | 2120 |
/// This map can be inverted with its member class \c InverseMap, |
| 2121 | 2121 |
/// or with the \c operator() member. |
| 2122 | 2122 |
/// |
| 2123 | 2123 |
/// \tparam GR The graph type. |
| 2124 | 2124 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
| 2125 | 2125 |
/// \c GR::Edge). |
| 2126 | 2126 |
/// |
| 2127 | 2127 |
/// \see IdMap |
| 2128 | 2128 |
template <typename GR, typename K> |
| 2129 | 2129 |
class RangeIdMap |
| 2130 | 2130 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type {
|
| 2131 | 2131 |
|
| 2132 | 2132 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map; |
| 2133 | 2133 |
|
| 2134 | 2134 |
public: |
| 2135 | 2135 |
/// The graph type of RangeIdMap. |
| 2136 | 2136 |
typedef GR Graph; |
| 2137 | 2137 |
typedef GR Digraph; |
| 2138 | 2138 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
| 2139 | 2139 |
typedef K Item; |
| 2140 | 2140 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
| 2141 | 2141 |
typedef K Key; |
| 2142 | 2142 |
/// The value type of RangeIdMap. |
| 2143 | 2143 |
typedef int Value; |
| 2144 | 2144 |
|
| 2145 | 2145 |
/// \brief Constructor. |
| 2146 | 2146 |
/// |
| 2147 | 2147 |
/// Constructor. |
| 2148 | 2148 |
explicit RangeIdMap(const Graph& gr) : Map(gr) {
|
| 2149 | 2149 |
Item it; |
| 2150 | 2150 |
const typename Map::Notifier* nf = Map::notifier(); |
| 2151 | 2151 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2152 | 2152 |
Map::set(it, _inv_map.size()); |
| 2153 | 2153 |
_inv_map.push_back(it); |
| 2154 | 2154 |
} |
| 2155 | 2155 |
} |
| 2156 | 2156 |
|
| 2157 | 2157 |
protected: |
| 2158 | 2158 |
|
| 2159 | 2159 |
/// \brief Adds a new key to the map. |
| 2160 | 2160 |
/// |
| 2161 | 2161 |
/// Add a new key to the map. It is called by the |
| 2162 | 2162 |
/// \c AlterationNotifier. |
| 2163 | 2163 |
virtual void add(const Item& item) {
|
| 2164 | 2164 |
Map::add(item); |
| 2165 | 2165 |
Map::set(item, _inv_map.size()); |
| 2166 | 2166 |
_inv_map.push_back(item); |
| 2167 | 2167 |
} |
| 2168 | 2168 |
|
| 2169 | 2169 |
/// \brief Add more new keys to the map. |
| 2170 | 2170 |
/// |
| 2171 | 2171 |
/// Add more new keys to the map. It is called by the |
| 2172 | 2172 |
/// \c AlterationNotifier. |
| 2173 | 2173 |
virtual void add(const std::vector<Item>& items) {
|
| 2174 | 2174 |
Map::add(items); |
| 2175 | 2175 |
for (int i = 0; i < int(items.size()); ++i) {
|
| 2176 | 2176 |
Map::set(items[i], _inv_map.size()); |
| 2177 | 2177 |
_inv_map.push_back(items[i]); |
| 2178 | 2178 |
} |
| 2179 | 2179 |
} |
| 2180 | 2180 |
|
| 2181 | 2181 |
/// \brief Erase the key from the map. |
| 2182 | 2182 |
/// |
| 2183 | 2183 |
/// Erase the key from the map. It is called by the |
| 2184 | 2184 |
/// \c AlterationNotifier. |
| 2185 | 2185 |
virtual void erase(const Item& item) {
|
| 2186 | 2186 |
Map::set(_inv_map.back(), Map::operator[](item)); |
| 2187 | 2187 |
_inv_map[Map::operator[](item)] = _inv_map.back(); |
| 2188 | 2188 |
_inv_map.pop_back(); |
| 2189 | 2189 |
Map::erase(item); |
| 2190 | 2190 |
} |
| 2191 | 2191 |
|
| 2192 | 2192 |
/// \brief Erase more keys from the map. |
| 2193 | 2193 |
/// |
| 2194 | 2194 |
/// Erase more keys from the map. It is called by the |
| 2195 | 2195 |
/// \c AlterationNotifier. |
| 2196 | 2196 |
virtual void erase(const std::vector<Item>& items) {
|
| 2197 | 2197 |
for (int i = 0; i < int(items.size()); ++i) {
|
| 2198 | 2198 |
Map::set(_inv_map.back(), Map::operator[](items[i])); |
| 2199 | 2199 |
_inv_map[Map::operator[](items[i])] = _inv_map.back(); |
| 2200 | 2200 |
_inv_map.pop_back(); |
| 2201 | 2201 |
} |
| 2202 | 2202 |
Map::erase(items); |
| 2203 | 2203 |
} |
| 2204 | 2204 |
|
| 2205 | 2205 |
/// \brief Build the unique map. |
| 2206 | 2206 |
/// |
| 2207 | 2207 |
/// Build the unique map. It is called by the |
| 2208 | 2208 |
/// \c AlterationNotifier. |
| 2209 | 2209 |
virtual void build() {
|
| 2210 | 2210 |
Map::build(); |
| 2211 | 2211 |
Item it; |
| 2212 | 2212 |
const typename Map::Notifier* nf = Map::notifier(); |
| 2213 | 2213 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2214 | 2214 |
Map::set(it, _inv_map.size()); |
| 2215 | 2215 |
_inv_map.push_back(it); |
| 2216 | 2216 |
} |
| 2217 | 2217 |
} |
| 2218 | 2218 |
|
| 2219 | 2219 |
/// \brief Clear the keys from the map. |
| 2220 | 2220 |
/// |
| 2221 | 2221 |
/// Clear the keys from the map. It is called by the |
| 2222 | 2222 |
/// \c AlterationNotifier. |
| 2223 | 2223 |
virtual void clear() {
|
| 2224 | 2224 |
_inv_map.clear(); |
| 2225 | 2225 |
Map::clear(); |
| 2226 | 2226 |
} |
| 2227 | 2227 |
|
| 2228 | 2228 |
public: |
| 2229 | 2229 |
|
| 2230 | 2230 |
/// \brief Returns the maximal value plus one. |
| 2231 | 2231 |
/// |
| 2232 | 2232 |
/// Returns the maximal value plus one in the map. |
| 2233 | 2233 |
unsigned int size() const {
|
| 2234 | 2234 |
return _inv_map.size(); |
| 2235 | 2235 |
} |
| 2236 | 2236 |
|
| 2237 | 2237 |
/// \brief Swaps the position of the two items in the map. |
| 2238 | 2238 |
/// |
| 2239 | 2239 |
/// Swaps the position of the two items in the map. |
| 2240 | 2240 |
void swap(const Item& p, const Item& q) {
|
| 2241 | 2241 |
int pi = Map::operator[](p); |
| 2242 | 2242 |
int qi = Map::operator[](q); |
| 2243 | 2243 |
Map::set(p, qi); |
| 2244 | 2244 |
_inv_map[qi] = p; |
| 2245 | 2245 |
Map::set(q, pi); |
| 2246 | 2246 |
_inv_map[pi] = q; |
| 2247 | 2247 |
} |
| 2248 | 2248 |
|
| 2249 | 2249 |
/// \brief Gives back the \e RangeId of the item |
| 2250 | 2250 |
/// |
| 2251 | 2251 |
/// Gives back the \e RangeId of the item. |
| 2252 | 2252 |
int operator[](const Item& item) const {
|
| 2253 | 2253 |
return Map::operator[](item); |
| 2254 | 2254 |
} |
| 2255 | 2255 |
|
| 2256 | 2256 |
/// \brief Gives back the item belonging to a \e RangeId |
| 2257 | 2257 |
/// |
| 2258 | 2258 |
/// Gives back the item belonging to a \e RangeId. |
| 2259 | 2259 |
Item operator()(int id) const {
|
| 2260 | 2260 |
return _inv_map[id]; |
| 2261 | 2261 |
} |
| 2262 | 2262 |
|
| 2263 | 2263 |
private: |
| 2264 | 2264 |
|
| 2265 | 2265 |
typedef std::vector<Item> Container; |
| 2266 | 2266 |
Container _inv_map; |
| 2267 | 2267 |
|
| 2268 | 2268 |
public: |
| 2269 | 2269 |
|
| 2270 | 2270 |
/// \brief The inverse map type of RangeIdMap. |
| 2271 | 2271 |
/// |
| 2272 | 2272 |
/// The inverse map type of RangeIdMap. |
| 2273 | 2273 |
class InverseMap {
|
| 2274 | 2274 |
public: |
| 2275 | 2275 |
/// \brief Constructor |
| 2276 | 2276 |
/// |
| 2277 | 2277 |
/// Constructor of the InverseMap. |
| 2278 | 2278 |
explicit InverseMap(const RangeIdMap& inverted) |
| 2279 | 2279 |
: _inverted(inverted) {}
|
| 2280 | 2280 |
|
| 2281 | 2281 |
|
| 2282 | 2282 |
/// The value type of the InverseMap. |
| 2283 | 2283 |
typedef typename RangeIdMap::Key Value; |
| 2284 | 2284 |
/// The key type of the InverseMap. |
| 2285 | 2285 |
typedef typename RangeIdMap::Value Key; |
| 2286 | 2286 |
|
| 2287 | 2287 |
/// \brief Subscript operator. |
| 2288 | 2288 |
/// |
| 2289 | 2289 |
/// Subscript operator. It gives back the item |
| 2290 | 2290 |
/// that the descriptor currently belongs to. |
| 2291 | 2291 |
Value operator[](const Key& key) const {
|
| 2292 | 2292 |
return _inverted(key); |
| 2293 | 2293 |
} |
| 2294 | 2294 |
|
| 2295 | 2295 |
/// \brief Size of the map. |
| 2296 | 2296 |
/// |
| 2297 | 2297 |
/// Returns the size of the map. |
| 2298 | 2298 |
unsigned int size() const {
|
| 2299 | 2299 |
return _inverted.size(); |
| 2300 | 2300 |
} |
| 2301 | 2301 |
|
| 2302 | 2302 |
private: |
| 2303 | 2303 |
const RangeIdMap& _inverted; |
| 2304 | 2304 |
}; |
| 2305 | 2305 |
|
| 2306 | 2306 |
/// \brief Gives back the inverse of the map. |
| 2307 | 2307 |
/// |
| 2308 | 2308 |
/// Gives back the inverse of the map. |
| 2309 | 2309 |
const InverseMap inverse() const {
|
| 2310 | 2310 |
return InverseMap(*this); |
| 2311 | 2311 |
} |
| 2312 | 2312 |
}; |
| 2313 | 2313 |
|
| 2314 | 2314 |
/// \brief Map of the source nodes of arcs in a digraph. |
| 2315 | 2315 |
/// |
| 2316 | 2316 |
/// SourceMap provides access for the source node of each arc in a digraph, |
| 2317 | 2317 |
/// which is returned by the \c source() function of the digraph. |
| 2318 | 2318 |
/// \tparam GR The digraph type. |
| 2319 | 2319 |
/// \see TargetMap |
| 2320 | 2320 |
template <typename GR> |
| 2321 | 2321 |
class SourceMap {
|
| 2322 | 2322 |
public: |
| 2323 | 2323 |
|
| 2324 | 2324 |
///\e |
| 2325 | 2325 |
typedef typename GR::Arc Key; |
| 2326 | 2326 |
///\e |
| 2327 | 2327 |
typedef typename GR::Node Value; |
| 2328 | 2328 |
|
| 2329 | 2329 |
/// \brief Constructor |
| 2330 | 2330 |
/// |
| 2331 | 2331 |
/// Constructor. |
| 2332 | 2332 |
/// \param digraph The digraph that the map belongs to. |
| 2333 | 2333 |
explicit SourceMap(const GR& digraph) : _graph(digraph) {}
|
| 2334 | 2334 |
|
| 2335 | 2335 |
/// \brief Returns the source node of the given arc. |
| 2336 | 2336 |
/// |
| 2337 | 2337 |
/// Returns the source node of the given arc. |
| 2338 | 2338 |
Value operator[](const Key& arc) const {
|
| 2339 | 2339 |
return _graph.source(arc); |
| 2340 | 2340 |
} |
| 2341 | 2341 |
|
| 2342 | 2342 |
private: |
| 2343 | 2343 |
const GR& _graph; |
| 2344 | 2344 |
}; |
| 2345 | 2345 |
|
| 2346 | 2346 |
/// \brief Returns a \c SourceMap class. |
| 2347 | 2347 |
/// |
| 2348 | 2348 |
/// This function just returns an \c SourceMap class. |
| 2349 | 2349 |
/// \relates SourceMap |
| 2350 | 2350 |
template <typename GR> |
| 2351 | 2351 |
inline SourceMap<GR> sourceMap(const GR& graph) {
|
| 2352 | 2352 |
return SourceMap<GR>(graph); |
| 2353 | 2353 |
} |
| 2354 | 2354 |
|
| 2355 | 2355 |
/// \brief Map of the target nodes of arcs in a digraph. |
| 2356 | 2356 |
/// |
| 2357 | 2357 |
/// TargetMap provides access for the target node of each arc in a digraph, |
| 2358 | 2358 |
/// which is returned by the \c target() function of the digraph. |
| 2359 | 2359 |
/// \tparam GR The digraph type. |
| 2360 | 2360 |
/// \see SourceMap |
| 2361 | 2361 |
template <typename GR> |
| 2362 | 2362 |
class TargetMap {
|
| 2363 | 2363 |
public: |
| 2364 | 2364 |
|
| 2365 | 2365 |
///\e |
| 2366 | 2366 |
typedef typename GR::Arc Key; |
| 2367 | 2367 |
///\e |
| 2368 | 2368 |
typedef typename GR::Node Value; |
| 2369 | 2369 |
|
| 2370 | 2370 |
/// \brief Constructor |
| 2371 | 2371 |
/// |
| 2372 | 2372 |
/// Constructor. |
| 2373 | 2373 |
/// \param digraph The digraph that the map belongs to. |
| 2374 | 2374 |
explicit TargetMap(const GR& digraph) : _graph(digraph) {}
|
| 2375 | 2375 |
|
| 2376 | 2376 |
/// \brief Returns the target node of the given arc. |
| 2377 | 2377 |
/// |
| 2378 | 2378 |
/// Returns the target node of the given arc. |
| 2379 | 2379 |
Value operator[](const Key& e) const {
|
| 2380 | 2380 |
return _graph.target(e); |
| 2381 | 2381 |
} |
| 2382 | 2382 |
|
| 2383 | 2383 |
private: |
| 2384 | 2384 |
const GR& _graph; |
| 2385 | 2385 |
}; |
| 2386 | 2386 |
|
| 2387 | 2387 |
/// \brief Returns a \c TargetMap class. |
| 2388 | 2388 |
/// |
| 2389 | 2389 |
/// This function just returns a \c TargetMap class. |
| 2390 | 2390 |
/// \relates TargetMap |
| 2391 | 2391 |
template <typename GR> |
| 2392 | 2392 |
inline TargetMap<GR> targetMap(const GR& graph) {
|
| 2393 | 2393 |
return TargetMap<GR>(graph); |
| 2394 | 2394 |
} |
| 2395 | 2395 |
|
| 2396 | 2396 |
/// \brief Map of the "forward" directed arc view of edges in a graph. |
| 2397 | 2397 |
/// |
| 2398 | 2398 |
/// ForwardMap provides access for the "forward" directed arc view of |
| 2399 | 2399 |
/// each edge in a graph, which is returned by the \c direct() function |
| 2400 | 2400 |
/// of the graph with \c true parameter. |
| 2401 | 2401 |
/// \tparam GR The graph type. |
| 2402 | 2402 |
/// \see BackwardMap |
| 2403 | 2403 |
template <typename GR> |
| 2404 | 2404 |
class ForwardMap {
|
| 2405 | 2405 |
public: |
| 2406 | 2406 |
|
| 2407 | 2407 |
typedef typename GR::Arc Value; |
| 2408 | 2408 |
typedef typename GR::Edge Key; |
| 2409 | 2409 |
|
| 2410 | 2410 |
/// \brief Constructor |
| 2411 | 2411 |
/// |
| 2412 | 2412 |
/// Constructor. |
| 2413 | 2413 |
/// \param graph The graph that the map belongs to. |
| 2414 | 2414 |
explicit ForwardMap(const GR& graph) : _graph(graph) {}
|
| 2415 | 2415 |
|
| 2416 | 2416 |
/// \brief Returns the "forward" directed arc view of the given edge. |
| 2417 | 2417 |
/// |
| 2418 | 2418 |
/// Returns the "forward" directed arc view of the given edge. |
| 2419 | 2419 |
Value operator[](const Key& key) const {
|
| 2420 | 2420 |
return _graph.direct(key, true); |
| 2421 | 2421 |
} |
| 2422 | 2422 |
|
| 2423 | 2423 |
private: |
| 2424 | 2424 |
const GR& _graph; |
| 2425 | 2425 |
}; |
| 2426 | 2426 |
|
| 2427 | 2427 |
/// \brief Returns a \c ForwardMap class. |
| 2428 | 2428 |
/// |
| 2429 | 2429 |
/// This function just returns an \c ForwardMap class. |
| 2430 | 2430 |
/// \relates ForwardMap |
| 2431 | 2431 |
template <typename GR> |
| 2432 | 2432 |
inline ForwardMap<GR> forwardMap(const GR& graph) {
|
| 2433 | 2433 |
return ForwardMap<GR>(graph); |
| 2434 | 2434 |
} |
| 2435 | 2435 |
|
| 2436 | 2436 |
/// \brief Map of the "backward" directed arc view of edges in a graph. |
| 2437 | 2437 |
/// |
| 2438 | 2438 |
/// BackwardMap provides access for the "backward" directed arc view of |
| 2439 | 2439 |
/// each edge in a graph, which is returned by the \c direct() function |
| 2440 | 2440 |
/// of the graph with \c false parameter. |
| 2441 | 2441 |
/// \tparam GR The graph type. |
| 2442 | 2442 |
/// \see ForwardMap |
| 2443 | 2443 |
template <typename GR> |
| 2444 | 2444 |
class BackwardMap {
|
| 2445 | 2445 |
public: |
| 2446 | 2446 |
|
| 2447 | 2447 |
typedef typename GR::Arc Value; |
| 2448 | 2448 |
typedef typename GR::Edge Key; |
| 2449 | 2449 |
|
| 2450 | 2450 |
/// \brief Constructor |
| 2451 | 2451 |
/// |
| 2452 | 2452 |
/// Constructor. |
| 2453 | 2453 |
/// \param graph The graph that the map belongs to. |
| 2454 | 2454 |
explicit BackwardMap(const GR& graph) : _graph(graph) {}
|
| 2455 | 2455 |
|
| 2456 | 2456 |
/// \brief Returns the "backward" directed arc view of the given edge. |
| 2457 | 2457 |
/// |
| 2458 | 2458 |
/// Returns the "backward" directed arc view of the given edge. |
| 2459 | 2459 |
Value operator[](const Key& key) const {
|
| 2460 | 2460 |
return _graph.direct(key, false); |
| 2461 | 2461 |
} |
| 2462 | 2462 |
|
| 2463 | 2463 |
private: |
| 2464 | 2464 |
const GR& _graph; |
| 2465 | 2465 |
}; |
| 2466 | 2466 |
|
| 2467 | 2467 |
/// \brief Returns a \c BackwardMap class |
| 2468 | 2468 |
|
| 2469 | 2469 |
/// This function just returns a \c BackwardMap class. |
| 2470 | 2470 |
/// \relates BackwardMap |
| 2471 | 2471 |
template <typename GR> |
| 2472 | 2472 |
inline BackwardMap<GR> backwardMap(const GR& graph) {
|
| 2473 | 2473 |
return BackwardMap<GR>(graph); |
| 2474 | 2474 |
} |
| 2475 | 2475 |
|
| 2476 | 2476 |
/// \brief Map of the in-degrees of nodes in a digraph. |
| 2477 | 2477 |
/// |
| 2478 | 2478 |
/// This map returns the in-degree of a node. Once it is constructed, |
| 2479 | 2479 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
| 2480 | 2480 |
/// in constant time. On the other hand, the values are updated automatically |
| 2481 | 2481 |
/// whenever the digraph changes. |
| 2482 | 2482 |
/// |
| 2483 | 2483 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
| 2484 | 2484 |
/// may provide alternative ways to modify the digraph. |
| 2485 | 2485 |
/// The correct behavior of InDegMap is not guarantied if these additional |
| 2486 | 2486 |
/// features are used. For example the functions |
| 2487 | 2487 |
/// \ref ListDigraph::changeSource() "changeSource()", |
| 2488 | 2488 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
| 2489 | 2489 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
| 2490 | 2490 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
| 2491 | 2491 |
/// |
| 2492 | 2492 |
/// \sa OutDegMap |
| 2493 | 2493 |
template <typename GR> |
| 2494 | 2494 |
class InDegMap |
| 2495 | 2495 |
: protected ItemSetTraits<GR, typename GR::Arc> |
| 2496 | 2496 |
::ItemNotifier::ObserverBase {
|
| 2497 | 2497 |
|
| 2498 | 2498 |
public: |
| 2499 | 2499 |
|
| 2500 | 2500 |
/// The graph type of InDegMap |
| 2501 | 2501 |
typedef GR Graph; |
| 2502 | 2502 |
typedef GR Digraph; |
| 2503 | 2503 |
/// The key type |
| 2504 | 2504 |
typedef typename Digraph::Node Key; |
| 2505 | 2505 |
/// The value type |
| 2506 | 2506 |
typedef int Value; |
| 2507 | 2507 |
|
| 2508 | 2508 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
| 2509 | 2509 |
::ItemNotifier::ObserverBase Parent; |
| 2510 | 2510 |
|
| 2511 | 2511 |
private: |
| 2512 | 2512 |
|
| 2513 | 2513 |
class AutoNodeMap |
| 2514 | 2514 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
|
| 2515 | 2515 |
public: |
| 2516 | 2516 |
|
| 2517 | 2517 |
typedef typename ItemSetTraits<Digraph, Key>:: |
| 2518 | 2518 |
template Map<int>::Type Parent; |
| 2519 | 2519 |
|
| 2520 | 2520 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
|
| 2521 | 2521 |
|
| 2522 | 2522 |
virtual void add(const Key& key) {
|
| 2523 | 2523 |
Parent::add(key); |
| 2524 | 2524 |
Parent::set(key, 0); |
| 2525 | 2525 |
} |
| 2526 | 2526 |
|
| 2527 | 2527 |
virtual void add(const std::vector<Key>& keys) {
|
| 2528 | 2528 |
Parent::add(keys); |
| 2529 | 2529 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 2530 | 2530 |
Parent::set(keys[i], 0); |
| 2531 | 2531 |
} |
| 2532 | 2532 |
} |
| 2533 | 2533 |
|
| 2534 | 2534 |
virtual void build() {
|
| 2535 | 2535 |
Parent::build(); |
| 2536 | 2536 |
Key it; |
| 2537 | 2537 |
typename Parent::Notifier* nf = Parent::notifier(); |
| 2538 | 2538 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2539 | 2539 |
Parent::set(it, 0); |
| 2540 | 2540 |
} |
| 2541 | 2541 |
} |
| 2542 | 2542 |
}; |
| 2543 | 2543 |
|
| 2544 | 2544 |
public: |
| 2545 | 2545 |
|
| 2546 | 2546 |
/// \brief Constructor. |
| 2547 | 2547 |
/// |
| 2548 | 2548 |
/// Constructor for creating an in-degree map. |
| 2549 | 2549 |
explicit InDegMap(const Digraph& graph) |
| 2550 | 2550 |
: _digraph(graph), _deg(graph) {
|
| 2551 | 2551 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
| 2552 | 2552 |
|
| 2553 | 2553 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2554 | 2554 |
_deg[it] = countInArcs(_digraph, it); |
| 2555 | 2555 |
} |
| 2556 | 2556 |
} |
| 2557 | 2557 |
|
| 2558 | 2558 |
/// \brief Gives back the in-degree of a Node. |
| 2559 | 2559 |
/// |
| 2560 | 2560 |
/// Gives back the in-degree of a Node. |
| 2561 | 2561 |
int operator[](const Key& key) const {
|
| 2562 | 2562 |
return _deg[key]; |
| 2563 | 2563 |
} |
| 2564 | 2564 |
|
| 2565 | 2565 |
protected: |
| 2566 | 2566 |
|
| 2567 | 2567 |
typedef typename Digraph::Arc Arc; |
| 2568 | 2568 |
|
| 2569 | 2569 |
virtual void add(const Arc& arc) {
|
| 2570 | 2570 |
++_deg[_digraph.target(arc)]; |
| 2571 | 2571 |
} |
| 2572 | 2572 |
|
| 2573 | 2573 |
virtual void add(const std::vector<Arc>& arcs) {
|
| 2574 | 2574 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2575 | 2575 |
++_deg[_digraph.target(arcs[i])]; |
| 2576 | 2576 |
} |
| 2577 | 2577 |
} |
| 2578 | 2578 |
|
| 2579 | 2579 |
virtual void erase(const Arc& arc) {
|
| 2580 | 2580 |
--_deg[_digraph.target(arc)]; |
| 2581 | 2581 |
} |
| 2582 | 2582 |
|
| 2583 | 2583 |
virtual void erase(const std::vector<Arc>& arcs) {
|
| 2584 | 2584 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2585 | 2585 |
--_deg[_digraph.target(arcs[i])]; |
| 2586 | 2586 |
} |
| 2587 | 2587 |
} |
| 2588 | 2588 |
|
| 2589 | 2589 |
virtual void build() {
|
| 2590 | 2590 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2591 | 2591 |
_deg[it] = countInArcs(_digraph, it); |
| 2592 | 2592 |
} |
| 2593 | 2593 |
} |
| 2594 | 2594 |
|
| 2595 | 2595 |
virtual void clear() {
|
| 2596 | 2596 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2597 | 2597 |
_deg[it] = 0; |
| 2598 | 2598 |
} |
| 2599 | 2599 |
} |
| 2600 | 2600 |
private: |
| 2601 | 2601 |
|
| 2602 | 2602 |
const Digraph& _digraph; |
| 2603 | 2603 |
AutoNodeMap _deg; |
| 2604 | 2604 |
}; |
| 2605 | 2605 |
|
| 2606 | 2606 |
/// \brief Map of the out-degrees of nodes in a digraph. |
| 2607 | 2607 |
/// |
| 2608 | 2608 |
/// This map returns the out-degree of a node. Once it is constructed, |
| 2609 | 2609 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
| 2610 | 2610 |
/// in constant time. On the other hand, the values are updated automatically |
| 2611 | 2611 |
/// whenever the digraph changes. |
| 2612 | 2612 |
/// |
| 2613 | 2613 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
| 2614 | 2614 |
/// may provide alternative ways to modify the digraph. |
| 2615 | 2615 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
| 2616 | 2616 |
/// features are used. For example the functions |
| 2617 | 2617 |
/// \ref ListDigraph::changeSource() "changeSource()", |
| 2618 | 2618 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
| 2619 | 2619 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
| 2620 | 2620 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
| 2621 | 2621 |
/// |
| 2622 | 2622 |
/// \sa InDegMap |
| 2623 | 2623 |
template <typename GR> |
| 2624 | 2624 |
class OutDegMap |
| 2625 | 2625 |
: protected ItemSetTraits<GR, typename GR::Arc> |
| 2626 | 2626 |
::ItemNotifier::ObserverBase {
|
| 2627 | 2627 |
|
| 2628 | 2628 |
public: |
| 2629 | 2629 |
|
| 2630 | 2630 |
/// The graph type of OutDegMap |
| 2631 | 2631 |
typedef GR Graph; |
| 2632 | 2632 |
typedef GR Digraph; |
| 2633 | 2633 |
/// The key type |
| 2634 | 2634 |
typedef typename Digraph::Node Key; |
| 2635 | 2635 |
/// The value type |
| 2636 | 2636 |
typedef int Value; |
| 2637 | 2637 |
|
| 2638 | 2638 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
| 2639 | 2639 |
::ItemNotifier::ObserverBase Parent; |
| 2640 | 2640 |
|
| 2641 | 2641 |
private: |
| 2642 | 2642 |
|
| 2643 | 2643 |
class AutoNodeMap |
| 2644 | 2644 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
|
| 2645 | 2645 |
public: |
| 2646 | 2646 |
|
| 2647 | 2647 |
typedef typename ItemSetTraits<Digraph, Key>:: |
| 2648 | 2648 |
template Map<int>::Type Parent; |
| 2649 | 2649 |
|
| 2650 | 2650 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
|
| 2651 | 2651 |
|
| 2652 | 2652 |
virtual void add(const Key& key) {
|
| 2653 | 2653 |
Parent::add(key); |
| 2654 | 2654 |
Parent::set(key, 0); |
| 2655 | 2655 |
} |
| 2656 | 2656 |
virtual void add(const std::vector<Key>& keys) {
|
| 2657 | 2657 |
Parent::add(keys); |
| 2658 | 2658 |
for (int i = 0; i < int(keys.size()); ++i) {
|
| 2659 | 2659 |
Parent::set(keys[i], 0); |
| 2660 | 2660 |
} |
| 2661 | 2661 |
} |
| 2662 | 2662 |
virtual void build() {
|
| 2663 | 2663 |
Parent::build(); |
| 2664 | 2664 |
Key it; |
| 2665 | 2665 |
typename Parent::Notifier* nf = Parent::notifier(); |
| 2666 | 2666 |
for (nf->first(it); it != INVALID; nf->next(it)) {
|
| 2667 | 2667 |
Parent::set(it, 0); |
| 2668 | 2668 |
} |
| 2669 | 2669 |
} |
| 2670 | 2670 |
}; |
| 2671 | 2671 |
|
| 2672 | 2672 |
public: |
| 2673 | 2673 |
|
| 2674 | 2674 |
/// \brief Constructor. |
| 2675 | 2675 |
/// |
| 2676 | 2676 |
/// Constructor for creating an out-degree map. |
| 2677 | 2677 |
explicit OutDegMap(const Digraph& graph) |
| 2678 | 2678 |
: _digraph(graph), _deg(graph) {
|
| 2679 | 2679 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
| 2680 | 2680 |
|
| 2681 | 2681 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2682 | 2682 |
_deg[it] = countOutArcs(_digraph, it); |
| 2683 | 2683 |
} |
| 2684 | 2684 |
} |
| 2685 | 2685 |
|
| 2686 | 2686 |
/// \brief Gives back the out-degree of a Node. |
| 2687 | 2687 |
/// |
| 2688 | 2688 |
/// Gives back the out-degree of a Node. |
| 2689 | 2689 |
int operator[](const Key& key) const {
|
| 2690 | 2690 |
return _deg[key]; |
| 2691 | 2691 |
} |
| 2692 | 2692 |
|
| 2693 | 2693 |
protected: |
| 2694 | 2694 |
|
| 2695 | 2695 |
typedef typename Digraph::Arc Arc; |
| 2696 | 2696 |
|
| 2697 | 2697 |
virtual void add(const Arc& arc) {
|
| 2698 | 2698 |
++_deg[_digraph.source(arc)]; |
| 2699 | 2699 |
} |
| 2700 | 2700 |
|
| 2701 | 2701 |
virtual void add(const std::vector<Arc>& arcs) {
|
| 2702 | 2702 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2703 | 2703 |
++_deg[_digraph.source(arcs[i])]; |
| 2704 | 2704 |
} |
| 2705 | 2705 |
} |
| 2706 | 2706 |
|
| 2707 | 2707 |
virtual void erase(const Arc& arc) {
|
| 2708 | 2708 |
--_deg[_digraph.source(arc)]; |
| 2709 | 2709 |
} |
| 2710 | 2710 |
|
| 2711 | 2711 |
virtual void erase(const std::vector<Arc>& arcs) {
|
| 2712 | 2712 |
for (int i = 0; i < int(arcs.size()); ++i) {
|
| 2713 | 2713 |
--_deg[_digraph.source(arcs[i])]; |
| 2714 | 2714 |
} |
| 2715 | 2715 |
} |
| 2716 | 2716 |
|
| 2717 | 2717 |
virtual void build() {
|
| 2718 | 2718 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2719 | 2719 |
_deg[it] = countOutArcs(_digraph, it); |
| 2720 | 2720 |
} |
| 2721 | 2721 |
} |
| 2722 | 2722 |
|
| 2723 | 2723 |
virtual void clear() {
|
| 2724 | 2724 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
|
| 2725 | 2725 |
_deg[it] = 0; |
| 2726 | 2726 |
} |
| 2727 | 2727 |
} |
| 2728 | 2728 |
private: |
| 2729 | 2729 |
|
| 2730 | 2730 |
const Digraph& _digraph; |
| 2731 | 2731 |
AutoNodeMap _deg; |
| 2732 | 2732 |
}; |
| 2733 | 2733 |
|
| 2734 | 2734 |
/// \brief Potential difference map |
| 2735 | 2735 |
/// |
| 2736 | 2736 |
/// PotentialDifferenceMap returns the difference between the potentials of |
| 2737 | 2737 |
/// the source and target nodes of each arc in a digraph, i.e. it returns |
| 2738 | 2738 |
/// \code |
| 2739 | 2739 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
| 2740 | 2740 |
/// \endcode |
| 2741 | 2741 |
/// \tparam GR The digraph type. |
| 2742 | 2742 |
/// \tparam POT A node map storing the potentials. |
| 2743 | 2743 |
template <typename GR, typename POT> |
| 2744 | 2744 |
class PotentialDifferenceMap {
|
| 2745 | 2745 |
public: |
| 2746 | 2746 |
/// Key type |
| 2747 | 2747 |
typedef typename GR::Arc Key; |
| 2748 | 2748 |
/// Value type |
| 2749 | 2749 |
typedef typename POT::Value Value; |
| 2750 | 2750 |
|
| 2751 | 2751 |
/// \brief Constructor |
| 2752 | 2752 |
/// |
| 2753 | 2753 |
/// Contructor of the map. |
| 2754 | 2754 |
explicit PotentialDifferenceMap(const GR& gr, |
| 2755 | 2755 |
const POT& potential) |
| 2756 | 2756 |
: _digraph(gr), _potential(potential) {}
|
| 2757 | 2757 |
|
| 2758 | 2758 |
/// \brief Returns the potential difference for the given arc. |
| 2759 | 2759 |
/// |
| 2760 | 2760 |
/// Returns the potential difference for the given arc, i.e. |
| 2761 | 2761 |
/// \code |
| 2762 | 2762 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
| 2763 | 2763 |
/// \endcode |
| 2764 | 2764 |
Value operator[](const Key& arc) const {
|
| 2765 | 2765 |
return _potential[_digraph.target(arc)] - |
| 2766 | 2766 |
_potential[_digraph.source(arc)]; |
| 2767 | 2767 |
} |
| 2768 | 2768 |
|
| 2769 | 2769 |
private: |
| 2770 | 2770 |
const GR& _digraph; |
| 2771 | 2771 |
const POT& _potential; |
| 2772 | 2772 |
}; |
| 2773 | 2773 |
|
| 2774 | 2774 |
/// \brief Returns a PotentialDifferenceMap. |
| 2775 | 2775 |
/// |
| 2776 | 2776 |
/// This function just returns a PotentialDifferenceMap. |
| 2777 | 2777 |
/// \relates PotentialDifferenceMap |
| 2778 | 2778 |
template <typename GR, typename POT> |
| 2779 | 2779 |
PotentialDifferenceMap<GR, POT> |
| 2780 | 2780 |
potentialDifferenceMap(const GR& gr, const POT& potential) {
|
| 2781 | 2781 |
return PotentialDifferenceMap<GR, POT>(gr, potential); |
| 2782 | 2782 |
} |
| 2783 | 2783 |
|
| 2784 | 2784 |
/// @} |
| 2785 | 2785 |
} |
| 2786 | 2786 |
|
| 2787 | 2787 |
#endif // LEMON_MAPS_H |
0 comments (0 inline)