gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Entirely rework CapacityScaling (#180) - Use the new interface similarly to NetworkSimplex. - Rework the implementation using an efficient internal structure for handling the residual network. This improvement made the code much faster (up to 2-5 times faster on large graphs). - Handle GEQ supply type (LEQ is not supported). - Handle negative costs for arcs of finite capacity. (Note that this algorithm cannot handle arcs of negative cost and infinite upper bound, thus it returns UNBOUNDED if such an arc exists.) - Extend the documentation.
0 1 0
default
1 file changed with 635 insertions and 468 deletions:
↑ Collapse diff ↑
Ignore white space 24 line context
... ...
@@ -10,708 +10,875 @@
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CAPACITY_SCALING_H
20 20
#define LEMON_CAPACITY_SCALING_H
21 21

	
22
/// \ingroup min_cost_flow
22
/// \ingroup min_cost_flow_algs
23 23
///
24 24
/// \file
25
/// \brief Capacity scaling algorithm for finding a minimum cost flow.
25
/// \brief Capacity Scaling algorithm for finding a minimum cost flow.
26 26

	
27 27
#include <vector>
28
#include <limits>
29
#include <lemon/core.h>
28 30
#include <lemon/bin_heap.h>
29 31

	
30 32
namespace lemon {
31 33

	
32
  /// \addtogroup min_cost_flow
34
  /// \addtogroup min_cost_flow_algs
33 35
  /// @{
34 36

	
35
  /// \brief Implementation of the capacity scaling algorithm for
36
  /// finding a minimum cost flow.
37
  /// \brief Implementation of the Capacity Scaling algorithm for
38
  /// finding a \ref min_cost_flow "minimum cost flow".
37 39
  ///
38 40
  /// \ref CapacityScaling implements the capacity scaling version
39
  /// of the successive shortest path algorithm for finding a minimum
40
  /// cost flow.
41
  /// of the successive shortest path algorithm for finding a
42
  /// \ref min_cost_flow "minimum cost flow". It is an efficient dual
43
  /// solution method.
41 44
  ///
42
  /// \tparam Digraph The digraph type the algorithm runs on.
43
  /// \tparam LowerMap The type of the lower bound map.
44
  /// \tparam CapacityMap The type of the capacity (upper bound) map.
45
  /// \tparam CostMap The type of the cost (length) map.
46
  /// \tparam SupplyMap The type of the supply map.
45
  /// Most of the parameters of the problem (except for the digraph)
46
  /// can be given using separate functions, and the algorithm can be
47
  /// executed using the \ref run() function. If some parameters are not
48
  /// specified, then default values will be used.
47 49
  ///
48
  /// \warning
49
  /// - Arc capacities and costs should be \e non-negative \e integers.
50
  /// - Supply values should be \e signed \e integers.
51
  /// - The value types of the maps should be convertible to each other.
52
  /// - \c CostMap::Value must be signed type.
50
  /// \tparam GR The digraph type the algorithm runs on.
51
  /// \tparam V The value type used for flow amounts, capacity bounds
52
  /// and supply values in the algorithm. By default it is \c int.
53
  /// \tparam C The value type used for costs and potentials in the
54
  /// algorithm. By default it is the same as \c V.
53 55
  ///
54
  /// \author Peter Kovacs
55
  template < typename Digraph,
56
             typename LowerMap = typename Digraph::template ArcMap<int>,
57
             typename CapacityMap = typename Digraph::template ArcMap<int>,
58
             typename CostMap = typename Digraph::template ArcMap<int>,
59
             typename SupplyMap = typename Digraph::template NodeMap<int> >
56
  /// \warning Both value types must be signed and all input data must
57
  /// be integer.
58
  /// \warning This algorithm does not support negative costs for such
59
  /// arcs that have infinite upper bound.
60
  template <typename GR, typename V = int, typename C = V>
60 61
  class CapacityScaling
61 62
  {
62
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
63
  public:
63 64

	
64
    typedef typename CapacityMap::Value Capacity;
65
    typedef typename CostMap::Value Cost;
66
    typedef typename SupplyMap::Value Supply;
67
    typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap;
68
    typedef typename Digraph::template NodeMap<Supply> SupplyNodeMap;
69
    typedef typename Digraph::template NodeMap<Arc> PredMap;
65
    /// The type of the flow amounts, capacity bounds and supply values
66
    typedef V Value;
67
    /// The type of the arc costs
68
    typedef C Cost;
70 69

	
71 70
  public:
72 71

	
73
    /// The type of the flow map.
74
    typedef typename Digraph::template ArcMap<Capacity> FlowMap;
75
    /// The type of the potential map.
76
    typedef typename Digraph::template NodeMap<Cost> PotentialMap;
72
    /// \brief Problem type constants for the \c run() function.
73
    ///
74
    /// Enum type containing the problem type constants that can be
75
    /// returned by the \ref run() function of the algorithm.
76
    enum ProblemType {
77
      /// The problem has no feasible solution (flow).
78
      INFEASIBLE,
79
      /// The problem has optimal solution (i.e. it is feasible and
80
      /// bounded), and the algorithm has found optimal flow and node
81
      /// potentials (primal and dual solutions).
82
      OPTIMAL,
83
      /// The digraph contains an arc of negative cost and infinite
84
      /// upper bound. It means that the objective function is unbounded
85
      /// on that arc, however note that it could actually be bounded
86
      /// over the feasible flows, but this algroithm cannot handle
87
      /// these cases.
88
      UNBOUNDED
89
    };
90
  
91
  private:
92

	
93
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
94

	
95
    typedef std::vector<Arc> ArcVector;
96
    typedef std::vector<Node> NodeVector;
97
    typedef std::vector<int> IntVector;
98
    typedef std::vector<bool> BoolVector;
99
    typedef std::vector<Value> ValueVector;
100
    typedef std::vector<Cost> CostVector;
77 101

	
78 102
  private:
79 103

	
80
    /// \brief Special implementation of the \ref Dijkstra algorithm
81
    /// for finding shortest paths in the residual network.
104
    // Data related to the underlying digraph
105
    const GR &_graph;
106
    int _node_num;
107
    int _arc_num;
108
    int _res_arc_num;
109
    int _root;
110

	
111
    // Parameters of the problem
112
    bool _have_lower;
113
    Value _sum_supply;
114

	
115
    // Data structures for storing the digraph
116
    IntNodeMap _node_id;
117
    IntArcMap _arc_idf;
118
    IntArcMap _arc_idb;
119
    IntVector _first_out;
120
    BoolVector _forward;
121
    IntVector _source;
122
    IntVector _target;
123
    IntVector _reverse;
124

	
125
    // Node and arc data
126
    ValueVector _lower;
127
    ValueVector _upper;
128
    CostVector _cost;
129
    ValueVector _supply;
130

	
131
    ValueVector _res_cap;
132
    CostVector _pi;
133
    ValueVector _excess;
134
    IntVector _excess_nodes;
135
    IntVector _deficit_nodes;
136

	
137
    Value _delta;
138
    int _phase_num;
139
    IntVector _pred;
140

	
141
  public:
142
  
143
    /// \brief Constant for infinite upper bounds (capacities).
82 144
    ///
83
    /// \ref ResidualDijkstra is a special implementation of the
84
    /// \ref Dijkstra algorithm for finding shortest paths in the
85
    /// residual network of the digraph with respect to the reduced arc
86
    /// costs and modifying the node potentials according to the
87
    /// distance of the nodes.
145
    /// Constant for infinite upper bounds (capacities).
146
    /// It is \c std::numeric_limits<Value>::infinity() if available,
147
    /// \c std::numeric_limits<Value>::max() otherwise.
148
    const Value INF;
149

	
150
  private:
151

	
152
    // Special implementation of the Dijkstra algorithm for finding
153
    // shortest paths in the residual network of the digraph with
154
    // respect to the reduced arc costs and modifying the node
155
    // potentials according to the found distance labels.
88 156
    class ResidualDijkstra
89 157
    {
90
      typedef typename Digraph::template NodeMap<int> HeapCrossRef;
158
      typedef RangeMap<int> HeapCrossRef;
91 159
      typedef BinHeap<Cost, HeapCrossRef> Heap;
92 160

	
93 161
    private:
94 162

	
95
      // The digraph the algorithm runs on
96
      const Digraph &_graph;
97

	
98
      // The main maps
99
      const FlowMap &_flow;
100
      const CapacityArcMap &_res_cap;
101
      const CostMap &_cost;
102
      const SupplyNodeMap &_excess;
103
      PotentialMap &_potential;
104

	
105
      // The distance map
106
      PotentialMap _dist;
107
      // The pred arc map
108
      PredMap &_pred;
109
      // The processed (i.e. permanently labeled) nodes
110
      std::vector<Node> _proc_nodes;
111

	
163
      int _node_num;
164
      const IntVector &_first_out;
165
      const IntVector &_target;
166
      const CostVector &_cost;
167
      const ValueVector &_res_cap;
168
      const ValueVector &_excess;
169
      CostVector &_pi;
170
      IntVector &_pred;
171
      
172
      IntVector _proc_nodes;
173
      CostVector _dist;
174
      
112 175
    public:
113 176

	
114
      /// Constructor.
115
      ResidualDijkstra( const Digraph &digraph,
116
                        const FlowMap &flow,
117
                        const CapacityArcMap &res_cap,
118
                        const CostMap &cost,
119
                        const SupplyMap &excess,
120
                        PotentialMap &potential,
121
                        PredMap &pred ) :
122
        _graph(digraph), _flow(flow), _res_cap(res_cap), _cost(cost),
123
        _excess(excess), _potential(potential), _dist(digraph),
124
        _pred(pred)
177
      ResidualDijkstra(CapacityScaling& cs) :
178
        _node_num(cs._node_num), _first_out(cs._first_out), 
179
        _target(cs._target), _cost(cs._cost), _res_cap(cs._res_cap),
180
        _excess(cs._excess), _pi(cs._pi), _pred(cs._pred),
181
        _dist(cs._node_num)
125 182
      {}
126 183

	
127
      /// Run the algorithm from the given source node.
128
      Node run(Node s, Capacity delta = 1) {
129
        HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
184
      int run(int s, Value delta = 1) {
185
        HeapCrossRef heap_cross_ref(_node_num, Heap::PRE_HEAP);
130 186
        Heap heap(heap_cross_ref);
131 187
        heap.push(s, 0);
132
        _pred[s] = INVALID;
188
        _pred[s] = -1;
133 189
        _proc_nodes.clear();
134 190

	
135
        // Processing nodes
191
        // Process nodes
136 192
        while (!heap.empty() && _excess[heap.top()] > -delta) {
137
          Node u = heap.top(), v;
138
          Cost d = heap.prio() + _potential[u], nd;
193
          int u = heap.top(), v;
194
          Cost d = heap.prio() + _pi[u], dn;
139 195
          _dist[u] = heap.prio();
196
          _proc_nodes.push_back(u);
140 197
          heap.pop();
141
          _proc_nodes.push_back(u);
142 198

	
143
          // Traversing outgoing arcs
144
          for (OutArcIt e(_graph, u); e != INVALID; ++e) {
145
            if (_res_cap[e] >= delta) {
146
              v = _graph.target(e);
147
              switch(heap.state(v)) {
199
          // Traverse outgoing residual arcs
200
          for (int a = _first_out[u]; a != _first_out[u+1]; ++a) {
201
            if (_res_cap[a] < delta) continue;
202
            v = _target[a];
203
            switch (heap.state(v)) {
148 204
              case Heap::PRE_HEAP:
149
                heap.push(v, d + _cost[e] - _potential[v]);
150
                _pred[v] = e;
205
                heap.push(v, d + _cost[a] - _pi[v]);
206
                _pred[v] = a;
151 207
                break;
152 208
              case Heap::IN_HEAP:
153
                nd = d + _cost[e] - _potential[v];
154
                if (nd < heap[v]) {
155
                  heap.decrease(v, nd);
156
                  _pred[v] = e;
209
                dn = d + _cost[a] - _pi[v];
210
                if (dn < heap[v]) {
211
                  heap.decrease(v, dn);
212
                  _pred[v] = a;
157 213
                }
158 214
                break;
159 215
              case Heap::POST_HEAP:
160 216
                break;
161
              }
162
            }
163
          }
164

	
165
          // Traversing incoming arcs
166
          for (InArcIt e(_graph, u); e != INVALID; ++e) {
167
            if (_flow[e] >= delta) {
168
              v = _graph.source(e);
169
              switch(heap.state(v)) {
170
              case Heap::PRE_HEAP:
171
                heap.push(v, d - _cost[e] - _potential[v]);
172
                _pred[v] = e;
173
                break;
174
              case Heap::IN_HEAP:
175
                nd = d - _cost[e] - _potential[v];
176
                if (nd < heap[v]) {
177
                  heap.decrease(v, nd);
178
                  _pred[v] = e;
179
                }
180
                break;
181
              case Heap::POST_HEAP:
182
                break;
183
              }
184 217
            }
185 218
          }
186 219
        }
187
        if (heap.empty()) return INVALID;
220
        if (heap.empty()) return -1;
188 221

	
189
        // Updating potentials of processed nodes
190
        Node t = heap.top();
191
        Cost t_dist = heap.prio();
192
        for (int i = 0; i < int(_proc_nodes.size()); ++i)
193
          _potential[_proc_nodes[i]] += _dist[_proc_nodes[i]] - t_dist;
222
        // Update potentials of processed nodes
223
        int t = heap.top();
224
        Cost dt = heap.prio();
225
        for (int i = 0; i < int(_proc_nodes.size()); ++i) {
226
          _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
227
        }
194 228

	
195 229
        return t;
196 230
      }
197 231

	
198 232
    }; //class ResidualDijkstra
199 233

	
200
  private:
201

	
202
    // The digraph the algorithm runs on
203
    const Digraph &_graph;
204
    // The original lower bound map
205
    const LowerMap *_lower;
206
    // The modified capacity map
207
    CapacityArcMap _capacity;
208
    // The original cost map
209
    const CostMap &_cost;
210
    // The modified supply map
211
    SupplyNodeMap _supply;
212
    bool _valid_supply;
213

	
214
    // Arc map of the current flow
215
    FlowMap *_flow;
216
    bool _local_flow;
217
    // Node map of the current potentials
218
    PotentialMap *_potential;
219
    bool _local_potential;
220

	
221
    // The residual capacity map
222
    CapacityArcMap _res_cap;
223
    // The excess map
224
    SupplyNodeMap _excess;
225
    // The excess nodes (i.e. nodes with positive excess)
226
    std::vector<Node> _excess_nodes;
227
    // The deficit nodes (i.e. nodes with negative excess)
228
    std::vector<Node> _deficit_nodes;
229

	
230
    // The delta parameter used for capacity scaling
231
    Capacity _delta;
232
    // The maximum number of phases
233
    int _phase_num;
234

	
235
    // The pred arc map
236
    PredMap _pred;
237
    // Implementation of the Dijkstra algorithm for finding augmenting
238
    // shortest paths in the residual network
239
    ResidualDijkstra *_dijkstra;
240

	
241 234
  public:
242 235

	
243
    /// \brief General constructor (with lower bounds).
236
    /// \brief Constructor.
244 237
    ///
245
    /// General constructor (with lower bounds).
238
    /// The constructor of the class.
246 239
    ///
247
    /// \param digraph The digraph the algorithm runs on.
248
    /// \param lower The lower bounds of the arcs.
249
    /// \param capacity The capacities (upper bounds) of the arcs.
250
    /// \param cost The cost (length) values of the arcs.
251
    /// \param supply The supply values of the nodes (signed).
252
    CapacityScaling( const Digraph &digraph,
253
                     const LowerMap &lower,
254
                     const CapacityMap &capacity,
255
                     const CostMap &cost,
256
                     const SupplyMap &supply ) :
257
      _graph(digraph), _lower(&lower), _capacity(digraph), _cost(cost),
258
      _supply(digraph), _flow(NULL), _local_flow(false),
259
      _potential(NULL), _local_potential(false),
260
      _res_cap(digraph), _excess(digraph), _pred(digraph), _dijkstra(NULL)
240
    /// \param graph The digraph the algorithm runs on.
241
    CapacityScaling(const GR& graph) :
242
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
243
      INF(std::numeric_limits<Value>::has_infinity ?
244
          std::numeric_limits<Value>::infinity() :
245
          std::numeric_limits<Value>::max())
261 246
    {
262
      Supply sum = 0;
263
      for (NodeIt n(_graph); n != INVALID; ++n) {
264
        _supply[n] = supply[n];
265
        _excess[n] = supply[n];
266
        sum += supply[n];
247
      // Check the value types
248
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
249
        "The flow type of CapacityScaling must be signed");
250
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
251
        "The cost type of CapacityScaling must be signed");
252

	
253
      // Resize vectors
254
      _node_num = countNodes(_graph);
255
      _arc_num = countArcs(_graph);
256
      _res_arc_num = 2 * (_arc_num + _node_num);
257
      _root = _node_num;
258
      ++_node_num;
259

	
260
      _first_out.resize(_node_num + 1);
261
      _forward.resize(_res_arc_num);
262
      _source.resize(_res_arc_num);
263
      _target.resize(_res_arc_num);
264
      _reverse.resize(_res_arc_num);
265

	
266
      _lower.resize(_res_arc_num);
267
      _upper.resize(_res_arc_num);
268
      _cost.resize(_res_arc_num);
269
      _supply.resize(_node_num);
270
      
271
      _res_cap.resize(_res_arc_num);
272
      _pi.resize(_node_num);
273
      _excess.resize(_node_num);
274
      _pred.resize(_node_num);
275

	
276
      // Copy the graph
277
      int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
278
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
279
        _node_id[n] = i;
267 280
      }
268
      _valid_supply = sum == 0;
281
      i = 0;
282
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
283
        _first_out[i] = j;
284
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
285
          _arc_idf[a] = j;
286
          _forward[j] = true;
287
          _source[j] = i;
288
          _target[j] = _node_id[_graph.runningNode(a)];
289
        }
290
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
291
          _arc_idb[a] = j;
292
          _forward[j] = false;
293
          _source[j] = i;
294
          _target[j] = _node_id[_graph.runningNode(a)];
295
        }
296
        _forward[j] = false;
297
        _source[j] = i;
298
        _target[j] = _root;
299
        _reverse[j] = k;
300
        _forward[k] = true;
301
        _source[k] = _root;
302
        _target[k] = i;
303
        _reverse[k] = j;
304
        ++j; ++k;
305
      }
306
      _first_out[i] = j;
307
      _first_out[_node_num] = k;
269 308
      for (ArcIt a(_graph); a != INVALID; ++a) {
270
        _capacity[a] = capacity[a];
271
        _res_cap[a] = capacity[a];
309
        int fi = _arc_idf[a];
310
        int bi = _arc_idb[a];
311
        _reverse[fi] = bi;
312
        _reverse[bi] = fi;
272 313
      }
273

	
274
      // Remove non-zero lower bounds
275
      typename LowerMap::Value lcap;
276
      for (ArcIt e(_graph); e != INVALID; ++e) {
277
        if ((lcap = lower[e]) != 0) {
278
          _capacity[e] -= lcap;
279
          _res_cap[e] -= lcap;
280
          _supply[_graph.source(e)] -= lcap;
281
          _supply[_graph.target(e)] += lcap;
282
          _excess[_graph.source(e)] -= lcap;
283
          _excess[_graph.target(e)] += lcap;
284
        }
285
      }
286
    }
287
/*
288
    /// \brief General constructor (without lower bounds).
289
    ///
290
    /// General constructor (without lower bounds).
291
    ///
292
    /// \param digraph The digraph the algorithm runs on.
293
    /// \param capacity The capacities (upper bounds) of the arcs.
294
    /// \param cost The cost (length) values of the arcs.
295
    /// \param supply The supply values of the nodes (signed).
296
    CapacityScaling( const Digraph &digraph,
297
                     const CapacityMap &capacity,
298
                     const CostMap &cost,
299
                     const SupplyMap &supply ) :
300
      _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
301
      _supply(supply), _flow(NULL), _local_flow(false),
302
      _potential(NULL), _local_potential(false),
303
      _res_cap(capacity), _excess(supply), _pred(digraph), _dijkstra(NULL)
304
    {
305
      // Check the sum of supply values
306
      Supply sum = 0;
307
      for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
308
      _valid_supply = sum == 0;
314
      
315
      // Reset parameters
316
      reset();
309 317
    }
310 318

	
311
    /// \brief Simple constructor (with lower bounds).
319
    /// \name Parameters
320
    /// The parameters of the algorithm can be specified using these
321
    /// functions.
322

	
323
    /// @{
324

	
325
    /// \brief Set the lower bounds on the arcs.
312 326
    ///
313
    /// Simple constructor (with lower bounds).
327
    /// This function sets the lower bounds on the arcs.
328
    /// If it is not used before calling \ref run(), the lower bounds
329
    /// will be set to zero on all arcs.
314 330
    ///
315
    /// \param digraph The digraph the algorithm runs on.
316
    /// \param lower The lower bounds of the arcs.
317
    /// \param capacity The capacities (upper bounds) of the arcs.
318
    /// \param cost The cost (length) values of the arcs.
319
    /// \param s The source node.
320
    /// \param t The target node.
321
    /// \param flow_value The required amount of flow from node \c s
322
    /// to node \c t (i.e. the supply of \c s and the demand of \c t).
323
    CapacityScaling( const Digraph &digraph,
324
                     const LowerMap &lower,
325
                     const CapacityMap &capacity,
326
                     const CostMap &cost,
327
                     Node s, Node t,
328
                     Supply flow_value ) :
329
      _graph(digraph), _lower(&lower), _capacity(capacity), _cost(cost),
330
      _supply(digraph, 0), _flow(NULL), _local_flow(false),
331
      _potential(NULL), _local_potential(false),
332
      _res_cap(capacity), _excess(digraph, 0), _pred(digraph), _dijkstra(NULL)
333
    {
334
      // Remove non-zero lower bounds
335
      _supply[s] = _excess[s] =  flow_value;
336
      _supply[t] = _excess[t] = -flow_value;
337
      typename LowerMap::Value lcap;
338
      for (ArcIt e(_graph); e != INVALID; ++e) {
339
        if ((lcap = lower[e]) != 0) {
340
          _capacity[e] -= lcap;
341
          _res_cap[e] -= lcap;
342
          _supply[_graph.source(e)] -= lcap;
343
          _supply[_graph.target(e)] += lcap;
344
          _excess[_graph.source(e)] -= lcap;
345
          _excess[_graph.target(e)] += lcap;
346
        }
331
    /// \param map An arc map storing the lower bounds.
332
    /// Its \c Value type must be convertible to the \c Value type
333
    /// of the algorithm.
334
    ///
335
    /// \return <tt>(*this)</tt>
336
    template <typename LowerMap>
337
    CapacityScaling& lowerMap(const LowerMap& map) {
338
      _have_lower = true;
339
      for (ArcIt a(_graph); a != INVALID; ++a) {
340
        _lower[_arc_idf[a]] = map[a];
341
        _lower[_arc_idb[a]] = map[a];
347 342
      }
348
      _valid_supply = true;
349
    }
350

	
351
    /// \brief Simple constructor (without lower bounds).
352
    ///
353
    /// Simple constructor (without lower bounds).
354
    ///
355
    /// \param digraph The digraph the algorithm runs on.
356
    /// \param capacity The capacities (upper bounds) of the arcs.
357
    /// \param cost The cost (length) values of the arcs.
358
    /// \param s The source node.
359
    /// \param t The target node.
360
    /// \param flow_value The required amount of flow from node \c s
361
    /// to node \c t (i.e. the supply of \c s and the demand of \c t).
362
    CapacityScaling( const Digraph &digraph,
363
                     const CapacityMap &capacity,
364
                     const CostMap &cost,
365
                     Node s, Node t,
366
                     Supply flow_value ) :
367
      _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
368
      _supply(digraph, 0), _flow(NULL), _local_flow(false),
369
      _potential(NULL), _local_potential(false),
370
      _res_cap(capacity), _excess(digraph, 0), _pred(digraph), _dijkstra(NULL)
371
    {
372
      _supply[s] = _excess[s] =  flow_value;
373
      _supply[t] = _excess[t] = -flow_value;
374
      _valid_supply = true;
375
    }
376
*/
377
    /// Destructor.
378
    ~CapacityScaling() {
379
      if (_local_flow) delete _flow;
380
      if (_local_potential) delete _potential;
381
      delete _dijkstra;
382
    }
383

	
384
    /// \brief Set the flow map.
385
    ///
386
    /// Set the flow map.
387
    ///
388
    /// \return \c (*this)
389
    CapacityScaling& flowMap(FlowMap &map) {
390
      if (_local_flow) {
391
        delete _flow;
392
        _local_flow = false;
393
      }
394
      _flow = &map;
395 343
      return *this;
396 344
    }
397 345

	
398
    /// \brief Set the potential map.
346
    /// \brief Set the upper bounds (capacities) on the arcs.
399 347
    ///
400
    /// Set the potential map.
348
    /// This function sets the upper bounds (capacities) on the arcs.
349
    /// If it is not used before calling \ref run(), the upper bounds
350
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
351
    /// unbounded from above on each arc).
401 352
    ///
402
    /// \return \c (*this)
403
    CapacityScaling& potentialMap(PotentialMap &map) {
404
      if (_local_potential) {
405
        delete _potential;
406
        _local_potential = false;
353
    /// \param map An arc map storing the upper bounds.
354
    /// Its \c Value type must be convertible to the \c Value type
355
    /// of the algorithm.
356
    ///
357
    /// \return <tt>(*this)</tt>
358
    template<typename UpperMap>
359
    CapacityScaling& upperMap(const UpperMap& map) {
360
      for (ArcIt a(_graph); a != INVALID; ++a) {
361
        _upper[_arc_idf[a]] = map[a];
407 362
      }
408
      _potential = &map;
409 363
      return *this;
410 364
    }
411 365

	
366
    /// \brief Set the costs of the arcs.
367
    ///
368
    /// This function sets the costs of the arcs.
369
    /// If it is not used before calling \ref run(), the costs
370
    /// will be set to \c 1 on all arcs.
371
    ///
372
    /// \param map An arc map storing the costs.
373
    /// Its \c Value type must be convertible to the \c Cost type
374
    /// of the algorithm.
375
    ///
376
    /// \return <tt>(*this)</tt>
377
    template<typename CostMap>
378
    CapacityScaling& costMap(const CostMap& map) {
379
      for (ArcIt a(_graph); a != INVALID; ++a) {
380
        _cost[_arc_idf[a]] =  map[a];
381
        _cost[_arc_idb[a]] = -map[a];
382
      }
383
      return *this;
384
    }
385

	
386
    /// \brief Set the supply values of the nodes.
387
    ///
388
    /// This function sets the supply values of the nodes.
389
    /// If neither this function nor \ref stSupply() is used before
390
    /// calling \ref run(), the supply of each node will be set to zero.
391
    ///
392
    /// \param map A node map storing the supply values.
393
    /// Its \c Value type must be convertible to the \c Value type
394
    /// of the algorithm.
395
    ///
396
    /// \return <tt>(*this)</tt>
397
    template<typename SupplyMap>
398
    CapacityScaling& supplyMap(const SupplyMap& map) {
399
      for (NodeIt n(_graph); n != INVALID; ++n) {
400
        _supply[_node_id[n]] = map[n];
401
      }
402
      return *this;
403
    }
404

	
405
    /// \brief Set single source and target nodes and a supply value.
406
    ///
407
    /// This function sets a single source node and a single target node
408
    /// and the required flow value.
409
    /// If neither this function nor \ref supplyMap() is used before
410
    /// calling \ref run(), the supply of each node will be set to zero.
411
    ///
412
    /// Using this function has the same effect as using \ref supplyMap()
413
    /// with such a map in which \c k is assigned to \c s, \c -k is
414
    /// assigned to \c t and all other nodes have zero supply value.
415
    ///
416
    /// \param s The source node.
417
    /// \param t The target node.
418
    /// \param k The required amount of flow from node \c s to node \c t
419
    /// (i.e. the supply of \c s and the demand of \c t).
420
    ///
421
    /// \return <tt>(*this)</tt>
422
    CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
423
      for (int i = 0; i != _node_num; ++i) {
424
        _supply[i] = 0;
425
      }
426
      _supply[_node_id[s]] =  k;
427
      _supply[_node_id[t]] = -k;
428
      return *this;
429
    }
430
    
431
    /// @}
432

	
412 433
    /// \name Execution control
413 434

	
414 435
    /// @{
415 436

	
416 437
    /// \brief Run the algorithm.
417 438
    ///
418 439
    /// This function runs the algorithm.
440
    /// The paramters can be specified using functions \ref lowerMap(),
441
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
442
    /// For example,
443
    /// \code
444
    ///   CapacityScaling<ListDigraph> cs(graph);
445
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
446
    ///     .supplyMap(sup).run();
447
    /// \endcode
448
    ///
449
    /// This function can be called more than once. All the parameters
450
    /// that have been given are kept for the next call, unless
451
    /// \ref reset() is called, thus only the modified parameters
452
    /// have to be set again. See \ref reset() for examples.
453
    /// However the underlying digraph must not be modified after this
454
    /// class have been constructed, since it copies the digraph.
419 455
    ///
420 456
    /// \param scaling Enable or disable capacity scaling.
421
    /// If the maximum arc capacity and/or the amount of total supply
457
    /// If the maximum upper bound and/or the amount of total supply
422 458
    /// is rather small, the algorithm could be slightly faster without
423 459
    /// scaling.
424 460
    ///
425
    /// \return \c true if a feasible flow can be found.
426
    bool run(bool scaling = true) {
427
      return init(scaling) && start();
461
    /// \return \c INFEASIBLE if no feasible flow exists,
462
    /// \n \c OPTIMAL if the problem has optimal solution
463
    /// (i.e. it is feasible and bounded), and the algorithm has found
464
    /// optimal flow and node potentials (primal and dual solutions),
465
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
466
    /// and infinite upper bound. It means that the objective function
467
    /// is unbounded on that arc, however note that it could actually be
468
    /// bounded over the feasible flows, but this algroithm cannot handle
469
    /// these cases.
470
    ///
471
    /// \see ProblemType
472
    ProblemType run(bool scaling = true) {
473
      ProblemType pt = init(scaling);
474
      if (pt != OPTIMAL) return pt;
475
      return start();
476
    }
477

	
478
    /// \brief Reset all the parameters that have been given before.
479
    ///
480
    /// This function resets all the paramaters that have been given
481
    /// before using functions \ref lowerMap(), \ref upperMap(),
482
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
483
    ///
484
    /// It is useful for multiple run() calls. If this function is not
485
    /// used, all the parameters given before are kept for the next
486
    /// \ref run() call.
487
    /// However the underlying digraph must not be modified after this
488
    /// class have been constructed, since it copies and extends the graph.
489
    ///
490
    /// For example,
491
    /// \code
492
    ///   CapacityScaling<ListDigraph> cs(graph);
493
    ///
494
    ///   // First run
495
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
496
    ///     .supplyMap(sup).run();
497
    ///
498
    ///   // Run again with modified cost map (reset() is not called,
499
    ///   // so only the cost map have to be set again)
500
    ///   cost[e] += 100;
501
    ///   cs.costMap(cost).run();
502
    ///
503
    ///   // Run again from scratch using reset()
504
    ///   // (the lower bounds will be set to zero on all arcs)
505
    ///   cs.reset();
506
    ///   cs.upperMap(capacity).costMap(cost)
507
    ///     .supplyMap(sup).run();
508
    /// \endcode
509
    ///
510
    /// \return <tt>(*this)</tt>
511
    CapacityScaling& reset() {
512
      for (int i = 0; i != _node_num; ++i) {
513
        _supply[i] = 0;
514
      }
515
      for (int j = 0; j != _res_arc_num; ++j) {
516
        _lower[j] = 0;
517
        _upper[j] = INF;
518
        _cost[j] = _forward[j] ? 1 : -1;
519
      }
520
      _have_lower = false;
521
      return *this;
428 522
    }
429 523

	
430 524
    /// @}
431 525

	
432 526
    /// \name Query Functions
433 527
    /// The results of the algorithm can be obtained using these
434 528
    /// functions.\n
435
    /// \ref lemon::CapacityScaling::run() "run()" must be called before
436
    /// using them.
529
    /// The \ref run() function must be called before using them.
437 530

	
438 531
    /// @{
439 532

	
440
    /// \brief Return a const reference to the arc map storing the
441
    /// found flow.
533
    /// \brief Return the total cost of the found flow.
442 534
    ///
443
    /// Return a const reference to the arc map storing the found flow.
535
    /// This function returns the total cost of the found flow.
536
    /// Its complexity is O(e).
537
    ///
538
    /// \note The return type of the function can be specified as a
539
    /// template parameter. For example,
540
    /// \code
541
    ///   cs.totalCost<double>();
542
    /// \endcode
543
    /// It is useful if the total cost cannot be stored in the \c Cost
544
    /// type of the algorithm, which is the default return type of the
545
    /// function.
444 546
    ///
445 547
    /// \pre \ref run() must be called before using this function.
446
    const FlowMap& flowMap() const {
447
      return *_flow;
548
    template <typename Number>
549
    Number totalCost() const {
550
      Number c = 0;
551
      for (ArcIt a(_graph); a != INVALID; ++a) {
552
        int i = _arc_idb[a];
553
        c += static_cast<Number>(_res_cap[i]) *
554
             (-static_cast<Number>(_cost[i]));
555
      }
556
      return c;
448 557
    }
449 558

	
450
    /// \brief Return a const reference to the node map storing the
451
    /// found potentials (the dual solution).
452
    ///
453
    /// Return a const reference to the node map storing the found
454
    /// potentials (the dual solution).
455
    ///
456
    /// \pre \ref run() must be called before using this function.
457
    const PotentialMap& potentialMap() const {
458
      return *_potential;
559
#ifndef DOXYGEN
560
    Cost totalCost() const {
561
      return totalCost<Cost>();
459 562
    }
563
#endif
460 564

	
461 565
    /// \brief Return the flow on the given arc.
462 566
    ///
463
    /// Return the flow on the given arc.
567
    /// This function returns the flow on the given arc.
464 568
    ///
465 569
    /// \pre \ref run() must be called before using this function.
466
    Capacity flow(const Arc& arc) const {
467
      return (*_flow)[arc];
570
    Value flow(const Arc& a) const {
571
      return _res_cap[_arc_idb[a]];
468 572
    }
469 573

	
470
    /// \brief Return the potential of the given node.
574
    /// \brief Return the flow map (the primal solution).
471 575
    ///
472
    /// Return the potential of the given node.
576
    /// This function copies the flow value on each arc into the given
577
    /// map. The \c Value type of the algorithm must be convertible to
578
    /// the \c Value type of the map.
473 579
    ///
474 580
    /// \pre \ref run() must be called before using this function.
475
    Cost potential(const Node& node) const {
476
      return (*_potential)[node];
581
    template <typename FlowMap>
582
    void flowMap(FlowMap &map) const {
583
      for (ArcIt a(_graph); a != INVALID; ++a) {
584
        map.set(a, _res_cap[_arc_idb[a]]);
585
      }
477 586
    }
478 587

	
479
    /// \brief Return the total cost of the found flow.
588
    /// \brief Return the potential (dual value) of the given node.
480 589
    ///
481
    /// Return the total cost of the found flow. The complexity of the
482
    /// function is \f$ O(e) \f$.
590
    /// This function returns the potential (dual value) of the
591
    /// given node.
483 592
    ///
484 593
    /// \pre \ref run() must be called before using this function.
485
    Cost totalCost() const {
486
      Cost c = 0;
487
      for (ArcIt e(_graph); e != INVALID; ++e)
488
        c += (*_flow)[e] * _cost[e];
489
      return c;
594
    Cost potential(const Node& n) const {
595
      return _pi[_node_id[n]];
596
    }
597

	
598
    /// \brief Return the potential map (the dual solution).
599
    ///
600
    /// This function copies the potential (dual value) of each node
601
    /// into the given map.
602
    /// The \c Cost type of the algorithm must be convertible to the
603
    /// \c Value type of the map.
604
    ///
605
    /// \pre \ref run() must be called before using this function.
606
    template <typename PotentialMap>
607
    void potentialMap(PotentialMap &map) const {
608
      for (NodeIt n(_graph); n != INVALID; ++n) {
609
        map.set(n, _pi[_node_id[n]]);
610
      }
490 611
    }
491 612

	
492 613
    /// @}
493 614

	
494 615
  private:
495 616

	
496
    /// Initialize the algorithm.
497
    bool init(bool scaling) {
498
      if (!_valid_supply) return false;
617
    // Initialize the algorithm
618
    ProblemType init(bool scaling) {
619
      if (_node_num == 0) return INFEASIBLE;
499 620

	
500
      // Initializing maps
501
      if (!_flow) {
502
        _flow = new FlowMap(_graph);
503
        _local_flow = true;
621
      // Check the sum of supply values
622
      _sum_supply = 0;
623
      for (int i = 0; i != _root; ++i) {
624
        _sum_supply += _supply[i];
504 625
      }
505
      if (!_potential) {
506
        _potential = new PotentialMap(_graph);
507
        _local_potential = true;
626
      if (_sum_supply > 0) return INFEASIBLE;
627
      
628
      // Initialize maps
629
      for (int i = 0; i != _root; ++i) {
630
        _pi[i] = 0;
631
        _excess[i] = _supply[i];
508 632
      }
509
      for (ArcIt e(_graph); e != INVALID; ++e) (*_flow)[e] = 0;
510
      for (NodeIt n(_graph); n != INVALID; ++n) (*_potential)[n] = 0;
511 633

	
512
      _dijkstra = new ResidualDijkstra( _graph, *_flow, _res_cap, _cost,
513
                                        _excess, *_potential, _pred );
634
      // Remove non-zero lower bounds
635
      if (_have_lower) {
636
        for (int i = 0; i != _root; ++i) {
637
          for (int j = _first_out[i]; j != _first_out[i+1]; ++j) {
638
            if (_forward[j]) {
639
              Value c = _lower[j];
640
              if (c >= 0) {
641
                _res_cap[j] = _upper[j] < INF ? _upper[j] - c : INF;
642
              } else {
643
                _res_cap[j] = _upper[j] < INF + c ? _upper[j] - c : INF;
644
              }
645
              _excess[i] -= c;
646
              _excess[_target[j]] += c;
647
            } else {
648
              _res_cap[j] = 0;
649
            }
650
          }
651
        }
652
      } else {
653
        for (int j = 0; j != _res_arc_num; ++j) {
654
          _res_cap[j] = _forward[j] ? _upper[j] : 0;
655
        }
656
      }
514 657

	
515
      // Initializing delta value
658
      // Handle negative costs
659
      for (int u = 0; u != _root; ++u) {
660
        for (int a = _first_out[u]; a != _first_out[u+1]; ++a) {
661
          Value rc = _res_cap[a];
662
          if (_cost[a] < 0 && rc > 0) {
663
            if (rc == INF) return UNBOUNDED;
664
            _excess[u] -= rc;
665
            _excess[_target[a]] += rc;
666
            _res_cap[a] = 0;
667
            _res_cap[_reverse[a]] += rc;
668
          }
669
        }
670
      }
671
      
672
      // Handle GEQ supply type
673
      if (_sum_supply < 0) {
674
        _pi[_root] = 0;
675
        _excess[_root] = -_sum_supply;
676
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
677
          int u = _target[a];
678
          if (_excess[u] < 0) {
679
            _res_cap[a] = -_excess[u] + 1;
680
          } else {
681
            _res_cap[a] = 1;
682
          }
683
          _res_cap[_reverse[a]] = 0;
684
          _cost[a] = 0;
685
          _cost[_reverse[a]] = 0;
686
        }
687
      } else {
688
        _pi[_root] = 0;
689
        _excess[_root] = 0;
690
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
691
          _res_cap[a] = 1;
692
          _res_cap[_reverse[a]] = 0;
693
          _cost[a] = 0;
694
          _cost[_reverse[a]] = 0;
695
        }
696
      }
697

	
698
      // Initialize delta value
516 699
      if (scaling) {
517 700
        // With scaling
518
        Supply max_sup = 0, max_dem = 0;
519
        for (NodeIt n(_graph); n != INVALID; ++n) {
520
          if ( _supply[n] > max_sup) max_sup =  _supply[n];
521
          if (-_supply[n] > max_dem) max_dem = -_supply[n];
701
        Value max_sup = 0, max_dem = 0;
702
        for (int i = 0; i != _node_num; ++i) {
703
          if ( _excess[i] > max_sup) max_sup =  _excess[i];
704
          if (-_excess[i] > max_dem) max_dem = -_excess[i];
522 705
        }
523
        Capacity max_cap = 0;
524
        for (ArcIt e(_graph); e != INVALID; ++e) {
525
          if (_capacity[e] > max_cap) max_cap = _capacity[e];
706
        Value max_cap = 0;
707
        for (int j = 0; j != _res_arc_num; ++j) {
708
          if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
526 709
        }
527 710
        max_sup = std::min(std::min(max_sup, max_dem), max_cap);
528 711
        _phase_num = 0;
529 712
        for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2)
530 713
          ++_phase_num;
531 714
      } else {
532 715
        // Without scaling
533 716
        _delta = 1;
534 717
      }
535 718

	
536
      return true;
719
      return OPTIMAL;
537 720
    }
538 721

	
539
    bool start() {
722
    ProblemType start() {
723
      // Execute the algorithm
724
      ProblemType pt;
540 725
      if (_delta > 1)
541
        return startWithScaling();
726
        pt = startWithScaling();
542 727
      else
543
        return startWithoutScaling();
728
        pt = startWithoutScaling();
729

	
730
      // Handle non-zero lower bounds
731
      if (_have_lower) {
732
        for (int j = 0; j != _res_arc_num - _node_num + 1; ++j) {
733
          if (!_forward[j]) _res_cap[j] += _lower[j];
734
        }
735
      }
736

	
737
      // Shift potentials if necessary
738
      Cost pr = _pi[_root];
739
      if (_sum_supply < 0 || pr > 0) {
740
        for (int i = 0; i != _node_num; ++i) {
741
          _pi[i] -= pr;
742
        }        
743
      }
744
      
745
      return pt;
544 746
    }
545 747

	
546
    /// Execute the capacity scaling algorithm.
547
    bool startWithScaling() {
548
      // Processing capacity scaling phases
549
      Node s, t;
748
    // Execute the capacity scaling algorithm
749
    ProblemType startWithScaling() {
750
      // Process capacity scaling phases
751
      int s, t;
550 752
      int phase_cnt = 0;
551 753
      int factor = 4;
754
      ResidualDijkstra _dijkstra(*this);
552 755
      while (true) {
553
        // Saturating all arcs not satisfying the optimality condition
554
        for (ArcIt e(_graph); e != INVALID; ++e) {
555
          Node u = _graph.source(e), v = _graph.target(e);
556
          Cost c = _cost[e] + (*_potential)[u] - (*_potential)[v];
557
          if (c < 0 && _res_cap[e] >= _delta) {
558
            _excess[u] -= _res_cap[e];
559
            _excess[v] += _res_cap[e];
560
            (*_flow)[e] = _capacity[e];
561
            _res_cap[e] = 0;
562
          }
563
          else if (c > 0 && (*_flow)[e] >= _delta) {
564
            _excess[u] += (*_flow)[e];
565
            _excess[v] -= (*_flow)[e];
566
            (*_flow)[e] = 0;
567
            _res_cap[e] = _capacity[e];
756
        // Saturate all arcs not satisfying the optimality condition
757
        for (int u = 0; u != _node_num; ++u) {
758
          for (int a = _first_out[u]; a != _first_out[u+1]; ++a) {
759
            int v = _target[a];
760
            Cost c = _cost[a] + _pi[u] - _pi[v];
761
            Value rc = _res_cap[a];
762
            if (c < 0 && rc >= _delta) {
763
              _excess[u] -= rc;
764
              _excess[v] += rc;
765
              _res_cap[a] = 0;
766
              _res_cap[_reverse[a]] += rc;
767
            }
568 768
          }
569 769
        }
570 770

	
571
        // Finding excess nodes and deficit nodes
771
        // Find excess nodes and deficit nodes
572 772
        _excess_nodes.clear();
573 773
        _deficit_nodes.clear();
574
        for (NodeIt n(_graph); n != INVALID; ++n) {
575
          if (_excess[n] >=  _delta) _excess_nodes.push_back(n);
576
          if (_excess[n] <= -_delta) _deficit_nodes.push_back(n);
774
        for (int u = 0; u != _node_num; ++u) {
775
          if (_excess[u] >=  _delta) _excess_nodes.push_back(u);
776
          if (_excess[u] <= -_delta) _deficit_nodes.push_back(u);
577 777
        }
578 778
        int next_node = 0, next_def_node = 0;
579 779

	
580
        // Finding augmenting shortest paths
780
        // Find augmenting shortest paths
581 781
        while (next_node < int(_excess_nodes.size())) {
582
          // Checking deficit nodes
782
          // Check deficit nodes
583 783
          if (_delta > 1) {
584 784
            bool delta_deficit = false;
585 785
            for ( ; next_def_node < int(_deficit_nodes.size());
586 786
                    ++next_def_node ) {
587 787
              if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
588 788
                delta_deficit = true;
589 789
                break;
590 790
              }
591 791
            }
592 792
            if (!delta_deficit) break;
593 793
          }
594 794

	
595
          // Running Dijkstra
795
          // Run Dijkstra in the residual network
596 796
          s = _excess_nodes[next_node];
597
          if ((t = _dijkstra->run(s, _delta)) == INVALID) {
797
          if ((t = _dijkstra.run(s, _delta)) == -1) {
598 798
            if (_delta > 1) {
599 799
              ++next_node;
600 800
              continue;
601 801
            }
602
            return false;
802
            return INFEASIBLE;
603 803
          }
604 804

	
605
          // Augmenting along a shortest path from s to t.
606
          Capacity d = std::min(_excess[s], -_excess[t]);
607
          Node u = t;
608
          Arc e;
805
          // Augment along a shortest path from s to t
806
          Value d = std::min(_excess[s], -_excess[t]);
807
          int u = t;
808
          int a;
609 809
          if (d > _delta) {
610
            while ((e = _pred[u]) != INVALID) {
611
              Capacity rc;
612
              if (u == _graph.target(e)) {
613
                rc = _res_cap[e];
614
                u = _graph.source(e);
615
              } else {
616
                rc = (*_flow)[e];
617
                u = _graph.target(e);
618
              }
619
              if (rc < d) d = rc;
810
            while ((a = _pred[u]) != -1) {
811
              if (_res_cap[a] < d) d = _res_cap[a];
812
              u = _source[a];
620 813
            }
621 814
          }
622 815
          u = t;
623
          while ((e = _pred[u]) != INVALID) {
624
            if (u == _graph.target(e)) {
625
              (*_flow)[e] += d;
626
              _res_cap[e] -= d;
627
              u = _graph.source(e);
628
            } else {
629
              (*_flow)[e] -= d;
630
              _res_cap[e] += d;
631
              u = _graph.target(e);
632
            }
816
          while ((a = _pred[u]) != -1) {
817
            _res_cap[a] -= d;
818
            _res_cap[_reverse[a]] += d;
819
            u = _source[a];
633 820
          }
634 821
          _excess[s] -= d;
635 822
          _excess[t] += d;
636 823

	
637 824
          if (_excess[s] < _delta) ++next_node;
638 825
        }
639 826

	
640 827
        if (_delta == 1) break;
641
        if (++phase_cnt > _phase_num / 4) factor = 2;
828
        if (++phase_cnt == _phase_num / 4) factor = 2;
642 829
        _delta = _delta <= factor ? 1 : _delta / factor;
643 830
      }
644 831

	
645
      // Handling non-zero lower bounds
646
      if (_lower) {
647
        for (ArcIt e(_graph); e != INVALID; ++e)
648
          (*_flow)[e] += (*_lower)[e];
649
      }
650
      return true;
832
      return OPTIMAL;
651 833
    }
652 834

	
653
    /// Execute the successive shortest path algorithm.
654
    bool startWithoutScaling() {
655
      // Finding excess nodes
656
      for (NodeIt n(_graph); n != INVALID; ++n)
657
        if (_excess[n] > 0) _excess_nodes.push_back(n);
658
      if (_excess_nodes.size() == 0) return true;
835
    // Execute the successive shortest path algorithm
836
    ProblemType startWithoutScaling() {
837
      // Find excess nodes
838
      _excess_nodes.clear();
839
      for (int i = 0; i != _node_num; ++i) {
840
        if (_excess[i] > 0) _excess_nodes.push_back(i);
841
      }
842
      if (_excess_nodes.size() == 0) return OPTIMAL;
659 843
      int next_node = 0;
660 844

	
661
      // Finding shortest paths
662
      Node s, t;
845
      // Find shortest paths
846
      int s, t;
847
      ResidualDijkstra _dijkstra(*this);
663 848
      while ( _excess[_excess_nodes[next_node]] > 0 ||
664 849
              ++next_node < int(_excess_nodes.size()) )
665 850
      {
666
        // Running Dijkstra
851
        // Run Dijkstra in the residual network
667 852
        s = _excess_nodes[next_node];
668
        if ((t = _dijkstra->run(s)) == INVALID) return false;
853
        if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
669 854

	
670
        // Augmenting along a shortest path from s to t
671
        Capacity d = std::min(_excess[s], -_excess[t]);
672
        Node u = t;
673
        Arc e;
855
        // Augment along a shortest path from s to t
856
        Value d = std::min(_excess[s], -_excess[t]);
857
        int u = t;
858
        int a;
674 859
        if (d > 1) {
675
          while ((e = _pred[u]) != INVALID) {
676
            Capacity rc;
677
            if (u == _graph.target(e)) {
678
              rc = _res_cap[e];
679
              u = _graph.source(e);
680
            } else {
681
              rc = (*_flow)[e];
682
              u = _graph.target(e);
683
            }
684
            if (rc < d) d = rc;
860
          while ((a = _pred[u]) != -1) {
861
            if (_res_cap[a] < d) d = _res_cap[a];
862
            u = _source[a];
685 863
          }
686 864
        }
687 865
        u = t;
688
        while ((e = _pred[u]) != INVALID) {
689
          if (u == _graph.target(e)) {
690
            (*_flow)[e] += d;
691
            _res_cap[e] -= d;
692
            u = _graph.source(e);
693
          } else {
694
            (*_flow)[e] -= d;
695
            _res_cap[e] += d;
696
            u = _graph.target(e);
697
          }
866
        while ((a = _pred[u]) != -1) {
867
          _res_cap[a] -= d;
868
          _res_cap[_reverse[a]] += d;
869
          u = _source[a];
698 870
        }
699 871
        _excess[s] -= d;
700 872
        _excess[t] += d;
701 873
      }
702 874

	
703
      // Handling non-zero lower bounds
704
      if (_lower) {
705
        for (ArcIt e(_graph); e != INVALID; ++e)
706
          (*_flow)[e] += (*_lower)[e];
707
      }
708
      return true;
875
      return OPTIMAL;
709 876
    }
710 877

	
711 878
  }; //class CapacityScaling
712 879

	
713 880
  ///@}
714 881

	
715 882
} //namespace lemon
716 883

	
717 884
#endif //LEMON_CAPACITY_SCALING_H
0 comments (0 inline)