... | ... |
@@ -591,101 +591,102 @@ |
591 | 591 |
if (c < 0) { |
592 | 592 |
_cand_cost[e] = c; |
593 | 593 |
_candidates[_curr_length++] = e; |
594 | 594 |
} |
595 | 595 |
if (--cnt == 0) { |
596 | 596 |
if (_curr_length > limit) goto search_end; |
597 | 597 |
limit = 0; |
598 | 598 |
cnt = _block_size; |
599 | 599 |
} |
600 | 600 |
} |
601 | 601 |
for (e = 0; e != _next_arc; ++e) { |
602 | 602 |
_cand_cost[e] = _state[e] * |
603 | 603 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
604 | 604 |
if (_cand_cost[e] < 0) { |
605 | 605 |
_candidates[_curr_length++] = e; |
606 | 606 |
} |
607 | 607 |
if (--cnt == 0) { |
608 | 608 |
if (_curr_length > limit) goto search_end; |
609 | 609 |
limit = 0; |
610 | 610 |
cnt = _block_size; |
611 | 611 |
} |
612 | 612 |
} |
613 | 613 |
if (_curr_length == 0) return false; |
614 | 614 |
|
615 | 615 |
search_end: |
616 | 616 |
|
617 | 617 |
// Make heap of the candidate list (approximating a partial sort) |
618 | 618 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
619 | 619 |
_sort_func ); |
620 | 620 |
|
621 | 621 |
// Pop the first element of the heap |
622 | 622 |
_in_arc = _candidates[0]; |
623 | 623 |
_next_arc = e; |
624 | 624 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
625 | 625 |
_sort_func ); |
626 | 626 |
_curr_length = std::min(_head_length, _curr_length - 1); |
627 | 627 |
return true; |
628 | 628 |
} |
629 | 629 |
|
630 | 630 |
}; //class AlteringListPivotRule |
631 | 631 |
|
632 | 632 |
public: |
633 | 633 |
|
634 | 634 |
/// \brief Constructor. |
635 | 635 |
/// |
636 | 636 |
/// The constructor of the class. |
637 | 637 |
/// |
638 | 638 |
/// \param graph The digraph the algorithm runs on. |
639 |
/// \param arc_mixing Indicate if the arcs |
|
639 |
/// \param arc_mixing Indicate if the arcs will be stored in a |
|
640 | 640 |
/// mixed order in the internal data structure. |
641 |
/// In special cases, it could lead to better overall performance, |
|
642 |
/// but it is usually slower. Therefore it is disabled by default. |
|
643 |
|
|
641 |
/// In general, it leads to similar performance as using the original |
|
642 |
/// arc order, but it makes the algorithm more robust and in special |
|
643 |
/// cases, even significantly faster. Therefore, it is enabled by default. |
|
644 |
NetworkSimplex(const GR& graph, bool arc_mixing = true) : |
|
644 | 645 |
_graph(graph), _node_id(graph), _arc_id(graph), |
645 | 646 |
_arc_mixing(arc_mixing), |
646 | 647 |
MAX(std::numeric_limits<Value>::max()), |
647 | 648 |
INF(std::numeric_limits<Value>::has_infinity ? |
648 | 649 |
std::numeric_limits<Value>::infinity() : MAX) |
649 | 650 |
{ |
650 | 651 |
// Check the number types |
651 | 652 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
652 | 653 |
"The flow type of NetworkSimplex must be signed"); |
653 | 654 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
654 | 655 |
"The cost type of NetworkSimplex must be signed"); |
655 | 656 |
|
656 | 657 |
// Reset data structures |
657 | 658 |
reset(); |
658 | 659 |
} |
659 | 660 |
|
660 | 661 |
/// \name Parameters |
661 | 662 |
/// The parameters of the algorithm can be specified using these |
662 | 663 |
/// functions. |
663 | 664 |
|
664 | 665 |
/// @{ |
665 | 666 |
|
666 | 667 |
/// \brief Set the lower bounds on the arcs. |
667 | 668 |
/// |
668 | 669 |
/// This function sets the lower bounds on the arcs. |
669 | 670 |
/// If it is not used before calling \ref run(), the lower bounds |
670 | 671 |
/// will be set to zero on all arcs. |
671 | 672 |
/// |
672 | 673 |
/// \param map An arc map storing the lower bounds. |
673 | 674 |
/// Its \c Value type must be convertible to the \c Value type |
674 | 675 |
/// of the algorithm. |
675 | 676 |
/// |
676 | 677 |
/// \return <tt>(*this)</tt> |
677 | 678 |
template <typename LowerMap> |
678 | 679 |
NetworkSimplex& lowerMap(const LowerMap& map) { |
679 | 680 |
_have_lower = true; |
680 | 681 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
681 | 682 |
_lower[_arc_id[a]] = map[a]; |
682 | 683 |
} |
683 | 684 |
return *this; |
684 | 685 |
} |
685 | 686 |
|
686 | 687 |
/// \brief Set the upper bounds (capacities) on the arcs. |
687 | 688 |
/// |
688 | 689 |
/// This function sets the upper bounds (capacities) on the arcs. |
689 | 690 |
/// If it is not used before calling \ref run(), the upper bounds |
690 | 691 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
691 | 692 |
/// unbounded from above). |
... | ... |
@@ -885,103 +886,103 @@ |
885 | 886 |
/// \ref supplyType(). |
886 | 887 |
/// |
887 | 888 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
888 | 889 |
/// parameters are kept for the next \ref run() call, unless |
889 | 890 |
/// \ref resetParams() or \ref reset() is used. |
890 | 891 |
/// If the underlying digraph was also modified after the construction |
891 | 892 |
/// of the class or the last \ref reset() call, then the \ref reset() |
892 | 893 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
893 | 894 |
/// |
894 | 895 |
/// See \ref resetParams() for examples. |
895 | 896 |
/// |
896 | 897 |
/// \return <tt>(*this)</tt> |
897 | 898 |
/// |
898 | 899 |
/// \see resetParams(), run() |
899 | 900 |
NetworkSimplex& reset() { |
900 | 901 |
// Resize vectors |
901 | 902 |
_node_num = countNodes(_graph); |
902 | 903 |
_arc_num = countArcs(_graph); |
903 | 904 |
int all_node_num = _node_num + 1; |
904 | 905 |
int max_arc_num = _arc_num + 2 * _node_num; |
905 | 906 |
|
906 | 907 |
_source.resize(max_arc_num); |
907 | 908 |
_target.resize(max_arc_num); |
908 | 909 |
|
909 | 910 |
_lower.resize(_arc_num); |
910 | 911 |
_upper.resize(_arc_num); |
911 | 912 |
_cap.resize(max_arc_num); |
912 | 913 |
_cost.resize(max_arc_num); |
913 | 914 |
_supply.resize(all_node_num); |
914 | 915 |
_flow.resize(max_arc_num); |
915 | 916 |
_pi.resize(all_node_num); |
916 | 917 |
|
917 | 918 |
_parent.resize(all_node_num); |
918 | 919 |
_pred.resize(all_node_num); |
919 | 920 |
_pred_dir.resize(all_node_num); |
920 | 921 |
_thread.resize(all_node_num); |
921 | 922 |
_rev_thread.resize(all_node_num); |
922 | 923 |
_succ_num.resize(all_node_num); |
923 | 924 |
_last_succ.resize(all_node_num); |
924 | 925 |
_state.resize(max_arc_num); |
925 | 926 |
|
926 | 927 |
// Copy the graph |
927 | 928 |
int i = 0; |
928 | 929 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
929 | 930 |
_node_id[n] = i; |
930 | 931 |
} |
931 | 932 |
if (_arc_mixing) { |
932 | 933 |
// Store the arcs in a mixed order |
933 |
int |
|
934 |
const int skip = std::max(_arc_num / _node_num, 3); |
|
934 | 935 |
int i = 0, j = 0; |
935 | 936 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
936 | 937 |
_arc_id[a] = i; |
937 | 938 |
_source[i] = _node_id[_graph.source(a)]; |
938 | 939 |
_target[i] = _node_id[_graph.target(a)]; |
939 |
if ((i += |
|
940 |
if ((i += skip) >= _arc_num) i = ++j; |
|
940 | 941 |
} |
941 | 942 |
} else { |
942 | 943 |
// Store the arcs in the original order |
943 | 944 |
int i = 0; |
944 | 945 |
for (ArcIt a(_graph); a != INVALID; ++a, ++i) { |
945 | 946 |
_arc_id[a] = i; |
946 | 947 |
_source[i] = _node_id[_graph.source(a)]; |
947 | 948 |
_target[i] = _node_id[_graph.target(a)]; |
948 | 949 |
} |
949 | 950 |
} |
950 | 951 |
|
951 | 952 |
// Reset parameters |
952 | 953 |
resetParams(); |
953 | 954 |
return *this; |
954 | 955 |
} |
955 | 956 |
|
956 | 957 |
/// @} |
957 | 958 |
|
958 | 959 |
/// \name Query Functions |
959 | 960 |
/// The results of the algorithm can be obtained using these |
960 | 961 |
/// functions.\n |
961 | 962 |
/// The \ref run() function must be called before using them. |
962 | 963 |
|
963 | 964 |
/// @{ |
964 | 965 |
|
965 | 966 |
/// \brief Return the total cost of the found flow. |
966 | 967 |
/// |
967 | 968 |
/// This function returns the total cost of the found flow. |
968 | 969 |
/// Its complexity is O(e). |
969 | 970 |
/// |
970 | 971 |
/// \note The return type of the function can be specified as a |
971 | 972 |
/// template parameter. For example, |
972 | 973 |
/// \code |
973 | 974 |
/// ns.totalCost<double>(); |
974 | 975 |
/// \endcode |
975 | 976 |
/// It is useful if the total cost cannot be stored in the \c Cost |
976 | 977 |
/// type of the algorithm, which is the default return type of the |
977 | 978 |
/// function. |
978 | 979 |
/// |
979 | 980 |
/// \pre \ref run() must be called before using this function. |
980 | 981 |
template <typename Number> |
981 | 982 |
Number totalCost() const { |
982 | 983 |
Number c = 0; |
983 | 984 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
984 | 985 |
int i = _arc_id[a]; |
985 | 986 |
c += Number(_flow[i]) * Number(_cost[i]); |
986 | 987 |
} |
987 | 988 |
return c; |
0 comments (0 inline)