diff --git a/lemon/howard_mmc.h b/lemon/howard_mmc.h new file mode 100644 --- /dev/null +++ b/lemon/howard_mmc.h @@ -0,0 +1,605 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2010 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_HOWARD_MMC_H +#define LEMON_HOWARD_MMC_H + +/// \ingroup min_mean_cycle +/// +/// \file +/// \brief Howard's algorithm for finding a minimum mean cycle. + +#include +#include +#include +#include +#include +#include + +namespace lemon { + + /// \brief Default traits class of HowardMmc class. + /// + /// Default traits class of HowardMmc class. + /// \tparam GR The type of the digraph. + /// \tparam CM The type of the cost map. + /// It must conform to the \ref concepts::ReadMap "ReadMap" concept. +#ifdef DOXYGEN + template +#else + template ::is_integer> +#endif + struct HowardMmcDefaultTraits + { + /// The type of the digraph + typedef GR Digraph; + /// The type of the cost map + typedef CM CostMap; + /// The type of the arc costs + typedef typename CostMap::Value Cost; + + /// \brief The large cost type used for internal computations + /// + /// The large cost type used for internal computations. + /// It is \c long \c long if the \c Cost type is integer, + /// otherwise it is \c double. + /// \c Cost must be convertible to \c LargeCost. + typedef double LargeCost; + + /// The tolerance type used for internal computations + typedef lemon::Tolerance Tolerance; + + /// \brief The path type of the found cycles + /// + /// The path type of the found cycles. + /// It must conform to the \ref lemon::concepts::Path "Path" concept + /// and it must have an \c addBack() function. + typedef lemon::Path Path; + }; + + // Default traits class for integer cost types + template + struct HowardMmcDefaultTraits + { + typedef GR Digraph; + typedef CM CostMap; + typedef typename CostMap::Value Cost; +#ifdef LEMON_HAVE_LONG_LONG + typedef long long LargeCost; +#else + typedef long LargeCost; +#endif + typedef lemon::Tolerance Tolerance; + typedef lemon::Path Path; + }; + + + /// \addtogroup min_mean_cycle + /// @{ + + /// \brief Implementation of Howard's algorithm for finding a minimum + /// mean cycle. + /// + /// This class implements Howard's policy iteration algorithm for finding + /// a directed cycle of minimum mean cost in a digraph + /// \ref amo93networkflows, \ref dasdan98minmeancycle. + /// This class provides the most efficient algorithm for the + /// minimum mean cycle problem, though the best known theoretical + /// bound on its running time is exponential. + /// + /// \tparam GR The type of the digraph the algorithm runs on. + /// \tparam CM The type of the cost map. The default + /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap". + /// \tparam TR The traits class that defines various types used by the + /// algorithm. By default, it is \ref HowardMmcDefaultTraits + /// "HowardMmcDefaultTraits". + /// In most cases, this parameter should not be set directly, + /// consider to use the named template parameters instead. +#ifdef DOXYGEN + template +#else + template < typename GR, + typename CM = typename GR::template ArcMap, + typename TR = HowardMmcDefaultTraits > +#endif + class HowardMmc + { + public: + + /// The type of the digraph + typedef typename TR::Digraph Digraph; + /// The type of the cost map + typedef typename TR::CostMap CostMap; + /// The type of the arc costs + typedef typename TR::Cost Cost; + + /// \brief The large cost type + /// + /// The large cost type used for internal computations. + /// By default, it is \c long \c long if the \c Cost type is integer, + /// otherwise it is \c double. + typedef typename TR::LargeCost LargeCost; + + /// The tolerance type + typedef typename TR::Tolerance Tolerance; + + /// \brief The path type of the found cycles + /// + /// The path type of the found cycles. + /// Using the \ref HowardMmcDefaultTraits "default traits class", + /// it is \ref lemon::Path "Path". + typedef typename TR::Path Path; + + /// The \ref HowardMmcDefaultTraits "traits class" of the algorithm + typedef TR Traits; + + private: + + TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); + + // The digraph the algorithm runs on + const Digraph &_gr; + // The cost of the arcs + const CostMap &_cost; + + // Data for the found cycles + bool _curr_found, _best_found; + LargeCost _curr_cost, _best_cost; + int _curr_size, _best_size; + Node _curr_node, _best_node; + + Path *_cycle_path; + bool _local_path; + + // Internal data used by the algorithm + typename Digraph::template NodeMap _policy; + typename Digraph::template NodeMap _reached; + typename Digraph::template NodeMap _level; + typename Digraph::template NodeMap _dist; + + // Data for storing the strongly connected components + int _comp_num; + typename Digraph::template NodeMap _comp; + std::vector > _comp_nodes; + std::vector* _nodes; + typename Digraph::template NodeMap > _in_arcs; + + // Queue used for BFS search + std::vector _queue; + int _qfront, _qback; + + Tolerance _tolerance; + + // Infinite constant + const LargeCost INF; + + public: + + /// \name Named Template Parameters + /// @{ + + template + struct SetLargeCostTraits : public Traits { + typedef T LargeCost; + typedef lemon::Tolerance Tolerance; + }; + + /// \brief \ref named-templ-param "Named parameter" for setting + /// \c LargeCost type. + /// + /// \ref named-templ-param "Named parameter" for setting \c LargeCost + /// type. It is used for internal computations in the algorithm. + template + struct SetLargeCost + : public HowardMmc > { + typedef HowardMmc > Create; + }; + + template + struct SetPathTraits : public Traits { + typedef T Path; + }; + + /// \brief \ref named-templ-param "Named parameter" for setting + /// \c %Path type. + /// + /// \ref named-templ-param "Named parameter" for setting the \c %Path + /// type of the found cycles. + /// It must conform to the \ref lemon::concepts::Path "Path" concept + /// and it must have an \c addBack() function. + template + struct SetPath + : public HowardMmc > { + typedef HowardMmc > Create; + }; + + /// @} + + protected: + + HowardMmc() {} + + public: + + /// \brief Constructor. + /// + /// The constructor of the class. + /// + /// \param digraph The digraph the algorithm runs on. + /// \param cost The costs of the arcs. + HowardMmc( const Digraph &digraph, + const CostMap &cost ) : + _gr(digraph), _cost(cost), _best_found(false), + _best_cost(0), _best_size(1), _cycle_path(NULL), _local_path(false), + _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph), + _comp(digraph), _in_arcs(digraph), + INF(std::numeric_limits::has_infinity ? + std::numeric_limits::infinity() : + std::numeric_limits::max()) + {} + + /// Destructor. + ~HowardMmc() { + if (_local_path) delete _cycle_path; + } + + /// \brief Set the path structure for storing the found cycle. + /// + /// This function sets an external path structure for storing the + /// found cycle. + /// + /// If you don't call this function before calling \ref run() or + /// \ref findCycleMean(), it will allocate a local \ref Path "path" + /// structure. The destuctor deallocates this automatically + /// allocated object, of course. + /// + /// \note The algorithm calls only the \ref lemon::Path::addBack() + /// "addBack()" function of the given path structure. + /// + /// \return (*this) + HowardMmc& cycle(Path &path) { + if (_local_path) { + delete _cycle_path; + _local_path = false; + } + _cycle_path = &path; + return *this; + } + + /// \brief Set the tolerance used by the algorithm. + /// + /// This function sets the tolerance object used by the algorithm. + /// + /// \return (*this) + HowardMmc& tolerance(const Tolerance& tolerance) { + _tolerance = tolerance; + return *this; + } + + /// \brief Return a const reference to the tolerance. + /// + /// This function returns a const reference to the tolerance object + /// used by the algorithm. + const Tolerance& tolerance() const { + return _tolerance; + } + + /// \name Execution control + /// The simplest way to execute the algorithm is to call the \ref run() + /// function.\n + /// If you only need the minimum mean cost, you may call + /// \ref findCycleMean(). + + /// @{ + + /// \brief Run the algorithm. + /// + /// This function runs the algorithm. + /// It can be called more than once (e.g. if the underlying digraph + /// and/or the arc costs have been modified). + /// + /// \return \c true if a directed cycle exists in the digraph. + /// + /// \note mmc.run() is just a shortcut of the following code. + /// \code + /// return mmc.findCycleMean() && mmc.findCycle(); + /// \endcode + bool run() { + return findCycleMean() && findCycle(); + } + + /// \brief Find the minimum cycle mean. + /// + /// This function finds the minimum mean cost of the directed + /// cycles in the digraph. + /// + /// \return \c true if a directed cycle exists in the digraph. + bool findCycleMean() { + // Initialize and find strongly connected components + init(); + findComponents(); + + // Find the minimum cycle mean in the components + for (int comp = 0; comp < _comp_num; ++comp) { + // Find the minimum mean cycle in the current component + if (!buildPolicyGraph(comp)) continue; + while (true) { + findPolicyCycle(); + if (!computeNodeDistances()) break; + } + // Update the best cycle (global minimum mean cycle) + if ( _curr_found && (!_best_found || + _curr_cost * _best_size < _best_cost * _curr_size) ) { + _best_found = true; + _best_cost = _curr_cost; + _best_size = _curr_size; + _best_node = _curr_node; + } + } + return _best_found; + } + + /// \brief Find a minimum mean directed cycle. + /// + /// This function finds a directed cycle of minimum mean cost + /// in the digraph using the data computed by findCycleMean(). + /// + /// \return \c true if a directed cycle exists in the digraph. + /// + /// \pre \ref findCycleMean() must be called before using this function. + bool findCycle() { + if (!_best_found) return false; + _cycle_path->addBack(_policy[_best_node]); + for ( Node v = _best_node; + (v = _gr.target(_policy[v])) != _best_node; ) { + _cycle_path->addBack(_policy[v]); + } + return true; + } + + /// @} + + /// \name Query Functions + /// The results of the algorithm can be obtained using these + /// functions.\n + /// The algorithm should be executed before using them. + + /// @{ + + /// \brief Return the total cost of the found cycle. + /// + /// This function returns the total cost of the found cycle. + /// + /// \pre \ref run() or \ref findCycleMean() must be called before + /// using this function. + Cost cycleCost() const { + return static_cast(_best_cost); + } + + /// \brief Return the number of arcs on the found cycle. + /// + /// This function returns the number of arcs on the found cycle. + /// + /// \pre \ref run() or \ref findCycleMean() must be called before + /// using this function. + int cycleSize() const { + return _best_size; + } + + /// \brief Return the mean cost of the found cycle. + /// + /// This function returns the mean cost of the found cycle. + /// + /// \note alg.cycleMean() is just a shortcut of the + /// following code. + /// \code + /// return static_cast(alg.cycleCost()) / alg.cycleSize(); + /// \endcode + /// + /// \pre \ref run() or \ref findCycleMean() must be called before + /// using this function. + double cycleMean() const { + return static_cast(_best_cost) / _best_size; + } + + /// \brief Return the found cycle. + /// + /// This function returns a const reference to the path structure + /// storing the found cycle. + /// + /// \pre \ref run() or \ref findCycle() must be called before using + /// this function. + const Path& cycle() const { + return *_cycle_path; + } + + ///@} + + private: + + // Initialize + void init() { + if (!_cycle_path) { + _local_path = true; + _cycle_path = new Path; + } + _queue.resize(countNodes(_gr)); + _best_found = false; + _best_cost = 0; + _best_size = 1; + _cycle_path->clear(); + } + + // Find strongly connected components and initialize _comp_nodes + // and _in_arcs + void findComponents() { + _comp_num = stronglyConnectedComponents(_gr, _comp); + _comp_nodes.resize(_comp_num); + if (_comp_num == 1) { + _comp_nodes[0].clear(); + for (NodeIt n(_gr); n != INVALID; ++n) { + _comp_nodes[0].push_back(n); + _in_arcs[n].clear(); + for (InArcIt a(_gr, n); a != INVALID; ++a) { + _in_arcs[n].push_back(a); + } + } + } else { + for (int i = 0; i < _comp_num; ++i) + _comp_nodes[i].clear(); + for (NodeIt n(_gr); n != INVALID; ++n) { + int k = _comp[n]; + _comp_nodes[k].push_back(n); + _in_arcs[n].clear(); + for (InArcIt a(_gr, n); a != INVALID; ++a) { + if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a); + } + } + } + } + + // Build the policy graph in the given strongly connected component + // (the out-degree of every node is 1) + bool buildPolicyGraph(int comp) { + _nodes = &(_comp_nodes[comp]); + if (_nodes->size() < 1 || + (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) { + return false; + } + for (int i = 0; i < int(_nodes->size()); ++i) { + _dist[(*_nodes)[i]] = INF; + } + Node u, v; + Arc e; + for (int i = 0; i < int(_nodes->size()); ++i) { + v = (*_nodes)[i]; + for (int j = 0; j < int(_in_arcs[v].size()); ++j) { + e = _in_arcs[v][j]; + u = _gr.source(e); + if (_cost[e] < _dist[u]) { + _dist[u] = _cost[e]; + _policy[u] = e; + } + } + } + return true; + } + + // Find the minimum mean cycle in the policy graph + void findPolicyCycle() { + for (int i = 0; i < int(_nodes->size()); ++i) { + _level[(*_nodes)[i]] = -1; + } + LargeCost ccost; + int csize; + Node u, v; + _curr_found = false; + for (int i = 0; i < int(_nodes->size()); ++i) { + u = (*_nodes)[i]; + if (_level[u] >= 0) continue; + for (; _level[u] < 0; u = _gr.target(_policy[u])) { + _level[u] = i; + } + if (_level[u] == i) { + // A cycle is found + ccost = _cost[_policy[u]]; + csize = 1; + for (v = u; (v = _gr.target(_policy[v])) != u; ) { + ccost += _cost[_policy[v]]; + ++csize; + } + if ( !_curr_found || + (ccost * _curr_size < _curr_cost * csize) ) { + _curr_found = true; + _curr_cost = ccost; + _curr_size = csize; + _curr_node = u; + } + } + } + } + + // Contract the policy graph and compute node distances + bool computeNodeDistances() { + // Find the component of the main cycle and compute node distances + // using reverse BFS + for (int i = 0; i < int(_nodes->size()); ++i) { + _reached[(*_nodes)[i]] = false; + } + _qfront = _qback = 0; + _queue[0] = _curr_node; + _reached[_curr_node] = true; + _dist[_curr_node] = 0; + Node u, v; + Arc e; + while (_qfront <= _qback) { + v = _queue[_qfront++]; + for (int j = 0; j < int(_in_arcs[v].size()); ++j) { + e = _in_arcs[v][j]; + u = _gr.source(e); + if (_policy[u] == e && !_reached[u]) { + _reached[u] = true; + _dist[u] = _dist[v] + _cost[e] * _curr_size - _curr_cost; + _queue[++_qback] = u; + } + } + } + + // Connect all other nodes to this component and compute node + // distances using reverse BFS + _qfront = 0; + while (_qback < int(_nodes->size())-1) { + v = _queue[_qfront++]; + for (int j = 0; j < int(_in_arcs[v].size()); ++j) { + e = _in_arcs[v][j]; + u = _gr.source(e); + if (!_reached[u]) { + _reached[u] = true; + _policy[u] = e; + _dist[u] = _dist[v] + _cost[e] * _curr_size - _curr_cost; + _queue[++_qback] = u; + } + } + } + + // Improve node distances + bool improved = false; + for (int i = 0; i < int(_nodes->size()); ++i) { + v = (*_nodes)[i]; + for (int j = 0; j < int(_in_arcs[v].size()); ++j) { + e = _in_arcs[v][j]; + u = _gr.source(e); + LargeCost delta = _dist[v] + _cost[e] * _curr_size - _curr_cost; + if (_tolerance.less(delta, _dist[u])) { + _dist[u] = delta; + _policy[u] = e; + improved = true; + } + } + } + return improved; + } + + }; //class HowardMmc + + ///@} + +} //namespace lemon + +#endif //LEMON_HOWARD_MMC_H