diff --git a/lemon/concepts/graph.h b/lemon/concepts/graph.h new file mode 100644 --- /dev/null +++ b/lemon/concepts/graph.h @@ -0,0 +1,702 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2007 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +///\ingroup graph_concepts +///\file +///\brief The concept of Undirected Graphs. + +#ifndef LEMON_CONCEPT_GRAPH_H +#define LEMON_CONCEPT_GRAPH_H + +#include +#include +#include + +namespace lemon { + namespace concepts { + + /// \ingroup graph_concepts + /// + /// \brief Class describing the concept of Undirected Graphs. + /// + /// This class describes the common interface of all Undirected + /// Graphs. + /// + /// As all concept describing classes it provides only interface + /// without any sensible implementation. So any algorithm for + /// undirected graph should compile with this class, but it will not + /// run properly, of course. + /// + /// The LEMON undirected graphs also fulfill the concept of + /// directed graphs (\ref lemon::concepts::Digraph "Digraph + /// Concept"). Each edges can be seen as two opposite + /// directed arc and consequently the undirected graph can be + /// seen as the direceted graph of these directed arcs. The + /// Graph has the Edge inner class for the edges and + /// the Arc type for the directed arcs. The Arc type is + /// convertible to Edge or inherited from it so from a directed + /// arc we can get the represented edge. + /// + /// In the sense of the LEMON each edge has a default + /// direction (it should be in every computer implementation, + /// because the order of edge's nodes defines an + /// orientation). With the default orientation we can define that + /// the directed arc is forward or backward directed. With the \c + /// direction() and \c direct() function we can get the direction + /// of the directed arc and we can direct an edge. + /// + /// The EdgeIt is an iterator for the edges. We can use + /// the EdgeMap to map values for the edges. The InArcIt and + /// OutArcIt iterates on the same edges but with opposite + /// direction. The IncArcIt iterates also on the same edges + /// as the OutArcIt and InArcIt but it is not convertible to Arc just + /// to Edge. + class Graph { + public: + /// \brief The undirected graph should be tagged by the + /// UndirectedTag. + /// + /// The undirected graph should be tagged by the UndirectedTag. This + /// tag helps the enable_if technics to make compile time + /// specializations for undirected graphs. + typedef True UndirectedTag; + + /// \brief The base type of node iterators, + /// or in other words, the trivial node iterator. + /// + /// This is the base type of each node iterator, + /// thus each kind of node iterator converts to this. + /// More precisely each kind of node iterator should be inherited + /// from the trivial node iterator. + class Node { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + Node() { } + /// Copy constructor. + + /// Copy constructor. + /// + Node(const Node&) { } + + /// Invalid constructor \& conversion. + + /// This constructor initializes the iterator to be invalid. + /// \sa Invalid for more details. + Node(Invalid) { } + /// Equality operator + + /// Two iterators are equal if and only if they point to the + /// same object or both are invalid. + bool operator==(Node) const { return true; } + + /// Inequality operator + + /// \sa operator==(Node n) + /// + bool operator!=(Node) const { return true; } + + /// Artificial ordering operator. + + /// To allow the use of graph descriptors as key type in std::map or + /// similar associative container we require this. + /// + /// \note This operator only have to define some strict ordering of + /// the items; this order has nothing to do with the iteration + /// ordering of the items. + bool operator<(Node) const { return false; } + + }; + + /// This iterator goes through each node. + + /// This iterator goes through each node. + /// Its usage is quite simple, for example you can count the number + /// of nodes in graph \c g of type \c Graph like this: + ///\code + /// int count=0; + /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; + ///\endcode + class NodeIt : public Node { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + NodeIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + NodeIt(const NodeIt& n) : Node(n) { } + /// Invalid constructor \& conversion. + + /// Initialize the iterator to be invalid. + /// \sa Invalid for more details. + NodeIt(Invalid) { } + /// Sets the iterator to the first node. + + /// Sets the iterator to the first node of \c g. + /// + NodeIt(const Graph&) { } + /// Node -> NodeIt conversion. + + /// Sets the iterator to the node of \c the graph pointed by + /// the trivial iterator. + /// This feature necessitates that each time we + /// iterate the arc-set, the iteration order is the same. + NodeIt(const Graph&, const Node&) { } + /// Next node. + + /// Assign the iterator to the next node. + /// + NodeIt& operator++() { return *this; } + }; + + + /// The base type of the edge iterators. + + /// The base type of the edge iterators. + /// + class Edge { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + Edge() { } + /// Copy constructor. + + /// Copy constructor. + /// + Edge(const Edge&) { } + /// Initialize the iterator to be invalid. + + /// Initialize the iterator to be invalid. + /// + Edge(Invalid) { } + /// Equality operator + + /// Two iterators are equal if and only if they point to the + /// same object or both are invalid. + bool operator==(Edge) const { return true; } + /// Inequality operator + + /// \sa operator==(Edge n) + /// + bool operator!=(Edge) const { return true; } + + /// Artificial ordering operator. + + /// To allow the use of graph descriptors as key type in std::map or + /// similar associative container we require this. + /// + /// \note This operator only have to define some strict ordering of + /// the items; this order has nothing to do with the iteration + /// ordering of the items. + bool operator<(Edge) const { return false; } + }; + + /// This iterator goes through each edge. + + /// This iterator goes through each edge of a graph. + /// Its usage is quite simple, for example you can count the number + /// of edges in a graph \c g of type \c Graph as follows: + ///\code + /// int count=0; + /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; + ///\endcode + class EdgeIt : public Edge { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + EdgeIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + EdgeIt(const EdgeIt& e) : Edge(e) { } + /// Initialize the iterator to be invalid. + + /// Initialize the iterator to be invalid. + /// + EdgeIt(Invalid) { } + /// This constructor sets the iterator to the first edge. + + /// This constructor sets the iterator to the first edge. + EdgeIt(const Graph&) { } + /// Edge -> EdgeIt conversion + + /// Sets the iterator to the value of the trivial iterator. + /// This feature necessitates that each time we + /// iterate the edge-set, the iteration order is the + /// same. + EdgeIt(const Graph&, const Edge&) { } + /// Next edge + + /// Assign the iterator to the next edge. + EdgeIt& operator++() { return *this; } + }; + + /// \brief This iterator goes trough the incident undirected + /// arcs of a node. + /// + /// This iterator goes trough the incident edges + /// of a certain node of a graph. You should assume that the + /// loop arcs will be iterated twice. + /// + /// Its usage is quite simple, for example you can compute the + /// degree (i.e. count the number of incident arcs of a node \c n + /// in graph \c g of type \c Graph as follows. + /// + ///\code + /// int count=0; + /// for(Graph::IncArcIt e(g, n); e!=INVALID; ++e) ++count; + ///\endcode + class IncArcIt : public Edge { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + IncArcIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + IncArcIt(const IncArcIt& e) : Edge(e) { } + /// Initialize the iterator to be invalid. + + /// Initialize the iterator to be invalid. + /// + IncArcIt(Invalid) { } + /// This constructor sets the iterator to first incident arc. + + /// This constructor set the iterator to the first incident arc of + /// the node. + IncArcIt(const Graph&, const Node&) { } + /// Edge -> IncArcIt conversion + + /// Sets the iterator to the value of the trivial iterator \c e. + /// This feature necessitates that each time we + /// iterate the arc-set, the iteration order is the same. + IncArcIt(const Graph&, const Edge&) { } + /// Next incident arc + + /// Assign the iterator to the next incident arc + /// of the corresponding node. + IncArcIt& operator++() { return *this; } + }; + + /// The directed arc type. + + /// The directed arc type. It can be converted to the + /// edge or it should be inherited from the undirected + /// arc. + class Arc : public Edge { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + Arc() { } + /// Copy constructor. + + /// Copy constructor. + /// + Arc(const Arc& e) : Edge(e) { } + /// Initialize the iterator to be invalid. + + /// Initialize the iterator to be invalid. + /// + Arc(Invalid) { } + /// Equality operator + + /// Two iterators are equal if and only if they point to the + /// same object or both are invalid. + bool operator==(Arc) const { return true; } + /// Inequality operator + + /// \sa operator==(Arc n) + /// + bool operator!=(Arc) const { return true; } + + /// Artificial ordering operator. + + /// To allow the use of graph descriptors as key type in std::map or + /// similar associative container we require this. + /// + /// \note This operator only have to define some strict ordering of + /// the items; this order has nothing to do with the iteration + /// ordering of the items. + bool operator<(Arc) const { return false; } + + }; + /// This iterator goes through each directed arc. + + /// This iterator goes through each arc of a graph. + /// Its usage is quite simple, for example you can count the number + /// of arcs in a graph \c g of type \c Graph as follows: + ///\code + /// int count=0; + /// for(Graph::ArcIt e(g); e!=INVALID; ++e) ++count; + ///\endcode + class ArcIt : public Arc { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + ArcIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + ArcIt(const ArcIt& e) : Arc(e) { } + /// Initialize the iterator to be invalid. + + /// Initialize the iterator to be invalid. + /// + ArcIt(Invalid) { } + /// This constructor sets the iterator to the first arc. + + /// This constructor sets the iterator to the first arc of \c g. + ///@param g the graph + ArcIt(const Graph &g) { ignore_unused_variable_warning(g); } + /// Arc -> ArcIt conversion + + /// Sets the iterator to the value of the trivial iterator \c e. + /// This feature necessitates that each time we + /// iterate the arc-set, the iteration order is the same. + ArcIt(const Graph&, const Arc&) { } + ///Next arc + + /// Assign the iterator to the next arc. + ArcIt& operator++() { return *this; } + }; + + /// This iterator goes trough the outgoing directed arcs of a node. + + /// This iterator goes trough the \e outgoing arcs of a certain node + /// of a graph. + /// Its usage is quite simple, for example you can count the number + /// of outgoing arcs of a node \c n + /// in graph \c g of type \c Graph as follows. + ///\code + /// int count=0; + /// for (Graph::OutArcIt e(g, n); e!=INVALID; ++e) ++count; + ///\endcode + + class OutArcIt : public Arc { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + OutArcIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + OutArcIt(const OutArcIt& e) : Arc(e) { } + /// Initialize the iterator to be invalid. + + /// Initialize the iterator to be invalid. + /// + OutArcIt(Invalid) { } + /// This constructor sets the iterator to the first outgoing arc. + + /// This constructor sets the iterator to the first outgoing arc of + /// the node. + ///@param n the node + ///@param g the graph + OutArcIt(const Graph& n, const Node& g) { + ignore_unused_variable_warning(n); + ignore_unused_variable_warning(g); + } + /// Arc -> OutArcIt conversion + + /// Sets the iterator to the value of the trivial iterator. + /// This feature necessitates that each time we + /// iterate the arc-set, the iteration order is the same. + OutArcIt(const Graph&, const Arc&) { } + ///Next outgoing arc + + /// Assign the iterator to the next + /// outgoing arc of the corresponding node. + OutArcIt& operator++() { return *this; } + }; + + /// This iterator goes trough the incoming directed arcs of a node. + + /// This iterator goes trough the \e incoming arcs of a certain node + /// of a graph. + /// Its usage is quite simple, for example you can count the number + /// of outgoing arcs of a node \c n + /// in graph \c g of type \c Graph as follows. + ///\code + /// int count=0; + /// for(Graph::InArcIt e(g, n); e!=INVALID; ++e) ++count; + ///\endcode + + class InArcIt : public Arc { + public: + /// Default constructor + + /// @warning The default constructor sets the iterator + /// to an undefined value. + InArcIt() { } + /// Copy constructor. + + /// Copy constructor. + /// + InArcIt(const InArcIt& e) : Arc(e) { } + /// Initialize the iterator to be invalid. + + /// Initialize the iterator to be invalid. + /// + InArcIt(Invalid) { } + /// This constructor sets the iterator to first incoming arc. + + /// This constructor set the iterator to the first incoming arc of + /// the node. + ///@param n the node + ///@param g the graph + InArcIt(const Graph& g, const Node& n) { + ignore_unused_variable_warning(n); + ignore_unused_variable_warning(g); + } + /// Arc -> InArcIt conversion + + /// Sets the iterator to the value of the trivial iterator \c e. + /// This feature necessitates that each time we + /// iterate the arc-set, the iteration order is the same. + InArcIt(const Graph&, const Arc&) { } + /// Next incoming arc + + /// Assign the iterator to the next inarc of the corresponding node. + /// + InArcIt& operator++() { return *this; } + }; + + /// \brief Read write map of the nodes to type \c T. + /// + /// ReadWrite map of the nodes to type \c T. + /// \sa Reference + template + class NodeMap : public ReadWriteMap< Node, T > + { + public: + + ///\e + NodeMap(const Graph&) { } + ///\e + NodeMap(const Graph&, T) { } + + ///Copy constructor + NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { } + ///Assignment operator + template + NodeMap& operator=(const CMap&) { + checkConcept, CMap>(); + return *this; + } + }; + + /// \brief Read write map of the directed arcs to type \c T. + /// + /// Reference map of the directed arcs to type \c T. + /// \sa Reference + template + class ArcMap : public ReadWriteMap + { + public: + + ///\e + ArcMap(const Graph&) { } + ///\e + ArcMap(const Graph&, T) { } + ///Copy constructor + ArcMap(const ArcMap& em) : ReadWriteMap(em) { } + ///Assignment operator + template + ArcMap& operator=(const CMap&) { + checkConcept, CMap>(); + return *this; + } + }; + + /// Read write map of the edges to type \c T. + + /// Reference map of the arcs to type \c T. + /// \sa Reference + template + class EdgeMap : public ReadWriteMap + { + public: + + ///\e + EdgeMap(const Graph&) { } + ///\e + EdgeMap(const Graph&, T) { } + ///Copy constructor + EdgeMap(const EdgeMap& em) : ReadWriteMap(em) {} + ///Assignment operator + template + EdgeMap& operator=(const CMap&) { + checkConcept, CMap>(); + return *this; + } + }; + + /// \brief Direct the given edge. + /// + /// Direct the given edge. The returned arc source + /// will be the given node. + Arc direct(const Edge&, const Node&) const { + return INVALID; + } + + /// \brief Direct the given edge. + /// + /// Direct the given edge. The returned arc + /// represents the given edge and the direction comes + /// from the bool parameter. The source of the edge and + /// the directed arc is the same when the given bool is true. + Arc direct(const Edge&, bool) const { + return INVALID; + } + + /// \brief Returns true if the arc has default orientation. + /// + /// Returns whether the given directed arc is same orientation as + /// the corresponding edge's default orientation. + bool direction(Arc) const { return true; } + + /// \brief Returns the opposite directed arc. + /// + /// Returns the opposite directed arc. + Arc oppositeArc(Arc) const { return INVALID; } + + /// \brief Opposite node on an arc + /// + /// \return the opposite of the given Node on the given Edge + Node oppositeNode(Node, Edge) const { return INVALID; } + + /// \brief First node of the edge. + /// + /// \return the first node of the given Edge. + /// + /// Naturally edges don't have direction and thus + /// don't have source and target node. But we use these two methods + /// to query the two nodes of the arc. The direction of the arc + /// which arises this way is called the inherent direction of the + /// edge, and is used to define the "default" direction + /// of the directed versions of the arcs. + /// \sa direction + Node u(Edge) const { return INVALID; } + + /// \brief Second node of the edge. + Node v(Edge) const { return INVALID; } + + /// \brief Source node of the directed arc. + Node source(Arc) const { return INVALID; } + + /// \brief Target node of the directed arc. + Node target(Arc) const { return INVALID; } + + void first(Node&) const {} + void next(Node&) const {} + + void first(Edge&) const {} + void next(Edge&) const {} + + void first(Arc&) const {} + void next(Arc&) const {} + + void firstOut(Arc&, Node) const {} + void nextOut(Arc&) const {} + + void firstIn(Arc&, Node) const {} + void nextIn(Arc&) const {} + + + void firstInc(Edge &, bool &, const Node &) const {} + void nextInc(Edge &, bool &) const {} + + /// \brief Base node of the iterator + /// + /// Returns the base node (the source in this case) of the iterator + Node baseNode(OutArcIt e) const { + return source(e); + } + /// \brief Running node of the iterator + /// + /// Returns the running node (the target in this case) of the + /// iterator + Node runningNode(OutArcIt e) const { + return target(e); + } + + /// \brief Base node of the iterator + /// + /// Returns the base node (the target in this case) of the iterator + Node baseNode(InArcIt e) const { + return target(e); + } + /// \brief Running node of the iterator + /// + /// Returns the running node (the source in this case) of the + /// iterator + Node runningNode(InArcIt e) const { + return source(e); + } + + /// \brief Base node of the iterator + /// + /// Returns the base node of the iterator + Node baseNode(IncArcIt) const { + return INVALID; + } + + /// \brief Running node of the iterator + /// + /// Returns the running node of the iterator + Node runningNode(IncArcIt) const { + return INVALID; + } + + template + struct Constraints { + void constraints() { + checkConcept, Graph>(); + checkConcept, Graph>(); + } + }; + + }; + + } + +} + +#endif