gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge
0 2 0
merge default
0 files changed with 24 insertions and 0 deletions:
↑ Collapse diff ↑
Ignore white space 16 line context
... ...
@@ -798,16 +798,39 @@
798 798
    ///\param k shape parameter (<tt>k>0</tt>)
799 799
    ///\param x_min location parameter (<tt>x_min>0</tt>)
800 800
    ///
801 801
    double pareto(double k,double x_min)
802 802
    {
803 803
      return exponential(gamma(k,1.0/x_min));
804 804
    }  
805 805
      
806
    /// Poisson distribution
807

	
808
    /// This function generates a Poisson distribution random number with
809
    /// parameter \c lambda.
810
    /// 
811
    /// The probability mass function of this distribusion is
812
    /// \f[ \frac{e^{-\lambda}\lambda^k}{k!} \f]
813
    /// \note The algorithm is taken from the book of Donald E. Knuth titled
814
    /// ''Seminumerical Algorithms'' (1969). Its running time is linear in the
815
    /// return value.
816
    
817
    int poisson(double lambda)
818
    {
819
      const double l = std::exp(-lambda);
820
      int k=0;
821
      double p = 1.0;
822
      do {
823
	k++;
824
	p*=real<double>();
825
      } while (p>=l);
826
      return k-1;
827
    }  
828
      
806 829
    ///@}
807 830
    
808 831
    ///\name Two dimensional distributions
809 832
    ///
810 833

	
811 834
    ///@{
812 835
    
813 836
    /// Uniform distribution on the full unit circle
Ignore white space 16 line context
... ...
@@ -28,9 +28,10 @@
28 28
{
29 29
  double a=lemon::rnd();
30 30
  check(a<1.0&&a>0.0,"This should be in [0,1)");
31 31
  a=lemon::rnd.gauss();
32 32
  a=lemon::rnd.gamma(3.45,0);
33 33
  a=lemon::rnd.gamma(4);
34 34
  //Does gamma work with integer k?
35 35
  a=lemon::rnd.gamma(4.0,0);
36
  a=lemon::rnd.poisson(.5);
36 37
}
0 comments (0 inline)