Location: LEMON/LEMON-main/lemon/elevator.h

Load file history
gravatar
alpar (Alpar Juttner)
Port DIMACS tools from svn -r3516 Namely, - apply migrate script - apply unify sources - break long lines - Fixes the compilation - dim_to_lgf -> dimacs-to-lgf - better .hgignore - shorten the doc of dimacs-to-lgf
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_ELEVATOR_H
#define LEMON_ELEVATOR_H
///\ingroup auxdat
///\file
///\brief Elevator class
///
///Elevator class implements an efficient data structure
///for labeling items in push-relabel type algorithms.
///
#include <lemon/bits/traits.h>
namespace lemon {
///Class for handling "labels" in push-relabel type algorithms.
///A class for handling "labels" in push-relabel type algorithms.
///
///\ingroup auxdat
///Using this class you can assign "labels" (nonnegative integer numbers)
///to the edges or nodes of a graph, manipulate and query them through
///operations typically arising in "push-relabel" type algorithms.
///
///Each item is either \em active or not, and you can also choose a
///highest level active item.
///
///\sa LinkedElevator
///
///\param Graph Type of the underlying graph.
///\param Item Type of the items the data is assigned to (Graph::Node,
///Graph::Arc, Graph::Edge).
template<class Graph, class Item>
class Elevator
{
public:
typedef Item Key;
typedef int Value;
private:
typedef Item *Vit;
typedef typename ItemSetTraits<Graph,Item>::template Map<Vit>::Type VitMap;
typedef typename ItemSetTraits<Graph,Item>::template Map<int>::Type IntMap;
const Graph &_g;
int _max_level;
int _item_num;
VitMap _where;
IntMap _level;
std::vector<Item> _items;
std::vector<Vit> _first;
std::vector<Vit> _last_active;
int _highest_active;
void copy(Item i, Vit p)
{
_where.set(*p=i,p);
}
void copy(Vit s, Vit p)
{
if(s!=p)
{
Item i=*s;
*p=i;
_where.set(i,p);
}
}
void swap(Vit i, Vit j)
{
Item ti=*i;
Vit ct = _where[ti];
_where.set(ti,_where[*i=*j]);
_where.set(*j,ct);
*j=ti;
}
public:
///Constructor with given maximum level.
///Constructor with given maximum level.
///
///\param graph The underlying graph.
///\param max_level The maximum allowed level.
///Set the range of the possible labels to <tt>[0..max_level]</tt>.
Elevator(const Graph &graph,int max_level) :
_g(graph),
_max_level(max_level),
_item_num(_max_level),
_where(graph),
_level(graph,0),
_items(_max_level),
_first(_max_level+2),
_last_active(_max_level+2),
_highest_active(-1) {}
///Constructor.
///Constructor.
///
///\param graph The underlying graph.
///Set the range of the possible labels to <tt>[0..max_level]</tt>,
///where \c max_level is equal to the number of labeled items in the graph.
Elevator(const Graph &graph) :
_g(graph),
_max_level(countItems<Graph, Item>(graph)),
_item_num(_max_level),
_where(graph),
_level(graph,0),
_items(_max_level),
_first(_max_level+2),
_last_active(_max_level+2),
_highest_active(-1)
{
}
///Activate item \c i.
///Activate item \c i.
///\pre Item \c i shouldn't be active before.
void activate(Item i)
{
const int l=_level[i];
swap(_where[i],++_last_active[l]);
if(l>_highest_active) _highest_active=l;
}
///Deactivate item \c i.
///Deactivate item \c i.
///\pre Item \c i must be active before.
void deactivate(Item i)
{
swap(_where[i],_last_active[_level[i]]--);
while(_highest_active>=0 &&
_last_active[_highest_active]<_first[_highest_active])
_highest_active--;
}
///Query whether item \c i is active
bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; }
///Return the level of item \c i.
int operator[](Item i) const { return _level[i]; }
///Return the number of items on level \c l.
int onLevel(int l) const
{
return _first[l+1]-_first[l];
}
///Return true if level \c l is empty.
bool emptyLevel(int l) const
{
return _first[l+1]-_first[l]==0;
}
///Return the number of items above level \c l.
int aboveLevel(int l) const
{
return _first[_max_level+1]-_first[l+1];
}
///Return the number of active items on level \c l.
int activesOnLevel(int l) const
{
return _last_active[l]-_first[l]+1;
}
///Return true if there is no active item on level \c l.
bool activeFree(int l) const
{
return _last_active[l]<_first[l];
}
///Return the maximum allowed level.
int maxLevel() const
{
return _max_level;
}
///\name Highest Active Item
///Functions for working with the highest level
///active item.
///@{
///Return a highest level active item.
///Return a highest level active item or INVALID if there is no active
///item.
Item highestActive() const
{
return _highest_active>=0?*_last_active[_highest_active]:INVALID;
}
///Return the highest active level.
///Return the level of the highest active item or -1 if there is no active
///item.
int highestActiveLevel() const
{
return _highest_active;
}
///Lift the highest active item by one.
///Lift the item returned by highestActive() by one.
///
void liftHighestActive()
{
Item it = *_last_active[_highest_active];
_level.set(it,_level[it]+1);
swap(_last_active[_highest_active]--,_last_active[_highest_active+1]);
--_first[++_highest_active];
}
///Lift the highest active item to the given level.
///Lift the item returned by highestActive() to level \c new_level.
///
///\warning \c new_level must be strictly higher
///than the current level.
///
void liftHighestActive(int new_level)
{
const Item li = *_last_active[_highest_active];
copy(--_first[_highest_active+1],_last_active[_highest_active]--);
for(int l=_highest_active+1;l<new_level;l++)
{
copy(--_first[l+1],_first[l]);
--_last_active[l];
}
copy(li,_first[new_level]);
_level.set(li,new_level);
_highest_active=new_level;
}
///Lift the highest active item to the top level.
///Lift the item returned by highestActive() to the top level and
///deactivate it.
void liftHighestActiveToTop()
{
const Item li = *_last_active[_highest_active];
copy(--_first[_highest_active+1],_last_active[_highest_active]--);
for(int l=_highest_active+1;l<_max_level;l++)
{
copy(--_first[l+1],_first[l]);
--_last_active[l];
}
copy(li,_first[_max_level]);
--_last_active[_max_level];
_level.set(li,_max_level);
while(_highest_active>=0 &&
_last_active[_highest_active]<_first[_highest_active])
_highest_active--;
}
///@}
///\name Active Item on Certain Level
///Functions for working with the active items.
///@{
///Return an active item on level \c l.
///Return an active item on level \c l or \ref INVALID if there is no such
///an item. (\c l must be from the range [0...\c max_level].
Item activeOn(int l) const
{
return _last_active[l]>=_first[l]?*_last_active[l]:INVALID;
}
///Lift the active item returned by \c activeOn(level) by one.
///Lift the active item returned by \ref activeOn() "activeOn(level)"
///by one.
Item liftActiveOn(int level)
{
Item it =*_last_active[level];
_level.set(it,_level[it]+1);
swap(_last_active[level]--, --_first[level+1]);
if (level+1>_highest_active) ++_highest_active;
}
///Lift the active item returned by \c activeOn(level) to the given level.
///Lift the active item returned by \ref activeOn() "activeOn(level)"
///to the given level.
void liftActiveOn(int level, int new_level)
{
const Item ai = *_last_active[level];
copy(--_first[level+1], _last_active[level]--);
for(int l=level+1;l<new_level;l++)
{
copy(_last_active[l],_first[l]);
copy(--_first[l+1], _last_active[l]--);
}
copy(ai,_first[new_level]);
_level.set(ai,new_level);
if (new_level>_highest_active) _highest_active=new_level;
}
///Lift the active item returned by \c activeOn(level) to the top level.
///Lift the active item returned by \ref activeOn() "activeOn(level)"
///to the top level and deactivate it.
void liftActiveToTop(int level)
{
const Item ai = *_last_active[level];
copy(--_first[level+1],_last_active[level]--);
for(int l=level+1;l<_max_level;l++)
{
copy(_last_active[l],_first[l]);
copy(--_first[l+1], _last_active[l]--);
}
copy(ai,_first[_max_level]);
--_last_active[_max_level];
_level.set(ai,_max_level);
if (_highest_active==level) {
while(_highest_active>=0 &&
_last_active[_highest_active]<_first[_highest_active])
_highest_active--;
}
}
///@}
///Lift an active item to a higher level.
///Lift an active item to a higher level.
///\param i The item to be lifted. It must be active.
///\param new_level The new level of \c i. It must be strictly higher
///than the current level.
///
void lift(Item i, int new_level)
{
const int lo = _level[i];
const Vit w = _where[i];
copy(_last_active[lo],w);
copy(--_first[lo+1],_last_active[lo]--);
for(int l=lo+1;l<new_level;l++)
{
copy(_last_active[l],_first[l]);
copy(--_first[l+1],_last_active[l]--);
}
copy(i,_first[new_level]);
_level.set(i,new_level);
if(new_level>_highest_active) _highest_active=new_level;
}
///Move an inactive item to the top but one level (in a dirty way).
///This function moves an inactive item from the top level to the top
///but one level (in a dirty way).
///\warning It makes the underlying datastructure corrupt, so use it
///only if you really know what it is for.
///\pre The item is on the top level.
void dirtyTopButOne(Item i) {
_level.set(i,_max_level - 1);
}
///Lift all items on and above the given level to the top level.
///This function lifts all items on and above level \c l to the top
///level and deactivates them.
void liftToTop(int l)
{
const Vit f=_first[l];
const Vit tl=_first[_max_level];
for(Vit i=f;i!=tl;++i)
_level.set(*i,_max_level);
for(int i=l;i<=_max_level;i++)
{
_first[i]=f;
_last_active[i]=f-1;
}
for(_highest_active=l-1;
_highest_active>=0 &&
_last_active[_highest_active]<_first[_highest_active];
_highest_active--) ;
}
private:
int _init_lev;
Vit _init_num;
public:
///\name Initialization
///Using these functions you can initialize the levels of the items.
///\n
///The initialization must be started with calling \c initStart().
///Then the items should be listed level by level starting with the
///lowest one (level 0) using \c initAddItem() and \c initNewLevel().
///Finally \c initFinish() must be called.
///The items not listed are put on the highest level.
///@{
///Start the initialization process.
void initStart()
{
_init_lev=0;
_init_num=&_items[0];
_first[0]=&_items[0];
_last_active[0]=&_items[0]-1;
Vit n=&_items[0];
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_g);i!=INVALID;++i)
{
*n=i;
_where.set(i,n);
_level.set(i,_max_level);
++n;
}
}
///Add an item to the current level.
void initAddItem(Item i)
{
swap(_where[i],_init_num);
_level.set(i,_init_lev);
++_init_num;
}
///Start a new level.
///Start a new level.
///It shouldn't be used before the items on level 0 are listed.
void initNewLevel()
{
_init_lev++;
_first[_init_lev]=_init_num;
_last_active[_init_lev]=_init_num-1;
}
///Finalize the initialization process.
void initFinish()
{
for(_init_lev++;_init_lev<=_max_level;_init_lev++)
{
_first[_init_lev]=_init_num;
_last_active[_init_lev]=_init_num-1;
}
_first[_max_level+1]=&_items[0]+_item_num;
_last_active[_max_level+1]=&_items[0]+_item_num-1;
_highest_active = -1;
}
///@}
};
///Class for handling "labels" in push-relabel type algorithms.
///A class for handling "labels" in push-relabel type algorithms.
///
///\ingroup auxdat
///Using this class you can assign "labels" (nonnegative integer numbers)
///to the edges or nodes of a graph, manipulate and query them through
///operations typically arising in "push-relabel" type algorithms.
///
///Each item is either \em active or not, and you can also choose a
///highest level active item.
///
///\sa Elevator
///
///\param Graph Type of the underlying graph.
///\param Item Type of the items the data is assigned to (Graph::Node,
///Graph::Arc, Graph::Edge).
template <class Graph, class Item>
class LinkedElevator {
public:
typedef Item Key;
typedef int Value;
private:
typedef typename ItemSetTraits<Graph,Item>::
template Map<Item>::Type ItemMap;
typedef typename ItemSetTraits<Graph,Item>::
template Map<int>::Type IntMap;
typedef typename ItemSetTraits<Graph,Item>::
template Map<bool>::Type BoolMap;
const Graph &_graph;
int _max_level;
int _item_num;
std::vector<Item> _first, _last;
ItemMap _prev, _next;
int _highest_active;
IntMap _level;
BoolMap _active;
public:
///Constructor with given maximum level.
///Constructor with given maximum level.
///
///\param graph The underlying graph.
///\param max_level The maximum allowed level.
///Set the range of the possible labels to <tt>[0..max_level]</tt>.
LinkedElevator(const Graph& graph, int max_level)
: _graph(graph), _max_level(max_level), _item_num(_max_level),
_first(_max_level + 1), _last(_max_level + 1),
_prev(graph), _next(graph),
_highest_active(-1), _level(graph), _active(graph) {}
///Constructor.
///Constructor.
///
///\param graph The underlying graph.
///Set the range of the possible labels to <tt>[0..max_level]</tt>,
///where \c max_level is equal to the number of labeled items in the graph.
LinkedElevator(const Graph& graph)
: _graph(graph), _max_level(countItems<Graph, Item>(graph)),
_item_num(_max_level),
_first(_max_level + 1), _last(_max_level + 1),
_prev(graph, INVALID), _next(graph, INVALID),
_highest_active(-1), _level(graph), _active(graph) {}
///Activate item \c i.
///Activate item \c i.
///\pre Item \c i shouldn't be active before.
void activate(Item i) {
_active.set(i, true);
int level = _level[i];
if (level > _highest_active) {
_highest_active = level;
}
if (_prev[i] == INVALID || _active[_prev[i]]) return;
//unlace
_next.set(_prev[i], _next[i]);
if (_next[i] != INVALID) {
_prev.set(_next[i], _prev[i]);
} else {
_last[level] = _prev[i];
}
//lace
_next.set(i, _first[level]);
_prev.set(_first[level], i);
_prev.set(i, INVALID);
_first[level] = i;
}
///Deactivate item \c i.
///Deactivate item \c i.
///\pre Item \c i must be active before.
void deactivate(Item i) {
_active.set(i, false);
int level = _level[i];
if (_next[i] == INVALID || !_active[_next[i]])
goto find_highest_level;
//unlace
_prev.set(_next[i], _prev[i]);
if (_prev[i] != INVALID) {
_next.set(_prev[i], _next[i]);
} else {
_first[_level[i]] = _next[i];
}
//lace
_prev.set(i, _last[level]);
_next.set(_last[level], i);
_next.set(i, INVALID);
_last[level] = i;
find_highest_level:
if (level == _highest_active) {
while (_highest_active >= 0 && activeFree(_highest_active))
--_highest_active;
}
}
///Query whether item \c i is active
bool active(Item i) const { return _active[i]; }
///Return the level of item \c i.
int operator[](Item i) const { return _level[i]; }
///Return the number of items on level \c l.
int onLevel(int l) const {
int num = 0;
Item n = _first[l];
while (n != INVALID) {
++num;
n = _next[n];
}
return num;
}
///Return true if the level is empty.
bool emptyLevel(int l) const {
return _first[l] == INVALID;
}
///Return the number of items above level \c l.
int aboveLevel(int l) const {
int num = 0;
for (int level = l + 1; level < _max_level; ++level)
num += onLevel(level);
return num;
}
///Return the number of active items on level \c l.
int activesOnLevel(int l) const {
int num = 0;
Item n = _first[l];
while (n != INVALID && _active[n]) {
++num;
n = _next[n];
}
return num;
}
///Return true if there is no active item on level \c l.
bool activeFree(int l) const {
return _first[l] == INVALID || !_active[_first[l]];
}
///Return the maximum allowed level.
int maxLevel() const {
return _max_level;
}
///\name Highest Active Item
///Functions for working with the highest level
///active item.
///@{
///Return a highest level active item.
///Return a highest level active item or INVALID if there is no active
///item.
Item highestActive() const {
return _highest_active >= 0 ? _first[_highest_active] : INVALID;
}
///Return the highest active level.
///Return the level of the highest active item or -1 if there is no active
///item.
int highestActiveLevel() const {
return _highest_active;
}
///Lift the highest active item by one.
///Lift the item returned by highestActive() by one.
///
void liftHighestActive() {
Item i = _first[_highest_active];
if (_next[i] != INVALID) {
_prev.set(_next[i], INVALID);
_first[_highest_active] = _next[i];
} else {
_first[_highest_active] = INVALID;
_last[_highest_active] = INVALID;
}
_level.set(i, ++_highest_active);
if (_first[_highest_active] == INVALID) {
_first[_highest_active] = i;
_last[_highest_active] = i;
_prev.set(i, INVALID);
_next.set(i, INVALID);
} else {
_prev.set(_first[_highest_active], i);
_next.set(i, _first[_highest_active]);
_first[_highest_active] = i;
}
}
///Lift the highest active item to the given level.
///Lift the item returned by highestActive() to level \c new_level.
///
///\warning \c new_level must be strictly higher
///than the current level.
///
void liftHighestActive(int new_level) {
Item i = _first[_highest_active];
if (_next[i] != INVALID) {
_prev.set(_next[i], INVALID);
_first[_highest_active] = _next[i];
} else {
_first[_highest_active] = INVALID;
_last[_highest_active] = INVALID;
}
_level.set(i, _highest_active = new_level);
if (_first[_highest_active] == INVALID) {
_first[_highest_active] = _last[_highest_active] = i;
_prev.set(i, INVALID);
_next.set(i, INVALID);
} else {
_prev.set(_first[_highest_active], i);
_next.set(i, _first[_highest_active]);
_first[_highest_active] = i;
}
}
///Lift the highest active item to the top level.
///Lift the item returned by highestActive() to the top level and
///deactivate it.
void liftHighestActiveToTop() {
Item i = _first[_highest_active];
_level.set(i, _max_level);
if (_next[i] != INVALID) {
_prev.set(_next[i], INVALID);
_first[_highest_active] = _next[i];
} else {
_first[_highest_active] = INVALID;
_last[_highest_active] = INVALID;
}
while (_highest_active >= 0 && activeFree(_highest_active))
--_highest_active;
}
///@}
///\name Active Item on Certain Level
///Functions for working with the active items.
///@{
///Return an active item on level \c l.
///Return an active item on level \c l or \ref INVALID if there is no such
///an item. (\c l must be from the range [0...\c max_level].
Item activeOn(int l) const
{
return _active[_first[l]] ? _first[l] : INVALID;
}
///Lift the active item returned by \c activeOn(l) by one.
///Lift the active item returned by \ref activeOn() "activeOn(l)"
///by one.
Item liftActiveOn(int l)
{
Item i = _first[l];
if (_next[i] != INVALID) {
_prev.set(_next[i], INVALID);
_first[l] = _next[i];
} else {
_first[l] = INVALID;
_last[l] = INVALID;
}
_level.set(i, ++l);
if (_first[l] == INVALID) {
_first[l] = _last[l] = i;
_prev.set(i, INVALID);
_next.set(i, INVALID);
} else {
_prev.set(_first[l], i);
_next.set(i, _first[l]);
_first[l] = i;
}
if (_highest_active < l) {
_highest_active = l;
}
}
///Lift the active item returned by \c activeOn(l) to the given level.
///Lift the active item returned by \ref activeOn() "activeOn(l)"
///to the given level.
void liftActiveOn(int l, int new_level)
{
Item i = _first[l];
if (_next[i] != INVALID) {
_prev.set(_next[i], INVALID);
_first[l] = _next[i];
} else {
_first[l] = INVALID;
_last[l] = INVALID;
}
_level.set(i, l = new_level);
if (_first[l] == INVALID) {
_first[l] = _last[l] = i;
_prev.set(i, INVALID);
_next.set(i, INVALID);
} else {
_prev.set(_first[l], i);
_next.set(i, _first[l]);
_first[l] = i;
}
if (_highest_active < l) {
_highest_active = l;
}
}
///Lift the active item returned by \c activeOn(l) to the top level.
///Lift the active item returned by \ref activeOn() "activeOn(l)"
///to the top level and deactivate it.
void liftActiveToTop(int l)
{
Item i = _first[l];
if (_next[i] != INVALID) {
_prev.set(_next[i], INVALID);
_first[l] = _next[i];
} else {
_first[l] = INVALID;
_last[l] = INVALID;
}
_level.set(i, _max_level);
if (l == _highest_active) {
while (_highest_active >= 0 && activeFree(_highest_active))
--_highest_active;
}
}
///@}
/// \brief Lift an active item to a higher level.
///
/// Lift an active item to a higher level.
/// \param i The item to be lifted. It must be active.
/// \param new_level The new level of \c i. It must be strictly higher
/// than the current level.
///
void lift(Item i, int new_level) {
if (_next[i] != INVALID) {
_prev.set(_next[i], _prev[i]);
} else {
_last[new_level] = _prev[i];
}
if (_prev[i] != INVALID) {
_next.set(_prev[i], _next[i]);
} else {
_first[new_level] = _next[i];
}
_level.set(i, new_level);
if (_first[new_level] == INVALID) {
_first[new_level] = _last[new_level] = i;
_prev.set(i, INVALID);
_next.set(i, INVALID);
} else {
_prev.set(_first[new_level], i);
_next.set(i, _first[new_level]);
_first[new_level] = i;
}
if (_highest_active < new_level) {
_highest_active = new_level;
}
}
///Move an inactive item to the top but one level (in a dirty way).
///This function moves an inactive item from the top level to the top
///but one level (in a dirty way).
///\warning It makes the underlying datastructure corrupt, so use it
///only if you really know what it is for.
///\pre The item is on the top level.
void dirtyTopButOne(Item i) {
_level.set(i, _max_level - 1);
}
///Lift all items on and above the given level to the top level.
///This function lifts all items on and above level \c l to the top
///level and deactivates them.
void liftToTop(int l) {
for (int i = l + 1; _first[i] != INVALID; ++i) {
Item n = _first[i];
while (n != INVALID) {
_level.set(n, _max_level);
n = _next[n];
}
_first[i] = INVALID;
_last[i] = INVALID;
}
if (_highest_active > l - 1) {
_highest_active = l - 1;
while (_highest_active >= 0 && activeFree(_highest_active))
--_highest_active;
}
}
private:
int _init_level;
public:
///\name Initialization
///Using these functions you can initialize the levels of the items.
///\n
///The initialization must be started with calling \c initStart().
///Then the items should be listed level by level starting with the
///lowest one (level 0) using \c initAddItem() and \c initNewLevel().
///Finally \c initFinish() must be called.
///The items not listed are put on the highest level.
///@{
///Start the initialization process.
void initStart() {
for (int i = 0; i <= _max_level; ++i) {
_first[i] = _last[i] = INVALID;
}
_init_level = 0;
for(typename ItemSetTraits<Graph,Item>::ItemIt i(_graph);
i != INVALID; ++i) {
_level.set(i, _max_level);
_active.set(i, false);
}
}
///Add an item to the current level.
void initAddItem(Item i) {
_level.set(i, _init_level);
if (_last[_init_level] == INVALID) {
_first[_init_level] = i;
_last[_init_level] = i;
_prev.set(i, INVALID);
_next.set(i, INVALID);
} else {
_prev.set(i, _last[_init_level]);
_next.set(i, INVALID);
_next.set(_last[_init_level], i);
_last[_init_level] = i;
}
}
///Start a new level.
///Start a new level.
///It shouldn't be used before the items on level 0 are listed.
void initNewLevel() {
++_init_level;
}
///Finalize the initialization process.
void initFinish() {
_highest_active = -1;
}
///@}
};
} //END OF NAMESPACE LEMON
#endif