1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/*! |
20 | 20 |
|
21 | 21 |
\page named-param Named Parameters |
22 | 22 |
|
23 | 23 |
\section named-func-param Named Function Parameters |
24 | 24 |
|
25 | 25 |
Several modern languages provide a convenient way to refer the |
26 | 26 |
function parameters by name also when you call the function. It is |
27 | 27 |
especially comfortable in case of a function having tons of parameters |
28 |
with natural default values. Sadly, C++ lack this amenity. |
|
28 |
with natural default values. Sadly, C++ lack this amenity. |
|
29 | 29 |
|
30 | 30 |
However, with a crafty trick and with some little |
31 | 31 |
inconvenience, it is possible to emulate is. |
32 | 32 |
The example below shows how to do it. |
33 | 33 |
|
34 | 34 |
\code |
35 |
class namedFn |
|
35 |
class namedFn |
|
36 | 36 |
{ |
37 | 37 |
int _id; |
38 | 38 |
double _val; |
39 | 39 |
int _dim; |
40 |
|
|
40 |
|
|
41 | 41 |
public: |
42 | 42 |
namedFn() : _id(0), _val(1), _dim(2) {} |
43 | 43 |
namedFn& id(int p) { _id = p ; return *this; } |
44 | 44 |
namedFn& val(double p) { _val = p ; return *this; } |
45 | 45 |
namedFn& dim(int p) { _dim = p ; return *this; } |
46 | 46 |
|
47 | 47 |
run() { |
48 |
std::cout << "Here comes the function itself\n" << |
|
49 |
<< "With parameters " |
|
50 |
|
|
48 |
std::cout << "Here comes the function itself\n" << |
|
49 |
<< "With parameters " |
|
50 |
<< _id << ", " << _val << ", " << _dim << std::endl; |
|
51 | 51 |
} |
52 | 52 |
}; |
53 | 53 |
\endcode |
54 | 54 |
|
55 | 55 |
Then you can use it like this. |
56 | 56 |
|
57 | 57 |
\code |
58 | 58 |
namedFn().id(3).val(2).run(); |
59 | 59 |
\endcode |
60 | 60 |
|
61 | 61 |
The trick is obvious, each "named parameter" changes one component of |
62 | 62 |
the underlying class, then gives back a reference to it. Finally, |
63 | 63 |
<tt>run()</tt> executes the algorithm itself. |
64 | 64 |
|
65 | 65 |
\note Although it is a class, namedFn is used pretty much like as it were |
66 | 66 |
a function. That it why we called it namedFn instead of \c NamedFn. |
67 | 67 |
|
68 | 68 |
\note In fact, the final <tt>.run()</tt> could be made unnecessary, |
69 | 69 |
because the algorithm could also be implemented in the destructor of |
70 | 70 |
\c namedFn instead. This however would make it impossible to implement |
71 | 71 |
functions with return values, and would also cause serious problems when |
72 | 72 |
implementing \ref named-templ-func-param "named template parameters". |
73 | 73 |
<b>Therefore, by convention, <tt>.run()</tt> must be used |
74 | 74 |
explicitly to execute a function having named parameters |
75 | 75 |
everywhere in LEMON.</b> |
76 | 76 |
|
77 | 77 |
\section named-templ-func-param Named Function Template Parameters |
78 | 78 |
|
79 |
A named parameter can also be a template |
|
79 |
A named parameter can also be a template function. The usage is |
|
80 | 80 |
exactly the same, but the implementation behind is a kind of black |
81 | 81 |
magic and they are the dirtiest part of the LEMON code. |
82 | 82 |
|
83 | 83 |
You will probably never need to know how it works, but if you really |
84 | 84 |
committed, have a look at \ref lemon/graph_to_eps.h for an example. |
85 | 85 |
|
86 | 86 |
\section traits-classes Traits Classes |
87 | 87 |
|
88 | 88 |
A similar game can also be played when defining classes. In this case |
89 | 89 |
the type of the class attributes can be changed. Initially we have to |
90 | 90 |
define a special class called <em>Traits Class</em> defining the |
91 | 91 |
default type of the attributes. Then the types of these attributes can |
92 | 92 |
be changed in the same way as described in the next section. |
93 | 93 |
|
94 | 94 |
See \ref lemon::DijkstraDefaultTraits for an |
95 | 95 |
example how a traits class implementation looks like. |
96 | 96 |
|
97 | 97 |
\section named-templ-param Named Class Template Parameters |
98 | 98 |
|
99 | 99 |
If we would like to change the type of an attribute in a class that |
100 | 100 |
was instantiated by using a traits class as a template parameter, and |
101 | 101 |
the class contains named parameters, we do not have to instantiate again |
102 | 102 |
the class with new traits class, but instead adaptor classes can |
103 | 103 |
be used as shown in the following example. |
104 | 104 |
|
105 | 105 |
\code |
106 |
Dijkstra<>:: |
|
106 |
Dijkstra<>::SetPredMap<NullMap<Node,Arc> >::Create |
|
107 | 107 |
\endcode |
108 | 108 |
|
109 | 109 |
It can also be used in conjunction with other named template |
110 | 110 |
parameters in arbitrary order. |
111 | 111 |
|
112 | 112 |
\code |
113 |
Dijkstra<>::SetDistMap<MyMap>::SetPredMap<NullMap<Node, |
|
113 |
Dijkstra<>::SetDistMap<MyMap>::SetPredMap<NullMap<Node,Arc> >::Create |
|
114 | 114 |
\endcode |
115 | 115 |
|
116 | 116 |
The result will be an instantiated Dijkstra class, in which the |
117 | 117 |
DistMap and the PredMap is modified. |
118 | 118 |
|
119 | 119 |
*/ |
0 comments (0 inline)