| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_ELEVATOR_H |
|
| 20 |
#define LEMON_ELEVATOR_H |
|
| 21 |
|
|
| 22 |
///\ingroup auxdat |
|
| 23 |
///\file |
|
| 24 |
///\brief Elevator class |
|
| 25 |
/// |
|
| 26 |
///Elevator class implements an efficient data structure |
|
| 27 |
///for labeling items in push-relabel type algorithms. |
|
| 28 |
/// |
|
| 29 |
|
|
| 30 |
#include <lemon/bits/traits.h> |
|
| 31 |
|
|
| 32 |
namespace lemon {
|
|
| 33 |
|
|
| 34 |
///Class for handling "labels" in push-relabel type algorithms. |
|
| 35 |
|
|
| 36 |
///A class for handling "labels" in push-relabel type algorithms. |
|
| 37 |
/// |
|
| 38 |
///\ingroup auxdat |
|
| 39 |
///Using this class you can assign "labels" (nonnegative integer numbers) |
|
| 40 |
///to the edges or nodes of a graph, manipulate and query them through |
|
| 41 |
///operations typically arising in "push-relabel" type algorithms. |
|
| 42 |
/// |
|
| 43 |
///Each item is either \em active or not, and you can also choose a |
|
| 44 |
///highest level active item. |
|
| 45 |
/// |
|
| 46 |
///\sa LinkedElevator |
|
| 47 |
/// |
|
| 48 |
///\param Graph Type of the underlying graph. |
|
| 49 |
///\param Item Type of the items the data is assigned to (Graph::Node, |
|
| 50 |
///Graph::Arc, Graph::Edge). |
|
| 51 |
template<class Graph, class Item> |
|
| 52 |
class Elevator |
|
| 53 |
{
|
|
| 54 |
public: |
|
| 55 |
|
|
| 56 |
typedef Item Key; |
|
| 57 |
typedef int Value; |
|
| 58 |
|
|
| 59 |
private: |
|
| 60 |
|
|
| 61 |
typedef Item *Vit; |
|
| 62 |
typedef typename ItemSetTraits<Graph,Item>::template Map<Vit>::Type VitMap; |
|
| 63 |
typedef typename ItemSetTraits<Graph,Item>::template Map<int>::Type IntMap; |
|
| 64 |
|
|
| 65 |
const Graph &_g; |
|
| 66 |
int _max_level; |
|
| 67 |
int _item_num; |
|
| 68 |
VitMap _where; |
|
| 69 |
IntMap _level; |
|
| 70 |
std::vector<Item> _items; |
|
| 71 |
std::vector<Vit> _first; |
|
| 72 |
std::vector<Vit> _last_active; |
|
| 73 |
|
|
| 74 |
int _highest_active; |
|
| 75 |
|
|
| 76 |
void copy(Item i, Vit p) |
|
| 77 |
{
|
|
| 78 |
_where.set(*p=i,p); |
|
| 79 |
} |
|
| 80 |
void copy(Vit s, Vit p) |
|
| 81 |
{
|
|
| 82 |
if(s!=p) |
|
| 83 |
{
|
|
| 84 |
Item i=*s; |
|
| 85 |
*p=i; |
|
| 86 |
_where.set(i,p); |
|
| 87 |
} |
|
| 88 |
} |
|
| 89 |
void swap(Vit i, Vit j) |
|
| 90 |
{
|
|
| 91 |
Item ti=*i; |
|
| 92 |
Vit ct = _where[ti]; |
|
| 93 |
_where.set(ti,_where[*i=*j]); |
|
| 94 |
_where.set(*j,ct); |
|
| 95 |
*j=ti; |
|
| 96 |
} |
|
| 97 |
|
|
| 98 |
public: |
|
| 99 |
|
|
| 100 |
///Constructor with given maximum level. |
|
| 101 |
|
|
| 102 |
///Constructor with given maximum level. |
|
| 103 |
/// |
|
| 104 |
///\param graph The underlying graph. |
|
| 105 |
///\param max_level The maximum allowed level. |
|
| 106 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>. |
|
| 107 |
Elevator(const Graph &graph,int max_level) : |
|
| 108 |
_g(graph), |
|
| 109 |
_max_level(max_level), |
|
| 110 |
_item_num(_max_level), |
|
| 111 |
_where(graph), |
|
| 112 |
_level(graph,0), |
|
| 113 |
_items(_max_level), |
|
| 114 |
_first(_max_level+2), |
|
| 115 |
_last_active(_max_level+2), |
|
| 116 |
_highest_active(-1) {}
|
|
| 117 |
///Constructor. |
|
| 118 |
|
|
| 119 |
///Constructor. |
|
| 120 |
/// |
|
| 121 |
///\param graph The underlying graph. |
|
| 122 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>, |
|
| 123 |
///where \c max_level is equal to the number of labeled items in the graph. |
|
| 124 |
Elevator(const Graph &graph) : |
|
| 125 |
_g(graph), |
|
| 126 |
_max_level(countItems<Graph, Item>(graph)), |
|
| 127 |
_item_num(_max_level), |
|
| 128 |
_where(graph), |
|
| 129 |
_level(graph,0), |
|
| 130 |
_items(_max_level), |
|
| 131 |
_first(_max_level+2), |
|
| 132 |
_last_active(_max_level+2), |
|
| 133 |
_highest_active(-1) |
|
| 134 |
{
|
|
| 135 |
} |
|
| 136 |
|
|
| 137 |
///Activate item \c i. |
|
| 138 |
|
|
| 139 |
///Activate item \c i. |
|
| 140 |
///\pre Item \c i shouldn't be active before. |
|
| 141 |
void activate(Item i) |
|
| 142 |
{
|
|
| 143 |
const int l=_level[i]; |
|
| 144 |
swap(_where[i],++_last_active[l]); |
|
| 145 |
if(l>_highest_active) _highest_active=l; |
|
| 146 |
} |
|
| 147 |
|
|
| 148 |
///Deactivate item \c i. |
|
| 149 |
|
|
| 150 |
///Deactivate item \c i. |
|
| 151 |
///\pre Item \c i must be active before. |
|
| 152 |
void deactivate(Item i) |
|
| 153 |
{
|
|
| 154 |
swap(_where[i],_last_active[_level[i]]--); |
|
| 155 |
while(_highest_active>=0 && |
|
| 156 |
_last_active[_highest_active]<_first[_highest_active]) |
|
| 157 |
_highest_active--; |
|
| 158 |
} |
|
| 159 |
|
|
| 160 |
///Query whether item \c i is active |
|
| 161 |
bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; }
|
|
| 162 |
|
|
| 163 |
///Return the level of item \c i. |
|
| 164 |
int operator[](Item i) const { return _level[i]; }
|
|
| 165 |
|
|
| 166 |
///Return the number of items on level \c l. |
|
| 167 |
int onLevel(int l) const |
|
| 168 |
{
|
|
| 169 |
return _first[l+1]-_first[l]; |
|
| 170 |
} |
|
| 171 |
///Return true if level \c l is empty. |
|
| 172 |
bool emptyLevel(int l) const |
|
| 173 |
{
|
|
| 174 |
return _first[l+1]-_first[l]==0; |
|
| 175 |
} |
|
| 176 |
///Return the number of items above level \c l. |
|
| 177 |
int aboveLevel(int l) const |
|
| 178 |
{
|
|
| 179 |
return _first[_max_level+1]-_first[l+1]; |
|
| 180 |
} |
|
| 181 |
///Return the number of active items on level \c l. |
|
| 182 |
int activesOnLevel(int l) const |
|
| 183 |
{
|
|
| 184 |
return _last_active[l]-_first[l]+1; |
|
| 185 |
} |
|
| 186 |
///Return true if there is no active item on level \c l. |
|
| 187 |
bool activeFree(int l) const |
|
| 188 |
{
|
|
| 189 |
return _last_active[l]<_first[l]; |
|
| 190 |
} |
|
| 191 |
///Return the maximum allowed level. |
|
| 192 |
int maxLevel() const |
|
| 193 |
{
|
|
| 194 |
return _max_level; |
|
| 195 |
} |
|
| 196 |
|
|
| 197 |
///\name Highest Active Item |
|
| 198 |
///Functions for working with the highest level |
|
| 199 |
///active item. |
|
| 200 |
|
|
| 201 |
///@{
|
|
| 202 |
|
|
| 203 |
///Return a highest level active item. |
|
| 204 |
|
|
| 205 |
///Return a highest level active item or INVALID if there is no active |
|
| 206 |
///item. |
|
| 207 |
Item highestActive() const |
|
| 208 |
{
|
|
| 209 |
return _highest_active>=0?*_last_active[_highest_active]:INVALID; |
|
| 210 |
} |
|
| 211 |
|
|
| 212 |
///Return the highest active level. |
|
| 213 |
|
|
| 214 |
///Return the level of the highest active item or -1 if there is no active |
|
| 215 |
///item. |
|
| 216 |
int highestActiveLevel() const |
|
| 217 |
{
|
|
| 218 |
return _highest_active; |
|
| 219 |
} |
|
| 220 |
|
|
| 221 |
///Lift the highest active item by one. |
|
| 222 |
|
|
| 223 |
///Lift the item returned by highestActive() by one. |
|
| 224 |
/// |
|
| 225 |
void liftHighestActive() |
|
| 226 |
{
|
|
| 227 |
Item it = *_last_active[_highest_active]; |
|
| 228 |
_level.set(it,_level[it]+1); |
|
| 229 |
swap(_last_active[_highest_active]--,_last_active[_highest_active+1]); |
|
| 230 |
--_first[++_highest_active]; |
|
| 231 |
} |
|
| 232 |
|
|
| 233 |
///Lift the highest active item to the given level. |
|
| 234 |
|
|
| 235 |
///Lift the item returned by highestActive() to level \c new_level. |
|
| 236 |
/// |
|
| 237 |
///\warning \c new_level must be strictly higher |
|
| 238 |
///than the current level. |
|
| 239 |
/// |
|
| 240 |
void liftHighestActive(int new_level) |
|
| 241 |
{
|
|
| 242 |
const Item li = *_last_active[_highest_active]; |
|
| 243 |
|
|
| 244 |
copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
|
| 245 |
for(int l=_highest_active+1;l<new_level;l++) |
|
| 246 |
{
|
|
| 247 |
copy(--_first[l+1],_first[l]); |
|
| 248 |
--_last_active[l]; |
|
| 249 |
} |
|
| 250 |
copy(li,_first[new_level]); |
|
| 251 |
_level.set(li,new_level); |
|
| 252 |
_highest_active=new_level; |
|
| 253 |
} |
|
| 254 |
|
|
| 255 |
///Lift the highest active item to the top level. |
|
| 256 |
|
|
| 257 |
///Lift the item returned by highestActive() to the top level and |
|
| 258 |
///deactivate it. |
|
| 259 |
void liftHighestActiveToTop() |
|
| 260 |
{
|
|
| 261 |
const Item li = *_last_active[_highest_active]; |
|
| 262 |
|
|
| 263 |
copy(--_first[_highest_active+1],_last_active[_highest_active]--); |
|
| 264 |
for(int l=_highest_active+1;l<_max_level;l++) |
|
| 265 |
{
|
|
| 266 |
copy(--_first[l+1],_first[l]); |
|
| 267 |
--_last_active[l]; |
|
| 268 |
} |
|
| 269 |
copy(li,_first[_max_level]); |
|
| 270 |
--_last_active[_max_level]; |
|
| 271 |
_level.set(li,_max_level); |
|
| 272 |
|
|
| 273 |
while(_highest_active>=0 && |
|
| 274 |
_last_active[_highest_active]<_first[_highest_active]) |
|
| 275 |
_highest_active--; |
|
| 276 |
} |
|
| 277 |
|
|
| 278 |
///@} |
|
| 279 |
|
|
| 280 |
///\name Active Item on Certain Level |
|
| 281 |
///Functions for working with the active items. |
|
| 282 |
|
|
| 283 |
///@{
|
|
| 284 |
|
|
| 285 |
///Return an active item on level \c l. |
|
| 286 |
|
|
| 287 |
///Return an active item on level \c l or \ref INVALID if there is no such |
|
| 288 |
///an item. (\c l must be from the range [0...\c max_level]. |
|
| 289 |
Item activeOn(int l) const |
|
| 290 |
{
|
|
| 291 |
return _last_active[l]>=_first[l]?*_last_active[l]:INVALID; |
|
| 292 |
} |
|
| 293 |
|
|
| 294 |
///Lift the active item returned by \c activeOn(level) by one. |
|
| 295 |
|
|
| 296 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
|
| 297 |
///by one. |
|
| 298 |
Item liftActiveOn(int level) |
|
| 299 |
{
|
|
| 300 |
Item it =*_last_active[level]; |
|
| 301 |
_level.set(it,_level[it]+1); |
|
| 302 |
swap(_last_active[level]--, --_first[level+1]); |
|
| 303 |
if (level+1>_highest_active) ++_highest_active; |
|
| 304 |
} |
|
| 305 |
|
|
| 306 |
///Lift the active item returned by \c activeOn(level) to the given level. |
|
| 307 |
|
|
| 308 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
|
| 309 |
///to the given level. |
|
| 310 |
void liftActiveOn(int level, int new_level) |
|
| 311 |
{
|
|
| 312 |
const Item ai = *_last_active[level]; |
|
| 313 |
|
|
| 314 |
copy(--_first[level+1], _last_active[level]--); |
|
| 315 |
for(int l=level+1;l<new_level;l++) |
|
| 316 |
{
|
|
| 317 |
copy(_last_active[l],_first[l]); |
|
| 318 |
copy(--_first[l+1], _last_active[l]--); |
|
| 319 |
} |
|
| 320 |
copy(ai,_first[new_level]); |
|
| 321 |
_level.set(ai,new_level); |
|
| 322 |
if (new_level>_highest_active) _highest_active=new_level; |
|
| 323 |
} |
|
| 324 |
|
|
| 325 |
///Lift the active item returned by \c activeOn(level) to the top level. |
|
| 326 |
|
|
| 327 |
///Lift the active item returned by \ref activeOn() "activeOn(level)" |
|
| 328 |
///to the top level and deactivate it. |
|
| 329 |
void liftActiveToTop(int level) |
|
| 330 |
{
|
|
| 331 |
const Item ai = *_last_active[level]; |
|
| 332 |
|
|
| 333 |
copy(--_first[level+1],_last_active[level]--); |
|
| 334 |
for(int l=level+1;l<_max_level;l++) |
|
| 335 |
{
|
|
| 336 |
copy(_last_active[l],_first[l]); |
|
| 337 |
copy(--_first[l+1], _last_active[l]--); |
|
| 338 |
} |
|
| 339 |
copy(ai,_first[_max_level]); |
|
| 340 |
--_last_active[_max_level]; |
|
| 341 |
_level.set(ai,_max_level); |
|
| 342 |
|
|
| 343 |
if (_highest_active==level) {
|
|
| 344 |
while(_highest_active>=0 && |
|
| 345 |
_last_active[_highest_active]<_first[_highest_active]) |
|
| 346 |
_highest_active--; |
|
| 347 |
} |
|
| 348 |
} |
|
| 349 |
|
|
| 350 |
///@} |
|
| 351 |
|
|
| 352 |
///Lift an active item to a higher level. |
|
| 353 |
|
|
| 354 |
///Lift an active item to a higher level. |
|
| 355 |
///\param i The item to be lifted. It must be active. |
|
| 356 |
///\param new_level The new level of \c i. It must be strictly higher |
|
| 357 |
///than the current level. |
|
| 358 |
/// |
|
| 359 |
void lift(Item i, int new_level) |
|
| 360 |
{
|
|
| 361 |
const int lo = _level[i]; |
|
| 362 |
const Vit w = _where[i]; |
|
| 363 |
|
|
| 364 |
copy(_last_active[lo],w); |
|
| 365 |
copy(--_first[lo+1],_last_active[lo]--); |
|
| 366 |
for(int l=lo+1;l<new_level;l++) |
|
| 367 |
{
|
|
| 368 |
copy(_last_active[l],_first[l]); |
|
| 369 |
copy(--_first[l+1],_last_active[l]--); |
|
| 370 |
} |
|
| 371 |
copy(i,_first[new_level]); |
|
| 372 |
_level.set(i,new_level); |
|
| 373 |
if(new_level>_highest_active) _highest_active=new_level; |
|
| 374 |
} |
|
| 375 |
|
|
| 376 |
///Move an inactive item to the top but one level (in a dirty way). |
|
| 377 |
|
|
| 378 |
///This function moves an inactive item from the top level to the top |
|
| 379 |
///but one level (in a dirty way). |
|
| 380 |
///\warning It makes the underlying datastructure corrupt, so use it |
|
| 381 |
///only if you really know what it is for. |
|
| 382 |
///\pre The item is on the top level. |
|
| 383 |
void dirtyTopButOne(Item i) {
|
|
| 384 |
_level.set(i,_max_level - 1); |
|
| 385 |
} |
|
| 386 |
|
|
| 387 |
///Lift all items on and above the given level to the top level. |
|
| 388 |
|
|
| 389 |
///This function lifts all items on and above level \c l to the top |
|
| 390 |
///level and deactivates them. |
|
| 391 |
void liftToTop(int l) |
|
| 392 |
{
|
|
| 393 |
const Vit f=_first[l]; |
|
| 394 |
const Vit tl=_first[_max_level]; |
|
| 395 |
for(Vit i=f;i!=tl;++i) |
|
| 396 |
_level.set(*i,_max_level); |
|
| 397 |
for(int i=l;i<=_max_level;i++) |
|
| 398 |
{
|
|
| 399 |
_first[i]=f; |
|
| 400 |
_last_active[i]=f-1; |
|
| 401 |
} |
|
| 402 |
for(_highest_active=l-1; |
|
| 403 |
_highest_active>=0 && |
|
| 404 |
_last_active[_highest_active]<_first[_highest_active]; |
|
| 405 |
_highest_active--) ; |
|
| 406 |
} |
|
| 407 |
|
|
| 408 |
private: |
|
| 409 |
int _init_lev; |
|
| 410 |
Vit _init_num; |
|
| 411 |
|
|
| 412 |
public: |
|
| 413 |
|
|
| 414 |
///\name Initialization |
|
| 415 |
///Using these functions you can initialize the levels of the items. |
|
| 416 |
///\n |
|
| 417 |
///The initialization must be started with calling \c initStart(). |
|
| 418 |
///Then the items should be listed level by level starting with the |
|
| 419 |
///lowest one (level 0) using \c initAddItem() and \c initNewLevel(). |
|
| 420 |
///Finally \c initFinish() must be called. |
|
| 421 |
///The items not listed are put on the highest level. |
|
| 422 |
///@{
|
|
| 423 |
|
|
| 424 |
///Start the initialization process. |
|
| 425 |
void initStart() |
|
| 426 |
{
|
|
| 427 |
_init_lev=0; |
|
| 428 |
_init_num=&_items[0]; |
|
| 429 |
_first[0]=&_items[0]; |
|
| 430 |
_last_active[0]=&_items[0]-1; |
|
| 431 |
Vit n=&_items[0]; |
|
| 432 |
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_g);i!=INVALID;++i) |
|
| 433 |
{
|
|
| 434 |
*n=i; |
|
| 435 |
_where.set(i,n); |
|
| 436 |
_level.set(i,_max_level); |
|
| 437 |
++n; |
|
| 438 |
} |
|
| 439 |
} |
|
| 440 |
|
|
| 441 |
///Add an item to the current level. |
|
| 442 |
void initAddItem(Item i) |
|
| 443 |
{
|
|
| 444 |
swap(_where[i],_init_num); |
|
| 445 |
_level.set(i,_init_lev); |
|
| 446 |
++_init_num; |
|
| 447 |
} |
|
| 448 |
|
|
| 449 |
///Start a new level. |
|
| 450 |
|
|
| 451 |
///Start a new level. |
|
| 452 |
///It shouldn't be used before the items on level 0 are listed. |
|
| 453 |
void initNewLevel() |
|
| 454 |
{
|
|
| 455 |
_init_lev++; |
|
| 456 |
_first[_init_lev]=_init_num; |
|
| 457 |
_last_active[_init_lev]=_init_num-1; |
|
| 458 |
} |
|
| 459 |
|
|
| 460 |
///Finalize the initialization process. |
|
| 461 |
void initFinish() |
|
| 462 |
{
|
|
| 463 |
for(_init_lev++;_init_lev<=_max_level;_init_lev++) |
|
| 464 |
{
|
|
| 465 |
_first[_init_lev]=_init_num; |
|
| 466 |
_last_active[_init_lev]=_init_num-1; |
|
| 467 |
} |
|
| 468 |
_first[_max_level+1]=&_items[0]+_item_num; |
|
| 469 |
_last_active[_max_level+1]=&_items[0]+_item_num-1; |
|
| 470 |
_highest_active = -1; |
|
| 471 |
} |
|
| 472 |
|
|
| 473 |
///@} |
|
| 474 |
|
|
| 475 |
}; |
|
| 476 |
|
|
| 477 |
///Class for handling "labels" in push-relabel type algorithms. |
|
| 478 |
|
|
| 479 |
///A class for handling "labels" in push-relabel type algorithms. |
|
| 480 |
/// |
|
| 481 |
///\ingroup auxdat |
|
| 482 |
///Using this class you can assign "labels" (nonnegative integer numbers) |
|
| 483 |
///to the edges or nodes of a graph, manipulate and query them through |
|
| 484 |
///operations typically arising in "push-relabel" type algorithms. |
|
| 485 |
/// |
|
| 486 |
///Each item is either \em active or not, and you can also choose a |
|
| 487 |
///highest level active item. |
|
| 488 |
/// |
|
| 489 |
///\sa Elevator |
|
| 490 |
/// |
|
| 491 |
///\param Graph Type of the underlying graph. |
|
| 492 |
///\param Item Type of the items the data is assigned to (Graph::Node, |
|
| 493 |
///Graph::Arc, Graph::Edge). |
|
| 494 |
template <class Graph, class Item> |
|
| 495 |
class LinkedElevator {
|
|
| 496 |
public: |
|
| 497 |
|
|
| 498 |
typedef Item Key; |
|
| 499 |
typedef int Value; |
|
| 500 |
|
|
| 501 |
private: |
|
| 502 |
|
|
| 503 |
typedef typename ItemSetTraits<Graph,Item>:: |
|
| 504 |
template Map<Item>::Type ItemMap; |
|
| 505 |
typedef typename ItemSetTraits<Graph,Item>:: |
|
| 506 |
template Map<int>::Type IntMap; |
|
| 507 |
typedef typename ItemSetTraits<Graph,Item>:: |
|
| 508 |
template Map<bool>::Type BoolMap; |
|
| 509 |
|
|
| 510 |
const Graph &_graph; |
|
| 511 |
int _max_level; |
|
| 512 |
int _item_num; |
|
| 513 |
std::vector<Item> _first, _last; |
|
| 514 |
ItemMap _prev, _next; |
|
| 515 |
int _highest_active; |
|
| 516 |
IntMap _level; |
|
| 517 |
BoolMap _active; |
|
| 518 |
|
|
| 519 |
public: |
|
| 520 |
///Constructor with given maximum level. |
|
| 521 |
|
|
| 522 |
///Constructor with given maximum level. |
|
| 523 |
/// |
|
| 524 |
///\param graph The underlying graph. |
|
| 525 |
///\param max_level The maximum allowed level. |
|
| 526 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>. |
|
| 527 |
LinkedElevator(const Graph& graph, int max_level) |
|
| 528 |
: _graph(graph), _max_level(max_level), _item_num(_max_level), |
|
| 529 |
_first(_max_level + 1), _last(_max_level + 1), |
|
| 530 |
_prev(graph), _next(graph), |
|
| 531 |
_highest_active(-1), _level(graph), _active(graph) {}
|
|
| 532 |
|
|
| 533 |
///Constructor. |
|
| 534 |
|
|
| 535 |
///Constructor. |
|
| 536 |
/// |
|
| 537 |
///\param graph The underlying graph. |
|
| 538 |
///Set the range of the possible labels to <tt>[0..max_level]</tt>, |
|
| 539 |
///where \c max_level is equal to the number of labeled items in the graph. |
|
| 540 |
LinkedElevator(const Graph& graph) |
|
| 541 |
: _graph(graph), _max_level(countItems<Graph, Item>(graph)), |
|
| 542 |
_item_num(_max_level), |
|
| 543 |
_first(_max_level + 1), _last(_max_level + 1), |
|
| 544 |
_prev(graph, INVALID), _next(graph, INVALID), |
|
| 545 |
_highest_active(-1), _level(graph), _active(graph) {}
|
|
| 546 |
|
|
| 547 |
|
|
| 548 |
///Activate item \c i. |
|
| 549 |
|
|
| 550 |
///Activate item \c i. |
|
| 551 |
///\pre Item \c i shouldn't be active before. |
|
| 552 |
void activate(Item i) {
|
|
| 553 |
_active.set(i, true); |
|
| 554 |
|
|
| 555 |
int level = _level[i]; |
|
| 556 |
if (level > _highest_active) {
|
|
| 557 |
_highest_active = level; |
|
| 558 |
} |
|
| 559 |
|
|
| 560 |
if (_prev[i] == INVALID || _active[_prev[i]]) return; |
|
| 561 |
//unlace |
|
| 562 |
_next.set(_prev[i], _next[i]); |
|
| 563 |
if (_next[i] != INVALID) {
|
|
| 564 |
_prev.set(_next[i], _prev[i]); |
|
| 565 |
} else {
|
|
| 566 |
_last[level] = _prev[i]; |
|
| 567 |
} |
|
| 568 |
//lace |
|
| 569 |
_next.set(i, _first[level]); |
|
| 570 |
_prev.set(_first[level], i); |
|
| 571 |
_prev.set(i, INVALID); |
|
| 572 |
_first[level] = i; |
|
| 573 |
|
|
| 574 |
} |
|
| 575 |
|
|
| 576 |
///Deactivate item \c i. |
|
| 577 |
|
|
| 578 |
///Deactivate item \c i. |
|
| 579 |
///\pre Item \c i must be active before. |
|
| 580 |
void deactivate(Item i) {
|
|
| 581 |
_active.set(i, false); |
|
| 582 |
int level = _level[i]; |
|
| 583 |
|
|
| 584 |
if (_next[i] == INVALID || !_active[_next[i]]) |
|
| 585 |
goto find_highest_level; |
|
| 586 |
|
|
| 587 |
//unlace |
|
| 588 |
_prev.set(_next[i], _prev[i]); |
|
| 589 |
if (_prev[i] != INVALID) {
|
|
| 590 |
_next.set(_prev[i], _next[i]); |
|
| 591 |
} else {
|
|
| 592 |
_first[_level[i]] = _next[i]; |
|
| 593 |
} |
|
| 594 |
//lace |
|
| 595 |
_prev.set(i, _last[level]); |
|
| 596 |
_next.set(_last[level], i); |
|
| 597 |
_next.set(i, INVALID); |
|
| 598 |
_last[level] = i; |
|
| 599 |
|
|
| 600 |
find_highest_level: |
|
| 601 |
if (level == _highest_active) {
|
|
| 602 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
|
| 603 |
--_highest_active; |
|
| 604 |
} |
|
| 605 |
} |
|
| 606 |
|
|
| 607 |
///Query whether item \c i is active |
|
| 608 |
bool active(Item i) const { return _active[i]; }
|
|
| 609 |
|
|
| 610 |
///Return the level of item \c i. |
|
| 611 |
int operator[](Item i) const { return _level[i]; }
|
|
| 612 |
|
|
| 613 |
///Return the number of items on level \c l. |
|
| 614 |
int onLevel(int l) const {
|
|
| 615 |
int num = 0; |
|
| 616 |
Item n = _first[l]; |
|
| 617 |
while (n != INVALID) {
|
|
| 618 |
++num; |
|
| 619 |
n = _next[n]; |
|
| 620 |
} |
|
| 621 |
return num; |
|
| 622 |
} |
|
| 623 |
|
|
| 624 |
///Return true if the level is empty. |
|
| 625 |
bool emptyLevel(int l) const {
|
|
| 626 |
return _first[l] == INVALID; |
|
| 627 |
} |
|
| 628 |
|
|
| 629 |
///Return the number of items above level \c l. |
|
| 630 |
int aboveLevel(int l) const {
|
|
| 631 |
int num = 0; |
|
| 632 |
for (int level = l + 1; level < _max_level; ++level) |
|
| 633 |
num += onLevel(level); |
|
| 634 |
return num; |
|
| 635 |
} |
|
| 636 |
|
|
| 637 |
///Return the number of active items on level \c l. |
|
| 638 |
int activesOnLevel(int l) const {
|
|
| 639 |
int num = 0; |
|
| 640 |
Item n = _first[l]; |
|
| 641 |
while (n != INVALID && _active[n]) {
|
|
| 642 |
++num; |
|
| 643 |
n = _next[n]; |
|
| 644 |
} |
|
| 645 |
return num; |
|
| 646 |
} |
|
| 647 |
|
|
| 648 |
///Return true if there is no active item on level \c l. |
|
| 649 |
bool activeFree(int l) const {
|
|
| 650 |
return _first[l] == INVALID || !_active[_first[l]]; |
|
| 651 |
} |
|
| 652 |
|
|
| 653 |
///Return the maximum allowed level. |
|
| 654 |
int maxLevel() const {
|
|
| 655 |
return _max_level; |
|
| 656 |
} |
|
| 657 |
|
|
| 658 |
///\name Highest Active Item |
|
| 659 |
///Functions for working with the highest level |
|
| 660 |
///active item. |
|
| 661 |
|
|
| 662 |
///@{
|
|
| 663 |
|
|
| 664 |
///Return a highest level active item. |
|
| 665 |
|
|
| 666 |
///Return a highest level active item or INVALID if there is no active |
|
| 667 |
///item. |
|
| 668 |
Item highestActive() const {
|
|
| 669 |
return _highest_active >= 0 ? _first[_highest_active] : INVALID; |
|
| 670 |
} |
|
| 671 |
|
|
| 672 |
///Return the highest active level. |
|
| 673 |
|
|
| 674 |
///Return the level of the highest active item or -1 if there is no active |
|
| 675 |
///item. |
|
| 676 |
int highestActiveLevel() const {
|
|
| 677 |
return _highest_active; |
|
| 678 |
} |
|
| 679 |
|
|
| 680 |
///Lift the highest active item by one. |
|
| 681 |
|
|
| 682 |
///Lift the item returned by highestActive() by one. |
|
| 683 |
/// |
|
| 684 |
void liftHighestActive() {
|
|
| 685 |
Item i = _first[_highest_active]; |
|
| 686 |
if (_next[i] != INVALID) {
|
|
| 687 |
_prev.set(_next[i], INVALID); |
|
| 688 |
_first[_highest_active] = _next[i]; |
|
| 689 |
} else {
|
|
| 690 |
_first[_highest_active] = INVALID; |
|
| 691 |
_last[_highest_active] = INVALID; |
|
| 692 |
} |
|
| 693 |
_level.set(i, ++_highest_active); |
|
| 694 |
if (_first[_highest_active] == INVALID) {
|
|
| 695 |
_first[_highest_active] = i; |
|
| 696 |
_last[_highest_active] = i; |
|
| 697 |
_prev.set(i, INVALID); |
|
| 698 |
_next.set(i, INVALID); |
|
| 699 |
} else {
|
|
| 700 |
_prev.set(_first[_highest_active], i); |
|
| 701 |
_next.set(i, _first[_highest_active]); |
|
| 702 |
_first[_highest_active] = i; |
|
| 703 |
} |
|
| 704 |
} |
|
| 705 |
|
|
| 706 |
///Lift the highest active item to the given level. |
|
| 707 |
|
|
| 708 |
///Lift the item returned by highestActive() to level \c new_level. |
|
| 709 |
/// |
|
| 710 |
///\warning \c new_level must be strictly higher |
|
| 711 |
///than the current level. |
|
| 712 |
/// |
|
| 713 |
void liftHighestActive(int new_level) {
|
|
| 714 |
Item i = _first[_highest_active]; |
|
| 715 |
if (_next[i] != INVALID) {
|
|
| 716 |
_prev.set(_next[i], INVALID); |
|
| 717 |
_first[_highest_active] = _next[i]; |
|
| 718 |
} else {
|
|
| 719 |
_first[_highest_active] = INVALID; |
|
| 720 |
_last[_highest_active] = INVALID; |
|
| 721 |
} |
|
| 722 |
_level.set(i, _highest_active = new_level); |
|
| 723 |
if (_first[_highest_active] == INVALID) {
|
|
| 724 |
_first[_highest_active] = _last[_highest_active] = i; |
|
| 725 |
_prev.set(i, INVALID); |
|
| 726 |
_next.set(i, INVALID); |
|
| 727 |
} else {
|
|
| 728 |
_prev.set(_first[_highest_active], i); |
|
| 729 |
_next.set(i, _first[_highest_active]); |
|
| 730 |
_first[_highest_active] = i; |
|
| 731 |
} |
|
| 732 |
} |
|
| 733 |
|
|
| 734 |
///Lift the highest active item to the top level. |
|
| 735 |
|
|
| 736 |
///Lift the item returned by highestActive() to the top level and |
|
| 737 |
///deactivate it. |
|
| 738 |
void liftHighestActiveToTop() {
|
|
| 739 |
Item i = _first[_highest_active]; |
|
| 740 |
_level.set(i, _max_level); |
|
| 741 |
if (_next[i] != INVALID) {
|
|
| 742 |
_prev.set(_next[i], INVALID); |
|
| 743 |
_first[_highest_active] = _next[i]; |
|
| 744 |
} else {
|
|
| 745 |
_first[_highest_active] = INVALID; |
|
| 746 |
_last[_highest_active] = INVALID; |
|
| 747 |
} |
|
| 748 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
|
| 749 |
--_highest_active; |
|
| 750 |
} |
|
| 751 |
|
|
| 752 |
///@} |
|
| 753 |
|
|
| 754 |
///\name Active Item on Certain Level |
|
| 755 |
///Functions for working with the active items. |
|
| 756 |
|
|
| 757 |
///@{
|
|
| 758 |
|
|
| 759 |
///Return an active item on level \c l. |
|
| 760 |
|
|
| 761 |
///Return an active item on level \c l or \ref INVALID if there is no such |
|
| 762 |
///an item. (\c l must be from the range [0...\c max_level]. |
|
| 763 |
Item activeOn(int l) const |
|
| 764 |
{
|
|
| 765 |
return _active[_first[l]] ? _first[l] : INVALID; |
|
| 766 |
} |
|
| 767 |
|
|
| 768 |
///Lift the active item returned by \c activeOn(l) by one. |
|
| 769 |
|
|
| 770 |
///Lift the active item returned by \ref activeOn() "activeOn(l)" |
|
| 771 |
///by one. |
|
| 772 |
Item liftActiveOn(int l) |
|
| 773 |
{
|
|
| 774 |
Item i = _first[l]; |
|
| 775 |
if (_next[i] != INVALID) {
|
|
| 776 |
_prev.set(_next[i], INVALID); |
|
| 777 |
_first[l] = _next[i]; |
|
| 778 |
} else {
|
|
| 779 |
_first[l] = INVALID; |
|
| 780 |
_last[l] = INVALID; |
|
| 781 |
} |
|
| 782 |
_level.set(i, ++l); |
|
| 783 |
if (_first[l] == INVALID) {
|
|
| 784 |
_first[l] = _last[l] = i; |
|
| 785 |
_prev.set(i, INVALID); |
|
| 786 |
_next.set(i, INVALID); |
|
| 787 |
} else {
|
|
| 788 |
_prev.set(_first[l], i); |
|
| 789 |
_next.set(i, _first[l]); |
|
| 790 |
_first[l] = i; |
|
| 791 |
} |
|
| 792 |
if (_highest_active < l) {
|
|
| 793 |
_highest_active = l; |
|
| 794 |
} |
|
| 795 |
} |
|
| 796 |
|
|
| 797 |
///Lift the active item returned by \c activeOn(l) to the given level. |
|
| 798 |
|
|
| 799 |
///Lift the active item returned by \ref activeOn() "activeOn(l)" |
|
| 800 |
///to the given level. |
|
| 801 |
void liftActiveOn(int l, int new_level) |
|
| 802 |
{
|
|
| 803 |
Item i = _first[l]; |
|
| 804 |
if (_next[i] != INVALID) {
|
|
| 805 |
_prev.set(_next[i], INVALID); |
|
| 806 |
_first[l] = _next[i]; |
|
| 807 |
} else {
|
|
| 808 |
_first[l] = INVALID; |
|
| 809 |
_last[l] = INVALID; |
|
| 810 |
} |
|
| 811 |
_level.set(i, l = new_level); |
|
| 812 |
if (_first[l] == INVALID) {
|
|
| 813 |
_first[l] = _last[l] = i; |
|
| 814 |
_prev.set(i, INVALID); |
|
| 815 |
_next.set(i, INVALID); |
|
| 816 |
} else {
|
|
| 817 |
_prev.set(_first[l], i); |
|
| 818 |
_next.set(i, _first[l]); |
|
| 819 |
_first[l] = i; |
|
| 820 |
} |
|
| 821 |
if (_highest_active < l) {
|
|
| 822 |
_highest_active = l; |
|
| 823 |
} |
|
| 824 |
} |
|
| 825 |
|
|
| 826 |
///Lift the active item returned by \c activeOn(l) to the top level. |
|
| 827 |
|
|
| 828 |
///Lift the active item returned by \ref activeOn() "activeOn(l)" |
|
| 829 |
///to the top level and deactivate it. |
|
| 830 |
void liftActiveToTop(int l) |
|
| 831 |
{
|
|
| 832 |
Item i = _first[l]; |
|
| 833 |
if (_next[i] != INVALID) {
|
|
| 834 |
_prev.set(_next[i], INVALID); |
|
| 835 |
_first[l] = _next[i]; |
|
| 836 |
} else {
|
|
| 837 |
_first[l] = INVALID; |
|
| 838 |
_last[l] = INVALID; |
|
| 839 |
} |
|
| 840 |
_level.set(i, _max_level); |
|
| 841 |
if (l == _highest_active) {
|
|
| 842 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
|
| 843 |
--_highest_active; |
|
| 844 |
} |
|
| 845 |
} |
|
| 846 |
|
|
| 847 |
///@} |
|
| 848 |
|
|
| 849 |
/// \brief Lift an active item to a higher level. |
|
| 850 |
/// |
|
| 851 |
/// Lift an active item to a higher level. |
|
| 852 |
/// \param i The item to be lifted. It must be active. |
|
| 853 |
/// \param new_level The new level of \c i. It must be strictly higher |
|
| 854 |
/// than the current level. |
|
| 855 |
/// |
|
| 856 |
void lift(Item i, int new_level) {
|
|
| 857 |
if (_next[i] != INVALID) {
|
|
| 858 |
_prev.set(_next[i], _prev[i]); |
|
| 859 |
} else {
|
|
| 860 |
_last[new_level] = _prev[i]; |
|
| 861 |
} |
|
| 862 |
if (_prev[i] != INVALID) {
|
|
| 863 |
_next.set(_prev[i], _next[i]); |
|
| 864 |
} else {
|
|
| 865 |
_first[new_level] = _next[i]; |
|
| 866 |
} |
|
| 867 |
_level.set(i, new_level); |
|
| 868 |
if (_first[new_level] == INVALID) {
|
|
| 869 |
_first[new_level] = _last[new_level] = i; |
|
| 870 |
_prev.set(i, INVALID); |
|
| 871 |
_next.set(i, INVALID); |
|
| 872 |
} else {
|
|
| 873 |
_prev.set(_first[new_level], i); |
|
| 874 |
_next.set(i, _first[new_level]); |
|
| 875 |
_first[new_level] = i; |
|
| 876 |
} |
|
| 877 |
if (_highest_active < new_level) {
|
|
| 878 |
_highest_active = new_level; |
|
| 879 |
} |
|
| 880 |
} |
|
| 881 |
|
|
| 882 |
///Move an inactive item to the top but one level (in a dirty way). |
|
| 883 |
|
|
| 884 |
///This function moves an inactive item from the top level to the top |
|
| 885 |
///but one level (in a dirty way). |
|
| 886 |
///\warning It makes the underlying datastructure corrupt, so use it |
|
| 887 |
///only if you really know what it is for. |
|
| 888 |
///\pre The item is on the top level. |
|
| 889 |
void dirtyTopButOne(Item i) {
|
|
| 890 |
_level.set(i, _max_level - 1); |
|
| 891 |
} |
|
| 892 |
|
|
| 893 |
///Lift all items on and above the given level to the top level. |
|
| 894 |
|
|
| 895 |
///This function lifts all items on and above level \c l to the top |
|
| 896 |
///level and deactivates them. |
|
| 897 |
void liftToTop(int l) {
|
|
| 898 |
for (int i = l + 1; _first[i] != INVALID; ++i) {
|
|
| 899 |
Item n = _first[i]; |
|
| 900 |
while (n != INVALID) {
|
|
| 901 |
_level.set(n, _max_level); |
|
| 902 |
n = _next[n]; |
|
| 903 |
} |
|
| 904 |
_first[i] = INVALID; |
|
| 905 |
_last[i] = INVALID; |
|
| 906 |
} |
|
| 907 |
if (_highest_active > l - 1) {
|
|
| 908 |
_highest_active = l - 1; |
|
| 909 |
while (_highest_active >= 0 && activeFree(_highest_active)) |
|
| 910 |
--_highest_active; |
|
| 911 |
} |
|
| 912 |
} |
|
| 913 |
|
|
| 914 |
private: |
|
| 915 |
|
|
| 916 |
int _init_level; |
|
| 917 |
|
|
| 918 |
public: |
|
| 919 |
|
|
| 920 |
///\name Initialization |
|
| 921 |
///Using these functions you can initialize the levels of the items. |
|
| 922 |
///\n |
|
| 923 |
///The initialization must be started with calling \c initStart(). |
|
| 924 |
///Then the items should be listed level by level starting with the |
|
| 925 |
///lowest one (level 0) using \c initAddItem() and \c initNewLevel(). |
|
| 926 |
///Finally \c initFinish() must be called. |
|
| 927 |
///The items not listed are put on the highest level. |
|
| 928 |
///@{
|
|
| 929 |
|
|
| 930 |
///Start the initialization process. |
|
| 931 |
void initStart() {
|
|
| 932 |
|
|
| 933 |
for (int i = 0; i <= _max_level; ++i) {
|
|
| 934 |
_first[i] = _last[i] = INVALID; |
|
| 935 |
} |
|
| 936 |
_init_level = 0; |
|
| 937 |
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_graph); |
|
| 938 |
i != INVALID; ++i) {
|
|
| 939 |
_level.set(i, _max_level); |
|
| 940 |
_active.set(i, false); |
|
| 941 |
} |
|
| 942 |
} |
|
| 943 |
|
|
| 944 |
///Add an item to the current level. |
|
| 945 |
void initAddItem(Item i) {
|
|
| 946 |
_level.set(i, _init_level); |
|
| 947 |
if (_last[_init_level] == INVALID) {
|
|
| 948 |
_first[_init_level] = i; |
|
| 949 |
_last[_init_level] = i; |
|
| 950 |
_prev.set(i, INVALID); |
|
| 951 |
_next.set(i, INVALID); |
|
| 952 |
} else {
|
|
| 953 |
_prev.set(i, _last[_init_level]); |
|
| 954 |
_next.set(i, INVALID); |
|
| 955 |
_next.set(_last[_init_level], i); |
|
| 956 |
_last[_init_level] = i; |
|
| 957 |
} |
|
| 958 |
} |
|
| 959 |
|
|
| 960 |
///Start a new level. |
|
| 961 |
|
|
| 962 |
///Start a new level. |
|
| 963 |
///It shouldn't be used before the items on level 0 are listed. |
|
| 964 |
void initNewLevel() {
|
|
| 965 |
++_init_level; |
|
| 966 |
} |
|
| 967 |
|
|
| 968 |
///Finalize the initialization process. |
|
| 969 |
void initFinish() {
|
|
| 970 |
_highest_active = -1; |
|
| 971 |
} |
|
| 972 |
|
|
| 973 |
///@} |
|
| 974 |
|
|
| 975 |
}; |
|
| 976 |
|
|
| 977 |
|
|
| 978 |
} //END OF NAMESPACE LEMON |
|
| 979 |
|
|
| 980 |
#endif |
|
| 981 |
|
0 comments (0 inline)