gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Doc improvements for the graph related tools in lemon/bits
0 5 0
default
5 files changed with 63 insertions and 64 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
... ...
@@ -37,8 +37,8 @@
37 37
  //
38
  // The simple graph's can be refered as two containers, one node container
39
  // and one edge container. But they are not standard containers they
40
  // does not store values directly they are just key continars for more
41
  // value containers which are the node and edge maps.
38
  // The simple graphs can be refered as two containers: a node container
39
  // and an edge container. But they do not store values directly, they
40
  // are just key continars for more value containers, which are the
41
  // node and edge maps.
42 42
  //
43
  // The graph's node and edge sets can be changed as we add or erase
43
  // The node and edge sets of the graphs can be changed as we add or erase
44 44
  // nodes and edges in the graph. LEMON would like to handle easily
... ...
@@ -47,3 +47,3 @@
47 47
  // the current indicing key that cause a drawback in the performance
48
  // in the library. We use another solution we notify all maps about
48
  // in the library. We use another solution: we notify all maps about
49 49
  // an alteration in the graph, which cause only drawback on the
... ...
@@ -51,15 +51,16 @@
51 51
  //
52
  // This class provides an interface to the container. The \e first() and \e
53
  // next() member functions make possible to iterate on the keys of the
54
  // container. The \e id() function returns an integer id for each key.
55
  // The \e maxId() function gives back an upper bound of the ids.
52
  // This class provides an interface to a node or edge container.
53
  // The first() and next() member functions make possible
54
  // to iterate on the keys of the container.
55
  // The id() function returns an integer id for each key.
56
  // The maxId() function gives back an upper bound of the ids.
56 57
  //
57 58
  // For the proper functonality of this class, we should notify it
58
  // about each alteration in the container. The alterations have four type
59
  // as \e add(), \e erase(), \e build() and \e clear(). The \e add() and
60
  // \e erase() signals that only one or few items added or erased to or
61
  // from the graph. If all items are erased from the graph or from an empty
62
  // graph a new graph is builded then it can be signaled with the
59
  // about each alteration in the container. The alterations have four type:
60
  // add(), erase(), build() and clear(). The add() and
61
  // erase() signal that only one or few items added or erased to or
62
  // from the graph. If all items are erased from the graph or if a new graph
63
  // is built from an empty graph, then it can be signaled with the
63 64
  // clear() and build() members. Important rule that if we erase items
64
  // from graph we should first signal the alteration and after that erase
65
  // from graphs we should first signal the alteration and after that erase
65 66
  // them from the container, on the other way on item addition we should
... ...
@@ -68,6 +69,6 @@
68 69
  // The alteration can be observed with a class inherited from the
69
  // \e ObserverBase nested class. The signals can be handled with
70
  // ObserverBase nested class. The signals can be handled with
70 71
  // overriding the virtual functions defined in the base class.  The
71 72
  // observer base can be attached to the notifier with the
72
  // \e attach() member and can be detached with detach() function. The
73
  // attach() member and can be detached with detach() function. The
73 74
  // alteration handlers should not call any function which signals
... ...
@@ -76,18 +77,18 @@
76 77
  //
77
  // Alteration observers try to be exception safe. If an \e add() or
78
  // a \e clear() function throws an exception then the remaining
78
  // Alteration observers try to be exception safe. If an add() or
79
  // a clear() function throws an exception then the remaining
79 80
  // observeres will not be notified and the fulfilled additions will
80
  // be rolled back by calling the \e erase() or \e clear()
81
  // functions. Thence the \e erase() and \e clear() should not throw
82
  // exception. Actullay, it can be throw only \ref ImmediateDetach
83
  // exception which detach the observer from the notifier.
81
  // be rolled back by calling the erase() or clear() functions.
82
  // Hence erase() and clear() should not throw exception.
83
  // Actullay, they can throw only \ref ImmediateDetach exception,
84
  // which detach the observer from the notifier.
84 85
  //
85
  // There are some place when the alteration observing is not completly
86
  // There are some cases, when the alteration observing is not completly
86 87
  // reliable. If we want to carry out the node degree in the graph
87
  // as in the \ref InDegMap and we use the reverseEdge that cause
88
  // as in the \ref InDegMap and we use the reverseArc(), then it cause
88 89
  // unreliable functionality. Because the alteration observing signals
89
  // only erasing and adding but not the reversing it will stores bad
90
  // degrees. The sub graph adaptors cannot signal the alterations because
91
  // just a setting in the filter map can modify the graph and this cannot
92
  // be watched in any way.
90
  // only erasing and adding but not the reversing, it will stores bad
91
  // degrees. Apart form that the subgraph adaptors cannot even signal
92
  // the alterations because just a setting in the filter map can modify
93
  // the graph and this cannot be watched in any way.
93 94
  //
... ...
@@ -105,9 +106,9 @@
105 106

	
106
    // \brief Exception which can be called from \e clear() and
107
    // \e erase().
107
    // \brief Exception which can be called from clear() and
108
    // erase().
108 109
    //
109
    // From the \e clear() and \e erase() function only this
110
    // From the clear() and erase() function only this
110 111
    // exception is allowed to throw. The exception immediatly
111 112
    // detaches the current observer from the notifier. Because the
112
    // \e clear() and \e erase() should not throw other exceptions
113
    // clear() and erase() should not throw other exceptions
113 114
    // it can be used to invalidate the observer.
... ...
@@ -123,4 +124,3 @@
123 124
    // to override. The add() and erase() functions are
124
    // to notify the oberver when one item is added or
125
    // erased.
125
    // to notify the oberver when one item is added or erased.
126 126
    //
Ignore white space 6 line context
... ...
@@ -38,8 +38,7 @@
38 38
  //
39
  // The ArrayMap template class is graph map structure what
40
  // automatically updates the map when a key is added to or erased from
41
  // the map. This map uses the allocators to implement
42
  // the container functionality.
39
  // The ArrayMap template class is graph map structure that automatically
40
  // updates the map when a key is added to or erased from the graph.
41
  // This map uses the allocators to implement the container functionality.
43 42
  //
44
  // The template parameters are the Graph the current Item type and
43
  // The template parameters are the Graph, the current Item type and
45 44
  // the Value type of the map.
... ...
@@ -49,5 +48,5 @@
49 48
  public:
50
    // The graph type of the maps.
49
    // The graph type.
51 50
    typedef _Graph Graph;
52
    // The item type of the map.
51
    // The item type.
53 52
    typedef _Item Item;
... ...
@@ -56,3 +55,3 @@
56 55

	
57
    // The key type of the maps.
56
    // The key type of the map.
58 57
    typedef _Item Key;
... ...
@@ -202,3 +201,3 @@
202 201
    //
203
    // It adds a new key to the map. It called by the observer notifier
202
    // It adds a new key to the map. It is called by the observer notifier
204 203
    // and it overrides the add() member function of the observer base.
... ...
@@ -230,3 +229,3 @@
230 229
    //
231
    // It adds more new keys to the map. It called by the observer notifier
230
    // It adds more new keys to the map. It is called by the observer notifier
232 231
    // and it overrides the add() member function of the observer base.
... ...
@@ -274,3 +273,3 @@
274 273
    //
275
    // Erase a key from the map. It called by the observer notifier
274
    // Erase a key from the map. It is called by the observer notifier
276 275
    // and it overrides the erase() member function of the observer base.
... ...
@@ -283,3 +282,3 @@
283 282
    //
284
    // Erase more keys from the map. It called by the observer notifier
283
    // Erase more keys from the map. It is called by the observer notifier
285 284
    // and it overrides the erase() member function of the observer base.
... ...
@@ -292,5 +291,5 @@
292 291

	
293
    // \brief Buildes the map.
292
    // \brief Builds the map.
294 293
    //
295
    // It buildes the map. It called by the observer notifier
294
    // It builds the map. It is called by the observer notifier
296 295
    // and it overrides the build() member function of the observer base.
... ...
@@ -308,3 +307,3 @@
308 307
    //
309
    // It erase all items from the map. It called by the observer notifier
308
    // It erase all items from the map. It is called by the observer notifier
310 309
    // and it overrides the clear() member function of the observer base.
Ignore white space 6 line context
... ...
@@ -32,3 +32,3 @@
32 32
//\file
33
//\brief Extenders for the digraph types
33
//\brief Extenders for the graph types
34 34
namespace lemon {
Ignore white space 6 line context
... ...
@@ -31,3 +31,3 @@
31 31
//\file
32
//\brief Extenders for the digraph types
32
//\brief Extenders for the graph types
33 33
namespace lemon {
... ...
@@ -36,3 +36,3 @@
36 36
  //
37
  // \brief Extender for the Digraphs
37
  // \brief Extender for the digraph implementations
38 38
  template <typename Base>
Show white space 6 line context
... ...
@@ -40,5 +40,5 @@
40 40
  //
41
  // The VectorMap template class is graph map structure what
42
  // automatically updates the map when a key is added to or erased from
43
  // the map. This map type uses the std::vector to store the values.
41
  // The VectorMap template class is graph map structure that automatically
42
  // updates the map when a key is added to or erased from the graph.
43
  // This map type uses std::vector to store the values.
44 44
  //
... ...
@@ -171,3 +171,3 @@
171 171
    //
172
    // It adds a new key to the map. It called by the observer notifier
172
    // It adds a new key to the map. It is called by the observer notifier
173 173
    // and it overrides the add() member function of the observer base.
... ...
@@ -182,3 +182,3 @@
182 182
    //
183
    // It adds more new keys to the map. It called by the observer notifier
183
    // It adds more new keys to the map. It is called by the observer notifier
184 184
    // and it overrides the add() member function of the observer base.
... ...
@@ -197,3 +197,3 @@
197 197
    //
198
    // Erase a key from the map. It called by the observer notifier
198
    // Erase a key from the map. It is called by the observer notifier
199 199
    // and it overrides the erase() member function of the observer base.
... ...
@@ -205,3 +205,3 @@
205 205
    //
206
    // Erase more keys from the map. It called by the observer notifier
206
    // It erases more keys from the map. It is called by the observer notifier
207 207
    // and it overrides the erase() member function of the observer base.
... ...
@@ -213,5 +213,5 @@
213 213

	
214
    // \brief Buildes the map.
214
    // \brief Build the map.
215 215
    //
216
    // It buildes the map. It called by the observer notifier
216
    // It builds the map. It is called by the observer notifier
217 217
    // and it overrides the build() member function of the observer base.
... ...
@@ -225,3 +225,3 @@
225 225
    //
226
    // It erase all items from the map. It called by the observer notifier
226
    // It erases all items from the map. It is called by the observer notifier
227 227
    // and it overrides the clear() member function of the observer base.
0 comments (0 inline)