diff --git a/lemon/network_simplex.h b/lemon/network_simplex.h --- a/lemon/network_simplex.h +++ b/lemon/network_simplex.h @@ -56,10 +56,10 @@ /// specified, then default values will be used. /// /// \tparam GR The digraph type the algorithm runs on. - /// \tparam F The value type used for flow amounts, capacity bounds + /// \tparam V The value type used for flow amounts, capacity bounds /// and supply values in the algorithm. By default it is \c int. /// \tparam C The value type used for costs and potentials in the - /// algorithm. By default it is the same as \c F. + /// algorithm. By default it is the same as \c V. /// /// \warning Both value types must be signed and all input data must /// be integer. @@ -67,23 +67,23 @@ /// \note %NetworkSimplex provides five different pivot rule /// implementations, from which the most efficient one is used /// by default. For more information see \ref PivotRule. - template + template class NetworkSimplex { public: /// The flow type of the algorithm - typedef F Flow; + typedef V Value; /// The cost type of the algorithm typedef C Cost; #ifdef DOXYGEN /// The type of the flow map - typedef GR::ArcMap FlowMap; + typedef GR::ArcMap FlowMap; /// The type of the potential map typedef GR::NodeMap PotentialMap; #else /// The type of the flow map - typedef typename GR::template ArcMap FlowMap; + typedef typename GR::template ArcMap FlowMap; /// The type of the potential map typedef typename GR::template NodeMap PotentialMap; #endif @@ -206,15 +206,15 @@ TEMPLATE_DIGRAPH_TYPEDEFS(GR); - typedef typename GR::template ArcMap FlowArcMap; + typedef typename GR::template ArcMap ValueArcMap; typedef typename GR::template ArcMap CostArcMap; - typedef typename GR::template NodeMap FlowNodeMap; + typedef typename GR::template NodeMap ValueNodeMap; typedef std::vector ArcVector; typedef std::vector NodeVector; typedef std::vector IntVector; typedef std::vector BoolVector; - typedef std::vector FlowVector; + typedef std::vector FlowVector; typedef std::vector CostVector; // State constants for arcs @@ -232,16 +232,16 @@ int _arc_num; // Parameters of the problem - FlowArcMap *_plower; - FlowArcMap *_pupper; + ValueArcMap *_plower; + ValueArcMap *_pupper; CostArcMap *_pcost; - FlowNodeMap *_psupply; + ValueNodeMap *_psupply; bool _pstsup; Node _psource, _ptarget; - Flow _pstflow; + Value _pstflow; SupplyType _stype; - Flow _sum_supply; + Value _sum_supply; // Result maps FlowMap *_flow_map; @@ -278,16 +278,16 @@ int in_arc, join, u_in, v_in, u_out, v_out; int first, second, right, last; int stem, par_stem, new_stem; - Flow delta; + Value delta; public: /// \brief Constant for infinite upper bounds (capacities). /// /// Constant for infinite upper bounds (capacities). - /// It is \c std::numeric_limits::infinity() if available, - /// \c std::numeric_limits::max() otherwise. - const Flow INF; + /// It is \c std::numeric_limits::infinity() if available, + /// \c std::numeric_limits::max() otherwise. + const Value INF; private: @@ -695,12 +695,12 @@ _flow_map(NULL), _potential_map(NULL), _local_flow(false), _local_potential(false), _node_id(graph), - INF(std::numeric_limits::has_infinity ? - std::numeric_limits::infinity() : - std::numeric_limits::max()) + INF(std::numeric_limits::has_infinity ? + std::numeric_limits::infinity() : + std::numeric_limits::max()) { // Check the value types - LEMON_ASSERT(std::numeric_limits::is_signed, + LEMON_ASSERT(std::numeric_limits::is_signed, "The flow type of NetworkSimplex must be signed"); LEMON_ASSERT(std::numeric_limits::is_signed, "The cost type of NetworkSimplex must be signed"); @@ -725,14 +725,14 @@ /// will be set to zero on all arcs. /// /// \param map An arc map storing the lower bounds. - /// Its \c Value type must be convertible to the \c Flow type + /// Its \c Value type must be convertible to the \c Value type /// of the algorithm. /// /// \return (*this) template NetworkSimplex& lowerMap(const LowerMap& map) { delete _plower; - _plower = new FlowArcMap(_graph); + _plower = new ValueArcMap(_graph); for (ArcIt a(_graph); a != INVALID; ++a) { (*_plower)[a] = map[a]; } @@ -747,14 +747,14 @@ /// unbounded from above on each arc). /// /// \param map An arc map storing the upper bounds. - /// Its \c Value type must be convertible to the \c Flow type + /// Its \c Value type must be convertible to the \c Value type /// of the algorithm. /// /// \return (*this) template NetworkSimplex& upperMap(const UpperMap& map) { delete _pupper; - _pupper = new FlowArcMap(_graph); + _pupper = new ValueArcMap(_graph); for (ArcIt a(_graph); a != INVALID; ++a) { (*_pupper)[a] = map[a]; } @@ -790,7 +790,7 @@ /// (It makes sense only if non-zero lower bounds are given.) /// /// \param map A node map storing the supply values. - /// Its \c Value type must be convertible to the \c Flow type + /// Its \c Value type must be convertible to the \c Value type /// of the algorithm. /// /// \return (*this) @@ -798,7 +798,7 @@ NetworkSimplex& supplyMap(const SupplyMap& map) { delete _psupply; _pstsup = false; - _psupply = new FlowNodeMap(_graph); + _psupply = new ValueNodeMap(_graph); for (NodeIt n(_graph); n != INVALID; ++n) { (*_psupply)[n] = map[n]; } @@ -823,7 +823,7 @@ /// (i.e. the supply of \c s and the demand of \c t). /// /// \return (*this) - NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) { + NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { delete _psupply; _psupply = NULL; _pstsup = true; @@ -1025,7 +1025,7 @@ /// This function returns the flow on the given arc. /// /// \pre \ref run() must be called before using this function. - Flow flow(const Arc& a) const { + Value flow(const Arc& a) const { return (*_flow_map)[a]; } @@ -1204,7 +1204,7 @@ // Remove non-zero lower bounds if (_plower) { for (int i = 0; i != _arc_num; ++i) { - Flow c = (*_plower)[_arc_ref[i]]; + Value c = (*_plower)[_arc_ref[i]]; if (c > 0) { if (_cap[i] < INF) _cap[i] -= c; _supply[_source[i]] -= c; @@ -1275,7 +1275,7 @@ } delta = _cap[in_arc]; int result = 0; - Flow d; + Value d; int e; // Search the cycle along the path form the first node to the root @@ -1315,7 +1315,7 @@ void changeFlow(bool change) { // Augment along the cycle if (delta > 0) { - Flow val = _state[in_arc] * delta; + Value val = _state[in_arc] * delta; _flow[in_arc] += val; for (int u = _source[in_arc]; u != join; u = _parent[u]) { _flow[_pred[u]] += _forward[u] ? -val : val;