diff --git a/lemon/adaptors.h b/lemon/adaptors.h new file mode 100644 --- /dev/null +++ b/lemon/adaptors.h @@ -0,0 +1,3347 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_ADAPTORS_H +#define LEMON_ADAPTORS_H + +/// \ingroup graph_adaptors +/// \file +/// \brief Several graph adaptors +/// +/// This file contains several useful adaptors for digraphs and graphs. + +#include +#include +#include + +#include +#include + +#include + +namespace lemon { + + template + class DigraphAdaptorBase { + public: + typedef _Digraph Digraph; + typedef DigraphAdaptorBase Adaptor; + typedef Digraph ParentDigraph; + + protected: + Digraph* _digraph; + DigraphAdaptorBase() : _digraph(0) { } + void setDigraph(Digraph& digraph) { _digraph = &digraph; } + + public: + DigraphAdaptorBase(Digraph& digraph) : _digraph(&digraph) { } + + typedef typename Digraph::Node Node; + typedef typename Digraph::Arc Arc; + + void first(Node& i) const { _digraph->first(i); } + void first(Arc& i) const { _digraph->first(i); } + void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); } + void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); } + + void next(Node& i) const { _digraph->next(i); } + void next(Arc& i) const { _digraph->next(i); } + void nextIn(Arc& i) const { _digraph->nextIn(i); } + void nextOut(Arc& i) const { _digraph->nextOut(i); } + + Node source(const Arc& a) const { return _digraph->source(a); } + Node target(const Arc& a) const { return _digraph->target(a); } + + typedef NodeNumTagIndicator NodeNumTag; + int nodeNum() const { return _digraph->nodeNum(); } + + typedef EdgeNumTagIndicator EdgeNumTag; + int arcNum() const { return _digraph->arcNum(); } + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) { + return _digraph->findArc(u, v, prev); + } + + Node addNode() { return _digraph->addNode(); } + Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); } + + void erase(const Node& n) const { _digraph->erase(n); } + void erase(const Arc& a) const { _digraph->erase(a); } + + void clear() const { _digraph->clear(); } + + int id(const Node& n) const { return _digraph->id(n); } + int id(const Arc& a) const { return _digraph->id(a); } + + Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } + Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); } + + int maxNodeId() const { return _digraph->maxNodeId(); } + int maxArcId() const { return _digraph->maxArcId(); } + + typedef typename ItemSetTraits::ItemNotifier NodeNotifier; + NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } + + typedef typename ItemSetTraits::ItemNotifier ArcNotifier; + ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); } + + template + class NodeMap : public Digraph::template NodeMap<_Value> { + public: + + typedef typename Digraph::template NodeMap<_Value> Parent; + + explicit NodeMap(const Adaptor& adaptor) + : Parent(*adaptor._digraph) {} + + NodeMap(const Adaptor& adaptor, const _Value& value) + : Parent(*adaptor._digraph, value) { } + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + + }; + + template + class ArcMap : public Digraph::template ArcMap<_Value> { + public: + + typedef typename Digraph::template ArcMap<_Value> Parent; + + explicit ArcMap(const Adaptor& adaptor) + : Parent(*adaptor._digraph) {} + + ArcMap(const Adaptor& adaptor, const _Value& value) + : Parent(*adaptor._digraph, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + + }; + + }; + + template + class GraphAdaptorBase { + public: + typedef _Graph Graph; + typedef Graph ParentGraph; + + protected: + Graph* _graph; + + GraphAdaptorBase() : _graph(0) {} + + void setGraph(Graph& graph) { _graph = &graph; } + + public: + GraphAdaptorBase(Graph& graph) : _graph(&graph) {} + + typedef typename Graph::Node Node; + typedef typename Graph::Arc Arc; + typedef typename Graph::Edge Edge; + + void first(Node& i) const { _graph->first(i); } + void first(Arc& i) const { _graph->first(i); } + void first(Edge& i) const { _graph->first(i); } + void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); } + void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); } + void firstInc(Edge &i, bool &d, const Node &n) const { + _graph->firstInc(i, d, n); + } + + void next(Node& i) const { _graph->next(i); } + void next(Arc& i) const { _graph->next(i); } + void next(Edge& i) const { _graph->next(i); } + void nextIn(Arc& i) const { _graph->nextIn(i); } + void nextOut(Arc& i) const { _graph->nextOut(i); } + void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); } + + Node u(const Edge& e) const { return _graph->u(e); } + Node v(const Edge& e) const { return _graph->v(e); } + + Node source(const Arc& a) const { return _graph->source(a); } + Node target(const Arc& a) const { return _graph->target(a); } + + typedef NodeNumTagIndicator NodeNumTag; + int nodeNum() const { return _graph->nodeNum(); } + + typedef EdgeNumTagIndicator EdgeNumTag; + int arcNum() const { return _graph->arcNum(); } + int edgeNum() const { return _graph->edgeNum(); } + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) { + return _graph->findArc(u, v, prev); + } + Edge findEdge(const Node& u, const Node& v, const Edge& prev = INVALID) { + return _graph->findEdge(u, v, prev); + } + + Node addNode() { return _graph->addNode(); } + Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); } + + void erase(const Node& i) { _graph->erase(i); } + void erase(const Edge& i) { _graph->erase(i); } + + void clear() { _graph->clear(); } + + bool direction(const Arc& a) const { return _graph->direction(a); } + Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); } + + int id(const Node& v) const { return _graph->id(v); } + int id(const Arc& a) const { return _graph->id(a); } + int id(const Edge& e) const { return _graph->id(e); } + + Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); } + Arc arcFromId(int ix) const { return _graph->arcFromId(ix); } + Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); } + + int maxNodeId() const { return _graph->maxNodeId(); } + int maxArcId() const { return _graph->maxArcId(); } + int maxEdgeId() const { return _graph->maxEdgeId(); } + + typedef typename ItemSetTraits::ItemNotifier NodeNotifier; + NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); } + + typedef typename ItemSetTraits::ItemNotifier ArcNotifier; + ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); } + + typedef typename ItemSetTraits::ItemNotifier EdgeNotifier; + EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); } + + template + class NodeMap : public Graph::template NodeMap<_Value> { + public: + typedef typename Graph::template NodeMap<_Value> Parent; + explicit NodeMap(const GraphAdaptorBase& adapter) + : Parent(*adapter._graph) {} + NodeMap(const GraphAdaptorBase& adapter, const _Value& value) + : Parent(*adapter._graph, value) {} + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + + }; + + template + class ArcMap : public Graph::template ArcMap<_Value> { + public: + typedef typename Graph::template ArcMap<_Value> Parent; + explicit ArcMap(const GraphAdaptorBase& adapter) + : Parent(*adapter._graph) {} + ArcMap(const GraphAdaptorBase& adapter, const _Value& value) + : Parent(*adapter._graph, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + template + class EdgeMap : public Graph::template EdgeMap<_Value> { + public: + typedef typename Graph::template EdgeMap<_Value> Parent; + explicit EdgeMap(const GraphAdaptorBase& adapter) + : Parent(*adapter._graph) {} + EdgeMap(const GraphAdaptorBase& adapter, const _Value& value) + : Parent(*adapter._graph, value) {} + + private: + EdgeMap& operator=(const EdgeMap& cmap) { + return operator=(cmap); + } + + template + EdgeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + }; + + template + class ReverseDigraphBase : public DigraphAdaptorBase<_Digraph> { + public: + typedef _Digraph Digraph; + typedef DigraphAdaptorBase<_Digraph> Parent; + protected: + ReverseDigraphBase() : Parent() { } + public: + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + + void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); } + void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); } + + void nextIn(Arc& a) const { Parent::nextOut(a); } + void nextOut(Arc& a) const { Parent::nextIn(a); } + + Node source(const Arc& a) const { return Parent::target(a); } + Node target(const Arc& a) const { return Parent::source(a); } + + Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); } + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& u, const Node& v, + const Arc& prev = INVALID) { + return Parent::findArc(v, u, prev); + } + + }; + + /// \ingroup graph_adaptors + /// + /// \brief A digraph adaptor which reverses the orientation of the arcs. + /// + /// ReverseDigraph reverses the arcs in the adapted digraph. The + /// SubDigraph is conform to the \ref concepts::Digraph + /// "Digraph concept". + /// + /// \tparam _Digraph It must be conform to the \ref concepts::Digraph + /// "Digraph concept". The type can be specified to be const. + template + class ReverseDigraph : + public DigraphAdaptorExtender > { + public: + typedef _Digraph Digraph; + typedef DigraphAdaptorExtender< + ReverseDigraphBase<_Digraph> > Parent; + protected: + ReverseDigraph() { } + public: + + /// \brief Constructor + /// + /// Creates a reverse digraph adaptor for the given digraph + explicit ReverseDigraph(Digraph& digraph) { + Parent::setDigraph(digraph); + } + }; + + /// \brief Just gives back a reverse digraph adaptor + /// + /// Just gives back a reverse digraph adaptor + template + ReverseDigraph reverseDigraph(const Digraph& digraph) { + return ReverseDigraph(digraph); + } + + template + class SubDigraphBase : public DigraphAdaptorBase<_Digraph> { + public: + typedef _Digraph Digraph; + typedef _NodeFilterMap NodeFilterMap; + typedef _ArcFilterMap ArcFilterMap; + + typedef SubDigraphBase Adaptor; + typedef DigraphAdaptorBase<_Digraph> Parent; + protected: + NodeFilterMap* _node_filter; + ArcFilterMap* _arc_filter; + SubDigraphBase() + : Parent(), _node_filter(0), _arc_filter(0) { } + + void setNodeFilterMap(NodeFilterMap& node_filter) { + _node_filter = &node_filter; + } + void setArcFilterMap(ArcFilterMap& arc_filter) { + _arc_filter = &arc_filter; + } + + public: + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + + void first(Node& i) const { + Parent::first(i); + while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); + } + + void first(Arc& i) const { + Parent::first(i); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::source(i)] + || !(*_node_filter)[Parent::target(i)])) + Parent::next(i); + } + + void firstIn(Arc& i, const Node& n) const { + Parent::firstIn(i, n); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::source(i)])) + Parent::nextIn(i); + } + + void firstOut(Arc& i, const Node& n) const { + Parent::firstOut(i, n); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::target(i)])) + Parent::nextOut(i); + } + + void next(Node& i) const { + Parent::next(i); + while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); + } + + void next(Arc& i) const { + Parent::next(i); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::source(i)] + || !(*_node_filter)[Parent::target(i)])) + Parent::next(i); + } + + void nextIn(Arc& i) const { + Parent::nextIn(i); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::source(i)])) + Parent::nextIn(i); + } + + void nextOut(Arc& i) const { + Parent::nextOut(i); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::target(i)])) + Parent::nextOut(i); + } + + void hide(const Node& n) const { _node_filter->set(n, false); } + void hide(const Arc& a) const { _arc_filter->set(a, false); } + + void unHide(const Node& n) const { _node_filter->set(n, true); } + void unHide(const Arc& a) const { _arc_filter->set(a, true); } + + bool hidden(const Node& n) const { return !(*_node_filter)[n]; } + bool hidden(const Arc& a) const { return !(*_arc_filter)[a]; } + + typedef False NodeNumTag; + typedef False EdgeNumTag; + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& source, const Node& target, + const Arc& prev = INVALID) { + if (!(*_node_filter)[source] || !(*_node_filter)[target]) { + return INVALID; + } + Arc arc = Parent::findArc(source, target, prev); + while (arc != INVALID && !(*_arc_filter)[arc]) { + arc = Parent::findArc(source, target, arc); + } + return arc; + } + + template + class NodeMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + NodeMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + NodeMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + template + class ArcMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + ArcMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + ArcMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + }; + + template + class SubDigraphBase<_Digraph, _NodeFilterMap, _ArcFilterMap, false> + : public DigraphAdaptorBase<_Digraph> { + public: + typedef _Digraph Digraph; + typedef _NodeFilterMap NodeFilterMap; + typedef _ArcFilterMap ArcFilterMap; + + typedef SubDigraphBase Adaptor; + typedef DigraphAdaptorBase Parent; + protected: + NodeFilterMap* _node_filter; + ArcFilterMap* _arc_filter; + SubDigraphBase() + : Parent(), _node_filter(0), _arc_filter(0) { } + + void setNodeFilterMap(NodeFilterMap& node_filter) { + _node_filter = &node_filter; + } + void setArcFilterMap(ArcFilterMap& arc_filter) { + _arc_filter = &arc_filter; + } + + public: + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + + void first(Node& i) const { + Parent::first(i); + while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); + } + + void first(Arc& i) const { + Parent::first(i); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); + } + + void firstIn(Arc& i, const Node& n) const { + Parent::firstIn(i, n); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); + } + + void firstOut(Arc& i, const Node& n) const { + Parent::firstOut(i, n); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); + } + + void next(Node& i) const { + Parent::next(i); + while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); + } + void next(Arc& i) const { + Parent::next(i); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); + } + void nextIn(Arc& i) const { + Parent::nextIn(i); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); + } + + void nextOut(Arc& i) const { + Parent::nextOut(i); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); + } + + void hide(const Node& n) const { _node_filter->set(n, false); } + void hide(const Arc& e) const { _arc_filter->set(e, false); } + + void unHide(const Node& n) const { _node_filter->set(n, true); } + void unHide(const Arc& e) const { _arc_filter->set(e, true); } + + bool hidden(const Node& n) const { return !(*_node_filter)[n]; } + bool hidden(const Arc& e) const { return !(*_arc_filter)[e]; } + + typedef False NodeNumTag; + typedef False EdgeNumTag; + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& source, const Node& target, + const Arc& prev = INVALID) { + if (!(*_node_filter)[source] || !(*_node_filter)[target]) { + return INVALID; + } + Arc arc = Parent::findArc(source, target, prev); + while (arc != INVALID && !(*_arc_filter)[arc]) { + arc = Parent::findArc(source, target, arc); + } + return arc; + } + + template + class NodeMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + NodeMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + NodeMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + template + class ArcMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + ArcMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + ArcMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + }; + + /// \ingroup graph_adaptors + /// + /// \brief An adaptor for hiding nodes and arcs in a digraph + /// + /// SubDigraph hides nodes and arcs in a digraph. A bool node map + /// and a bool arc map must be specified, which define the filters + /// for nodes and arcs. Just the nodes and arcs with true value are + /// shown in the subdigraph. The SubDigraph is conform to the \ref + /// concepts::Digraph "Digraph concept". If the \c _checked parameter + /// is true, then the arcs incident to filtered nodes are also + /// filtered out. + /// + /// \tparam _Digraph It must be conform to the \ref + /// concepts::Digraph "Digraph concept". The type can be specified + /// to const. + /// \tparam _NodeFilterMap A bool valued node map of the the adapted digraph. + /// \tparam _ArcFilterMap A bool valued arc map of the the adapted digraph. + /// \tparam _checked If the parameter is false then the arc filtering + /// is not checked with respect to node filter. Otherwise, each arc + /// is automatically filtered, which is incident to a filtered node. + /// + /// \see FilterNodes + /// \see FilterArcs + template, + typename _ArcFilterMap = typename _Digraph::template ArcMap, + bool _checked = true> + class SubDigraph + : public DigraphAdaptorExtender< + SubDigraphBase<_Digraph, _NodeFilterMap, _ArcFilterMap, _checked> > { + public: + typedef _Digraph Digraph; + typedef _NodeFilterMap NodeFilterMap; + typedef _ArcFilterMap ArcFilterMap; + + typedef DigraphAdaptorExtender< + SubDigraphBase > + Parent; + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + + protected: + SubDigraph() { } + public: + + /// \brief Constructor + /// + /// Creates a subdigraph for the given digraph with + /// given node and arc map filters. + SubDigraph(Digraph& digraph, NodeFilterMap& node_filter, + ArcFilterMap& arc_filter) { + setDigraph(digraph); + setNodeFilterMap(node_filter); + setArcFilterMap(arc_filter); + } + + /// \brief Hides the node of the graph + /// + /// This function hides \c n in the digraph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c n + /// to be false in the corresponding node-map. + void hide(const Node& n) const { Parent::hide(n); } + + /// \brief Hides the arc of the graph + /// + /// This function hides \c a in the digraph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c a + /// to be false in the corresponding arc-map. + void hide(const Arc& a) const { Parent::hide(a); } + + /// \brief Unhides the node of the graph + /// + /// The value of \c n is set to be true in the node-map which stores + /// hide information. If \c n was hidden previuosly, then it is shown + /// again + void unHide(const Node& n) const { Parent::unHide(n); } + + /// \brief Unhides the arc of the graph + /// + /// The value of \c a is set to be true in the arc-map which stores + /// hide information. If \c a was hidden previuosly, then it is shown + /// again + void unHide(const Arc& a) const { Parent::unHide(a); } + + /// \brief Returns true if \c n is hidden. + /// + /// Returns true if \c n is hidden. + /// + bool hidden(const Node& n) const { return Parent::hidden(n); } + + /// \brief Returns true if \c a is hidden. + /// + /// Returns true if \c a is hidden. + /// + bool hidden(const Arc& a) const { return Parent::hidden(a); } + + }; + + /// \brief Just gives back a subdigraph + /// + /// Just gives back a subdigraph + template + SubDigraph + subDigraph(const Digraph& digraph, NodeFilterMap& nfm, ArcFilterMap& afm) { + return SubDigraph + (digraph, nfm, afm); + } + + template + SubDigraph + subDigraph(const Digraph& digraph, + const NodeFilterMap& nfm, ArcFilterMap& afm) { + return SubDigraph + (digraph, nfm, afm); + } + + template + SubDigraph + subDigraph(const Digraph& digraph, + NodeFilterMap& nfm, const ArcFilterMap& afm) { + return SubDigraph + (digraph, nfm, afm); + } + + template + SubDigraph + subDigraph(const Digraph& digraph, + const NodeFilterMap& nfm, const ArcFilterMap& afm) { + return SubDigraph(digraph, nfm, afm); + } + + + template + class SubGraphBase : public GraphAdaptorBase<_Graph> { + public: + typedef _Graph Graph; + typedef SubGraphBase Adaptor; + typedef GraphAdaptorBase<_Graph> Parent; + protected: + + NodeFilterMap* _node_filter_map; + EdgeFilterMap* _edge_filter_map; + + SubGraphBase() + : Parent(), _node_filter_map(0), _edge_filter_map(0) { } + + void setNodeFilterMap(NodeFilterMap& node_filter_map) { + _node_filter_map=&node_filter_map; + } + void setEdgeFilterMap(EdgeFilterMap& edge_filter_map) { + _edge_filter_map=&edge_filter_map; + } + + public: + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + typedef typename Parent::Edge Edge; + + void first(Node& i) const { + Parent::first(i); + while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i); + } + + void first(Arc& i) const { + Parent::first(i); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::source(i)] + || !(*_node_filter_map)[Parent::target(i)])) + Parent::next(i); + } + + void first(Edge& i) const { + Parent::first(i); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::u(i)] + || !(*_node_filter_map)[Parent::v(i)])) + Parent::next(i); + } + + void firstIn(Arc& i, const Node& n) const { + Parent::firstIn(i, n); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::source(i)])) + Parent::nextIn(i); + } + + void firstOut(Arc& i, const Node& n) const { + Parent::firstOut(i, n); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::target(i)])) + Parent::nextOut(i); + } + + void firstInc(Edge& i, bool& d, const Node& n) const { + Parent::firstInc(i, d, n); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::u(i)] + || !(*_node_filter_map)[Parent::v(i)])) + Parent::nextInc(i, d); + } + + void next(Node& i) const { + Parent::next(i); + while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i); + } + + void next(Arc& i) const { + Parent::next(i); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::source(i)] + || !(*_node_filter_map)[Parent::target(i)])) + Parent::next(i); + } + + void next(Edge& i) const { + Parent::next(i); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::u(i)] + || !(*_node_filter_map)[Parent::v(i)])) + Parent::next(i); + } + + void nextIn(Arc& i) const { + Parent::nextIn(i); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::source(i)])) + Parent::nextIn(i); + } + + void nextOut(Arc& i) const { + Parent::nextOut(i); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::target(i)])) + Parent::nextOut(i); + } + + void nextInc(Edge& i, bool& d) const { + Parent::nextInc(i, d); + while (i!=INVALID && (!(*_edge_filter_map)[i] + || !(*_node_filter_map)[Parent::u(i)] + || !(*_node_filter_map)[Parent::v(i)])) + Parent::nextInc(i, d); + } + + void hide(const Node& n) const { _node_filter_map->set(n, false); } + void hide(const Edge& e) const { _edge_filter_map->set(e, false); } + + void unHide(const Node& n) const { _node_filter_map->set(n, true); } + void unHide(const Edge& e) const { _edge_filter_map->set(e, true); } + + bool hidden(const Node& n) const { return !(*_node_filter_map)[n]; } + bool hidden(const Edge& e) const { return !(*_edge_filter_map)[e]; } + + typedef False NodeNumTag; + typedef False EdgeNumTag; + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& u, const Node& v, + const Arc& prev = INVALID) { + if (!(*_node_filter_map)[u] || !(*_node_filter_map)[v]) { + return INVALID; + } + Arc arc = Parent::findArc(u, v, prev); + while (arc != INVALID && !(*_edge_filter_map)[arc]) { + arc = Parent::findArc(u, v, arc); + } + return arc; + } + Edge findEdge(const Node& u, const Node& v, + const Edge& prev = INVALID) { + if (!(*_node_filter_map)[u] || !(*_node_filter_map)[v]) { + return INVALID; + } + Edge edge = Parent::findEdge(u, v, prev); + while (edge != INVALID && !(*_edge_filter_map)[edge]) { + edge = Parent::findEdge(u, v, edge); + } + return edge; + } + + template + class NodeMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + NodeMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + NodeMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + template + class ArcMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + ArcMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + ArcMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + template + class EdgeMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + EdgeMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + + EdgeMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + EdgeMap& operator=(const EdgeMap& cmap) { + return operator=(cmap); + } + + template + EdgeMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + }; + + template + class SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap, false> + : public GraphAdaptorBase<_Graph> { + public: + typedef _Graph Graph; + typedef SubGraphBase Adaptor; + typedef GraphAdaptorBase<_Graph> Parent; + protected: + NodeFilterMap* _node_filter_map; + EdgeFilterMap* _edge_filter_map; + SubGraphBase() : Parent(), + _node_filter_map(0), _edge_filter_map(0) { } + + void setNodeFilterMap(NodeFilterMap& node_filter_map) { + _node_filter_map=&node_filter_map; + } + void setEdgeFilterMap(EdgeFilterMap& edge_filter_map) { + _edge_filter_map=&edge_filter_map; + } + + public: + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + typedef typename Parent::Edge Edge; + + void first(Node& i) const { + Parent::first(i); + while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i); + } + + void first(Arc& i) const { + Parent::first(i); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i); + } + + void first(Edge& i) const { + Parent::first(i); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i); + } + + void firstIn(Arc& i, const Node& n) const { + Parent::firstIn(i, n); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextIn(i); + } + + void firstOut(Arc& i, const Node& n) const { + Parent::firstOut(i, n); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextOut(i); + } + + void firstInc(Edge& i, bool& d, const Node& n) const { + Parent::firstInc(i, d, n); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextInc(i, d); + } + + void next(Node& i) const { + Parent::next(i); + while (i!=INVALID && !(*_node_filter_map)[i]) Parent::next(i); + } + void next(Arc& i) const { + Parent::next(i); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i); + } + void next(Edge& i) const { + Parent::next(i); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::next(i); + } + void nextIn(Arc& i) const { + Parent::nextIn(i); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextIn(i); + } + + void nextOut(Arc& i) const { + Parent::nextOut(i); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextOut(i); + } + void nextInc(Edge& i, bool& d) const { + Parent::nextInc(i, d); + while (i!=INVALID && !(*_edge_filter_map)[i]) Parent::nextInc(i, d); + } + + void hide(const Node& n) const { _node_filter_map->set(n, false); } + void hide(const Edge& e) const { _edge_filter_map->set(e, false); } + + void unHide(const Node& n) const { _node_filter_map->set(n, true); } + void unHide(const Edge& e) const { _edge_filter_map->set(e, true); } + + bool hidden(const Node& n) const { return !(*_node_filter_map)[n]; } + bool hidden(const Edge& e) const { return !(*_edge_filter_map)[e]; } + + typedef False NodeNumTag; + typedef False EdgeNumTag; + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& u, const Node& v, + const Arc& prev = INVALID) { + Arc arc = Parent::findArc(u, v, prev); + while (arc != INVALID && !(*_edge_filter_map)[arc]) { + arc = Parent::findArc(u, v, arc); + } + return arc; + } + Edge findEdge(const Node& u, const Node& v, + const Edge& prev = INVALID) { + Edge edge = Parent::findEdge(u, v, prev); + while (edge != INVALID && !(*_edge_filter_map)[edge]) { + edge = Parent::findEdge(u, v, edge); + } + return edge; + } + + template + class NodeMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + NodeMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + NodeMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + template + class ArcMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + ArcMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + ArcMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + template + class EdgeMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + EdgeMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + + EdgeMap(const Adaptor& adaptor, const _Value& value) + : MapParent(adaptor, value) {} + + private: + EdgeMap& operator=(const EdgeMap& cmap) { + return operator=(cmap); + } + + template + EdgeMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + }; + + /// \ingroup graph_adaptors + /// + /// \brief A graph adaptor for hiding nodes and edges in an + /// undirected graph. + /// + /// SubGraph hides nodes and edges in a graph. A bool node map and a + /// bool edge map must be specified, which define the filters for + /// nodes and edges. Just the nodes and edges with true value are + /// shown in the subgraph. The SubGraph is conform to the \ref + /// concepts::Graph "Graph concept". If the \c _checked parameter is + /// true, then the edges incident to filtered nodes are also + /// filtered out. + /// + /// \tparam _Graph It must be conform to the \ref + /// concepts::Graph "Graph concept". The type can be specified + /// to const. + /// \tparam _NodeFilterMap A bool valued node map of the the adapted graph. + /// \tparam _EdgeFilterMap A bool valued edge map of the the adapted graph. + /// \tparam _checked If the parameter is false then the edge filtering + /// is not checked with respect to node filter. Otherwise, each edge + /// is automatically filtered, which is incident to a filtered node. + /// + /// \see FilterNodes + /// \see FilterEdges + template + class SubGraph + : public GraphAdaptorExtender< + SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap, _checked> > { + public: + typedef _Graph Graph; + typedef GraphAdaptorExtender< + SubGraphBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent; + + typedef typename Parent::Node Node; + typedef typename Parent::Edge Edge; + + protected: + SubGraph() { } + public: + + /// \brief Constructor + /// + /// Creates a subgraph for the given graph with given node and + /// edge map filters. + SubGraph(Graph& _graph, NodeFilterMap& node_filter_map, + EdgeFilterMap& edge_filter_map) { + setGraph(_graph); + setNodeFilterMap(node_filter_map); + setEdgeFilterMap(edge_filter_map); + } + + /// \brief Hides the node of the graph + /// + /// This function hides \c n in the graph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c n + /// to be false in the corresponding node-map. + void hide(const Node& n) const { Parent::hide(n); } + + /// \brief Hides the edge of the graph + /// + /// This function hides \c e in the graph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c e + /// to be false in the corresponding edge-map. + void hide(const Edge& e) const { Parent::hide(e); } + + /// \brief Unhides the node of the graph + /// + /// The value of \c n is set to be true in the node-map which stores + /// hide information. If \c n was hidden previuosly, then it is shown + /// again + void unHide(const Node& n) const { Parent::unHide(n); } + + /// \brief Unhides the edge of the graph + /// + /// The value of \c e is set to be true in the edge-map which stores + /// hide information. If \c e was hidden previuosly, then it is shown + /// again + void unHide(const Edge& e) const { Parent::unHide(e); } + + /// \brief Returns true if \c n is hidden. + /// + /// Returns true if \c n is hidden. + /// + bool hidden(const Node& n) const { return Parent::hidden(n); } + + /// \brief Returns true if \c e is hidden. + /// + /// Returns true if \c e is hidden. + /// + bool hidden(const Edge& e) const { return Parent::hidden(e); } + }; + + /// \brief Just gives back a subgraph + /// + /// Just gives back a subgraph + template + SubGraph + subGraph(const Graph& graph, NodeFilterMap& nfm, ArcFilterMap& efm) { + return SubGraph(graph, nfm, efm); + } + + template + SubGraph + subGraph(const Graph& graph, + const NodeFilterMap& nfm, ArcFilterMap& efm) { + return SubGraph + (graph, nfm, efm); + } + + template + SubGraph + subGraph(const Graph& graph, + NodeFilterMap& nfm, const ArcFilterMap& efm) { + return SubGraph + (graph, nfm, efm); + } + + template + SubGraph + subGraph(const Graph& graph, + const NodeFilterMap& nfm, const ArcFilterMap& efm) { + return SubGraph + (graph, nfm, efm); + } + + /// \ingroup graph_adaptors + /// + /// \brief An adaptor for hiding nodes from a digraph or a graph. + /// + /// FilterNodes adaptor hides nodes in a graph or a digraph. A bool + /// node map must be specified, which defines the filters for + /// nodes. Just the unfiltered nodes and the arcs or edges incident + /// to unfiltered nodes are shown in the subdigraph or subgraph. The + /// FilterNodes is conform to the \ref concepts::Digraph + /// "Digraph concept" or \ref concepts::Graph "Graph concept" depending + /// on the \c _Digraph template parameter. If the \c _checked + /// parameter is true, then the arc or edges incident to filtered nodes + /// are also filtered out. + /// + /// \tparam _Digraph It must be conform to the \ref + /// concepts::Digraph "Digraph concept" or \ref concepts::Graph + /// "Graph concept". The type can be specified to be const. + /// \tparam _NodeFilterMap A bool valued node map of the the adapted graph. + /// \tparam _checked If the parameter is false then the arc or edge + /// filtering is not checked with respect to node filter. In this + /// case just isolated nodes can be filtered out from the + /// graph. +#ifdef DOXYGEN + template, + bool _checked = true> +#else + template, + bool _checked = true, + typename Enable = void> +#endif + class FilterNodes + : public SubDigraph<_Digraph, _NodeFilterMap, + ConstMap, _checked> { + public: + + typedef _Digraph Digraph; + typedef _NodeFilterMap NodeFilterMap; + + typedef SubDigraph, _checked> + Parent; + + typedef typename Parent::Node Node; + + protected: + ConstMap const_true_map; + + FilterNodes() : const_true_map(true) { + Parent::setArcFilterMap(const_true_map); + } + + public: + + /// \brief Constructor + /// + /// Creates an adaptor for the given digraph or graph with + /// given node filter map. + FilterNodes(Digraph& _digraph, NodeFilterMap& node_filter) : + Parent(), const_true_map(true) { + Parent::setDigraph(_digraph); + Parent::setNodeFilterMap(node_filter); + Parent::setArcFilterMap(const_true_map); + } + + /// \brief Hides the node of the graph + /// + /// This function hides \c n in the digraph or graph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c n + /// to be false in the corresponding node map. + void hide(const Node& n) const { Parent::hide(n); } + + /// \brief Unhides the node of the graph + /// + /// The value of \c n is set to be true in the node-map which stores + /// hide information. If \c n was hidden previuosly, then it is shown + /// again + void unHide(const Node& n) const { Parent::unHide(n); } + + /// \brief Returns true if \c n is hidden. + /// + /// Returns true if \c n is hidden. + /// + bool hidden(const Node& n) const { return Parent::hidden(n); } + + }; + + template + class FilterNodes<_Graph, _NodeFilterMap, _checked, + typename enable_if >::type> + : public SubGraph<_Graph, _NodeFilterMap, + ConstMap, _checked> { + public: + typedef _Graph Graph; + typedef _NodeFilterMap NodeFilterMap; + typedef SubGraph > Parent; + + typedef typename Parent::Node Node; + protected: + ConstMap const_true_map; + + FilterNodes() : const_true_map(true) { + Parent::setEdgeFilterMap(const_true_map); + } + + public: + + FilterNodes(Graph& _graph, NodeFilterMap& node_filter_map) : + Parent(), const_true_map(true) { + Parent::setGraph(_graph); + Parent::setNodeFilterMap(node_filter_map); + Parent::setEdgeFilterMap(const_true_map); + } + + void hide(const Node& n) const { Parent::hide(n); } + void unHide(const Node& n) const { Parent::unHide(n); } + bool hidden(const Node& n) const { return Parent::hidden(n); } + + }; + + + /// \brief Just gives back a FilterNodes adaptor + /// + /// Just gives back a FilterNodes adaptor + template + FilterNodes + filterNodes(const Digraph& digraph, NodeFilterMap& nfm) { + return FilterNodes(digraph, nfm); + } + + template + FilterNodes + filterNodes(const Digraph& digraph, const NodeFilterMap& nfm) { + return FilterNodes(digraph, nfm); + } + + /// \ingroup graph_adaptors + /// + /// \brief An adaptor for hiding arcs from a digraph. + /// + /// FilterArcs adaptor hides arcs in a digraph. A bool arc map must + /// be specified, which defines the filters for arcs. Just the + /// unfiltered arcs are shown in the subdigraph. The FilterArcs is + /// conform to the \ref concepts::Digraph "Digraph concept". + /// + /// \tparam _Digraph It must be conform to the \ref concepts::Digraph + /// "Digraph concept". The type can be specified to be const. + /// \tparam _ArcFilterMap A bool valued arc map of the the adapted + /// graph. + template + class FilterArcs : + public SubDigraph<_Digraph, ConstMap, + _ArcFilterMap, false> { + public: + typedef _Digraph Digraph; + typedef _ArcFilterMap ArcFilterMap; + + typedef SubDigraph, + ArcFilterMap, false> Parent; + + typedef typename Parent::Arc Arc; + + protected: + ConstMap const_true_map; + + FilterArcs() : const_true_map(true) { + Parent::setNodeFilterMap(const_true_map); + } + + public: + + /// \brief Constructor + /// + /// Creates a FilterArcs adaptor for the given graph with + /// given arc map filter. + FilterArcs(Digraph& digraph, ArcFilterMap& arc_filter) + : Parent(), const_true_map(true) { + Parent::setDigraph(digraph); + Parent::setNodeFilterMap(const_true_map); + Parent::setArcFilterMap(arc_filter); + } + + /// \brief Hides the arc of the graph + /// + /// This function hides \c a in the graph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c a + /// to be false in the corresponding arc map. + void hide(const Arc& a) const { Parent::hide(a); } + + /// \brief Unhides the arc of the graph + /// + /// The value of \c a is set to be true in the arc-map which stores + /// hide information. If \c a was hidden previuosly, then it is shown + /// again + void unHide(const Arc& a) const { Parent::unHide(a); } + + /// \brief Returns true if \c a is hidden. + /// + /// Returns true if \c a is hidden. + /// + bool hidden(const Arc& a) const { return Parent::hidden(a); } + + }; + + /// \brief Just gives back an FilterArcs adaptor + /// + /// Just gives back an FilterArcs adaptor + template + FilterArcs + filterArcs(const Digraph& digraph, ArcFilterMap& afm) { + return FilterArcs(digraph, afm); + } + + template + FilterArcs + filterArcs(const Digraph& digraph, const ArcFilterMap& afm) { + return FilterArcs(digraph, afm); + } + + /// \ingroup graph_adaptors + /// + /// \brief An adaptor for hiding edges from a graph. + /// + /// FilterEdges adaptor hides edges in a digraph. A bool edge map must + /// be specified, which defines the filters for edges. Just the + /// unfiltered edges are shown in the subdigraph. The FilterEdges is + /// conform to the \ref concepts::Graph "Graph concept". + /// + /// \tparam _Graph It must be conform to the \ref concepts::Graph + /// "Graph concept". The type can be specified to be const. + /// \tparam _EdgeFilterMap A bool valued edge map of the the adapted + /// graph. + template + class FilterEdges : + public SubGraph<_Graph, ConstMap, + _EdgeFilterMap, false> { + public: + typedef _Graph Graph; + typedef _EdgeFilterMap EdgeFilterMap; + typedef SubGraph, + EdgeFilterMap, false> Parent; + typedef typename Parent::Edge Edge; + protected: + ConstMap const_true_map; + + FilterEdges() : const_true_map(true) { + Parent::setNodeFilterMap(const_true_map); + } + + public: + + /// \brief Constructor + /// + /// Creates a FilterEdges adaptor for the given graph with + /// given edge map filters. + FilterEdges(Graph& _graph, EdgeFilterMap& edge_filter_map) : + Parent(), const_true_map(true) { + Parent::setGraph(_graph); + Parent::setNodeFilterMap(const_true_map); + Parent::setEdgeFilterMap(edge_filter_map); + } + + /// \brief Hides the edge of the graph + /// + /// This function hides \c e in the graph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c e + /// to be false in the corresponding edge-map. + void hide(const Edge& e) const { Parent::hide(e); } + + /// \brief Unhides the edge of the graph + /// + /// The value of \c e is set to be true in the edge-map which stores + /// hide information. If \c e was hidden previuosly, then it is shown + /// again + void unHide(const Edge& e) const { Parent::unHide(e); } + + /// \brief Returns true if \c e is hidden. + /// + /// Returns true if \c e is hidden. + /// + bool hidden(const Edge& e) const { return Parent::hidden(e); } + + }; + + /// \brief Just gives back a FilterEdges adaptor + /// + /// Just gives back a FilterEdges adaptor + template + FilterEdges + filterEdges(const Graph& graph, EdgeFilterMap& efm) { + return FilterEdges(graph, efm); + } + + template + FilterEdges + filterEdges(const Graph& graph, const EdgeFilterMap& efm) { + return FilterEdges(graph, efm); + } + + template + class UndirectorBase { + public: + typedef _Digraph Digraph; + typedef UndirectorBase Adaptor; + + typedef True UndirectedTag; + + typedef typename Digraph::Arc Edge; + typedef typename Digraph::Node Node; + + class Arc : public Edge { + friend class UndirectorBase; + protected: + bool _forward; + + Arc(const Edge& edge, bool forward) : + Edge(edge), _forward(forward) {} + + public: + Arc() {} + + Arc(Invalid) : Edge(INVALID), _forward(true) {} + + bool operator==(const Arc &other) const { + return _forward == other._forward && + static_cast(*this) == static_cast(other); + } + bool operator!=(const Arc &other) const { + return _forward != other._forward || + static_cast(*this) != static_cast(other); + } + bool operator<(const Arc &other) const { + return _forward < other._forward || + (_forward == other._forward && + static_cast(*this) < static_cast(other)); + } + }; + + + + void first(Node& n) const { + _digraph->first(n); + } + + void next(Node& n) const { + _digraph->next(n); + } + + void first(Arc& a) const { + _digraph->first(a); + a._forward = true; + } + + void next(Arc& a) const { + if (a._forward) { + a._forward = false; + } else { + _digraph->next(a); + a._forward = true; + } + } + + void first(Edge& e) const { + _digraph->first(e); + } + + void next(Edge& e) const { + _digraph->next(e); + } + + void firstOut(Arc& a, const Node& n) const { + _digraph->firstIn(a, n); + if( static_cast(a) != INVALID ) { + a._forward = false; + } else { + _digraph->firstOut(a, n); + a._forward = true; + } + } + void nextOut(Arc &a) const { + if (!a._forward) { + Node n = _digraph->target(a); + _digraph->nextIn(a); + if (static_cast(a) == INVALID ) { + _digraph->firstOut(a, n); + a._forward = true; + } + } + else { + _digraph->nextOut(a); + } + } + + void firstIn(Arc &a, const Node &n) const { + _digraph->firstOut(a, n); + if (static_cast(a) != INVALID ) { + a._forward = false; + } else { + _digraph->firstIn(a, n); + a._forward = true; + } + } + void nextIn(Arc &a) const { + if (!a._forward) { + Node n = _digraph->source(a); + _digraph->nextOut(a); + if( static_cast(a) == INVALID ) { + _digraph->firstIn(a, n); + a._forward = true; + } + } + else { + _digraph->nextIn(a); + } + } + + void firstInc(Edge &e, bool &d, const Node &n) const { + d = true; + _digraph->firstOut(e, n); + if (e != INVALID) return; + d = false; + _digraph->firstIn(e, n); + } + + void nextInc(Edge &e, bool &d) const { + if (d) { + Node s = _digraph->source(e); + _digraph->nextOut(e); + if (e != INVALID) return; + d = false; + _digraph->firstIn(e, s); + } else { + _digraph->nextIn(e); + } + } + + Node u(const Edge& e) const { + return _digraph->source(e); + } + + Node v(const Edge& e) const { + return _digraph->target(e); + } + + Node source(const Arc &a) const { + return a._forward ? _digraph->source(a) : _digraph->target(a); + } + + Node target(const Arc &a) const { + return a._forward ? _digraph->target(a) : _digraph->source(a); + } + + static Arc direct(const Edge &e, bool d) { + return Arc(e, d); + } + Arc direct(const Edge &e, const Node& n) const { + return Arc(e, _digraph->source(e) == n); + } + + static bool direction(const Arc &a) { return a._forward; } + + Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } + Arc arcFromId(int ix) const { + return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1)); + } + Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); } + + int id(const Node &n) const { return _digraph->id(n); } + int id(const Arc &a) const { + return (_digraph->id(a) << 1) | (a._forward ? 1 : 0); + } + int id(const Edge &e) const { return _digraph->id(e); } + + int maxNodeId() const { return _digraph->maxNodeId(); } + int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; } + int maxEdgeId() const { return _digraph->maxArcId(); } + + Node addNode() { return _digraph->addNode(); } + Edge addEdge(const Node& u, const Node& v) { + return _digraph->addArc(u, v); + } + + void erase(const Node& i) { _digraph->erase(i); } + void erase(const Edge& i) { _digraph->erase(i); } + + void clear() { _digraph->clear(); } + + typedef NodeNumTagIndicator NodeNumTag; + int nodeNum() const { return 2 * _digraph->arcNum(); } + typedef EdgeNumTagIndicator EdgeNumTag; + int arcNum() const { return 2 * _digraph->arcNum(); } + int edgeNum() const { return _digraph->arcNum(); } + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(Node s, Node t, Arc p = INVALID) const { + if (p == INVALID) { + Edge arc = _digraph->findArc(s, t); + if (arc != INVALID) return direct(arc, true); + arc = _digraph->findArc(t, s); + if (arc != INVALID) return direct(arc, false); + } else if (direction(p)) { + Edge arc = _digraph->findArc(s, t, p); + if (arc != INVALID) return direct(arc, true); + arc = _digraph->findArc(t, s); + if (arc != INVALID) return direct(arc, false); + } else { + Edge arc = _digraph->findArc(t, s, p); + if (arc != INVALID) return direct(arc, false); + } + return INVALID; + } + + Edge findEdge(Node s, Node t, Edge p = INVALID) const { + if (s != t) { + if (p == INVALID) { + Edge arc = _digraph->findArc(s, t); + if (arc != INVALID) return arc; + arc = _digraph->findArc(t, s); + if (arc != INVALID) return arc; + } else if (_digraph->s(p) == s) { + Edge arc = _digraph->findArc(s, t, p); + if (arc != INVALID) return arc; + arc = _digraph->findArc(t, s); + if (arc != INVALID) return arc; + } else { + Edge arc = _digraph->findArc(t, s, p); + if (arc != INVALID) return arc; + } + } else { + return _digraph->findArc(s, t, p); + } + return INVALID; + } + + private: + + template + class ArcMapBase { + private: + + typedef typename Digraph::template ArcMap<_Value> MapImpl; + + public: + + typedef typename MapTraits::ReferenceMapTag ReferenceMapTag; + + typedef _Value Value; + typedef Arc Key; + + ArcMapBase(const Adaptor& adaptor) : + _forward(*adaptor._digraph), _backward(*adaptor._digraph) {} + + ArcMapBase(const Adaptor& adaptor, const Value& v) + : _forward(*adaptor._digraph, v), _backward(*adaptor._digraph, v) {} + + void set(const Arc& a, const Value& v) { + if (direction(a)) { + _forward.set(a, v); + } else { + _backward.set(a, v); + } + } + + typename MapTraits::ConstReturnValue + operator[](const Arc& a) const { + if (direction(a)) { + return _forward[a]; + } else { + return _backward[a]; + } + } + + typename MapTraits::ReturnValue + operator[](const Arc& a) { + if (direction(a)) { + return _forward[a]; + } else { + return _backward[a]; + } + } + + protected: + + MapImpl _forward, _backward; + + }; + + public: + + template + class NodeMap : public Digraph::template NodeMap<_Value> { + public: + + typedef _Value Value; + typedef typename Digraph::template NodeMap Parent; + + explicit NodeMap(const Adaptor& adaptor) + : Parent(*adaptor._digraph) {} + + NodeMap(const Adaptor& adaptor, const _Value& value) + : Parent(*adaptor._digraph, value) { } + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + + }; + + template + class ArcMap + : public SubMapExtender > + { + public: + typedef _Value Value; + typedef SubMapExtender > Parent; + + ArcMap(const Adaptor& adaptor) + : Parent(adaptor) {} + + ArcMap(const Adaptor& adaptor, const Value& value) + : Parent(adaptor, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + template + class EdgeMap : public Digraph::template ArcMap<_Value> { + public: + + typedef _Value Value; + typedef typename Digraph::template ArcMap Parent; + + explicit EdgeMap(const Adaptor& adaptor) + : Parent(*adaptor._digraph) {} + + EdgeMap(const Adaptor& adaptor, const Value& value) + : Parent(*adaptor._digraph, value) {} + + private: + EdgeMap& operator=(const EdgeMap& cmap) { + return operator=(cmap); + } + + template + EdgeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + + }; + + typedef typename ItemSetTraits::ItemNotifier NodeNotifier; + NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } + + protected: + + UndirectorBase() : _digraph(0) {} + + Digraph* _digraph; + + void setDigraph(Digraph& digraph) { + _digraph = &digraph; + } + + }; + + /// \ingroup graph_adaptors + /// + /// \brief Undirect the graph + /// + /// This adaptor makes an undirected graph from a directed + /// graph. All arcs of the underlying digraph will be showed in the + /// adaptor as an edge. The Orienter adaptor is conform to the \ref + /// concepts::Graph "Graph concept". + /// + /// \tparam _Digraph It must be conform to the \ref + /// concepts::Digraph "Digraph concept". The type can be specified + /// to const. + template + class Undirector + : public GraphAdaptorExtender > { + public: + typedef _Digraph Digraph; + typedef GraphAdaptorExtender > Parent; + protected: + Undirector() { } + public: + + /// \brief Constructor + /// + /// Creates a undirected graph from the given digraph + Undirector(_Digraph& digraph) { + setDigraph(digraph); + } + + /// \brief ArcMap combined from two original ArcMap + /// + /// This class adapts two original digraph ArcMap to + /// get an arc map on the undirected graph. + template + class CombinedArcMap { + public: + + typedef _ForwardMap ForwardMap; + typedef _BackwardMap BackwardMap; + + typedef typename MapTraits::ReferenceMapTag ReferenceMapTag; + + typedef typename ForwardMap::Value Value; + typedef typename Parent::Arc Key; + + /// \brief Constructor + /// + /// Constructor + CombinedArcMap(ForwardMap& forward, BackwardMap& backward) + : _forward(&forward), _backward(&backward) {} + + + /// \brief Sets the value associated with a key. + /// + /// Sets the value associated with a key. + void set(const Key& e, const Value& a) { + if (Parent::direction(e)) { + _forward->set(e, a); + } else { + _backward->set(e, a); + } + } + + /// \brief Returns the value associated with a key. + /// + /// Returns the value associated with a key. + typename MapTraits::ConstReturnValue + operator[](const Key& e) const { + if (Parent::direction(e)) { + return (*_forward)[e]; + } else { + return (*_backward)[e]; + } + } + + /// \brief Returns the value associated with a key. + /// + /// Returns the value associated with a key. + typename MapTraits::ReturnValue + operator[](const Key& e) { + if (Parent::direction(e)) { + return (*_forward)[e]; + } else { + return (*_backward)[e]; + } + } + + protected: + + ForwardMap* _forward; + BackwardMap* _backward; + + }; + + /// \brief Just gives back a combined arc map + /// + /// Just gives back a combined arc map + template + static CombinedArcMap + combinedArcMap(ForwardMap& forward, BackwardMap& backward) { + return CombinedArcMap(forward, backward); + } + + template + static CombinedArcMap + combinedArcMap(const ForwardMap& forward, BackwardMap& backward) { + return CombinedArcMap(forward, backward); + } + + template + static CombinedArcMap + combinedArcMap(ForwardMap& forward, const BackwardMap& backward) { + return CombinedArcMap(forward, backward); + } + + template + static CombinedArcMap + combinedArcMap(const ForwardMap& forward, const BackwardMap& backward) { + return CombinedArcMap(forward, backward); + } + + }; + + /// \brief Just gives back an undirected view of the given digraph + /// + /// Just gives back an undirected view of the given digraph + template + Undirector + undirector(const Digraph& digraph) { + return Undirector(digraph); + } + + template + class OrienterBase { + public: + + typedef _Graph Graph; + typedef _DirectionMap DirectionMap; + + typedef typename Graph::Node Node; + typedef typename Graph::Edge Arc; + + void reverseArc(const Arc& arc) { + _direction->set(arc, !(*_direction)[arc]); + } + + void first(Node& i) const { _graph->first(i); } + void first(Arc& i) const { _graph->first(i); } + void firstIn(Arc& i, const Node& n) const { + bool d; + _graph->firstInc(i, d, n); + while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); + } + void firstOut(Arc& i, const Node& n ) const { + bool d; + _graph->firstInc(i, d, n); + while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); + } + + void next(Node& i) const { _graph->next(i); } + void next(Arc& i) const { _graph->next(i); } + void nextIn(Arc& i) const { + bool d = !(*_direction)[i]; + _graph->nextInc(i, d); + while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d); + } + void nextOut(Arc& i) const { + bool d = (*_direction)[i]; + _graph->nextInc(i, d); + while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d); + } + + Node source(const Arc& e) const { + return (*_direction)[e] ? _graph->u(e) : _graph->v(e); + } + Node target(const Arc& e) const { + return (*_direction)[e] ? _graph->v(e) : _graph->u(e); + } + + typedef NodeNumTagIndicator NodeNumTag; + int nodeNum() const { return _graph->nodeNum(); } + + typedef EdgeNumTagIndicator EdgeNumTag; + int arcNum() const { return _graph->edgeNum(); } + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& u, const Node& v, + const Arc& prev = INVALID) { + Arc arc = prev; + bool d = arc == INVALID ? true : (*_direction)[arc]; + if (d) { + arc = _graph->findEdge(u, v, arc); + while (arc != INVALID && !(*_direction)[arc]) { + _graph->findEdge(u, v, arc); + } + if (arc != INVALID) return arc; + } + _graph->findEdge(v, u, arc); + while (arc != INVALID && (*_direction)[arc]) { + _graph->findEdge(u, v, arc); + } + return arc; + } + + Node addNode() { + return Node(_graph->addNode()); + } + + Arc addArc(const Node& u, const Node& v) { + Arc arc = _graph->addArc(u, v); + _direction->set(arc, _graph->source(arc) == u); + return arc; + } + + void erase(const Node& i) { _graph->erase(i); } + void erase(const Arc& i) { _graph->erase(i); } + + void clear() { _graph->clear(); } + + int id(const Node& v) const { return _graph->id(v); } + int id(const Arc& e) const { return _graph->id(e); } + + Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); } + Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); } + + int maxNodeId() const { return _graph->maxNodeId(); } + int maxArcId() const { return _graph->maxEdgeId(); } + + typedef typename ItemSetTraits::ItemNotifier NodeNotifier; + NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); } + + typedef typename ItemSetTraits::ItemNotifier ArcNotifier; + ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); } + + template + class NodeMap : public _Graph::template NodeMap<_Value> { + public: + + typedef typename _Graph::template NodeMap<_Value> Parent; + + explicit NodeMap(const OrienterBase& adapter) + : Parent(*adapter._graph) {} + + NodeMap(const OrienterBase& adapter, const _Value& value) + : Parent(*adapter._graph, value) {} + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + + }; + + template + class ArcMap : public _Graph::template EdgeMap<_Value> { + public: + + typedef typename Graph::template EdgeMap<_Value> Parent; + + explicit ArcMap(const OrienterBase& adapter) + : Parent(*adapter._graph) { } + + ArcMap(const OrienterBase& adapter, const _Value& value) + : Parent(*adapter._graph, value) { } + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + + + protected: + Graph* _graph; + DirectionMap* _direction; + + void setDirectionMap(DirectionMap& direction) { + _direction = &direction; + } + + void setGraph(Graph& graph) { + _graph = &graph; + } + + }; + + /// \ingroup graph_adaptors + /// + /// \brief Orients the edges of the graph to get a digraph + /// + /// This adaptor orients each edge in the undirected graph. The + /// direction of the arcs stored in an edge node map. The arcs can + /// be easily reverted by the \c reverseArc() member function in the + /// adaptor. The Orienter adaptor is conform to the \ref + /// concepts::Digraph "Digraph concept". + /// + /// \tparam _Graph It must be conform to the \ref concepts::Graph + /// "Graph concept". The type can be specified to be const. + /// \tparam _DirectionMap A bool valued edge map of the the adapted + /// graph. + /// + /// \sa orienter + template > + class Orienter : + public DigraphAdaptorExtender > { + public: + typedef _Graph Graph; + typedef DigraphAdaptorExtender< + OrienterBase<_Graph, DirectionMap> > Parent; + typedef typename Parent::Arc Arc; + protected: + Orienter() { } + public: + + /// \brief Constructor of the adaptor + /// + /// Constructor of the adaptor + Orienter(Graph& graph, DirectionMap& direction) { + setGraph(graph); + setDirectionMap(direction); + } + + /// \brief Reverse arc + /// + /// It reverse the given arc. It simply negate the direction in the map. + void reverseArc(const Arc& a) { + Parent::reverseArc(a); + } + }; + + /// \brief Just gives back a Orienter + /// + /// Just gives back a Orienter + template + Orienter + orienter(const Graph& graph, DirectionMap& dm) { + return Orienter(graph, dm); + } + + template + Orienter + orienter(const Graph& graph, const DirectionMap& dm) { + return Orienter(graph, dm); + } + + namespace _adaptor_bits { + + template, + typename _FlowMap = _CapacityMap, + typename _Tolerance = Tolerance > + class ResForwardFilter { + public: + + typedef _Digraph Digraph; + typedef _CapacityMap CapacityMap; + typedef _FlowMap FlowMap; + typedef _Tolerance Tolerance; + + typedef typename Digraph::Arc Key; + typedef bool Value; + + private: + + const CapacityMap* _capacity; + const FlowMap* _flow; + Tolerance _tolerance; + public: + + ResForwardFilter(const CapacityMap& capacity, const FlowMap& flow, + const Tolerance& tolerance = Tolerance()) + : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } + + bool operator[](const typename Digraph::Arc& a) const { + return _tolerance.positive((*_capacity)[a] - (*_flow)[a]); + } + }; + + template, + typename _FlowMap = _CapacityMap, + typename _Tolerance = Tolerance > + class ResBackwardFilter { + public: + + typedef _Digraph Digraph; + typedef _CapacityMap CapacityMap; + typedef _FlowMap FlowMap; + typedef _Tolerance Tolerance; + + typedef typename Digraph::Arc Key; + typedef bool Value; + + private: + + const CapacityMap* _capacity; + const FlowMap* _flow; + Tolerance _tolerance; + + public: + + ResBackwardFilter(const CapacityMap& capacity, const FlowMap& flow, + const Tolerance& tolerance = Tolerance()) + : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } + + bool operator[](const typename Digraph::Arc& a) const { + return _tolerance.positive((*_flow)[a]); + } + }; + + } + + /// \ingroup graph_adaptors + /// + /// \brief An adaptor for composing the residual graph for directed + /// flow and circulation problems. + /// + /// An adaptor for composing the residual graph for directed flow and + /// circulation problems. Let \f$ G=(V, A) \f$ be a directed graph + /// and let \f$ F \f$ be a number type. Let moreover \f$ f,c:A\to F \f$, + /// be functions on the arc-set. + /// + /// Then Residual implements the digraph structure with + /// node-set \f$ V \f$ and arc-set \f$ A_{forward}\cup A_{backward} \f$, + /// where \f$ A_{forward}=\{uv : uv\in A, f(uv)0\} \f$, i.e. the so + /// called residual graph. When we take the union + /// \f$ A_{forward}\cup A_{backward} \f$, multiplicities are counted, + /// i.e. if an arc is in both \f$ A_{forward} \f$ and + /// \f$ A_{backward} \f$, then in the adaptor it appears in both + /// orientation. + /// + /// \tparam _Digraph It must be conform to the \ref concepts::Digraph + /// "Digraph concept". The type is implicitly const. + /// \tparam _CapacityMap An arc map of some numeric type, it defines + /// the capacities in the flow problem. The map is implicitly const. + /// \tparam _FlowMap An arc map of some numeric type, it defines + /// the capacities in the flow problem. + /// \tparam _Tolerance Handler for inexact computation. + template, + typename _FlowMap = _CapacityMap, + typename _Tolerance = Tolerance > + class Residual : + public FilterArcs< + Undirector, + typename Undirector::template CombinedArcMap< + _adaptor_bits::ResForwardFilter, + _adaptor_bits::ResBackwardFilter > > + { + public: + + typedef _Digraph Digraph; + typedef _CapacityMap CapacityMap; + typedef _FlowMap FlowMap; + typedef _Tolerance Tolerance; + + typedef typename CapacityMap::Value Value; + typedef Residual Adaptor; + + protected: + + typedef Undirector Undirected; + + typedef _adaptor_bits::ResForwardFilter ForwardFilter; + + typedef _adaptor_bits::ResBackwardFilter BackwardFilter; + + typedef typename Undirected:: + template CombinedArcMap ArcFilter; + + typedef FilterArcs Parent; + + const CapacityMap* _capacity; + FlowMap* _flow; + + Undirected _graph; + ForwardFilter _forward_filter; + BackwardFilter _backward_filter; + ArcFilter _arc_filter; + + public: + + /// \brief Constructor of the residual digraph. + /// + /// Constructor of the residual graph. The parameters are the digraph, + /// the flow map, the capacity map and a tolerance object. + Residual(const Digraph& digraph, const CapacityMap& capacity, + FlowMap& flow, const Tolerance& tolerance = Tolerance()) + : Parent(), _capacity(&capacity), _flow(&flow), _graph(digraph), + _forward_filter(capacity, flow, tolerance), + _backward_filter(capacity, flow, tolerance), + _arc_filter(_forward_filter, _backward_filter) + { + Parent::setDigraph(_graph); + Parent::setArcFilterMap(_arc_filter); + } + + typedef typename Parent::Arc Arc; + + /// \brief Gives back the residual capacity of the arc. + /// + /// Gives back the residual capacity of the arc. + Value residualCapacity(const Arc& a) const { + if (Undirected::direction(a)) { + return (*_capacity)[a] - (*_flow)[a]; + } else { + return (*_flow)[a]; + } + } + + /// \brief Augment on the given arc in the residual graph. + /// + /// Augment on the given arc in the residual graph. It increase + /// or decrease the flow on the original arc depend on the direction + /// of the residual arc. + void augment(const Arc& a, const Value& v) const { + if (Undirected::direction(a)) { + _flow->set(a, (*_flow)[a] + v); + } else { + _flow->set(a, (*_flow)[a] - v); + } + } + + /// \brief Returns the direction of the arc. + /// + /// Returns true when the arc is same oriented as the original arc. + static bool forward(const Arc& a) { + return Undirected::direction(a); + } + + /// \brief Returns the direction of the arc. + /// + /// Returns true when the arc is opposite oriented as the original arc. + static bool backward(const Arc& a) { + return !Undirected::direction(a); + } + + /// \brief Gives back the forward oriented residual arc. + /// + /// Gives back the forward oriented residual arc. + static Arc forward(const typename Digraph::Arc& a) { + return Undirected::direct(a, true); + } + + /// \brief Gives back the backward oriented residual arc. + /// + /// Gives back the backward oriented residual arc. + static Arc backward(const typename Digraph::Arc& a) { + return Undirected::direct(a, false); + } + + /// \brief Residual capacity map. + /// + /// In generic residual graph the residual capacity can be obtained + /// as a map. + class ResidualCapacity { + protected: + const Adaptor* _adaptor; + public: + /// The Key type + typedef Arc Key; + /// The Value type + typedef typename _CapacityMap::Value Value; + + /// Constructor + ResidualCapacity(const Adaptor& adaptor) : _adaptor(&adaptor) {} + + /// \e + Value operator[](const Arc& a) const { + return _adaptor->residualCapacity(a); + } + + }; + + }; + + template + class SplitNodesBase { + public: + + typedef _Digraph Digraph; + typedef DigraphAdaptorBase Parent; + typedef SplitNodesBase Adaptor; + + typedef typename Digraph::Node DigraphNode; + typedef typename Digraph::Arc DigraphArc; + + class Node; + class Arc; + + private: + + template class NodeMapBase; + template class ArcMapBase; + + public: + + class Node : public DigraphNode { + friend class SplitNodesBase; + template friend class NodeMapBase; + private: + + bool _in; + Node(DigraphNode node, bool in) + : DigraphNode(node), _in(in) {} + + public: + + Node() {} + Node(Invalid) : DigraphNode(INVALID), _in(true) {} + + bool operator==(const Node& node) const { + return DigraphNode::operator==(node) && _in == node._in; + } + + bool operator!=(const Node& node) const { + return !(*this == node); + } + + bool operator<(const Node& node) const { + return DigraphNode::operator<(node) || + (DigraphNode::operator==(node) && _in < node._in); + } + }; + + class Arc { + friend class SplitNodesBase; + template friend class ArcMapBase; + private: + typedef BiVariant ArcImpl; + + explicit Arc(const DigraphArc& arc) : _item(arc) {} + explicit Arc(const DigraphNode& node) : _item(node) {} + + ArcImpl _item; + + public: + Arc() {} + Arc(Invalid) : _item(DigraphArc(INVALID)) {} + + bool operator==(const Arc& arc) const { + if (_item.firstState()) { + if (arc._item.firstState()) { + return _item.first() == arc._item.first(); + } + } else { + if (arc._item.secondState()) { + return _item.second() == arc._item.second(); + } + } + return false; + } + + bool operator!=(const Arc& arc) const { + return !(*this == arc); + } + + bool operator<(const Arc& arc) const { + if (_item.firstState()) { + if (arc._item.firstState()) { + return _item.first() < arc._item.first(); + } + return false; + } else { + if (arc._item.secondState()) { + return _item.second() < arc._item.second(); + } + return true; + } + } + + operator DigraphArc() const { return _item.first(); } + operator DigraphNode() const { return _item.second(); } + + }; + + void first(Node& n) const { + _digraph->first(n); + n._in = true; + } + + void next(Node& n) const { + if (n._in) { + n._in = false; + } else { + n._in = true; + _digraph->next(n); + } + } + + void first(Arc& e) const { + e._item.setSecond(); + _digraph->first(e._item.second()); + if (e._item.second() == INVALID) { + e._item.setFirst(); + _digraph->first(e._item.first()); + } + } + + void next(Arc& e) const { + if (e._item.secondState()) { + _digraph->next(e._item.second()); + if (e._item.second() == INVALID) { + e._item.setFirst(); + _digraph->first(e._item.first()); + } + } else { + _digraph->next(e._item.first()); + } + } + + void firstOut(Arc& e, const Node& n) const { + if (n._in) { + e._item.setSecond(n); + } else { + e._item.setFirst(); + _digraph->firstOut(e._item.first(), n); + } + } + + void nextOut(Arc& e) const { + if (!e._item.firstState()) { + e._item.setFirst(INVALID); + } else { + _digraph->nextOut(e._item.first()); + } + } + + void firstIn(Arc& e, const Node& n) const { + if (!n._in) { + e._item.setSecond(n); + } else { + e._item.setFirst(); + _digraph->firstIn(e._item.first(), n); + } + } + + void nextIn(Arc& e) const { + if (!e._item.firstState()) { + e._item.setFirst(INVALID); + } else { + _digraph->nextIn(e._item.first()); + } + } + + Node source(const Arc& e) const { + if (e._item.firstState()) { + return Node(_digraph->source(e._item.first()), false); + } else { + return Node(e._item.second(), true); + } + } + + Node target(const Arc& e) const { + if (e._item.firstState()) { + return Node(_digraph->target(e._item.first()), true); + } else { + return Node(e._item.second(), false); + } + } + + int id(const Node& n) const { + return (_digraph->id(n) << 1) | (n._in ? 0 : 1); + } + Node nodeFromId(int ix) const { + return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0); + } + int maxNodeId() const { + return 2 * _digraph->maxNodeId() + 1; + } + + int id(const Arc& e) const { + if (e._item.firstState()) { + return _digraph->id(e._item.first()) << 1; + } else { + return (_digraph->id(e._item.second()) << 1) | 1; + } + } + Arc arcFromId(int ix) const { + if ((ix & 1) == 0) { + return Arc(_digraph->arcFromId(ix >> 1)); + } else { + return Arc(_digraph->nodeFromId(ix >> 1)); + } + } + int maxArcId() const { + return std::max(_digraph->maxNodeId() << 1, + (_digraph->maxArcId() << 1) | 1); + } + + static bool inNode(const Node& n) { + return n._in; + } + + static bool outNode(const Node& n) { + return !n._in; + } + + static bool origArc(const Arc& e) { + return e._item.firstState(); + } + + static bool bindArc(const Arc& e) { + return e._item.secondState(); + } + + static Node inNode(const DigraphNode& n) { + return Node(n, true); + } + + static Node outNode(const DigraphNode& n) { + return Node(n, false); + } + + static Arc arc(const DigraphNode& n) { + return Arc(n); + } + + static Arc arc(const DigraphArc& e) { + return Arc(e); + } + + typedef True NodeNumTag; + + int nodeNum() const { + return 2 * countNodes(*_digraph); + } + + typedef True EdgeNumTag; + int arcNum() const { + return countArcs(*_digraph) + countNodes(*_digraph); + } + + typedef True FindEdgeTag; + Arc findArc(const Node& u, const Node& v, + const Arc& prev = INVALID) const { + if (inNode(u)) { + if (outNode(v)) { + if (static_cast(u) == + static_cast(v) && prev == INVALID) { + return Arc(u); + } + } + } else { + if (inNode(v)) { + return Arc(::lemon::findArc(*_digraph, u, v, prev)); + } + } + return INVALID; + } + + private: + + template + class NodeMapBase + : public MapTraits > { + typedef typename Parent::template NodeMap<_Value> NodeImpl; + public: + typedef Node Key; + typedef _Value Value; + + NodeMapBase(const Adaptor& adaptor) + : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {} + NodeMapBase(const Adaptor& adaptor, const Value& value) + : _in_map(*adaptor._digraph, value), + _out_map(*adaptor._digraph, value) {} + + void set(const Node& key, const Value& val) { + if (Adaptor::inNode(key)) { _in_map.set(key, val); } + else {_out_map.set(key, val); } + } + + typename MapTraits::ReturnValue + operator[](const Node& key) { + if (Adaptor::inNode(key)) { return _in_map[key]; } + else { return _out_map[key]; } + } + + typename MapTraits::ConstReturnValue + operator[](const Node& key) const { + if (Adaptor::inNode(key)) { return _in_map[key]; } + else { return _out_map[key]; } + } + + private: + NodeImpl _in_map, _out_map; + }; + + template + class ArcMapBase + : public MapTraits > { + typedef typename Parent::template ArcMap<_Value> ArcImpl; + typedef typename Parent::template NodeMap<_Value> NodeImpl; + public: + typedef Arc Key; + typedef _Value Value; + + ArcMapBase(const Adaptor& adaptor) + : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {} + ArcMapBase(const Adaptor& adaptor, const Value& value) + : _arc_map(*adaptor._digraph, value), + _node_map(*adaptor._digraph, value) {} + + void set(const Arc& key, const Value& val) { + if (Adaptor::origArc(key)) { + _arc_map.set(key._item.first(), val); + } else { + _node_map.set(key._item.second(), val); + } + } + + typename MapTraits::ReturnValue + operator[](const Arc& key) { + if (Adaptor::origArc(key)) { + return _arc_map[key._item.first()]; + } else { + return _node_map[key._item.second()]; + } + } + + typename MapTraits::ConstReturnValue + operator[](const Arc& key) const { + if (Adaptor::origArc(key)) { + return _arc_map[key._item.first()]; + } else { + return _node_map[key._item.second()]; + } + } + + private: + ArcImpl _arc_map; + NodeImpl _node_map; + }; + + public: + + template + class NodeMap + : public SubMapExtender > + { + public: + typedef _Value Value; + typedef SubMapExtender > Parent; + + NodeMap(const Adaptor& adaptor) + : Parent(adaptor) {} + + NodeMap(const Adaptor& adaptor, const Value& value) + : Parent(adaptor, value) {} + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + template + class ArcMap + : public SubMapExtender > + { + public: + typedef _Value Value; + typedef SubMapExtender > Parent; + + ArcMap(const Adaptor& adaptor) + : Parent(adaptor) {} + + ArcMap(const Adaptor& adaptor, const Value& value) + : Parent(adaptor, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + protected: + + SplitNodesBase() : _digraph(0) {} + + Digraph* _digraph; + + void setDigraph(Digraph& digraph) { + _digraph = &digraph; + } + + }; + + /// \ingroup graph_adaptors + /// + /// \brief Split the nodes of a directed graph + /// + /// The SplitNodes adaptor splits each node into an in-node and an + /// out-node. Formaly, the adaptor replaces each \f$ u \f$ node in + /// the digraph with two nodes(namely node \f$ u_{in} \f$ and node + /// \f$ u_{out} \f$). If there is a \f$ (v, u) \f$ arc in the + /// original digraph the new target of the arc will be \f$ u_{in} \f$ + /// and similarly the source of the original \f$ (u, v) \f$ arc + /// will be \f$ u_{out} \f$. The adaptor will add for each node in + /// the original digraph an additional arc which connects + /// \f$ (u_{in}, u_{out}) \f$. + /// + /// The aim of this class is to run algorithm with node costs if the + /// algorithm can use directly just arc costs. In this case we should use + /// a \c SplitNodes and set the node cost of the graph to the + /// bind arc in the adapted graph. + /// + /// \tparam _Digraph It must be conform to the \ref concepts::Digraph + /// "Digraph concept". The type can be specified to be const. + template + class SplitNodes + : public DigraphAdaptorExtender > { + public: + typedef _Digraph Digraph; + typedef DigraphAdaptorExtender > Parent; + + typedef typename Digraph::Node DigraphNode; + typedef typename Digraph::Arc DigraphArc; + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + + /// \brief Constructor of the adaptor. + /// + /// Constructor of the adaptor. + SplitNodes(Digraph& g) { + Parent::setDigraph(g); + } + + /// \brief Returns true when the node is in-node. + /// + /// Returns true when the node is in-node. + static bool inNode(const Node& n) { + return Parent::inNode(n); + } + + /// \brief Returns true when the node is out-node. + /// + /// Returns true when the node is out-node. + static bool outNode(const Node& n) { + return Parent::outNode(n); + } + + /// \brief Returns true when the arc is arc in the original digraph. + /// + /// Returns true when the arc is arc in the original digraph. + static bool origArc(const Arc& a) { + return Parent::origArc(a); + } + + /// \brief Returns true when the arc binds an in-node and an out-node. + /// + /// Returns true when the arc binds an in-node and an out-node. + static bool bindArc(const Arc& a) { + return Parent::bindArc(a); + } + + /// \brief Gives back the in-node created from the \c node. + /// + /// Gives back the in-node created from the \c node. + static Node inNode(const DigraphNode& n) { + return Parent::inNode(n); + } + + /// \brief Gives back the out-node created from the \c node. + /// + /// Gives back the out-node created from the \c node. + static Node outNode(const DigraphNode& n) { + return Parent::outNode(n); + } + + /// \brief Gives back the arc binds the two part of the node. + /// + /// Gives back the arc binds the two part of the node. + static Arc arc(const DigraphNode& n) { + return Parent::arc(n); + } + + /// \brief Gives back the arc of the original arc. + /// + /// Gives back the arc of the original arc. + static Arc arc(const DigraphArc& a) { + return Parent::arc(a); + } + + /// \brief NodeMap combined from two original NodeMap + /// + /// This class adapt two of the original digraph NodeMap to + /// get a node map on the adapted digraph. + template + class CombinedNodeMap { + public: + + typedef Node Key; + typedef typename InNodeMap::Value Value; + + /// \brief Constructor + /// + /// Constructor. + CombinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) + : _in_map(in_map), _out_map(out_map) {} + + /// \brief The subscript operator. + /// + /// The subscript operator. + Value& operator[](const Key& key) { + if (Parent::inNode(key)) { + return _in_map[key]; + } else { + return _out_map[key]; + } + } + + /// \brief The const subscript operator. + /// + /// The const subscript operator. + Value operator[](const Key& key) const { + if (Parent::inNode(key)) { + return _in_map[key]; + } else { + return _out_map[key]; + } + } + + /// \brief The setter function of the map. + /// + /// The setter function of the map. + void set(const Key& key, const Value& value) { + if (Parent::inNode(key)) { + _in_map.set(key, value); + } else { + _out_map.set(key, value); + } + } + + private: + + InNodeMap& _in_map; + OutNodeMap& _out_map; + + }; + + + /// \brief Just gives back a combined node map + /// + /// Just gives back a combined node map + template + static CombinedNodeMap + combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) { + return CombinedNodeMap(in_map, out_map); + } + + template + static CombinedNodeMap + combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) { + return CombinedNodeMap(in_map, out_map); + } + + template + static CombinedNodeMap + combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) { + return CombinedNodeMap(in_map, out_map); + } + + template + static CombinedNodeMap + combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) { + return CombinedNodeMap(in_map, out_map); + } + + /// \brief ArcMap combined from an original ArcMap and a NodeMap + /// + /// This class adapt an original ArcMap and a NodeMap to get an + /// arc map on the adapted digraph + template + class CombinedArcMap { + public: + + typedef Arc Key; + typedef typename DigraphArcMap::Value Value; + + /// \brief Constructor + /// + /// Constructor. + CombinedArcMap(DigraphArcMap& arc_map, DigraphNodeMap& node_map) + : _arc_map(arc_map), _node_map(node_map) {} + + /// \brief The subscript operator. + /// + /// The subscript operator. + void set(const Arc& arc, const Value& val) { + if (Parent::origArc(arc)) { + _arc_map.set(arc, val); + } else { + _node_map.set(arc, val); + } + } + + /// \brief The const subscript operator. + /// + /// The const subscript operator. + Value operator[](const Key& arc) const { + if (Parent::origArc(arc)) { + return _arc_map[arc]; + } else { + return _node_map[arc]; + } + } + + /// \brief The const subscript operator. + /// + /// The const subscript operator. + Value& operator[](const Key& arc) { + if (Parent::origArc(arc)) { + return _arc_map[arc]; + } else { + return _node_map[arc]; + } + } + + private: + DigraphArcMap& _arc_map; + DigraphNodeMap& _node_map; + }; + + /// \brief Just gives back a combined arc map + /// + /// Just gives back a combined arc map + template + static CombinedArcMap + combinedArcMap(DigraphArcMap& arc_map, DigraphNodeMap& node_map) { + return CombinedArcMap(arc_map, node_map); + } + + template + static CombinedArcMap + combinedArcMap(const DigraphArcMap& arc_map, DigraphNodeMap& node_map) { + return CombinedArcMap(arc_map, node_map); + } + + template + static CombinedArcMap + combinedArcMap(DigraphArcMap& arc_map, const DigraphNodeMap& node_map) { + return CombinedArcMap(arc_map, node_map); + } + + template + static CombinedArcMap + combinedArcMap(const DigraphArcMap& arc_map, + const DigraphNodeMap& node_map) { + return CombinedArcMap(arc_map, node_map); + } + + }; + + /// \brief Just gives back a node splitter + /// + /// Just gives back a node splitter + template + SplitNodes + splitNodes(const Digraph& digraph) { + return SplitNodes(digraph); + } + + +} //namespace lemon + +#endif //LEMON_ADAPTORS_H