diff --git a/lemon/circulation.h b/lemon/circulation.h new file mode 100644 --- /dev/null +++ b/lemon/circulation.h @@ -0,0 +1,794 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_CIRCULATION_H +#define LEMON_CIRCULATION_H + +#include +#include +#include + +///\ingroup max_flow +///\file +///\brief Push-relabel algorithm for finding a feasible circulation. +/// +namespace lemon { + + /// \brief Default traits class of Circulation class. + /// + /// Default traits class of Circulation class. + /// + /// \tparam GR Type of the digraph the algorithm runs on. + /// \tparam LM The type of the lower bound map. + /// \tparam UM The type of the upper bound (capacity) map. + /// \tparam SM The type of the supply map. + template + struct CirculationDefaultTraits { + + /// \brief The type of the digraph the algorithm runs on. + typedef GR Digraph; + + /// \brief The type of the lower bound map. + /// + /// The type of the map that stores the lower bounds on the arcs. + /// It must conform to the \ref concepts::ReadMap "ReadMap" concept. + typedef LM LowerMap; + + /// \brief The type of the upper bound (capacity) map. + /// + /// The type of the map that stores the upper bounds (capacities) + /// on the arcs. + /// It must conform to the \ref concepts::ReadMap "ReadMap" concept. + typedef UM UpperMap; + + /// \brief The type of supply map. + /// + /// The type of the map that stores the signed supply values of the + /// nodes. + /// It must conform to the \ref concepts::ReadMap "ReadMap" concept. + typedef SM SupplyMap; + + /// \brief The type of the flow and supply values. + typedef typename SupplyMap::Value Value; + + /// \brief The type of the map that stores the flow values. + /// + /// The type of the map that stores the flow values. + /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" + /// concept. + typedef typename Digraph::template ArcMap FlowMap; + + /// \brief Instantiates a FlowMap. + /// + /// This function instantiates a \ref FlowMap. + /// \param digraph The digraph for which we would like to define + /// the flow map. + static FlowMap* createFlowMap(const Digraph& digraph) { + return new FlowMap(digraph); + } + + /// \brief The elevator type used by the algorithm. + /// + /// The elevator type used by the algorithm. + /// + /// \sa Elevator + /// \sa LinkedElevator + typedef lemon::Elevator Elevator; + + /// \brief Instantiates an Elevator. + /// + /// This function instantiates an \ref Elevator. + /// \param digraph The digraph for which we would like to define + /// the elevator. + /// \param max_level The maximum level of the elevator. + static Elevator* createElevator(const Digraph& digraph, int max_level) { + return new Elevator(digraph, max_level); + } + + /// \brief The tolerance used by the algorithm + /// + /// The tolerance used by the algorithm to handle inexact computation. + typedef lemon::Tolerance Tolerance; + + }; + + /** + \brief Push-relabel algorithm for the network circulation problem. + + \ingroup max_flow + This class implements a push-relabel algorithm for the \e network + \e circulation problem. + It is to find a feasible circulation when lower and upper bounds + are given for the flow values on the arcs and lower bounds are + given for the difference between the outgoing and incoming flow + at the nodes. + + The exact formulation of this problem is the following. + Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$ + \f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and + upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ + holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$ + denotes the signed supply values of the nodes. + If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ + supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with + \f$-sup(u)\f$ demand. + A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$ + solution of the following problem. + + \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) + \geq sup(u) \quad \forall u\in V, \f] + \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] + + The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be + zero or negative in order to have a feasible solution (since the sum + of the expressions on the left-hand side of the inequalities is zero). + It means that the total demand must be greater or equal to the total + supply and all the supplies have to be carried out from the supply nodes, + but there could be demands that are not satisfied. + If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand + constraints have to be satisfied with equality, i.e. all demands + have to be satisfied and all supplies have to be used. + + If you need the opposite inequalities in the supply/demand constraints + (i.e. the total demand is less than the total supply and all the demands + have to be satisfied while there could be supplies that are not used), + then you could easily transform the problem to the above form by reversing + the direction of the arcs and taking the negative of the supply values + (e.g. using \ref ReverseDigraph and \ref NegMap adaptors). + + This algorithm either calculates a feasible circulation, or provides + a \ref barrier() "barrier", which prooves that a feasible soultion + cannot exist. + + Note that this algorithm also provides a feasible solution for the + \ref min_cost_flow "minimum cost flow problem". + + \tparam GR The type of the digraph the algorithm runs on. + \tparam LM The type of the lower bound map. The default + map type is \ref concepts::Digraph::ArcMap "GR::ArcMap". + \tparam UM The type of the upper bound (capacity) map. + The default map type is \c LM. + \tparam SM The type of the supply map. The default map type is + \ref concepts::Digraph::NodeMap "GR::NodeMap". + */ +#ifdef DOXYGEN +template< typename GR, + typename LM, + typename UM, + typename SM, + typename TR > +#else +template< typename GR, + typename LM = typename GR::template ArcMap, + typename UM = LM, + typename SM = typename GR::template NodeMap, + typename TR = CirculationDefaultTraits > +#endif + class Circulation { + public: + + ///The \ref CirculationDefaultTraits "traits class" of the algorithm. + typedef TR Traits; + ///The type of the digraph the algorithm runs on. + typedef typename Traits::Digraph Digraph; + ///The type of the flow and supply values. + typedef typename Traits::Value Value; + + ///The type of the lower bound map. + typedef typename Traits::LowerMap LowerMap; + ///The type of the upper bound (capacity) map. + typedef typename Traits::UpperMap UpperMap; + ///The type of the supply map. + typedef typename Traits::SupplyMap SupplyMap; + ///The type of the flow map. + typedef typename Traits::FlowMap FlowMap; + + ///The type of the elevator. + typedef typename Traits::Elevator Elevator; + ///The type of the tolerance. + typedef typename Traits::Tolerance Tolerance; + + private: + + TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); + + const Digraph &_g; + int _node_num; + + const LowerMap *_lo; + const UpperMap *_up; + const SupplyMap *_supply; + + FlowMap *_flow; + bool _local_flow; + + Elevator* _level; + bool _local_level; + + typedef typename Digraph::template NodeMap ExcessMap; + ExcessMap* _excess; + + Tolerance _tol; + int _el; + + public: + + typedef Circulation Create; + + ///\name Named Template Parameters + + ///@{ + + template + struct SetFlowMapTraits : public Traits { + typedef T FlowMap; + static FlowMap *createFlowMap(const Digraph&) { + LEMON_ASSERT(false, "FlowMap is not initialized"); + return 0; // ignore warnings + } + }; + + /// \brief \ref named-templ-param "Named parameter" for setting + /// FlowMap type + /// + /// \ref named-templ-param "Named parameter" for setting FlowMap + /// type. + template + struct SetFlowMap + : public Circulation > { + typedef Circulation > Create; + }; + + template + struct SetElevatorTraits : public Traits { + typedef T Elevator; + static Elevator *createElevator(const Digraph&, int) { + LEMON_ASSERT(false, "Elevator is not initialized"); + return 0; // ignore warnings + } + }; + + /// \brief \ref named-templ-param "Named parameter" for setting + /// Elevator type + /// + /// \ref named-templ-param "Named parameter" for setting Elevator + /// type. If this named parameter is used, then an external + /// elevator object must be passed to the algorithm using the + /// \ref elevator(Elevator&) "elevator()" function before calling + /// \ref run() or \ref init(). + /// \sa SetStandardElevator + template + struct SetElevator + : public Circulation > { + typedef Circulation > Create; + }; + + template + struct SetStandardElevatorTraits : public Traits { + typedef T Elevator; + static Elevator *createElevator(const Digraph& digraph, int max_level) { + return new Elevator(digraph, max_level); + } + }; + + /// \brief \ref named-templ-param "Named parameter" for setting + /// Elevator type with automatic allocation + /// + /// \ref named-templ-param "Named parameter" for setting Elevator + /// type with automatic allocation. + /// The Elevator should have standard constructor interface to be + /// able to automatically created by the algorithm (i.e. the + /// digraph and the maximum level should be passed to it). + /// However an external elevator object could also be passed to the + /// algorithm with the \ref elevator(Elevator&) "elevator()" function + /// before calling \ref run() or \ref init(). + /// \sa SetElevator + template + struct SetStandardElevator + : public Circulation > { + typedef Circulation > Create; + }; + + /// @} + + protected: + + Circulation() {} + + public: + + /// Constructor. + + /// The constructor of the class. + /// + /// \param graph The digraph the algorithm runs on. + /// \param lower The lower bounds for the flow values on the arcs. + /// \param upper The upper bounds (capacities) for the flow values + /// on the arcs. + /// \param supply The signed supply values of the nodes. + Circulation(const Digraph &graph, const LowerMap &lower, + const UpperMap &upper, const SupplyMap &supply) + : _g(graph), _lo(&lower), _up(&upper), _supply(&supply), + _flow(NULL), _local_flow(false), _level(NULL), _local_level(false), + _excess(NULL) {} + + /// Destructor. + ~Circulation() { + destroyStructures(); + } + + + private: + + bool checkBoundMaps() { + for (ArcIt e(_g);e!=INVALID;++e) { + if (_tol.less((*_up)[e], (*_lo)[e])) return false; + } + return true; + } + + void createStructures() { + _node_num = _el = countNodes(_g); + + if (!_flow) { + _flow = Traits::createFlowMap(_g); + _local_flow = true; + } + if (!_level) { + _level = Traits::createElevator(_g, _node_num); + _local_level = true; + } + if (!_excess) { + _excess = new ExcessMap(_g); + } + } + + void destroyStructures() { + if (_local_flow) { + delete _flow; + } + if (_local_level) { + delete _level; + } + if (_excess) { + delete _excess; + } + } + + public: + + /// Sets the lower bound map. + + /// Sets the lower bound map. + /// \return (*this) + Circulation& lowerMap(const LowerMap& map) { + _lo = ↦ + return *this; + } + + /// Sets the upper bound (capacity) map. + + /// Sets the upper bound (capacity) map. + /// \return (*this) + Circulation& upperMap(const UpperMap& map) { + _up = ↦ + return *this; + } + + /// Sets the supply map. + + /// Sets the supply map. + /// \return (*this) + Circulation& supplyMap(const SupplyMap& map) { + _supply = ↦ + return *this; + } + + /// \brief Sets the flow map. + /// + /// Sets the flow map. + /// If you don't use this function before calling \ref run() or + /// \ref init(), an instance will be allocated automatically. + /// The destructor deallocates this automatically allocated map, + /// of course. + /// \return (*this) + Circulation& flowMap(FlowMap& map) { + if (_local_flow) { + delete _flow; + _local_flow = false; + } + _flow = ↦ + return *this; + } + + /// \brief Sets the elevator used by algorithm. + /// + /// Sets the elevator used by algorithm. + /// If you don't use this function before calling \ref run() or + /// \ref init(), an instance will be allocated automatically. + /// The destructor deallocates this automatically allocated elevator, + /// of course. + /// \return (*this) + Circulation& elevator(Elevator& elevator) { + if (_local_level) { + delete _level; + _local_level = false; + } + _level = &elevator; + return *this; + } + + /// \brief Returns a const reference to the elevator. + /// + /// Returns a const reference to the elevator. + /// + /// \pre Either \ref run() or \ref init() must be called before + /// using this function. + const Elevator& elevator() const { + return *_level; + } + + /// \brief Sets the tolerance used by algorithm. + /// + /// Sets the tolerance used by algorithm. + Circulation& tolerance(const Tolerance& tolerance) const { + _tol = tolerance; + return *this; + } + + /// \brief Returns a const reference to the tolerance. + /// + /// Returns a const reference to the tolerance. + const Tolerance& tolerance() const { + return tolerance; + } + + /// \name Execution Control + /// The simplest way to execute the algorithm is to call \ref run().\n + /// If you need more control on the initial solution or the execution, + /// first you have to call one of the \ref init() functions, then + /// the \ref start() function. + + ///@{ + + /// Initializes the internal data structures. + + /// Initializes the internal data structures and sets all flow values + /// to the lower bound. + void init() + { + LEMON_DEBUG(checkBoundMaps(), + "Upper bounds must be greater or equal to the lower bounds"); + + createStructures(); + + for(NodeIt n(_g);n!=INVALID;++n) { + (*_excess)[n] = (*_supply)[n]; + } + + for (ArcIt e(_g);e!=INVALID;++e) { + _flow->set(e, (*_lo)[e]); + (*_excess)[_g.target(e)] += (*_flow)[e]; + (*_excess)[_g.source(e)] -= (*_flow)[e]; + } + + // global relabeling tested, but in general case it provides + // worse performance for random digraphs + _level->initStart(); + for(NodeIt n(_g);n!=INVALID;++n) + _level->initAddItem(n); + _level->initFinish(); + for(NodeIt n(_g);n!=INVALID;++n) + if(_tol.positive((*_excess)[n])) + _level->activate(n); + } + + /// Initializes the internal data structures using a greedy approach. + + /// Initializes the internal data structures using a greedy approach + /// to construct the initial solution. + void greedyInit() + { + LEMON_DEBUG(checkBoundMaps(), + "Upper bounds must be greater or equal to the lower bounds"); + + createStructures(); + + for(NodeIt n(_g);n!=INVALID;++n) { + (*_excess)[n] = (*_supply)[n]; + } + + for (ArcIt e(_g);e!=INVALID;++e) { + if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) { + _flow->set(e, (*_up)[e]); + (*_excess)[_g.target(e)] += (*_up)[e]; + (*_excess)[_g.source(e)] -= (*_up)[e]; + } else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) { + _flow->set(e, (*_lo)[e]); + (*_excess)[_g.target(e)] += (*_lo)[e]; + (*_excess)[_g.source(e)] -= (*_lo)[e]; + } else { + Value fc = -(*_excess)[_g.target(e)]; + _flow->set(e, fc); + (*_excess)[_g.target(e)] = 0; + (*_excess)[_g.source(e)] -= fc; + } + } + + _level->initStart(); + for(NodeIt n(_g);n!=INVALID;++n) + _level->initAddItem(n); + _level->initFinish(); + for(NodeIt n(_g);n!=INVALID;++n) + if(_tol.positive((*_excess)[n])) + _level->activate(n); + } + + ///Executes the algorithm + + ///This function executes the algorithm. + /// + ///\return \c true if a feasible circulation is found. + /// + ///\sa barrier() + ///\sa barrierMap() + bool start() + { + + Node act; + Node bact=INVALID; + Node last_activated=INVALID; + while((act=_level->highestActive())!=INVALID) { + int actlevel=(*_level)[act]; + int mlevel=_node_num; + Value exc=(*_excess)[act]; + + for(OutArcIt e(_g,act);e!=INVALID; ++e) { + Node v = _g.target(e); + Value fc=(*_up)[e]-(*_flow)[e]; + if(!_tol.positive(fc)) continue; + if((*_level)[v]set(e, (*_flow)[e] + exc); + (*_excess)[v] += exc; + if(!_level->active(v) && _tol.positive((*_excess)[v])) + _level->activate(v); + (*_excess)[act] = 0; + _level->deactivate(act); + goto next_l; + } + else { + _flow->set(e, (*_up)[e]); + (*_excess)[v] += fc; + if(!_level->active(v) && _tol.positive((*_excess)[v])) + _level->activate(v); + exc-=fc; + } + } + else if((*_level)[v]set(e, (*_flow)[e] - exc); + (*_excess)[v] += exc; + if(!_level->active(v) && _tol.positive((*_excess)[v])) + _level->activate(v); + (*_excess)[act] = 0; + _level->deactivate(act); + goto next_l; + } + else { + _flow->set(e, (*_lo)[e]); + (*_excess)[v] += fc; + if(!_level->active(v) && _tol.positive((*_excess)[v])) + _level->activate(v); + exc-=fc; + } + } + else if((*_level)[v]deactivate(act); + else if(mlevel==_node_num) { + _level->liftHighestActiveToTop(); + _el = _node_num; + return false; + } + else { + _level->liftHighestActive(mlevel+1); + if(_level->onLevel(actlevel)==0) { + _el = actlevel; + return false; + } + } + next_l: + ; + } + return true; + } + + /// Runs the algorithm. + + /// This function runs the algorithm. + /// + /// \return \c true if a feasible circulation is found. + /// + /// \note Apart from the return value, c.run() is just a shortcut of + /// the following code. + /// \code + /// c.greedyInit(); + /// c.start(); + /// \endcode + bool run() { + greedyInit(); + return start(); + } + + /// @} + + /// \name Query Functions + /// The results of the circulation algorithm can be obtained using + /// these functions.\n + /// Either \ref run() or \ref start() should be called before + /// using them. + + ///@{ + + /// \brief Returns the flow value on the given arc. + /// + /// Returns the flow value on the given arc. + /// + /// \pre Either \ref run() or \ref init() must be called before + /// using this function. + Value flow(const Arc& arc) const { + return (*_flow)[arc]; + } + + /// \brief Returns a const reference to the flow map. + /// + /// Returns a const reference to the arc map storing the found flow. + /// + /// \pre Either \ref run() or \ref init() must be called before + /// using this function. + const FlowMap& flowMap() const { + return *_flow; + } + + /** + \brief Returns \c true if the given node is in a barrier. + + Barrier is a set \e B of nodes for which + + \f[ \sum_{uv\in A: u\in B} upper(uv) - + \sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f] + + holds. The existence of a set with this property prooves that a + feasible circualtion cannot exist. + + This function returns \c true if the given node is in the found + barrier. If a feasible circulation is found, the function + gives back \c false for every node. + + \pre Either \ref run() or \ref init() must be called before + using this function. + + \sa barrierMap() + \sa checkBarrier() + */ + bool barrier(const Node& node) const + { + return (*_level)[node] >= _el; + } + + /// \brief Gives back a barrier. + /// + /// This function sets \c bar to the characteristic vector of the + /// found barrier. \c bar should be a \ref concepts::WriteMap "writable" + /// node map with \c bool (or convertible) value type. + /// + /// If a feasible circulation is found, the function gives back an + /// empty set, so \c bar[v] will be \c false for all nodes \c v. + /// + /// \note This function calls \ref barrier() for each node, + /// so it runs in O(n) time. + /// + /// \pre Either \ref run() or \ref init() must be called before + /// using this function. + /// + /// \sa barrier() + /// \sa checkBarrier() + template + void barrierMap(BarrierMap &bar) const + { + for(NodeIt n(_g);n!=INVALID;++n) + bar.set(n, (*_level)[n] >= _el); + } + + /// @} + + /// \name Checker Functions + /// The feasibility of the results can be checked using + /// these functions.\n + /// Either \ref run() or \ref start() should be called before + /// using them. + + ///@{ + + ///Check if the found flow is a feasible circulation + + ///Check if the found flow is a feasible circulation, + /// + bool checkFlow() const { + for(ArcIt e(_g);e!=INVALID;++e) + if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; + for(NodeIt n(_g);n!=INVALID;++n) + { + Value dif=-(*_supply)[n]; + for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; + for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; + if(_tol.negative(dif)) return false; + } + return true; + } + + ///Check whether or not the last execution provides a barrier + + ///Check whether or not the last execution provides a barrier. + ///\sa barrier() + ///\sa barrierMap() + bool checkBarrier() const + { + Value delta=0; + Value inf_cap = std::numeric_limits::has_infinity ? + std::numeric_limits::infinity() : + std::numeric_limits::max(); + for(NodeIt n(_g);n!=INVALID;++n) + if(barrier(n)) + delta-=(*_supply)[n]; + for(ArcIt e(_g);e!=INVALID;++e) + { + Node s=_g.source(e); + Node t=_g.target(e); + if(barrier(s)&&!barrier(t)) { + if (_tol.less(inf_cap - (*_up)[e], delta)) return false; + delta+=(*_up)[e]; + } + else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e]; + } + return _tol.negative(delta); + } + + /// @} + + }; + +} + +#endif