... | ... |
@@ -255,1069 +255,1070 @@ |
255 | 255 |
const CostVector &_pi; |
256 | 256 |
int &_in_arc; |
257 | 257 |
int _search_arc_num; |
258 | 258 |
|
259 | 259 |
// Pivot rule data |
260 | 260 |
int _next_arc; |
261 | 261 |
|
262 | 262 |
public: |
263 | 263 |
|
264 | 264 |
// Constructor |
265 | 265 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
266 | 266 |
_source(ns._source), _target(ns._target), |
267 | 267 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
268 | 268 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
269 | 269 |
_next_arc(0) |
270 | 270 |
{} |
271 | 271 |
|
272 | 272 |
// Find next entering arc |
273 | 273 |
bool findEnteringArc() { |
274 | 274 |
Cost c; |
275 | 275 |
for (int e = _next_arc; e != _search_arc_num; ++e) { |
276 | 276 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
277 | 277 |
if (c < 0) { |
278 | 278 |
_in_arc = e; |
279 | 279 |
_next_arc = e + 1; |
280 | 280 |
return true; |
281 | 281 |
} |
282 | 282 |
} |
283 | 283 |
for (int e = 0; e != _next_arc; ++e) { |
284 | 284 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
285 | 285 |
if (c < 0) { |
286 | 286 |
_in_arc = e; |
287 | 287 |
_next_arc = e + 1; |
288 | 288 |
return true; |
289 | 289 |
} |
290 | 290 |
} |
291 | 291 |
return false; |
292 | 292 |
} |
293 | 293 |
|
294 | 294 |
}; //class FirstEligiblePivotRule |
295 | 295 |
|
296 | 296 |
|
297 | 297 |
// Implementation of the Best Eligible pivot rule |
298 | 298 |
class BestEligiblePivotRule |
299 | 299 |
{ |
300 | 300 |
private: |
301 | 301 |
|
302 | 302 |
// References to the NetworkSimplex class |
303 | 303 |
const IntVector &_source; |
304 | 304 |
const IntVector &_target; |
305 | 305 |
const CostVector &_cost; |
306 | 306 |
const CharVector &_state; |
307 | 307 |
const CostVector &_pi; |
308 | 308 |
int &_in_arc; |
309 | 309 |
int _search_arc_num; |
310 | 310 |
|
311 | 311 |
public: |
312 | 312 |
|
313 | 313 |
// Constructor |
314 | 314 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
315 | 315 |
_source(ns._source), _target(ns._target), |
316 | 316 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
317 | 317 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
318 | 318 |
{} |
319 | 319 |
|
320 | 320 |
// Find next entering arc |
321 | 321 |
bool findEnteringArc() { |
322 | 322 |
Cost c, min = 0; |
323 | 323 |
for (int e = 0; e != _search_arc_num; ++e) { |
324 | 324 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
325 | 325 |
if (c < min) { |
326 | 326 |
min = c; |
327 | 327 |
_in_arc = e; |
328 | 328 |
} |
329 | 329 |
} |
330 | 330 |
return min < 0; |
331 | 331 |
} |
332 | 332 |
|
333 | 333 |
}; //class BestEligiblePivotRule |
334 | 334 |
|
335 | 335 |
|
336 | 336 |
// Implementation of the Block Search pivot rule |
337 | 337 |
class BlockSearchPivotRule |
338 | 338 |
{ |
339 | 339 |
private: |
340 | 340 |
|
341 | 341 |
// References to the NetworkSimplex class |
342 | 342 |
const IntVector &_source; |
343 | 343 |
const IntVector &_target; |
344 | 344 |
const CostVector &_cost; |
345 | 345 |
const CharVector &_state; |
346 | 346 |
const CostVector &_pi; |
347 | 347 |
int &_in_arc; |
348 | 348 |
int _search_arc_num; |
349 | 349 |
|
350 | 350 |
// Pivot rule data |
351 | 351 |
int _block_size; |
352 | 352 |
int _next_arc; |
353 | 353 |
|
354 | 354 |
public: |
355 | 355 |
|
356 | 356 |
// Constructor |
357 | 357 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
358 | 358 |
_source(ns._source), _target(ns._target), |
359 | 359 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
360 | 360 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
361 | 361 |
_next_arc(0) |
362 | 362 |
{ |
363 | 363 |
// The main parameters of the pivot rule |
364 | 364 |
const double BLOCK_SIZE_FACTOR = 1.0; |
365 | 365 |
const int MIN_BLOCK_SIZE = 10; |
366 | 366 |
|
367 | 367 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
368 | 368 |
std::sqrt(double(_search_arc_num))), |
369 | 369 |
MIN_BLOCK_SIZE ); |
370 | 370 |
} |
371 | 371 |
|
372 | 372 |
// Find next entering arc |
373 | 373 |
bool findEnteringArc() { |
374 | 374 |
Cost c, min = 0; |
375 | 375 |
int cnt = _block_size; |
376 | 376 |
int e; |
377 | 377 |
for (e = _next_arc; e != _search_arc_num; ++e) { |
378 | 378 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
379 | 379 |
if (c < min) { |
380 | 380 |
min = c; |
381 | 381 |
_in_arc = e; |
382 | 382 |
} |
383 | 383 |
if (--cnt == 0) { |
384 | 384 |
if (min < 0) goto search_end; |
385 | 385 |
cnt = _block_size; |
386 | 386 |
} |
387 | 387 |
} |
388 | 388 |
for (e = 0; e != _next_arc; ++e) { |
389 | 389 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
390 | 390 |
if (c < min) { |
391 | 391 |
min = c; |
392 | 392 |
_in_arc = e; |
393 | 393 |
} |
394 | 394 |
if (--cnt == 0) { |
395 | 395 |
if (min < 0) goto search_end; |
396 | 396 |
cnt = _block_size; |
397 | 397 |
} |
398 | 398 |
} |
399 | 399 |
if (min >= 0) return false; |
400 | 400 |
|
401 | 401 |
search_end: |
402 | 402 |
_next_arc = e; |
403 | 403 |
return true; |
404 | 404 |
} |
405 | 405 |
|
406 | 406 |
}; //class BlockSearchPivotRule |
407 | 407 |
|
408 | 408 |
|
409 | 409 |
// Implementation of the Candidate List pivot rule |
410 | 410 |
class CandidateListPivotRule |
411 | 411 |
{ |
412 | 412 |
private: |
413 | 413 |
|
414 | 414 |
// References to the NetworkSimplex class |
415 | 415 |
const IntVector &_source; |
416 | 416 |
const IntVector &_target; |
417 | 417 |
const CostVector &_cost; |
418 | 418 |
const CharVector &_state; |
419 | 419 |
const CostVector &_pi; |
420 | 420 |
int &_in_arc; |
421 | 421 |
int _search_arc_num; |
422 | 422 |
|
423 | 423 |
// Pivot rule data |
424 | 424 |
IntVector _candidates; |
425 | 425 |
int _list_length, _minor_limit; |
426 | 426 |
int _curr_length, _minor_count; |
427 | 427 |
int _next_arc; |
428 | 428 |
|
429 | 429 |
public: |
430 | 430 |
|
431 | 431 |
/// Constructor |
432 | 432 |
CandidateListPivotRule(NetworkSimplex &ns) : |
433 | 433 |
_source(ns._source), _target(ns._target), |
434 | 434 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
435 | 435 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
436 | 436 |
_next_arc(0) |
437 | 437 |
{ |
438 | 438 |
// The main parameters of the pivot rule |
439 | 439 |
const double LIST_LENGTH_FACTOR = 0.25; |
440 | 440 |
const int MIN_LIST_LENGTH = 10; |
441 | 441 |
const double MINOR_LIMIT_FACTOR = 0.1; |
442 | 442 |
const int MIN_MINOR_LIMIT = 3; |
443 | 443 |
|
444 | 444 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
445 | 445 |
std::sqrt(double(_search_arc_num))), |
446 | 446 |
MIN_LIST_LENGTH ); |
447 | 447 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
448 | 448 |
MIN_MINOR_LIMIT ); |
449 | 449 |
_curr_length = _minor_count = 0; |
450 | 450 |
_candidates.resize(_list_length); |
451 | 451 |
} |
452 | 452 |
|
453 | 453 |
/// Find next entering arc |
454 | 454 |
bool findEnteringArc() { |
455 | 455 |
Cost min, c; |
456 | 456 |
int e; |
457 | 457 |
if (_curr_length > 0 && _minor_count < _minor_limit) { |
458 | 458 |
// Minor iteration: select the best eligible arc from the |
459 | 459 |
// current candidate list |
460 | 460 |
++_minor_count; |
461 | 461 |
min = 0; |
462 | 462 |
for (int i = 0; i < _curr_length; ++i) { |
463 | 463 |
e = _candidates[i]; |
464 | 464 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
465 | 465 |
if (c < min) { |
466 | 466 |
min = c; |
467 | 467 |
_in_arc = e; |
468 | 468 |
} |
469 | 469 |
else if (c >= 0) { |
470 | 470 |
_candidates[i--] = _candidates[--_curr_length]; |
471 | 471 |
} |
472 | 472 |
} |
473 | 473 |
if (min < 0) return true; |
474 | 474 |
} |
475 | 475 |
|
476 | 476 |
// Major iteration: build a new candidate list |
477 | 477 |
min = 0; |
478 | 478 |
_curr_length = 0; |
479 | 479 |
for (e = _next_arc; e != _search_arc_num; ++e) { |
480 | 480 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
481 | 481 |
if (c < 0) { |
482 | 482 |
_candidates[_curr_length++] = e; |
483 | 483 |
if (c < min) { |
484 | 484 |
min = c; |
485 | 485 |
_in_arc = e; |
486 | 486 |
} |
487 | 487 |
if (_curr_length == _list_length) goto search_end; |
488 | 488 |
} |
489 | 489 |
} |
490 | 490 |
for (e = 0; e != _next_arc; ++e) { |
491 | 491 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
492 | 492 |
if (c < 0) { |
493 | 493 |
_candidates[_curr_length++] = e; |
494 | 494 |
if (c < min) { |
495 | 495 |
min = c; |
496 | 496 |
_in_arc = e; |
497 | 497 |
} |
498 | 498 |
if (_curr_length == _list_length) goto search_end; |
499 | 499 |
} |
500 | 500 |
} |
501 | 501 |
if (_curr_length == 0) return false; |
502 | 502 |
|
503 | 503 |
search_end: |
504 | 504 |
_minor_count = 1; |
505 | 505 |
_next_arc = e; |
506 | 506 |
return true; |
507 | 507 |
} |
508 | 508 |
|
509 | 509 |
}; //class CandidateListPivotRule |
510 | 510 |
|
511 | 511 |
|
512 | 512 |
// Implementation of the Altering Candidate List pivot rule |
513 | 513 |
class AlteringListPivotRule |
514 | 514 |
{ |
515 | 515 |
private: |
516 | 516 |
|
517 | 517 |
// References to the NetworkSimplex class |
518 | 518 |
const IntVector &_source; |
519 | 519 |
const IntVector &_target; |
520 | 520 |
const CostVector &_cost; |
521 | 521 |
const CharVector &_state; |
522 | 522 |
const CostVector &_pi; |
523 | 523 |
int &_in_arc; |
524 | 524 |
int _search_arc_num; |
525 | 525 |
|
526 | 526 |
// Pivot rule data |
527 | 527 |
int _block_size, _head_length, _curr_length; |
528 | 528 |
int _next_arc; |
529 | 529 |
IntVector _candidates; |
530 | 530 |
CostVector _cand_cost; |
531 | 531 |
|
532 | 532 |
// Functor class to compare arcs during sort of the candidate list |
533 | 533 |
class SortFunc |
534 | 534 |
{ |
535 | 535 |
private: |
536 | 536 |
const CostVector &_map; |
537 | 537 |
public: |
538 | 538 |
SortFunc(const CostVector &map) : _map(map) {} |
539 | 539 |
bool operator()(int left, int right) { |
540 | 540 |
return _map[left] > _map[right]; |
541 | 541 |
} |
542 | 542 |
}; |
543 | 543 |
|
544 | 544 |
SortFunc _sort_func; |
545 | 545 |
|
546 | 546 |
public: |
547 | 547 |
|
548 | 548 |
// Constructor |
549 | 549 |
AlteringListPivotRule(NetworkSimplex &ns) : |
550 | 550 |
_source(ns._source), _target(ns._target), |
551 | 551 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
552 | 552 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
553 | 553 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
554 | 554 |
{ |
555 | 555 |
// The main parameters of the pivot rule |
556 | 556 |
const double BLOCK_SIZE_FACTOR = 1.0; |
557 | 557 |
const int MIN_BLOCK_SIZE = 10; |
558 | 558 |
const double HEAD_LENGTH_FACTOR = 0.1; |
559 | 559 |
const int MIN_HEAD_LENGTH = 3; |
560 | 560 |
|
561 | 561 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
562 | 562 |
std::sqrt(double(_search_arc_num))), |
563 | 563 |
MIN_BLOCK_SIZE ); |
564 | 564 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
565 | 565 |
MIN_HEAD_LENGTH ); |
566 | 566 |
_candidates.resize(_head_length + _block_size); |
567 | 567 |
_curr_length = 0; |
568 | 568 |
} |
569 | 569 |
|
570 | 570 |
// Find next entering arc |
571 | 571 |
bool findEnteringArc() { |
572 | 572 |
// Check the current candidate list |
573 | 573 |
int e; |
574 | 574 |
Cost c; |
575 | 575 |
for (int i = 0; i != _curr_length; ++i) { |
576 | 576 |
e = _candidates[i]; |
577 | 577 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
578 | 578 |
if (c < 0) { |
579 | 579 |
_cand_cost[e] = c; |
580 | 580 |
} else { |
581 | 581 |
_candidates[i--] = _candidates[--_curr_length]; |
582 | 582 |
} |
583 | 583 |
} |
584 | 584 |
|
585 | 585 |
// Extend the list |
586 | 586 |
int cnt = _block_size; |
587 | 587 |
int limit = _head_length; |
588 | 588 |
|
589 | 589 |
for (e = _next_arc; e != _search_arc_num; ++e) { |
590 | 590 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
591 | 591 |
if (c < 0) { |
592 | 592 |
_cand_cost[e] = c; |
593 | 593 |
_candidates[_curr_length++] = e; |
594 | 594 |
} |
595 | 595 |
if (--cnt == 0) { |
596 | 596 |
if (_curr_length > limit) goto search_end; |
597 | 597 |
limit = 0; |
598 | 598 |
cnt = _block_size; |
599 | 599 |
} |
600 | 600 |
} |
601 | 601 |
for (e = 0; e != _next_arc; ++e) { |
602 | 602 |
_cand_cost[e] = _state[e] * |
603 | 603 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
604 | 604 |
if (_cand_cost[e] < 0) { |
605 | 605 |
_candidates[_curr_length++] = e; |
606 | 606 |
} |
607 | 607 |
if (--cnt == 0) { |
608 | 608 |
if (_curr_length > limit) goto search_end; |
609 | 609 |
limit = 0; |
610 | 610 |
cnt = _block_size; |
611 | 611 |
} |
612 | 612 |
} |
613 | 613 |
if (_curr_length == 0) return false; |
614 | 614 |
|
615 | 615 |
search_end: |
616 | 616 |
|
617 | 617 |
// Make heap of the candidate list (approximating a partial sort) |
618 | 618 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
619 | 619 |
_sort_func ); |
620 | 620 |
|
621 | 621 |
// Pop the first element of the heap |
622 | 622 |
_in_arc = _candidates[0]; |
623 | 623 |
_next_arc = e; |
624 | 624 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
625 | 625 |
_sort_func ); |
626 | 626 |
_curr_length = std::min(_head_length, _curr_length - 1); |
627 | 627 |
return true; |
628 | 628 |
} |
629 | 629 |
|
630 | 630 |
}; //class AlteringListPivotRule |
631 | 631 |
|
632 | 632 |
public: |
633 | 633 |
|
634 | 634 |
/// \brief Constructor. |
635 | 635 |
/// |
636 | 636 |
/// The constructor of the class. |
637 | 637 |
/// |
638 | 638 |
/// \param graph The digraph the algorithm runs on. |
639 |
/// \param arc_mixing Indicate if the arcs |
|
639 |
/// \param arc_mixing Indicate if the arcs will be stored in a |
|
640 | 640 |
/// mixed order in the internal data structure. |
641 |
/// In special cases, it could lead to better overall performance, |
|
642 |
/// but it is usually slower. Therefore it is disabled by default. |
|
643 |
|
|
641 |
/// In general, it leads to similar performance as using the original |
|
642 |
/// arc order, but it makes the algorithm more robust and in special |
|
643 |
/// cases, even significantly faster. Therefore, it is enabled by default. |
|
644 |
NetworkSimplex(const GR& graph, bool arc_mixing = true) : |
|
644 | 645 |
_graph(graph), _node_id(graph), _arc_id(graph), |
645 | 646 |
_arc_mixing(arc_mixing), |
646 | 647 |
MAX(std::numeric_limits<Value>::max()), |
647 | 648 |
INF(std::numeric_limits<Value>::has_infinity ? |
648 | 649 |
std::numeric_limits<Value>::infinity() : MAX) |
649 | 650 |
{ |
650 | 651 |
// Check the number types |
651 | 652 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
652 | 653 |
"The flow type of NetworkSimplex must be signed"); |
653 | 654 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
654 | 655 |
"The cost type of NetworkSimplex must be signed"); |
655 | 656 |
|
656 | 657 |
// Reset data structures |
657 | 658 |
reset(); |
658 | 659 |
} |
659 | 660 |
|
660 | 661 |
/// \name Parameters |
661 | 662 |
/// The parameters of the algorithm can be specified using these |
662 | 663 |
/// functions. |
663 | 664 |
|
664 | 665 |
/// @{ |
665 | 666 |
|
666 | 667 |
/// \brief Set the lower bounds on the arcs. |
667 | 668 |
/// |
668 | 669 |
/// This function sets the lower bounds on the arcs. |
669 | 670 |
/// If it is not used before calling \ref run(), the lower bounds |
670 | 671 |
/// will be set to zero on all arcs. |
671 | 672 |
/// |
672 | 673 |
/// \param map An arc map storing the lower bounds. |
673 | 674 |
/// Its \c Value type must be convertible to the \c Value type |
674 | 675 |
/// of the algorithm. |
675 | 676 |
/// |
676 | 677 |
/// \return <tt>(*this)</tt> |
677 | 678 |
template <typename LowerMap> |
678 | 679 |
NetworkSimplex& lowerMap(const LowerMap& map) { |
679 | 680 |
_have_lower = true; |
680 | 681 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
681 | 682 |
_lower[_arc_id[a]] = map[a]; |
682 | 683 |
} |
683 | 684 |
return *this; |
684 | 685 |
} |
685 | 686 |
|
686 | 687 |
/// \brief Set the upper bounds (capacities) on the arcs. |
687 | 688 |
/// |
688 | 689 |
/// This function sets the upper bounds (capacities) on the arcs. |
689 | 690 |
/// If it is not used before calling \ref run(), the upper bounds |
690 | 691 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
691 | 692 |
/// unbounded from above). |
692 | 693 |
/// |
693 | 694 |
/// \param map An arc map storing the upper bounds. |
694 | 695 |
/// Its \c Value type must be convertible to the \c Value type |
695 | 696 |
/// of the algorithm. |
696 | 697 |
/// |
697 | 698 |
/// \return <tt>(*this)</tt> |
698 | 699 |
template<typename UpperMap> |
699 | 700 |
NetworkSimplex& upperMap(const UpperMap& map) { |
700 | 701 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
701 | 702 |
_upper[_arc_id[a]] = map[a]; |
702 | 703 |
} |
703 | 704 |
return *this; |
704 | 705 |
} |
705 | 706 |
|
706 | 707 |
/// \brief Set the costs of the arcs. |
707 | 708 |
/// |
708 | 709 |
/// This function sets the costs of the arcs. |
709 | 710 |
/// If it is not used before calling \ref run(), the costs |
710 | 711 |
/// will be set to \c 1 on all arcs. |
711 | 712 |
/// |
712 | 713 |
/// \param map An arc map storing the costs. |
713 | 714 |
/// Its \c Value type must be convertible to the \c Cost type |
714 | 715 |
/// of the algorithm. |
715 | 716 |
/// |
716 | 717 |
/// \return <tt>(*this)</tt> |
717 | 718 |
template<typename CostMap> |
718 | 719 |
NetworkSimplex& costMap(const CostMap& map) { |
719 | 720 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
720 | 721 |
_cost[_arc_id[a]] = map[a]; |
721 | 722 |
} |
722 | 723 |
return *this; |
723 | 724 |
} |
724 | 725 |
|
725 | 726 |
/// \brief Set the supply values of the nodes. |
726 | 727 |
/// |
727 | 728 |
/// This function sets the supply values of the nodes. |
728 | 729 |
/// If neither this function nor \ref stSupply() is used before |
729 | 730 |
/// calling \ref run(), the supply of each node will be set to zero. |
730 | 731 |
/// |
731 | 732 |
/// \param map A node map storing the supply values. |
732 | 733 |
/// Its \c Value type must be convertible to the \c Value type |
733 | 734 |
/// of the algorithm. |
734 | 735 |
/// |
735 | 736 |
/// \return <tt>(*this)</tt> |
736 | 737 |
template<typename SupplyMap> |
737 | 738 |
NetworkSimplex& supplyMap(const SupplyMap& map) { |
738 | 739 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
739 | 740 |
_supply[_node_id[n]] = map[n]; |
740 | 741 |
} |
741 | 742 |
return *this; |
742 | 743 |
} |
743 | 744 |
|
744 | 745 |
/// \brief Set single source and target nodes and a supply value. |
745 | 746 |
/// |
746 | 747 |
/// This function sets a single source node and a single target node |
747 | 748 |
/// and the required flow value. |
748 | 749 |
/// If neither this function nor \ref supplyMap() is used before |
749 | 750 |
/// calling \ref run(), the supply of each node will be set to zero. |
750 | 751 |
/// |
751 | 752 |
/// Using this function has the same effect as using \ref supplyMap() |
752 | 753 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
753 | 754 |
/// assigned to \c t and all other nodes have zero supply value. |
754 | 755 |
/// |
755 | 756 |
/// \param s The source node. |
756 | 757 |
/// \param t The target node. |
757 | 758 |
/// \param k The required amount of flow from node \c s to node \c t |
758 | 759 |
/// (i.e. the supply of \c s and the demand of \c t). |
759 | 760 |
/// |
760 | 761 |
/// \return <tt>(*this)</tt> |
761 | 762 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
762 | 763 |
for (int i = 0; i != _node_num; ++i) { |
763 | 764 |
_supply[i] = 0; |
764 | 765 |
} |
765 | 766 |
_supply[_node_id[s]] = k; |
766 | 767 |
_supply[_node_id[t]] = -k; |
767 | 768 |
return *this; |
768 | 769 |
} |
769 | 770 |
|
770 | 771 |
/// \brief Set the type of the supply constraints. |
771 | 772 |
/// |
772 | 773 |
/// This function sets the type of the supply/demand constraints. |
773 | 774 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
774 | 775 |
/// type will be used. |
775 | 776 |
/// |
776 | 777 |
/// For more information, see \ref SupplyType. |
777 | 778 |
/// |
778 | 779 |
/// \return <tt>(*this)</tt> |
779 | 780 |
NetworkSimplex& supplyType(SupplyType supply_type) { |
780 | 781 |
_stype = supply_type; |
781 | 782 |
return *this; |
782 | 783 |
} |
783 | 784 |
|
784 | 785 |
/// @} |
785 | 786 |
|
786 | 787 |
/// \name Execution Control |
787 | 788 |
/// The algorithm can be executed using \ref run(). |
788 | 789 |
|
789 | 790 |
/// @{ |
790 | 791 |
|
791 | 792 |
/// \brief Run the algorithm. |
792 | 793 |
/// |
793 | 794 |
/// This function runs the algorithm. |
794 | 795 |
/// The paramters can be specified using functions \ref lowerMap(), |
795 | 796 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
796 | 797 |
/// \ref supplyType(). |
797 | 798 |
/// For example, |
798 | 799 |
/// \code |
799 | 800 |
/// NetworkSimplex<ListDigraph> ns(graph); |
800 | 801 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
801 | 802 |
/// .supplyMap(sup).run(); |
802 | 803 |
/// \endcode |
803 | 804 |
/// |
804 | 805 |
/// This function can be called more than once. All the given parameters |
805 | 806 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
806 | 807 |
/// is used, thus only the modified parameters have to be set again. |
807 | 808 |
/// If the underlying digraph was also modified after the construction |
808 | 809 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
809 | 810 |
/// function must be called. |
810 | 811 |
/// |
811 | 812 |
/// \param pivot_rule The pivot rule that will be used during the |
812 | 813 |
/// algorithm. For more information, see \ref PivotRule. |
813 | 814 |
/// |
814 | 815 |
/// \return \c INFEASIBLE if no feasible flow exists, |
815 | 816 |
/// \n \c OPTIMAL if the problem has optimal solution |
816 | 817 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
817 | 818 |
/// optimal flow and node potentials (primal and dual solutions), |
818 | 819 |
/// \n \c UNBOUNDED if the objective function of the problem is |
819 | 820 |
/// unbounded, i.e. there is a directed cycle having negative total |
820 | 821 |
/// cost and infinite upper bound. |
821 | 822 |
/// |
822 | 823 |
/// \see ProblemType, PivotRule |
823 | 824 |
/// \see resetParams(), reset() |
824 | 825 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
825 | 826 |
if (!init()) return INFEASIBLE; |
826 | 827 |
return start(pivot_rule); |
827 | 828 |
} |
828 | 829 |
|
829 | 830 |
/// \brief Reset all the parameters that have been given before. |
830 | 831 |
/// |
831 | 832 |
/// This function resets all the paramaters that have been given |
832 | 833 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
833 | 834 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
834 | 835 |
/// |
835 | 836 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
836 | 837 |
/// parameters are kept for the next \ref run() call, unless |
837 | 838 |
/// \ref resetParams() or \ref reset() is used. |
838 | 839 |
/// If the underlying digraph was also modified after the construction |
839 | 840 |
/// of the class or the last \ref reset() call, then the \ref reset() |
840 | 841 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
841 | 842 |
/// |
842 | 843 |
/// For example, |
843 | 844 |
/// \code |
844 | 845 |
/// NetworkSimplex<ListDigraph> ns(graph); |
845 | 846 |
/// |
846 | 847 |
/// // First run |
847 | 848 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
848 | 849 |
/// .supplyMap(sup).run(); |
849 | 850 |
/// |
850 | 851 |
/// // Run again with modified cost map (resetParams() is not called, |
851 | 852 |
/// // so only the cost map have to be set again) |
852 | 853 |
/// cost[e] += 100; |
853 | 854 |
/// ns.costMap(cost).run(); |
854 | 855 |
/// |
855 | 856 |
/// // Run again from scratch using resetParams() |
856 | 857 |
/// // (the lower bounds will be set to zero on all arcs) |
857 | 858 |
/// ns.resetParams(); |
858 | 859 |
/// ns.upperMap(capacity).costMap(cost) |
859 | 860 |
/// .supplyMap(sup).run(); |
860 | 861 |
/// \endcode |
861 | 862 |
/// |
862 | 863 |
/// \return <tt>(*this)</tt> |
863 | 864 |
/// |
864 | 865 |
/// \see reset(), run() |
865 | 866 |
NetworkSimplex& resetParams() { |
866 | 867 |
for (int i = 0; i != _node_num; ++i) { |
867 | 868 |
_supply[i] = 0; |
868 | 869 |
} |
869 | 870 |
for (int i = 0; i != _arc_num; ++i) { |
870 | 871 |
_lower[i] = 0; |
871 | 872 |
_upper[i] = INF; |
872 | 873 |
_cost[i] = 1; |
873 | 874 |
} |
874 | 875 |
_have_lower = false; |
875 | 876 |
_stype = GEQ; |
876 | 877 |
return *this; |
877 | 878 |
} |
878 | 879 |
|
879 | 880 |
/// \brief Reset the internal data structures and all the parameters |
880 | 881 |
/// that have been given before. |
881 | 882 |
/// |
882 | 883 |
/// This function resets the internal data structures and all the |
883 | 884 |
/// paramaters that have been given before using functions \ref lowerMap(), |
884 | 885 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
885 | 886 |
/// \ref supplyType(). |
886 | 887 |
/// |
887 | 888 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
888 | 889 |
/// parameters are kept for the next \ref run() call, unless |
889 | 890 |
/// \ref resetParams() or \ref reset() is used. |
890 | 891 |
/// If the underlying digraph was also modified after the construction |
891 | 892 |
/// of the class or the last \ref reset() call, then the \ref reset() |
892 | 893 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
893 | 894 |
/// |
894 | 895 |
/// See \ref resetParams() for examples. |
895 | 896 |
/// |
896 | 897 |
/// \return <tt>(*this)</tt> |
897 | 898 |
/// |
898 | 899 |
/// \see resetParams(), run() |
899 | 900 |
NetworkSimplex& reset() { |
900 | 901 |
// Resize vectors |
901 | 902 |
_node_num = countNodes(_graph); |
902 | 903 |
_arc_num = countArcs(_graph); |
903 | 904 |
int all_node_num = _node_num + 1; |
904 | 905 |
int max_arc_num = _arc_num + 2 * _node_num; |
905 | 906 |
|
906 | 907 |
_source.resize(max_arc_num); |
907 | 908 |
_target.resize(max_arc_num); |
908 | 909 |
|
909 | 910 |
_lower.resize(_arc_num); |
910 | 911 |
_upper.resize(_arc_num); |
911 | 912 |
_cap.resize(max_arc_num); |
912 | 913 |
_cost.resize(max_arc_num); |
913 | 914 |
_supply.resize(all_node_num); |
914 | 915 |
_flow.resize(max_arc_num); |
915 | 916 |
_pi.resize(all_node_num); |
916 | 917 |
|
917 | 918 |
_parent.resize(all_node_num); |
918 | 919 |
_pred.resize(all_node_num); |
919 | 920 |
_pred_dir.resize(all_node_num); |
920 | 921 |
_thread.resize(all_node_num); |
921 | 922 |
_rev_thread.resize(all_node_num); |
922 | 923 |
_succ_num.resize(all_node_num); |
923 | 924 |
_last_succ.resize(all_node_num); |
924 | 925 |
_state.resize(max_arc_num); |
925 | 926 |
|
926 | 927 |
// Copy the graph |
927 | 928 |
int i = 0; |
928 | 929 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
929 | 930 |
_node_id[n] = i; |
930 | 931 |
} |
931 | 932 |
if (_arc_mixing) { |
932 | 933 |
// Store the arcs in a mixed order |
933 |
int |
|
934 |
const int skip = std::max(_arc_num / _node_num, 3); |
|
934 | 935 |
int i = 0, j = 0; |
935 | 936 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
936 | 937 |
_arc_id[a] = i; |
937 | 938 |
_source[i] = _node_id[_graph.source(a)]; |
938 | 939 |
_target[i] = _node_id[_graph.target(a)]; |
939 |
if ((i += |
|
940 |
if ((i += skip) >= _arc_num) i = ++j; |
|
940 | 941 |
} |
941 | 942 |
} else { |
942 | 943 |
// Store the arcs in the original order |
943 | 944 |
int i = 0; |
944 | 945 |
for (ArcIt a(_graph); a != INVALID; ++a, ++i) { |
945 | 946 |
_arc_id[a] = i; |
946 | 947 |
_source[i] = _node_id[_graph.source(a)]; |
947 | 948 |
_target[i] = _node_id[_graph.target(a)]; |
948 | 949 |
} |
949 | 950 |
} |
950 | 951 |
|
951 | 952 |
// Reset parameters |
952 | 953 |
resetParams(); |
953 | 954 |
return *this; |
954 | 955 |
} |
955 | 956 |
|
956 | 957 |
/// @} |
957 | 958 |
|
958 | 959 |
/// \name Query Functions |
959 | 960 |
/// The results of the algorithm can be obtained using these |
960 | 961 |
/// functions.\n |
961 | 962 |
/// The \ref run() function must be called before using them. |
962 | 963 |
|
963 | 964 |
/// @{ |
964 | 965 |
|
965 | 966 |
/// \brief Return the total cost of the found flow. |
966 | 967 |
/// |
967 | 968 |
/// This function returns the total cost of the found flow. |
968 | 969 |
/// Its complexity is O(e). |
969 | 970 |
/// |
970 | 971 |
/// \note The return type of the function can be specified as a |
971 | 972 |
/// template parameter. For example, |
972 | 973 |
/// \code |
973 | 974 |
/// ns.totalCost<double>(); |
974 | 975 |
/// \endcode |
975 | 976 |
/// It is useful if the total cost cannot be stored in the \c Cost |
976 | 977 |
/// type of the algorithm, which is the default return type of the |
977 | 978 |
/// function. |
978 | 979 |
/// |
979 | 980 |
/// \pre \ref run() must be called before using this function. |
980 | 981 |
template <typename Number> |
981 | 982 |
Number totalCost() const { |
982 | 983 |
Number c = 0; |
983 | 984 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
984 | 985 |
int i = _arc_id[a]; |
985 | 986 |
c += Number(_flow[i]) * Number(_cost[i]); |
986 | 987 |
} |
987 | 988 |
return c; |
988 | 989 |
} |
989 | 990 |
|
990 | 991 |
#ifndef DOXYGEN |
991 | 992 |
Cost totalCost() const { |
992 | 993 |
return totalCost<Cost>(); |
993 | 994 |
} |
994 | 995 |
#endif |
995 | 996 |
|
996 | 997 |
/// \brief Return the flow on the given arc. |
997 | 998 |
/// |
998 | 999 |
/// This function returns the flow on the given arc. |
999 | 1000 |
/// |
1000 | 1001 |
/// \pre \ref run() must be called before using this function. |
1001 | 1002 |
Value flow(const Arc& a) const { |
1002 | 1003 |
return _flow[_arc_id[a]]; |
1003 | 1004 |
} |
1004 | 1005 |
|
1005 | 1006 |
/// \brief Return the flow map (the primal solution). |
1006 | 1007 |
/// |
1007 | 1008 |
/// This function copies the flow value on each arc into the given |
1008 | 1009 |
/// map. The \c Value type of the algorithm must be convertible to |
1009 | 1010 |
/// the \c Value type of the map. |
1010 | 1011 |
/// |
1011 | 1012 |
/// \pre \ref run() must be called before using this function. |
1012 | 1013 |
template <typename FlowMap> |
1013 | 1014 |
void flowMap(FlowMap &map) const { |
1014 | 1015 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
1015 | 1016 |
map.set(a, _flow[_arc_id[a]]); |
1016 | 1017 |
} |
1017 | 1018 |
} |
1018 | 1019 |
|
1019 | 1020 |
/// \brief Return the potential (dual value) of the given node. |
1020 | 1021 |
/// |
1021 | 1022 |
/// This function returns the potential (dual value) of the |
1022 | 1023 |
/// given node. |
1023 | 1024 |
/// |
1024 | 1025 |
/// \pre \ref run() must be called before using this function. |
1025 | 1026 |
Cost potential(const Node& n) const { |
1026 | 1027 |
return _pi[_node_id[n]]; |
1027 | 1028 |
} |
1028 | 1029 |
|
1029 | 1030 |
/// \brief Return the potential map (the dual solution). |
1030 | 1031 |
/// |
1031 | 1032 |
/// This function copies the potential (dual value) of each node |
1032 | 1033 |
/// into the given map. |
1033 | 1034 |
/// The \c Cost type of the algorithm must be convertible to the |
1034 | 1035 |
/// \c Value type of the map. |
1035 | 1036 |
/// |
1036 | 1037 |
/// \pre \ref run() must be called before using this function. |
1037 | 1038 |
template <typename PotentialMap> |
1038 | 1039 |
void potentialMap(PotentialMap &map) const { |
1039 | 1040 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1040 | 1041 |
map.set(n, _pi[_node_id[n]]); |
1041 | 1042 |
} |
1042 | 1043 |
} |
1043 | 1044 |
|
1044 | 1045 |
/// @} |
1045 | 1046 |
|
1046 | 1047 |
private: |
1047 | 1048 |
|
1048 | 1049 |
// Initialize internal data structures |
1049 | 1050 |
bool init() { |
1050 | 1051 |
if (_node_num == 0) return false; |
1051 | 1052 |
|
1052 | 1053 |
// Check the sum of supply values |
1053 | 1054 |
_sum_supply = 0; |
1054 | 1055 |
for (int i = 0; i != _node_num; ++i) { |
1055 | 1056 |
_sum_supply += _supply[i]; |
1056 | 1057 |
} |
1057 | 1058 |
if ( !((_stype == GEQ && _sum_supply <= 0) || |
1058 | 1059 |
(_stype == LEQ && _sum_supply >= 0)) ) return false; |
1059 | 1060 |
|
1060 | 1061 |
// Remove non-zero lower bounds |
1061 | 1062 |
if (_have_lower) { |
1062 | 1063 |
for (int i = 0; i != _arc_num; ++i) { |
1063 | 1064 |
Value c = _lower[i]; |
1064 | 1065 |
if (c >= 0) { |
1065 | 1066 |
_cap[i] = _upper[i] < MAX ? _upper[i] - c : INF; |
1066 | 1067 |
} else { |
1067 | 1068 |
_cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF; |
1068 | 1069 |
} |
1069 | 1070 |
_supply[_source[i]] -= c; |
1070 | 1071 |
_supply[_target[i]] += c; |
1071 | 1072 |
} |
1072 | 1073 |
} else { |
1073 | 1074 |
for (int i = 0; i != _arc_num; ++i) { |
1074 | 1075 |
_cap[i] = _upper[i]; |
1075 | 1076 |
} |
1076 | 1077 |
} |
1077 | 1078 |
|
1078 | 1079 |
// Initialize artifical cost |
1079 | 1080 |
Cost ART_COST; |
1080 | 1081 |
if (std::numeric_limits<Cost>::is_exact) { |
1081 | 1082 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
1082 | 1083 |
} else { |
1083 | 1084 |
ART_COST = 0; |
1084 | 1085 |
for (int i = 0; i != _arc_num; ++i) { |
1085 | 1086 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
1086 | 1087 |
} |
1087 | 1088 |
ART_COST = (ART_COST + 1) * _node_num; |
1088 | 1089 |
} |
1089 | 1090 |
|
1090 | 1091 |
// Initialize arc maps |
1091 | 1092 |
for (int i = 0; i != _arc_num; ++i) { |
1092 | 1093 |
_flow[i] = 0; |
1093 | 1094 |
_state[i] = STATE_LOWER; |
1094 | 1095 |
} |
1095 | 1096 |
|
1096 | 1097 |
// Set data for the artificial root node |
1097 | 1098 |
_root = _node_num; |
1098 | 1099 |
_parent[_root] = -1; |
1099 | 1100 |
_pred[_root] = -1; |
1100 | 1101 |
_thread[_root] = 0; |
1101 | 1102 |
_rev_thread[0] = _root; |
1102 | 1103 |
_succ_num[_root] = _node_num + 1; |
1103 | 1104 |
_last_succ[_root] = _root - 1; |
1104 | 1105 |
_supply[_root] = -_sum_supply; |
1105 | 1106 |
_pi[_root] = 0; |
1106 | 1107 |
|
1107 | 1108 |
// Add artificial arcs and initialize the spanning tree data structure |
1108 | 1109 |
if (_sum_supply == 0) { |
1109 | 1110 |
// EQ supply constraints |
1110 | 1111 |
_search_arc_num = _arc_num; |
1111 | 1112 |
_all_arc_num = _arc_num + _node_num; |
1112 | 1113 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1113 | 1114 |
_parent[u] = _root; |
1114 | 1115 |
_pred[u] = e; |
1115 | 1116 |
_thread[u] = u + 1; |
1116 | 1117 |
_rev_thread[u + 1] = u; |
1117 | 1118 |
_succ_num[u] = 1; |
1118 | 1119 |
_last_succ[u] = u; |
1119 | 1120 |
_cap[e] = INF; |
1120 | 1121 |
_state[e] = STATE_TREE; |
1121 | 1122 |
if (_supply[u] >= 0) { |
1122 | 1123 |
_pred_dir[u] = DIR_UP; |
1123 | 1124 |
_pi[u] = 0; |
1124 | 1125 |
_source[e] = u; |
1125 | 1126 |
_target[e] = _root; |
1126 | 1127 |
_flow[e] = _supply[u]; |
1127 | 1128 |
_cost[e] = 0; |
1128 | 1129 |
} else { |
1129 | 1130 |
_pred_dir[u] = DIR_DOWN; |
1130 | 1131 |
_pi[u] = ART_COST; |
1131 | 1132 |
_source[e] = _root; |
1132 | 1133 |
_target[e] = u; |
1133 | 1134 |
_flow[e] = -_supply[u]; |
1134 | 1135 |
_cost[e] = ART_COST; |
1135 | 1136 |
} |
1136 | 1137 |
} |
1137 | 1138 |
} |
1138 | 1139 |
else if (_sum_supply > 0) { |
1139 | 1140 |
// LEQ supply constraints |
1140 | 1141 |
_search_arc_num = _arc_num + _node_num; |
1141 | 1142 |
int f = _arc_num + _node_num; |
1142 | 1143 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1143 | 1144 |
_parent[u] = _root; |
1144 | 1145 |
_thread[u] = u + 1; |
1145 | 1146 |
_rev_thread[u + 1] = u; |
1146 | 1147 |
_succ_num[u] = 1; |
1147 | 1148 |
_last_succ[u] = u; |
1148 | 1149 |
if (_supply[u] >= 0) { |
1149 | 1150 |
_pred_dir[u] = DIR_UP; |
1150 | 1151 |
_pi[u] = 0; |
1151 | 1152 |
_pred[u] = e; |
1152 | 1153 |
_source[e] = u; |
1153 | 1154 |
_target[e] = _root; |
1154 | 1155 |
_cap[e] = INF; |
1155 | 1156 |
_flow[e] = _supply[u]; |
1156 | 1157 |
_cost[e] = 0; |
1157 | 1158 |
_state[e] = STATE_TREE; |
1158 | 1159 |
} else { |
1159 | 1160 |
_pred_dir[u] = DIR_DOWN; |
1160 | 1161 |
_pi[u] = ART_COST; |
1161 | 1162 |
_pred[u] = f; |
1162 | 1163 |
_source[f] = _root; |
1163 | 1164 |
_target[f] = u; |
1164 | 1165 |
_cap[f] = INF; |
1165 | 1166 |
_flow[f] = -_supply[u]; |
1166 | 1167 |
_cost[f] = ART_COST; |
1167 | 1168 |
_state[f] = STATE_TREE; |
1168 | 1169 |
_source[e] = u; |
1169 | 1170 |
_target[e] = _root; |
1170 | 1171 |
_cap[e] = INF; |
1171 | 1172 |
_flow[e] = 0; |
1172 | 1173 |
_cost[e] = 0; |
1173 | 1174 |
_state[e] = STATE_LOWER; |
1174 | 1175 |
++f; |
1175 | 1176 |
} |
1176 | 1177 |
} |
1177 | 1178 |
_all_arc_num = f; |
1178 | 1179 |
} |
1179 | 1180 |
else { |
1180 | 1181 |
// GEQ supply constraints |
1181 | 1182 |
_search_arc_num = _arc_num + _node_num; |
1182 | 1183 |
int f = _arc_num + _node_num; |
1183 | 1184 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1184 | 1185 |
_parent[u] = _root; |
1185 | 1186 |
_thread[u] = u + 1; |
1186 | 1187 |
_rev_thread[u + 1] = u; |
1187 | 1188 |
_succ_num[u] = 1; |
1188 | 1189 |
_last_succ[u] = u; |
1189 | 1190 |
if (_supply[u] <= 0) { |
1190 | 1191 |
_pred_dir[u] = DIR_DOWN; |
1191 | 1192 |
_pi[u] = 0; |
1192 | 1193 |
_pred[u] = e; |
1193 | 1194 |
_source[e] = _root; |
1194 | 1195 |
_target[e] = u; |
1195 | 1196 |
_cap[e] = INF; |
1196 | 1197 |
_flow[e] = -_supply[u]; |
1197 | 1198 |
_cost[e] = 0; |
1198 | 1199 |
_state[e] = STATE_TREE; |
1199 | 1200 |
} else { |
1200 | 1201 |
_pred_dir[u] = DIR_UP; |
1201 | 1202 |
_pi[u] = -ART_COST; |
1202 | 1203 |
_pred[u] = f; |
1203 | 1204 |
_source[f] = u; |
1204 | 1205 |
_target[f] = _root; |
1205 | 1206 |
_cap[f] = INF; |
1206 | 1207 |
_flow[f] = _supply[u]; |
1207 | 1208 |
_state[f] = STATE_TREE; |
1208 | 1209 |
_cost[f] = ART_COST; |
1209 | 1210 |
_source[e] = _root; |
1210 | 1211 |
_target[e] = u; |
1211 | 1212 |
_cap[e] = INF; |
1212 | 1213 |
_flow[e] = 0; |
1213 | 1214 |
_cost[e] = 0; |
1214 | 1215 |
_state[e] = STATE_LOWER; |
1215 | 1216 |
++f; |
1216 | 1217 |
} |
1217 | 1218 |
} |
1218 | 1219 |
_all_arc_num = f; |
1219 | 1220 |
} |
1220 | 1221 |
|
1221 | 1222 |
return true; |
1222 | 1223 |
} |
1223 | 1224 |
|
1224 | 1225 |
// Find the join node |
1225 | 1226 |
void findJoinNode() { |
1226 | 1227 |
int u = _source[in_arc]; |
1227 | 1228 |
int v = _target[in_arc]; |
1228 | 1229 |
while (u != v) { |
1229 | 1230 |
if (_succ_num[u] < _succ_num[v]) { |
1230 | 1231 |
u = _parent[u]; |
1231 | 1232 |
} else { |
1232 | 1233 |
v = _parent[v]; |
1233 | 1234 |
} |
1234 | 1235 |
} |
1235 | 1236 |
join = u; |
1236 | 1237 |
} |
1237 | 1238 |
|
1238 | 1239 |
// Find the leaving arc of the cycle and returns true if the |
1239 | 1240 |
// leaving arc is not the same as the entering arc |
1240 | 1241 |
bool findLeavingArc() { |
1241 | 1242 |
// Initialize first and second nodes according to the direction |
1242 | 1243 |
// of the cycle |
1243 | 1244 |
int first, second; |
1244 | 1245 |
if (_state[in_arc] == STATE_LOWER) { |
1245 | 1246 |
first = _source[in_arc]; |
1246 | 1247 |
second = _target[in_arc]; |
1247 | 1248 |
} else { |
1248 | 1249 |
first = _target[in_arc]; |
1249 | 1250 |
second = _source[in_arc]; |
1250 | 1251 |
} |
1251 | 1252 |
delta = _cap[in_arc]; |
1252 | 1253 |
int result = 0; |
1253 | 1254 |
Value c, d; |
1254 | 1255 |
int e; |
1255 | 1256 |
|
1256 | 1257 |
// Search the cycle form the first node to the join node |
1257 | 1258 |
for (int u = first; u != join; u = _parent[u]) { |
1258 | 1259 |
e = _pred[u]; |
1259 | 1260 |
d = _flow[e]; |
1260 | 1261 |
if (_pred_dir[u] == DIR_DOWN) { |
1261 | 1262 |
c = _cap[e]; |
1262 | 1263 |
d = c >= MAX ? INF : c - d; |
1263 | 1264 |
} |
1264 | 1265 |
if (d < delta) { |
1265 | 1266 |
delta = d; |
1266 | 1267 |
u_out = u; |
1267 | 1268 |
result = 1; |
1268 | 1269 |
} |
1269 | 1270 |
} |
1270 | 1271 |
|
1271 | 1272 |
// Search the cycle form the second node to the join node |
1272 | 1273 |
for (int u = second; u != join; u = _parent[u]) { |
1273 | 1274 |
e = _pred[u]; |
1274 | 1275 |
d = _flow[e]; |
1275 | 1276 |
if (_pred_dir[u] == DIR_UP) { |
1276 | 1277 |
c = _cap[e]; |
1277 | 1278 |
d = c >= MAX ? INF : c - d; |
1278 | 1279 |
} |
1279 | 1280 |
if (d <= delta) { |
1280 | 1281 |
delta = d; |
1281 | 1282 |
u_out = u; |
1282 | 1283 |
result = 2; |
1283 | 1284 |
} |
1284 | 1285 |
} |
1285 | 1286 |
|
1286 | 1287 |
if (result == 1) { |
1287 | 1288 |
u_in = first; |
1288 | 1289 |
v_in = second; |
1289 | 1290 |
} else { |
1290 | 1291 |
u_in = second; |
1291 | 1292 |
v_in = first; |
1292 | 1293 |
} |
1293 | 1294 |
return result != 0; |
1294 | 1295 |
} |
1295 | 1296 |
|
1296 | 1297 |
// Change _flow and _state vectors |
1297 | 1298 |
void changeFlow(bool change) { |
1298 | 1299 |
// Augment along the cycle |
1299 | 1300 |
if (delta > 0) { |
1300 | 1301 |
Value val = _state[in_arc] * delta; |
1301 | 1302 |
_flow[in_arc] += val; |
1302 | 1303 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
1303 | 1304 |
_flow[_pred[u]] -= _pred_dir[u] * val; |
1304 | 1305 |
} |
1305 | 1306 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
1306 | 1307 |
_flow[_pred[u]] += _pred_dir[u] * val; |
1307 | 1308 |
} |
1308 | 1309 |
} |
1309 | 1310 |
// Update the state of the entering and leaving arcs |
1310 | 1311 |
if (change) { |
1311 | 1312 |
_state[in_arc] = STATE_TREE; |
1312 | 1313 |
_state[_pred[u_out]] = |
1313 | 1314 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
1314 | 1315 |
} else { |
1315 | 1316 |
_state[in_arc] = -_state[in_arc]; |
1316 | 1317 |
} |
1317 | 1318 |
} |
1318 | 1319 |
|
1319 | 1320 |
// Update the tree structure |
1320 | 1321 |
void updateTreeStructure() { |
1321 | 1322 |
int old_rev_thread = _rev_thread[u_out]; |
1322 | 1323 |
int old_succ_num = _succ_num[u_out]; |
1323 | 1324 |
int old_last_succ = _last_succ[u_out]; |
0 comments (0 inline)