diff --git a/lemon/connectivity.h b/lemon/connectivity.h new file mode 100644 --- /dev/null +++ b/lemon/connectivity.h @@ -0,0 +1,1665 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_CONNECTIVITY_H +#define LEMON_CONNECTIVITY_H + +#include +#include +#include +#include +#include + +#include +#include +#include + +#include +#include + +/// \ingroup graph_properties +/// \file +/// \brief Connectivity algorithms +/// +/// Connectivity algorithms + +namespace lemon { + + /// \ingroup graph_properties + /// + /// \brief Check whether an undirected graph is connected. + /// + /// This function checks whether the given undirected graph is connected, + /// i.e. there is a path between any two nodes in the graph. + /// + /// \return \c true if the graph is connected. + /// \note By definition, the empty graph is connected. + /// + /// \see countConnectedComponents(), connectedComponents() + /// \see stronglyConnected() + template + bool connected(const Graph& graph) { + checkConcept(); + typedef typename Graph::NodeIt NodeIt; + if (NodeIt(graph) == INVALID) return true; + Dfs dfs(graph); + dfs.run(NodeIt(graph)); + for (NodeIt it(graph); it != INVALID; ++it) { + if (!dfs.reached(it)) { + return false; + } + } + return true; + } + + /// \ingroup graph_properties + /// + /// \brief Count the number of connected components of an undirected graph + /// + /// This function counts the number of connected components of the given + /// undirected graph. + /// + /// The connected components are the classes of an equivalence relation + /// on the nodes of an undirected graph. Two nodes are in the same class + /// if they are connected with a path. + /// + /// \return The number of connected components. + /// \note By definition, the empty graph consists + /// of zero connected components. + /// + /// \see connected(), connectedComponents() + template + int countConnectedComponents(const Graph &graph) { + checkConcept(); + typedef typename Graph::Node Node; + typedef typename Graph::Arc Arc; + + typedef NullMap PredMap; + typedef NullMap DistMap; + + int compNum = 0; + typename Bfs:: + template SetPredMap:: + template SetDistMap:: + Create bfs(graph); + + PredMap predMap; + bfs.predMap(predMap); + + DistMap distMap; + bfs.distMap(distMap); + + bfs.init(); + for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { + if (!bfs.reached(n)) { + bfs.addSource(n); + bfs.start(); + ++compNum; + } + } + return compNum; + } + + /// \ingroup graph_properties + /// + /// \brief Find the connected components of an undirected graph + /// + /// This function finds the connected components of the given undirected + /// graph. + /// + /// The connected components are the classes of an equivalence relation + /// on the nodes of an undirected graph. Two nodes are in the same class + /// if they are connected with a path. + /// + /// \image html connected_components.png + /// \image latex connected_components.eps "Connected components" width=\textwidth + /// + /// \param graph The undirected graph. + /// \retval compMap A writable node map. The values will be set from 0 to + /// the number of the connected components minus one. Each value of the map + /// will be set exactly once, and the values of a certain component will be + /// set continuously. + /// \return The number of connected components. + /// \note By definition, the empty graph consists + /// of zero connected components. + /// + /// \see connected(), countConnectedComponents() + template + int connectedComponents(const Graph &graph, NodeMap &compMap) { + checkConcept(); + typedef typename Graph::Node Node; + typedef typename Graph::Arc Arc; + checkConcept, NodeMap>(); + + typedef NullMap PredMap; + typedef NullMap DistMap; + + int compNum = 0; + typename Bfs:: + template SetPredMap:: + template SetDistMap:: + Create bfs(graph); + + PredMap predMap; + bfs.predMap(predMap); + + DistMap distMap; + bfs.distMap(distMap); + + bfs.init(); + for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { + if(!bfs.reached(n)) { + bfs.addSource(n); + while (!bfs.emptyQueue()) { + compMap.set(bfs.nextNode(), compNum); + bfs.processNextNode(); + } + ++compNum; + } + } + return compNum; + } + + namespace _connectivity_bits { + + template + struct LeaveOrderVisitor : public DfsVisitor { + public: + typedef typename Digraph::Node Node; + LeaveOrderVisitor(Iterator it) : _it(it) {} + + void leave(const Node& node) { + *(_it++) = node; + } + + private: + Iterator _it; + }; + + template + struct FillMapVisitor : public DfsVisitor { + public: + typedef typename Digraph::Node Node; + typedef typename Map::Value Value; + + FillMapVisitor(Map& map, Value& value) + : _map(map), _value(value) {} + + void reach(const Node& node) { + _map.set(node, _value); + } + private: + Map& _map; + Value& _value; + }; + + template + struct StronglyConnectedCutArcsVisitor : public DfsVisitor { + public: + typedef typename Digraph::Node Node; + typedef typename Digraph::Arc Arc; + + StronglyConnectedCutArcsVisitor(const Digraph& digraph, + ArcMap& cutMap, + int& cutNum) + : _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum), + _compMap(digraph, -1), _num(-1) { + } + + void start(const Node&) { + ++_num; + } + + void reach(const Node& node) { + _compMap.set(node, _num); + } + + void examine(const Arc& arc) { + if (_compMap[_digraph.source(arc)] != + _compMap[_digraph.target(arc)]) { + _cutMap.set(arc, true); + ++_cutNum; + } + } + private: + const Digraph& _digraph; + ArcMap& _cutMap; + int& _cutNum; + + typename Digraph::template NodeMap _compMap; + int _num; + }; + + } + + + /// \ingroup graph_properties + /// + /// \brief Check whether a directed graph is strongly connected. + /// + /// This function checks whether the given directed graph is strongly + /// connected, i.e. any two nodes of the digraph are + /// connected with directed paths in both direction. + /// + /// \return \c true if the digraph is strongly connected. + /// \note By definition, the empty digraph is strongly connected. + /// + /// \see countStronglyConnectedComponents(), stronglyConnectedComponents() + /// \see connected() + template + bool stronglyConnected(const Digraph& digraph) { + checkConcept(); + + typedef typename Digraph::Node Node; + typedef typename Digraph::NodeIt NodeIt; + + typename Digraph::Node source = NodeIt(digraph); + if (source == INVALID) return true; + + using namespace _connectivity_bits; + + typedef DfsVisitor Visitor; + Visitor visitor; + + DfsVisit dfs(digraph, visitor); + dfs.init(); + dfs.addSource(source); + dfs.start(); + + for (NodeIt it(digraph); it != INVALID; ++it) { + if (!dfs.reached(it)) { + return false; + } + } + + typedef ReverseDigraph RDigraph; + typedef typename RDigraph::NodeIt RNodeIt; + RDigraph rdigraph(digraph); + + typedef DfsVisitor RVisitor; + RVisitor rvisitor; + + DfsVisit rdfs(rdigraph, rvisitor); + rdfs.init(); + rdfs.addSource(source); + rdfs.start(); + + for (RNodeIt it(rdigraph); it != INVALID; ++it) { + if (!rdfs.reached(it)) { + return false; + } + } + + return true; + } + + /// \ingroup graph_properties + /// + /// \brief Count the number of strongly connected components of a + /// directed graph + /// + /// This function counts the number of strongly connected components of + /// the given directed graph. + /// + /// The strongly connected components are the classes of an + /// equivalence relation on the nodes of a digraph. Two nodes are in + /// the same class if they are connected with directed paths in both + /// direction. + /// + /// \return The number of strongly connected components. + /// \note By definition, the empty digraph has zero + /// strongly connected components. + /// + /// \see stronglyConnected(), stronglyConnectedComponents() + template + int countStronglyConnectedComponents(const Digraph& digraph) { + checkConcept(); + + using namespace _connectivity_bits; + + typedef typename Digraph::Node Node; + typedef typename Digraph::Arc Arc; + typedef typename Digraph::NodeIt NodeIt; + typedef typename Digraph::ArcIt ArcIt; + + typedef std::vector Container; + typedef typename Container::iterator Iterator; + + Container nodes(countNodes(digraph)); + typedef LeaveOrderVisitor Visitor; + Visitor visitor(nodes.begin()); + + DfsVisit dfs(digraph, visitor); + dfs.init(); + for (NodeIt it(digraph); it != INVALID; ++it) { + if (!dfs.reached(it)) { + dfs.addSource(it); + dfs.start(); + } + } + + typedef typename Container::reverse_iterator RIterator; + typedef ReverseDigraph RDigraph; + + RDigraph rdigraph(digraph); + + typedef DfsVisitor RVisitor; + RVisitor rvisitor; + + DfsVisit rdfs(rdigraph, rvisitor); + + int compNum = 0; + + rdfs.init(); + for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { + if (!rdfs.reached(*it)) { + rdfs.addSource(*it); + rdfs.start(); + ++compNum; + } + } + return compNum; + } + + /// \ingroup graph_properties + /// + /// \brief Find the strongly connected components of a directed graph + /// + /// This function finds the strongly connected components of the given + /// directed graph. In addition, the numbering of the components will + /// satisfy that there is no arc going from a higher numbered component + /// to a lower one (i.e. it provides a topological order of the components). + /// + /// The strongly connected components are the classes of an + /// equivalence relation on the nodes of a digraph. Two nodes are in + /// the same class if they are connected with directed paths in both + /// direction. + /// + /// \image html strongly_connected_components.png + /// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth + /// + /// \param digraph The digraph. + /// \retval compMap A writable node map. The values will be set from 0 to + /// the number of the strongly connected components minus one. Each value + /// of the map will be set exactly once, and the values of a certain + /// component will be set continuously. + /// \return The number of strongly connected components. + /// \note By definition, the empty digraph has zero + /// strongly connected components. + /// + /// \see stronglyConnected(), countStronglyConnectedComponents() + template + int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) { + checkConcept(); + typedef typename Digraph::Node Node; + typedef typename Digraph::NodeIt NodeIt; + checkConcept, NodeMap>(); + + using namespace _connectivity_bits; + + typedef std::vector Container; + typedef typename Container::iterator Iterator; + + Container nodes(countNodes(digraph)); + typedef LeaveOrderVisitor Visitor; + Visitor visitor(nodes.begin()); + + DfsVisit dfs(digraph, visitor); + dfs.init(); + for (NodeIt it(digraph); it != INVALID; ++it) { + if (!dfs.reached(it)) { + dfs.addSource(it); + dfs.start(); + } + } + + typedef typename Container::reverse_iterator RIterator; + typedef ReverseDigraph RDigraph; + + RDigraph rdigraph(digraph); + + int compNum = 0; + + typedef FillMapVisitor RVisitor; + RVisitor rvisitor(compMap, compNum); + + DfsVisit rdfs(rdigraph, rvisitor); + + rdfs.init(); + for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { + if (!rdfs.reached(*it)) { + rdfs.addSource(*it); + rdfs.start(); + ++compNum; + } + } + return compNum; + } + + /// \ingroup graph_properties + /// + /// \brief Find the cut arcs of the strongly connected components. + /// + /// This function finds the cut arcs of the strongly connected components + /// of the given digraph. + /// + /// The strongly connected components are the classes of an + /// equivalence relation on the nodes of a digraph. Two nodes are in + /// the same class if they are connected with directed paths in both + /// direction. + /// The strongly connected components are separated by the cut arcs. + /// + /// \param digraph The digraph. + /// \retval cutMap A writable arc map. The values will be set to \c true + /// for the cut arcs (exactly once for each cut arc), and will not be + /// changed for other arcs. + /// \return The number of cut arcs. + /// + /// \see stronglyConnected(), stronglyConnectedComponents() + template + int stronglyConnectedCutArcs(const Digraph& digraph, ArcMap& cutMap) { + checkConcept(); + typedef typename Digraph::Node Node; + typedef typename Digraph::Arc Arc; + typedef typename Digraph::NodeIt NodeIt; + checkConcept, ArcMap>(); + + using namespace _connectivity_bits; + + typedef std::vector Container; + typedef typename Container::iterator Iterator; + + Container nodes(countNodes(digraph)); + typedef LeaveOrderVisitor Visitor; + Visitor visitor(nodes.begin()); + + DfsVisit dfs(digraph, visitor); + dfs.init(); + for (NodeIt it(digraph); it != INVALID; ++it) { + if (!dfs.reached(it)) { + dfs.addSource(it); + dfs.start(); + } + } + + typedef typename Container::reverse_iterator RIterator; + typedef ReverseDigraph RDigraph; + + RDigraph rdigraph(digraph); + + int cutNum = 0; + + typedef StronglyConnectedCutArcsVisitor RVisitor; + RVisitor rvisitor(rdigraph, cutMap, cutNum); + + DfsVisit rdfs(rdigraph, rvisitor); + + rdfs.init(); + for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) { + if (!rdfs.reached(*it)) { + rdfs.addSource(*it); + rdfs.start(); + } + } + return cutNum; + } + + namespace _connectivity_bits { + + template + class CountBiNodeConnectedComponentsVisitor : public DfsVisitor { + public: + typedef typename Digraph::Node Node; + typedef typename Digraph::Arc Arc; + typedef typename Digraph::Edge Edge; + + CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum) + : _graph(graph), _compNum(compNum), + _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} + + void start(const Node& node) { + _predMap.set(node, INVALID); + } + + void reach(const Node& node) { + _numMap.set(node, _num); + _retMap.set(node, _num); + ++_num; + } + + void discover(const Arc& edge) { + _predMap.set(_graph.target(edge), _graph.source(edge)); + } + + void examine(const Arc& edge) { + if (_graph.source(edge) == _graph.target(edge) && + _graph.direction(edge)) { + ++_compNum; + return; + } + if (_predMap[_graph.source(edge)] == _graph.target(edge)) { + return; + } + if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { + _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); + } + } + + void backtrack(const Arc& edge) { + if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { + _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); + } + if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { + ++_compNum; + } + } + + private: + const Digraph& _graph; + int& _compNum; + + typename Digraph::template NodeMap _numMap; + typename Digraph::template NodeMap _retMap; + typename Digraph::template NodeMap _predMap; + int _num; + }; + + template + class BiNodeConnectedComponentsVisitor : public DfsVisitor { + public: + typedef typename Digraph::Node Node; + typedef typename Digraph::Arc Arc; + typedef typename Digraph::Edge Edge; + + BiNodeConnectedComponentsVisitor(const Digraph& graph, + ArcMap& compMap, int &compNum) + : _graph(graph), _compMap(compMap), _compNum(compNum), + _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} + + void start(const Node& node) { + _predMap.set(node, INVALID); + } + + void reach(const Node& node) { + _numMap.set(node, _num); + _retMap.set(node, _num); + ++_num; + } + + void discover(const Arc& edge) { + Node target = _graph.target(edge); + _predMap.set(target, edge); + _edgeStack.push(edge); + } + + void examine(const Arc& edge) { + Node source = _graph.source(edge); + Node target = _graph.target(edge); + if (source == target && _graph.direction(edge)) { + _compMap.set(edge, _compNum); + ++_compNum; + return; + } + if (_numMap[target] < _numMap[source]) { + if (_predMap[source] != _graph.oppositeArc(edge)) { + _edgeStack.push(edge); + } + } + if (_predMap[source] != INVALID && + target == _graph.source(_predMap[source])) { + return; + } + if (_retMap[source] > _numMap[target]) { + _retMap.set(source, _numMap[target]); + } + } + + void backtrack(const Arc& edge) { + Node source = _graph.source(edge); + Node target = _graph.target(edge); + if (_retMap[source] > _retMap[target]) { + _retMap.set(source, _retMap[target]); + } + if (_numMap[source] <= _retMap[target]) { + while (_edgeStack.top() != edge) { + _compMap.set(_edgeStack.top(), _compNum); + _edgeStack.pop(); + } + _compMap.set(edge, _compNum); + _edgeStack.pop(); + ++_compNum; + } + } + + private: + const Digraph& _graph; + ArcMap& _compMap; + int& _compNum; + + typename Digraph::template NodeMap _numMap; + typename Digraph::template NodeMap _retMap; + typename Digraph::template NodeMap _predMap; + std::stack _edgeStack; + int _num; + }; + + + template + class BiNodeConnectedCutNodesVisitor : public DfsVisitor { + public: + typedef typename Digraph::Node Node; + typedef typename Digraph::Arc Arc; + typedef typename Digraph::Edge Edge; + + BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap, + int& cutNum) + : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), + _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} + + void start(const Node& node) { + _predMap.set(node, INVALID); + rootCut = false; + } + + void reach(const Node& node) { + _numMap.set(node, _num); + _retMap.set(node, _num); + ++_num; + } + + void discover(const Arc& edge) { + _predMap.set(_graph.target(edge), _graph.source(edge)); + } + + void examine(const Arc& edge) { + if (_graph.source(edge) == _graph.target(edge) && + _graph.direction(edge)) { + if (!_cutMap[_graph.source(edge)]) { + _cutMap.set(_graph.source(edge), true); + ++_cutNum; + } + return; + } + if (_predMap[_graph.source(edge)] == _graph.target(edge)) return; + if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) { + _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); + } + } + + void backtrack(const Arc& edge) { + if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { + _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); + } + if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) { + if (_predMap[_graph.source(edge)] != INVALID) { + if (!_cutMap[_graph.source(edge)]) { + _cutMap.set(_graph.source(edge), true); + ++_cutNum; + } + } else if (rootCut) { + if (!_cutMap[_graph.source(edge)]) { + _cutMap.set(_graph.source(edge), true); + ++_cutNum; + } + } else { + rootCut = true; + } + } + } + + private: + const Digraph& _graph; + NodeMap& _cutMap; + int& _cutNum; + + typename Digraph::template NodeMap _numMap; + typename Digraph::template NodeMap _retMap; + typename Digraph::template NodeMap _predMap; + std::stack _edgeStack; + int _num; + bool rootCut; + }; + + } + + template + int countBiNodeConnectedComponents(const Graph& graph); + + /// \ingroup graph_properties + /// + /// \brief Check whether an undirected graph is bi-node-connected. + /// + /// This function checks whether the given undirected graph is + /// bi-node-connected, i.e. any two edges are on same circle. + /// + /// \return \c true if the graph bi-node-connected. + /// \note By definition, the empty graph is bi-node-connected. + /// + /// \see countBiNodeConnectedComponents(), biNodeConnectedComponents() + template + bool biNodeConnected(const Graph& graph) { + return countBiNodeConnectedComponents(graph) <= 1; + } + + /// \ingroup graph_properties + /// + /// \brief Count the number of bi-node-connected components of an + /// undirected graph. + /// + /// This function counts the number of bi-node-connected components of + /// the given undirected graph. + /// + /// The bi-node-connected components are the classes of an equivalence + /// relation on the edges of a undirected graph. Two edges are in the + /// same class if they are on same circle. + /// + /// \return The number of bi-node-connected components. + /// + /// \see biNodeConnected(), biNodeConnectedComponents() + template + int countBiNodeConnectedComponents(const Graph& graph) { + checkConcept(); + typedef typename Graph::NodeIt NodeIt; + + using namespace _connectivity_bits; + + typedef CountBiNodeConnectedComponentsVisitor Visitor; + + int compNum = 0; + Visitor visitor(graph, compNum); + + DfsVisit dfs(graph, visitor); + dfs.init(); + + for (NodeIt it(graph); it != INVALID; ++it) { + if (!dfs.reached(it)) { + dfs.addSource(it); + dfs.start(); + } + } + return compNum; + } + + /// \ingroup graph_properties + /// + /// \brief Find the bi-node-connected components of an undirected graph. + /// + /// This function finds the bi-node-connected components of the given + /// undirected graph. + /// + /// The bi-node-connected components are the classes of an equivalence + /// relation on the edges of a undirected graph. Two edges are in the + /// same class if they are on same circle. + /// + /// \image html node_biconnected_components.png + /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth + /// + /// \param graph The undirected graph. + /// \retval compMap A writable edge map. The values will be set from 0 + /// to the number of the bi-node-connected components minus one. Each + /// value of the map will be set exactly once, and the values of a + /// certain component will be set continuously. + /// \return The number of bi-node-connected components. + /// + /// \see biNodeConnected(), countBiNodeConnectedComponents() + template + int biNodeConnectedComponents(const Graph& graph, + EdgeMap& compMap) { + checkConcept(); + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::Edge Edge; + checkConcept, EdgeMap>(); + + using namespace _connectivity_bits; + + typedef BiNodeConnectedComponentsVisitor Visitor; + + int compNum = 0; + Visitor visitor(graph, compMap, compNum); + + DfsVisit dfs(graph, visitor); + dfs.init(); + + for (NodeIt it(graph); it != INVALID; ++it) { + if (!dfs.reached(it)) { + dfs.addSource(it); + dfs.start(); + } + } + return compNum; + } + + /// \ingroup graph_properties + /// + /// \brief Find the bi-node-connected cut nodes in an undirected graph. + /// + /// This function finds the bi-node-connected cut nodes in the given + /// undirected graph. + /// + /// The bi-node-connected components are the classes of an equivalence + /// relation on the edges of a undirected graph. Two edges are in the + /// same class if they are on same circle. + /// The bi-node-connected components are separted by the cut nodes of + /// the components. + /// + /// \param graph The undirected graph. + /// \retval cutMap A writable node map. The values will be set to + /// \c true for the nodes that separate two or more components + /// (exactly once for each cut node), and will not be changed for + /// other nodes. + /// \return The number of the cut nodes. + /// + /// \see biNodeConnected(), biNodeConnectedComponents() + template + int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) { + checkConcept(); + typedef typename Graph::Node Node; + typedef typename Graph::NodeIt NodeIt; + checkConcept, NodeMap>(); + + using namespace _connectivity_bits; + + typedef BiNodeConnectedCutNodesVisitor Visitor; + + int cutNum = 0; + Visitor visitor(graph, cutMap, cutNum); + + DfsVisit dfs(graph, visitor); + dfs.init(); + + for (NodeIt it(graph); it != INVALID; ++it) { + if (!dfs.reached(it)) { + dfs.addSource(it); + dfs.start(); + } + } + return cutNum; + } + + namespace _connectivity_bits { + + template + class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor { + public: + typedef typename Digraph::Node Node; + typedef typename Digraph::Arc Arc; + typedef typename Digraph::Edge Edge; + + CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum) + : _graph(graph), _compNum(compNum), + _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} + + void start(const Node& node) { + _predMap.set(node, INVALID); + } + + void reach(const Node& node) { + _numMap.set(node, _num); + _retMap.set(node, _num); + ++_num; + } + + void leave(const Node& node) { + if (_numMap[node] <= _retMap[node]) { + ++_compNum; + } + } + + void discover(const Arc& edge) { + _predMap.set(_graph.target(edge), edge); + } + + void examine(const Arc& edge) { + if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { + return; + } + if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { + _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); + } + } + + void backtrack(const Arc& edge) { + if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { + _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); + } + } + + private: + const Digraph& _graph; + int& _compNum; + + typename Digraph::template NodeMap _numMap; + typename Digraph::template NodeMap _retMap; + typename Digraph::template NodeMap _predMap; + int _num; + }; + + template + class BiEdgeConnectedComponentsVisitor : public DfsVisitor { + public: + typedef typename Digraph::Node Node; + typedef typename Digraph::Arc Arc; + typedef typename Digraph::Edge Edge; + + BiEdgeConnectedComponentsVisitor(const Digraph& graph, + NodeMap& compMap, int &compNum) + : _graph(graph), _compMap(compMap), _compNum(compNum), + _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} + + void start(const Node& node) { + _predMap.set(node, INVALID); + } + + void reach(const Node& node) { + _numMap.set(node, _num); + _retMap.set(node, _num); + _nodeStack.push(node); + ++_num; + } + + void leave(const Node& node) { + if (_numMap[node] <= _retMap[node]) { + while (_nodeStack.top() != node) { + _compMap.set(_nodeStack.top(), _compNum); + _nodeStack.pop(); + } + _compMap.set(node, _compNum); + _nodeStack.pop(); + ++_compNum; + } + } + + void discover(const Arc& edge) { + _predMap.set(_graph.target(edge), edge); + } + + void examine(const Arc& edge) { + if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { + return; + } + if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { + _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); + } + } + + void backtrack(const Arc& edge) { + if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { + _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); + } + } + + private: + const Digraph& _graph; + NodeMap& _compMap; + int& _compNum; + + typename Digraph::template NodeMap _numMap; + typename Digraph::template NodeMap _retMap; + typename Digraph::template NodeMap _predMap; + std::stack _nodeStack; + int _num; + }; + + + template + class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor { + public: + typedef typename Digraph::Node Node; + typedef typename Digraph::Arc Arc; + typedef typename Digraph::Edge Edge; + + BiEdgeConnectedCutEdgesVisitor(const Digraph& graph, + ArcMap& cutMap, int &cutNum) + : _graph(graph), _cutMap(cutMap), _cutNum(cutNum), + _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {} + + void start(const Node& node) { + _predMap[node] = INVALID; + } + + void reach(const Node& node) { + _numMap.set(node, _num); + _retMap.set(node, _num); + ++_num; + } + + void leave(const Node& node) { + if (_numMap[node] <= _retMap[node]) { + if (_predMap[node] != INVALID) { + _cutMap.set(_predMap[node], true); + ++_cutNum; + } + } + } + + void discover(const Arc& edge) { + _predMap.set(_graph.target(edge), edge); + } + + void examine(const Arc& edge) { + if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) { + return; + } + if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { + _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); + } + } + + void backtrack(const Arc& edge) { + if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) { + _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); + } + } + + private: + const Digraph& _graph; + ArcMap& _cutMap; + int& _cutNum; + + typename Digraph::template NodeMap _numMap; + typename Digraph::template NodeMap _retMap; + typename Digraph::template NodeMap _predMap; + int _num; + }; + } + + template + int countBiEdgeConnectedComponents(const Graph& graph); + + /// \ingroup graph_properties + /// + /// \brief Check whether an undirected graph is bi-edge-connected. + /// + /// This function checks whether the given undirected graph is + /// bi-edge-connected, i.e. any two nodes are connected with at least + /// two edge-disjoint paths. + /// + /// \return \c true if the graph is bi-edge-connected. + /// \note By definition, the empty graph is bi-edge-connected. + /// + /// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents() + template + bool biEdgeConnected(const Graph& graph) { + return countBiEdgeConnectedComponents(graph) <= 1; + } + + /// \ingroup graph_properties + /// + /// \brief Count the number of bi-edge-connected components of an + /// undirected graph. + /// + /// This function counts the number of bi-edge-connected components of + /// the given undirected graph. + /// + /// The bi-edge-connected components are the classes of an equivalence + /// relation on the nodes of an undirected graph. Two nodes are in the + /// same class if they are connected with at least two edge-disjoint + /// paths. + /// + /// \return The number of bi-edge-connected components. + /// + /// \see biEdgeConnected(), biEdgeConnectedComponents() + template + int countBiEdgeConnectedComponents(const Graph& graph) { + checkConcept(); + typedef typename Graph::NodeIt NodeIt; + + using namespace _connectivity_bits; + + typedef CountBiEdgeConnectedComponentsVisitor Visitor; + + int compNum = 0; + Visitor visitor(graph, compNum); + + DfsVisit dfs(graph, visitor); + dfs.init(); + + for (NodeIt it(graph); it != INVALID; ++it) { + if (!dfs.reached(it)) { + dfs.addSource(it); + dfs.start(); + } + } + return compNum; + } + + /// \ingroup graph_properties + /// + /// \brief Find the bi-edge-connected components of an undirected graph. + /// + /// This function finds the bi-edge-connected components of the given + /// undirected graph. + /// + /// The bi-edge-connected components are the classes of an equivalence + /// relation on the nodes of an undirected graph. Two nodes are in the + /// same class if they are connected with at least two edge-disjoint + /// paths. + /// + /// \image html edge_biconnected_components.png + /// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth + /// + /// \param graph The undirected graph. + /// \retval compMap A writable node map. The values will be set from 0 to + /// the number of the bi-edge-connected components minus one. Each value + /// of the map will be set exactly once, and the values of a certain + /// component will be set continuously. + /// \return The number of bi-edge-connected components. + /// + /// \see biEdgeConnected(), countBiEdgeConnectedComponents() + template + int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) { + checkConcept(); + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::Node Node; + checkConcept, NodeMap>(); + + using namespace _connectivity_bits; + + typedef BiEdgeConnectedComponentsVisitor Visitor; + + int compNum = 0; + Visitor visitor(graph, compMap, compNum); + + DfsVisit dfs(graph, visitor); + dfs.init(); + + for (NodeIt it(graph); it != INVALID; ++it) { + if (!dfs.reached(it)) { + dfs.addSource(it); + dfs.start(); + } + } + return compNum; + } + + /// \ingroup graph_properties + /// + /// \brief Find the bi-edge-connected cut edges in an undirected graph. + /// + /// This function finds the bi-edge-connected cut edges in the given + /// undirected graph. + /// + /// The bi-edge-connected components are the classes of an equivalence + /// relation on the nodes of an undirected graph. Two nodes are in the + /// same class if they are connected with at least two edge-disjoint + /// paths. + /// The bi-edge-connected components are separted by the cut edges of + /// the components. + /// + /// \param graph The undirected graph. + /// \retval cutMap A writable edge map. The values will be set to \c true + /// for the cut edges (exactly once for each cut edge), and will not be + /// changed for other edges. + /// \return The number of cut edges. + /// + /// \see biEdgeConnected(), biEdgeConnectedComponents() + template + int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) { + checkConcept(); + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::Edge Edge; + checkConcept, EdgeMap>(); + + using namespace _connectivity_bits; + + typedef BiEdgeConnectedCutEdgesVisitor Visitor; + + int cutNum = 0; + Visitor visitor(graph, cutMap, cutNum); + + DfsVisit dfs(graph, visitor); + dfs.init(); + + for (NodeIt it(graph); it != INVALID; ++it) { + if (!dfs.reached(it)) { + dfs.addSource(it); + dfs.start(); + } + } + return cutNum; + } + + + namespace _connectivity_bits { + + template + class TopologicalSortVisitor : public DfsVisitor { + public: + typedef typename Digraph::Node Node; + typedef typename Digraph::Arc edge; + + TopologicalSortVisitor(IntNodeMap& order, int num) + : _order(order), _num(num) {} + + void leave(const Node& node) { + _order.set(node, --_num); + } + + private: + IntNodeMap& _order; + int _num; + }; + + } + + /// \ingroup graph_properties + /// + /// \brief Check whether a digraph is DAG. + /// + /// This function checks whether the given digraph is DAG, i.e. + /// \e Directed \e Acyclic \e Graph. + /// \return \c true if there is no directed cycle in the digraph. + /// \see acyclic() + template + bool dag(const Digraph& digraph) { + + checkConcept(); + + typedef typename Digraph::Node Node; + typedef typename Digraph::NodeIt NodeIt; + typedef typename Digraph::Arc Arc; + + typedef typename Digraph::template NodeMap ProcessedMap; + + typename Dfs::template SetProcessedMap:: + Create dfs(digraph); + + ProcessedMap processed(digraph); + dfs.processedMap(processed); + + dfs.init(); + for (NodeIt it(digraph); it != INVALID; ++it) { + if (!dfs.reached(it)) { + dfs.addSource(it); + while (!dfs.emptyQueue()) { + Arc arc = dfs.nextArc(); + Node target = digraph.target(arc); + if (dfs.reached(target) && !processed[target]) { + return false; + } + dfs.processNextArc(); + } + } + } + return true; + } + + /// \ingroup graph_properties + /// + /// \brief Sort the nodes of a DAG into topolgical order. + /// + /// This function sorts the nodes of the given acyclic digraph (DAG) + /// into topolgical order. + /// + /// \param digraph The digraph, which must be DAG. + /// \retval order A writable node map. The values will be set from 0 to + /// the number of the nodes in the digraph minus one. Each value of the + /// map will be set exactly once, and the values will be set descending + /// order. + /// + /// \see dag(), checkedTopologicalSort() + template + void topologicalSort(const Digraph& digraph, NodeMap& order) { + using namespace _connectivity_bits; + + checkConcept(); + checkConcept, NodeMap>(); + + typedef typename Digraph::Node Node; + typedef typename Digraph::NodeIt NodeIt; + typedef typename Digraph::Arc Arc; + + TopologicalSortVisitor + visitor(order, countNodes(digraph)); + + DfsVisit > + dfs(digraph, visitor); + + dfs.init(); + for (NodeIt it(digraph); it != INVALID; ++it) { + if (!dfs.reached(it)) { + dfs.addSource(it); + dfs.start(); + } + } + } + + /// \ingroup graph_properties + /// + /// \brief Sort the nodes of a DAG into topolgical order. + /// + /// This function sorts the nodes of the given acyclic digraph (DAG) + /// into topolgical order and also checks whether the given digraph + /// is DAG. + /// + /// \param digraph The digraph. + /// \retval order A readable and writable node map. The values will be + /// set from 0 to the number of the nodes in the digraph minus one. + /// Each value of the map will be set exactly once, and the values will + /// be set descending order. + /// \return \c false if the digraph is not DAG. + /// + /// \see dag(), topologicalSort() + template + bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) { + using namespace _connectivity_bits; + + checkConcept(); + checkConcept, + NodeMap>(); + + typedef typename Digraph::Node Node; + typedef typename Digraph::NodeIt NodeIt; + typedef typename Digraph::Arc Arc; + + for (NodeIt it(digraph); it != INVALID; ++it) { + order.set(it, -1); + } + + TopologicalSortVisitor + visitor(order, countNodes(digraph)); + + DfsVisit > + dfs(digraph, visitor); + + dfs.init(); + for (NodeIt it(digraph); it != INVALID; ++it) { + if (!dfs.reached(it)) { + dfs.addSource(it); + while (!dfs.emptyQueue()) { + Arc arc = dfs.nextArc(); + Node target = digraph.target(arc); + if (dfs.reached(target) && order[target] == -1) { + return false; + } + dfs.processNextArc(); + } + } + } + return true; + } + + /// \ingroup graph_properties + /// + /// \brief Check whether an undirected graph is acyclic. + /// + /// This function checks whether the given undirected graph is acyclic. + /// \return \c true if there is no cycle in the graph. + /// \see dag() + template + bool acyclic(const Graph& graph) { + checkConcept(); + typedef typename Graph::Node Node; + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::Arc Arc; + Dfs dfs(graph); + dfs.init(); + for (NodeIt it(graph); it != INVALID; ++it) { + if (!dfs.reached(it)) { + dfs.addSource(it); + while (!dfs.emptyQueue()) { + Arc arc = dfs.nextArc(); + Node source = graph.source(arc); + Node target = graph.target(arc); + if (dfs.reached(target) && + dfs.predArc(source) != graph.oppositeArc(arc)) { + return false; + } + dfs.processNextArc(); + } + } + } + return true; + } + + /// \ingroup graph_properties + /// + /// \brief Check whether an undirected graph is tree. + /// + /// This function checks whether the given undirected graph is tree. + /// \return \c true if the graph is acyclic and connected. + /// \see acyclic(), connected() + template + bool tree(const Graph& graph) { + checkConcept(); + typedef typename Graph::Node Node; + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::Arc Arc; + if (NodeIt(graph) == INVALID) return true; + Dfs dfs(graph); + dfs.init(); + dfs.addSource(NodeIt(graph)); + while (!dfs.emptyQueue()) { + Arc arc = dfs.nextArc(); + Node source = graph.source(arc); + Node target = graph.target(arc); + if (dfs.reached(target) && + dfs.predArc(source) != graph.oppositeArc(arc)) { + return false; + } + dfs.processNextArc(); + } + for (NodeIt it(graph); it != INVALID; ++it) { + if (!dfs.reached(it)) { + return false; + } + } + return true; + } + + namespace _connectivity_bits { + + template + class BipartiteVisitor : public BfsVisitor { + public: + typedef typename Digraph::Arc Arc; + typedef typename Digraph::Node Node; + + BipartiteVisitor(const Digraph& graph, bool& bipartite) + : _graph(graph), _part(graph), _bipartite(bipartite) {} + + void start(const Node& node) { + _part[node] = true; + } + void discover(const Arc& edge) { + _part.set(_graph.target(edge), !_part[_graph.source(edge)]); + } + void examine(const Arc& edge) { + _bipartite = _bipartite && + _part[_graph.target(edge)] != _part[_graph.source(edge)]; + } + + private: + + const Digraph& _graph; + typename Digraph::template NodeMap _part; + bool& _bipartite; + }; + + template + class BipartitePartitionsVisitor : public BfsVisitor { + public: + typedef typename Digraph::Arc Arc; + typedef typename Digraph::Node Node; + + BipartitePartitionsVisitor(const Digraph& graph, + PartMap& part, bool& bipartite) + : _graph(graph), _part(part), _bipartite(bipartite) {} + + void start(const Node& node) { + _part.set(node, true); + } + void discover(const Arc& edge) { + _part.set(_graph.target(edge), !_part[_graph.source(edge)]); + } + void examine(const Arc& edge) { + _bipartite = _bipartite && + _part[_graph.target(edge)] != _part[_graph.source(edge)]; + } + + private: + + const Digraph& _graph; + PartMap& _part; + bool& _bipartite; + }; + } + + /// \ingroup graph_properties + /// + /// \brief Check whether an undirected graph is bipartite. + /// + /// The function checks whether the given undirected graph is bipartite. + /// \return \c true if the graph is bipartite. + /// + /// \see bipartitePartitions() + template + bool bipartite(const Graph &graph){ + using namespace _connectivity_bits; + + checkConcept(); + + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::ArcIt ArcIt; + + bool bipartite = true; + + BipartiteVisitor + visitor(graph, bipartite); + BfsVisit > + bfs(graph, visitor); + bfs.init(); + for(NodeIt it(graph); it != INVALID; ++it) { + if(!bfs.reached(it)){ + bfs.addSource(it); + while (!bfs.emptyQueue()) { + bfs.processNextNode(); + if (!bipartite) return false; + } + } + } + return true; + } + + /// \ingroup graph_properties + /// + /// \brief Find the bipartite partitions of an undirected graph. + /// + /// This function checks whether the given undirected graph is bipartite + /// and gives back the bipartite partitions. + /// + /// \image html bipartite_partitions.png + /// \image latex bipartite_partitions.eps "Bipartite partititions" width=\textwidth + /// + /// \param graph The undirected graph. + /// \retval partMap A writable node map of \c bool (or convertible) value + /// type. The values will be set to \c true for one component and + /// \c false for the other one. + /// \return \c true if the graph is bipartite, \c false otherwise. + /// + /// \see bipartite() + template + bool bipartitePartitions(const Graph &graph, NodeMap &partMap){ + using namespace _connectivity_bits; + + checkConcept(); + checkConcept, NodeMap>(); + + typedef typename Graph::Node Node; + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::ArcIt ArcIt; + + bool bipartite = true; + + BipartitePartitionsVisitor + visitor(graph, partMap, bipartite); + BfsVisit > + bfs(graph, visitor); + bfs.init(); + for(NodeIt it(graph); it != INVALID; ++it) { + if(!bfs.reached(it)){ + bfs.addSource(it); + while (!bfs.emptyQueue()) { + bfs.processNextNode(); + if (!bipartite) return false; + } + } + } + return true; + } + + /// \ingroup graph_properties + /// + /// \brief Check whether the given graph contains no loop arcs/edges. + /// + /// This function returns \c true if there are no loop arcs/edges in + /// the given graph. It works for both directed and undirected graphs. + template + bool loopFree(const Graph& graph) { + for (typename Graph::ArcIt it(graph); it != INVALID; ++it) { + if (graph.source(it) == graph.target(it)) return false; + } + return true; + } + + /// \ingroup graph_properties + /// + /// \brief Check whether the given graph contains no parallel arcs/edges. + /// + /// This function returns \c true if there are no parallel arcs/edges in + /// the given graph. It works for both directed and undirected graphs. + template + bool parallelFree(const Graph& graph) { + typename Graph::template NodeMap reached(graph, 0); + int cnt = 1; + for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { + for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) { + if (reached[graph.target(a)] == cnt) return false; + reached[graph.target(a)] = cnt; + } + ++cnt; + } + return true; + } + + /// \ingroup graph_properties + /// + /// \brief Check whether the given graph is simple. + /// + /// This function returns \c true if the given graph is simple, i.e. + /// it contains no loop arcs/edges and no parallel arcs/edges. + /// The function works for both directed and undirected graphs. + /// \see loopFree(), parallelFree() + template + bool simpleGraph(const Graph& graph) { + typename Graph::template NodeMap reached(graph, 0); + int cnt = 1; + for (typename Graph::NodeIt n(graph); n != INVALID; ++n) { + reached[n] = cnt; + for (typename Graph::OutArcIt a(graph, n); a != INVALID; ++a) { + if (reached[graph.target(a)] == cnt) return false; + reached[graph.target(a)] = cnt; + } + ++cnt; + } + return true; + } + +} //namespace lemon + +#endif //LEMON_CONNECTIVITY_H