/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#include <lemon/list_graph.h>
#include <lemon/lgf_reader.h>
#include <lemon/network_simplex.h>
#include <lemon/capacity_scaling.h>
#include <lemon/cost_scaling.h>
#include <lemon/cycle_canceling.h>
#include <lemon/concepts/digraph.h>
#include <lemon/concepts/heap.h>
#include <lemon/concept_check.h>
"label sup1 sup2 sup3 sup4 sup5 sup6\n"
" 12 -20 -27 0 -30 -30 -20\n"
" cost cap low1 low2 low3\n"
typedef ListDigraph Digraph;
DIGRAPH_TYPEDEFS(ListDigraph);
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr);
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr);
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max());
Digraph::ArcMap<int> neg1_c(neg1_gr), neg1_l1(neg1_gr), neg1_l2(neg1_gr);
ConstMap<Arc, int> neg1_u1(std::numeric_limits<int>::max()), neg1_u2(5000);
Digraph::NodeMap<int> neg1_s(neg1_gr);
Digraph::ArcMap<int> neg2_c(neg2_gr);
ConstMap<Arc, int> neg2_l(0), neg2_u(1000);
Digraph::NodeMap<int> neg2_s(neg2_gr);
// Check the interface of an MCF algorithm
template <typename GR, typename Value, typename Cost>
checkConcept<concepts::Digraph, GR>();
const Constraints& me = *this;
const MCF& const_mcf = mcf;
.stSupply(me.n, me.n, me.k)
c = const_mcf.totalCost();
x = const_mcf.template totalCost<double>();
v = const_mcf.flow(me.a);
c = const_mcf.potential(me.n);
const_mcf.potentialMap(pm);
typedef typename GR::Node Node;
typedef typename GR::Arc Arc;
typedef concepts::ReadMap<Node, Value> NM;
typedef concepts::ReadMap<Arc, Value> VAM;
typedef concepts::ReadMap<Arc, Cost> CAM;
typedef concepts::WriteMap<Arc, Value> FlowMap;
typedef concepts::WriteMap<Node, Cost> PotMap;
// Check the feasibility of the given flow (primal soluiton)
template < typename GR, typename LM, typename UM,
typename SM, typename FM >
bool checkFlow( const GR& gr, const LM& lower, const UM& upper,
const SM& supply, const FM& flow,
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
for (ArcIt e(gr); e != INVALID; ++e) {
if (flow[e] < lower[e] || flow[e] > upper[e]) return false;
for (NodeIt n(gr); n != INVALID; ++n) {
typename SM::Value sum = 0;
for (OutArcIt e(gr, n); e != INVALID; ++e)
for (InArcIt e(gr, n); e != INVALID; ++e)
bool b = (type == EQ && sum == supply[n]) ||
(type == GEQ && sum >= supply[n]) ||
(type == LEQ && sum <= supply[n]);
// Check the feasibility of the given potentials (dual soluiton)
// using the "Complementary Slackness" optimality condition
template < typename GR, typename LM, typename UM,
typename CM, typename SM, typename FM, typename PM >
bool checkPotential( const GR& gr, const LM& lower, const UM& upper,
const CM& cost, const SM& supply, const FM& flow,
const PM& pi, SupplyType type )
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
for (ArcIt e(gr); opt && e != INVALID; ++e) {
typename CM::Value red_cost =
cost[e] + pi[gr.source(e)] - pi[gr.target(e)];
(red_cost > 0 && flow[e] == lower[e]) ||
(red_cost < 0 && flow[e] == upper[e]);
for (NodeIt n(gr); opt && n != INVALID; ++n) {
typename SM::Value sum = 0;
for (OutArcIt e(gr, n); e != INVALID; ++e)
for (InArcIt e(gr, n); e != INVALID; ++e)
opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0);
opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0);
// Check whether the dual cost is equal to the primal cost
template < typename GR, typename LM, typename UM,
typename CM, typename SM, typename PM >
bool checkDualCost( const GR& gr, const LM& lower, const UM& upper,
const CM& cost, const SM& supply, const PM& pi,
typename CM::Value total )
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
typename CM::Value dual_cost = 0;
for (NodeIt n(gr); n != INVALID; ++n) {
red_supply[n] = supply[n];
for (ArcIt a(gr); a != INVALID; ++a) {
dual_cost += lower[a] * cost[a];
red_supply[gr.source(a)] -= lower[a];
red_supply[gr.target(a)] += lower[a];
for (NodeIt n(gr); n != INVALID; ++n) {
dual_cost -= red_supply[n] * pi[n];
for (ArcIt a(gr); a != INVALID; ++a) {
typename CM::Value red_cost =
cost[a] + pi[gr.source(a)] - pi[gr.target(a)];
dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0);
return dual_cost == total;
// Run a minimum cost flow algorithm and check the results
template < typename MCF, typename GR,
typename LM, typename UM,
typename CM, typename SM,
void checkMcf( const MCF& mcf, PT mcf_result,
const GR& gr, const LM& lower, const UM& upper,
const CM& cost, const SM& supply,
PT result, bool optimal, typename CM::Value total,
const std::string &test_id = "",
check(mcf_result == result, "Wrong result " + test_id);
typename GR::template ArcMap<typename SM::Value> flow(gr);
typename GR::template NodeMap<typename CM::Value> pi(gr);
check(checkFlow(gr, lower, upper, supply, flow, type),
"The flow is not feasible " + test_id);
check(mcf.totalCost() == total, "The flow is not optimal " + test_id);
check(checkPotential(gr, lower, upper, cost, supply, flow, pi, type),
"Wrong potentials " + test_id);
check(checkDualCost(gr, lower, upper, cost, supply, pi, total),
"Wrong dual cost " + test_id);
template < typename MCF, typename Param >
void runMcfGeqTests( Param param,
const std::string &test_str = "",
bool full_neg_cost_support = false )
MCF mcf1(gr), mcf2(neg1_gr), mcf3(neg2_gr);
mcf1.upperMap(u).costMap(c).supplyMap(s1);
checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s1,
mcf1.OPTIMAL, true, 5240, test_str + "-1");
checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s2,
mcf1.OPTIMAL, true, 7620, test_str + "-2");
mcf1.lowerMap(l2).supplyMap(s1);
checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s1,
mcf1.OPTIMAL, true, 5970, test_str + "-3");
checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s2,
mcf1.OPTIMAL, true, 8010, test_str + "-4");
mcf1.reset().supplyMap(s1);
checkMcf(mcf1, mcf1.run(param), gr, l1, cu, cc, s1,
mcf1.OPTIMAL, true, 74, test_str + "-5");
mcf1.lowerMap(l2).stSupply(v, w, 27);
checkMcf(mcf1, mcf1.run(param), gr, l2, cu, cc, s2,
mcf1.OPTIMAL, true, 94, test_str + "-6");
checkMcf(mcf1, mcf1.run(param), gr, l1, cu, cc, s3,
mcf1.OPTIMAL, true, 0, test_str + "-7");
mcf1.lowerMap(l2).upperMap(u);
checkMcf(mcf1, mcf1.run(param), gr, l2, u, cc, s3,
mcf1.INFEASIBLE, false, 0, test_str + "-8");
mcf1.lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4);
checkMcf(mcf1, mcf1.run(param), gr, l3, u, c, s4,
mcf1.OPTIMAL, true, 6360, test_str + "-9");
// Tests for the GEQ form
mcf1.reset().upperMap(u).costMap(c).supplyMap(s5);
checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s5,
mcf1.OPTIMAL, true, 3530, test_str + "-10", GEQ);
checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s5,
mcf1.OPTIMAL, true, 4540, test_str + "-11", GEQ);
checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s6,
mcf1.INFEASIBLE, false, 0, test_str + "-12", GEQ);
// Tests with negative costs
mcf2.lowerMap(neg1_l1).costMap(neg1_c).supplyMap(neg1_s);
checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l1, neg1_u1, neg1_c, neg1_s,
mcf2.UNBOUNDED, false, 0, test_str + "-13");
checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l1, neg1_u2, neg1_c, neg1_s,
mcf2.OPTIMAL, true, -40000, test_str + "-14");
mcf2.reset().lowerMap(neg1_l2).costMap(neg1_c).supplyMap(neg1_s);
checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l2, neg1_u1, neg1_c, neg1_s,
mcf2.UNBOUNDED, false, 0, test_str + "-15");
mcf3.costMap(neg2_c).supplyMap(neg2_s);
if (full_neg_cost_support) {
checkMcf(mcf3, mcf3.run(param), neg2_gr, neg2_l, neg2_u, neg2_c, neg2_s,
mcf3.OPTIMAL, true, -300, test_str + "-16", GEQ);
checkMcf(mcf3, mcf3.run(param), neg2_gr, neg2_l, neg2_u, neg2_c, neg2_s,
mcf3.UNBOUNDED, false, 0, test_str + "-17", GEQ);
checkMcf(mcf3, mcf3.run(param), neg2_gr, neg2_l, neg2_u, neg2_c, neg2_s,
mcf3.OPTIMAL, true, -300, test_str + "-18", GEQ);
template < typename MCF, typename Param >
void runMcfLeqTests( Param param,
const std::string &test_str = "" )
// Tests for the LEQ form
mcf1.supplyType(mcf1.LEQ);
mcf1.upperMap(u).costMap(c).supplyMap(s6);
checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s6,
mcf1.OPTIMAL, true, 5080, test_str + "-19", LEQ);
checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s6,
mcf1.OPTIMAL, true, 5930, test_str + "-20", LEQ);
checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s5,
mcf1.INFEASIBLE, false, 0, test_str + "-21", LEQ);
// Read the test networks
std::istringstream input(test_lgf);
DigraphReader<Digraph>(gr, input)
std::istringstream neg_inp1(test_neg1_lgf);
DigraphReader<Digraph>(neg1_gr, neg_inp1)
std::istringstream neg_inp2(test_neg2_lgf);
DigraphReader<Digraph>(neg2_gr, neg_inp2)
// Check the interface of NetworkSimplex
typedef concepts::Digraph GR;
checkConcept< McfClassConcept<GR, int, int>,
checkConcept< McfClassConcept<GR, double, double>,
NetworkSimplex<GR, double> >();
checkConcept< McfClassConcept<GR, int, double>,
NetworkSimplex<GR, int, double> >();
// Check the interface of CapacityScaling
typedef concepts::Digraph GR;
checkConcept< McfClassConcept<GR, int, int>,
checkConcept< McfClassConcept<GR, double, double>,
CapacityScaling<GR, double> >();
checkConcept< McfClassConcept<GR, int, double>,
CapacityScaling<GR, int, double> >();
typedef CapacityScaling<GR>::
SetHeap<concepts::Heap<int, RangeMap<int> > >::Create CAS;
checkConcept< McfClassConcept<GR, int, int>, CAS >();
// Check the interface of CostScaling
typedef concepts::Digraph GR;
checkConcept< McfClassConcept<GR, int, int>,
checkConcept< McfClassConcept<GR, double, double>,
CostScaling<GR, double> >();
checkConcept< McfClassConcept<GR, int, double>,
CostScaling<GR, int, double> >();
typedef CostScaling<GR>::
SetLargeCost<double>::Create COS;
checkConcept< McfClassConcept<GR, int, int>, COS >();
// Check the interface of CycleCanceling
typedef concepts::Digraph GR;
checkConcept< McfClassConcept<GR, int, int>,
checkConcept< McfClassConcept<GR, double, double>,
CycleCanceling<GR, double> >();
checkConcept< McfClassConcept<GR, int, double>,
CycleCanceling<GR, int, double> >();
typedef NetworkSimplex<Digraph> MCF;
runMcfGeqTests<MCF>(MCF::FIRST_ELIGIBLE, "NS-FE", true);
runMcfLeqTests<MCF>(MCF::FIRST_ELIGIBLE, "NS-FE");
runMcfGeqTests<MCF>(MCF::BEST_ELIGIBLE, "NS-BE", true);
runMcfLeqTests<MCF>(MCF::BEST_ELIGIBLE, "NS-BE");
runMcfGeqTests<MCF>(MCF::BLOCK_SEARCH, "NS-BS", true);
runMcfLeqTests<MCF>(MCF::BLOCK_SEARCH, "NS-BS");
runMcfGeqTests<MCF>(MCF::CANDIDATE_LIST, "NS-CL", true);
runMcfLeqTests<MCF>(MCF::CANDIDATE_LIST, "NS-CL");
runMcfGeqTests<MCF>(MCF::ALTERING_LIST, "NS-AL", true);
runMcfLeqTests<MCF>(MCF::ALTERING_LIST, "NS-AL");
typedef CapacityScaling<Digraph> MCF;
runMcfGeqTests<MCF>(0, "SSP");
runMcfGeqTests<MCF>(2, "CAS");
typedef CostScaling<Digraph> MCF;
runMcfGeqTests<MCF>(MCF::PUSH, "COS-PR");
runMcfGeqTests<MCF>(MCF::AUGMENT, "COS-AR");
runMcfGeqTests<MCF>(MCF::PARTIAL_AUGMENT, "COS-PAR");
typedef CycleCanceling<Digraph> MCF;
runMcfGeqTests<MCF>(MCF::SIMPLE_CYCLE_CANCELING, "SCC");
runMcfGeqTests<MCF>(MCF::MINIMUM_MEAN_CYCLE_CANCELING, "MMCC");
runMcfGeqTests<MCF>(MCF::CANCEL_AND_TIGHTEN, "CAT");