| ... | ... |
@@ -29,226 +29,229 @@ |
| 29 | 29 |
#include <algorithm> |
| 30 | 30 |
|
| 31 | 31 |
#include <lemon/core.h> |
| 32 | 32 |
#include <lemon/math.h> |
| 33 | 33 |
|
| 34 | 34 |
namespace lemon {
|
| 35 | 35 |
|
| 36 | 36 |
/// \addtogroup min_cost_flow_algs |
| 37 | 37 |
/// @{
|
| 38 | 38 |
|
| 39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
| 40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
| 41 | 41 |
/// |
| 42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
| 43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow" |
| 44 | 44 |
/// \ref amo93networkflows, \ref dantzig63linearprog, |
| 45 | 45 |
/// \ref kellyoneill91netsimplex. |
| 46 | 46 |
/// This algorithm is a highly efficient specialized version of the |
| 47 | 47 |
/// linear programming simplex method directly for the minimum cost |
| 48 | 48 |
/// flow problem. |
| 49 | 49 |
/// |
| 50 | 50 |
/// In general, \ref NetworkSimplex and \ref CostScaling are the fastest |
| 51 | 51 |
/// implementations available in LEMON for this problem. |
| 52 | 52 |
/// Furthermore, this class supports both directions of the supply/demand |
| 53 | 53 |
/// inequality constraints. For more information, see \ref SupplyType. |
| 54 | 54 |
/// |
| 55 | 55 |
/// Most of the parameters of the problem (except for the digraph) |
| 56 | 56 |
/// can be given using separate functions, and the algorithm can be |
| 57 | 57 |
/// executed using the \ref run() function. If some parameters are not |
| 58 | 58 |
/// specified, then default values will be used. |
| 59 | 59 |
/// |
| 60 | 60 |
/// \tparam GR The digraph type the algorithm runs on. |
| 61 | 61 |
/// \tparam V The number type used for flow amounts, capacity bounds |
| 62 | 62 |
/// and supply values in the algorithm. By default, it is \c int. |
| 63 | 63 |
/// \tparam C The number type used for costs and potentials in the |
| 64 | 64 |
/// algorithm. By default, it is the same as \c V. |
| 65 | 65 |
/// |
| 66 | 66 |
/// \warning Both \c V and \c C must be signed number types. |
| 67 | 67 |
/// \warning All input data (capacities, supply values, and costs) must |
| 68 | 68 |
/// be integer. |
| 69 | 69 |
/// |
| 70 | 70 |
/// \note %NetworkSimplex provides five different pivot rule |
| 71 | 71 |
/// implementations, from which the most efficient one is used |
| 72 | 72 |
/// by default. For more information, see \ref PivotRule. |
| 73 | 73 |
template <typename GR, typename V = int, typename C = V> |
| 74 | 74 |
class NetworkSimplex |
| 75 | 75 |
{
|
| 76 | 76 |
public: |
| 77 | 77 |
|
| 78 | 78 |
/// The type of the flow amounts, capacity bounds and supply values |
| 79 | 79 |
typedef V Value; |
| 80 | 80 |
/// The type of the arc costs |
| 81 | 81 |
typedef C Cost; |
| 82 | 82 |
|
| 83 | 83 |
public: |
| 84 | 84 |
|
| 85 | 85 |
/// \brief Problem type constants for the \c run() function. |
| 86 | 86 |
/// |
| 87 | 87 |
/// Enum type containing the problem type constants that can be |
| 88 | 88 |
/// returned by the \ref run() function of the algorithm. |
| 89 | 89 |
enum ProblemType {
|
| 90 | 90 |
/// The problem has no feasible solution (flow). |
| 91 | 91 |
INFEASIBLE, |
| 92 | 92 |
/// The problem has optimal solution (i.e. it is feasible and |
| 93 | 93 |
/// bounded), and the algorithm has found optimal flow and node |
| 94 | 94 |
/// potentials (primal and dual solutions). |
| 95 | 95 |
OPTIMAL, |
| 96 | 96 |
/// The objective function of the problem is unbounded, i.e. |
| 97 | 97 |
/// there is a directed cycle having negative total cost and |
| 98 | 98 |
/// infinite upper bound. |
| 99 | 99 |
UNBOUNDED |
| 100 | 100 |
}; |
| 101 | 101 |
|
| 102 | 102 |
/// \brief Constants for selecting the type of the supply constraints. |
| 103 | 103 |
/// |
| 104 | 104 |
/// Enum type containing constants for selecting the supply type, |
| 105 | 105 |
/// i.e. the direction of the inequalities in the supply/demand |
| 106 | 106 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
| 107 | 107 |
/// |
| 108 | 108 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
| 109 | 109 |
/// selected using \ref supplyType(). |
| 110 | 110 |
/// The equality form is a special case of both supply types. |
| 111 | 111 |
enum SupplyType {
|
| 112 | 112 |
/// This option means that there are <em>"greater or equal"</em> |
| 113 | 113 |
/// supply/demand constraints in the definition of the problem. |
| 114 | 114 |
GEQ, |
| 115 | 115 |
/// This option means that there are <em>"less or equal"</em> |
| 116 | 116 |
/// supply/demand constraints in the definition of the problem. |
| 117 | 117 |
LEQ |
| 118 | 118 |
}; |
| 119 | 119 |
|
| 120 | 120 |
/// \brief Constants for selecting the pivot rule. |
| 121 | 121 |
/// |
| 122 | 122 |
/// Enum type containing constants for selecting the pivot rule for |
| 123 | 123 |
/// the \ref run() function. |
| 124 | 124 |
/// |
| 125 |
/// \ref NetworkSimplex provides five different pivot rule |
|
| 126 |
/// implementations that significantly affect the running time |
|
| 125 |
/// \ref NetworkSimplex provides five different implementations for |
|
| 126 |
/// the pivot strategy that significantly affects the running time |
|
| 127 | 127 |
/// of the algorithm. |
| 128 |
/// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
|
| 129 |
/// turend out to be the most efficient and the most robust on various |
|
| 130 |
/// test inputs. |
|
| 131 |
/// However, another pivot rule can be selected using the \ref run() |
|
| 132 |
/// |
|
| 128 |
/// According to experimental tests conducted on various problem |
|
| 129 |
/// instances, \ref BLOCK_SEARCH "Block Search" and |
|
| 130 |
/// \ref ALTERING_LIST "Altering Candidate List" rules turned out |
|
| 131 |
/// to be the most efficient. |
|
| 132 |
/// Since \ref BLOCK_SEARCH "Block Search" is a simpler strategy that |
|
| 133 |
/// seemed to be slightly more robust, it is used by default. |
|
| 134 |
/// However, another pivot rule can easily be selected using the |
|
| 135 |
/// \ref run() function with the proper parameter. |
|
| 133 | 136 |
enum PivotRule {
|
| 134 | 137 |
|
| 135 | 138 |
/// The \e First \e Eligible pivot rule. |
| 136 | 139 |
/// The next eligible arc is selected in a wraparound fashion |
| 137 | 140 |
/// in every iteration. |
| 138 | 141 |
FIRST_ELIGIBLE, |
| 139 | 142 |
|
| 140 | 143 |
/// The \e Best \e Eligible pivot rule. |
| 141 | 144 |
/// The best eligible arc is selected in every iteration. |
| 142 | 145 |
BEST_ELIGIBLE, |
| 143 | 146 |
|
| 144 | 147 |
/// The \e Block \e Search pivot rule. |
| 145 | 148 |
/// A specified number of arcs are examined in every iteration |
| 146 | 149 |
/// in a wraparound fashion and the best eligible arc is selected |
| 147 | 150 |
/// from this block. |
| 148 | 151 |
BLOCK_SEARCH, |
| 149 | 152 |
|
| 150 | 153 |
/// The \e Candidate \e List pivot rule. |
| 151 | 154 |
/// In a major iteration a candidate list is built from eligible arcs |
| 152 | 155 |
/// in a wraparound fashion and in the following minor iterations |
| 153 | 156 |
/// the best eligible arc is selected from this list. |
| 154 | 157 |
CANDIDATE_LIST, |
| 155 | 158 |
|
| 156 | 159 |
/// The \e Altering \e Candidate \e List pivot rule. |
| 157 | 160 |
/// It is a modified version of the Candidate List method. |
| 158 |
/// It keeps only |
|
| 161 |
/// It keeps only a few of the best eligible arcs from the former |
|
| 159 | 162 |
/// candidate list and extends this list in every iteration. |
| 160 | 163 |
ALTERING_LIST |
| 161 | 164 |
}; |
| 162 | 165 |
|
| 163 | 166 |
private: |
| 164 | 167 |
|
| 165 | 168 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
| 166 | 169 |
|
| 167 | 170 |
typedef std::vector<int> IntVector; |
| 168 | 171 |
typedef std::vector<Value> ValueVector; |
| 169 | 172 |
typedef std::vector<Cost> CostVector; |
| 170 | 173 |
typedef std::vector<signed char> CharVector; |
| 171 | 174 |
// Note: vector<signed char> is used instead of vector<ArcState> and |
| 172 | 175 |
// vector<ArcDirection> for efficiency reasons |
| 173 | 176 |
|
| 174 | 177 |
// State constants for arcs |
| 175 | 178 |
enum ArcState {
|
| 176 | 179 |
STATE_UPPER = -1, |
| 177 | 180 |
STATE_TREE = 0, |
| 178 | 181 |
STATE_LOWER = 1 |
| 179 | 182 |
}; |
| 180 | 183 |
|
| 181 | 184 |
// Direction constants for tree arcs |
| 182 | 185 |
enum ArcDirection {
|
| 183 | 186 |
DIR_DOWN = -1, |
| 184 | 187 |
DIR_UP = 1 |
| 185 | 188 |
}; |
| 186 | 189 |
|
| 187 | 190 |
private: |
| 188 | 191 |
|
| 189 | 192 |
// Data related to the underlying digraph |
| 190 | 193 |
const GR &_graph; |
| 191 | 194 |
int _node_num; |
| 192 | 195 |
int _arc_num; |
| 193 | 196 |
int _all_arc_num; |
| 194 | 197 |
int _search_arc_num; |
| 195 | 198 |
|
| 196 | 199 |
// Parameters of the problem |
| 197 | 200 |
bool _have_lower; |
| 198 | 201 |
SupplyType _stype; |
| 199 | 202 |
Value _sum_supply; |
| 200 | 203 |
|
| 201 | 204 |
// Data structures for storing the digraph |
| 202 | 205 |
IntNodeMap _node_id; |
| 203 | 206 |
IntArcMap _arc_id; |
| 204 | 207 |
IntVector _source; |
| 205 | 208 |
IntVector _target; |
| 206 | 209 |
bool _arc_mixing; |
| 207 | 210 |
|
| 208 | 211 |
// Node and arc data |
| 209 | 212 |
ValueVector _lower; |
| 210 | 213 |
ValueVector _upper; |
| 211 | 214 |
ValueVector _cap; |
| 212 | 215 |
CostVector _cost; |
| 213 | 216 |
ValueVector _supply; |
| 214 | 217 |
ValueVector _flow; |
| 215 | 218 |
CostVector _pi; |
| 216 | 219 |
|
| 217 | 220 |
// Data for storing the spanning tree structure |
| 218 | 221 |
IntVector _parent; |
| 219 | 222 |
IntVector _pred; |
| 220 | 223 |
IntVector _thread; |
| 221 | 224 |
IntVector _rev_thread; |
| 222 | 225 |
IntVector _succ_num; |
| 223 | 226 |
IntVector _last_succ; |
| 224 | 227 |
CharVector _pred_dir; |
| 225 | 228 |
CharVector _state; |
| 226 | 229 |
IntVector _dirty_revs; |
| 227 | 230 |
int _root; |
| 228 | 231 |
|
| 229 | 232 |
// Temporary data used in the current pivot iteration |
| 230 | 233 |
int in_arc, join, u_in, v_in, u_out, v_out; |
| 231 | 234 |
Value delta; |
| 232 | 235 |
|
| 233 | 236 |
const Value MAX; |
| 234 | 237 |
|
| 235 | 238 |
public: |
| 236 | 239 |
|
| 237 | 240 |
/// \brief Constant for infinite upper bounds (capacities). |
| 238 | 241 |
/// |
| 239 | 242 |
/// Constant for infinite upper bounds (capacities). |
| 240 | 243 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
| 241 | 244 |
/// \c std::numeric_limits<Value>::max() otherwise. |
| 242 | 245 |
const Value INF; |
| 243 | 246 |
|
| 244 | 247 |
private: |
| 245 | 248 |
|
| 246 | 249 |
// Implementation of the First Eligible pivot rule |
| 247 | 250 |
class FirstEligiblePivotRule |
| 248 | 251 |
{
|
| 249 | 252 |
private: |
| 250 | 253 |
|
| 251 | 254 |
// References to the NetworkSimplex class |
| 252 | 255 |
const IntVector &_source; |
| 253 | 256 |
const IntVector &_target; |
| 254 | 257 |
const CostVector &_cost; |
| ... | ... |
@@ -445,279 +448,279 @@ |
| 445 | 448 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
| 446 | 449 |
std::sqrt(double(_search_arc_num))), |
| 447 | 450 |
MIN_LIST_LENGTH ); |
| 448 | 451 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
| 449 | 452 |
MIN_MINOR_LIMIT ); |
| 450 | 453 |
_curr_length = _minor_count = 0; |
| 451 | 454 |
_candidates.resize(_list_length); |
| 452 | 455 |
} |
| 453 | 456 |
|
| 454 | 457 |
/// Find next entering arc |
| 455 | 458 |
bool findEnteringArc() {
|
| 456 | 459 |
Cost min, c; |
| 457 | 460 |
int e; |
| 458 | 461 |
if (_curr_length > 0 && _minor_count < _minor_limit) {
|
| 459 | 462 |
// Minor iteration: select the best eligible arc from the |
| 460 | 463 |
// current candidate list |
| 461 | 464 |
++_minor_count; |
| 462 | 465 |
min = 0; |
| 463 | 466 |
for (int i = 0; i < _curr_length; ++i) {
|
| 464 | 467 |
e = _candidates[i]; |
| 465 | 468 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 466 | 469 |
if (c < min) {
|
| 467 | 470 |
min = c; |
| 468 | 471 |
_in_arc = e; |
| 469 | 472 |
} |
| 470 | 473 |
else if (c >= 0) {
|
| 471 | 474 |
_candidates[i--] = _candidates[--_curr_length]; |
| 472 | 475 |
} |
| 473 | 476 |
} |
| 474 | 477 |
if (min < 0) return true; |
| 475 | 478 |
} |
| 476 | 479 |
|
| 477 | 480 |
// Major iteration: build a new candidate list |
| 478 | 481 |
min = 0; |
| 479 | 482 |
_curr_length = 0; |
| 480 | 483 |
for (e = _next_arc; e != _search_arc_num; ++e) {
|
| 481 | 484 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 482 | 485 |
if (c < 0) {
|
| 483 | 486 |
_candidates[_curr_length++] = e; |
| 484 | 487 |
if (c < min) {
|
| 485 | 488 |
min = c; |
| 486 | 489 |
_in_arc = e; |
| 487 | 490 |
} |
| 488 | 491 |
if (_curr_length == _list_length) goto search_end; |
| 489 | 492 |
} |
| 490 | 493 |
} |
| 491 | 494 |
for (e = 0; e != _next_arc; ++e) {
|
| 492 | 495 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 493 | 496 |
if (c < 0) {
|
| 494 | 497 |
_candidates[_curr_length++] = e; |
| 495 | 498 |
if (c < min) {
|
| 496 | 499 |
min = c; |
| 497 | 500 |
_in_arc = e; |
| 498 | 501 |
} |
| 499 | 502 |
if (_curr_length == _list_length) goto search_end; |
| 500 | 503 |
} |
| 501 | 504 |
} |
| 502 | 505 |
if (_curr_length == 0) return false; |
| 503 | 506 |
|
| 504 | 507 |
search_end: |
| 505 | 508 |
_minor_count = 1; |
| 506 | 509 |
_next_arc = e; |
| 507 | 510 |
return true; |
| 508 | 511 |
} |
| 509 | 512 |
|
| 510 | 513 |
}; //class CandidateListPivotRule |
| 511 | 514 |
|
| 512 | 515 |
|
| 513 | 516 |
// Implementation of the Altering Candidate List pivot rule |
| 514 | 517 |
class AlteringListPivotRule |
| 515 | 518 |
{
|
| 516 | 519 |
private: |
| 517 | 520 |
|
| 518 | 521 |
// References to the NetworkSimplex class |
| 519 | 522 |
const IntVector &_source; |
| 520 | 523 |
const IntVector &_target; |
| 521 | 524 |
const CostVector &_cost; |
| 522 | 525 |
const CharVector &_state; |
| 523 | 526 |
const CostVector &_pi; |
| 524 | 527 |
int &_in_arc; |
| 525 | 528 |
int _search_arc_num; |
| 526 | 529 |
|
| 527 | 530 |
// Pivot rule data |
| 528 | 531 |
int _block_size, _head_length, _curr_length; |
| 529 | 532 |
int _next_arc; |
| 530 | 533 |
IntVector _candidates; |
| 531 | 534 |
CostVector _cand_cost; |
| 532 | 535 |
|
| 533 | 536 |
// Functor class to compare arcs during sort of the candidate list |
| 534 | 537 |
class SortFunc |
| 535 | 538 |
{
|
| 536 | 539 |
private: |
| 537 | 540 |
const CostVector &_map; |
| 538 | 541 |
public: |
| 539 | 542 |
SortFunc(const CostVector &map) : _map(map) {}
|
| 540 | 543 |
bool operator()(int left, int right) {
|
| 541 |
return _map[left] |
|
| 544 |
return _map[left] < _map[right]; |
|
| 542 | 545 |
} |
| 543 | 546 |
}; |
| 544 | 547 |
|
| 545 | 548 |
SortFunc _sort_func; |
| 546 | 549 |
|
| 547 | 550 |
public: |
| 548 | 551 |
|
| 549 | 552 |
// Constructor |
| 550 | 553 |
AlteringListPivotRule(NetworkSimplex &ns) : |
| 551 | 554 |
_source(ns._source), _target(ns._target), |
| 552 | 555 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
| 553 | 556 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
| 554 | 557 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
| 555 | 558 |
{
|
| 556 | 559 |
// The main parameters of the pivot rule |
| 557 | 560 |
const double BLOCK_SIZE_FACTOR = 1.0; |
| 558 | 561 |
const int MIN_BLOCK_SIZE = 10; |
| 559 |
const double HEAD_LENGTH_FACTOR = 0. |
|
| 562 |
const double HEAD_LENGTH_FACTOR = 0.01; |
|
| 560 | 563 |
const int MIN_HEAD_LENGTH = 3; |
| 561 | 564 |
|
| 562 | 565 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
| 563 | 566 |
std::sqrt(double(_search_arc_num))), |
| 564 | 567 |
MIN_BLOCK_SIZE ); |
| 565 | 568 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
| 566 | 569 |
MIN_HEAD_LENGTH ); |
| 567 | 570 |
_candidates.resize(_head_length + _block_size); |
| 568 | 571 |
_curr_length = 0; |
| 569 | 572 |
} |
| 570 | 573 |
|
| 571 | 574 |
// Find next entering arc |
| 572 | 575 |
bool findEnteringArc() {
|
| 573 | 576 |
// Check the current candidate list |
| 574 | 577 |
int e; |
| 575 | 578 |
Cost c; |
| 576 | 579 |
for (int i = 0; i != _curr_length; ++i) {
|
| 577 | 580 |
e = _candidates[i]; |
| 578 | 581 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 579 | 582 |
if (c < 0) {
|
| 580 | 583 |
_cand_cost[e] = c; |
| 581 | 584 |
} else {
|
| 582 | 585 |
_candidates[i--] = _candidates[--_curr_length]; |
| 583 | 586 |
} |
| 584 | 587 |
} |
| 585 | 588 |
|
| 586 | 589 |
// Extend the list |
| 587 | 590 |
int cnt = _block_size; |
| 588 | 591 |
int limit = _head_length; |
| 589 | 592 |
|
| 590 | 593 |
for (e = _next_arc; e != _search_arc_num; ++e) {
|
| 591 | 594 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
| 592 | 595 |
if (c < 0) {
|
| 593 | 596 |
_cand_cost[e] = c; |
| 594 | 597 |
_candidates[_curr_length++] = e; |
| 595 | 598 |
} |
| 596 | 599 |
if (--cnt == 0) {
|
| 597 | 600 |
if (_curr_length > limit) goto search_end; |
| 598 | 601 |
limit = 0; |
| 599 | 602 |
cnt = _block_size; |
| 600 | 603 |
} |
| 601 | 604 |
} |
| 602 | 605 |
for (e = 0; e != _next_arc; ++e) {
|
| 603 |
_cand_cost[e] = _state[e] * |
|
| 604 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 605 |
|
|
| 606 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
| 607 |
if (c < 0) {
|
|
| 608 |
_cand_cost[e] = c; |
|
| 606 | 609 |
_candidates[_curr_length++] = e; |
| 607 | 610 |
} |
| 608 | 611 |
if (--cnt == 0) {
|
| 609 | 612 |
if (_curr_length > limit) goto search_end; |
| 610 | 613 |
limit = 0; |
| 611 | 614 |
cnt = _block_size; |
| 612 | 615 |
} |
| 613 | 616 |
} |
| 614 | 617 |
if (_curr_length == 0) return false; |
| 615 | 618 |
|
| 616 | 619 |
search_end: |
| 617 | 620 |
|
| 618 |
// Make heap of the candidate list (approximating a partial sort) |
|
| 619 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
|
| 620 |
|
|
| 621 |
// Perform partial sort operation on the candidate list |
|
| 622 |
int new_length = std::min(_head_length + 1, _curr_length); |
|
| 623 |
std::partial_sort(_candidates.begin(), _candidates.begin() + new_length, |
|
| 624 |
_candidates.begin() + _curr_length, _sort_func); |
|
| 621 | 625 |
|
| 622 |
// |
|
| 626 |
// Select the entering arc and remove it from the list |
|
| 623 | 627 |
_in_arc = _candidates[0]; |
| 624 | 628 |
_next_arc = e; |
| 625 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
|
| 626 |
_sort_func ); |
|
| 627 |
|
|
| 629 |
_candidates[0] = _candidates[new_length - 1]; |
|
| 630 |
_curr_length = new_length - 1; |
|
| 628 | 631 |
return true; |
| 629 | 632 |
} |
| 630 | 633 |
|
| 631 | 634 |
}; //class AlteringListPivotRule |
| 632 | 635 |
|
| 633 | 636 |
public: |
| 634 | 637 |
|
| 635 | 638 |
/// \brief Constructor. |
| 636 | 639 |
/// |
| 637 | 640 |
/// The constructor of the class. |
| 638 | 641 |
/// |
| 639 | 642 |
/// \param graph The digraph the algorithm runs on. |
| 640 | 643 |
/// \param arc_mixing Indicate if the arcs will be stored in a |
| 641 | 644 |
/// mixed order in the internal data structure. |
| 642 | 645 |
/// In general, it leads to similar performance as using the original |
| 643 | 646 |
/// arc order, but it makes the algorithm more robust and in special |
| 644 | 647 |
/// cases, even significantly faster. Therefore, it is enabled by default. |
| 645 | 648 |
NetworkSimplex(const GR& graph, bool arc_mixing = true) : |
| 646 | 649 |
_graph(graph), _node_id(graph), _arc_id(graph), |
| 647 | 650 |
_arc_mixing(arc_mixing), |
| 648 | 651 |
MAX(std::numeric_limits<Value>::max()), |
| 649 | 652 |
INF(std::numeric_limits<Value>::has_infinity ? |
| 650 | 653 |
std::numeric_limits<Value>::infinity() : MAX) |
| 651 | 654 |
{
|
| 652 | 655 |
// Check the number types |
| 653 | 656 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
| 654 | 657 |
"The flow type of NetworkSimplex must be signed"); |
| 655 | 658 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
| 656 | 659 |
"The cost type of NetworkSimplex must be signed"); |
| 657 | 660 |
|
| 658 | 661 |
// Reset data structures |
| 659 | 662 |
reset(); |
| 660 | 663 |
} |
| 661 | 664 |
|
| 662 | 665 |
/// \name Parameters |
| 663 | 666 |
/// The parameters of the algorithm can be specified using these |
| 664 | 667 |
/// functions. |
| 665 | 668 |
|
| 666 | 669 |
/// @{
|
| 667 | 670 |
|
| 668 | 671 |
/// \brief Set the lower bounds on the arcs. |
| 669 | 672 |
/// |
| 670 | 673 |
/// This function sets the lower bounds on the arcs. |
| 671 | 674 |
/// If it is not used before calling \ref run(), the lower bounds |
| 672 | 675 |
/// will be set to zero on all arcs. |
| 673 | 676 |
/// |
| 674 | 677 |
/// \param map An arc map storing the lower bounds. |
| 675 | 678 |
/// Its \c Value type must be convertible to the \c Value type |
| 676 | 679 |
/// of the algorithm. |
| 677 | 680 |
/// |
| 678 | 681 |
/// \return <tt>(*this)</tt> |
| 679 | 682 |
template <typename LowerMap> |
| 680 | 683 |
NetworkSimplex& lowerMap(const LowerMap& map) {
|
| 681 | 684 |
_have_lower = true; |
| 682 | 685 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 683 | 686 |
_lower[_arc_id[a]] = map[a]; |
| 684 | 687 |
} |
| 685 | 688 |
return *this; |
| 686 | 689 |
} |
| 687 | 690 |
|
| 688 | 691 |
/// \brief Set the upper bounds (capacities) on the arcs. |
| 689 | 692 |
/// |
| 690 | 693 |
/// This function sets the upper bounds (capacities) on the arcs. |
| 691 | 694 |
/// If it is not used before calling \ref run(), the upper bounds |
| 692 | 695 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
| 693 | 696 |
/// unbounded from above). |
| 694 | 697 |
/// |
| 695 | 698 |
/// \param map An arc map storing the upper bounds. |
| 696 | 699 |
/// Its \c Value type must be convertible to the \c Value type |
| 697 | 700 |
/// of the algorithm. |
| 698 | 701 |
/// |
| 699 | 702 |
/// \return <tt>(*this)</tt> |
| 700 | 703 |
template<typename UpperMap> |
| 701 | 704 |
NetworkSimplex& upperMap(const UpperMap& map) {
|
| 702 | 705 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 703 | 706 |
_upper[_arc_id[a]] = map[a]; |
| 704 | 707 |
} |
| 705 | 708 |
return *this; |
| 706 | 709 |
} |
| 707 | 710 |
|
| 708 | 711 |
/// \brief Set the costs of the arcs. |
| 709 | 712 |
/// |
| 710 | 713 |
/// This function sets the costs of the arcs. |
| 711 | 714 |
/// If it is not used before calling \ref run(), the costs |
| 712 | 715 |
/// will be set to \c 1 on all arcs. |
| 713 | 716 |
/// |
| 714 | 717 |
/// \param map An arc map storing the costs. |
| 715 | 718 |
/// Its \c Value type must be convertible to the \c Cost type |
| 716 | 719 |
/// of the algorithm. |
| 717 | 720 |
/// |
| 718 | 721 |
/// \return <tt>(*this)</tt> |
| 719 | 722 |
template<typename CostMap> |
| 720 | 723 |
NetworkSimplex& costMap(const CostMap& map) {
|
| 721 | 724 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 722 | 725 |
_cost[_arc_id[a]] = map[a]; |
| 723 | 726 |
} |
0 comments (0 inline)