diff --git a/lemon/dijkstra.h b/lemon/dijkstra.h new file mode 100644 --- /dev/null +++ b/lemon/dijkstra.h @@ -0,0 +1,1209 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_DIJKSTRA_H +#define LEMON_DIJKSTRA_H + +///\ingroup shortest_path +///\file +///\brief Dijkstra algorithm. +/// + +#include +#include +#include +#include +#include +#include + + +namespace lemon { + + /// \brief Default OperationTraits for the Dijkstra algorithm class. + /// + /// It defines all computational operations and constants which are + /// used in the Dijkstra algorithm. + template + struct DijkstraDefaultOperationTraits { + /// \brief Gives back the zero value of the type. + static Value zero() { + return static_cast(0); + } + /// \brief Gives back the sum of the given two elements. + static Value plus(const Value& left, const Value& right) { + return left + right; + } + /// \brief Gives back true only if the first value less than the second. + static bool less(const Value& left, const Value& right) { + return left < right; + } + }; + + /// \brief Widest path OperationTraits for the Dijkstra algorithm class. + /// + /// It defines all computational operations and constants which are + /// used in the Dijkstra algorithm for widest path computation. + template + struct DijkstraWidestPathOperationTraits { + /// \brief Gives back the maximum value of the type. + static Value zero() { + return std::numeric_limits::max(); + } + /// \brief Gives back the minimum of the given two elements. + static Value plus(const Value& left, const Value& right) { + return std::min(left, right); + } + /// \brief Gives back true only if the first value less than the second. + static bool less(const Value& left, const Value& right) { + return left < right; + } + }; + + ///Default traits class of Dijkstra class. + + ///Default traits class of Dijkstra class. + ///\param GR Digraph type. + ///\param LM Type of length map. + template + struct DijkstraDefaultTraits + { + ///The digraph type the algorithm runs on. + typedef GR Digraph; + ///The type of the map that stores the arc lengths. + + ///The type of the map that stores the arc lengths. + ///It must meet the \ref concepts::ReadMap "ReadMap" concept. + typedef LM LengthMap; + //The type of the length of the arcs. + typedef typename LM::Value Value; + /// Operation traits for Dijkstra algorithm. + + /// It defines the used operation by the algorithm. + /// \see DijkstraDefaultOperationTraits + typedef DijkstraDefaultOperationTraits OperationTraits; + /// The cross reference type used by heap. + + + /// The cross reference type used by heap. + /// Usually it is \c Digraph::NodeMap. + typedef typename Digraph::template NodeMap HeapCrossRef; + ///Instantiates a HeapCrossRef. + + ///This function instantiates a \c HeapCrossRef. + /// \param G is the digraph, to which we would like to define the + /// HeapCrossRef. + static HeapCrossRef *createHeapCrossRef(const GR &G) + { + return new HeapCrossRef(G); + } + + ///The heap type used by Dijkstra algorithm. + + ///The heap type used by Dijkstra algorithm. + /// + ///\sa BinHeap + ///\sa Dijkstra + typedef BinHeap > Heap; + + static Heap *createHeap(HeapCrossRef& R) + { + return new Heap(R); + } + + ///\brief The type of the map that stores the last + ///arcs of the shortest paths. + /// + ///The type of the map that stores the last + ///arcs of the shortest paths. + ///It must meet the \ref concepts::WriteMap "WriteMap" concept. + /// + typedef typename Digraph::template NodeMap PredMap; + ///Instantiates a PredMap. + + ///This function instantiates a \c PredMap. + ///\param G is the digraph, to which we would like to define the PredMap. + ///\todo The digraph alone may be insufficient for the initialization + static PredMap *createPredMap(const GR &G) + { + return new PredMap(G); + } + + ///The type of the map that stores whether a nodes is processed. + + ///The type of the map that stores whether a nodes is processed. + ///It must meet the \ref concepts::WriteMap "WriteMap" concept. + ///By default it is a NullMap. + ///\todo If it is set to a real map, + ///Dijkstra::processed() should read this. + ///\todo named parameter to set this type, function to read and write. + typedef NullMap ProcessedMap; + ///Instantiates a ProcessedMap. + + ///This function instantiates a \c ProcessedMap. + ///\param g is the digraph, to which + ///we would like to define the \c ProcessedMap +#ifdef DOXYGEN + static ProcessedMap *createProcessedMap(const GR &g) +#else + static ProcessedMap *createProcessedMap(const GR &) +#endif + { + return new ProcessedMap(); + } + ///The type of the map that stores the dists of the nodes. + + ///The type of the map that stores the dists of the nodes. + ///It must meet the \ref concepts::WriteMap "WriteMap" concept. + /// + typedef typename Digraph::template NodeMap DistMap; + ///Instantiates a DistMap. + + ///This function instantiates a \ref DistMap. + ///\param G is the digraph, to which we would like to define the \ref DistMap + static DistMap *createDistMap(const GR &G) + { + return new DistMap(G); + } + }; + + ///%Dijkstra algorithm class. + + /// \ingroup shortest_path + ///This class provides an efficient implementation of %Dijkstra algorithm. + ///The arc lengths are passed to the algorithm using a + ///\ref concepts::ReadMap "ReadMap", + ///so it is easy to change it to any kind of length. + /// + ///The type of the length is determined by the + ///\ref concepts::ReadMap::Value "Value" of the length map. + /// + ///It is also possible to change the underlying priority heap. + /// + ///\param GR The digraph type the algorithm runs on. The default value + ///is \ref ListDigraph. The value of GR is not used directly by + ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits. + ///\param LM This read-only ArcMap determines the lengths of the + ///arcs. It is read once for each arc, so the map may involve in + ///relatively time consuming process to compute the arc length if + ///it is necessary. The default map type is \ref + ///concepts::Digraph::ArcMap "Digraph::ArcMap". The value + ///of LM is not used directly by Dijkstra, it is only passed to \ref + ///DijkstraDefaultTraits. \param TR Traits class to set + ///various data types used by the algorithm. The default traits + ///class is \ref DijkstraDefaultTraits + ///"DijkstraDefaultTraits". See \ref + ///DijkstraDefaultTraits for the documentation of a Dijkstra traits + ///class. + /// + ///\author Jacint Szabo and Alpar Juttner + +#ifdef DOXYGEN + template +#else + template , + typename TR=DijkstraDefaultTraits > +#endif + class Dijkstra { + public: + /** + * \brief \ref Exception for uninitialized parameters. + * + * This error represents problems in the initialization + * of the parameters of the algorithms. + */ + class UninitializedParameter : public lemon::UninitializedParameter { + public: + virtual const char* what() const throw() { + return "lemon::Dijkstra::UninitializedParameter"; + } + }; + + typedef TR Traits; + ///The type of the underlying digraph. + typedef typename TR::Digraph Digraph; + ///\e + typedef typename Digraph::Node Node; + ///\e + typedef typename Digraph::NodeIt NodeIt; + ///\e + typedef typename Digraph::Arc Arc; + ///\e + typedef typename Digraph::OutArcIt OutArcIt; + + ///The type of the length of the arcs. + typedef typename TR::LengthMap::Value Value; + ///The type of the map that stores the arc lengths. + typedef typename TR::LengthMap LengthMap; + ///\brief The type of the map that stores the last + ///arcs of the shortest paths. + typedef typename TR::PredMap PredMap; + ///The type of the map indicating if a node is processed. + typedef typename TR::ProcessedMap ProcessedMap; + ///The type of the map that stores the dists of the nodes. + typedef typename TR::DistMap DistMap; + ///The cross reference type used for the current heap. + typedef typename TR::HeapCrossRef HeapCrossRef; + ///The heap type used by the dijkstra algorithm. + typedef typename TR::Heap Heap; + ///The operation traits. + typedef typename TR::OperationTraits OperationTraits; + private: + /// Pointer to the underlying digraph. + const Digraph *G; + /// Pointer to the length map + const LengthMap *length; + ///Pointer to the map of predecessors arcs. + PredMap *_pred; + ///Indicates if \ref _pred is locally allocated (\c true) or not. + bool local_pred; + ///Pointer to the map of distances. + DistMap *_dist; + ///Indicates if \ref _dist is locally allocated (\c true) or not. + bool local_dist; + ///Pointer to the map of processed status of the nodes. + ProcessedMap *_processed; + ///Indicates if \ref _processed is locally allocated (\c true) or not. + bool local_processed; + ///Pointer to the heap cross references. + HeapCrossRef *_heap_cross_ref; + ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not. + bool local_heap_cross_ref; + ///Pointer to the heap. + Heap *_heap; + ///Indicates if \ref _heap is locally allocated (\c true) or not. + bool local_heap; + + ///Creates the maps if necessary. + + ///\todo Better memory allocation (instead of new). + void create_maps() + { + if(!_pred) { + local_pred = true; + _pred = Traits::createPredMap(*G); + } + if(!_dist) { + local_dist = true; + _dist = Traits::createDistMap(*G); + } + if(!_processed) { + local_processed = true; + _processed = Traits::createProcessedMap(*G); + } + if (!_heap_cross_ref) { + local_heap_cross_ref = true; + _heap_cross_ref = Traits::createHeapCrossRef(*G); + } + if (!_heap) { + local_heap = true; + _heap = Traits::createHeap(*_heap_cross_ref); + } + } + + public : + + typedef Dijkstra Create; + + ///\name Named template parameters + + ///@{ + + template + struct DefPredMapTraits : public Traits { + typedef T PredMap; + static PredMap *createPredMap(const Digraph &) + { + throw UninitializedParameter(); + } + }; + ///\ref named-templ-param "Named parameter" for setting PredMap type + + ///\ref named-templ-param "Named parameter" for setting PredMap type + /// + template + struct DefPredMap + : public Dijkstra< Digraph, LengthMap, DefPredMapTraits > { + typedef Dijkstra< Digraph, LengthMap, DefPredMapTraits > Create; + }; + + template + struct DefDistMapTraits : public Traits { + typedef T DistMap; + static DistMap *createDistMap(const Digraph &) + { + throw UninitializedParameter(); + } + }; + ///\ref named-templ-param "Named parameter" for setting DistMap type + + ///\ref named-templ-param "Named parameter" for setting DistMap type + /// + template + struct DefDistMap + : public Dijkstra< Digraph, LengthMap, DefDistMapTraits > { + typedef Dijkstra< Digraph, LengthMap, DefDistMapTraits > Create; + }; + + template + struct DefProcessedMapTraits : public Traits { + typedef T ProcessedMap; + static ProcessedMap *createProcessedMap(const Digraph &G) + { + throw UninitializedParameter(); + } + }; + ///\ref named-templ-param "Named parameter" for setting ProcessedMap type + + ///\ref named-templ-param "Named parameter" for setting ProcessedMap type + /// + template + struct DefProcessedMap + : public Dijkstra< Digraph, LengthMap, DefProcessedMapTraits > { + typedef Dijkstra< Digraph, LengthMap, DefProcessedMapTraits > Create; + }; + + struct DefDigraphProcessedMapTraits : public Traits { + typedef typename Digraph::template NodeMap ProcessedMap; + static ProcessedMap *createProcessedMap(const Digraph &G) + { + return new ProcessedMap(G); + } + }; + ///\brief \ref named-templ-param "Named parameter" + ///for setting the ProcessedMap type to be Digraph::NodeMap. + /// + ///\ref named-templ-param "Named parameter" + ///for setting the ProcessedMap type to be Digraph::NodeMap. + ///If you don't set it explicitely, it will be automatically allocated. + template + struct DefProcessedMapToBeDefaultMap + : public Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> { + typedef Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> Create; + }; + + template + struct DefHeapTraits : public Traits { + typedef CR HeapCrossRef; + typedef H Heap; + static HeapCrossRef *createHeapCrossRef(const Digraph &) { + throw UninitializedParameter(); + } + static Heap *createHeap(HeapCrossRef &) + { + throw UninitializedParameter(); + } + }; + ///\brief \ref named-templ-param "Named parameter" for setting + ///heap and cross reference type + /// + ///\ref named-templ-param "Named parameter" for setting heap and cross + ///reference type + /// + template > + struct DefHeap + : public Dijkstra< Digraph, LengthMap, DefHeapTraits > { + typedef Dijkstra< Digraph, LengthMap, DefHeapTraits > Create; + }; + + template + struct DefStandardHeapTraits : public Traits { + typedef CR HeapCrossRef; + typedef H Heap; + static HeapCrossRef *createHeapCrossRef(const Digraph &G) { + return new HeapCrossRef(G); + } + static Heap *createHeap(HeapCrossRef &R) + { + return new Heap(R); + } + }; + ///\brief \ref named-templ-param "Named parameter" for setting + ///heap and cross reference type with automatic allocation + /// + ///\ref named-templ-param "Named parameter" for setting heap and cross + ///reference type. It can allocate the heap and the cross reference + ///object if the cross reference's constructor waits for the digraph as + ///parameter and the heap's constructor waits for the cross reference. + template > + struct DefStandardHeap + : public Dijkstra< Digraph, LengthMap, DefStandardHeapTraits > { + typedef Dijkstra< Digraph, LengthMap, DefStandardHeapTraits > + Create; + }; + + template + struct DefOperationTraitsTraits : public Traits { + typedef T OperationTraits; + }; + + /// \brief \ref named-templ-param "Named parameter" for setting + /// OperationTraits type + /// + /// \ref named-templ-param "Named parameter" for setting OperationTraits + /// type + template + struct DefOperationTraits + : public Dijkstra > { + typedef Dijkstra > + Create; + }; + + ///@} + + + protected: + + Dijkstra() {} + + public: + + ///Constructor. + + ///\param _G the digraph the algorithm will run on. + ///\param _length the length map used by the algorithm. + Dijkstra(const Digraph& _G, const LengthMap& _length) : + G(&_G), length(&_length), + _pred(NULL), local_pred(false), + _dist(NULL), local_dist(false), + _processed(NULL), local_processed(false), + _heap_cross_ref(NULL), local_heap_cross_ref(false), + _heap(NULL), local_heap(false) + { } + + ///Destructor. + ~Dijkstra() + { + if(local_pred) delete _pred; + if(local_dist) delete _dist; + if(local_processed) delete _processed; + if(local_heap_cross_ref) delete _heap_cross_ref; + if(local_heap) delete _heap; + } + + ///Sets the length map. + + ///Sets the length map. + ///\return (*this) + Dijkstra &lengthMap(const LengthMap &m) + { + length = &m; + return *this; + } + + ///Sets the map storing the predecessor arcs. + + ///Sets the map storing the predecessor arcs. + ///If you don't use this function before calling \ref run(), + ///it will allocate one. The destuctor deallocates this + ///automatically allocated map, of course. + ///\return (*this) + Dijkstra &predMap(PredMap &m) + { + if(local_pred) { + delete _pred; + local_pred=false; + } + _pred = &m; + return *this; + } + + ///Sets the map storing the distances calculated by the algorithm. + + ///Sets the map storing the distances calculated by the algorithm. + ///If you don't use this function before calling \ref run(), + ///it will allocate one. The destuctor deallocates this + ///automatically allocated map, of course. + ///\return (*this) + Dijkstra &distMap(DistMap &m) + { + if(local_dist) { + delete _dist; + local_dist=false; + } + _dist = &m; + return *this; + } + + ///Sets the heap and the cross reference used by algorithm. + + ///Sets the heap and the cross reference used by algorithm. + ///If you don't use this function before calling \ref run(), + ///it will allocate one. The destuctor deallocates this + ///automatically allocated heap and cross reference, of course. + ///\return (*this) + Dijkstra &heap(Heap& hp, HeapCrossRef &cr) + { + if(local_heap_cross_ref) { + delete _heap_cross_ref; + local_heap_cross_ref=false; + } + _heap_cross_ref = &cr; + if(local_heap) { + delete _heap; + local_heap=false; + } + _heap = &hp; + return *this; + } + + private: + void finalizeNodeData(Node v,Value dst) + { + _processed->set(v,true); + _dist->set(v, dst); + } + + public: + + typedef PredMapPath Path; + + ///\name Execution control + ///The simplest way to execute the algorithm is to use + ///one of the member functions called \c run(...). + ///\n + ///If you need more control on the execution, + ///first you must call \ref init(), then you can add several source nodes + ///with \ref addSource(). + ///Finally \ref start() will perform the actual path + ///computation. + + ///@{ + + ///Initializes the internal data structures. + + ///Initializes the internal data structures. + /// + void init() + { + create_maps(); + _heap->clear(); + for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { + _pred->set(u,INVALID); + _processed->set(u,false); + _heap_cross_ref->set(u,Heap::PRE_HEAP); + } + } + + ///Adds a new source node. + + ///Adds a new source node to the priority heap. + /// + ///The optional second parameter is the initial distance of the node. + /// + ///It checks if the node has already been added to the heap and + ///it is pushed to the heap only if either it was not in the heap + ///or the shortest path found till then is shorter than \c dst. + void addSource(Node s,Value dst=OperationTraits::zero()) + { + if(_heap->state(s) != Heap::IN_HEAP) { + _heap->push(s,dst); + } else if(OperationTraits::less((*_heap)[s], dst)) { + _heap->set(s,dst); + _pred->set(s,INVALID); + } + } + + ///Processes the next node in the priority heap + + ///Processes the next node in the priority heap. + /// + ///\return The processed node. + /// + ///\warning The priority heap must not be empty! + Node processNextNode() + { + Node v=_heap->top(); + Value oldvalue=_heap->prio(); + _heap->pop(); + finalizeNodeData(v,oldvalue); + + for(OutArcIt e(*G,v); e!=INVALID; ++e) { + Node w=G->target(e); + switch(_heap->state(w)) { + case Heap::PRE_HEAP: + _heap->push(w,OperationTraits::plus(oldvalue, (*length)[e])); + _pred->set(w,e); + break; + case Heap::IN_HEAP: + { + Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]); + if ( OperationTraits::less(newvalue, (*_heap)[w]) ) { + _heap->decrease(w, newvalue); + _pred->set(w,e); + } + } + break; + case Heap::POST_HEAP: + break; + } + } + return v; + } + + ///Next node to be processed. + + ///Next node to be processed. + /// + ///\return The next node to be processed or INVALID if the priority heap + /// is empty. + Node nextNode() + { + return !_heap->empty()?_heap->top():INVALID; + } + + ///\brief Returns \c false if there are nodes + ///to be processed in the priority heap + /// + ///Returns \c false if there are nodes + ///to be processed in the priority heap + bool emptyQueue() { return _heap->empty(); } + ///Returns the number of the nodes to be processed in the priority heap + + ///Returns the number of the nodes to be processed in the priority heap + /// + int queueSize() { return _heap->size(); } + + ///Executes the algorithm. + + ///Executes the algorithm. + /// + ///\pre init() must be called and at least one node should be added + ///with addSource() before using this function. + /// + ///This method runs the %Dijkstra algorithm from the root node(s) + ///in order to + ///compute the + ///shortest path to each node. The algorithm computes + ///- The shortest path tree. + ///- The distance of each node from the root(s). + /// + void start() + { + while ( !_heap->empty() ) processNextNode(); + } + + ///Executes the algorithm until \c dest is reached. + + ///Executes the algorithm until \c dest is reached. + /// + ///\pre init() must be called and at least one node should be added + ///with addSource() before using this function. + /// + ///This method runs the %Dijkstra algorithm from the root node(s) + ///in order to + ///compute the + ///shortest path to \c dest. The algorithm computes + ///- The shortest path to \c dest. + ///- The distance of \c dest from the root(s). + /// + void start(Node dest) + { + while ( !_heap->empty() && _heap->top()!=dest ) processNextNode(); + if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio()); + } + + ///Executes the algorithm until a condition is met. + + ///Executes the algorithm until a condition is met. + /// + ///\pre init() must be called and at least one node should be added + ///with addSource() before using this function. + /// + ///\param nm must be a bool (or convertible) node map. The algorithm + ///will stop when it reaches a node \c v with nm[v] true. + /// + ///\return The reached node \c v with nm[v] true or + ///\c INVALID if no such node was found. + template + Node start(const NodeBoolMap &nm) + { + while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); + if ( _heap->empty() ) return INVALID; + finalizeNodeData(_heap->top(),_heap->prio()); + return _heap->top(); + } + + ///Runs %Dijkstra algorithm from node \c s. + + ///This method runs the %Dijkstra algorithm from a root node \c s + ///in order to + ///compute the + ///shortest path to each node. The algorithm computes + ///- The shortest path tree. + ///- The distance of each node from the root. + /// + ///\note d.run(s) is just a shortcut of the following code. + ///\code + /// d.init(); + /// d.addSource(s); + /// d.start(); + ///\endcode + void run(Node s) { + init(); + addSource(s); + start(); + } + + ///Finds the shortest path between \c s and \c t. + + ///Finds the shortest path between \c s and \c t. + /// + ///\return The length of the shortest s---t path if there exists one, + ///0 otherwise. + ///\note Apart from the return value, d.run(s) is + ///just a shortcut of the following code. + ///\code + /// d.init(); + /// d.addSource(s); + /// d.start(t); + ///\endcode + Value run(Node s,Node t) { + init(); + addSource(s); + start(t); + return (*_pred)[t]==INVALID?OperationTraits::zero():(*_dist)[t]; + } + + ///@} + + ///\name Query Functions + ///The result of the %Dijkstra algorithm can be obtained using these + ///functions.\n + ///Before the use of these functions, + ///either run() or start() must be called. + + ///@{ + + ///Gives back the shortest path. + + ///Gives back the shortest path. + ///\pre The \c t should be reachable from the source. + Path path(Node t) + { + return Path(*G, *_pred, t); + } + + ///The distance of a node from the root. + + ///Returns the distance of a node from the root. + ///\pre \ref run() must be called before using this function. + ///\warning If node \c v in unreachable from the root the return value + ///of this funcion is undefined. + Value dist(Node v) const { return (*_dist)[v]; } + + ///The current distance of a node from the root. + + ///Returns the current distance of a node from the root. + ///It may be decreased in the following processes. + ///\pre \c node should be reached but not processed + Value currentDist(Node v) const { return (*_heap)[v]; } + + ///Returns the 'previous arc' of the shortest path tree. + + ///For a node \c v it returns the 'previous arc' of the shortest path tree, + ///i.e. it returns the last arc of a shortest path from the root to \c + ///v. It is \ref INVALID + ///if \c v is unreachable from the root or if \c v=s. The + ///shortest path tree used here is equal to the shortest path tree used in + ///\ref predNode(). \pre \ref run() must be called before using + ///this function. + Arc predArc(Node v) const { return (*_pred)[v]; } + + ///Returns the 'previous node' of the shortest path tree. + + ///For a node \c v it returns the 'previous node' of the shortest path tree, + ///i.e. it returns the last but one node from a shortest path from the + ///root to \c /v. It is INVALID if \c v is unreachable from the root or if + ///\c v=s. The shortest path tree used here is equal to the shortest path + ///tree used in \ref predArc(). \pre \ref run() must be called before + ///using this function. + Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: + G->source((*_pred)[v]); } + + ///Returns a reference to the NodeMap of distances. + + ///Returns a reference to the NodeMap of distances. \pre \ref run() must + ///be called before using this function. + const DistMap &distMap() const { return *_dist;} + + ///Returns a reference to the shortest path tree map. + + ///Returns a reference to the NodeMap of the arcs of the + ///shortest path tree. + ///\pre \ref run() must be called before using this function. + const PredMap &predMap() const { return *_pred;} + + ///Checks if a node is reachable from the root. + + ///Returns \c true if \c v is reachable from the root. + ///\warning The source nodes are inditated as unreached. + ///\pre \ref run() must be called before using this function. + /// + bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; } + + ///Checks if a node is processed. + + ///Returns \c true if \c v is processed, i.e. the shortest + ///path to \c v has already found. + ///\pre \ref run() must be called before using this function. + /// + bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; } + + ///@} + }; + + + + + + ///Default traits class of Dijkstra function. + + ///Default traits class of Dijkstra function. + ///\param GR Digraph type. + ///\param LM Type of length map. + template + struct DijkstraWizardDefaultTraits + { + ///The digraph type the algorithm runs on. + typedef GR Digraph; + ///The type of the map that stores the arc lengths. + + ///The type of the map that stores the arc lengths. + ///It must meet the \ref concepts::ReadMap "ReadMap" concept. + typedef LM LengthMap; + //The type of the length of the arcs. + typedef typename LM::Value Value; + /// Operation traits for Dijkstra algorithm. + + /// It defines the used operation by the algorithm. + /// \see DijkstraDefaultOperationTraits + typedef DijkstraDefaultOperationTraits OperationTraits; + ///The heap type used by Dijkstra algorithm. + + /// The cross reference type used by heap. + + /// The cross reference type used by heap. + /// Usually it is \c Digraph::NodeMap. + typedef typename Digraph::template NodeMap HeapCrossRef; + ///Instantiates a HeapCrossRef. + + ///This function instantiates a \ref HeapCrossRef. + /// \param G is the digraph, to which we would like to define the + /// HeapCrossRef. + /// \todo The digraph alone may be insufficient for the initialization + static HeapCrossRef *createHeapCrossRef(const GR &G) + { + return new HeapCrossRef(G); + } + + ///The heap type used by Dijkstra algorithm. + + ///The heap type used by Dijkstra algorithm. + /// + ///\sa BinHeap + ///\sa Dijkstra + typedef BinHeap, + std::less > Heap; + + static Heap *createHeap(HeapCrossRef& R) + { + return new Heap(R); + } + + ///\brief The type of the map that stores the last + ///arcs of the shortest paths. + /// + ///The type of the map that stores the last + ///arcs of the shortest paths. + ///It must meet the \ref concepts::WriteMap "WriteMap" concept. + /// + typedef NullMap PredMap; + ///Instantiates a PredMap. + + ///This function instantiates a \ref PredMap. + ///\param g is the digraph, to which we would like to define the PredMap. + ///\todo The digraph alone may be insufficient for the initialization +#ifdef DOXYGEN + static PredMap *createPredMap(const GR &g) +#else + static PredMap *createPredMap(const GR &) +#endif + { + return new PredMap(); + } + ///The type of the map that stores whether a nodes is processed. + + ///The type of the map that stores whether a nodes is processed. + ///It must meet the \ref concepts::WriteMap "WriteMap" concept. + ///By default it is a NullMap. + ///\todo If it is set to a real map, + ///Dijkstra::processed() should read this. + ///\todo named parameter to set this type, function to read and write. + typedef NullMap ProcessedMap; + ///Instantiates a ProcessedMap. + + ///This function instantiates a \ref ProcessedMap. + ///\param g is the digraph, to which + ///we would like to define the \ref ProcessedMap +#ifdef DOXYGEN + static ProcessedMap *createProcessedMap(const GR &g) +#else + static ProcessedMap *createProcessedMap(const GR &) +#endif + { + return new ProcessedMap(); + } + ///The type of the map that stores the dists of the nodes. + + ///The type of the map that stores the dists of the nodes. + ///It must meet the \ref concepts::WriteMap "WriteMap" concept. + /// + typedef NullMap DistMap; + ///Instantiates a DistMap. + + ///This function instantiates a \ref DistMap. + ///\param g is the digraph, to which we would like to define the \ref DistMap +#ifdef DOXYGEN + static DistMap *createDistMap(const GR &g) +#else + static DistMap *createDistMap(const GR &) +#endif + { + return new DistMap(); + } + }; + + /// Default traits used by \ref DijkstraWizard + + /// To make it easier to use Dijkstra algorithm + ///we have created a wizard class. + /// This \ref DijkstraWizard class needs default traits, + ///as well as the \ref Dijkstra class. + /// The \ref DijkstraWizardBase is a class to be the default traits of the + /// \ref DijkstraWizard class. + /// \todo More named parameters are required... + template + class DijkstraWizardBase : public DijkstraWizardDefaultTraits + { + + typedef DijkstraWizardDefaultTraits Base; + protected: + /// Type of the nodes in the digraph. + typedef typename Base::Digraph::Node Node; + + /// Pointer to the underlying digraph. + void *_g; + /// Pointer to the length map + void *_length; + ///Pointer to the map of predecessors arcs. + void *_pred; + ///Pointer to the map of distances. + void *_dist; + ///Pointer to the source node. + Node _source; + + public: + /// Constructor. + + /// This constructor does not require parameters, therefore it initiates + /// all of the attributes to default values (0, INVALID). + DijkstraWizardBase() : _g(0), _length(0), _pred(0), + _dist(0), _source(INVALID) {} + + /// Constructor. + + /// This constructor requires some parameters, + /// listed in the parameters list. + /// Others are initiated to 0. + /// \param g is the initial value of \ref _g + /// \param l is the initial value of \ref _length + /// \param s is the initial value of \ref _source + DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) : + _g(reinterpret_cast(const_cast(&g))), + _length(reinterpret_cast(const_cast(&l))), + _pred(0), _dist(0), _source(s) {} + + }; + + /// A class to make the usage of Dijkstra algorithm easier + + /// This class is created to make it easier to use Dijkstra algorithm. + /// It uses the functions and features of the plain \ref Dijkstra, + /// but it is much simpler to use it. + /// + /// Simplicity means that the way to change the types defined + /// in the traits class is based on functions that returns the new class + /// and not on templatable built-in classes. + /// When using the plain \ref Dijkstra + /// the new class with the modified type comes from + /// the original class by using the :: + /// operator. In the case of \ref DijkstraWizard only + /// a function have to be called and it will + /// return the needed class. + /// + /// It does not have own \ref run method. When its \ref run method is called + /// it initiates a plain \ref Dijkstra class, and calls the \ref + /// Dijkstra::run method of it. + template + class DijkstraWizard : public TR + { + typedef TR Base; + + ///The type of the underlying digraph. + typedef typename TR::Digraph Digraph; + //\e + typedef typename Digraph::Node Node; + //\e + typedef typename Digraph::NodeIt NodeIt; + //\e + typedef typename Digraph::Arc Arc; + //\e + typedef typename Digraph::OutArcIt OutArcIt; + + ///The type of the map that stores the arc lengths. + typedef typename TR::LengthMap LengthMap; + ///The type of the length of the arcs. + typedef typename LengthMap::Value Value; + ///\brief The type of the map that stores the last + ///arcs of the shortest paths. + typedef typename TR::PredMap PredMap; + ///The type of the map that stores the dists of the nodes. + typedef typename TR::DistMap DistMap; + ///The heap type used by the dijkstra algorithm. + typedef typename TR::Heap Heap; + public: + /// Constructor. + DijkstraWizard() : TR() {} + + /// Constructor that requires parameters. + + /// Constructor that requires parameters. + /// These parameters will be the default values for the traits class. + DijkstraWizard(const Digraph &g,const LengthMap &l, Node s=INVALID) : + TR(g,l,s) {} + + ///Copy constructor + DijkstraWizard(const TR &b) : TR(b) {} + + ~DijkstraWizard() {} + + ///Runs Dijkstra algorithm from a given node. + + ///Runs Dijkstra algorithm from a given node. + ///The node can be given by the \ref source function. + void run() + { + if(Base::_source==INVALID) throw UninitializedParameter(); + Dijkstra + dij(*reinterpret_cast(Base::_g), + *reinterpret_cast(Base::_length)); + if(Base::_pred) dij.predMap(*reinterpret_cast(Base::_pred)); + if(Base::_dist) dij.distMap(*reinterpret_cast(Base::_dist)); + dij.run(Base::_source); + } + + ///Runs Dijkstra algorithm from the given node. + + ///Runs Dijkstra algorithm from the given node. + ///\param s is the given source. + void run(Node s) + { + Base::_source=s; + run(); + } + + template + struct DefPredMapBase : public Base { + typedef T PredMap; + static PredMap *createPredMap(const Digraph &) { return 0; }; + DefPredMapBase(const TR &b) : TR(b) {} + }; + + ///\brief \ref named-templ-param "Named parameter" + ///function for setting PredMap type + /// + /// \ref named-templ-param "Named parameter" + ///function for setting PredMap type + /// + template + DijkstraWizard > predMap(const T &t) + { + Base::_pred=reinterpret_cast(const_cast(&t)); + return DijkstraWizard >(*this); + } + + template + struct DefDistMapBase : public Base { + typedef T DistMap; + static DistMap *createDistMap(const Digraph &) { return 0; }; + DefDistMapBase(const TR &b) : TR(b) {} + }; + + ///\brief \ref named-templ-param "Named parameter" + ///function for setting DistMap type + /// + /// \ref named-templ-param "Named parameter" + ///function for setting DistMap type + /// + template + DijkstraWizard > distMap(const T &t) + { + Base::_dist=reinterpret_cast(const_cast(&t)); + return DijkstraWizard >(*this); + } + + /// Sets the source node, from which the Dijkstra algorithm runs. + + /// Sets the source node, from which the Dijkstra algorithm runs. + /// \param s is the source node. + DijkstraWizard &source(Node s) + { + Base::_source=s; + return *this; + } + + }; + + ///Function type interface for Dijkstra algorithm. + + /// \ingroup shortest_path + ///Function type interface for Dijkstra algorithm. + /// + ///This function also has several + ///\ref named-templ-func-param "named parameters", + ///they are declared as the members of class \ref DijkstraWizard. + ///The following + ///example shows how to use these parameters. + ///\code + /// dijkstra(g,length,source).predMap(preds).run(); + ///\endcode + ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()" + ///to the end of the parameter list. + ///\sa DijkstraWizard + ///\sa Dijkstra + template + DijkstraWizard > + dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID) + { + return DijkstraWizard >(g,l,s); + } + +} //END OF NAMESPACE LEMON + +#endif